MyArxiv
Robotics 24
☆ Multi-Agent Feedback Motion Planning using Probably Approximately Correct Nonlinear Model Predictive Control
For many tasks, multi-robot teams often provide greater efficiency, robustness, and resiliency. However, multi-robot collaboration in real-world scenarios poses a number of major challenges, especially when dynamic robots must balance competing objectives like formation control and obstacle avoidance in the presence of stochastic dynamics and sensor uncertainty. In this paper, we propose a distributed, multi-agent receding-horizon feedback motion planning approach using Probably Approximately Correct Nonlinear Model Predictive Control (PAC-NMPC) that is able to reason about both model and measurement uncertainty to achieve robust multi-agent formation control while navigating cluttered obstacle fields and avoiding inter-robot collisions. Our approach relies not only on the underlying PAC-NMPC algorithm but also on a terminal cost-function derived from gyroscopic obstacle avoidance. Through numerical simulation, we show that our distributed approach performs on par with a centralized formulation, that it offers improved performance in the case of significant measurement noise, and that it can scale to more complex dynamical systems.
comment: 10 pages, 12 figures
☆ Improving robot understanding using conversational AI: demonstration and feasibility study
Explanations constitute an important aspect of successful human robot interactions and can enhance robot understanding. To improve the understanding of the robot, we have developed four levels of explanation (LOE) based on two questions: what needs to be explained, and why the robot has made a particular decision. The understandable robot requires a communicative action when there is disparity between the human s mental model of the robot and the robots state of mind. This communicative action was generated by utilizing a conversational AI platform to generate explanations. An adaptive dialog was implemented for transition from one LOE to another. Here, we demonstrate the adaptive dialog in a collaborative task with errors and provide results of a feasibility study with users.
comment: 40th Anniversary, IEEE International Conference on Robotics and Automation,2024
☆ Evaluating Efficiency and Engagement in Scripted and LLM-Enhanced Human-Robot Interactions
To achieve natural and intuitive interaction with people, HRI frameworks combine a wide array of methods for human perception, intention communication, human-aware navigation and collaborative action. In practice, when encountering unpredictable behavior of people or unexpected states of the environment, these frameworks may lack the ability to dynamically recognize such states, adapt and recover to resume the interaction. Large Language Models (LLMs), owing to their advanced reasoning capabilities and context retention, present a promising solution for enhancing robot adaptability. This potential, however, may not directly translate to improved interaction metrics. This paper considers a representative interaction with an industrial robot involving approach, instruction, and object manipulation, implemented in two conditions: (1) fully scripted and (2) including LLM-enhanced responses. We use gaze tracking and questionnaires to measure the participants' task efficiency, engagement, and robot perception. The results indicate higher subjective ratings for the LLM condition, but objective metrics show that the scripted condition performs comparably, particularly in efficiency and focus during simple tasks. We also note that the scripted condition may have an edge over LLM-enhanced responses in terms of response latency and energy consumption, especially for trivial and repetitive interactions.
comment: Accepted as a Late-Breaking Report to the 2025, 20th ACM/IEEE International Conference on Human-Robot Interaction (HRI)
☆ Towards autonomous photogrammetric forest inventory using a lightweight under-canopy robotic drone
Drones are increasingly used in forestry to capture high-resolution remote sensing data. While operations above the forest canopy are already highly automated, flying inside forests remains challenging, primarily relying on manual piloting. Inside dense forests, reliance on the Global Navigation Satellite System (GNSS) for localization is not feasible. Additionally, the drone must autonomously adjust its flight path to avoid collisions. Recently, advancements in robotics have enabled autonomous drone flights in GNSS-denied obstacle-rich areas. In this article, a step towards autonomous forest data collection is taken by building a prototype of a robotic under-canopy drone utilizing state-of-the-art open-source methods and validating its performance for data collection inside forests. The autonomous flight capability was evaluated through multiple test flights in two boreal forest test sites. The tree parameter estimation capability was studied by conducting diameter at breast height (DBH) estimation using onboard stereo camera data and photogrammetric methods. The prototype conducted flights in selected challenging forest environments, and the experiments showed excellent performance in forest reconstruction with a miniaturized stereoscopic photogrammetric system. The stem detection algorithm managed to identify 79.31 % of the stems. The DBH estimation had a root mean square error (RMSE) of 3.33 cm (12.79 %) and a bias of 1.01 cm (3.87 %) across all trees. For trees with a DBH less than 30 cm, the RMSE was 1.16 cm (5.74 %), and the bias was 0.13 cm (0.64 %). When considering the overall performance in terms of DBH accuracy, autonomy, and forest complexity, the proposed approach was superior compared to methods proposed in the scientific literature. Results provided valuable insights into autonomous forest reconstruction using drones, and several further development topics were proposed.
comment: 35 pages, 13 Figures
☆ Low-Cost 3D printed, Biocompatible Ionic Polymer Membranes for Soft Actuators
Ionic polymer actuators, in essence, consist of ion exchange polymers sandwiched between layers of electrodes. They have recently gained recognition as promising candidates for soft actuators due to their lightweight nature, noise-free operation, and low-driving voltages. However, the materials traditionally utilized to develop them are often not human/environmentally friendly. Thus, to address this issue, researchers have been focusing on developing biocompatible versions of this actuator. Despite this, such actuators still face challenges in achieving high performance, in payload capacity, bending capabilities, and response time. In this paper, we present a biocompatible ionic polymer actuator whose membrane is fully 3D printed utilizing a direct ink writing method. The structure of the printed membranes consists of biodegradable ionic fluid encapsulated within layers of activated carbon polymers. From the microscopic observations of its structure, we confirmed that the ionic polymer is well encapsulated. The actuators can achieve a bending performance of up to 124$^\circ$ (curvature of 0.82 $\text{cm}^{-1}$), which, to our knowledge, is the highest curvature attained by any bending ionic polymer actuator to date. It can operate comfortably up to a 2 Hz driving frequency and can achieve blocked forces of up to 0.76 mN. Our results showcase a promising, high-performing biocompatible ionic polymer actuator, whose membrane can be easily manufactured in a single step using a standard FDM 3D printer. This approach paves the way for creating customized designs for functional soft robotic applications, including human-interactive devices, in the near future.
comment: 6 pages, 8 figures, Accepted in IEEE International Conference on Soft Robotics 2025 (Robosoft)
☆ Learning to Hop for a Single-Legged Robot with Parallel Mechanism
This work presents the application of reinforcement learning to improve the performance of a highly dynamic hopping system with a parallel mechanism. Unlike serial mechanisms, parallel mechanisms can not be accurately simulated due to the complexity of their kinematic constraints and closed-loop structures. Besides, learning to hop suffers from prolonged aerial phase and the sparse nature of the rewards. To address them, we propose a learning framework to encode long-history feedback to account for the under-actuation brought by the prolonged aerial phase. In the proposed framework, we also introduce a simplified serial configuration for the parallel design to avoid directly simulating parallel structure during the training. A torque-level conversion is designed to deal with the parallel-serial conversion to handle the sim-to-real issue. Simulation and hardware experiments have been conducted to validate this framework.
☆ Navigating Robot Swarm Through a Virtual Tube with Flow-Adaptive Distribution Control
With the rapid development of robot swarm technology and its diverse applications, navigating robot swarms through complex environments has emerged as a critical research direction. To ensure safe navigation and avoid potential collisions with obstacles, the concept of virtual tubes has been introduced to define safe and navigable regions. However, current control methods in virtual tubes face the congestion issues, particularly in narrow virtual tubes with low throughput. To address these challenges, we first originally introduce the concepts of virtual tube area and flow capacity, and develop an new evolution model for the spatial density function. Next, we propose a novel control method that combines a modified artificial potential field (APF) for swarm navigation and density feedback control for distribution regulation, under which a saturated velocity command is designed. Then, we generate a global velocity field that not only ensures collision-free navigation through the virtual tube, but also achieves locally input-to-state stability (LISS) for density tracking errors, both of which are rigorously proven. Finally, numerical simulations and realistic applications validate the effectiveness and advantages of the proposed method in managing robot swarms within narrow virtual tubes.
☆ Nocturnal eye inspired liquid to gas phase change soft actuator with Laser-Induced-Graphene: enhanced environmental light harvesting and photothermal conversion
Robotic systems' mobility is constrained by power sources and wiring. While pneumatic actuators remain tethered to air supplies, we developed a new actuator utilizing light energy. Inspired by nocturnal animals' eyes, we designed a bilayer soft actuator incorporating Laser-Induced Graphene (LIG) on the inner surface of a silicone layer. This design maintains silicone's transparency and flexibility while achieving 54% faster response time compared to conventional actuators through enhanced photothermal conversion.
comment: 23pages, 8 figures, journal paper
☆ DynoSAM: Open-Source Smoothing and Mapping Framework for Dynamic SLAM
Traditional Visual Simultaneous Localization and Mapping (vSLAM) systems focus solely on static scene structures, overlooking dynamic elements in the environment. Although effective for accurate visual odometry in complex scenarios, these methods discard crucial information about moving objects. By incorporating this information into a Dynamic SLAM framework, the motion of dynamic entities can be estimated, enhancing navigation whilst ensuring accurate localization. However, the fundamental formulation of Dynamic SLAM remains an open challenge, with no consensus on the optimal approach for accurate motion estimation within a SLAM pipeline. Therefore, we developed DynoSAM, an open-source framework for Dynamic SLAM that enables the efficient implementation, testing, and comparison of various Dynamic SLAM optimization formulations. DynoSAM integrates static and dynamic measurements into a unified optimization problem solved using factor graphs, simultaneously estimating camera poses, static scene, object motion or poses, and object structures. We evaluate DynoSAM across diverse simulated and real-world datasets, achieving state-of-the-art motion estimation in indoor and outdoor environments, with substantial improvements over existing systems. Additionally, we demonstrate DynoSAM utility in downstream applications, including 3D reconstruction of dynamic scenes and trajectory prediction, thereby showcasing potential for advancing dynamic object-aware SLAM systems. DynoSAM is open-sourced at https://github.com/ACFR-RPG/DynOSAM.
comment: 20 pages, 10 figures. Submitted to T-RO Visual SLAM SI 2025
☆ Connection-Coordination Rapport (CCR) Scale: A Dual-Factor Scale to Measure Human-Robot Rapport
Robots, particularly in service and companionship roles, must develop positive relationships with people they interact with regularly to be successful. These positive human-robot relationships can be characterized as establishing "rapport," which indicates mutual understanding and interpersonal connection that form the groundwork for successful long-term human-robot interaction. However, the human-robot interaction research literature lacks scale instruments to assess human-robot rapport in a variety of situations. In this work, we developed the 18-item Connection-Coordination Rapport (CCR) Scale to measure human-robot rapport. We first ran Study 1 (N = 288) where online participants rated videos of human-robot interactions using a set of candidate items. Our Study 1 results showed the discovery of two factors in our scale, which we named "Connection" and "Coordination." We then evaluated this scale by running Study 2 (N = 201) where online participants rated a new set of human-robot interaction videos with our scale and an existing rapport scale from virtual agents research for comparison. We also validated our scale by replicating a prior in-person human-robot interaction study, Study 3 (N = 44), and found that rapport is rated significantly greater when participants interacted with a responsive robot (responsive condition) as opposed to an unresponsive robot (unresponsive condition). Results from these studies demonstrate high reliability and validity for the CCR scale, which can be used to measure rapport in both first-person and third-person perspectives. We encourage the adoption of this scale in future studies to measure rapport in a variety of human-robot interactions.
comment: 8 pages, 5 figures
☆ Automating High Quality RT Planning at Scale
Radiotherapy (RT) planning is complex, subjective, and time-intensive. Advances in artificial intelligence (AI) promise to improve its precision, efficiency, and consistency, but progress is often limited by the scarcity of large, standardized datasets. To address this, we introduce the Automated Iterative RT Planning (AIRTP) system, a scalable solution for generating high-quality treatment plans. This scalable solution is designed to generate substantial volumes of consistently high-quality treatment plans, overcoming a key obstacle in the advancement of AI-driven RT planning. Our AIRTP pipeline adheres to clinical guidelines and automates essential steps, including organ-at-risk (OAR) contouring, helper structure creation, beam setup, optimization, and plan quality improvement, using AI integrated with RT planning software like Eclipse of Varian. Furthermore, a novel approach for determining optimization parameters to reproduce 3D dose distributions, i.e. a method to convert dose predictions to deliverable treatment plans constrained by machine limitations. A comparative analysis of plan quality reveals that our automated pipeline produces treatment plans of quality comparable to those generated manually, which traditionally require several hours of labor per plan. Committed to public research, the first data release of our AIRTP pipeline includes nine cohorts covering head-and-neck and lung cancer sites to support an AAPM 2025 challenge. This data set features more than 10 times the number of plans compared to the largest existing well-curated public data set to our best knowledge. Repo:{https://github.com/RiqiangGao/GDP-HMM_AAPMChallenge}
comment: Related to GDP-HMM grand challenge
♻ ☆ FoundationStereo: Zero-Shot Stereo Matching
Tremendous progress has been made in deep stereo matching to excel on benchmark datasets through per-domain fine-tuning. However, achieving strong zero-shot generalization - a hallmark of foundation models in other computer vision tasks - remains challenging for stereo matching. We introduce FoundationStereo, a foundation model for stereo depth estimation designed to achieve strong zero-shot generalization. To this end, we first construct a large-scale (1M stereo pairs) synthetic training dataset featuring large diversity and high photorealism, followed by an automatic self-curation pipeline to remove ambiguous samples. We then design a number of network architecture components to enhance scalability, including a side-tuning feature backbone that adapts rich monocular priors from vision foundation models to mitigate the sim-to-real gap, and long-range context reasoning for effective cost volume filtering. Together, these components lead to strong robustness and accuracy across domains, establishing a new standard in zero-shot stereo depth estimation. Project page: https://nvlabs.github.io/FoundationStereo/
♻ ☆ A Search-to-Control Reinforcement Learning Based Framework for Quadrotor Local Planning in Dense Environments
Agile flight in complex environments poses significant challenges to current motion planning methods, as they often fail to fully leverage the quadrotor's dynamic potential, leading to performance failures and reduced efficiency during aggressive maneuvers. Existing approaches frequently decouple trajectory optimization from control generation and neglect the dynamics, further limiting their ability to generate aggressive and feasible motions. To address these challenges, we introduce an enhanced Search-to-Control planning framework that integrates visibility path searching with reinforcement learning (RL) control generation, directly accounting for dynamics and bridging the gap between planning and control. Our method first extracts control points from collision-free paths using a proposed heuristic search, which are then refined by an RL policy to generate low-level control commands for the quadrotor's controller, utilizing reduced-dimensional obstacle observations for efficient inference with lightweight neural networks. We validate the framework through simulations and real-world experiments, demonstrating improved time efficiency and dynamic maneuverability compared to existing methods, while confirming its robustness and applicability. To support further research, We will release our implementation as an open-source package.
♻ ☆ RadaRays: Real-time Simulation of Rotating FMCW Radar for Mobile Robotics via Hardware-accelerated Ray Tracing
RadaRays allows for the accurate modeling and simulation of rotating FMCW radar sensors in complex environments, including the simulation of reflection, refraction, and scattering of radar waves. Our software is able to handle large numbers of objects and materials in real-time, making it suitable for use in a variety of mobile robotics applications. We demonstrate the effectiveness of RadaRays through a series of experiments and show that it can more accurately reproduce the behavior of FMCW radar sensors in a variety of environments, compared to the ray casting-based lidar-like simulations that are commonly used in simulators for autonomous driving such as CARLA. Our experiments additionally serve as a valuable reference point for researchers to evaluate their own radar simulations. By using RadaRays, developers can significantly reduce the time and cost associated with prototyping and testing FMCW radar-based algorithms. We also provide a Gazebo plugin that makes our work accessible to the mobile robotics community.
♻ ☆ Sampling-based Model Predictive Control Leveraging Parallelizable Physics Simulations
We present a method for sampling-based model predictive control that makes use of a generic physics simulator as the dynamical model. In particular, we propose a Model Predictive Path Integral controller (MPPI), that uses the GPU-parallelizable IsaacGym simulator to compute the forward dynamics of a problem. By doing so, we eliminate the need for explicit encoding of robot dynamics and contacts with objects for MPPI. Since no explicit dynamic modeling is required, our method is easily extendable to different objects and robots and allows one to solve complex navigation and contact-rich tasks. We demonstrate the effectiveness of this method in several simulated and real-world settings, among which mobile navigation with collision avoidance, non-prehensile manipulation, and whole-body control for high-dimensional configuration spaces. This method is a powerful and accessible open-source tool to solve a large variety of contact-rich motion planning tasks.
comment: Accepted for RA-L. Code and videos available at https://autonomousrobots.nl/paper_websites/isaac-mppi
♻ ☆ Concurrent-Learning Based Relative Localization in Shape Formation of Robot Swarms (Extended version)
In this paper, we address the shape formation problem for massive robot swarms in environments where external localization systems are unavailable. Achieving this task effectively with solely onboard measurements is still scarcely explored and faces some practical challenges. To solve this challenging problem, we propose the following novel results. Firstly, to estimate the relative positions among neighboring robots, a concurrent-learning based estimator is proposed. It relaxes the persistent excitation condition required in the classical ones such as least-square estimator. Secondly, we introduce a finite-time agreement protocol to determine the shape location. This is achieved by estimating the relative position between each robot and a randomly assigned seed robot. The initial position of the seed one marks the shape location. Thirdly, based on the theoretical results of the relative localization, a novel behavior-based control strategy is devised. This strategy not only enables adaptive shape formation of large group of robots but also enhances the observability of inter-robot relative localization. Numerical simulation results are provided to verify the performance of our proposed strategy compared to the state-of-the-art ones. Additionally, outdoor experiments on real robots further demonstrate the practical effectiveness and robustness of our methods.
♻ ☆ Multi-Agent Consensus Seeking via Large Language Models
Multi-agent systems driven by large language models (LLMs) have shown promising abilities for solving complex tasks in a collaborative manner. This work considers a fundamental problem in multi-agent collaboration: consensus seeking. When multiple agents work together, we are interested in how they can reach a consensus through inter-agent negotiation. To that end, this work studies a consensus-seeking task where the state of each agent is a numerical value and they negotiate with each other to reach a consensus value. It is revealed that when not explicitly directed on which strategy should be adopted, the LLM-driven agents primarily use the average strategy for consensus seeking although they may occasionally use some other strategies. Moreover, this work analyzes the impact of the agent number, agent personality, and network topology on the negotiation process. The findings reported in this work can potentially lay the foundations for understanding the behaviors of LLM-driven multi-agent systems for solving more complex tasks. Furthermore, LLM-driven consensus seeking is applied to a multi-robot aggregation task. This application demonstrates the potential of LLM-driven agents to achieve zero-shot autonomous planning for multi-robot collaboration tasks. Project website: windylab.github.io/ConsensusLLM/.
♻ ☆ AirPilot: Interpretable PPO-based DRL Auto-Tuned Nonlinear PID Drone Controller for Robust Autonomous Flights
Navigation precision, speed and stability are crucial for safe Unmanned Aerial Vehicle (UAV) flight maneuvers and effective flight mission executions in dynamic environments. Different flight missions may have varying objectives, such as minimizing energy consumption, achieving precise positioning, or maximizing speed. A controller that can adapt to different objectives on the fly is highly valuable. Proportional Integral Derivative (PID) controllers are one of the most popular and widely used control algorithms for drones and other control systems, but their linear control algorithm fails to capture the nonlinear nature of the dynamic wind conditions and complex drone system. Manually tuning the PID gains for various missions can be time-consuming and requires significant expertise. This paper aims to revolutionize drone flight control by presenting the AirPilot, a nonlinear Deep Reinforcement Learning (DRL) - enhanced Proportional Integral Derivative (PID) drone controller using Proximal Policy Optimization (PPO). AirPilot controller combines the simplicity and effectiveness of traditional PID control with the adaptability, learning capability, and optimization potential of DRL. This makes it better suited for modern drone applications where the environment is dynamic, and mission-specific performance demands are high. We employed a COEX Clover autonomous drone for training the DRL agent within the simulator and implemented it in a real-world lab setting, which marks a significant milestone as one of the first attempts to apply a DRL-based flight controller on an actual drone. Airpilot is capable of reducing the navigation error of the default PX4 PID position controller by 90%, improving effective navigation speed of a fine-tuned PID controller by 21%, reducing settling time and overshoot by 17% and 16% respectively.
comment: 9 pages, 20 figures
♻ ☆ Complementarity-Free Multi-Contact Modeling and Optimization for Dexterous Manipulation
A significant barrier preventing model-based methods from achieving real-time and versatile dexterous robotic manipulation is the inherent complexity of multi-contact dynamics. Traditionally formulated as complementarity models, multi-contact dynamics introduces non-smoothness and combinatorial complexity, complicating contact-rich planning and optimization. In this paper, we circumvent these challenges by introducing a lightweight yet capable multi-contact model. Our new model, derived from the duality of optimization-based contact models, dispenses with the complementarity constructs entirely, providing computational advantages such as closed-form time stepping, differentiability, automatic satisfaction with Coulomb friction law, and minimal hyperparameter tuning. We demonstrate the effectiveness and efficiency of the model for planning and control in a range of challenging dexterous manipulation tasks, including fingertip 3D in-air manipulation, TriFinger in-hand manipulation, and Allegro hand on-palm reorientation, all performed with diverse objects. Our method consistently achieves state-of-the-art results: (I) a 96.5% average success rate across all objects and tasks, (II) high manipulation accuracy with an average reorientation error of 11{\deg} and position error of 7.8mm, and (III) contact-implicit model predictive control running at 50-100 Hz for all objects and tasks. These results are achieved with minimal hyperparameter tuning.
comment: Video demo: https://youtu.be/NsL4hbSXvFg
♻ ☆ Optimal Spatial-Temporal Triangulation for Bearing-Only Cooperative Motion Estimation
Vision-based cooperative motion estimation is an important problem for many multi-robot systems such as cooperative aerial target pursuit. This problem can be formulated as bearing-only cooperative motion estimation, where the visual measurement is modeled as a bearing vector pointing from the camera to the target. The conventional approaches for bearing-only cooperative estimation are mainly based on the framework distributed Kalman filtering (DKF). In this paper, we propose a new optimal bearing-only cooperative estimation algorithm, named spatial-temporal triangulation, based on the method of distributed recursive least squares, which provides a more flexible framework for designing distributed estimators than DKF. The design of the algorithm fully incorporates all the available information and the specific triangulation geometric constraint. As a result, the algorithm has superior estimation performance than the state-of-the-art DKF algorithms in terms of both accuracy and convergence speed as verified by numerical simulation. We rigorously prove the exponential convergence of the proposed algorithm. Moreover, to verify the effectiveness of the proposed algorithm under practical challenging conditions, we develop a vision-based cooperative aerial target pursuit system, which is the first of such fully autonomous systems so far to the best of our knowledge.
♻ ☆ Tightly-Coupled LiDAR-IMU-Wheel Odometry with an Online Neural Kinematic Model Learning via Factor Graph Optimization
Environments lacking geometric features (e.g., tunnels and long straight corridors) are challenging for LiDAR-based odometry algorithms because LiDAR point clouds degenerate in such environments. For wheeled robots, a wheel kinematic model (i.e., wheel odometry) can improve the reliability of the odometry estimation. However, the kinematic model suffers from complex motions (e.g., wheel slippage, lateral movement) in the case of skid-steering robots particularly because this robot model rotates by skidding its wheels. Furthermore, these errors change nonlinearly when the wheel slippage is large (e.g., drifting) and are subject to terrain-dependent parameters. To simultaneously tackle point cloud degeneration and the kinematic model errors, we developed a LiDAR-IMU-wheel odometry algorithm incorporating online training of a neural network that learns the kinematic model of wheeled robots with nonlinearity. We propose to train the neural network online on a factor graph along with robot states, allowing the learning-based kinematic model to adapt to the current terrain condition. The proposed method jointly solves online training of the neural network and LiDARIMUwheel odometry on a unified factor graph to retain the consistency of all those constraints. Through experiments, we first verified that the proposed network adapted to a changing environment, resulting in an accurate odometry estimation across different environments. We then confirmed that the proposed odometry estimation algorithm was robust against point cloud degeneration and nonlinearity (e.g., large wheel slippage by drifting) of the kinematic model.
comment: https://youtu.be/CvRVhdda7Cw
♻ ☆ FLAME: Learning to Navigate with Multimodal LLM in Urban Environments AAAI 2025
Large Language Models (LLMs) have demonstrated potential in Vision-and-Language Navigation (VLN) tasks, yet current applications face challenges. While LLMs excel in general conversation scenarios, they struggle with specialized navigation tasks, yielding suboptimal performance compared to specialized VLN models. We introduce FLAME (FLAMingo-Architected Embodied Agent), a novel Multimodal LLM-based agent and architecture designed for urban VLN tasks that efficiently handles multiple observations. Our approach implements a three-phase tuning technique for effective adaptation to navigation tasks, including single perception tuning for street view description, multiple perception tuning for route summarization, and end-to-end training on VLN datasets. The augmented datasets are synthesized automatically. Experimental results demonstrate FLAME's superiority over existing methods, surpassing state-of-the-art methods by a 7.3% increase in task completion on Touchdown dataset. This work showcases the potential of Multimodal LLMs (MLLMs) in complex navigation tasks, representing an advancement towards applications of MLLMs in the field of embodied intelligence.
comment: Accepted to AAAI 2025 (Oral)
♻ ☆ DCPI-Depth: Explicitly Infusing Dense Correspondence Prior to Unsupervised Monocular Depth Estimation
There has been a recent surge of interest in learning to perceive depth from monocular videos in an unsupervised fashion. A key challenge in this field is achieving robust and accurate depth estimation in challenging scenarios, particularly in regions with weak textures or where dynamic objects are present. This study makes three major contributions by delving deeply into dense correspondence priors to provide existing frameworks with explicit geometric constraints. The first novelty is a contextual-geometric depth consistency loss, which employs depth maps triangulated from dense correspondences based on estimated ego-motion to guide the learning of depth perception from contextual information, since explicitly triangulated depth maps capture accurate relative distances among pixels. The second novelty arises from the observation that there exists an explicit, deducible relationship between optical flow divergence and depth gradient. A differential property correlation loss is, therefore, designed to refine depth estimation with a specific emphasis on local variations. The third novelty is a bidirectional stream co-adjustment strategy that enhances the interaction between rigid and optical flows, encouraging the former towards more accurate correspondence and making the latter more adaptable across various scenarios under the static scene hypotheses. DCPI-Depth, a framework that incorporates all these innovative components and couples two bidirectional and collaborative streams, achieves state-of-the-art performance and generalizability across multiple public datasets, outperforming all existing prior arts. Specifically, it demonstrates accurate depth estimation in texture-less and dynamic regions, and shows more reasonable smoothness. Our source code will be publicly available at mias.group/DCPI-Depth upon publication.
comment: 13 pages, 8 figures
♻ ☆ Embodied-RAG: General Non-parametric Embodied Memory for Retrieval and Generation
There is no limit to how much a robot might explore and learn, but all of that knowledge needs to be searchable and actionable. Within language research, retrieval augmented generation (RAG) has become the workhorse of large-scale non-parametric knowledge; however, existing techniques do not directly transfer to the embodied domain, which is multimodal, where data is highly correlated, and perception requires abstraction. To address these challenges, we introduce Embodied-RAG, a framework that enhances the foundational model of an embodied agent with a non-parametric memory system capable of autonomously constructing hierarchical knowledge for both navigation and language generation. Embodied-RAG handles a full range of spatial and semantic resolutions across diverse environments and query types, whether for a specific object or a holistic description of ambiance. At its core, Embodied-RAG's memory is structured as a semantic forest, storing language descriptions at varying levels of detail. This hierarchical organization allows the system to efficiently generate context-sensitive outputs across different robotic platforms. We demonstrate that Embodied-RAG effectively bridges RAG to the robotics domain, successfully handling over 250 explanation and navigation queries across kilometer-level environments, highlighting its promise as a general-purpose non-parametric system for embodied agents.
comment: Web: https://quanting-xie.github.io/Embodied-RAG-web/
Systems and Control 21
☆ ARM-IRL: Adaptive Resilience Metric Quantification Using Inverse Reinforcement Learning
Resilience of safety-critical systems is gaining importance, particularly with the increasing number of cyber and physical threats. Cyber-physical threats are becoming increasingly prevalent, as digital systems are ubiquitous in critical infrastructure. The challenge with determining the resilience of cyber-physical systems is identifying a set of resilience metrics that can adapt to the changing states of the system. A static resilience metric can lead to an inaccurate estimation of system state, and can result in unintended consequences against cyber threats. In this work, we propose a data-driven method for adaptive resilience metric learning. The primary goal is to learn a single resilience metric by formulating an inverse reinforcement learning problem that learns a reward or objective from a set of control actions from an expert. It learns the structure or parameters of the reward function based on information provided by expert demonstrations. Most prior work has considered static weights or theories from fuzzy logic to formulate a single resilience metric. Instead, this work learns the resilience metric, represented as reward function, using adversarial inverse reinforcement learning, to determine the optimal policy through training the generator discriminator in parallel. We evaluate our proposed technique in scenarios such as optimal communication network rerouting, power distribution network reconfiguration, and a combined cyber-physical restoration of critical load using the IEEE 123-bus system.
comment: 13 pages, 15 figures
☆ Microgrid Operation Control with State-of-Charge- Dependent Storage Power Constraints
The microgrid concept offers high flexibility and resilience due to the possibility of switching between grid-connected and stand-alone operation. This renders microgrids an auspicious solution for rural areas and critical infrastructure. In standalone or islanded mode, the main objective is cost minimization while ensuring a safe and reliable operation. Optimal operation schemes for microgrids usually assume fixed power limits for energy storage units. This, however, is not sufficient for lithiumion energy storage systems, which often come with dynamic power limits that depend on the state of charge. These limits are especially prominent when the state of charge is close to its boundaries. In this paper, dynamic constraints for energy storages are modelled using convex polytopes and fitted to experimental data acquired from an 11.6 kWh lithium-ion energy storage system. The polytopic constraints are integrated in a model predictive control scheme that was designed for a standalone microgrid composed of a fuel cell, a photovoltaic generator and a lithium-ion energy storage system. To evaluate the advantages, a case study with two configurations is performed. The model predictive controller without polytopic constraints led to constraint violations in 11.77 % of the simulation time steps with a maximum deviation of 118 % above the power limits. The configuration with polytopic constraints in contrary led to no violations over the entire simulation horizon.
☆ Spatial exponential decay of perturbations in optimal control of general evolution equations
We analyze the robustness of optimally controlled evolution equations with respect to spatially localized perturbations. We prove that if the involved operators are domain-uniformly stabilizable and detectable, then these localized perturbations only have a local effect on the optimal solution. We characterize this domain-uniform stabilizability and detectability for the transport equation with constant transport velocity, showing that even for unitary semigroups, optimality implies exponential damping. Finally, we extend our result to the case of a space-dependent transport velocity. Numerical examples in one space dimension complement the theoretical results.
comment: 46 pages, 5 figures
☆ Lie-Bracket Nash Equilibrium Seeking with Bounded Update Rates for Noncooperative Games
This paper proposes a novel approach for local convergence to Nash equilibrium in quadratic noncooperative games based on a distributed Lie-bracket extremum seeking control scheme. This is the first instance of noncooperative games being tackled in a model-free fashion integrated with the extremum seeking method of bounded update rates. In particular, the stability analysis is carried out using Lie-bracket approximation and Lyapunov's direct method. We quantify the size of the ultimate small residual sets around the Nash equilibrium and illustrate the theoretical results numerically on an example in an oligopoly setting.
☆ Fast sparse optimization via adaptive shrinkage
The need for fast sparse optimization is emerging, e.g., to deal with large-dimensional data-driven problems and to track time-varying systems. In the framework of linear sparse optimization, the iterative shrinkage-thresholding algorithm is a valuable method to solve Lasso, which is particularly appreciated for its ease of implementation. Nevertheless, it converges slowly. In this paper, we develop a proximal method, based on logarithmic regularization, which turns out to be an iterative shrinkage-thresholding algorithm with adaptive shrinkage hyperparameter. This adaptivity substantially enhances the trajectory of the algorithm, in a way that yields faster convergence, while keeping the simplicity of the original method. Our contribution is twofold: on the one hand, we derive and analyze the proposed algorithm; on the other hand, we validate its fast convergence via numerical experiments and we discuss the performance with respect to state-of-the-art algorithms.
☆ Characterization of Invariance, Periodic Solutions and Optimization of Dynamic Financial Networks
Cascading failures, such as bankruptcies and defaults, pose a serious threat for the resilience of the global financial system. Indeed, because of the complex investment and cross-holding relations within the system, failures can occur as a result of the propagation of a financial collapse from one organization to another. While this problem has been studied in depth from a static angle, namely, when the system is at an equilibrium, we take a different perspective and study the corresponding dynamical system. The contribution of this paper is threefold. First, we carry out a systematic analysis of the regions of attraction and invariance of the system orthants, defined by the positive and negative values of the organizations' equity. Second, we investigate periodic solutions and show through a counterexample that there could exist periodic solutions of period greater than 2. Finally, we study the problem of finding the smallest cash injection that would bring the system to the maximal invariant region of the positive orthant.
☆ Dual NUP Representations and Min-Maximization in Factor Graphs
Normals with unknown parameters (NUP) can be used to convert nontrivial model-based estimation problems into iterations of linear least-squares or Gaussian estimation problems. In this paper, we extend this approach by augmenting factor graphs with convex-dual variables and pertinent NUP representations. In particular, in a state space setting, we propose a new iterative forward-backward algorithm that is dual to a recently proposed backward-forward algorithm.
☆ High-Fidelity Coherent-One-Way QKD Simulation Framework for 6G Networks: Bridging Theory and Reality
Quantum key distribution (QKD) has been emerged as a promising solution for guaranteeing information-theoretic security. Inspired by this, a great amount of research effort has been recently put on designing and testing QKD systems as well as articulating preliminary application scenarios. However, due to the considerable high-cost of QKD equipment, a lack of QKD communication system design tools, wide deployment of such systems and networks is challenging. Motivated by this, this paper introduces a QKD communication system design tool. First we articulate key operation elements of the QKD, and explain the feasibility and applicability of coherent-one-way (COW) QKD solutions. Next, we focus on documenting the corresponding simulation framework as well as defining the key performance metrics, i.e., quantum bit error rate (QBER), and secrecy key rate. To verify the accuracy of the simulation framework, we design and deploy a real-world QKD setup. We perform extensive experiments for three deployments of diverse transmission distance in the presence or absence of a QKD eavesdropper. The results reveal an acceptable match between simulations and experiments rendering the simulation framework a suitable tool for QKD communication system design.
☆ Navigating Robot Swarm Through a Virtual Tube with Flow-Adaptive Distribution Control
With the rapid development of robot swarm technology and its diverse applications, navigating robot swarms through complex environments has emerged as a critical research direction. To ensure safe navigation and avoid potential collisions with obstacles, the concept of virtual tubes has been introduced to define safe and navigable regions. However, current control methods in virtual tubes face the congestion issues, particularly in narrow virtual tubes with low throughput. To address these challenges, we first originally introduce the concepts of virtual tube area and flow capacity, and develop an new evolution model for the spatial density function. Next, we propose a novel control method that combines a modified artificial potential field (APF) for swarm navigation and density feedback control for distribution regulation, under which a saturated velocity command is designed. Then, we generate a global velocity field that not only ensures collision-free navigation through the virtual tube, but also achieves locally input-to-state stability (LISS) for density tracking errors, both of which are rigorously proven. Finally, numerical simulations and realistic applications validate the effectiveness and advantages of the proposed method in managing robot swarms within narrow virtual tubes.
☆ Goal-oriented Transmission Scheduling: Structure-guided DRL with a Unified Dual On-policy and Off-policy Approach
Goal-oriented communications prioritize application-driven objectives over data accuracy, enabling intelligent next-generation wireless systems. Efficient scheduling in multi-device, multi-channel systems poses significant challenges due to high-dimensional state and action spaces. We address these challenges by deriving key structural properties of the optimal solution to the goal-oriented scheduling problem, incorporating Age of Information (AoI) and channel states. Specifically, we establish the monotonicity of the optimal state value function (a measure of long-term system performance) w.r.t. channel states and prove its asymptotic convexity w.r.t. AoI states. Additionally, we derive the monotonicity of the optimal policy w.r.t. channel states, advancing the theoretical framework for optimal scheduling. Leveraging these insights, we propose the structure-guided unified dual on-off policy DRL (SUDO-DRL), a hybrid algorithm that combines the stability of on-policy training with the sample efficiency of off-policy methods. Through a novel structural property evaluation framework, SUDO-DRL enables effective and scalable training, addressing the complexities of large-scale systems. Numerical results show SUDO-DRL improves system performance by up to 45% and reduces convergence time by 40% compared to state-of-the-art methods. It also effectively handles scheduling in much larger systems, where off-policy DRL fails and on-policy benchmarks exhibit significant performance loss, demonstrating its scalability and efficacy in goal-oriented communications.
comment: Paper submitted to IEEE
☆ Stabilizing Optimal Control for Nonlinear Stochastic Systems: A Parametric Gradient-Based Approach
This study proposes a method for designing stabilizing suboptimal controllers for nonlinear stochastic systems. These systems include time-invariant stochastic parameters that represent uncertainty of dynamics, posing two key difficulties in optimal control. Firstly, the time-invariant stochastic nature violates the principle of optimality and Hamilton-Jacobi equations, which are fundamental tools for solving optimal control problems. Secondly, nonlinear systems must be robustly stabilized against these stochastic parameters. To overcome these difficulties simultaneously, this study presents a parametric-gradient-based method with a penalty function. A controller and cost function are parameterized using basis functions, and a gradient method is employed to optimize the controller by minimizing the parameterized cost function. Crucial challenges in this approach are parameterizing the cost function appropriately and deriving the gradient of the cost. This study provides explicit formulations of an optimally parameterized cost and its gradient. Furthermore, a suitable penalty function is proposed to ensure robust stability, even when using the gradient method. Consequently, the gradient method produces a suboptimal feedback controller that guarantees the robust stability. The effectiveness of the proposed method is demonstrated through numerical simulations, highlighting its performance in comparison with other baseline methods.
comment: This paper is submitted to a journal for possible publication. The copyright of this paper may be transferred without notice, after which this version may no longer be accessible
☆ Finding the nearest bounded-real port-Hamiltonian system
In this paper, we consider linear time-invariant continuous control systems which are bounded real, also known as scattering passive. Our main theoretical contribution is to show the equivalence between such systems and port-Hamiltonian (PH) systems whose factors satisfy certain linear matrix inequalities. Based on this result, we propose a formulation for the problem of finding the nearest bounded-real system to a given system, and design an algorithm combining alternating optimization and Nesterov's fast gradient method. This formulation also allows us to check whether a given system is bounded real by solving a semidefinite program, and provide a PH parametrization for it. We illustrate our proposed algorithms on real and synthetic data sets.
comment: 20 pages, code, experiments and data available from https://gitlab.com/ngillis/nearestBRsysPHform
☆ Comparative Analysis of Control Strategies for Position Regulation in DC Servo Motors
A servomotor is a closed-loop system designed for precise movement control, utilizing position feedback to achieve accurate final positions. Due to the ability to deliver higher power output and operate at enhanced speeds, DC servo motors are considered ideal for applications requiring precision and performance. This research aims to design, simulate, and compare various control strategies for precise position control in DC servo motors (DSM). The controllers evaluated in this study include proportional (P), proportional-integral (PI), proportional-integral-derivative (PID), state-feedback controllers (SFC), and state-feedback controllers augmented with integral action (SFCIA). The performance of these controllers was evaluated using MATLAB simulations, characterized by overshoot, settling time, steady-state error, rise time, and peak time. The results indicate that the state-feedback controller with integral action (SFCIA) surpasses other control strategies by achieving zero steady-state error, minimal overshoot, the shortest settling time, and optimized rise and peak times. These findings highlight the effectiveness of SFCIA for tasks requiring high levels of stability, precision, and dynamic performance.
♻ ☆ Intraday Power Trading for Imbalance Markets: An Adaptive Risk-Averse Strategy using Mixture Models
Efficient markets are characterised by profit-driven participants continuously refining their positions towards the latest insights. Margins for profit generation are generally small, shaping a difficult landscape for automated trading strategies. This paper introduces a novel intraday power trading strategy tailored for single-price balancing markets. The strategy relies on a strategically devised mixture model to forecast future system imbalance prices and is formulated as a stochastic optimization problem with decision-dependent distributions to address two primary challenges: (i) the impact of trading positions on the system imbalance price and (ii) the uncertainty inherent in the model. The first challenge is tackled by adjusting the model to account for price changes after taking a position. For the second challenge, a coherent risk measure is added to the cost function to take additional uncertainties into account. This paper introduces a methodology to select the tuning parameter of this risk measure adaptively by continuously quantifying the performance of the strategy on a window of recently observed data. The strategy is validated with a simulation on the Belgian electricity market using real-time market data. The adaptive tuning approach leads to higher absolute profits, while also reducing the number of trades.
comment: Submitted to Applied Energy [Elsevier]
♻ ☆ Power-Efficient RAN Intelligent Controllers Through Optimized KPI Monitoring
The Open Radio Access Network (RAN) paradigm envisions a more flexible, interoperable, and intelligent RAN ecosystem via new open interfaces and elements like the RAN Intelligent Controller (RIC). However, the impact of these elements on Open RAN's power consumption remains heavily unexplored. This work for the first time evaluates the impact of Key Performance Indicator (KPI) monitoring on RIC's power consumption using real traffic and power measurements. By analyzing various RIC-RAN communication scenarios, we identify that RIC's power consumption can become a scalability bottleneck, particularly in large-scale deployments, even when RIC is limited to its core operational functionalities and without incorporating application-specific processes. In this context, also for the first time we explore potential power savings through the elimination of redundant KPI transmissions, extending existing techniques for identical subscription removal and KPI selection, achieving significant power consumption gains exceeding 87\% of the overall RIC power consumption.
comment: Accepted for publication and presentation at IEEE WCNC 2025
♻ ☆ Intra-day Solar and Power Forecast for Optimization of Intraday Market Participation
The prediction of solar irradiance enhances reliability in photovoltaic (PV) solar plant generation and grid integration. In Colombia, PV plants face penalties if energy production deviates beyond governmental thresholds from intraday market offers. This research employs Long Short-Term Memory (LSTM) and Bidirectional-LSTM (Bi-LSTM) models, utilizing meteorological data from a PV plant in El Paso, Cesar, Colombia, to predict solar irradiance with a 6-hour horizon and 10-minute resolution. While Bi-LSTM showed superior performance, the LSTM model achieved comparable results with significantly reduced training time (6 hours versus 18 hours), making it computationally advantageous. The LSTM predictions were averaged to create an hourly resolution model, evaluated using Mean Absolute Error, Root-Mean-Square Error, Normalized Root-Mean-Square Error, and Mean Absolute Percentage Error metrics. Comparison with the Global Forecast System (GFS) revealed similar performance, with both models effectively capturing daily solar irradiance patterns. The forecast model integrates with an Object-Oriented power production model, enabling accurate energy offers in the intraday market while minimizing penalty costs.
comment: 20 pages, 37 figures, 9 tables
♻ ☆ Lossless optimal transient control for rigid bodies in 3D space
In this letter, we propose a control scheme for rigid bodies designed to optimise transient behaviors. The search space for the optimal control input is parameterized to yield a passive, specifically lossless, nonlinear feedback controller. As a result, it can be combined with other stabilizing controllers without compromising the stability of the closed-loop system. The controller commands torques generating fictitious gyroscopic effects characteristics of 3D rotational rigid body motions, and as such does not inject nor extract kinetic energy from the system. We validate the controller in simulation using a model predictive control (MPC) scheme, successfully combining stability and performance in a stabilization task with obstacle avoidance constraints.
♻ ☆ Distributed MPC for autonomous ships on inland waterways with collaborative collision avoidance
This paper presents a distributed solution for the problem of collaborative collision avoidance for autonomous inland waterway ships. A two-layer collision avoidance framework that considers inland waterway traffic regulations is proposed to increase navigational safety for autonomous ships. Our approach allows for modifying traffic rules without changing the collision avoidance algorithm, and is based on a novel formulation of model predictive control (MPC) for collision avoidance of ships. This MPC formulation is designed for inland waterway traffic and can handle complex scenarios. The alternating direction method of multipliers is used as a scheme for exchanging and negotiating intentions among ships. Simulation results show that the proposed algorithm can comply with traffic rules. Furthermore, the proposed algorithm can safely deviate from traffic rules when necessary to increase efficiency in complex scenarios.
♻ ☆ Multi-Agent Consensus Seeking via Large Language Models
Multi-agent systems driven by large language models (LLMs) have shown promising abilities for solving complex tasks in a collaborative manner. This work considers a fundamental problem in multi-agent collaboration: consensus seeking. When multiple agents work together, we are interested in how they can reach a consensus through inter-agent negotiation. To that end, this work studies a consensus-seeking task where the state of each agent is a numerical value and they negotiate with each other to reach a consensus value. It is revealed that when not explicitly directed on which strategy should be adopted, the LLM-driven agents primarily use the average strategy for consensus seeking although they may occasionally use some other strategies. Moreover, this work analyzes the impact of the agent number, agent personality, and network topology on the negotiation process. The findings reported in this work can potentially lay the foundations for understanding the behaviors of LLM-driven multi-agent systems for solving more complex tasks. Furthermore, LLM-driven consensus seeking is applied to a multi-robot aggregation task. This application demonstrates the potential of LLM-driven agents to achieve zero-shot autonomous planning for multi-robot collaboration tasks. Project website: windylab.github.io/ConsensusLLM/.
♻ ☆ AirPilot: Interpretable PPO-based DRL Auto-Tuned Nonlinear PID Drone Controller for Robust Autonomous Flights
Navigation precision, speed and stability are crucial for safe Unmanned Aerial Vehicle (UAV) flight maneuvers and effective flight mission executions in dynamic environments. Different flight missions may have varying objectives, such as minimizing energy consumption, achieving precise positioning, or maximizing speed. A controller that can adapt to different objectives on the fly is highly valuable. Proportional Integral Derivative (PID) controllers are one of the most popular and widely used control algorithms for drones and other control systems, but their linear control algorithm fails to capture the nonlinear nature of the dynamic wind conditions and complex drone system. Manually tuning the PID gains for various missions can be time-consuming and requires significant expertise. This paper aims to revolutionize drone flight control by presenting the AirPilot, a nonlinear Deep Reinforcement Learning (DRL) - enhanced Proportional Integral Derivative (PID) drone controller using Proximal Policy Optimization (PPO). AirPilot controller combines the simplicity and effectiveness of traditional PID control with the adaptability, learning capability, and optimization potential of DRL. This makes it better suited for modern drone applications where the environment is dynamic, and mission-specific performance demands are high. We employed a COEX Clover autonomous drone for training the DRL agent within the simulator and implemented it in a real-world lab setting, which marks a significant milestone as one of the first attempts to apply a DRL-based flight controller on an actual drone. Airpilot is capable of reducing the navigation error of the default PX4 PID position controller by 90%, improving effective navigation speed of a fine-tuned PID controller by 21%, reducing settling time and overshoot by 17% and 16% respectively.
comment: 9 pages, 20 figures
♻ ☆ Scenarios Generation-based Multiple Interval Prediction Method for Electricity Prices
This paper introduces an innovative interval prediction methodology aimed at addressing the limitations of current evaluation indicators while enhancing prediction accuracy and reliability. To achieve this, new evaluation metrics are proposed, offering a comprehensive assessment of interval prediction methods across both all-sample and single-sample scenarios. Additionally, a novel Pattern-Diversity Conditional Time-Series Generative Adversarial Network (PDCTSGAN) is developed, designed to generate realistic scenarios and support a new interval prediction framework based on scenario generation. The PDCTSGAN model incorporates unique modifications to random noise inputs, enabling the creation of pattern-diverse and realistic scenarios. These scenarios are then utilized to produce multiple interval patterns characterized by high coverage probability and reduced average width. The proposed approach is validated through detailed case studies, and the paper concludes with a discussion of future research directions to further refine interval prediction techniques.
Optimization and Control 23
☆ Ensemble control of n-level quantum systems with a scalar control
In this paper we discuss how a general bilinear finite-dimensional closed quantum system with dispersed parameters can be steered between eigenstates. We show that, under suitable conditions on the separation of spectral gaps and the boundedness of parameter dispersion, rotating wave and adiabatic approximations can be employed in cascade to achieve population inversion between arbitrary eigenstates. We propose an explicit control law and test numerically the sharpness of the conditions on several examples.
☆ Extending the Leader-First Follower Structure for Bearing-only Formation Control on Directed Graphs
This work proposes an extension to the leader-first follower (LFF) class of graphs used to solve the bearing-only formation control problem over directed graphs. The first contribution provides an equilibrium, stability, and convergence analysis for a one-follower, multi-leader system (which is not an LFF graph). We then propose an extension to the LFF structure, termed \emph{ordered} LFF graphs, that allows for additional forward directed edges to be included. Using the results of the one-follower multi-leader system we show that the ordered LFF graphs can be used to solve the directed bearing-only formation control problem. We also show that these structures offer improved convergence speed as compared to the LFF graphs. Numerical simulations are provided to validate the results.
☆ Spatial exponential decay of perturbations in optimal control of general evolution equations
We analyze the robustness of optimally controlled evolution equations with respect to spatially localized perturbations. We prove that if the involved operators are domain-uniformly stabilizable and detectable, then these localized perturbations only have a local effect on the optimal solution. We characterize this domain-uniform stabilizability and detectability for the transport equation with constant transport velocity, showing that even for unitary semigroups, optimality implies exponential damping. Finally, we extend our result to the case of a space-dependent transport velocity. Numerical examples in one space dimension complement the theoretical results.
comment: 46 pages, 5 figures
☆ Lie-Bracket Nash Equilibrium Seeking with Bounded Update Rates for Noncooperative Games
This paper proposes a novel approach for local convergence to Nash equilibrium in quadratic noncooperative games based on a distributed Lie-bracket extremum seeking control scheme. This is the first instance of noncooperative games being tackled in a model-free fashion integrated with the extremum seeking method of bounded update rates. In particular, the stability analysis is carried out using Lie-bracket approximation and Lyapunov's direct method. We quantify the size of the ultimate small residual sets around the Nash equilibrium and illustrate the theoretical results numerically on an example in an oligopoly setting.
☆ FOCUS: First Order Concentrated Updating Scheme
Large language models (LLMs) demonstrate remarkable performance, and improving their pre-training process appears to be key to enhancing their capabilities further. Based on the documented success of Adam, learning rate decay, and weight decay, we hypothesize that the pre-training loss landscape features a narrowing valley structure. Through experiments with synthetic loss functions, we discover that when gradient query noise is high relative to the valley's sharpness, Adam's performance falls behind that of Signum because Adam reduces the effective step size too drastically. This observation led us to develop FOCUS, an optimizer that enhances Signum by incorporating attraction toward moving averaged parameters, allowing it to handle noise better while maintaining larger step sizes. In training GPT-2, FOCUS proves to be more stable than Signum and faster than Adam. These results suggest that gradient noise may be an underappreciated limiting factor in LLM training, and FOCUS offers promising solutions.
comment: 19 pages, 8 figures
☆ Fast sparse optimization via adaptive shrinkage
The need for fast sparse optimization is emerging, e.g., to deal with large-dimensional data-driven problems and to track time-varying systems. In the framework of linear sparse optimization, the iterative shrinkage-thresholding algorithm is a valuable method to solve Lasso, which is particularly appreciated for its ease of implementation. Nevertheless, it converges slowly. In this paper, we develop a proximal method, based on logarithmic regularization, which turns out to be an iterative shrinkage-thresholding algorithm with adaptive shrinkage hyperparameter. This adaptivity substantially enhances the trajectory of the algorithm, in a way that yields faster convergence, while keeping the simplicity of the original method. Our contribution is twofold: on the one hand, we derive and analyze the proposed algorithm; on the other hand, we validate its fast convergence via numerical experiments and we discuss the performance with respect to state-of-the-art algorithms.
☆ Convergence of time-delayed opinion dynamics with complex interaction types
In opinion dynamics, time delays in agent-to-agent interactions are ubiquitous, which can substantially disrupt the dynamical processes rooted in agents' opinion exchange, decision-making, and feedback mechanisms. However, a thorough comprehension of quantitative impacts of time delays on the opinion evolution, considering diverse interaction types and system dynamics, remains absent. In this paper, we conduct a systematic investigation into the convergence and the associated rate of time-delayed opinion dynamics with diverse interaction types in both discrete-time and continuous-time systems. For the discrete-time system, we commence by establishing sufficient conditions for its convergence on arbitrary signed interaction networks. These conditions show that the convergence is determined solely by the topology of the interaction network and remains impervious to the magnitude of the time delay. Subsequently, we examine the influence of random and other interaction types on the convergence rate and discover that time delays tend to decelerate this rate. Regarding the continuous-time system, we derive the feasible domain of the delay that ensures the convergence of opinion dynamics, revealing that, unlike the discrete-time scenarios, large time delays can instigate the divergence of opinions. Specifically, we prove that for both random and other interaction types, small delays can expedite the convergence of continuous-time system. Finally, we present simulation examples to demonstrate the effectiveness and robustness of our research findings.
☆ MirrorCBO: A consensus-based optimization method in the spirit of mirror descent
In this work we propose MirrorCBO, a consensus-based optimization (CBO) method which generalizes standard CBO in the same way that mirror descent generalizes gradient descent. For this we apply the CBO methodology to a swarm of dual particles and retain the primal particle positions by applying the inverse of the mirror map, which we parametrize as the subdifferential of a strongly convex function $\phi$. In this way, we combine the advantages of a derivative-free non-convex optimization algorithm with those of mirror descent. As a special case, the method extends CBO to optimization problems with convex constraints. Assuming bounds on the Bregman distance associated to $\phi$, we provide asymptotic convergence results for MirrorCBO with explicit exponential rate. Another key contribution is an exploratory numerical study of this new algorithm across different application settings, focusing on (i) sparsity-inducing optimization, and (ii) constrained optimization, demonstrating the competitive performance of MirrorCBO. We observe empirically that the method can also be used for optimization on (non-convex) submanifolds of Euclidean space, can be adapted to mirrored versions of other recent CBO variants, and that it inherits from mirror descent the capability to select desirable minimizers, like sparse ones. We also include an overview of recent CBO approaches for constrained optimization and compare their performance to MirrorCBO.
comment: 64 pages, 18 figures, 19 tables
☆ Characterization of Invariance, Periodic Solutions and Optimization of Dynamic Financial Networks
Cascading failures, such as bankruptcies and defaults, pose a serious threat for the resilience of the global financial system. Indeed, because of the complex investment and cross-holding relations within the system, failures can occur as a result of the propagation of a financial collapse from one organization to another. While this problem has been studied in depth from a static angle, namely, when the system is at an equilibrium, we take a different perspective and study the corresponding dynamical system. The contribution of this paper is threefold. First, we carry out a systematic analysis of the regions of attraction and invariance of the system orthants, defined by the positive and negative values of the organizations' equity. Second, we investigate periodic solutions and show through a counterexample that there could exist periodic solutions of period greater than 2. Finally, we study the problem of finding the smallest cash injection that would bring the system to the maximal invariant region of the positive orthant.
☆ Gram-like matrix preserving extensions of noncommutative polynomials to sum of Hermitian Squares
Given a nonnegative noncommutative polynomial $f$, equivalently a sum of Hermitian squares (SOHS), there exists a positive semidefinite Gram matrix that encrypts all essential information of $f$. There are no available methods for extending a noncommutative polynomial to a SOHS keeping the Gram matrices unperturbed. As a remedy, we introduce an equally significant notion of Gram-like matrices and provide linear algebraic techniques to get the desired extensions. We further use positive semidefinite completion problem to get SOHS and provide criteria in terms of chordal graphs and 2-regular projective algebraic sets.
comment: All comments are welcome
☆ Growth model with externalities for energetic transition via MFG with common external variable
This article introduces a novel mean-field game model for multi-sector economic growth in which a dynamically evolving externality, influenced by the collective actions of agents, plays a central role. Building on classical growth theories and integrating environmental considerations, the framework incorporates common noise to capture shared uncertainties among agents about the externality variable. We demonstrate the existence and uniqueness of a strong mean-field game equilibrium by reformulating the equilibrium conditions as a Forward-Backward Stochastic Differential Equation under the stochastic maximum principle and establishing a contraction argument to ensure a unique solution. We provide a numerical resolution for a specified model using a fixed-point approach combined with neural network approximations.
☆ Simultaneously decoding the unknown stationary state and function parameters for mean field games
Mean field games (MFGs) offer a versatile framework for modeling large-scale interactive systems across multiple domains. This paper builds upon a previous work, by developing a state-of-the-art unified approach to decode or design the unknown stationary state of MFGs, in addition to the underlying parameter functions governing their behavior. This result is novel, even in the general realm of inverse problems for nonlinear PDEs. By enabling agents to distill crucial insights from observed data and unveil intricate hidden structures and unknown states within MFG systems, our approach surmounts a significant obstacle, enhancing the applicability of MFGs in real-world scenarios. This advancement not only enriches our understanding of MFG dynamics but also broadens the scope for their practical deployment in various contexts.
comment: Keywords: Mean field games, inverse problems, Cauchy dataset, unique continuation principle, unique identifiability, unknown stationary solutions
☆ Towards Solutions of Manipulation Tasks via Optimal Control of Projected Dynamical Systems
We introduce a modeling framework for manipulation planning based on the formulation of the dynamics as a projected dynamical system. This method uses implicit signed distance functions and their gradients to formulate an equivalent gradient complementarity system. The optimal control problem is then solved via a direct method, discretized using finite-elements with switch detection. An extension to this approach is provided in the form of a friction formulation commonly used in quasi-static models. We show that this approach is able to generate trajectories for problems including multiple pushers, friction, and non-convex objects modeled as unions of convex ellipsoids with reasonable computational effort.
comment: 5 pages, 3 figures, Accepted for Robotics Science and Systems 2024, Frontiers of Optimization workshop
☆ Stabilizing Optimal Control for Nonlinear Stochastic Systems: A Parametric Gradient-Based Approach
This study proposes a method for designing stabilizing suboptimal controllers for nonlinear stochastic systems. These systems include time-invariant stochastic parameters that represent uncertainty of dynamics, posing two key difficulties in optimal control. Firstly, the time-invariant stochastic nature violates the principle of optimality and Hamilton-Jacobi equations, which are fundamental tools for solving optimal control problems. Secondly, nonlinear systems must be robustly stabilized against these stochastic parameters. To overcome these difficulties simultaneously, this study presents a parametric-gradient-based method with a penalty function. A controller and cost function are parameterized using basis functions, and a gradient method is employed to optimize the controller by minimizing the parameterized cost function. Crucial challenges in this approach are parameterizing the cost function appropriately and deriving the gradient of the cost. This study provides explicit formulations of an optimally parameterized cost and its gradient. Furthermore, a suitable penalty function is proposed to ensure robust stability, even when using the gradient method. Consequently, the gradient method produces a suboptimal feedback controller that guarantees the robust stability. The effectiveness of the proposed method is demonstrated through numerical simulations, highlighting its performance in comparison with other baseline methods.
comment: This paper is submitted to a journal for possible publication. The copyright of this paper may be transferred without notice, after which this version may no longer be accessible
☆ Finding the nearest bounded-real port-Hamiltonian system
In this paper, we consider linear time-invariant continuous control systems which are bounded real, also known as scattering passive. Our main theoretical contribution is to show the equivalence between such systems and port-Hamiltonian (PH) systems whose factors satisfy certain linear matrix inequalities. Based on this result, we propose a formulation for the problem of finding the nearest bounded-real system to a given system, and design an algorithm combining alternating optimization and Nesterov's fast gradient method. This formulation also allows us to check whether a given system is bounded real by solving a semidefinite program, and provide a PH parametrization for it. We illustrate our proposed algorithms on real and synthetic data sets.
comment: 20 pages, code, experiments and data available from https://gitlab.com/ngillis/nearestBRsysPHform
☆ Distributed Saddle-Point Dynamics in Multilayer Networks
Multilayer networks provide a more advanced and comprehensive framework for modeling real-world systems compared to traditional single-layer and multiplex networks. Unlike single-layer models, multilayer networks have multiple interacting layers, each with unique topological features. In this paper, we generalize previously developed results for distributed optimization in multiplex networks to the more general case of multilayer networks by employing a tensor formalism to represent multilayer networks and their tensor-Laplacian diffusion dynamics. Although multiplex networks are a special case of multilayer networks, where each layer has the same number of replica nodes connected one-to-one, this generalized framework removes the need for replica nodes, allowing variability in both topology and number of nodes across layers. This approach provides a fully generalized structure for distributed optimization in multilayer networks and enables more complex interlayer connections. We derive the multilayer combinatorial Laplacian tensor and extend the distributed gradient descent algorithm. We provide a theoretical analysis of the convergence of algorithms. Numerical examples validate our approach, and we explore the impact of heterogeneous layer topologies and complex interlayer dynamics on consensus time, underscoring their implications for real-world multilayer systems.
comment: 10 pages, 7 figures
♻ ☆ Quantitative convergence for mean field control with common noise and degenerate idiosyncratic noise
We consider the convergence problem in the setting of mean field control with common noise and degenerate idiosyncratic noise. Our main results establish a rate of convergence of the finite-dimensional value functions $V^N$ towards the mean field value function $U$. In the case that the idiosyncratic noise is constant (but possibly degenerate), we obtain the rate $N^{-1/(d+7)}$, which is close to the conjectured optimal rate $N^{-1/d}$, and improves on the existing literature even in the non-degenerate setting. In the case that the idiosyncratic noise can be both non-constant and degenerate, the argument is more complicated, and we instead find the rate $N^{-1/(3d + 19)}$. Our proof strategy builds on the one initiated in [Daudin, Delarue, Jackson - JFA, 2024] in the case of non-degenerate idiosyncratic noise and zero common noise, which consists of approximating $U$ by more regular functions which are almost subsolutions of the infinite-dimensional Hamilton-Jacobi equation solved by $U$. Because of the different noise structure, several new steps are necessary in order to produce an appropriate mollification scheme. In addition to our main convergence results, we investigate the case of zero idiosyncratic noise, and show that sharper results can be obtained there by purely control-theoretic arguments. We also provide examples to demonstrate that the value function is sensitive to the choice of admissible controls in the zero noise setting.
comment: Some fixes in Section 6 (deterministic case)
♻ ☆ Dynamic Programming: From Local Optimality to Global Optimality
In the theory of dynamic programming, an optimal policy is a policy whose lifetime value dominates that of all other policies from every possible initial condition in the state space. This raises a natural question: when does optimality from a single state imply optimality from every state? We show that, in a general setting, irreducibility of the transition kernel is sufficient for this property. Our results have important implications for modern policy-based algorithms used to solve large-scale dynamic programs in reinforcement learning and other fields.
♻ ☆ Top Feasible-Arm Subset Identification in Constrained Multi-Armed Bandit with Limited Budget
We present an algorithm, "constrained successive accept or reject (CSAR)," for the problem of identifying the subset of top feasible-arms from a given finite set of arms with the limited sampling-budget equal to a given time-horizon when the sequential dynamics of the arms follows the model of a constrained multi-armed bandit. We provide a finite-time upper bound on the probability of the incorrect identification by CSAR that converges to zero with an exponential rate in the sampling-budget.
♻ ☆ A Stochastic Objective-Function-Free Adaptive Regularization Method with Optimal Complexity
A fully stochastic second-order adaptive-regularization method for unconstrained nonconvex optimization is presented which never computes the objective-function value, but yet achieves the optimal $\mathcal{O}(\epsilon^{-3/2})$ complexity bound for finding first-order critical points. The method is noise-tolerant and the inexactness conditions required for convergence depend on the history of past steps. Applications to cases where derivative evaluation is inexact and to minimization of finite sums by sampling are discussed. Numerical experiments on large binary classification problems illustrate the potential of the new method.
comment: 32 pages, 9 figures
♻ ☆ On non-approximability of zero loss global ${\mathcal L}^2$ minimizers by gradient descent in Deep Learning
We analyze geometric aspects of the gradient descent algorithm in Deep Learning (DL), and give a detailed discussion of the circumstance that in underparametrized DL networks, zero loss minimization can generically not be attained. As a consequence, we conclude that the distribution of training inputs must necessarily be non-generic in order to produce zero loss minimizers, both for the method constructed in [Chen-Munoz Ewald 2023, 2024], or for gradient descent [Chen 2025] (which assume clustering of training data).
comment: AMS Latex, 7 pages. Title changed, statement of Corollary 1.6 corrected
♻ ☆ Gradient Descent Converges Linearly to Flatter Minima than Gradient Flow in Shallow Linear Networks
We study the gradient descent (GD) dynamics of a depth-2 linear neural network with a single input and output. We show that GD converges at an explicit linear rate to a global minimum of the training loss, even with a large stepsize -- about $2/\textrm{sharpness}$. It still converges for even larger stepsizes, but may do so very slowly. We also characterize the solution to which GD converges, which has lower norm and sharpness than the gradient flow solution. Our analysis reveals a trade off between the speed of convergence and the magnitude of implicit regularization. This sheds light on the benefits of training at the ``Edge of Stability'', which induces additional regularization by delaying convergence and may have implications for training more complex models.
comment: 23 pages, 3 figures
♻ ☆ Optimization Algorithm Design via Electric Circuits
We present a novel methodology for convex optimization algorithm design using ideas from electric RLC circuits. Given an optimization problem, the first stage of the methodology is to design an appropriate electric circuit whose continuous-time dynamics converge to the solution of the optimization problem at hand. Then, the second stage is an automated, computer-assisted discretization of the continuous-time dynamics, yielding a provably convergent discrete-time algorithm. Our methodology recovers many classical (distributed) optimization algorithms and enables users to quickly design and explore a wide range of new algorithms with convergence guarantees.
Computer Vision and Pattern Recognition 116
☆ Towards Affordance-Aware Articulation Synthesis for Rigged Objects
Rigged objects are commonly used in artist pipelines, as they can flexibly adapt to different scenes and postures. However, articulating the rigs into realistic affordance-aware postures (e.g., following the context, respecting the physics and the personalities of the object) remains time-consuming and heavily relies on human labor from experienced artists. In this paper, we tackle the novel problem and design A3Syn. With a given context, such as the environment mesh and a text prompt of the desired posture, A3Syn synthesizes articulation parameters for arbitrary and open-domain rigged objects obtained from the Internet. The task is incredibly challenging due to the lack of training data, and we do not make any topological assumptions about the open-domain rigs. We propose using 2D inpainting diffusion model and several control techniques to synthesize in-context affordance information. Then, we develop an efficient bone correspondence alignment using a combination of differentiable rendering and semantic correspondence. A3Syn has stable convergence, completes in minutes, and synthesizes plausible affordance on different combinations of in-the-wild object rigs and scenes.
comment: Project page: https://chuyu.org/research/a3syn
☆ Learning segmentation from point trajectories NeurIPS 2024
We consider the problem of segmenting objects in videos based on their motion and no other forms of supervision. Prior work has often approached this problem by using the principle of common fate, namely the fact that the motion of points that belong to the same object is strongly correlated. However, most authors have only considered instantaneous motion from optical flow. In this work, we present a way to train a segmentation network using long-term point trajectories as a supervisory signal to complement optical flow. The key difficulty is that long-term motion, unlike instantaneous motion, is difficult to model -- any parametric approximation is unlikely to capture complex motion patterns over long periods of time. We instead draw inspiration from subspace clustering approaches, proposing a loss function that seeks to group the trajectories into low-rank matrices where the motion of object points can be approximately explained as a linear combination of other point tracks. Our method outperforms the prior art on motion-based segmentation, which shows the utility of long-term motion and the effectiveness of our formulation.
comment: NeurIPS 2024 Spotlight. Project https://www.robots.ox.ac.uk/~vgg/research/lrtl/
☆ GPS as a Control Signal for Image Generation
We show that the GPS tags contained in photo metadata provide a useful control signal for image generation. We train GPS-to-image models and use them for tasks that require a fine-grained understanding of how images vary within a city. In particular, we train a diffusion model to generate images conditioned on both GPS and text. The learned model generates images that capture the distinctive appearance of different neighborhoods, parks, and landmarks. We also extract 3D models from 2D GPS-to-image models through score distillation sampling, using GPS conditioning to constrain the appearance of the reconstruction from each viewpoint. Our evaluations suggest that our GPS-conditioned models successfully learn to generate images that vary based on location, and that GPS conditioning improves estimated 3D structure.
☆ Taming Teacher Forcing for Masked Autoregressive Video Generation
We introduce MAGI, a hybrid video generation framework that combines masked modeling for intra-frame generation with causal modeling for next-frame generation. Our key innovation, Complete Teacher Forcing (CTF), conditions masked frames on complete observation frames rather than masked ones (namely Masked Teacher Forcing, MTF), enabling a smooth transition from token-level (patch-level) to frame-level autoregressive generation. CTF significantly outperforms MTF, achieving a +23% improvement in FVD scores on first-frame conditioned video prediction. To address issues like exposure bias, we employ targeted training strategies, setting a new benchmark in autoregressive video generation. Experiments show that MAGI can generate long, coherent video sequences exceeding 100 frames, even when trained on as few as 16 frames, highlighting its potential for scalable, high-quality video generation.
comment: 12 pages, 9 figures
☆ Continuous 3D Perception Model with Persistent State
We present a unified framework capable of solving a broad range of 3D tasks. Our approach features a stateful recurrent model that continuously updates its state representation with each new observation. Given a stream of images, this evolving state can be used to generate metric-scale pointmaps (per-pixel 3D points) for each new input in an online fashion. These pointmaps reside within a common coordinate system, and can be accumulated into a coherent, dense scene reconstruction that updates as new images arrive. Our model, called CUT3R (Continuous Updating Transformer for 3D Reconstruction), captures rich priors of real-world scenes: not only can it predict accurate pointmaps from image observations, but it can also infer unseen regions of the scene by probing at virtual, unobserved views. Our method is simple yet highly flexible, naturally accepting varying lengths of images that may be either video streams or unordered photo collections, containing both static and dynamic content. We evaluate our method on various 3D/4D tasks and demonstrate competitive or state-of-the-art performance in each. Project Page: https://cut3r.github.io/
☆ InternVideo2.5: Empowering Video MLLMs with Long and Rich Context Modeling
This paper aims to improve the performance of video multimodal large language models (MLLM) via long and rich context (LRC) modeling. As a result, we develop a new version of InternVideo2.5 with a focus on enhancing the original MLLMs' ability to perceive fine-grained details and capture long-form temporal structure in videos. Specifically, our approach incorporates dense vision task annotations into MLLMs using direct preference optimization and develops compact spatiotemporal representations through adaptive hierarchical token compression. Experimental results demonstrate this unique design of LRC greatly improves the results of video MLLM in mainstream video understanding benchmarks (short & long), enabling the MLLM to memorize significantly longer video inputs (at least 6x longer than the original), and master specialized vision capabilities like object tracking and segmentation. Our work highlights the importance of multimodal context richness (length and fineness) in empowering MLLM's innate abilites (focus and memory), providing new insights for future research on video MLLM. Code and models are available at https://github.com/OpenGVLab/InternVideo/tree/main/InternVideo2.5
comment: technical report
☆ CCESAR: Coastline Classification-Extraction From SAR Images Using CNN-U-Net Combination
In this article, we improve the deep learning solution for coastline extraction from Synthetic Aperture Radar (SAR) images by proposing a two-stage model involving image classification followed by segmentation. We hypothesize that a single segmentation model usually used for coastline detection is insufficient to characterize different coastline types. We demonstrate that the need for a two-stage workflow prevails through different compression levels of these images. Our results from experiments using a combination of CNN and U-Net models on Sentinel-1 images show that the two-stage workflow, coastline classification-extraction from SAR images (CCESAR) outperforms a single U-Net segmentation model.
☆ DiffDoctor: Diagnosing Image Diffusion Models Before Treating
In spite of the recent progress, image diffusion models still produce artifacts. A common solution is to refine an established model with a quality assessment system, which generally rates an image in its entirety. In this work, we believe problem-solving starts with identification, yielding the request that the model should be aware of not just the presence of defects in an image, but their specific locations. Motivated by this, we propose DiffDoctor, a two-stage pipeline to assist image diffusion models in generating fewer artifacts. Concretely, the first stage targets developing a robust artifact detector, for which we collect a dataset of over 1M flawed synthesized images and set up an efficient human-in-the-loop annotation process, incorporating a carefully designed class-balance strategy. The learned artifact detector is then involved in the second stage to tune the diffusion model through assigning a per-pixel confidence map for each synthesis. Extensive experiments on text-to-image diffusion models demonstrate the effectiveness of our artifact detector as well as the soundness of our diagnose-then-treat design.
comment: 8 pages of main body and 2 pages of references, 9 figures, 2 tables
☆ Parallel Sequence Modeling via Generalized Spatial Propagation Network SP
We present the Generalized Spatial Propagation Network (GSPN), a new attention mechanism optimized for vision tasks that inherently captures 2D spatial structures. Existing attention models, including transformers, linear attention, and state-space models like Mamba, process multi-dimensional data as 1D sequences, compromising spatial coherence and efficiency. GSPN overcomes these limitations by directly operating on spatially coherent image data and forming dense pairwise connections through a line-scan approach. Central to GSPN is the Stability-Context Condition, which ensures stable, context-aware propagation across 2D sequences and reduces the effective sequence length to $\sqrt{N}$ for a square map with N elements, significantly enhancing computational efficiency. With learnable, input-dependent weights and no reliance on positional embeddings, GSPN achieves superior spatial fidelity and state-of-the-art performance in vision tasks, including ImageNet classification, class-guided image generation, and text-to-image generation. Notably, GSPN accelerates SD-XL with softmax-attention by over $84\times$ when generating 16K images.
comment: Project page: http://whj363636.github.io/GSPN/
☆ MMVU: Measuring Expert-Level Multi-Discipline Video Understanding
We introduce MMVU, a comprehensive expert-level, multi-discipline benchmark for evaluating foundation models in video understanding. MMVU includes 3,000 expert-annotated questions spanning 27 subjects across four core disciplines: Science, Healthcare, Humanities & Social Sciences, and Engineering. Compared to prior benchmarks, MMVU features three key advancements. First, it challenges models to apply domain-specific knowledge and perform expert-level reasoning to analyze specialized-domain videos, moving beyond the basic visual perception typically assessed in current video benchmarks. Second, each example is annotated by human experts from scratch. We implement strict data quality controls to ensure the high quality of the dataset. Finally, each example is enriched with expert-annotated reasoning rationals and relevant domain knowledge, facilitating in-depth analysis. We conduct an extensive evaluation of 32 frontier multimodal foundation models on MMVU. The latest System-2-capable models, o1 and Gemini 2.0 Flash Thinking, achieve the highest performance among the tested models. However, they still fall short of matching human expertise. Through in-depth error analyses and case studies, we offer actionable insights for future advancements in expert-level, knowledge-intensive video understanding for specialized domains.
☆ Video Depth Anything: Consistent Depth Estimation for Super-Long Videos
Depth Anything has achieved remarkable success in monocular depth estimation with strong generalization ability. However, it suffers from temporal inconsistency in videos, hindering its practical applications. Various methods have been proposed to alleviate this issue by leveraging video generation models or introducing priors from optical flow and camera poses. Nonetheless, these methods are only applicable to short videos (< 10 seconds) and require a trade-off between quality and computational efficiency. We propose Video Depth Anything for high-quality, consistent depth estimation in super-long videos (over several minutes) without sacrificing efficiency. We base our model on Depth Anything V2 and replace its head with an efficient spatial-temporal head. We design a straightforward yet effective temporal consistency loss by constraining the temporal depth gradient, eliminating the need for additional geometric priors. The model is trained on a joint dataset of video depth and unlabeled images, similar to Depth Anything V2. Moreover, a novel key-frame-based strategy is developed for long video inference. Experiments show that our model can be applied to arbitrarily long videos without compromising quality, consistency, or generalization ability. Comprehensive evaluations on multiple video benchmarks demonstrate that our approach sets a new state-of-the-art in zero-shot video depth estimation. We offer models of different scales to support a range of scenarios, with our smallest model capable of real-time performance at 30 FPS.
☆ DARB-Splatting: Generalizing Splatting with Decaying Anisotropic Radial Basis Functions
Splatting-based 3D reconstruction methods have gained popularity with the advent of 3D Gaussian Splatting, efficiently synthesizing high-quality novel views. These methods commonly resort to using exponential family functions, such as the Gaussian function, as reconstruction kernels due to their anisotropic nature, ease of projection, and differentiability in rasterization. However, the field remains restricted to variations within the exponential family, leaving generalized reconstruction kernels largely underexplored, partly due to the lack of easy integrability in 3D to 2D projections. In this light, we show that a class of decaying anisotropic radial basis functions (DARBFs), which are non-negative functions of the Mahalanobis distance, supports splatting by approximating the Gaussian function's closed-form integration advantage. With this fresh perspective, we demonstrate up to 34% faster convergence during training and a 15% reduction in memory consumption across various DARB reconstruction kernels, while maintaining comparable PSNR, SSIM, and LPIPS results. We will make the code available.
comment: Link to the project page: https://randomnerds.github.io/darbs.github.io/
☆ InternLM-XComposer2.5-Reward: A Simple Yet Effective Multi-Modal Reward Model
Despite the promising performance of Large Vision Language Models (LVLMs) in visual understanding, they occasionally generate incorrect outputs. While reward models (RMs) with reinforcement learning or test-time scaling offer the potential for improving generation quality, a critical gap remains: publicly available multi-modal RMs for LVLMs are scarce, and the implementation details of proprietary models are often unclear. We bridge this gap with InternLM-XComposer2.5-Reward (IXC-2.5-Reward), a simple yet effective multi-modal reward model that aligns LVLMs with human preferences. To ensure the robustness and versatility of IXC-2.5-Reward, we set up a high-quality multi-modal preference corpus spanning text, image, and video inputs across diverse domains, such as instruction following, general understanding, text-rich documents, mathematical reasoning, and video understanding. IXC-2.5-Reward achieves excellent results on the latest multi-modal reward model benchmark and shows competitive performance on text-only reward model benchmarks. We further demonstrate three key applications of IXC-2.5-Reward: (1) Providing a supervisory signal for RL training. We integrate IXC-2.5-Reward with Proximal Policy Optimization (PPO) yields IXC-2.5-Chat, which shows consistent improvements in instruction following and multi-modal open-ended dialogue; (2) Selecting the best response from candidate responses for test-time scaling; and (3) Filtering outlier or noisy samples from existing image and video instruction tuning training data. To ensure reproducibility and facilitate further research, we have open-sourced all model weights and training recipes at https://github.com/InternLM/InternLM-XComposer
comment: Tech Report
☆ Vision-Language Models for Automated Chest X-ray Interpretation: Leveraging ViT and GPT-2
Radiology plays a pivotal role in modern medicine due to its non-invasive diagnostic capabilities. However, the manual generation of unstructured medical reports is time consuming and prone to errors. It creates a significant bottleneck in clinical workflows. Despite advancements in AI-generated radiology reports, challenges remain in achieving detailed and accurate report generation. In this study we have evaluated different combinations of multimodal models that integrate Computer Vision and Natural Language Processing to generate comprehensive radiology reports. We employed a pretrained Vision Transformer (ViT-B16) and a SWIN Transformer as the image encoders. The BART and GPT-2 models serve as the textual decoders. We used Chest X-ray images and reports from the IU-Xray dataset to evaluate the usability of the SWIN Transformer-BART, SWIN Transformer-GPT-2, ViT-B16-BART and ViT-B16-GPT-2 models for report generation. We aimed at finding the best combination among the models. The SWIN-BART model performs as the best-performing model among the four models achieving remarkable results in almost all the evaluation metrics like ROUGE, BLEU and BERTScore.
comment: Preprint, manuscript under-review
☆ Cinepro: Robust Training of Foundation Models for Cancer Detection in Prostate Ultrasound Cineloops
Prostate cancer (PCa) detection using deep learning (DL) models has shown potential for enhancing real-time guidance during biopsies. However, prostate ultrasound images lack pixel-level cancer annotations, introducing label noise. Current approaches often focus on limited regions of interest (ROIs), disregarding anatomical context necessary for accurate diagnosis. Foundation models can overcome this limitation by analyzing entire images to capture global spatial relationships; however, they still encounter challenges stemming from the weak labels associated with coarse pathology annotations in ultrasound data. We introduce Cinepro, a novel framework that strengthens foundation models' ability to localize PCa in ultrasound cineloops. Cinepro adapts robust training by integrating the proportion of cancer tissue reported by pathology in a biopsy core into its loss function to address label noise, providing a more nuanced supervision. Additionally, it leverages temporal data across multiple frames to apply robust augmentations, enhancing the model's ability to learn stable cancer-related features. Cinepro demonstrates superior performance on a multi-center prostate ultrasound dataset, achieving an AUROC of 77.1% and a balanced accuracy of 83.8%, surpassing current benchmarks. These findings underscore Cinepro's promise in advancing foundation models for weakly labeled ultrasound data.
comment: accepted to IEEE ISBI 2025
☆ VARGPT: Unified Understanding and Generation in a Visual Autoregressive Multimodal Large Language Model
We present VARGPT, a novel multimodal large language model (MLLM) that unifies visual understanding and generation within a single autoregressive framework. VARGPT employs a next-token prediction paradigm for visual understanding and a next-scale prediction paradigm for visual autoregressive generation. VARGPT innovatively extends the LLaVA architecture, achieving efficient scale-wise autoregressive visual generation within MLLMs while seamlessly accommodating mixed-modal input and output within a single model framework. Our VARGPT undergoes a three-stage unified training process on specially curated datasets, comprising a pre-training phase and two mixed visual instruction-tuning phases. The unified training strategy are designed to achieve alignment between visual and textual features, enhance instruction following for both understanding and generation, and improve visual generation quality, respectively. Despite its LLAVA-based architecture for multimodel understanding, VARGPT significantly outperforms LLaVA-1.5 across various vision-centric benchmarks, such as visual question-answering and reasoning tasks. Notably, VARGPT naturally supports capabilities in autoregressive visual generation and instruction-to-image synthesis, showcasing its versatility in both visual understanding and generation tasks. Project page is at: \url{https://vargpt-1.github.io/}
☆ UI-TARS: Pioneering Automated GUI Interaction with Native Agents
This paper introduces UI-TARS, a native GUI agent model that solely perceives the screenshots as input and performs human-like interactions (e.g., keyboard and mouse operations). Unlike prevailing agent frameworks that depend on heavily wrapped commercial models (e.g., GPT-4o) with expert-crafted prompts and workflows, UI-TARS is an end-to-end model that outperforms these sophisticated frameworks. Experiments demonstrate its superior performance: UI-TARS achieves SOTA performance in 10+ GUI agent benchmarks evaluating perception, grounding, and GUI task execution. Notably, in the OSWorld benchmark, UI-TARS achieves scores of 24.6 with 50 steps and 22.7 with 15 steps, outperforming Claude (22.0 and 14.9 respectively). In AndroidWorld, UI-TARS achieves 46.6, surpassing GPT-4o (34.5). UI-TARS incorporates several key innovations: (1) Enhanced Perception: leveraging a large-scale dataset of GUI screenshots for context-aware understanding of UI elements and precise captioning; (2) Unified Action Modeling, which standardizes actions into a unified space across platforms and achieves precise grounding and interaction through large-scale action traces; (3) System-2 Reasoning, which incorporates deliberate reasoning into multi-step decision making, involving multiple reasoning patterns such as task decomposition, reflection thinking, milestone recognition, etc. (4) Iterative Training with Reflective Online Traces, which addresses the data bottleneck by automatically collecting, filtering, and reflectively refining new interaction traces on hundreds of virtual machines. Through iterative training and reflection tuning, UI-TARS continuously learns from its mistakes and adapts to unforeseen situations with minimal human intervention. We also analyze the evolution path of GUI agents to guide the further development of this domain.
☆ Deep Learning Based Segmentation of Blood Vessels from H&E Stained Oesophageal Adenocarcinoma Whole-Slide Images
Blood vessels (BVs) play a critical role in the Tumor Micro-Environment (TME), potentially influencing cancer progression and treatment response. However, manually quantifying BVs in Hematoxylin and Eosin (H&E) stained images is challenging and labor-intensive due to their heterogeneous appearances. We propose a novel approach of constructing guiding maps to improve the performance of state-of-the-art segmentation models for BV segmentation, the guiding maps encourage the models to learn representative features of BVs. This is particularly beneficial for computational pathology, where labeled training data is often limited and large models are prone to overfitting. We have quantitative and qualitative results to demonstrate the efficacy of our approach in improving segmentation accuracy. In future, we plan to validate this method to segment BVs across various tissue types and investigate the role of cellular structures in relation to BVs in the TME.
comment: Accepted by ISBI 2025
☆ Metric for Evaluating Performance of Reference-Free Demorphing Methods
A facial morph is an image created by combining two (or more) face images pertaining to two (or more) distinct identities. Reference-free face demorphing inverts the process and tries to recover the face images constituting a facial morph without using any other information. However, there is no consensus on the evaluation metrics to be used to evaluate and compare such demorphing techniques. In this paper, we first analyze the shortcomings of the demorphing metrics currently used in the literature. We then propose a new metric called biometrically cross-weighted IQA that overcomes these issues and extensively benchmark current methods on the proposed metric to show its efficacy. Experiments on three existing demorphing methods and six datasets on two commonly used face matchers validate the efficacy of our proposed metric.
☆ BlanketGen2-Fit3D: Synthetic Blanket Augmentation Towards Improving Real-World In-Bed Blanket Occluded Human Pose Estimation
Human Pose Estimation (HPE) from monocular RGB images is crucial for clinical in-bed skeleton-based action recognition, however, it poses unique challenges for HPE models due to the frequent presence of blankets occluding the person, while labeled HPE data in this scenario is scarce. To address this we introduce BlanketGen2-Fit3D (BG2-Fit3D), an augmentation of Fit3D dataset that contains 1,217,312 frames with synthetic photo-realistic blankets. To generate it we used BlanketGen2, our new and improved version of our BlanketGen pipeline that simulates synthetic blankets using ground-truth Skinned Multi-Person Linear model (SMPL) meshes and then renders them as transparent images that can be layered on top of the original frames. This dataset was used in combination with the original Fit3D to finetune the ViTPose-B HPE model, to evaluate synthetic blanket augmentation effectiveness. The trained models were further evaluated on a real-world blanket occluded in-bed HPE dataset (SLP dataset). Comparing architectures trained on only Fit3D with the ones trained with our synthetic blanket augmentation the later improved pose estimation performance on BG2-Fit3D, the synthetic blanket occluded dataset significantly to (0.977 Percentage of Correct Keypoints (PCK), 0.149 Normalized Mean Error (NME)) with an absolute 4.4% PCK increase. Furthermore, the test results on SLP demonstrated the utility of synthetic data augmentation by improving performance by an absolute 2.3% PCK, on real-world images with the poses occluded by real blankets. These results show synthetic blanket augmentation has the potential to improve in-bed blanket occluded HPE from RGB images. The dataset as well as the code will be made available to the public.
comment: 11 pages, 7 figures
☆ Sublinear Variational Optimization of Gaussian Mixture Models with Millions to Billions of Parameters
Gaussian Mixture Models (GMMs) range among the most frequently used machine learning models. However, training large, general GMMs becomes computationally prohibitive for datasets with many data points $N$ of high-dimensionality $D$. For GMMs with arbitrary covariances, we here derive a highly efficient variational approximation, which is integrated with mixtures of factor analyzers (MFAs). For GMMs with $C$ components, our proposed algorithm significantly reduces runtime complexity per iteration from $\mathcal{O}(NCD^2)$ to a complexity scaling linearly with $D$ and remaining constant w.r.t. $C$. Numerical validation of this theoretical complexity reduction then shows the following: the distance evaluations required for the entire GMM optimization process scale sublinearly with $NC$. On large-scale benchmarks, this sublinearity results in speed-ups of an order-of-magnitude compared to the state-of-the-art. As a proof of concept, we train GMMs with over 10 billion parameters on about 100 million images, and observe training times of approximately nine hours on a single state-of-the-art CPU.
comment: 22 pages, 6 figures (and 17 pages, 3 figures in Appendix)
☆ RALAD: Bridging the Real-to-Sim Domain Gap in Autonomous Driving with Retrieval-Augmented Learning
In the pursuit of robust autonomous driving systems, models trained on real-world datasets often struggle to adapt to new environments, particularly when confronted with corner cases such as extreme weather conditions. Collecting these corner cases in the real world is non-trivial, which necessitates the use of simulators for validation. However,the high computational cost and the domain gap in data distribution have hindered the seamless transition between real and simulated driving scenarios. To tackle this challenge, we propose Retrieval-Augmented Learning for Autonomous Driving (RALAD), a novel framework designed to bridge the real-to-sim gap at a low cost. RALAD features three primary designs, including (1) domain adaptation via an enhanced Optimal Transport (OT) method that accounts for both individual and grouped image distances, (2) a simple and unified framework that can be applied to various models, and (3) efficient fine-tuning techniques that freeze the computationally expensive layers while maintaining robustness. Experimental results demonstrate that RALAD compensates for the performance degradation in simulated environments while maintaining accuracy in real-world scenarios across three different models. Taking Cross View as an example, the mIOU and mAP metrics in real-world scenarios remain stable before and after RALAD fine-tuning, while in simulated environments,the mIOU and mAP metrics are improved by 10.30% and 12.29%, respectively. Moreover, the re-training cost of our approach is reduced by approximately 88.1%. Our code is available at https://github.com/JiachengZuo/RALAD.git.
☆ Towards Accurate Unified Anomaly Segmentation
Unsupervised anomaly detection (UAD) from images strives to model normal data distributions, creating discriminative representations to distinguish and precisely localize anomalies. Despite recent advancements in the efficient and unified one-for-all scheme, challenges persist in accurately segmenting anomalies for further monitoring. Moreover, this problem is obscured by the widely-used AUROC metric under imbalanced UAD settings. This motivates us to emphasize the significance of precise segmentation of anomaly pixels using pAP and DSC as metrics. To address the unsolved segmentation task, we introduce the Unified Anomaly Segmentation (UniAS). UniAS presents a multi-level hybrid pipeline that progressively enhances normal information from coarse to fine, incorporating a novel multi-granularity gated CNN (MGG-CNN) into Transformer layers to explicitly aggregate local details from different granularities. UniAS achieves state-of-the-art anomaly segmentation performance, attaining 65.12/59.33 and 40.06/32.50 in pAP/DSC on the MVTec-AD and VisA datasets, respectively, surpassing previous methods significantly. The codes are shared at https://github.com/Mwxinnn/UniAS.
comment: 8 pages, 5 figures
☆ Regressor-Guided Image Editing Regulates Emotional Response to Reduce Online Engagement
Emotions are known to mediate the relationship between users' content consumption and their online engagement, with heightened emotional intensity leading to increased engagement. Building on this insight, we propose three regressor-guided image editing approaches aimed at diminishing the emotional impact of images. These include (i) a parameter optimization approach based on global image transformations known to influence emotions, (ii) an optimization approach targeting the style latent space of a generative adversarial network, and (iii) a diffusion-based approach employing classifier guidance and classifier-free guidance. Our findings demonstrate that approaches can effectively alter the emotional properties of images while maintaining high visual quality. Optimization-based methods primarily adjust low-level properties like color hues and brightness, whereas the diffusion-based approach introduces semantic changes, such as altering appearance or facial expressions. Notably, results from a behavioral study reveal that only the diffusion-based approach successfully elicits changes in viewers' emotional responses while preserving high perceived image quality. In future work, we will investigate the impact of these image adaptations on internet user behavior.
comment: 39 pages, 22 figures
☆ With Great Backbones Comes Great Adversarial Transferability
Advances in self-supervised learning (SSL) for machine vision have improved representation robustness and model performance, giving rise to pre-trained backbones like \emph{ResNet} and \emph{ViT} models tuned with SSL methods such as \emph{SimCLR}. Due to the computational and data demands of pre-training, the utilization of such backbones becomes a strenuous necessity. However, employing these backbones may inherit vulnerabilities to adversarial attacks. While adversarial robustness has been studied under \emph{white-box} and \emph{black-box} settings, the robustness of models tuned on pre-trained backbones remains largely unexplored. Additionally, the role of tuning meta-information in mitigating exploitation risks is unclear. This work systematically evaluates the adversarial robustness of such models across $20,000$ combinations of tuning meta-information, including fine-tuning techniques, backbone families, datasets, and attack types. We propose using proxy models to transfer attacks, simulating varying levels of target knowledge by fine-tuning these proxies with diverse configurations. Our findings reveal that proxy-based attacks approach the effectiveness of \emph{white-box} methods, even with minimal tuning knowledge. We also introduce a naive "backbone attack," leveraging only the backbone to generate adversarial samples, which outperforms \emph{black-box} attacks and rivals \emph{white-box} methods, highlighting critical risks in model-sharing practices. Finally, our ablations reveal how increasing tuning meta-information impacts attack transferability, measuring each meta-information combination.
☆ Benchmarking Image Perturbations for Testing Automated Driving Assistance Systems
Advanced Driver Assistance Systems (ADAS) based on deep neural networks (DNNs) are widely used in autonomous vehicles for critical perception tasks such as object detection, semantic segmentation, and lane recognition. However, these systems are highly sensitive to input variations, such as noise and changes in lighting, which can compromise their effectiveness and potentially lead to safety-critical failures. This study offers a comprehensive empirical evaluation of image perturbations, techniques commonly used to assess the robustness of DNNs, to validate and improve the robustness and generalization of ADAS perception systems. We first conducted a systematic review of the literature, identifying 38 categories of perturbations. Next, we evaluated their effectiveness in revealing failures in two different ADAS, both at the component and at the system level. Finally, we explored the use of perturbation-based data augmentation and continuous learning strategies to improve ADAS adaptation to new operational design domains. Our results demonstrate that all categories of image perturbations successfully expose robustness issues in ADAS and that the use of dataset augmentation and continuous learning significantly improves ADAS performance in novel, unseen environments.
comment: Accepted for publication at the 18th IEEE International Conference on Software Testing, Verification and Validation (ICST 2025)
☆ VipDiff: Towards Coherent and Diverse Video Inpainting via Training-free Denoising Diffusion Models WACV 2025
Recent video inpainting methods have achieved encouraging improvements by leveraging optical flow to guide pixel propagation from reference frames either in the image space or feature space. However, they would produce severe artifacts in the mask center when the masked area is too large and no pixel correspondences can be found for the center. Recently, diffusion models have demonstrated impressive performance in generating diverse and high-quality images, and have been exploited in a number of works for image inpainting. These methods, however, cannot be applied directly to videos to produce temporal-coherent inpainting results. In this paper, we propose a training-free framework, named VipDiff, for conditioning diffusion model on the reverse diffusion process to produce temporal-coherent inpainting results without requiring any training data or fine-tuning the pre-trained diffusion models. VipDiff takes optical flow as guidance to extract valid pixels from reference frames to serve as constraints in optimizing the randomly sampled Gaussian noise, and uses the generated results for further pixel propagation and conditional generation. VipDiff also allows for generating diverse video inpainting results over different sampled noise. Experiments demonstrate that VipDiff can largely outperform state-of-the-art video inpainting methods in terms of both spatial-temporal coherence and fidelity.
comment: 10 pages, 5 Figures (Accepted at WACV 2025)
☆ CBVLM: Training-free Explainable Concept-based Large Vision Language Models for Medical Image Classification
The main challenges limiting the adoption of deep learning-based solutions in medical workflows are the availability of annotated data and the lack of interpretability of such systems. Concept Bottleneck Models (CBMs) tackle the latter by constraining the final disease prediction on a set of predefined and human-interpretable concepts. However, the increased interpretability achieved through these concept-based explanations implies a higher annotation burden. Moreover, if a new concept needs to be added, the whole system needs to be retrained. Inspired by the remarkable performance shown by Large Vision-Language Models (LVLMs) in few-shot settings, we propose a simple, yet effective, methodology, CBVLM, which tackles both of the aforementioned challenges. First, for each concept, we prompt the LVLM to answer if the concept is present in the input image. Then, we ask the LVLM to classify the image based on the previous concept predictions. Moreover, in both stages, we incorporate a retrieval module responsible for selecting the best examples for in-context learning. By grounding the final diagnosis on the predicted concepts, we ensure explainability, and by leveraging the few-shot capabilities of LVLMs, we drastically lower the annotation cost. We validate our approach with extensive experiments across four medical datasets and twelve LVLMs (both generic and medical) and show that CBVLM consistently outperforms CBMs and task-specific supervised methods without requiring any training and using just a few annotated examples. More information on our project page: https://cristianopatricio.github.io/CBVLM/.
comment: This work has been submitted to the IEEE for possible publication
☆ mmCooper: A Multi-agent Multi-stage Communication-efficient and Collaboration-robust Cooperative Perception Framework
Collaborative perception significantly enhances individual vehicle perception performance through the exchange of sensory information among agents. However, real-world deployment faces challenges due to bandwidth constraints and inevitable calibration errors during information exchange. To address these issues, we propose mmCooper, a novel multi-agent, multi-stage, communication-efficient, and collaboration-robust cooperative perception framework. Our framework leverages a multi-stage collaboration strategy that dynamically and adaptively balances intermediate- and late-stage information to share among agents, enhancing perceptual performance while maintaining communication efficiency. To support robust collaboration despite potential misalignments and calibration errors, our framework captures multi-scale contextual information for robust fusion in the intermediate stage and calibrates the received detection results to improve accuracy in the late stage. We validate the effectiveness of mmCooper through extensive experiments on real-world and simulated datasets. The results demonstrate the superiority of our proposed framework and the effectiveness of each component.
☆ HAC++: Towards 100X Compression of 3D Gaussian Splatting ECCV 2024
3D Gaussian Splatting (3DGS) has emerged as a promising framework for novel view synthesis, boasting rapid rendering speed with high fidelity. However, the substantial Gaussians and their associated attributes necessitate effective compression techniques. Nevertheless, the sparse and unorganized nature of the point cloud of Gaussians (or anchors in our paper) presents challenges for compression. To achieve a compact size, we propose HAC++, which leverages the relationships between unorganized anchors and a structured hash grid, utilizing their mutual information for context modeling. Additionally, HAC++ captures intra-anchor contextual relationships to further enhance compression performance. To facilitate entropy coding, we utilize Gaussian distributions to precisely estimate the probability of each quantized attribute, where an adaptive quantization module is proposed to enable high-precision quantization of these attributes for improved fidelity restoration. Moreover, we incorporate an adaptive masking strategy to eliminate invalid Gaussians and anchors. Overall, HAC++ achieves a remarkable size reduction of over 100X compared to vanilla 3DGS when averaged on all datasets, while simultaneously improving fidelity. It also delivers more than 20X size reduction compared to Scaffold-GS. Our code is available at https://github.com/YihangChen-ee/HAC-plus.
comment: IEEE TPAMI Submission. This paper is an extension of HAC at arXiv:2403.14530 (ECCV 2024)
☆ Memory Storyboard: Leveraging Temporal Segmentation for Streaming Self-Supervised Learning from Egocentric Videos
Self-supervised learning holds the promise to learn good representations from real-world continuous uncurated data streams. However, most existing works in visual self-supervised learning focus on static images or artificial data streams. Towards exploring a more realistic learning substrate, we investigate streaming self-supervised learning from long-form real-world egocentric video streams. Inspired by the event segmentation mechanism in human perception and memory, we propose "Memory Storyboard" that groups recent past frames into temporal segments for more effective summarization of the past visual streams for memory replay. To accommodate efficient temporal segmentation, we propose a two-tier memory hierarchy: the recent past is stored in a short-term memory, and the storyboard temporal segments are then transferred to a long-term memory. Experiments on real-world egocentric video datasets including SAYCam and KrishnaCam show that contrastive learning objectives on top of storyboard frames result in semantically meaningful representations which outperform those produced by state-of-the-art unsupervised continual learning methods.
comment: 20 pages, 8 figures
☆ Video Deblurring by Sharpness Prior Detection and Edge Information
Video deblurring is essential task for autonomous driving, facial recognition, and security surveillance. Traditional methods directly estimate motion blur kernels, often introducing artifacts and leading to poor results. Recent approaches utilize the detection of sharp frames within video sequences to enhance deblurring. However, existing datasets rely on fixed number of sharp frames, which may be too restrictive for some applications and may introduce a bias during model training. To address these limitations and enhance domain adaptability, this work first introduces GoPro Random Sharp (GoProRS), a new dataset where the the frequency of sharp frames within the sequence is customizable, allowing more diverse training and testing scenarios. Furthermore, it presents a novel video deblurring model, called SPEINet, that integrates sharp frame features into blurry frame reconstruction through an attention-based encoder-decoder architecture, a lightweight yet robust sharp frame detection and an edge extraction phase. Extensive experimental results demonstrate that SPEINet outperforms state-of-the-art methods across multiple datasets, achieving an average of +3.2% PSNR improvement over recent techniques. Given such promising results, we believe that both the proposed model and dataset pave the way for future advancements in video deblurring based on the detection of sharp frames.
comment: Under review in Pattern Recognition
☆ Quality Enhancement of Radiographic X-ray Images by Interpretable Mapping SP
X-ray imaging is the most widely used medical imaging modality. However, in the common practice, inconsistency in the initial presentation of X-ray images is a common complaint by radiologists. Different patient positions, patient habitus and scanning protocols can lead to differences in image presentations, e.g., differences in brightness and contrast globally or regionally. To compensate for this, additional work will be executed by clinical experts to adjust the images to the desired presentation, which can be time-consuming. Existing deep-learning-based end-to-end solutions can automatically correct images with promising performances. Nevertheless, these methods are hard to be interpreted and difficult to be understood by clinical experts. In this manuscript, a novel interpretable mapping method by deep learning is proposed, which automatically enhances the image brightness and contrast globally and locally. Meanwhile, because the model is inspired by the workflow of the brightness and contrast manipulation, it can provide interpretable pixel maps for explaining the motivation of image enhancement. The experiment on the clinical datasets show the proposed method can provide consistent brightness and contrast correction on X-ray images with accuracy of 24.75 dB PSNR and 0.8431 SSIM.
comment: SPIE Medical Imaging 2025
☆ Zero-shot Bias Correction: Efficient MR Image Inhomogeneity Reduction Without Any Data
In recent years, deep neural networks for image inhomogeneity reduction have shown promising results. However, current methods with (un)supervised solutions require preparing a training dataset, which is expensive and laborious for data collection. In this work, we demonstrate a novel zero-shot deep neural networks, which requires no data for pre-training and dedicated assumption of the bias field. The designed light-weight CNN enables an efficient zero-shot adaptation for bias-corrupted image correction. Our method provides a novel solution to mitigate the biased corrupted image as iterative homogeneity refinement, which therefore ensures the considered issue can be solved easier with stable convergence of zero-shot optimization. Extensive comparison on different datasets show that the proposed method performs better than current data-free N4 methods in both efficiency and accuracy.
comment: Accepted by ISBI 2025. Supported by IHI PREDICTOM Project
☆ Investigating Market Strength Prediction with CNNs on Candlestick Chart Images ACML
This paper investigates predicting market strength solely from candlestick chart images to assist investment decisions. The core research problem is developing an effective computer vision-based model using raw candlestick visuals without time-series data. We specifically analyze the impact of incorporating candlestick patterns that were detected by YOLOv8. The study implements two approaches: pure CNN on chart images and a Decomposer architecture detecting patterns. Experiments utilize diverse financial datasets spanning stocks, cryptocurrencies, and forex assets. Key findings demonstrate candlestick patterns do not improve model performance over only image data in our research. The significance is illuminating limitations in candlestick image signals. Performance peaked at approximately 0.7 accuracy, below more complex time-series models. Outcomes reveal challenges in distilling sufficient predictive power from visual shapes alone, motivating the incorporation of other data modalities. This research clarifies how purely image-based models can inform trading while confirming patterns add little value over raw charts. Our content is endeavored to be delineated into distinct sections, each autonomously furnishing a unique contribution while maintaining cohesive linkage. Note that, the examples discussed herein are not limited to the scope, applicability, or knowledge outlined in the paper.
comment: ACMLC 2025; 8 pages
☆ DLEN: Dual Branch of Transformer for Low-Light Image Enhancement in Dual Domains
Low-light image enhancement (LLE) aims to improve the visual quality of images captured in poorly lit conditions, which often suffer from low brightness, low contrast, noise, and color distortions. These issues hinder the performance of computer vision tasks such as object detection, facial recognition, and autonomous driving.Traditional enhancement techniques, such as multi-scale fusion and histogram equalization, fail to preserve fine details and often struggle with maintaining the natural appearance of enhanced images under complex lighting conditions. Although the Retinex theory provides a foundation for image decomposition, it often amplifies noise, leading to suboptimal image quality. In this paper, we propose the Dual Light Enhance Network (DLEN), a novel architecture that incorporates two distinct attention mechanisms, considering both spatial and frequency domains. Our model introduces a learnable wavelet transform module in the illumination estimation phase, preserving high- and low-frequency components to enhance edge and texture details. Additionally, we design a dual-branch structure that leverages the power of the Transformer architecture to enhance both the illumination and structural components of the image.Through extensive experiments, our model outperforms state-of-the-art methods on standard benchmarks.Code is available here: https://github.com/LaLaLoXX/DLEN
comment: 10pages,6figures
☆ InsTALL: Context-aware Instructional Task Assistance with Multi-modal Large Language Models
The improved competence of generative models can help building multi-modal virtual assistants that leverage modalities beyond language. By observing humans performing multi-step tasks, one can build assistants that have situational awareness of actions and tasks being performed, enabling them to cater assistance based on this understanding. In this paper, we develop a Context-aware Instructional Task Assistant with Multi-modal Large Language Models (InsTALL) that leverages an online visual stream (e.g. a user's screen share or video recording) and responds in real-time to user queries related to the task at hand. To enable useful assistance, InsTALL 1) trains a multi-modal model on task videos and paired textual data, and 2) automatically extracts task graph from video data and leverages it at training and inference time. We show InsTALL achieves state-of-the-art performance across proposed sub-tasks considered for multimodal activity understanding -- task recognition (TR), action recognition (AR), next action prediction (AP), and plan prediction (PP) -- and outperforms existing baselines on two novel sub-tasks related to automatic error identification.
☆ TokenVerse: Versatile Multi-concept Personalization in Token Modulation Space
We present TokenVerse -- a method for multi-concept personalization, leveraging a pre-trained text-to-image diffusion model. Our framework can disentangle complex visual elements and attributes from as little as a single image, while enabling seamless plug-and-play generation of combinations of concepts extracted from multiple images. As opposed to existing works, TokenVerse can handle multiple images with multiple concepts each, and supports a wide-range of concepts, including objects, accessories, materials, pose, and lighting. Our work exploits a DiT-based text-to-image model, in which the input text affects the generation through both attention and modulation (shift and scale). We observe that the modulation space is semantic and enables localized control over complex concepts. Building on this insight, we devise an optimization-based framework that takes as input an image and a text description, and finds for each word a distinct direction in the modulation space. These directions can then be used to generate new images that combine the learned concepts in a desired configuration. We demonstrate the effectiveness of TokenVerse in challenging personalization settings, and showcase its advantages over existing methods. project's webpage in https://token-verse.github.io/
☆ Exploring Temporally-Aware Features for Point Tracking
Point tracking in videos is a fundamental task with applications in robotics, video editing, and more. While many vision tasks benefit from pre-trained feature backbones to improve generalizability, point tracking has primarily relied on simpler backbones trained from scratch on synthetic data, which may limit robustness in real-world scenarios. Additionally, point tracking requires temporal awareness to ensure coherence across frames, but using temporally-aware features is still underexplored. Most current methods often employ a two-stage process: an initial coarse prediction followed by a refinement stage to inject temporal information and correct errors from the coarse stage. These approach, however, is computationally expensive and potentially redundant if the feature backbone itself captures sufficient temporal information. In this work, we introduce Chrono, a feature backbone specifically designed for point tracking with built-in temporal awareness. Leveraging pre-trained representations from self-supervised learner DINOv2 and enhanced with a temporal adapter, Chrono effectively captures long-term temporal context, enabling precise prediction even without the refinement stage. Experimental results demonstrate that Chrono achieves state-of-the-art performance in a refiner-free setting on the TAP-Vid-DAVIS and TAP-Vid-Kinetics datasets, among common feature backbones used in point tracking as well as DINOv2, with exceptional efficiency. Project page: https://cvlab-kaist.github.io/Chrono/
☆ Early Detection and Classification of Breast Cancer Using Deep Learning Techniques
Breast cancer is one of the deadliest cancers causing about massive number of patients to die annually all over the world according to the WHO. It is a kind of cancer that develops when the tissues of the breast grow rapidly and unboundly. This fatality rate can be prevented if the cancer is detected before it gets malignant. Using automation for early-age detection of breast cancer, Artificial Intelligence and Machine Learning technologies can be implemented for the best outcome. In this study, we are using the Breast Cancer Image Classification dataset collected from the Kaggle depository, which comprises 9248 Breast Ultrasound Images and is classified into three categories: Benign, Malignant, and Normal which refers to non-cancerous, cancerous, and normal images.This research introduces three pretrained model featuring custom classifiers that includes ResNet50, MobileNet, and VGG16, along with a custom CNN model utilizing the ReLU activation function.The models ResNet50, MobileNet, VGG16, and a custom CNN recorded accuracies of 98.41%, 97.91%, 98.19%, and 92.94% on the dataset, correspondingly, with ResNet50 achieving the highest accuracy of 98.41%.This model, with its deep and powerful architecture, is particularly successful in detecting aberrant cells as well as cancerous or non-cancerous tumors. These accuracies show that the Machine Learning methods are more compatible for the classification and early detection of breast cancer.
☆ RL-RC-DoT: A Block-level RL agent for Task-Aware Video Compression
Video encoders optimize compression for human perception by minimizing reconstruction error under bit-rate constraints. In many modern applications such as autonomous driving, an overwhelming majority of videos serve as input for AI systems performing tasks like object recognition or segmentation, rather than being watched by humans. It is therefore useful to optimize the encoder for a downstream task instead of for perceptual image quality. However, a major challenge is how to combine such downstream optimization with existing standard video encoders, which are highly efficient and popular. Here, we address this challenge by controlling the Quantization Parameters (QPs) at the macro-block level to optimize the downstream task. This granular control allows us to prioritize encoding for task-relevant regions within each frame. We formulate this optimization problem as a Reinforcement Learning (RL) task, where the agent learns to balance long-term implications of choosing QPs on both task performance and bit-rate constraints. Notably, our policy does not require the downstream task as an input during inference, making it suitable for streaming applications and edge devices such as vehicles. We demonstrate significant improvements in two tasks, car detection, and ROI (saliency) encoding. Our approach improves task performance for a given bit rate compared to traditional task agnostic encoding methods, paving the way for more efficient task-aware video compression.
☆ Fixing Imbalanced Attention to Mitigate In-Context Hallucination of Large Vision-Language Model
Large Vision Language Models (LVLMs) have demonstrated remarkable capabilities in understanding and describing visual content, achieving state-of-the-art performance across various vision-language tasks. However, these models frequently exhibit hallucination behavior, where they generate descriptions containing objects or details absent in the input image. Our work investigates this phenomenon by analyzing attention patterns across transformer layers and heads, revealing that hallucinations often stem from progressive degradation of visual grounding in deeper layers. We propose a novel attention modification approach that combines selective token emphasis and head-specific modulation to maintain visual grounding throughout the generation process. Our method introduces two key components: (1) a dual-stream token selection mechanism that identifies and prioritizes both locally informative and spatially significant visual tokens, and (2) an attention head-specific modulation strategy that differentially amplifies visual information processing based on measured visual sensitivity of individual attention heads. Through extensive experimentation on the MSCOCO dataset, we demonstrate that our approach reduces hallucination rates by up to 62.3\% compared to baseline models while maintaining comparable task performance. Our analysis reveals that selectively modulating tokens across attention heads with varying levels of visual sensitivity can significantly improve visual grounding without requiring model retraining.
comment: 10 pages, 5 tables, 4 figures
☆ Explainability for Vision Foundation Models: A Survey
As artificial intelligence systems become increasingly integrated into daily life, the field of explainability has gained significant attention. This trend is particularly driven by the complexity of modern AI models and their decision-making processes. The advent of foundation models, characterized by their extensive generalization capabilities and emergent uses, has further complicated this landscape. Foundation models occupy an ambiguous position in the explainability domain: their complexity makes them inherently challenging to interpret, yet they are increasingly leveraged as tools to construct explainable models. In this survey, we explore the intersection of foundation models and eXplainable AI (XAI) in the vision domain. We begin by compiling a comprehensive corpus of papers that bridge these fields. Next, we categorize these works based on their architectural characteristics. We then discuss the challenges faced by current research in integrating XAI within foundation models. Furthermore, we review common evaluation methodologies for these combined approaches. Finally, we present key observations and insights from our survey, offering directions for future research in this rapidly evolving field.
☆ Hunyuan3D 2.0: Scaling Diffusion Models for High Resolution Textured 3D Assets Generation
We present Hunyuan3D 2.0, an advanced large-scale 3D synthesis system for generating high-resolution textured 3D assets. This system includes two foundation components: a large-scale shape generation model -- Hunyuan3D-DiT, and a large-scale texture synthesis model -- Hunyuan3D-Paint. The shape generative model, built on a scalable flow-based diffusion transformer, aims to create geometry that properly aligns with a given condition image, laying a solid foundation for downstream applications. The texture synthesis model, benefiting from strong geometric and diffusion priors, produces high-resolution and vibrant texture maps for either generated or hand-crafted meshes. Furthermore, we build Hunyuan3D-Studio -- a versatile, user-friendly production platform that simplifies the re-creation process of 3D assets. It allows both professional and amateur users to manipulate or even animate their meshes efficiently. We systematically evaluate our models, showing that Hunyuan3D 2.0 outperforms previous state-of-the-art models, including the open-source models and closed-source models in geometry details, condition alignment, texture quality, and etc. Hunyuan3D 2.0 is publicly released in order to fill the gaps in the open-source 3D community for large-scale foundation generative models. The code and pre-trained weights of our models are available at: https://github.com/Tencent/Hunyuan3D-2
comment: GitHub link: https://github.com/Tencent/Hunyuan3D-2
☆ A margin-based replacement for cross-entropy loss
Cross-entropy (CE) loss is the de-facto standard for training deep neural networks to perform classification. However, CE-trained deep neural networks struggle with robustness and generalisation issues. To alleviate these issues, we propose high error margin (HEM) loss, a variant of multi-class margin loss that overcomes the training issues of other margin-based losses. We evaluate HEM extensively on a range of architectures and datasets. We find that HEM loss is more effective than cross-entropy loss across a wide range of tasks: unknown class rejection, adversarial robustness, learning with imbalanced data, continual learning, and semantic segmentation (a pixel-level classification task). Despite all training hyper-parameters being chosen for CE loss, HEM is inferior to CE only in terms of clean accuracy and this difference is insignificant. We also compare HEM to specialised losses that have previously been proposed to improve performance on specific tasks. LogitNorm, a loss achieving state-of-the-art performance on unknown class rejection, produces similar performance to HEM for this task, but is much poorer for continual learning and semantic segmentation. Logit-adjusted loss, designed for imbalanced data, has superior results to HEM for that task, but performs more poorly on unknown class rejection and semantic segmentation. DICE, a popular loss for semantic segmentation, is inferior to HEM loss on all tasks, including semantic segmentation. Thus, HEM often out-performs specialised losses, and in contrast to them, is a general-purpose replacement for CE loss.
comment: Code: https://codeberg.org/mwspratling/HEMLoss
☆ High-dimensional multimodal uncertainty estimation by manifold alignment:Application to 3D right ventricular strain computations
Confidence in the results is a key ingredient to improve the adoption of machine learning methods by clinicians. Uncertainties on the results have been considered in the literature, but mostly those originating from the learning and processing methods. Uncertainty on the data is hardly challenged, as a single sample is often considered representative enough of each subject included in the analysis. In this paper, we propose a representation learning strategy to estimate local uncertainties on a physiological descriptor (here, myocardial deformation) previously obtained from medical images by different definitions or computations. We first use manifold alignment to match the latent representations associated to different high-dimensional input descriptors. Then, we formulate plausible distributions of latent uncertainties, and finally exploit them to reconstruct uncertainties on the input high-dimensional descriptors. We demonstrate its relevance for the quantification of myocardial deformation (strain) from 3D echocardiographic image sequences of the right ventricle, for which a lack of consensus exists in its definition and which directional component to use. We used a database of 100 control subjects with right ventricle overload, for which different types of strain are available at each point of the right ventricle endocardial surface mesh. Our approach quantifies local uncertainties on myocardial deformation from different descriptors defining this physiological concept. Such uncertainties cannot be directly estimated by local statistics on such descriptors, potentially of heterogeneous types. Beyond this controlled illustrative application, our methodology has the potential to be generalized to many other population analyses considering heterogeneous high-dimensional descriptors.
☆ ComposeAnyone: Controllable Layout-to-Human Generation with Decoupled Multimodal Conditions
Building on the success of diffusion models, significant advancements have been made in multimodal image generation tasks. Among these, human image generation has emerged as a promising technique, offering the potential to revolutionize the fashion design process. However, existing methods often focus solely on text-to-image or image reference-based human generation, which fails to satisfy the increasingly sophisticated demands. To address the limitations of flexibility and precision in human generation, we introduce ComposeAnyone, a controllable layout-to-human generation method with decoupled multimodal conditions. Specifically, our method allows decoupled control of any part in hand-drawn human layouts using text or reference images, seamlessly integrating them during the generation process. The hand-drawn layout, which utilizes color-blocked geometric shapes such as ellipses and rectangles, can be easily drawn, offering a more flexible and accessible way to define spatial layouts. Additionally, we introduce the ComposeHuman dataset, which provides decoupled text and reference image annotations for different components of each human image, enabling broader applications in human image generation tasks. Extensive experiments on multiple datasets demonstrate that ComposeAnyone generates human images with better alignment to given layouts, text descriptions, and reference images, showcasing its multi-task capability and controllability.
☆ SVGS-DSGAT: An IoT-Enabled Innovation in Underwater Robotic Object Detection Technology
With the advancement of Internet of Things (IoT) technology, underwater target detection and tracking have become increasingly important for ocean monitoring and resource management. Existing methods often fall short in handling high-noise and low-contrast images in complex underwater environments, lacking precision and robustness. This paper introduces a novel SVGS-DSGAT model that combines GraphSage, SVAM, and DSGAT modules, enhancing feature extraction and target detection capabilities through graph neural networks and attention mechanisms. The model integrates IoT technology to facilitate real-time data collection and processing, optimizing resource allocation and model responsiveness. Experimental results demonstrate that the SVGS-DSGAT model achieves an mAP of 40.8% on the URPC 2020 dataset and 41.5% on the SeaDronesSee dataset, significantly outperforming existing mainstream models. This IoT-enhanced approach not only excels in high-noise and complex backgrounds but also improves the overall efficiency and scalability of the system. This research provides an effective IoT solution for underwater target detection technology, offering significant practical application value and broad development prospects.
comment: 17 pages, 8 figures
☆ Fast-RF-Shimming: Accelerate RF Shimming in 7T MRI using Deep Learning
Ultrahigh field (UHF) Magnetic Resonance Imaging (MRI) provides a high signal-to-noise ratio (SNR), enabling exceptional spatial resolution for clinical diagnostics and research. However, higher fields introduce challenges such as transmit radiofrequency (RF) field inhomogeneities, which result in uneven flip angles and image intensity artifacts. These artifacts degrade image quality and limit clinical adoption. Traditional RF shimming methods, including Magnitude Least Squares (MLS) optimization, mitigate RF field inhomogeneity but are time-intensive and often require the presence of the patient. Recent machine learning methods, such as RF Shim Prediction by Iteratively Projected Ridge Regression and other deep learning architectures, offer alternative approaches but face challenges such as extensive training requirements, limited complexity, and practical data constraints. This paper introduces a holistic learning-based framework called Fast RF Shimming, which achieves a 5000-fold speedup compared to MLS methods. First, random-initialized Adaptive Moment Estimation (Adam) derives reference shimming weights from multichannel RF fields. Next, a Residual Network (ResNet) maps RF fields to shimming outputs while incorporating a confidence parameter into the loss function. Finally, a Non-uniformity Field Detector (NFD) identifies extreme non-uniform outcomes. Comparative evaluations demonstrate significant improvements in both speed and predictive accuracy. The proposed pipeline also supports potential extensions, such as the integration of anatomical priors or multi-echo data, to enhance the robustness of RF field correction. This approach offers a faster and more efficient solution to RF shimming challenges in UHF MRI.
☆ DNRSelect: Active Best View Selection for Deferred Neural Rendering ICRA 2025
Deferred neural rendering (DNR) is an emerging computer graphics pipeline designed for high-fidelity rendering and robotic perception. However, DNR heavily relies on datasets composed of numerous ray-traced images and demands substantial computational resources. It remains under-explored how to reduce the reliance on high-quality ray-traced images while maintaining the rendering fidelity. In this paper, we propose DNRSelect, which integrates a reinforcement learning-based view selector and a 3D texture aggregator for deferred neural rendering. We first propose a novel view selector for deferred neural rendering based on reinforcement learning, which is trained on easily obtained rasterized images to identify the optimal views. By acquiring only a few ray-traced images for these selected views, the selector enables DNR to achieve high-quality rendering. To further enhance spatial awareness and geometric consistency in DNR, we introduce a 3D texture aggregator that fuses pyramid features from depth maps and normal maps with UV maps. Given that acquiring ray-traced images is more time-consuming than generating rasterized images, DNRSelect minimizes the need for ray-traced data by using only a few selected views while still achieving high-fidelity rendering results. We conduct detailed experiments and ablation studies on the NeRF-Synthetic dataset to demonstrate the effectiveness of DNRSelect. The code will be released.
comment: 7 pages, 8 figures, submitted to ICRA 2025
☆ ENTIRE: Learning-based Volume Rendering Time Prediction
We present ENTIRE, a novel approach for volume rendering time prediction. Time-dependent volume data from simulations or experiments typically comprise complex deforming structures across hundreds or thousands of time steps, which in addition to the camera configuration has a significant impact on rendering performance. We first extract a feature vector from a volume that captures its structure that is relevant for rendering time performance. Then we combine this feature vector with further relevant parameters (e.g. camera setup), and with this perform the final prediction. Our experiments conducted on various datasets demonstrate that our model is capable of efficiently achieving high prediction accuracy with fast response rates. We showcase ENTIRE's capability of enabling dynamic parameter adaptation for stable frame rates and load balancing in two case studies.
☆ Meta-Sparsity: Learning Optimal Sparse Structures in Multi-task Networks through Meta-learning
This paper presents meta-sparsity, a framework for learning model sparsity, basically learning the parameter that controls the degree of sparsity, that allows deep neural networks (DNNs) to inherently generate optimal sparse shared structures in multi-task learning (MTL) setting. This proposed approach enables the dynamic learning of sparsity patterns across a variety of tasks, unlike traditional sparsity methods that rely heavily on manual hyperparameter tuning. Inspired by Model Agnostic Meta-Learning (MAML), the emphasis is on learning shared and optimally sparse parameters in multi-task scenarios by implementing a penalty-based, channel-wise structured sparsity during the meta-training phase. This method improves the model's efficacy by removing unnecessary parameters and enhances its ability to handle both seen and previously unseen tasks. The effectiveness of meta-sparsity is rigorously evaluated by extensive experiments on two datasets, NYU-v2 and CelebAMask-HQ, covering a broad spectrum of tasks ranging from pixel-level to image-level predictions. The results show that the proposed approach performs well across many tasks, indicating its potential as a versatile tool for creating efficient and adaptable sparse neural networks. This work, therefore, presents an approach towards learning sparsity, contributing to the efforts in the field of sparse neural networks and suggesting new directions for research towards parsimonious models.
☆ Teacher Encoder-Student Decoder Denoising Guided Segmentation Network for Anomaly Detection
Visual anomaly detection is a highly challenging task, often categorized as a one-class classification and segmentation problem. Recent studies have demonstrated that the student-teacher (S-T) framework effectively addresses this challenge. However, most S-T frameworks rely solely on pre-trained teacher networks to guide student networks in learning multi-scale similar features, overlooking the potential of the student networks to enhance learning through multi-scale feature fusion. In this study, we propose a novel model named PFADSeg, which integrates a pre-trained teacher network, a denoising student network with multi-scale feature fusion, and a guided anomaly segmentation network into a unified framework. By adopting a unique teacher-encoder and student-decoder denoising mode, the model improves the student network's ability to learn from teacher network features. Furthermore, an adaptive feature fusion mechanism is introduced to train a self-supervised segmentation network that synthesizes anomaly masks autonomously, significantly increasing detection performance. Evaluated on the MVTec AD dataset, PFADSeg achieves state-of-the-art results with an image-level AUC of 98.9%, a pixel-level mean precision of 76.4%, and an instance-level mean precision of 78.7%.
☆ Proxies for Distortion and Consistency with Applications for Real-World Image Restoration
Real-world image restoration deals with the recovery of images suffering from an unknown degradation. This task is typically addressed while being given only degraded images, without their corresponding ground-truth versions. In this hard setting, designing and evaluating restoration algorithms becomes highly challenging. This paper offers a suite of tools that can serve both the design and assessment of real-world image restoration algorithms. Our work starts by proposing a trained model that predicts the chain of degradations a given real-world measured input has gone through. We show how this estimator can be used to approximate the consistency -- the match between the measurements and any proposed recovered image. We also use this estimator as a guiding force for the design of a simple and highly-effective plug-and-play real-world image restoration algorithm, leveraging a pre-trained diffusion-based image prior. Furthermore, this work proposes no-reference proxy measures of MSE and LPIPS, which, without access to the ground-truth images, allow ranking of real-world image restoration algorithms according to their (approximate) MSE and LPIPS. The proposed suite provides a versatile, first of its kind framework for evaluating and comparing blind image restoration algorithms in real-world scenarios.
comment: Project page in https://man-sean.github.io/elad-website/
☆ UAV-Assisted Real-Time Disaster Detection Using Optimized Transformer Model
Disaster recovery and management present significant challenges, particularly in unstable environments and hard-to-reach terrains. These difficulties can be overcome by employing unmanned aerial vehicles (UAVs) equipped with onboard embedded platforms and camera sensors. In this work, we address the critical need for accurate and timely disaster detection by enabling onboard aerial imagery processing and avoiding connectivity, privacy, and latency issues despite the challenges posed by limited onboard hardware resources. We propose a UAV-assisted edge framework for real-time disaster management, leveraging our proposed model optimized for real-time aerial image classification. The optimization of the model employs post-training quantization techniques. For real-world disaster scenarios, we introduce a novel dataset, DisasterEye, featuring UAV-captured disaster scenes as well as ground-level images taken by individuals on-site. Experimental results demonstrate the effectiveness of our model, achieving high accuracy with reduced inference latency and memory usage on resource-constrained devices. The framework's scalability and adaptability make it a robust solution for real-time disaster detection on resource-limited UAV platforms.
☆ DSTSA-GCN: Advancing Skeleton-Based Gesture Recognition with Semantic-Aware Spatio-Temporal Topology Modeling
Graph convolutional networks (GCNs) have emerged as a powerful tool for skeleton-based action and gesture recognition, thanks to their ability to model spatial and temporal dependencies in skeleton data. However, existing GCN-based methods face critical limitations: (1) they lack effective spatio-temporal topology modeling that captures dynamic variations in skeletal motion, and (2) they struggle to model multiscale structural relationships beyond local joint connectivity. To address these issues, we propose a novel framework called Dynamic Spatial-Temporal Semantic Awareness Graph Convolutional Network (DSTSA-GCN). DSTSA-GCN introduces three key modules: Group Channel-wise Graph Convolution (GC-GC), Group Temporal-wise Graph Convolution (GT-GC), and Multi-Scale Temporal Convolution (MS-TCN). GC-GC and GT-GC operate in parallel to independently model channel-specific and frame-specific correlations, enabling robust topology learning that accounts for temporal variations. Additionally, both modules employ a grouping strategy to adaptively capture multiscale structural relationships. Complementing this, MS-TCN enhances temporal modeling through group-wise temporal convolutions with diverse receptive fields. Extensive experiments demonstrate that DSTSA-GCN significantly improves the topology modeling capabilities of GCNs, achieving state-of-the-art performance on benchmark datasets for gesture and action recognition, including SHREC17 Track, DHG-14\/28, NTU-RGB+D, and NTU-RGB+D-120.
comment: submit to Neurocomputing
☆ Scalable Whole Slide Image Representation Using K-Mean Clustering and Fisher Vector Aggregation
Whole slide images (WSIs) are high-resolution, gigapixel sized images that pose significant computational challenges for traditional machine learning models due to their size and heterogeneity.In this paper, we present a scalable and efficient methodology for WSI classification by leveraging patch-based feature extraction, clustering, and Fisher vector encoding. Initially, WSIs are divided into fixed size patches, and deep feature embeddings are extracted from each patch using a pre-trained convolutional neural network (CNN). These patch-level embeddings are subsequently clustered using K-means clustering, where each cluster aggregates semantically similar regions of the WSI. To effectively summarize each cluster, Fisher vector representations are computed by modeling the distribution of patch embeddings in each cluster as a parametric Gaussian mixture model (GMM). The Fisher vectors from each cluster are concatenated into a high-dimensional feature vector, creating a compact and informative representation of the entire WSI. This feature vector is then used by a classifier to predict the WSI's diagnostic label. Our method captures local and global tissue structures and yields robust performance for large-scale WSI classification, demonstrating superior accuracy and scalability compared to other approaches.
☆ A Multi-annotated and Multi-modal Dataset for Wide-angle Video Quality Assessment
Wide-angle video is favored for its wide viewing angle and ability to capture a large area of scenery, making it an ideal choice for sports and adventure recording. However, wide-angle video is prone to deformation, exposure and other distortions, resulting in poor video quality and affecting the perception and experience, which may seriously hinder its application in fields such as competitive sports. Up to now, few explorations focus on the quality assessment issue of wide-angle video. This deficiency primarily stems from the absence of a specialized dataset for wide-angle videos. To bridge this gap, we construct the first Multi-annotated and multi-modal Wide-angle Video quality assessment (MWV) dataset. Then, the performances of state-of-the-art video quality methods on the MWV dataset are investigated by inter-dataset testing and intra-dataset testing. Experimental results show that these methods impose significant limitations on their applicability.
☆ Towards autonomous photogrammetric forest inventory using a lightweight under-canopy robotic drone
Drones are increasingly used in forestry to capture high-resolution remote sensing data. While operations above the forest canopy are already highly automated, flying inside forests remains challenging, primarily relying on manual piloting. Inside dense forests, reliance on the Global Navigation Satellite System (GNSS) for localization is not feasible. Additionally, the drone must autonomously adjust its flight path to avoid collisions. Recently, advancements in robotics have enabled autonomous drone flights in GNSS-denied obstacle-rich areas. In this article, a step towards autonomous forest data collection is taken by building a prototype of a robotic under-canopy drone utilizing state-of-the-art open-source methods and validating its performance for data collection inside forests. The autonomous flight capability was evaluated through multiple test flights in two boreal forest test sites. The tree parameter estimation capability was studied by conducting diameter at breast height (DBH) estimation using onboard stereo camera data and photogrammetric methods. The prototype conducted flights in selected challenging forest environments, and the experiments showed excellent performance in forest reconstruction with a miniaturized stereoscopic photogrammetric system. The stem detection algorithm managed to identify 79.31 % of the stems. The DBH estimation had a root mean square error (RMSE) of 3.33 cm (12.79 %) and a bias of 1.01 cm (3.87 %) across all trees. For trees with a DBH less than 30 cm, the RMSE was 1.16 cm (5.74 %), and the bias was 0.13 cm (0.64 %). When considering the overall performance in terms of DBH accuracy, autonomy, and forest complexity, the proposed approach was superior compared to methods proposed in the scientific literature. Results provided valuable insights into autonomous forest reconstruction using drones, and several further development topics were proposed.
comment: 35 pages, 13 Figures
☆ Co-Paced Learning Strategy Based on Confidence for Flying Bird Object Detection Model Training
To mitigate the adverse effects of hard samples on the training of the Flying Bird Object Detection (FBOD) model for surveillance videos, we propose a Co-Paced Learning Based on Confidence (CPL-BC) strategy and apply this strategy to the training process of the FBOD model. This strategy involves maintaining two models with identical structures but different initial parameter configurations, which collaborate with each other to select easy samples with prediction confidence exceeding a set threshold for training. As training progresses, the strategy gradually lowers the threshold, allowing more samples to participate, enhancing the model's ability to recognize objects from easy to hard. Before applying the CPL-BC strategy to train the FBOD models, we initially trained the two FBOD models to equip them with the capability to assess the difficulty level of flying bird object samples. Experimental results on two different datasets of flying bird objects in surveillance videos demonstrate that, compared to other model learning strategies, CPL-BC significantly improves detection accuracy, verifying the effectiveness and advancement of this method.
☆ GaussianVideo: Efficient Video Representation Through 2D Gaussian Splatting
3D Gaussian splats have emerged as a revolutionary, effective, learned representation for static 3D scenes. In this work, we explore using 2D Gaussian splats as a new primitive for representing videos. We propose GaussianVideo, an approach to learning a set of 2D Gaussian splats that can effectively represent video frames. GaussianVideo incorporates the following techniques: (i) To exploit temporal redundancy among adjacent frames, which can speed up training and improve the compression efficiency, we predict the Gaussian splats of a frame based on its previous frame; (ii) To control the trade-offs between file size and quality, we remove Gaussian splats with low contribution to the video quality; (iii) To capture dynamics in videos, we randomly add Gaussian splats to fit content with large motion or newly-appeared objects; (iv) To handle significant changes in the scene, we detect key frames based on loss differences during the learning process. Experiment results show that GaussianVideo achieves good rate-distortion trade-offs, comparable to state-of-the-art video codecs such as AV1 and VVC, and a rendering speed of 1500 fps for a 1920x1080 video.
☆ Unified 3D MRI Representations via Sequence-Invariant Contrastive Learning
Self-supervised deep learning has accelerated 2D natural image analysis but remains difficult to translate into 3D MRI, where data are scarce and pre-trained 2D backbones cannot capture volumetric context. We present a sequence-invariant self-supervised framework leveraging quantitative MRI (qMRI). By simulating multiple MRI contrasts from a single 3D qMRI scan and enforcing consistent representations across these contrasts, we learn anatomy-centric rather than sequence-specific features. This yields a robust 3D encoder that performs strongly across varied tasks and protocols. Experiments on healthy brain segmentation (IXI), stroke lesion segmentation (ARC), and MRI denoising show significant gains over baseline SSL approaches, especially in low-data settings (up to +8.3% Dice, +4.2 dB PSNR). Our model also generalises effectively to unseen sites, demonstrating potential for more scalable and clinically reliable volumetric analysis. All code and trained models are publicly available.
☆ ORCAst: Operational High-Resolution Current Forecasts
We present ORCAst, a multi-stage, multi-arm network for Operational high-Resolution Current forecAsts over one week. Producing real-time nowcasts and forecasts of ocean surface currents is a challenging problem due to indirect or incomplete information from satellite remote sensing data. Entirely trained on real satellite data and in situ measurements from drifters, our model learns to forecast global ocean surface currents using various sources of ground truth observations in a multi-stage learning procedure. Our multi-arm encoder-decoder model architecture allows us to first predict sea surface height and geostrophic currents from larger quantities of nadir and SWOT altimetry data, before learning to predict ocean surface currents from much more sparse in situ measurements from drifters. Training our model on specific regions improves performance. Our model achieves stronger nowcast and forecast performance in predicting ocean surface currents than various state-of-the-art methods.
☆ Aggrotech: Leveraging Deep Learning for Sustainable Tomato Disease Management
Tomato crop health plays a critical role in ensuring agricultural productivity and food security. Timely and accurate detection of diseases affecting tomato plants is vital for effective disease management. In this study, we propose a deep learning-based approach for Tomato Leaf Disease Detection using two well-established convolutional neural networks (CNNs), namely VGG19 and Inception v3. The experiment is conducted on the Tomato Villages Dataset, encompassing images of both healthy tomato leaves and leaves afflicted by various diseases. The VGG19 model is augmented with fully connected layers, while the Inception v3 model is modified to incorporate a global average pooling layer and a dense classification layer. Both models are trained on the prepared dataset, and their performances are evaluated on a separate test set. This research employs VGG19 and Inception v3 models on the Tomato Villages dataset (4525 images) for tomato leaf disease detection. The models' accuracy of 93.93% with dropout layers demonstrates their usefulness for crop health monitoring. The paper suggests a deep learning-based strategy that includes normalization, resizing, dataset preparation, and unique model architectures. During training, VGG19 and Inception v3 serve as feature extractors, with possible data augmentation and fine-tuning. Metrics like accuracy, precision, recall, and F1 score are obtained through evaluation on a test set and offer important insights into the strengths and shortcomings of the model. The method has the potential for practical use in precision agriculture and could help tomato crops prevent illness early on.
comment: 10 pages, 6 figures, ROC curves, confusion matrix analysis, and classification reports
☆ Adaptive Class Learning to Screen Diabetic Disorders in Fundus Images of Eye ICPR
The prevalence of ocular illnesses is growing globally, presenting a substantial public health challenge. Early detection and timely intervention are crucial for averting visual impairment and enhancing patient prognosis. This research introduces a new framework called Class Extension with Limited Data (CELD) to train a classifier to categorize retinal fundus images. The classifier is initially trained to identify relevant features concerning Healthy and Diabetic Retinopathy (DR) classes and later fine-tuned to adapt to the task of classifying the input images into three classes: Healthy, DR, and Glaucoma. This strategy allows the model to gradually enhance its classification capabilities, which is beneficial in situations where there are only a limited number of labeled datasets available. Perturbation methods are also used to identify the input image characteristics responsible for influencing the models decision-making process. We achieve an overall accuracy of 91% on publicly available datasets.
comment: Accepted at International Conference on Pattern Recognition (ICPR) 2024
☆ Advancing Earth Observation: A Survey on AI-Powered Image Processing in Satellites
Advancements in technology and reduction in it's cost have led to a substantial growth in the quality & quantity of imagery captured by Earth Observation (EO) satellites. This has presented a challenge to the efficacy of the traditional workflow of transmitting this imagery to Earth for processing. An approach to addressing this issue is to use pre-trained artificial intelligence models to process images on-board the satellite, but this is difficult given the constraints within a satellite's environment. This paper provides an up-to-date and thorough review of research related to image processing on-board Earth observation satellites. The significant constraints are detailed along with the latest strategies to mitigate them.
comment: 13 pages, 7 figures
☆ Comparative Analysis of Pre-trained Deep Learning Models and DINOv2 for Cushing's Syndrome Diagnosis in Facial Analysis
Cushing's syndrome is a condition caused by excessive glucocorticoid secretion from the adrenal cortex, often manifesting with moon facies and plethora, making facial data crucial for diagnosis. Previous studies have used pre-trained convolutional neural networks (CNNs) for diagnosing Cushing's syndrome using frontal facial images. However, CNNs are better at capturing local features, while Cushing's syndrome often presents with global facial features. Transformer-based models like ViT and SWIN, which utilize self-attention mechanisms, can better capture long-range dependencies and global features. Recently, DINOv2, a foundation model based on visual Transformers, has gained interest. This study compares the performance of various pre-trained models, including CNNs, Transformer-based models, and DINOv2, in diagnosing Cushing's syndrome. We also analyze gender bias and the impact of freezing mechanisms on DINOv2. Our results show that Transformer-based models and DINOv2 outperformed CNNs, with ViT achieving the highest F1 score of 85.74%. Both the pre-trained model and DINOv2 had higher accuracy for female samples. DINOv2 also showed improved performance when freezing parameters. In conclusion, Transformer-based models and DINOv2 are effective for Cushing's syndrome classification.
☆ Foreign object segmentation in chest x-rays through anatomy-guided shape insertion
In this paper, we tackle the challenge of instance segmentation for foreign objects in chest radiographs, commonly seen in postoperative follow-ups with stents, pacemakers, or ingested objects in children. The diversity of foreign objects complicates dense annotation, as shown in insufficient existing datasets. To address this, we propose the simple generation of synthetic data through (1) insertion of arbitrary shapes (lines, polygons, ellipses) with varying contrasts and opacities, and (2) cut-paste augmentations from a small set of semi-automatically extracted labels. These insertions are guided by anatomy labels to ensure realistic placements, such as stents appearing only in relevant vessels. Our approach enables networks to segment complex structures with minimal manually labeled data. Notably, it achieves performance comparable to fully supervised models while using 93\% fewer manual annotations.
☆ On the "Illusion" of Gender Bias in Face Recognition: Explaining the Fairness Issue Through Non-demographic Attributes
Face recognition systems (FRS) exhibit significant accuracy differences based on the user's gender. Since such a gender gap reduces the trustworthiness of FRS, more recent efforts have tried to find the causes. However, these studies make use of manually selected, correlated, and small-sized sets of facial features to support their claims. In this work, we analyse gender bias in face recognition by successfully extending the search domain to decorrelated combinations of 40 non-demographic facial characteristics. First, we propose a toolchain to effectively decorrelate and aggregate facial attributes to enable a less-biased gender analysis on large-scale data. Second, we introduce two new fairness metrics to measure fairness with and without context. Based on these grounds, we thirdly present a novel unsupervised algorithm able to reliably identify attribute combinations that lead to vanishing bias when used as filter predicates for balanced testing datasets. The experiments show that the gender gap vanishes when images of male and female subjects share specific attributes, clearly indicating that the issue is not a question of biology but of the social definition of appearance. These findings could reshape our understanding of fairness in face biometrics and provide insights into FRS, helping to address gender bias issues.
☆ Are Traditional Deep Learning Model Approaches as Effective as a Retinal-Specific Foundation Model for Ocular and Systemic Disease Detection?
Background: RETFound, a self-supervised, retina-specific foundation model (FM), showed potential in downstream applications. However, its comparative performance with traditional deep learning (DL) models remains incompletely understood. This study aimed to evaluate RETFound against three ImageNet-pretrained supervised DL models (ResNet50, ViT-base, SwinV2) in detecting ocular and systemic diseases. Methods: We fine-tuned/trained RETFound and three DL models on full datasets, 50%, 20%, and fixed sample sizes (400, 200, 100 images, with half comprising disease cases; for each DR severity class, 100 and 50 cases were used. Fine-tuned models were tested internally using the SEED (53,090 images) and APTOS-2019 (3,672 images) datasets and externally validated on population-based (BES, CIEMS, SP2, UKBB) and open-source datasets (ODIR-5k, PAPILA, GAMMA, IDRiD, MESSIDOR-2). Model performance was compared using area under the receiver operating characteristic curve (AUC) and Z-tests with Bonferroni correction (P<0.05/3). Interpretation: Traditional DL models are mostly comparable to RETFound for ocular disease detection with large datasets. However, RETFound is superior in systemic disease detection with smaller datasets. These findings offer valuable insights into the respective merits and limitation of traditional models and FMs.
Survey on Hand Gesture Recognition from Visual Input
Hand gesture recognition has become an important research area, driven by the growing demand for human-computer interaction in fields such as sign language recognition, virtual and augmented reality, and robotics. Despite the rapid growth of the field, there are few surveys that comprehensively cover recent research developments, available solutions, and benchmark datasets. This survey addresses this gap by examining the latest advancements in hand gesture and 3D hand pose recognition from various types of camera input data including RGB images, depth images, and videos from monocular or multiview cameras, examining the differing methodological requirements of each approach. Furthermore, an overview of widely used datasets is provided, detailing their main characteristics and application domains. Finally, open challenges such as achieving robust recognition in real-world environments, handling occlusions, ensuring generalization across diverse users, and addressing computational efficiency for real-time applications are highlighted to guide future research directions. By synthesizing the objectives, methodologies, and applications of recent studies, this survey offers valuable insights into current trends, challenges, and opportunities for future research in human hand gesture recognition.
☆ SMamba: Sparse Mamba for Event-based Object Detection AAAI2025
Transformer-based methods have achieved remarkable performance in event-based object detection, owing to the global modeling ability. However, they neglect the influence of non-event and noisy regions and process them uniformly, leading to high computational overhead. To mitigate computation cost, some researchers propose window attention based sparsification strategies to discard unimportant regions, which sacrifices the global modeling ability and results in suboptimal performance. To achieve better trade-off between accuracy and efficiency, we propose Sparse Mamba (SMamba), which performs adaptive sparsification to reduce computational effort while maintaining global modeling capability. Specifically, a Spatio-Temporal Continuity Assessment module is proposed to measure the information content of tokens and discard uninformative ones by leveraging the spatiotemporal distribution differences between activity and noise events. Based on the assessment results, an Information-Prioritized Local Scan strategy is designed to shorten the scan distance between high-information tokens, facilitating interactions among them in the spatial dimension. Furthermore, to extend the global interaction from 2D space to 3D representations, a Global Channel Interaction module is proposed to aggregate channel information from a global spatial perspective. Results on three datasets (Gen1, 1Mpx, and eTram) demonstrate that our model outperforms other methods in both performance and efficiency.
comment: AAAI2025
☆ A Lightweight and Interpretable Deepfakes Detection Framework
The recent realistic creation and dissemination of so-called deepfakes poses a serious threat to social life, civil rest, and law. Celebrity defaming, election manipulation, and deepfakes as evidence in court of law are few potential consequences of deepfakes. The availability of open source trained models based on modern frameworks such as PyTorch or TensorFlow, video manipulations Apps such as FaceApp and REFACE, and economical computing infrastructure has easen the creation of deepfakes. Most of the existing detectors focus on detecting either face-swap, lip-sync, or puppet master deepfakes, but a unified framework to detect all three types of deepfakes is hardly explored. This paper presents a unified framework that exploits the power of proposed feature fusion of hybrid facial landmarks and our novel heart rate features for detection of all types of deepfakes. We propose novel heart rate features and fused them with the facial landmark features to better extract the facial artifacts of fake videos and natural variations available in the original videos. We used these features to train a light-weight XGBoost to classify between the deepfake and bonafide videos. We evaluated the performance of our framework on the world leaders dataset (WLDR) that contains all types of deepfakes. Experimental results illustrate that the proposed framework offers superior detection performance over the comparative deepfakes detection methods. Performance comparison of our framework against the LSTM-FCN, a candidate of deep learning model, shows that proposed model achieves similar results, however, it is more interpretable.
☆ Progressive Cross Attention Network for Flood Segmentation using Multispectral Satellite Imagery
In recent years, the integration of deep learning techniques with remote sensing technology has revolutionized the way natural hazards, such as floods, are monitored and managed. However, existing methods for flood segmentation using remote sensing data often overlook the utility of correlative features among multispectral satellite information. In this study, we introduce a progressive cross attention network (ProCANet), a deep learning model that progressively applies both self- and cross-attention mechanisms to multispectral features, generating optimal feature combinations for flood segmentation. The proposed model was compared with state-of-the-art approaches using Sen1Floods11 dataset and our bespoke flood data generated for the Citarum River basin, Indonesia. Our model demonstrated superior performance with the highest Intersection over Union (IoU) score of 0.815. Our results in this study, coupled with the ablation assessment comparing scenarios with and without attention across various modalities, opens a promising path for enhancing the accuracy of flood analysis using remote sensing technology.
comment: 5 pages, 4 figures, published in IEEE Geoscience and Remote Sensing Letters
☆ Enhancing Adversarial Transferability via Component-Wise Augmentation Method
Deep Neural Networks (DNNs) are highly vulnerable to adversarial examples, which pose significant challenges in security-sensitive applications. Among various adversarial attack strategies, input transformation-based attacks have demonstrated remarkable effectiveness in enhancing adversarial transferability. However, existing methods fail to diversify attention regions across models adequately and introduce excessive information loss during transformations. In this paper, we introduce a novel input transformation-based method, termed Component-Wise Augmentation (CWA), designed to enhance transferability by locally applying block-wise transformations. CWA strategically integrates interpolation and selective rotation on individual image blocks to diversify model attention regions while preserving semantic integrity. Extensive experiments on the standard ImageNet dataset show that CWA consistently outperforms state-of-the-art methods in both attack success rates and stability across CNN- and Transformer-based models, while also demonstrating superior performance against multiple defense methods.
comment: 13pages,5 figures
☆ LASER: Lip Landmark Assisted Speaker Detection for Robustness
Active Speaker Detection (ASD) aims to identify speaking individuals in complex visual scenes. While humans can easily detect speech by matching lip movements to audio, current ASD models struggle to establish this correspondence, often misclassifying non-speaking instances when audio and lip movements are unsynchronized. To address this limitation, we propose Lip landmark Assisted Speaker dEtection for Robustness (LASER). Unlike models that rely solely on facial frames, LASER explicitly focuses on lip movements by integrating lip landmarks in training. Specifically, given a face track, LASER extracts frame-level visual features and the 2D coordinates of lip landmarks using a lightweight detector. These coordinates are encoded into dense feature maps, providing spatial and structural information on lip positions. Recognizing that landmark detectors may sometimes fail under challenging conditions (e.g., low resolution, occlusions, extreme angles), we incorporate an auxiliary consistency loss to align predictions from both lip-aware and face-only features, ensuring reliable performance even when lip data is absent. Extensive experiments across multiple datasets show that LASER outperforms state-of-the-art models, especially in scenarios with desynchronized audio and visuals, demonstrating robust performance in real-world video contexts. Code is available at \url{https://github.com/plnguyen2908/LASER_ASD}.
☆ Contrastive Masked Autoencoders for Character-Level Open-Set Writer Identification
In the realm of digital forensics and document authentication, writer identification plays a crucial role in determining the authors of documents based on handwriting styles. The primary challenge in writer-id is the "open-set scenario", where the goal is accurately recognizing writers unseen during the model training. To overcome this challenge, representation learning is the key. This method can capture unique handwriting features, enabling it to recognize styles not previously encountered during training. Building on this concept, this paper introduces the Contrastive Masked Auto-Encoders (CMAE) for Character-level Open-Set Writer Identification. We merge Masked Auto-Encoders (MAE) with Contrastive Learning (CL) to simultaneously and respectively capture sequential information and distinguish diverse handwriting styles. Demonstrating its effectiveness, our model achieves state-of-the-art (SOTA) results on the CASIA online handwriting dataset, reaching an impressive precision rate of 89.7%. Our study advances universal writer-id with a sophisticated representation learning approach, contributing substantially to the ever-evolving landscape of digital handwriting analysis, and catering to the demands of an increasingly interconnected world.
☆ Fast Underwater Scene Reconstruction using Multi-View Stereo and Physical Imaging
Underwater scene reconstruction poses a substantial challenge because of the intricate interplay between light and the medium, resulting in scattering and absorption effects that make both depth estimation and rendering more complex. While recent Neural Radiance Fields (NeRF) based methods for underwater scenes achieve high-quality results by modeling and separating the scattering medium, they still suffer from slow training and rendering speeds. To address these limitations, we propose a novel method that integrates Multi-View Stereo (MVS) with a physics-based underwater image formation model. Our approach consists of two branches: one for depth estimation using the traditional cost volume pipeline of MVS, and the other for rendering based on the physics-based image formation model. The depth branch improves scene geometry, while the medium branch determines the scattering parameters to achieve precise scene rendering. Unlike traditional MVSNet methods that rely on ground-truth depth, our method does not necessitate the use of depth truth, thus allowing for expedited training and rendering processes. By leveraging the medium subnet to estimate the medium parameters and combining this with a color MLP for rendering, we restore the true colors of underwater scenes and achieve higher-fidelity geometric representations. Experimental results show that our method enables high-quality synthesis of novel views in scattering media, clear views restoration by removing the medium, and outperforms existing methods in rendering quality and training efficiency.
☆ FNIN: A Fourier Neural Operator-based Numerical Integration Network for Surface-form-gradients AAAI 2025
Surface-from-gradients (SfG) aims to recover a three-dimensional (3D) surface from its gradients. Traditional methods encounter significant challenges in achieving high accuracy and handling high-resolution inputs, particularly facing the complex nature of discontinuities and the inefficiencies associated with large-scale linear solvers. Although recent advances in deep learning, such as photometric stereo, have enhanced normal estimation accuracy, they do not fully address the intricacies of gradient-based surface reconstruction. To overcome these limitations, we propose a Fourier neural operator-based Numerical Integration Network (FNIN) within a two-stage optimization framework. In the first stage, our approach employs an iterative architecture for numerical integration, harnessing an advanced Fourier neural operator to approximate the solution operator in Fourier space. Additionally, a self-learning attention mechanism is incorporated to effectively detect and handle discontinuities. In the second stage, we refine the surface reconstruction by formulating a weighted least squares problem, addressing the identified discontinuities rationally. Extensive experiments demonstrate that our method achieves significant improvements in both accuracy and efficiency compared to current state-of-the-art solvers. This is particularly evident in handling high-resolution images with complex data, achieving errors of fewer than 0.1 mm on tested objects.
comment: Accepted by AAAI 2025
☆ EmbodiedEval: Evaluate Multimodal LLMs as Embodied Agents
Multimodal Large Language Models (MLLMs) have shown significant advancements, providing a promising future for embodied agents. Existing benchmarks for evaluating MLLMs primarily utilize static images or videos, limiting assessments to non-interactive scenarios. Meanwhile, existing embodied AI benchmarks are task-specific and not diverse enough, which do not adequately evaluate the embodied capabilities of MLLMs. To address this, we propose EmbodiedEval, a comprehensive and interactive evaluation benchmark for MLLMs with embodied tasks. EmbodiedEval features 328 distinct tasks within 125 varied 3D scenes, each of which is rigorously selected and annotated. It covers a broad spectrum of existing embodied AI tasks with significantly enhanced diversity, all within a unified simulation and evaluation framework tailored for MLLMs. The tasks are organized into five categories: navigation, object interaction, social interaction, attribute question answering, and spatial question answering to assess different capabilities of the agents. We evaluated the state-of-the-art MLLMs on EmbodiedEval and found that they have a significant shortfall compared to human level on embodied tasks. Our analysis demonstrates the limitations of existing MLLMs in embodied capabilities, providing insights for their future development. We open-source all evaluation data and simulation framework at https://github.com/thunlp/EmbodiedEval.
☆ WaveNet-SF: A Hybrid Network for Retinal Disease Detection Based on Wavelet Transform in the Spatial-Frequency Domain
Retinal diseases are a leading cause of vision impairment and blindness, with timely diagnosis being critical for effective treatment. Optical Coherence Tomography (OCT) has become a standard imaging modality for retinal disease diagnosis, but OCT images often suffer from issues such as speckle noise, complex lesion shapes, and varying lesion sizes, making interpretation challenging. In this paper, we propose a novel framework, WaveNet-SF, to enhance retinal disease detection by integrating spatial-domain and frequency-domain learning. The framework utilizes wavelet transforms to decompose OCT images into low- and high-frequency components, enabling the model to extract both global structural features and fine-grained details. To improve lesion detection, we introduce a multi-scale wavelet spatial attention (MSW-SA) module, which enhances the model's focus on regions of interest at multiple scales. Additionally, a high-frequency feature compensation block (HFFC) is incorporated to recover edge information lost during wavelet decomposition, suppress noise, and preserve fine details crucial for lesion detection. Our approach achieves state-of-the-art (SOTA) classification accuracies of 97.82% and 99. 58% on the OCT-C8 and OCT2017 datasets, respectively, surpassing existing methods. These results demonstrate the efficacy of WaveNet-SF in addressing the challenges of OCT image analysis and its potential as a powerful tool for retinal disease diagnosis.
Survey on Monocular Metric Depth Estimation
Monocular Depth Estimation (MDE) is a fundamental computer vision task underpinning applications such as spatial understanding, 3D reconstruction, and autonomous driving. While deep learning-based MDE methods can predict relative depth from a single image, their lack of metric scale information often results in scale inconsistencies, limiting their utility in downstream tasks like visual SLAM, 3D reconstruction, and novel view synthesis. Monocular Metric Depth Estimation (MMDE) addresses these challenges by enabling precise, scene-scale depth inference. MMDE improves depth consistency, enhances sequential task stability, simplifies integration into downstream applications, and broadens practical use cases. This paper provides a comprehensive review of depth estimation technologies, highlighting the evolution from geometry-based methods to state-of-the-art deep learning approaches. It emphasizes advancements in scale-agnostic methods, which are crucial for enabling zero-shot generalization as the foundational capability for MMDE. Recent progress in zero-shot MMDE research is explored, focusing on challenges such as model generalization and the loss of detail at scene boundaries. Innovative strategies to address these issues include unlabelled data augmentation, image patching, architectural optimization, and generative techniques. These advancements, analyzed in detail, demonstrate significant contributions to overcoming existing limitations. Finally, this paper synthesizes recent developments in zero-shot MMDE, identifies unresolved challenges, and outlines future research directions. By offering a clear roadmap and cutting-edge insights, this work aims to deepen understanding of MMDE, inspire novel applications, and drive technological innovation.
☆ Data-driven Detection and Evaluation of Damages in Concrete Structures: Using Deep Learning and Computer Vision
Structural integrity is vital for maintaining the safety and longevity of concrete infrastructures such as bridges, tunnels, and walls. Traditional methods for detecting damages like cracks and spalls are labor-intensive, time-consuming, and prone to human error. To address these challenges, this study explores advanced data-driven techniques using deep learning for automated damage detection and analysis. Two state-of-the-art instance segmentation models, YOLO-v7 instance segmentation and Mask R-CNN, were evaluated using a dataset comprising 400 images, augmented to 10,995 images through geometric and color-based transformations to enhance robustness. The models were trained and validated using a dataset split into 90% training set, validation and test set 10%. Performance metrics such as precision, recall, mean average precision (mAP@0.5), and frames per second (FPS) were used for evaluation. YOLO-v7 achieved a superior mAP@0.5 of 96.1% and processed 40 FPS, outperforming Mask R-CNN, which achieved a mAP@0.5 of 92.1% with a slower processing speed of 18 FPS. The findings recommend YOLO-v7 instance segmentation model for real-time, high-speed structural health monitoring, while Mask R-CNN is better suited for detailed offline assessments. This study demonstrates the potential of deep learning to revolutionize infrastructure maintenance, offering a scalable and efficient solution for automated damage detection.
comment: 17 pages, 10 figures. This study focuses on the data-driven detection and evaluation of damages in concrete structures using deep learning and computer vision techniques
☆ CogMorph: Cognitive Morphing Attacks for Text-to-Image Models
The development of text-to-image (T2I) generative models, that enable the creation of high-quality synthetic images from textual prompts, has opened new frontiers in creative design and content generation. However, this paper reveals a significant and previously unrecognized ethical risk inherent in this technology and introduces a novel method, termed the Cognitive Morphing Attack (CogMorph), which manipulates T2I models to generate images that retain the original core subjects but embeds toxic or harmful contextual elements. This nuanced manipulation exploits the cognitive principle that human perception of concepts is shaped by the entire visual scene and its context, producing images that amplify emotional harm far beyond attacks that merely preserve the original semantics. To address this, we first construct an imagery toxicity taxonomy spanning 10 major and 48 sub-categories, aligned with human cognitive-perceptual dimensions, and further build a toxicity risk matrix resulting in 1,176 high-quality T2I toxic prompts. Based on this, our CogMorph first introduces Cognitive Toxicity Augmentation, which develops a cognitive toxicity knowledge base with rich external toxic representations for humans (e.g., fine-grained visual features) that can be utilized to further guide the optimization of adversarial prompts. In addition, we present Contextual Hierarchical Morphing, which hierarchically extracts critical parts of the original prompt (e.g., scenes, subjects, and body parts), and then iteratively retrieves and fuses toxic features to inject harmful contexts. Extensive experiments on multiple open-sourced T2I models and black-box commercial APIs (e.g., DALLE-3) demonstrate the efficacy of CogMorph which significantly outperforms other baselines by large margins (+20.62\% on average).
☆ TFLOP: Table Structure Recognition Framework with Layout Pointer Mechanism IJCAI
Table Structure Recognition (TSR) is a task aimed at converting table images into a machine-readable format (e.g. HTML), to facilitate other applications such as information retrieval. Recent works tackle this problem by identifying the HTML tags and text regions, where the latter is used for text extraction from the table document. These works however, suffer from misalignment issues when mapping text into the identified text regions. In this paper, we introduce a new TSR framework, called TFLOP (TSR Framework with LayOut Pointer mechanism), which reformulates the conventional text region prediction and matching into a direct text region pointing problem. Specifically, TFLOP utilizes text region information to identify both the table's structure tags and its aligned text regions, simultaneously. Without the need for region prediction and alignment, TFLOP circumvents the additional text region matching stage, which requires finely-calibrated post-processing. TFLOP also employs span-aware contrastive supervision to enhance the pointing mechanism in tables with complex structure. As a result, TFLOP achieves the state-of-the-art performance across multiple benchmarks such as PubTabNet, FinTabNet, and SynthTabNet. In our extensive experiments, TFLOP not only exhibits competitive performance but also shows promising results on industrial document TSR scenarios such as documents with watermarks or in non-English domain.
comment: Published in IJCAI Proceedings 2024
☆ Provably effective detection of effective data poisoning attacks
This paper establishes a mathematically precise definition of dataset poisoning attack and proves that the very act of effectively poisoning a dataset ensures that the attack can be effectively detected. On top of a mathematical guarantee that dataset poisoning is identifiable by a new statistical test that we call the Conformal Separability Test, we provide experimental evidence that we can adequately detect poisoning attempts in the real world.
♻ ☆ FoundationStereo: Zero-Shot Stereo Matching
Tremendous progress has been made in deep stereo matching to excel on benchmark datasets through per-domain fine-tuning. However, achieving strong zero-shot generalization - a hallmark of foundation models in other computer vision tasks - remains challenging for stereo matching. We introduce FoundationStereo, a foundation model for stereo depth estimation designed to achieve strong zero-shot generalization. To this end, we first construct a large-scale (1M stereo pairs) synthetic training dataset featuring large diversity and high photorealism, followed by an automatic self-curation pipeline to remove ambiguous samples. We then design a number of network architecture components to enhance scalability, including a side-tuning feature backbone that adapts rich monocular priors from vision foundation models to mitigate the sim-to-real gap, and long-range context reasoning for effective cost volume filtering. Together, these components lead to strong robustness and accuracy across domains, establishing a new standard in zero-shot stereo depth estimation. Project page: https://nvlabs.github.io/FoundationStereo/
♻ ☆ Let There Be Light: Robust Lensless Imaging Under External Illumination With Deep Learning ICASSP 2025
Lensless cameras relax the design constraints of traditional cameras by shifting image formation from analog optics to digital post-processing. While new camera designs and applications can be enabled, lensless imaging is very sensitive to unwanted interference (other sources, noise, etc.). In this work, we address a prevalent noise source that has not been studied for lensless imaging: external illumination e.g. from ambient and direct lighting. Being robust to a variety of lighting conditions would increase the practicality and adoption of lensless imaging. To this end, we propose multiple recovery approaches that account for external illumination by incorporating its estimate into the image recovery process. At the core is a physics-based reconstruction that combines learnable image recovery and denoisers, all of whose parameters are trained using experimentally gathered data. Compared to standard reconstruction methods, our approach yields significant qualitative and quantitative improvements. We open-source our implementations and a 25K dataset of measurements under multiple lighting conditions.
comment: 4 pages, dataset: https://doi.org/10.57967/hf/2970, accepted to ICASSP 2025
♻ ☆ LiteVAE: Lightweight and Efficient Variational Autoencoders for Latent Diffusion Models NeurIPS 2024
Advances in latent diffusion models (LDMs) have revolutionized high-resolution image generation, but the design space of the autoencoder that is central to these systems remains underexplored. In this paper, we introduce LiteVAE, a new autoencoder design for LDMs, which leverages the 2D discrete wavelet transform to enhance scalability and computational efficiency over standard variational autoencoders (VAEs) with no sacrifice in output quality. We investigate the training methodologies and the decoder architecture of LiteVAE and propose several enhancements that improve the training dynamics and reconstruction quality. Our base LiteVAE model matches the quality of the established VAEs in current LDMs with a six-fold reduction in encoder parameters, leading to faster training and lower GPU memory requirements, while our larger model outperforms VAEs of comparable complexity across all evaluated metrics (rFID, LPIPS, PSNR, and SSIM).
comment: Published as a conference paper at NeurIPS 2024
♻ ☆ SANER: Annotation-free Societal Attribute Neutralizer for Debiasing CLIP
Large-scale vision-language models, such as CLIP, are known to contain societal bias regarding protected attributes (e.g., gender, age). This paper aims to address the problems of societal bias in CLIP. Although previous studies have proposed to debias societal bias through adversarial learning or test-time projecting, our comprehensive study of these works identifies two critical limitations: 1) loss of attribute information when it is explicitly disclosed in the input and 2) use of the attribute annotations during debiasing process. To mitigate societal bias in CLIP and overcome these limitations simultaneously, we introduce a simple-yet-effective debiasing method called SANER (societal attribute neutralizer) that eliminates attribute information from CLIP text features only of attribute-neutral descriptions. Experimental results show that SANER, which does not require attribute annotations and preserves original information for attribute-specific descriptions, demonstrates superior debiasing ability than the existing methods. Additionally, we observe that SANER does not require retraining CLIP from scratch with the original dataset. Moreover, the debiased model can be directly applied to the text-to-image generation model by simply replacing the text encoder.
♻ ☆ Untrained Perceptual Loss for image denoising of line-like structures in MR images
In the acquisition of Magnetic Resonance (MR) images shorter scan times lead to higher image noise. Therefore, automatic image denoising using deep learning methods is of high interest. MR images containing line-like structures such as roots or vessels yield special characteristics as they display connected structures and yield sparse information. For this kind of data, it is important to consider voxel neighborhoods when training a denoising network. In this paper, we translate the Perceptual Loss to 3D data by comparing feature maps of untrained networks in the loss function as done previously for 2D data. We tested the performance of untrained Perceptual Loss (uPL) on 3D image denoising of MR images displaying brain vessels (MR angiograms - MRA) and images of plant roots in soil. We investigate the impact of various uPL characteristics such as weight initialization, network depth, kernel size, and pooling operations on the results. We tested the performance of the uPL loss on four Rician noise levels using evaluation metrics such as the Structural Similarity Index Metric (SSIM). We observe, that our uPL outperforms conventional loss functions such as the L1 loss or a loss based on the Structural Similarity Index Metric (SSIM). The uPL network's initialization is not important, while network depth and pooling operations impact denoising performance. E.g. for both datasets a network with five convolutional layers led to the best performance while a network with more layers led to a performance drop. We also find that small uPL networks led to better or comparable results than using large networks such as VGG. We observe superior performance of our loss for both datasets, all noise levels, and three network architectures. In conclusion, for images containing line-like structures, uPL is an alternative to other loss functions for 3D image denoising.
♻ ☆ VITA-1.5: Towards GPT-4o Level Real-Time Vision and Speech Interaction
Recent Multimodal Large Language Models (MLLMs) have typically focused on integrating visual and textual modalities, with less emphasis placed on the role of speech in enhancing interaction. However, speech plays a crucial role in multimodal dialogue systems, and implementing high-performance in both vision and speech tasks remains a significant challenge due to the fundamental modality differences. In this paper, we propose a carefully designed multi-stage training methodology that progressively trains LLM to understand both visual and speech information, ultimately enabling fluent vision and speech interaction. Our approach not only preserves strong vision-language capacity, but also enables efficient speech-to-speech dialogue capabilities without separate ASR and TTS modules, significantly accelerating multimodal end-to-end response speed. By comparing our method against state-of-the-art counterparts across benchmarks for image, video, and speech tasks, we demonstrate that our model is equipped with both strong visual and speech capabilities, making near real-time vision and speech interaction.
comment: https://github.com/VITA-MLLM/VITA (2K+ Stars by now)
♻ ☆ Multi-Scale Texture Loss for CT denoising with GANs
Generative Adversarial Networks (GANs) have proved as a powerful framework for denoising applications in medical imaging. However, GAN-based denoising algorithms still suffer from limitations in capturing complex relationships within the images. In this regard, the loss function plays a crucial role in guiding the image generation process, encompassing how much a synthetic image differs from a real image. To grasp highly complex and non-linear textural relationships in the training process, this work presents a novel approach to capture and embed multi-scale texture information into the loss function. Our method introduces a differentiable multi-scale texture representation of the images dynamically aggregated by a self-attention layer, thus exploiting end-to-end gradient-based optimization. We validate our approach by carrying out extensive experiments in the context of low-dose CT denoising, a challenging application that aims to enhance the quality of noisy CT scans. We utilize three publicly available datasets, including one simulated and two real datasets. The results are promising as compared to other well-established loss functions, being also consistent across three different GAN architectures. The code is available at: https://github.com/TrainLaboratory/MultiScaleTextureLoss-MSTLF
♻ ☆ TAB: Transformer Attention Bottlenecks enable User Intervention and Debugging in Vision-Language Models
Multi-head self-attention (MHSA) is a key component of Transformers, a widely popular architecture in both language and vision. Multiple heads intuitively enable different parallel processes over the same input. Yet, they also obscure the attribution of each input patch to the output of a model. We propose a novel 1-head Transformer Attention Bottleneck (TAB) layer, inserted after the traditional MHSA architecture, to serve as an attention bottleneck for interpretability and intervention. Unlike standard self-attention, TAB constrains the total attention over all patches to $\in [0, 1]$. That is, when the total attention is 0, no visual information is propagated further into the network and the vision-language model (VLM) would default to a generic, image-independent response. To demonstrate the advantages of TAB, we train VLMs with TAB to perform image difference captioning. Over three datasets, our models perform similarly to baseline VLMs in captioning but the bottleneck is superior in localizing changes and in identifying when no changes occur. TAB is the first architecture to enable users to intervene by editing attention, which often produces expected outputs by VLMs.
♻ ☆ Beyond Specialization: Assessing the Capabilities of MLLMs in Age and Gender Estimation
Multimodal Large Language Models (MLLMs) have recently gained immense popularity. Powerful commercial models like ChatGPT-4V and Gemini, as well as open-source ones such as LLaVA, are essentially general-purpose models and are applied to solve a wide variety of tasks, including those in computer vision. These neural networks possess such strong general knowledge and reasoning abilities that they have proven capable of working even on tasks for which they were not specifically trained. We compared the capabilities of the most powerful MLLMs to date: ShareGPT4V, ChatGPT, LLaVA-Next in a specialized task of age and gender estimation with our state-of-the-art specialized model, MiVOLO. We also updated MiVOLO and provide details and new metrics in this article. This comparison has yielded some interesting results and insights about the strengths and weaknesses of the participating models. Furthermore, we attempted various ways to fine-tune the ShareGPT4V model for this specific task, aiming to achieve state-of-the-art results in this particular challenge. Although such a model would not be practical in production, as it is incredibly expensive compared to a specialized model like MiVOLO, it could be very useful in some tasks, like data annotation.
♻ ☆ FViT: A Focal Vision Transformer with Gabor Filter
Vision transformers have achieved encouraging progress in various computer vision tasks. A common belief is that this is attributed to the capability of self-attention in modeling the global dependencies among feature tokens. However, self-attention still faces several challenges in dense prediction tasks, including high computational complexity and absence of desirable inductive bias. To alleviate these issues, the potential advantages of combining vision transformers with Gabor filters are revisited, and a learnable Gabor filter (LGF) using convolution is proposed. The LGF does not rely on self-attention, and it is used to simulate the response of fundamental cells in the biological visual system to the input images. This encourages vision transformers to focus on discriminative feature representations of targets across different scales and orientations. In addition, a Bionic Focal Vision (BFV) block is designed based on the LGF. This block draws inspiration from neuroscience and introduces a Dual-Path Feed Forward Network (DPFFN) to emulate the parallel and cascaded information processing scheme of the biological visual cortex. Furthermore, a unified and efficient family of pyramid backbone networks called Focal Vision Transformers (FViTs) is developed by stacking BFV blocks. Experimental results indicate that FViTs demonstrate superior performance in various vision tasks. In terms of computational efficiency and scalability, FViTs show significant advantages compared with other counterparts.
comment: This work has been submitted to Elsevier for possible publication
♻ ☆ Evaluating the Efficacy of Cut-and-Paste Data Augmentation in Semantic Segmentation for Satellite Imagery
Satellite imagery is crucial for tasks like environmental monitoring and urban planning. Typically, it relies on semantic segmentation or Land Use Land Cover (LULC) classification to categorize each pixel. Despite the advancements brought about by Deep Neural Networks (DNNs), their performance in segmentation tasks is hindered by challenges such as limited availability of labeled data, class imbalance and the inherent variability and complexity of satellite images. In order to mitigate those issues, our study explores the effectiveness of a Cut-and-Paste augmentation technique for semantic segmentation in satellite images. We adapt this augmentation, which usually requires labeled instances, to the case of semantic segmentation. By leveraging the connected components in the semantic segmentation labels, we extract instances that are then randomly pasted during training. Using the DynamicEarthNet dataset and a U-Net model for evaluation, we found that this augmentation significantly enhances the mIoU score on the test set from 37.9 to 44.1. This finding highlights the potential of the Cut-and-Paste augmentation to improve the generalization capabilities of semantic segmentation models in satellite imagery.
comment: Published in: IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium
♻ ☆ CoDTS: Enhancing Sparsely Supervised Collaborative Perception with a Dual Teacher-Student Framework AAAI 2025
Current collaborative perception methods often rely on fully annotated datasets, which can be expensive to obtain in practical situations. To reduce annotation costs, some works adopt sparsely supervised learning techniques and generate pseudo labels for the missing instances. However, these methods fail to achieve an optimal confidence threshold that harmonizes the quality and quantity of pseudo labels. To address this issue, we propose an end-to-end Collaborative perception Dual Teacher-Student framework (CoDTS), which employs adaptive complementary learning to produce both high-quality and high-quantity pseudo labels. Specifically, the Main Foreground Mining (MFM) module generates high-quality pseudo labels based on the prediction of the static teacher. Subsequently, the Supplement Foreground Mining (SFM) module ensures a balance between the quality and quantity of pseudo labels by adaptively identifying missing instances based on the prediction of the dynamic teacher. Additionally, the Neighbor Anchor Sampling (NAS) module is incorporated to enhance the representation of pseudo labels. To promote the adaptive complementary learning, we implement a staged training strategy that trains the student and dynamic teacher in a mutually beneficial manner. Extensive experiments demonstrate that the CoDTS effectively ensures an optimal balance of pseudo labels in both quality and quantity, establishing a new state-of-the-art in sparsely supervised collaborative perception.
comment: AAAI 2025 (Oral)
♻ ☆ Treatment-aware Diffusion Probabilistic Model for Longitudinal MRI Generation and Diffuse Glioma Growth Prediction
Diffuse gliomas are malignant brain tumors that grow widespread through the brain. The complex interactions between neoplastic cells and normal tissue, as well as the treatment-induced changes often encountered, make glioma tumor growth modeling challenging. In this paper, we present a novel end-to-end network capable of future predictions of tumor masks and multi-parametric magnetic resonance images (MRI) of how the tumor will look at any future time points for different treatment plans. Our approach is based on cutting-edge diffusion probabilistic models and deep-segmentation neural networks. We included sequential multi-parametric MRI and treatment information as conditioning inputs to guide the generative diffusion process as well as a joint segmentation process. This allows for tumor growth estimates and realistic MRI generation at any given treatment and time point. We trained the model using real-world postoperative longitudinal MRI data with glioma tumor growth trajectories represented as tumor segmentation maps over time. The model demonstrates promising performance across various tasks, including generating high-quality multi-parametric MRI with tumor masks, performing time-series tumor segmentations, and providing uncertainty estimates. Combined with the treatment-aware generated MRI, the tumor growth predictions with uncertainty estimates can provide useful information for clinical decision-making.
comment: preprints in the IEEE-TMI
♻ ☆ Towards Robust and Realistic Human Pose Estimation via WiFi Signals
Robust WiFi-based human pose estimation is a challenging task that bridges discrete and subtle WiFi signals to human skeletons. This paper revisits this problem and reveals two critical yet overlooked issues: 1) cross-domain gap, i.e., due to significant variations between source-target domain pose distributions; and 2) structural fidelity gap, i.e., predicted skeletal poses manifest distorted topology, usually with misplaced joints and disproportionate bone lengths. This paper fills these gaps by reformulating the task into a novel two-phase framework dubbed DT-Pose: Domain-consistent representation learning and Topology-constrained Pose decoding. Concretely, we first propose a temporal-consistent contrastive learning strategy with uniformity regularization, coupled with self-supervised masking-reconstruction operations, to enable robust learning of domain-consistent and motion-discriminative WiFi-specific representations. Beyond this, we introduce a simple yet effective pose decoder with task prompts, which integrates Graph Convolution Network (GCN) and Transformer layers to constrain the topology structure of the generated skeleton by exploring the adjacent-overarching relationships among human joints. Extensive experiments conducted on various benchmark datasets highlight the superior performance of our method in tackling these fundamental challenges in both 2D/3D human pose estimation tasks.
comment: 12 pages, 9 figures
♻ ☆ F3D-Gaus: Feed-forward 3D-aware Generation on ImageNet with Cycle-Consistent Gaussian Splatting
This paper tackles the problem of generalizable 3D-aware generation from monocular datasets, e.g., ImageNet. The key challenge of this task is learning a robust 3D-aware representation without multi-view or dynamic data, while ensuring consistent texture and geometry across different viewpoints. Although some baseline methods are capable of 3D-aware generation, the quality of the generated images still lags behind state-of-the-art 2D generation approaches, which excel in producing high-quality, detailed images. To address this severe limitation, we propose a novel feed-forward pipeline based on pixel-aligned Gaussian Splatting, coined as F3D-Gaus, which can produce more realistic and reliable 3D renderings from monocular inputs. In addition, we introduce a self-supervised cycle-consistent constraint to enforce cross-view consistency in the learned 3D representation. This training strategy naturally allows aggregation of multiple aligned Gaussian primitives and significantly alleviates the interpolation limitations inherent in single-view pixel-aligned Gaussian Splatting. Furthermore, we incorporate video model priors to perform geometry-aware refinement, enhancing the generation of fine details in wide-viewpoint scenarios and improving the model's capability to capture intricate 3D textures. Extensive experiments demonstrate that our approach not only achieves high-quality, multi-view consistent 3D-aware generation from monocular datasets, but also significantly improves training and inference efficiency.
comment: Project Page: https://w-ted.github.io/publications/F3D-Gaus
♻ ☆ DehazeGS: Seeing Through Fog with 3D Gaussian Splatting
Current novel view synthesis tasks primarily rely on high-quality and clear images. However, in foggy scenes, scattering and attenuation can significantly degrade the reconstruction and rendering quality. Although NeRF-based dehazing reconstruction algorithms have been developed, their use of deep fully connected neural networks and per-ray sampling strategies leads to high computational costs. Moreover, NeRF's implicit representation struggles to recover fine details from hazy scenes. In contrast, recent advancements in 3D Gaussian Splatting achieve high-quality 3D scene reconstruction by explicitly modeling point clouds into 3D Gaussians. In this paper, we propose leveraging the explicit Gaussian representation to explain the foggy image formation process through a physically accurate forward rendering process. We introduce DehazeGS, a method capable of decomposing and rendering a fog-free background from participating media using only muti-view foggy images as input. We model the transmission within each Gaussian distribution to simulate the formation of fog. During this process, we jointly learn the atmospheric light and scattering coefficient while optimizing the Gaussian representation of the hazy scene. In the inference stage, we eliminate the effects of scattering and attenuation on the Gaussians and directly project them onto a 2D plane to obtain a clear view. Experiments on both synthetic and real-world foggy datasets demonstrate that DehazeGS achieves state-of-the-art performance in terms of both rendering quality and computational efficiency. visualizations are available at https://dehazegs.github.io/
comment: 9 pages,4 figures. visualizations are available at https://dehazegs.github.io/
♻ ☆ Diversify, Don't Fine-Tune: Scaling Up Visual Recognition Training with Synthetic Images
Recent advances in generative deep learning have enabled the creation of high-quality synthetic images in text-to-image generation. Prior work shows that fine-tuning a pretrained diffusion model on ImageNet and generating synthetic training images from the finetuned model can enhance an ImageNet classifier's performance. However, performance degrades as synthetic images outnumber real ones. In this paper, we explore whether generative fine-tuning is essential for this improvement and whether it is possible to further scale up training using more synthetic data. We present a new framework leveraging off-the-shelf generative models to generate synthetic training images, addressing multiple challenges: class name ambiguity, lack of diversity in naive prompts, and domain shifts. Specifically, we leverage large language models (LLMs) and CLIP to resolve class name ambiguity. To diversify images, we propose contextualized diversification (CD) and stylized diversification (SD) methods, also prompted by LLMs. Finally, to mitigate domain shifts, we leverage domain adaptation techniques with auxiliary batch normalization for synthetic images. Our framework consistently enhances recognition model performance with more synthetic data, up to 6x of original ImageNet size showcasing the potential of synthetic data for improved recognition models and strong out-of-domain generalization.
comment: Accepted by Transactions on Machine Learning Research (TMLR)
♻ ☆ Implicitly Learned Neural Phase Functions for Basis-Free Point Spread Function Engineering SP 2024
Point spread function (PSF) engineering is vital for precisely controlling the focus of light in computational imaging, with applications in neural imaging, fluorescence microscopy, and biophotonics. The PSF is derived from the magnitude of the Fourier transform of a phase function, making the construction of the phase function given the PSF (PSF engineering) an ill-posed inverse problem. Traditional PSF engineering methods rely on physical basis functions, limiting their ability to generalize across the range of PSFs required for imaging tasks. We introduce a novel approach leveraging implicit neural representations that overcome the limitations of pixel-wise optimization methods. Our approach achieves a median MSSIM of 0.8162 and a mean MSSIM of 0.5634, compared to a median MSSIM of 0.0 and a mean MSSIM of 0.1841 with pixel-wise optimization when learning randomly generated phase functions. Our approach also achieves a median PSNR of 10.38 dB and a mean PSNR of 8.672 dB, compared to a median PSNR of 6.653 dB and a mean PSNR of 6.660 dB with pixel-wise optimization for this task.
comment: 3 pages, 7 figures. To be published in ICVISP 2024 (https://www.icvisp.org/)
♻ ☆ Evolver: Chain-of-Evolution Prompting to Boost Large Multimodal Models for Hateful Meme Detection COLING 2025
Recent advances show that two-stream approaches have achieved outstanding performance in hateful meme detection. However, hateful memes constantly evolve as new memes emerge by fusing progressive cultural ideas, making existing methods obsolete or ineffective. In this work, we explore the potential of Large Multimodal Models (LMMs) for hateful meme detection. To this end, we propose Evolver, which incorporates LMMs via Chain-of-Evolution (CoE) Prompting, by integrating the evolution attribute and in-context information of memes. Specifically, Evolver simulates the evolving and expressing process of memes and reasons through LMMs in a step-by-step manner. First, an evolutionary pair mining module retrieves the top-k most similar memes in the external curated meme set with the input meme. Second, an evolutionary information extractor is designed to summarize the semantic regularities between the paired memes for prompting. Finally, a contextual relevance amplifier enhances the in-context hatefulness information to boost the search for evolutionary processes. Extensive experiments on public FHM, MAMI, and HarM datasets show that CoE prompting can be incorporated into existing LMMs to improve their performance. More encouragingly, it can serve as an interpretive tool to promote the understanding of the evolution of social memes. [Homepage] (https://github.com/inFaaa/Evolver)
comment: accepted by COLING 2025
♻ ☆ FLAME: Learning to Navigate with Multimodal LLM in Urban Environments AAAI 2025
Large Language Models (LLMs) have demonstrated potential in Vision-and-Language Navigation (VLN) tasks, yet current applications face challenges. While LLMs excel in general conversation scenarios, they struggle with specialized navigation tasks, yielding suboptimal performance compared to specialized VLN models. We introduce FLAME (FLAMingo-Architected Embodied Agent), a novel Multimodal LLM-based agent and architecture designed for urban VLN tasks that efficiently handles multiple observations. Our approach implements a three-phase tuning technique for effective adaptation to navigation tasks, including single perception tuning for street view description, multiple perception tuning for route summarization, and end-to-end training on VLN datasets. The augmented datasets are synthesized automatically. Experimental results demonstrate FLAME's superiority over existing methods, surpassing state-of-the-art methods by a 7.3% increase in task completion on Touchdown dataset. This work showcases the potential of Multimodal LLMs (MLLMs) in complex navigation tasks, representing an advancement towards applications of MLLMs in the field of embodied intelligence.
comment: Accepted to AAAI 2025 (Oral)
♻ ☆ Grid: Omni Visual Generation
Visual generation has witnessed remarkable progress in single-image tasks, yet extending these capabilities to temporal sequences remains challenging. Current approaches either build specialized video models from scratch with enormous computational costs or add separate motion modules to image generators, both requiring learning temporal dynamics anew. We observe that modern image generation models possess underutilized potential in handling structured layouts with implicit temporal understanding. Building on this insight, we introduce GRID, which reformulates temporal sequences as grid layouts, enabling holistic processing of visual sequences while leveraging existing model capabilities. Through a parallel flow-matching training strategy with coarse-to-fine scheduling, our approach achieves up to 67 faster inference speeds while using <1/1000 of the computational resources compared to specialized models. Extensive experiments demonstrate that GRID not only excels in temporal tasks from Text-to-Video to 3D Editing but also preserves strong performance in image generation, establishing itself as an efficient and versatile omni-solution for visual generation.
comment: Codes: https://github.com/Should-AI-Lab/GRID
♻ ☆ DCPI-Depth: Explicitly Infusing Dense Correspondence Prior to Unsupervised Monocular Depth Estimation
There has been a recent surge of interest in learning to perceive depth from monocular videos in an unsupervised fashion. A key challenge in this field is achieving robust and accurate depth estimation in challenging scenarios, particularly in regions with weak textures or where dynamic objects are present. This study makes three major contributions by delving deeply into dense correspondence priors to provide existing frameworks with explicit geometric constraints. The first novelty is a contextual-geometric depth consistency loss, which employs depth maps triangulated from dense correspondences based on estimated ego-motion to guide the learning of depth perception from contextual information, since explicitly triangulated depth maps capture accurate relative distances among pixels. The second novelty arises from the observation that there exists an explicit, deducible relationship between optical flow divergence and depth gradient. A differential property correlation loss is, therefore, designed to refine depth estimation with a specific emphasis on local variations. The third novelty is a bidirectional stream co-adjustment strategy that enhances the interaction between rigid and optical flows, encouraging the former towards more accurate correspondence and making the latter more adaptable across various scenarios under the static scene hypotheses. DCPI-Depth, a framework that incorporates all these innovative components and couples two bidirectional and collaborative streams, achieves state-of-the-art performance and generalizability across multiple public datasets, outperforming all existing prior arts. Specifically, it demonstrates accurate depth estimation in texture-less and dynamic regions, and shows more reasonable smoothness. Our source code will be publicly available at mias.group/DCPI-Depth upon publication.
comment: 13 pages, 8 figures
♻ ☆ SEGT: A General Spatial Expansion Group Transformer for nuScenes Lidar-based Object Detection Task
In the technical report, we present a novel transformer-based framework for nuScenes lidar-based object detection task, termed Spatial Expansion Group Transformer (SEGT). To efficiently handle the irregular and sparse nature of point cloud, we propose migrating the voxels into distinct specialized ordered fields with the general spatial expansion strategies, and employ group attention mechanisms to extract the exclusive feature maps within each field. Subsequently, we integrate the feature representations across different ordered fields by alternately applying diverse expansion strategies, thereby enhancing the model's ability to capture comprehensive spatial information. The method was evaluated on the nuScenes lidar-based object detection test dataset, achieving an NDS score of 73.9 without Test-Time Augmentation (TTA) and 74.5 with TTA, demonstrating the effectiveness of the proposed method. Notably, our method ranks the 1st place in the nuScenes lidar-based object detection task.
♻ ☆ EliGen: Entity-Level Controlled Image Generation with Regional Attention
Recent advancements in diffusion models have significantly advanced text-to-image generation, yet global text prompts alone remain insufficient for achieving fine-grained control over individual entities within an image. To address this limitation, we present EliGen, a novel framework for Entity-Level controlled Image Generation. We introduce regional attention, a mechanism for diffusion transformers that requires no additional parameters, seamlessly integrating entity prompts and arbitrary-shaped spatial masks. By contributing a high-quality dataset with fine-grained spatial and semantic entity-level annotations, we train EliGen to achieve robust and accurate entity-level manipulation, surpassing existing methods in both spatial precision and image quality. Additionally, we propose an inpainting fusion pipeline, extending EliGen's capabilities to multi-entity image inpainting tasks. We further demonstrate its flexibility by integrating it with other open-source models such as IP-Adapter, In-Context LoRA and MLLM, unlocking new creative possibilities. The source code, model, and dataset are published at https://github.com/modelscope/DiffSynth-Studio.
♻ ☆ OmniHD-Scenes: A Next-Generation Multimodal Dataset for Autonomous Driving
The rapid advancement of deep learning has intensified the need for comprehensive data for use by autonomous driving algorithms. High-quality datasets are crucial for the development of effective data-driven autonomous driving solutions. Next-generation autonomous driving datasets must be multimodal, incorporating data from advanced sensors that feature extensive data coverage, detailed annotations, and diverse scene representation. To address this need, we present OmniHD-Scenes, a large-scale multimodal dataset that provides comprehensive omnidirectional high-definition data. The OmniHD-Scenes dataset combines data from 128-beam LiDAR, six cameras, and six 4D imaging radar systems to achieve full environmental perception. The dataset comprises 1501 clips, each approximately 30-s long, totaling more than 450K synchronized frames and more than 5.85 million synchronized sensor data points. We also propose a novel 4D annotation pipeline. To date, we have annotated 200 clips with more than 514K precise 3D bounding boxes. These clips also include semantic segmentation annotations for static scene elements. Additionally, we introduce a novel automated pipeline for generation of the dense occupancy ground truth, which effectively leverages information from non-key frames. Alongside the proposed dataset, we establish comprehensive evaluation metrics, baseline models, and benchmarks for 3D detection and semantic occupancy prediction. These benchmarks utilize surround-view cameras and 4D imaging radar to explore cost-effective sensor solutions for autonomous driving applications. Extensive experiments demonstrate the effectiveness of our low-cost sensor configuration and its robustness under adverse conditions. Data will be released at https://www.2077ai.com/OmniHD-Scenes.
♻ ☆ From Data Deluge to Data Curation: A Filtering-WoRA Paradigm for Efficient Text-based Person Search
In text-based person search endeavors, data generation has emerged as a prevailing practice, addressing concerns over privacy preservation and the arduous task of manual annotation. Although the number of synthesized data can be infinite in theory, the scientific conundrum persists that how much generated data optimally fuels subsequent model training. We observe that only a subset of the data in these constructed datasets plays a decisive role. Therefore, we introduce a new Filtering-WoRA paradigm, which contains a filtering algorithm to identify this crucial data subset and WoRA (Weighted Low-Rank Adaptation) learning strategy for light fine-tuning. The filtering algorithm is based on the cross-modality relevance to remove the lots of coarse matching synthesis pairs. As the number of data decreases, we do not need to fine-tune the entire model. Therefore, we propose a WoRA learning strategy to efficiently update a minimal portion of model parameters. WoRA streamlines the learning process, enabling heightened efficiency in extracting knowledge from fewer, yet potent, data instances. Extensive experimentation validates the efficacy of pretraining, where our model achieves advanced and efficient retrieval performance on challenging real-world benchmarks. Notably, on the CUHK-PEDES dataset, we have achieved a competitive mAP of 67.02% while reducing model training time by 19.82%.
♻ ☆ Zero-Shot Scene Change Detection AAAI 2025
We present a novel, training-free approach to scene change detection. Our method leverages tracking models, which inherently perform change detection between consecutive frames of video by identifying common objects and detecting new or missing objects. Specifically, our method takes advantage of the change detection effect of the tracking model by inputting reference and query images instead of consecutive frames. Furthermore, we focus on the content gap and style gap between two input images in change detection, and address both issues by proposing adaptive content threshold and style bridging layers, respectively. Finally, we extend our approach to video, leveraging rich temporal information to enhance the performance of scene change detection. We compare our approach and baseline through various experiments. While existing train-based baseline tend to specialize only in the trained domain, our method shows consistent performance across various domains, proving the competitiveness of our approach.
comment: AAAI 2025. Code available at: https://github.com/kyusik-cho/ZSSCD
♻ ☆ MambaMOT: State-Space Model as Motion Predictor for Multi-Object Tracking ICASSP 2025
In the field of multi-object tracking (MOT), traditional methods often rely on the Kalman filter for motion prediction, leveraging its strengths in linear motion scenarios. However, the inherent limitations of these methods become evident when confronted with complex, nonlinear motions and occlusions prevalent in dynamic environments like sports and dance. This paper explores the possibilities of replacing the Kalman filter with a learning-based motion model that effectively enhances tracking accuracy and adaptability beyond the constraints of Kalman filter-based tracker. In this paper, our proposed method MambaMOT and MambaMOT+, demonstrate advanced performance on challenging MOT datasets such as DanceTrack and SportsMOT, showcasing their ability to handle intricate, non-linear motion patterns and frequent occlusions more effectively than traditional methods.
comment: Accepted by ICASSP 2025. Previous version paper title: Exploring Learning-based Motion Models in Multi-Object Tracking
♻ ☆ Robin: a Suite of Multi-Scale Vision-Language Models and the CHIRP Evaluation Benchmark
The proliferation of Vision-Language Models (VLMs) in the past several years calls for rigorous and comprehensive evaluation methods and benchmarks. This work analyzes existing VLM evaluation techniques, including automated metrics, AI-based assessments, and human evaluations across diverse tasks. We first introduce Robin - a novel suite of VLMs that we built by combining Large Language Models (LLMs) and Vision Encoders (VEs) at multiple scales, and use Robin to identify shortcomings of current evaluation approaches across scales. Next, to overcome the identified limitations, we introduce CHIRP - a new long form response benchmark we developed for more robust and complete VLM evaluation. We provide open access to the Robin training code, model suite, and CHIRP benchmark to promote reproducibility and advance VLM research.
♻ ☆ Exploring the Efficacy of Meta-Learning: Unveiling Superior Data Diversity Utilization of MAML Over Pre-training
Currently, data and model size dominate the narrative in the training of super-large, powerful models. However, there has been a lack of exploration on the effect of other attributes of the training dataset on model performance. We hypothesize that dataset diversity can impact the performance of vision models. Our study shows positive correlations between test set accuracy and data diversity, providing an argument for furthering the research of dataset attributes beyond size. We analyzed pre-training and model-agnostic meta-learning methods on twelve popular visual datasets (e.g., Omniglot, CIFAR-FS, Aircraft) and five model configurations, including MAML variants with different numbers of inner gradient steps and supervised learning. We show moderate to strong positive correlations (R-squared: 0.15-0.42) between accuracy and data diversity and weaker but significant correlations (R-squared: ~0.2) between loss and diversity. These findings support our hypothesis and demonstrate a promising way for a deeper exploration of how formal data diversity influences model performance. This initial study highlights the potential of (Task2Vec) data diversity as a valuable measure in the rapidly evolving field of large-scale learning and emphasizes that understanding the dataset is key to building more powerful and generalizable models.
Information Retrieval 14
☆ Optimizing Leaky Private Information Retrieval Codes to Achieve ${O}(\log K)$ Leakage Ratio Exponent
We study the problem of leaky private information retrieval (L-PIR), where the amount of privacy leakage is measured by the pure differential privacy parameter, referred to as the leakage ratio exponent. Unlike the previous L-PIR scheme proposed by Samy et al., which only adjusted the probability allocation to the clean (low-cost) retrieval pattern, we optimize the probabilities assigned to all the retrieval patterns jointly. It is demonstrated that the optimal retrieval pattern probability distribution is quite sophisticated and has a layered structure: the retrieval patterns associated with the random key values of lower Hamming weights should be assigned higher probabilities. This new scheme provides a significant improvement, leading to an ${O}(\log K)$ leakage ratio exponent with fixed download cost $D$ and number of servers $N$, in contrast to the previous art that only achieves a $\Theta(K)$ exponent, where $K$ is the number of messages.
comment: Long version of the paper submitted to ISIT 2025. 8 pages, 2 figures
☆ DataPro -- A Standardized Data Understanding and Processing Procedure: A Case Study of an Eco-Driving Project
A systematic pipeline for data processing and knowledge discovery is essential to extracting knowledge from big data and making recommendations for operational decision-making. The CRISP-DM model is the de-facto standard for developing data-mining projects in practice. However, advancements in data processing technologies require enhancements to this framework. This paper presents the DataPro (a standardized data understanding and processing procedure) model, which extends CRISP-DM and emphasizes the link between data scientists and stakeholders by adding the "technical understanding" and "implementation" phases. Firstly, the "technical understanding" phase aligns business demands with technical requirements, ensuring the technical team's accurate comprehension of business goals. Next, the "implementation" phase focuses on the practical application of developed data science models, ensuring theoretical models are effectively applied in business contexts. Furthermore, clearly defining roles and responsibilities in each phase enhances management and communication among all participants. Afterward, a case study on an eco-driving data science project for fuel efficiency analysis in the Danish public transportation sector illustrates the application of the DataPro model. By following the proposed framework, the project identified key business objectives, translated them into technical requirements, and developed models that provided actionable insights for reducing fuel consumption. Finally, the model is evaluated qualitatively, demonstrating its superiority over other data science procedures.
☆ Less is More: Information Bottleneck Denoised Multimedia Recommendation
Empowered by semantic-rich content information, multimedia recommendation has emerged as a potent personalized technique. Current endeavors center around harnessing multimedia content to refine item representation or uncovering latent item-item structures based on modality similarity. Despite the effectiveness, we posit that these methods are usually suboptimal due to the introduction of irrelevant multimedia features into recommendation tasks. This stems from the fact that generic multimedia feature extractors, while well-designed for domain-specific tasks, can inadvertently introduce task-irrelevant features, leading to potential misguidance of recommenders. In this work, we propose a denoised multimedia recommendation paradigm via the Information Bottleneck principle (IB). Specifically, we propose a novel Information Bottleneck denoised Multimedia Recommendation (IBMRec) model to tackle the irrelevant feature issue. IBMRec removes task-irrelevant features from both feature and item-item structure perspectives, which are implemented by two-level IB learning modules: feature-level (FIB) and graph-level (GIB). In particular, FIB focuses on learning the minimal yet sufficient multimedia features. This is achieved by maximizing the mutual information between multimedia representation and recommendation tasks, while concurrently minimizing it between multimedia representation and pre-trained multimedia features. Furthermore, GIB is designed to learn the robust item-item graph structure, it refines the item-item graph based on preference affinity, then minimizes the mutual information between the original graph and the refined one. Extensive experiments across three benchmarks validate the effectiveness of our proposed model, showcasing high performance, and applicability to various multimedia recommenders.
☆ A Contrastive Framework with User, Item and Review Alignment for Recommendation
Learning effective latent representations for users and items is the cornerstone of recommender systems. Traditional approaches rely on user-item interaction data to map users and items into a shared latent space, but the sparsity of interactions often poses challenges. While leveraging user reviews could mitigate this sparsity, existing review-aware recommendation models often exhibit two key limitations. First, they typically rely on reviews as additional features, but reviews are not universal, with many users and items lacking them. Second, such approaches do not integrate reviews into the user-item space, leading to potential divergence or inconsistency among user, item, and review representations. To overcome these limitations, our work introduces a Review-centric Contrastive Alignment Framework for Recommendation (ReCAFR), which incorporates reviews into the core learning process, ensuring alignment among user, item, and review representations within a unified space. Specifically, we leverage two self-supervised contrastive strategies that not only exploit review-based augmentation to alleviate sparsity, but also align the tripartite representations to enhance robustness. Empirical studies on public benchmark datasets demonstrate the effectiveness and robustness of ReCAFR.
☆ Generating with Fairness: A Modality-Diffused Counterfactual Framework for Incomplete Multimodal Recommendations
Incomplete scenario is a prevalent, practical, yet challenging setting in Multimodal Recommendations (MMRec), where some item modalities are missing due to various factors. Recently, a few efforts have sought to improve the recommendation accuracy by exploring generic structures from incomplete data. However, two significant gaps persist: 1) the difficulty in accurately generating missing data due to the limited ability to capture modality distributions; and 2) the critical but overlooked visibility bias, where items with missing modalities are more likely to be disregarded due to the prioritization of items' multimodal data over user preference alignment. This bias raises serious concerns about the fair treatment of items. To bridge these two gaps, we propose a novel Modality-Diffused Counterfactual (MoDiCF) framework for incomplete multimodal recommendations. MoDiCF features two key modules: a novel modality-diffused data completion module and a new counterfactual multimodal recommendation module. The former, equipped with a particularly designed multimodal generative framework, accurately generates and iteratively refines missing data from learned modality-specific distribution spaces. The latter, grounded in the causal perspective, effectively mitigates the negative causal effects of visibility bias and thus assures fairness in recommendations. Both modules work collaboratively to address the two aforementioned significant gaps for generating more accurate and fair results. Extensive experiments on three real-world datasets demonstrate the superior performance of MoDiCF in terms of both recommendation accuracy and fairness
☆ Integrate Temporal Graph Learning into LLM-based Temporal Knowledge Graph Model
Temporal Knowledge Graph Forecasting (TKGF) aims to predict future events based on the observed events in history. Recently, Large Language Models (LLMs) have exhibited remarkable capabilities, generating significant research interest in their application for reasoning over temporal knowledge graphs (TKGs). Existing LLM-based methods have integrated retrieved historical facts or static graph representations into LLMs. Despite the notable performance of LLM-based methods, they are limited by the insufficient modeling of temporal patterns and ineffective cross-modal alignment between graph and language, hindering the ability of LLMs to fully grasp the temporal and structural information in TKGs. To tackle these issues, we propose a novel framework TGL-LLM to integrate temporal graph learning into LLM-based temporal knowledge graph model. Specifically, we introduce temporal graph learning to capture the temporal and relational patterns and obtain the historical graph embedding. Furthermore, we design a hybrid graph tokenization to sufficiently model the temporal patterns within LLMs. To achieve better alignment between graph and language, we employ a two-stage training paradigm to finetune LLMs on high-quality and diverse data, thereby resulting in better performance. Extensive experiments on three real-world datasets show that our approach outperforms a range of state-of-the-art (SOTA) methods.
☆ Coarse-to-Fine Lightweight Meta-Embedding for ID-Based Recommendation
The state-of-the-art recommendation systems have shifted the attention to efficient recommendation, e.g., on-device recommendation, under memory constraints. To this end, the existing methods either focused on the lightweight embeddings for both users and items, or involved on-device systems enjoying the compact embeddings to enhance reusability and reduces space complexity. However, they focus solely on the coarse granularity of embedding, while overlook the fine-grained semantic nuances, to adversarially downgrade the efficacy of meta-embeddings in capturing the intricate relationship over both user and item, consequently resulting into the suboptimal recommendations. In this paper, we aim to study how the meta-embedding can efficiently learn varied grained semantics, together with how the fine-grained meta-embedding can strengthen the representation of coarse-grained meta-embedding. To answer these questions, we develop a novel graph neural networks (GNNs) based recommender where each user and item serves as the node, linked directly to coarse-grained virtual nodes and indirectly to fine-grained virtual nodes, ensuring different grained semantic learning, while disclosing: 1) In contrast to coarse-grained semantics, fine-grained semantics are well captured through sparse meta-embeddings, which adaptively 2) balance the embedding uniqueness and memory constraint. Additionally, the initialization method come up upon SparsePCA, along with a soft thresholding activation function to render the sparseness of the meta-embeddings. We propose a weight bridging update strategy that focuses on matching each coarse-grained meta-embedding with several fine-grained meta-embeddings based on the users/items' semantics. Extensive experiments substantiate our method's superiority over existing baselines. Our code is available at https://github.com/htyjers/C2F-MetaEmbed.
comment: 16 pages, 6 figures
♻ ☆ S+t-SNE -- Bringing Dimensionality Reduction to Data Streams
We present S+t-SNE, an adaptation of the t-SNE algorithm designed to handle infinite data streams. The core idea behind S+t-SNE is to update the t-SNE embedding incrementally as new data arrives, ensuring scalability and adaptability to handle streaming scenarios. By selecting the most important points at each step, the algorithm ensures scalability while keeping informative visualisations. By employing a blind method for drift management, the algorithm adjusts the embedding space, which facilitates the visualisation of evolving data dynamics. Our experimental evaluations demonstrate the effectiveness and efficiency of S+t-SNE, whilst highlighting its ability to capture patterns in a streaming scenario. We hope our approach offers researchers and practitioners a real-time tool for understanding and interpreting high-dimensional data.
comment: This preprint has undergone peer review but does not have any post-submission improvements or corrections. Full version after peer-review and post-acceptance improvements was presented at IDA2024 (https://ida2024.blogs.dsv.su.se/)
♻ ☆ NoteLLM-2: Multimodal Large Representation Models for Recommendation KDD'25
Large Language Models (LLMs) have demonstrated exceptional proficiency in text understanding and embedding tasks. However, their potential in multimodal representation, particularly for item-to-item (I2I) recommendations, remains underexplored. While leveraging existing Multimodal Large Language Models (MLLMs) for such tasks is promising, challenges arise due to their delayed release compared to corresponding LLMs and the inefficiency in representation tasks. To address these issues, we propose an end-to-end fine-tuning method that customizes the integration of any existing LLMs and vision encoders for efficient multimodal representation. Preliminary experiments revealed that fine-tuned LLMs often neglect image content. To counteract this, we propose NoteLLM-2, a novel framework that enhances visual information. Specifically, we propose two approaches: first, a prompt-based method that segregates visual and textual content, employing a multimodal In-Context Learning strategy to balance focus across modalities; second, a late fusion technique that directly integrates visual information into the final representations. Extensive experiments, both online and offline, demonstrate the effectiveness of our approach. Code is available at https://github.com/Applied-Machine-Learning-Lab/NoteLLM.
comment: Accepted by KDD'25 ADS track
♻ ☆ Positional encoding is not the same as context: A study on positional encoding for sequential recommendation
The rapid growth of streaming media and e-commerce has driven advancements in recommendation systems, particularly Sequential Recommendation Systems (SRS). These systems employ users' interaction histories to predict future preferences. While recent research has focused on architectural innovations like transformer blocks and feature extraction, positional encodings, crucial for capturing temporal patterns, have received less attention. These encodings are often conflated with contextual, such as the temporal footprint, which previous works tend to treat as interchangeable with positional information. This paper highlights the critical distinction between temporal footprint and positional encodings, demonstrating that the latter offers unique relational cues between items, which the temporal footprint alone cannot provide. Through extensive experimentation on eight Amazon datasets and subsets, we assess the impact of various encodings on performance metrics and training stability. We introduce new positional encodings and investigate integration strategies that improve both metrics and stability, surpassing state-of-the-art results at the time of this work's initial preprint. Importantly, we demonstrate that selecting the appropriate encoding is not only key to better performance but also essential for building robust, reliable SRS models.
comment: 18 pages, 6 figures, 21 tables
♻ ☆ Redefining POI Popularity: Integrating User Preferences and Recency for Enhanced Recommendations
The task of point-of-interest (POI) recommendation is to predict users' immediate future movements based on their previous records and present circumstances. Popularity is considered as one of the primary deciding factors for selecting the next place to visit. Existing approaches mainly focused on the number of check-ins to model the popularity of a POI. However, not enough attention is paid to the temporal impact or number of people check-ins for a particular POI. Thus, to prioritize more on recent check-ins, we propose recency-oriented definition of POI's popularity by considering the temporal effect of the POIs, the number of check-ins, as well as the number of users who registered in those check-ins. Our experimental results on real dataset show the efficacy of the proposed approach.
comment: This paper was presented at MIET-2024
♻ ☆ A Look Into News Avoidance Through AWRS: An Avoidance-Aware Recommender System SDM25
In recent years, journalists have expressed concerns about the increasing trend of news article avoidance, especially within specific domains. This issue has been exacerbated by the rise of recommender systems. Our research indicates that recommender systems should consider avoidance as a fundamental factor. We argue that news articles can be characterized by three principal elements: exposure, relevance, and avoidance, all of which are closely interconnected. To address these challenges, we introduce AWRS, an Avoidance-Aware Recommender System. This framework incorporates avoidance awareness when recommending news, based on the premise that news article avoidance conveys significant information about user preferences. Evaluation results on three news datasets in different languages (English, Norwegian, and Japanese) demonstrate that our method outperforms existing approaches.
comment: SIAM International Conference on Data Mining (SDM25)
♻ ☆ Contrastive Representation for Interactive Recommendation AAAI-2025
Interactive Recommendation (IR) has gained significant attention recently for its capability to quickly capture dynamic interest and optimize both short and long term objectives. IR agents are typically implemented through Deep Reinforcement Learning (DRL), because DRL is inherently compatible with the dynamic nature of IR. However, DRL is currently not perfect for IR. Due to the large action space and sample inefficiency problem, training DRL recommender agents is challenging. The key point is that useful features cannot be extracted as high-quality representations for the recommender agent to optimize its policy. To tackle this problem, we propose Contrastive Representation for Interactive Recommendation (CRIR). CRIR efficiently extracts latent, high-level preference ranking features from explicit interaction, and leverages the features to enhance users' representation. Specifically, the CRIR provides representation through one representation network, and refines it through our proposed Preference Ranking Contrastive Learning (PRCL). The key insight of PRCL is that it can perform contrastive learning without relying on computations involving high-level representations or large potential action sets. Furthermore, we also propose a data exploiting mechanism and an agent training mechanism to better adapt CRIR to the DRL backbone. Extensive experiments have been carried out to show our method's superior improvement on the sample efficiency while training an DRL-based IR agent.
comment: AAAI-2025 Accepted paper
♻ ☆ Customizing Language Models with Instance-wise LoRA for Sequential Recommendation NeurIPS 2024
Sequential recommendation systems predict the next interaction item based on users' past interactions, aligning recommendations with individual preferences. Leveraging the strengths of Large Language Models (LLMs) in knowledge comprehension and reasoning, recent approaches are eager to apply LLMs to sequential recommendation. A common paradigm is converting user behavior sequences into instruction data, and fine-tuning the LLM with parameter-efficient fine-tuning (PEFT) methods like Low-Rank Adaption (LoRA). However, the uniform application of LoRA across diverse user behaviors is insufficient to capture individual variability, resulting in negative transfer between disparate sequences. To address these challenges, we propose Instance-wise LoRA (iLoRA). We innovatively treat the sequential recommendation task as a form of multi-task learning, integrating LoRA with the Mixture of Experts (MoE) framework. This approach encourages different experts to capture various aspects of user behavior. Additionally, we introduce a sequence representation guided gate function that generates customized expert participation weights for each user sequence, which allows dynamic parameter adjustment for instance-wise recommendations. In sequential recommendation, iLoRA achieves an average relative improvement of 11.4\% over basic LoRA in the hit ratio metric, with less than a 1\% relative increase in trainable parameters. Extensive experiments on three benchmark datasets demonstrate the effectiveness of iLoRA, highlighting its superior performance compared to existing methods in mitigating negative transfer and improving recommendation accuracy. Our data and code are available at https://github.com/AkaliKong/iLoRA.
comment: NeurIPS 2024 poster
Machine Learning 140
☆ Learning segmentation from point trajectories NeurIPS 2024
We consider the problem of segmenting objects in videos based on their motion and no other forms of supervision. Prior work has often approached this problem by using the principle of common fate, namely the fact that the motion of points that belong to the same object is strongly correlated. However, most authors have only considered instantaneous motion from optical flow. In this work, we present a way to train a segmentation network using long-term point trajectories as a supervisory signal to complement optical flow. The key difficulty is that long-term motion, unlike instantaneous motion, is difficult to model -- any parametric approximation is unlikely to capture complex motion patterns over long periods of time. We instead draw inspiration from subspace clustering approaches, proposing a loss function that seeks to group the trajectories into low-rank matrices where the motion of object points can be approximately explained as a linear combination of other point tracks. Our method outperforms the prior art on motion-based segmentation, which shows the utility of long-term motion and the effectiveness of our formulation.
comment: NeurIPS 2024 Spotlight. Project https://www.robots.ox.ac.uk/~vgg/research/lrtl/
☆ Physics of Skill Learning
We aim to understand physics of skill learning, i.e., how skills are learned in neural networks during training. We start by observing the Domino effect, i.e., skills are learned sequentially, and notably, some skills kick off learning right after others complete learning, similar to the sequential fall of domino cards. To understand the Domino effect and relevant behaviors of skill learning, we take physicists' approach of abstraction and simplification. We propose three models with varying complexities -- the Geometry model, the Resource model, and the Domino model, trading between reality and simplicity. The Domino effect can be reproduced in the Geometry model, whose resource interpretation inspires the Resource model, which can be further simplified to the Domino model. These models present different levels of abstraction and simplification; each is useful to study some aspects of skill learning. The Geometry model provides interesting insights into neural scaling laws and optimizers; the Resource model sheds light on the learning dynamics of compositional tasks; the Domino model reveals the benefits of modularity. These models are not only conceptually interesting -- e.g., we show how Chinchilla scaling laws can emerge from the Geometry model, but also are useful in practice by inspiring algorithmic development -- e.g., we show how simple algorithmic changes, motivated by these toy models, can speed up the training of deep learning models.
comment: 25 pages, 20 figures. Codes are available at https://github.com/KindXiaoming/physics_of_skill_learning
☆ Audio Texture Manipulation by Exemplar-Based Analogy ICASSP 2025
Audio texture manipulation involves modifying the perceptual characteristics of a sound to achieve specific transformations, such as adding, removing, or replacing auditory elements. In this paper, we propose an exemplar-based analogy model for audio texture manipulation. Instead of conditioning on text-based instructions, our method uses paired speech examples, where one clip represents the original sound and another illustrates the desired transformation. The model learns to apply the same transformation to new input, allowing for the manipulation of sound textures. We construct a quadruplet dataset representing various editing tasks, and train a latent diffusion model in a self-supervised manner. We show through quantitative evaluations and perceptual studies that our model outperforms text-conditioned baselines and generalizes to real-world, out-of-distribution, and non-speech scenarios. Project page: https://berkeley-speech-group.github.io/audio-texture-analogy/
comment: ICASSP 2025
☆ CCESAR: Coastline Classification-Extraction From SAR Images Using CNN-U-Net Combination
In this article, we improve the deep learning solution for coastline extraction from Synthetic Aperture Radar (SAR) images by proposing a two-stage model involving image classification followed by segmentation. We hypothesize that a single segmentation model usually used for coastline detection is insufficient to characterize different coastline types. We demonstrate that the need for a two-stage workflow prevails through different compression levels of these images. Our results from experiments using a combination of CNN and U-Net models on Sentinel-1 images show that the two-stage workflow, coastline classification-extraction from SAR images (CCESAR) outperforms a single U-Net segmentation model.
☆ Parallel Sequence Modeling via Generalized Spatial Propagation Network SP
We present the Generalized Spatial Propagation Network (GSPN), a new attention mechanism optimized for vision tasks that inherently captures 2D spatial structures. Existing attention models, including transformers, linear attention, and state-space models like Mamba, process multi-dimensional data as 1D sequences, compromising spatial coherence and efficiency. GSPN overcomes these limitations by directly operating on spatially coherent image data and forming dense pairwise connections through a line-scan approach. Central to GSPN is the Stability-Context Condition, which ensures stable, context-aware propagation across 2D sequences and reduces the effective sequence length to $\sqrt{N}$ for a square map with N elements, significantly enhancing computational efficiency. With learnable, input-dependent weights and no reliance on positional embeddings, GSPN achieves superior spatial fidelity and state-of-the-art performance in vision tasks, including ImageNet classification, class-guided image generation, and text-to-image generation. Notably, GSPN accelerates SD-XL with softmax-attention by over $84\times$ when generating 16K images.
comment: Project page: http://whj363636.github.io/GSPN/
☆ Parameters vs FLOPs: Scaling Laws for Optimal Sparsity for Mixture-of-Experts Language Models
Scaling the capacity of language models has consistently proven to be a reliable approach for improving performance and unlocking new capabilities. Capacity can be primarily defined by two dimensions: the number of model parameters and the compute per example. While scaling typically involves increasing both, the precise interplay between these factors and their combined contribution to overall capacity remains not fully understood. We explore this relationship in the context of sparse Mixture-of-Expert models (MoEs), which allow scaling the number of parameters without proportionally increasing the FLOPs per example. We investigate how varying the sparsity level, i.e., the ratio of non-active to total parameters, affects model performance in terms of both pretraining and downstream performance. We find that under different constraints (e.g. parameter size and total training compute), there is an optimal level of sparsity that improves both training efficiency and model performance. These results provide a better understanding of the impact of sparsity in scaling laws for MoEs and complement existing works in this area, offering insights for designing more efficient architectures.
☆ Budget-constrained Collaborative Renewable Energy Forecasting Market
Accurate power forecasting from renewable energy sources (RES) is crucial for integrating additional RES capacity into the power system and realizing sustainability goals. This work emphasizes the importance of integrating decentralized spatio-temporal data into forecasting models. However, decentralized data ownership presents a critical obstacle to the success of such spatio-temporal models, and incentive mechanisms to foster data-sharing need to be considered. The main contributions are a) a comparative analysis of the forecasting models, advocating for efficient and interpretable spline LASSO regression models, and b) a bidding mechanism within the data/analytics market to ensure fair compensation for data providers and enable both buyers and sellers to express their data price requirements. Furthermore, an incentive mechanism for time series forecasting is proposed, effectively incorporating price constraints and preventing redundant feature allocation. Results show significant accuracy improvements and potential monetary gains for data sellers. For wind power data, an average root mean squared error improvement of over 10% was achieved by comparing forecasts generated by the proposal with locally generated ones.
☆ Efficient Algorithm for Sparse Fourier Transform of Generalized q-ary Functions
Computing the Fourier transform of a $q$-ary function $f:\mathbb{Z}_{q}^n\rightarrow \mathbb{R}$, which maps $q$-ary sequences to real numbers, is an important problem in mathematics with wide-ranging applications in biology, signal processing, and machine learning. Previous studies have shown that, under the sparsity assumption, the Fourier transform can be computed efficiently using fast and sample-efficient algorithms. However, in many practical settings, the function is defined over a more general space -- the space of generalized $q$-ary sequences $\mathbb{Z}_{q_1} \times \mathbb{Z}_{q_2} \times \cdots \times \mathbb{Z}_{q_n}$ -- where each $\mathbb{Z}_{q_i}$ corresponds to integers modulo $q_i$. A naive approach involves setting $q=\max_i{q_i}$ and treating the function as $q$-ary, which results in heavy computational overheads. Herein, we develop GFast, an algorithm that computes the $S$-sparse Fourier transform of $f$ with a sample complexity of $O(Sn)$, computational complexity of $O(Sn \log N)$, and a failure probability that approaches zero as $N=\prod_{i=1}^n q_i \rightarrow \infty$ with $S = N^\delta$ for some $0 \leq \delta < 1$. In the presence of noise, we further demonstrate that a robust version of GFast computes the transform with a sample complexity of $O(Sn^2)$ and computational complexity of $O(Sn^2 \log N)$ under the same high probability guarantees. Using large-scale synthetic experiments, we demonstrate that GFast computes the sparse Fourier transform of generalized $q$-ary functions using $16\times$ fewer samples and running $8\times$ faster than existing algorithms. In real-world protein fitness datasets, GFast explains the predictive interactions of a neural network with $>25\%$ smaller normalized mean-squared error compared to existing algorithms.
☆ Measured Hockey-Stick Divergence and its Applications to Quantum Pufferfish Privacy
The hockey-stick divergence is a fundamental quantity characterizing several statistical privacy frameworks that ensure privacy for classical and quantum data. In such quantum privacy frameworks, the adversary is allowed to perform all possible measurements. However, in practice, there are typically limitations to the set of measurements that can be performed. To this end, here, we comprehensively analyze the measured hockey-stick divergence under several classes of practically relevant measurement classes. We prove several of its properties, including data processing and convexity. We show that it is efficiently computable by semi-definite programming for some classes of measurements and can be analytically evaluated for Werner and isotropic states. Notably, we show that the measured hockey-stick divergence characterizes optimal privacy parameters in the quantum pufferfish privacy framework. With this connection and the developed technical tools, we enable methods to quantify and audit privacy for several practically relevant settings. Lastly, we introduce the measured hockey-stick divergence of channels and explore its applications in ensuring privacy for channels.
comment: 21 pages, submission to the 2025 International Symposium on Information Theory to be held at University of Michigan
☆ Diffusion-aware Censored Gaussian Processes for Demand Modelling
Inferring the true demand for a product or a service from aggregate data is often challenging due to the limited available supply, thus resulting in observations that are censored and correspond to the realized demand, thereby not accounting for the unsatisfied demand. Censored regression models are able to account for the effect of censoring due to the limited supply, but they don't consider the effect of substitutions, which may cause the demand for similar alternative products or services to increase. This paper proposes Diffusion-aware Censored Demand Models, which combine a Tobit likelihood with a graph diffusion process in order to model the latent process of transfer of unsatisfied demand between similar products or services. We instantiate this new class of models under the framework of GPs and, based on both simulated and real-world data for modeling sales, bike-sharing demand, and EV charging demand, demonstrate its ability to better recover the true demand and produce more accurate out-of-sample predictions.
☆ Test-time regression: a unifying framework for designing sequence models with associative memory
Sequences provide a remarkably general way to represent and process information. This powerful abstraction has placed sequence modeling at the center of modern deep learning applications, inspiring numerous architectures from transformers to recurrent networks. While this fragmented development has yielded powerful models, it has left us without a unified framework to understand their fundamental similarities and explain their effectiveness. We present a unifying framework motivated by an empirical observation: effective sequence models must be able to perform associative recall. Our key insight is that memorizing input tokens through an associative memory is equivalent to performing regression at test-time. This regression-memory correspondence provides a framework for deriving sequence models that can perform associative recall, offering a systematic lens to understand seemingly ad-hoc architectural choices. We show numerous recent architectures -- including linear attention models, their gated variants, state-space models, online learners, and softmax attention -- emerge naturally as specific approaches to test-time regression. Each architecture corresponds to three design choices: the relative importance of each association, the regressor function class, and the optimization algorithm. This connection leads to new understanding: we provide theoretical justification for QKNorm in softmax attention, and we motivate higher-order generalizations of softmax attention. Beyond unification, our work unlocks decades of rich statistical tools that can guide future development of more powerful yet principled sequence models.
☆ CYCle: Choosing Your Collaborators Wisely to Enhance Collaborative Fairness in Decentralized Learning
Collaborative learning (CL) enables multiple participants to jointly train machine learning (ML) models on decentralized data sources without raw data sharing. While the primary goal of CL is to maximize the expected accuracy gain for each participant, it is also important to ensure that the gains are fairly distributed. Specifically, no client should be negatively impacted by the collaboration, and the individual gains must ideally be commensurate with the contributions. Most existing CL algorithms require central coordination and focus on the gain maximization objective while ignoring collaborative fairness. In this work, we first show that the existing measure of collaborative fairness based on the correlation between accuracy values without and with collaboration has drawbacks because it does not account for negative collaboration gain. We argue that maximizing mean collaboration gain (MCG) while simultaneously minimizing the collaboration gain spread (CGS) is a fairer alternative. Next, we propose the CYCle protocol that enables individual participants in a private decentralized learning (PDL) framework to achieve this objective through a novel reputation scoring method based on gradient alignment between the local cross-entropy and distillation losses. Experiments on the CIFAR-10, CIFAR-100, and Fed-ISIC2019 datasets empirically demonstrate the effectiveness of the CYCle protocol to ensure positive and fair collaboration gain for all participants, even in cases where the data distributions of participants are highly skewed. For the simple mean estimation problem with two participants, we also theoretically show that CYCle performs better than standard FedAvg, especially when there is large statistical heterogeneity.
☆ Automatic Labelling with Open-source LLMs using Dynamic Label Schema Integration
Acquiring labelled training data remains a costly task in real world machine learning projects to meet quantity and quality requirements. Recently Large Language Models (LLMs), notably GPT-4, have shown great promises in labelling data with high accuracy. However, privacy and cost concerns prevent the ubiquitous use of GPT-4. In this work, we explore effectively leveraging open-source models for automatic labelling. We identify integrating label schema as a promising technology but found that naively using the label description for classification leads to poor performance on high cardinality tasks. To address this, we propose Retrieval Augmented Classification (RAC) for which LLM performs inferences for one label at a time using corresponding label schema; we start with the most related label and iterates until a label is chosen by the LLM. We show that our method, which dynamically integrates label description, leads to performance improvements in labelling tasks. We further show that by focusing only on the most promising labels, RAC can trade off between label quality and coverage - a property we leverage to automatically label our internal datasets.
comment: 11 pages, 1 figure
☆ Cinepro: Robust Training of Foundation Models for Cancer Detection in Prostate Ultrasound Cineloops
Prostate cancer (PCa) detection using deep learning (DL) models has shown potential for enhancing real-time guidance during biopsies. However, prostate ultrasound images lack pixel-level cancer annotations, introducing label noise. Current approaches often focus on limited regions of interest (ROIs), disregarding anatomical context necessary for accurate diagnosis. Foundation models can overcome this limitation by analyzing entire images to capture global spatial relationships; however, they still encounter challenges stemming from the weak labels associated with coarse pathology annotations in ultrasound data. We introduce Cinepro, a novel framework that strengthens foundation models' ability to localize PCa in ultrasound cineloops. Cinepro adapts robust training by integrating the proportion of cancer tissue reported by pathology in a biopsy core into its loss function to address label noise, providing a more nuanced supervision. Additionally, it leverages temporal data across multiple frames to apply robust augmentations, enhancing the model's ability to learn stable cancer-related features. Cinepro demonstrates superior performance on a multi-center prostate ultrasound dataset, achieving an AUROC of 77.1% and a balanced accuracy of 83.8%, surpassing current benchmarks. These findings underscore Cinepro's promise in advancing foundation models for weakly labeled ultrasound data.
comment: accepted to IEEE ISBI 2025
☆ The Gap Between Principle and Practice of Lossy Image Coding
Lossy image coding is the art of computing that is principally bounded by the image's rate-distortion function. This bound, though never accurately characterized, has been approached practically via deep learning technologies in recent years. Indeed, learned image coding schemes allow direct optimization of the joint rate-distortion cost, thereby outperforming the handcrafted image coding schemes by a large margin. Still, it is observed that there is room for further improvement in the rate-distortion performance of learned image coding. In this article, we identify the gap between the ideal rate-distortion function forecasted by Shannon's information theory and the empirical rate-distortion function achieved by the state-of-the-art learned image coding schemes, revealing that the gap is incurred by five different effects: modeling effect, approximation effect, amortization effect, digitization effect, and asymptotic effect. We design simulations and experiments to quantitively evaluate the last three effects, which demonstrates the high potential of future lossy image coding technologies.
comment: 11 pages, 5 figures
☆ Uncertainty Quantification With Noise Injection in Neural Networks: A Bayesian Perspective
Model uncertainty quantification involves measuring and evaluating the uncertainty linked to a model's predictions, helping assess their reliability and confidence. Noise injection is a technique used to enhance the robustness of neural networks by introducing randomness. In this paper, we establish a connection between noise injection and uncertainty quantification from a Bayesian standpoint. We theoretically demonstrate that injecting noise into the weights of a neural network is equivalent to Bayesian inference on a deep Gaussian process. Consequently, we introduce a Monte Carlo Noise Injection (MCNI) method, which involves injecting noise into the parameters during training and performing multiple forward propagations during inference to estimate the uncertainty of the prediction. Through simulation and experiments on regression and classification tasks, our method demonstrates superior performance compared to the baseline model.
☆ A Hybrid Supervised and Self-Supervised Graph Neural Network for Edge-Centric Applications
This paper presents a novel graph-based deep learning model for tasks involving relations between two nodes (edge-centric tasks), where the focus lies on predicting relationships and interactions between pairs of nodes rather than node properties themselves. This model combines supervised and self-supervised learning, taking into account for the loss function the embeddings learned and patterns with and without ground truth. Additionally it incorporates an attention mechanism that leverages both node and edge features. The architecture, trained end-to-end, comprises two primary components: embedding generation and prediction. First, a graph neural network (GNN) transform raw node features into dense, low-dimensional embeddings, incorporating edge attributes. Then, a feedforward neural model processes the node embeddings to produce the final output. Experiments demonstrate that our model matches or exceeds existing methods for protein-protein interactions prediction and Gene Ontology (GO) terms prediction. The model also performs effectively with one-hot encoding for node features, providing a solution for the previously unsolved problem of predicting similarity between compounds with unknown structures.
☆ Sublinear Variational Optimization of Gaussian Mixture Models with Millions to Billions of Parameters
Gaussian Mixture Models (GMMs) range among the most frequently used machine learning models. However, training large, general GMMs becomes computationally prohibitive for datasets with many data points $N$ of high-dimensionality $D$. For GMMs with arbitrary covariances, we here derive a highly efficient variational approximation, which is integrated with mixtures of factor analyzers (MFAs). For GMMs with $C$ components, our proposed algorithm significantly reduces runtime complexity per iteration from $\mathcal{O}(NCD^2)$ to a complexity scaling linearly with $D$ and remaining constant w.r.t. $C$. Numerical validation of this theoretical complexity reduction then shows the following: the distance evaluations required for the entire GMM optimization process scale sublinearly with $NC$. On large-scale benchmarks, this sublinearity results in speed-ups of an order-of-magnitude compared to the state-of-the-art. As a proof of concept, we train GMMs with over 10 billion parameters on about 100 million images, and observe training times of approximately nine hours on a single state-of-the-art CPU.
comment: 22 pages, 6 figures (and 17 pages, 3 figures in Appendix)
☆ Implementation of an Asymmetric Adjusted Activation Function for Class Imbalance Credit Scoring
Credit scoring is a systematic approach to evaluate a borrower's probability of default (PD) on a bank loan. The data associated with such scenarios are characteristically imbalanced, complicating binary classification owing to the often-underestimated cost of misclassification during the classifier's learning process. Considering the high imbalance ratio (IR) of these datasets, we introduce an innovative yet straightforward optimized activation function by incorporating an IR-dependent asymmetric adjusted factor embedded Sigmoid activation function (ASIG). The embedding of ASIG makes the sensitive margin of the Sigmoid function auto-adjustable, depending on the imbalance nature of the datasets distributed, thereby giving the activation function an asymmetric characteristic that prevents the underrepresentation of the minority class (positive samples) during the classifier's learning process. The experimental results show that the ASIG-embedded-classifier outperforms traditional classifiers on datasets across wide-ranging IRs in the downstream credit-scoring task. The algorithm also shows robustness and stability, even when the IR is ultra-high. Therefore, the algorithm provides a competitive alternative in the financial industry, especially in credit scoring, possessing the ability to effectively process highly imbalanced distribution data.
☆ MoGERNN: An Inductive Traffic Predictor for Unobserved Locations in Dynamic Sensing Networks
Given a partially observed road network, how can we predict the traffic state of unobserved locations? While deep learning approaches show exceptional performance in traffic prediction, most assume sensors at all locations of interest, which is impractical due to financial constraints. Furthermore, these methods typically require costly retraining when sensor configurations change. We propose MoGERNN, an inductive spatio-temporal graph representation model, to address these challenges. Inspired by the Mixture of Experts approach in Large Language Models, we introduce a Mixture of Graph Expert (MoGE) block to model complex spatial dependencies through multiple graph message aggregators and a sparse gating network. This block estimates initial states for unobserved locations, which are then processed by a GRU-based Encoder-Decoder that integrates a graph message aggregator to capture spatio-temporal dependencies and predict future states. Experiments on two real-world datasets show MoGERNN consistently outperforms baseline methods for both observed and unobserved locations. MoGERNN can accurately predict congestion evolution even in areas without sensors, offering valuable information for traffic management. Moreover, MoGERNN is adaptable to dynamic sensing networks, maintaining competitive performance even compared to its retrained counterpart. Tests with different numbers of available sensors confirm its consistent superiority, and ablation studies validate the effectiveness of its key modules.
☆ With Great Backbones Comes Great Adversarial Transferability
Advances in self-supervised learning (SSL) for machine vision have improved representation robustness and model performance, giving rise to pre-trained backbones like \emph{ResNet} and \emph{ViT} models tuned with SSL methods such as \emph{SimCLR}. Due to the computational and data demands of pre-training, the utilization of such backbones becomes a strenuous necessity. However, employing these backbones may inherit vulnerabilities to adversarial attacks. While adversarial robustness has been studied under \emph{white-box} and \emph{black-box} settings, the robustness of models tuned on pre-trained backbones remains largely unexplored. Additionally, the role of tuning meta-information in mitigating exploitation risks is unclear. This work systematically evaluates the adversarial robustness of such models across $20,000$ combinations of tuning meta-information, including fine-tuning techniques, backbone families, datasets, and attack types. We propose using proxy models to transfer attacks, simulating varying levels of target knowledge by fine-tuning these proxies with diverse configurations. Our findings reveal that proxy-based attacks approach the effectiveness of \emph{white-box} methods, even with minimal tuning knowledge. We also introduce a naive "backbone attack," leveraging only the backbone to generate adversarial samples, which outperforms \emph{black-box} attacks and rivals \emph{white-box} methods, highlighting critical risks in model-sharing practices. Finally, our ablations reveal how increasing tuning meta-information impacts attack transferability, measuring each meta-information combination.
☆ Memory Storyboard: Leveraging Temporal Segmentation for Streaming Self-Supervised Learning from Egocentric Videos
Self-supervised learning holds the promise to learn good representations from real-world continuous uncurated data streams. However, most existing works in visual self-supervised learning focus on static images or artificial data streams. Towards exploring a more realistic learning substrate, we investigate streaming self-supervised learning from long-form real-world egocentric video streams. Inspired by the event segmentation mechanism in human perception and memory, we propose "Memory Storyboard" that groups recent past frames into temporal segments for more effective summarization of the past visual streams for memory replay. To accommodate efficient temporal segmentation, we propose a two-tier memory hierarchy: the recent past is stored in a short-term memory, and the storyboard temporal segments are then transferred to a long-term memory. Experiments on real-world egocentric video datasets including SAYCam and KrishnaCam show that contrastive learning objectives on top of storyboard frames result in semantically meaningful representations which outperform those produced by state-of-the-art unsupervised continual learning methods.
comment: 20 pages, 8 figures
☆ FOCUS: First Order Concentrated Updating Scheme
Large language models (LLMs) demonstrate remarkable performance, and improving their pre-training process appears to be key to enhancing their capabilities further. Based on the documented success of Adam, learning rate decay, and weight decay, we hypothesize that the pre-training loss landscape features a narrowing valley structure. Through experiments with synthetic loss functions, we discover that when gradient query noise is high relative to the valley's sharpness, Adam's performance falls behind that of Signum because Adam reduces the effective step size too drastically. This observation led us to develop FOCUS, an optimizer that enhances Signum by incorporating attraction toward moving averaged parameters, allowing it to handle noise better while maintaining larger step sizes. In training GPT-2, FOCUS proves to be more stable than Signum and faster than Adam. These results suggest that gradient noise may be an underappreciated limiting factor in LLM training, and FOCUS offers promising solutions.
comment: 19 pages, 8 figures
☆ Fast sparse optimization via adaptive shrinkage
The need for fast sparse optimization is emerging, e.g., to deal with large-dimensional data-driven problems and to track time-varying systems. In the framework of linear sparse optimization, the iterative shrinkage-thresholding algorithm is a valuable method to solve Lasso, which is particularly appreciated for its ease of implementation. Nevertheless, it converges slowly. In this paper, we develop a proximal method, based on logarithmic regularization, which turns out to be an iterative shrinkage-thresholding algorithm with adaptive shrinkage hyperparameter. This adaptivity substantially enhances the trajectory of the algorithm, in a way that yields faster convergence, while keeping the simplicity of the original method. Our contribution is twofold: on the one hand, we derive and analyze the proposed algorithm; on the other hand, we validate its fast convergence via numerical experiments and we discuss the performance with respect to state-of-the-art algorithms.
☆ CDW-CoT: Clustered Distance-Weighted Chain-of-Thoughts Reasoning
Large Language Models (LLMs) have recently achieved impressive results in complex reasoning tasks through Chain of Thought (CoT) prompting. However, most existing CoT methods rely on using the same prompts, whether manually designed or automatically generated, to handle the entire dataset. This one-size-fits-all approach may fail to meet the specific needs arising from the diversities within a single dataset. To solve this problem, we propose the Clustered Distance-Weighted Chain of Thought (CDW-CoT) method, which dynamically constructs prompts tailored to the characteristics of each data instance by integrating clustering and prompt optimization techniques. Our method employs clustering algorithms to categorize the dataset into distinct groups, from which a candidate pool of prompts is selected to reflect the inherent diversity within the dataset. For each cluster, CDW-CoT trains the optimal prompt probability distribution tailored to their specific characteristics. Finally, it dynamically constructs a unique prompt probability distribution for each test instance, based on its proximity to cluster centers, from which prompts are selected for reasoning. CDW-CoT consistently outperforms traditional CoT methods across six datasets, including commonsense, symbolic, and mathematical reasoning tasks. Specifically, when compared to manual CoT, CDW-CoT achieves an average accuracy improvement of 25.34% on LLaMA2 (13B) and 15.72% on LLaMA3 (8B).
comment: aaai25(poster)
☆ Early Detection and Classification of Breast Cancer Using Deep Learning Techniques
Breast cancer is one of the deadliest cancers causing about massive number of patients to die annually all over the world according to the WHO. It is a kind of cancer that develops when the tissues of the breast grow rapidly and unboundly. This fatality rate can be prevented if the cancer is detected before it gets malignant. Using automation for early-age detection of breast cancer, Artificial Intelligence and Machine Learning technologies can be implemented for the best outcome. In this study, we are using the Breast Cancer Image Classification dataset collected from the Kaggle depository, which comprises 9248 Breast Ultrasound Images and is classified into three categories: Benign, Malignant, and Normal which refers to non-cancerous, cancerous, and normal images.This research introduces three pretrained model featuring custom classifiers that includes ResNet50, MobileNet, and VGG16, along with a custom CNN model utilizing the ReLU activation function.The models ResNet50, MobileNet, VGG16, and a custom CNN recorded accuracies of 98.41%, 97.91%, 98.19%, and 92.94% on the dataset, correspondingly, with ResNet50 achieving the highest accuracy of 98.41%.This model, with its deep and powerful architecture, is particularly successful in detecting aberrant cells as well as cancerous or non-cancerous tumors. These accuracies show that the Machine Learning methods are more compatible for the classification and early detection of breast cancer.
☆ RL-RC-DoT: A Block-level RL agent for Task-Aware Video Compression
Video encoders optimize compression for human perception by minimizing reconstruction error under bit-rate constraints. In many modern applications such as autonomous driving, an overwhelming majority of videos serve as input for AI systems performing tasks like object recognition or segmentation, rather than being watched by humans. It is therefore useful to optimize the encoder for a downstream task instead of for perceptual image quality. However, a major challenge is how to combine such downstream optimization with existing standard video encoders, which are highly efficient and popular. Here, we address this challenge by controlling the Quantization Parameters (QPs) at the macro-block level to optimize the downstream task. This granular control allows us to prioritize encoding for task-relevant regions within each frame. We formulate this optimization problem as a Reinforcement Learning (RL) task, where the agent learns to balance long-term implications of choosing QPs on both task performance and bit-rate constraints. Notably, our policy does not require the downstream task as an input during inference, making it suitable for streaming applications and edge devices such as vehicles. We demonstrate significant improvements in two tasks, car detection, and ROI (saliency) encoding. Our approach improves task performance for a given bit rate compared to traditional task agnostic encoding methods, paving the way for more efficient task-aware video compression.
☆ Automatic selection of the best neural architecture for time series forecasting via multi-objective optimization and Pareto optimality conditions
Time series forecasting plays a pivotal role in a wide range of applications, including weather prediction, healthcare, structural health monitoring, predictive maintenance, energy systems, and financial markets. While models such as LSTM, GRU, Transformers, and State-Space Models (SSMs) have become standard tools in this domain, selecting the optimal architecture remains a challenge. Performance comparisons often depend on evaluation metrics and the datasets under analysis, making the choice of a universally optimal model controversial. In this work, we introduce a flexible automated framework for time series forecasting that systematically designs and evaluates diverse network architectures by integrating LSTM, GRU, multi-head Attention, and SSM blocks. Using a multi-objective optimization approach, our framework determines the number, sequence, and combination of blocks to align with specific requirements and evaluation objectives. From the resulting Pareto-optimal architectures, the best model for a given context is selected via a user-defined preference function. We validate our framework across four distinct real-world applications. Results show that a single-layer GRU or LSTM is usually optimal when minimizing training time alone. However, when maximizing accuracy or balancing multiple objectives, the best architectures are often composite designs incorporating multiple block types in specific configurations. By employing a weighted preference function, users can resolve trade-offs between objectives, revealing novel, context-specific optimal architectures. Our findings underscore that no single neural architecture is universally optimal for time series forecasting. Instead, the best-performing model emerges as a data-driven composite architecture tailored to user-defined criteria and evaluation objectives.
comment: 35 pages, 8 figures
☆ Quantitative Error Bounds for Scaling Limits of Stochastic Iterative Algorithms
Stochastic iterative algorithms, including stochastic gradient descent (SGD) and stochastic gradient Langevin dynamics (SGLD), are widely utilized for optimization and sampling in large-scale and high-dimensional problems in machine learning, statistics, and engineering. Numerous works have bounded the parameter error in, and characterized the uncertainty of, these approximations. One common approach has been to use scaling limit analyses to relate the distribution of algorithm sample paths to a continuous-time stochastic process approximation, particularly in asymptotic setups. Focusing on the univariate setting, in this paper, we build on previous work to derive non-asymptotic functional approximation error bounds between the algorithm sample paths and the Ornstein-Uhlenbeck approximation using an infinite-dimensional version of Stein's method of exchangeable pairs. We show that this bound implies weak convergence under modest additional assumptions and leads to a bound on the error of the variance of the iterate averages of the algorithm. Furthermore, we use our main result to construct error bounds in terms of two common metrics: the L\'{e}vy-Prokhorov and bounded Wasserstein distances. Our results provide a foundation for developing similar error bounds for the multivariate setting and for more sophisticated stochastic approximation algorithms.
☆ Score Combining for Contrastive OOD Detection
In out-of-distribution (OOD) detection, one is asked to classify whether a test sample comes from a known inlier distribution or not. We focus on the case where the inlier distribution is defined by a training dataset and there exists no additional knowledge about the novelties that one is likely to encounter. This problem is also referred to as novelty detection, one-class classification, and unsupervised anomaly detection. The current literature suggests that contrastive learning techniques are state-of-the-art for OOD detection. We aim to improve on those techniques by combining/ensembling their scores using the framework of null hypothesis testing and, in particular, a novel generalized likelihood ratio test (GLRT). We demonstrate that our proposed GLRT-based technique outperforms the state-of-the-art CSI and SupCSI techniques from Tack et al. 2020 in dataset-vs-dataset experiments with CIFAR-10, SVHN, LSUN, ImageNet, and CIFAR-100, as well as leave-one-class-out experiments with CIFAR-10. We also demonstrate that our GLRT outperforms the score-combining methods of Fisher, Bonferroni, Simes, Benjamini-Hochwald, and Stouffer in our application.
☆ Experience-replay Innovative Dynamics
Despite its groundbreaking success, multi-agent reinforcement learning (MARL) still suffers from instability and nonstationarity. Replicator dynamics, the most well-known model from evolutionary game theory (EGT), provide a theoretical framework for the convergence of the trajectories to Nash equilibria and, as a result, have been used to ensure formal guarantees for MARL algorithms in stable game settings. However, they exhibit the opposite behavior in other settings, which poses the problem of finding alternatives to ensure convergence. In contrast, innovative dynamics, such as the Brown-von Neumann-Nash (BNN) or Smith, result in periodic trajectories with the potential to approximate Nash equilibria. Yet, no MARL algorithms based on these dynamics have been proposed. In response to this challenge, we develop a novel experience replay-based MARL algorithm that incorporates revision protocols as tunable hyperparameters. We demonstrate, by appropriately adjusting the revision protocols, that the behavior of our algorithm mirrors the trajectories resulting from these dynamics. Importantly, our contribution provides a framework capable of extending the theoretical guarantees of MARL algorithms beyond replicator dynamics. Finally, we corroborate our theoretical findings with empirical results.
☆ An End-to-End Approach for Korean Wakeword Systems with Speaker Authentication
Wakeword detection plays a critical role in enabling AI assistants to listen to user voices and interact effectively. However, for languages other than English, there is a significant lack of pre-trained wakeword models. Additionally, systems that merely determine the presence of a wakeword can pose serious privacy concerns. In this paper, we propose an end-to-end approach that trains wakewords for Non-English languages, particulary Korean, and uses this to develop a Voice Authentication model to protect user privacy. Our implementation employs an open-source platform OpenWakeWord, which performs wakeword detection using an FCN (Fully-Connected Network) architecture. Once a wakeword is detected, our custom-developed code calculates cosine similarity for robust user authentication. Experimental results demonstrate the effectiveness of our approach, achieving a 16.79% and a 6.6% Equal Error Rate (EER) each in the Wakeword Detection and the Voice Authentication. These findings highlight the model's potential in providing secure and accurate wakeword detection and authentication for Korean users.
comment: 19 pages, 10 figures, implementation code available at https://github.com/gws8820/securewakeword-model, https://github.com/gws8820/wyoming-securewakeword, demo video at https://www.youtube.com/watch?v=F3AXUbL-i-o
☆ MyDigiTwin: A Privacy-Preserving Framework for Personalized Cardiovascular Risk Prediction and Scenario Exploration
Cardiovascular disease (CVD) remains a leading cause of death, and primary prevention through personalized interventions is crucial. This paper introduces MyDigiTwin, a framework that integrates health digital twins with personal health environments to empower patients in exploring personalized health scenarios while ensuring data privacy. MyDigiTwin uses federated learning to train predictive models across distributed datasets without transferring raw data, and a novel data harmonization framework addresses semantic and format inconsistencies in health data. A proof-of-concept demonstrates the feasibility of harmonizing and using cohort data to train privacy-preserving CVD prediction models. This framework offers a scalable solution for proactive, personalized cardiovascular care and sets the stage for future applications in real-world healthcare settings.
☆ A margin-based replacement for cross-entropy loss
Cross-entropy (CE) loss is the de-facto standard for training deep neural networks to perform classification. However, CE-trained deep neural networks struggle with robustness and generalisation issues. To alleviate these issues, we propose high error margin (HEM) loss, a variant of multi-class margin loss that overcomes the training issues of other margin-based losses. We evaluate HEM extensively on a range of architectures and datasets. We find that HEM loss is more effective than cross-entropy loss across a wide range of tasks: unknown class rejection, adversarial robustness, learning with imbalanced data, continual learning, and semantic segmentation (a pixel-level classification task). Despite all training hyper-parameters being chosen for CE loss, HEM is inferior to CE only in terms of clean accuracy and this difference is insignificant. We also compare HEM to specialised losses that have previously been proposed to improve performance on specific tasks. LogitNorm, a loss achieving state-of-the-art performance on unknown class rejection, produces similar performance to HEM for this task, but is much poorer for continual learning and semantic segmentation. Logit-adjusted loss, designed for imbalanced data, has superior results to HEM for that task, but performs more poorly on unknown class rejection and semantic segmentation. DICE, a popular loss for semantic segmentation, is inferior to HEM loss on all tasks, including semantic segmentation. Thus, HEM often out-performs specialised losses, and in contrast to them, is a general-purpose replacement for CE loss.
comment: Code: https://codeberg.org/mwspratling/HEMLoss
☆ MirrorCBO: A consensus-based optimization method in the spirit of mirror descent
In this work we propose MirrorCBO, a consensus-based optimization (CBO) method which generalizes standard CBO in the same way that mirror descent generalizes gradient descent. For this we apply the CBO methodology to a swarm of dual particles and retain the primal particle positions by applying the inverse of the mirror map, which we parametrize as the subdifferential of a strongly convex function $\phi$. In this way, we combine the advantages of a derivative-free non-convex optimization algorithm with those of mirror descent. As a special case, the method extends CBO to optimization problems with convex constraints. Assuming bounds on the Bregman distance associated to $\phi$, we provide asymptotic convergence results for MirrorCBO with explicit exponential rate. Another key contribution is an exploratory numerical study of this new algorithm across different application settings, focusing on (i) sparsity-inducing optimization, and (ii) constrained optimization, demonstrating the competitive performance of MirrorCBO. We observe empirically that the method can also be used for optimization on (non-convex) submanifolds of Euclidean space, can be adapted to mirrored versions of other recent CBO variants, and that it inherits from mirror descent the capability to select desirable minimizers, like sparse ones. We also include an overview of recent CBO approaches for constrained optimization and compare their performance to MirrorCBO.
comment: 64 pages, 18 figures, 19 tables
☆ BiMarker: Enhancing Text Watermark Detection for Large Language Models with Bipolar Watermarks
The rapid proliferation of Large Language Models (LLMs) has raised concerns about misuse and the challenges of distinguishing AI-generated text from human-written content. Existing watermarking techniques, such as \kgw, still face limitations under low watermark strength, stringent false-positive requirements, and low-entropy scenarios. Our analysis reveals that current detection methods rely on coarse estimates of non-watermarked text, which constrains watermark detectability. We propose the Bipolar Watermark (BiMarker), a novel approach that divides generated text into positive and negative poles, leveraging the difference in green token counts for detection. This differential mechanism significantly enhances the detectability of watermarked text. Theoretical analysis and experimental results demonstrate BiMarker's effectiveness and compatibility with existing optimization techniques, offering a new optimization dimension for watermarking in LLM-generated content.
☆ Beyond Window-Based Detection: A Graph-Centric Framework for Discrete Log Anomaly Detection
Detecting anomalies in discrete event logs is critical for ensuring system reliability, security, and efficiency. Traditional window-based methods for log anomaly detection often suffer from context bias and fuzzy localization, which hinder their ability to precisely and efficiently identify anomalies. To address these challenges, we propose a graph-centric framework, TempoLog, which leverages multi-scale temporal graph networks for discrete log anomaly detection. Unlike conventional methods, TempoLog constructs continuous-time dynamic graphs directly from event logs, eliminating the need for fixed-size window grouping. By representing log templates as nodes and their temporal relationships as edges, the framework dynamically captures both local and global dependencies across multiple temporal scales. Additionally, a semantic-aware model enhances detection by incorporating rich contextual information. Extensive experiments on public datasets demonstrate that our method achieves state-of-the-art performance in event-level anomaly detection, significantly outperforming existing approaches in both accuracy and efficiency.
☆ AdaServe: SLO-Customized LLM Serving with Fine-Grained Speculative Decoding
This paper introduces AdaServe, the first LLM serving system to support SLO customization through fine-grained speculative decoding. AdaServe leverages the logits of a draft model to predict the speculative accuracy of tokens and employs a theoretically optimal algorithm to construct token trees for verification. To accommodate diverse SLO requirements without compromising throughput, AdaServe employs a speculation-and-selection scheme that first constructs candidate token trees for each request and then dynamically selects tokens to meet individual SLO constraints while optimizing throughput. Comprehensive evaluations demonstrate that AdaServe achieves up to 73% higher SLO attainment and 74% higher goodput compared to state-of-the-art systems. These results underscore AdaServe's potential to enhance the efficiency and adaptability of LLM deployments across varied application scenarios.
☆ Improving Influence-based Instruction Tuning Data Selection for Balanced Learning of Diverse Capabilities
Selecting appropriate training data is crucial for effective instruction fine-tuning of large language models (LLMs), which aims to (1) elicit strong capabilities, and (2) achieve balanced performance across a diverse range of tasks. Influence-based methods show promise in achieving (1) by estimating the contribution of each training example to the model's predictions, but often struggle with (2). Our systematic investigation reveals that this underperformance can be attributed to an inherent bias where certain tasks intrinsically have greater influence than others. As a result, data selection is often biased towards these tasks, not only hurting the model's performance on others but also, counterintuitively, harms performance on these high-influence tasks themselves. As a remedy, we propose BIDS, a Balanced and Influential Data Selection algorithm. BIDS first normalizes influence scores of the training data, and then iteratively balances data selection by choosing the training example with the highest influence on the most underrepresented task. Experiments with both Llama-3 and Mistral-v0.3 on seven benchmarks spanning five diverse capabilities show that BIDS consistently outperforms both state-of-the-art influence-based algorithms and other non-influence-based selection frameworks. Surprisingly, training on a 15% subset selected by BIDS can even outperform full-dataset training with a much more balanced performance. Our analysis further highlights the importance of both instance-level normalization and iterative optimization of selected data for balanced learning of diverse capabilities.
☆ Heterogeneous Federated Learning Systems for Time-Series Power Consumption Prediction with Multi-Head Embedding Mechanism
Time-series prediction is increasingly popular in a variety of applications, such as smart factories and smart transportation. Researchers have used various techniques to predict power consumption, but existing models lack discussion of collaborative learning and privacy issues among multiple clients. To address these issues, we propose Multi-Head Heterogeneous Federated Learning (MHHFL) systems that consist of multiple head networks, which independently act as carriers for federated learning. In the federated period, each head network is embedded into 2-dimensional vectors and shared with the centralized source pool. MHHFL then selects appropriate source networks and blends the head networks as knowledge transfer in federated learning. The experimental results show that the proposed MHHFL systems significantly outperform the benchmark and state-of-the-art systems and reduce the prediction error by 24.9% to 94.1%. The ablation studies demonstrate the effectiveness of the proposed mechanisms in the MHHFL (head network embedding and selection mechanisms), which significantly outperforms traditional federated average and random transfer.
☆ Distributed Multi-Head Learning Systems for Power Consumption Prediction
As more and more automatic vehicles, power consumption prediction becomes a vital issue for task scheduling and energy management. Most research focuses on automatic vehicles in transportation, but few focus on automatic ground vehicles (AGVs) in smart factories, which face complex environments and generate large amounts of data. There is an inevitable trade-off between feature diversity and interference. In this paper, we propose Distributed Multi-Head learning (DMH) systems for power consumption prediction in smart factories. Multi-head learning mechanisms are proposed in DMH to reduce noise interference and improve accuracy. Additionally, DMH systems are designed as distributed and split learning, reducing the client-to-server transmission cost, sharing knowledge without sharing local data and models, and enhancing the privacy and security levels. Experimental results show that the proposed DMH systems rank in the top-2 on most datasets and scenarios. DMH-E system reduces the error of the state-of-the-art systems by 14.5% to 24.0%. Effectiveness studies demonstrate the effectiveness of Pearson correlation-based feature engineering, and feature grouping with the proposed multi-head learning further enhances prediction performance.
☆ Heterogeneous Federated Learning System for Sparse Healthcare Time-Series Prediction
In this paper, we propose a heterogeneous federated learning (HFL) system for sparse time series prediction in healthcare, which is a decentralized federated learning algorithm with heterogeneous transfers. We design dense and sparse feature tensors to deal with the sparsity of data sources. Heterogeneous federated learning is developed to share asynchronous parts of networks and select appropriate models for knowledge transfer. Experimental results show that the proposed HFL achieves the lowest prediction error among all benchmark systems on eight out of ten prediction tasks, with MSE reduction of 94.8%, 48.3%, and 52.1% compared to the benchmark systems. These results demonstrate the effectiveness of HFL in transferring knowledge from heterogeneous domains, especially in the smaller target domain. Ablation studies then demonstrate the effectiveness of the designed mechanisms for heterogeneous domain selection and switching in predicting healthcare time series with privacy, model security, and heterogeneous knowledge transfer.
☆ Optimally-Weighted Maximum Mean Discrepancy Framework for Continual Learning
Continual learning has emerged as a pivotal area of research, primarily due to its advantageous characteristic that allows models to persistently acquire and retain information. However, catastrophic forgetting can severely impair model performance. In this study, we tackle the issue of network forgetting by introducing a novel framework termed Optimally-Weighted Maximum Mean Discrepancy (OWMMD), which imposes penalties on representation alterations via a Multi-Level Feature Matching Mechanism (MLFMM). Furthermore, we propose an Adaptive Regularization Optimization (ARO) strategy to refine the adaptive weight vectors, which autonomously assess the significance of each feature layer throughout the optimization process. We conduct a comprehensive series of experiments, benchmarking our proposed method against several established baselines. The empirical findings indicate that our approach achieves state-of-the-art performance.
☆ ENTIRE: Learning-based Volume Rendering Time Prediction
We present ENTIRE, a novel approach for volume rendering time prediction. Time-dependent volume data from simulations or experiments typically comprise complex deforming structures across hundreds or thousands of time steps, which in addition to the camera configuration has a significant impact on rendering performance. We first extract a feature vector from a volume that captures its structure that is relevant for rendering time performance. Then we combine this feature vector with further relevant parameters (e.g. camera setup), and with this perform the final prediction. Our experiments conducted on various datasets demonstrate that our model is capable of efficiently achieving high prediction accuracy with fast response rates. We showcase ENTIRE's capability of enabling dynamic parameter adaptation for stable frame rates and load balancing in two case studies.
☆ Regularized dynamical parametric approximation of stiff evolution problems
Evolutionary deep neural networks have emerged as a rapidly growing field of research. This paper studies numerical integrators for such and other classes of nonlinear parametrizations $ u(t) = \Phi(\theta(t)) $, where the evolving parameters $\theta(t)$ are to be computed. The primary focus is on tackling the challenges posed by the combination of stiff evolution problems and irregular parametrizations, which typically arise with neural networks, tensor networks, flocks of evolving Gaussians, and in further cases of overparametrization. We propose and analyse regularized parametric versions of the implicit Euler method and higher-order implicit Runge--Kutta methods for the time integration of the parameters in nonlinear approximations to evolutionary partial differential equations and large systems of stiff ordinary differential equations. At each time step, an ill-conditioned nonlinear optimization problem is solved approximately with a few regularized Gauss--Newton iterations. Error bounds for the resulting parametric integrator are derived by relating the computationally accessible Gauss--Newton iteration for the parameters to the computationally inaccessible Newton iteration for the underlying non-parametric time integration scheme. The theoretical findings are supported by numerical experiments that are designed to show key properties of the proposed parametric integrators.
comment: 33 pages, 22 figures
☆ Efficient PINNs: Multi-Head Unimodular Regularization of the Solutions Space
We present a machine learning framework to facilitate the solution of nonlinear multiscale differential equations and, especially, inverse problems using Physics-Informed Neural Networks (PINNs). This framework is based on what is called multihead (MH) training, which involves training the network to learn a general space of all solutions for a given set of equations with certain variability, rather than learning a specific solution of the system. This setup is used with a second novel technique that we call Unimodular Regularization (UR) of the latent space of solutions. We show that the multihead approach, combined with the regularization, significantly improves the efficiency of PINNs by facilitating the transfer learning process thereby enabling the finding of solutions for nonlinear, coupled, and multiscale differential equations.
☆ Meta-Sparsity: Learning Optimal Sparse Structures in Multi-task Networks through Meta-learning
This paper presents meta-sparsity, a framework for learning model sparsity, basically learning the parameter that controls the degree of sparsity, that allows deep neural networks (DNNs) to inherently generate optimal sparse shared structures in multi-task learning (MTL) setting. This proposed approach enables the dynamic learning of sparsity patterns across a variety of tasks, unlike traditional sparsity methods that rely heavily on manual hyperparameter tuning. Inspired by Model Agnostic Meta-Learning (MAML), the emphasis is on learning shared and optimally sparse parameters in multi-task scenarios by implementing a penalty-based, channel-wise structured sparsity during the meta-training phase. This method improves the model's efficacy by removing unnecessary parameters and enhances its ability to handle both seen and previously unseen tasks. The effectiveness of meta-sparsity is rigorously evaluated by extensive experiments on two datasets, NYU-v2 and CelebAMask-HQ, covering a broad spectrum of tasks ranging from pixel-level to image-level predictions. The results show that the proposed approach performs well across many tasks, indicating its potential as a versatile tool for creating efficient and adaptable sparse neural networks. This work, therefore, presents an approach towards learning sparsity, contributing to the efforts in the field of sparse neural networks and suggesting new directions for research towards parsimonious models.
☆ Dual NUP Representations and Min-Maximization in Factor Graphs
Normals with unknown parameters (NUP) can be used to convert nontrivial model-based estimation problems into iterations of linear least-squares or Gaussian estimation problems. In this paper, we extend this approach by augmenting factor graphs with convex-dual variables and pertinent NUP representations. In particular, in a state space setting, we propose a new iterative forward-backward algorithm that is dual to a recently proposed backward-forward algorithm.
☆ Proxies for Distortion and Consistency with Applications for Real-World Image Restoration
Real-world image restoration deals with the recovery of images suffering from an unknown degradation. This task is typically addressed while being given only degraded images, without their corresponding ground-truth versions. In this hard setting, designing and evaluating restoration algorithms becomes highly challenging. This paper offers a suite of tools that can serve both the design and assessment of real-world image restoration algorithms. Our work starts by proposing a trained model that predicts the chain of degradations a given real-world measured input has gone through. We show how this estimator can be used to approximate the consistency -- the match between the measurements and any proposed recovered image. We also use this estimator as a guiding force for the design of a simple and highly-effective plug-and-play real-world image restoration algorithm, leveraging a pre-trained diffusion-based image prior. Furthermore, this work proposes no-reference proxy measures of MSE and LPIPS, which, without access to the ground-truth images, allow ranking of real-world image restoration algorithms according to their (approximate) MSE and LPIPS. The proposed suite provides a versatile, first of its kind framework for evaluating and comparing blind image restoration algorithms in real-world scenarios.
comment: Project page in https://man-sean.github.io/elad-website/
☆ Scalable Whole Slide Image Representation Using K-Mean Clustering and Fisher Vector Aggregation
Whole slide images (WSIs) are high-resolution, gigapixel sized images that pose significant computational challenges for traditional machine learning models due to their size and heterogeneity.In this paper, we present a scalable and efficient methodology for WSI classification by leveraging patch-based feature extraction, clustering, and Fisher vector encoding. Initially, WSIs are divided into fixed size patches, and deep feature embeddings are extracted from each patch using a pre-trained convolutional neural network (CNN). These patch-level embeddings are subsequently clustered using K-means clustering, where each cluster aggregates semantically similar regions of the WSI. To effectively summarize each cluster, Fisher vector representations are computed by modeling the distribution of patch embeddings in each cluster as a parametric Gaussian mixture model (GMM). The Fisher vectors from each cluster are concatenated into a high-dimensional feature vector, creating a compact and informative representation of the entire WSI. This feature vector is then used by a classifier to predict the WSI's diagnostic label. Our method captures local and global tissue structures and yields robust performance for large-scale WSI classification, demonstrating superior accuracy and scalability compared to other approaches.
☆ Optimizing Portfolio Performance through Clustering and Sharpe Ratio-Based Optimization: A Comparative Backtesting Approach
Optimizing portfolio performance is a fundamental challenge in financial modeling, requiring the integration of advanced clustering techniques and data-driven optimization strategies. This paper introduces a comparative backtesting approach that combines clustering-based portfolio segmentation and Sharpe ratio-based optimization to enhance investment decision-making. First, we segment a diverse set of financial assets into clusters based on their historical log-returns using K-Means clustering. This segmentation enables the grouping of assets with similar return characteristics, facilitating targeted portfolio construction. Next, for each cluster, we apply a Sharpe ratio-based optimization model to derive optimal weights that maximize risk-adjusted returns. Unlike traditional mean-variance optimization, this approach directly incorporates the trade-off between returns and volatility, resulting in a more balanced allocation of resources within each cluster. The proposed framework is evaluated through a backtesting study using historical data spanning multiple asset classes. Optimized portfolios for each cluster are constructed and their cumulative returns are compared over time against a traditional equal-weighted benchmark portfolio.
☆ EDoRA: Efficient Weight-Decomposed Low-Rank Adaptation via Singular Value Decomposition
Parameter-efficient fine-tuning methods, such as LoRA, reduces the number of trainable parameters. However, they often suffer from scalability issues and differences between their learning pattern and full fine-tuning. To overcome these limitations, we propose Efficient Weight-Decomposed Low-Rank Adaptation (EDoRA): a novel PEFT method that decomposes pre-trained weights into magnitude and directional components. By freezing low-rank matrices, initializing them by singular value decomposition, and introducing a small trainable matrix between them, EDoRA achieves substantial reduction in trainable parameters while maintaining learning capacity. Experimental results on the GLUE benchmark demonstrate that EDoRA achieves competitive or superior performance compared to state-of-the-art methods, such as LoRA and DoRA, with up to 30x fewer trainable parameters. This makes EDoRA a highly efficient solution for adapting LLMs to diverse tasks under memory-constrained settings. Code is available at https://github.com/Hamid-Nasiri/EDoRA .
comment: 10 pages, 4 figures, 4 tables
☆ Tackling Uncertainties in Multi-Agent Reinforcement Learning through Integration of Agent Termination Dynamics
Multi-Agent Reinforcement Learning (MARL) has gained significant traction for solving complex real-world tasks, but the inherent stochasticity and uncertainty in these environments pose substantial challenges to efficient and robust policy learning. While Distributional Reinforcement Learning has been successfully applied in single-agent settings to address risk and uncertainty, its application in MARL is substantially limited. In this work, we propose a novel approach that integrates distributional learning with a safety-focused loss function to improve convergence in cooperative MARL tasks. Specifically, we introduce a Barrier Function based loss that leverages safety metrics, identified from inherent faults in the system, into the policy learning process. This additional loss term helps mitigate risks and encourages safer exploration during the early stages of training. We evaluate our method in the StarCraft II micromanagement benchmark, where our approach demonstrates improved convergence and outperforms state-of-the-art baselines in terms of both safety and task completion. Our results suggest that incorporating safety considerations can significantly enhance learning performance in complex, multi-agent environments.
☆ Aggrotech: Leveraging Deep Learning for Sustainable Tomato Disease Management
Tomato crop health plays a critical role in ensuring agricultural productivity and food security. Timely and accurate detection of diseases affecting tomato plants is vital for effective disease management. In this study, we propose a deep learning-based approach for Tomato Leaf Disease Detection using two well-established convolutional neural networks (CNNs), namely VGG19 and Inception v3. The experiment is conducted on the Tomato Villages Dataset, encompassing images of both healthy tomato leaves and leaves afflicted by various diseases. The VGG19 model is augmented with fully connected layers, while the Inception v3 model is modified to incorporate a global average pooling layer and a dense classification layer. Both models are trained on the prepared dataset, and their performances are evaluated on a separate test set. This research employs VGG19 and Inception v3 models on the Tomato Villages dataset (4525 images) for tomato leaf disease detection. The models' accuracy of 93.93% with dropout layers demonstrates their usefulness for crop health monitoring. The paper suggests a deep learning-based strategy that includes normalization, resizing, dataset preparation, and unique model architectures. During training, VGG19 and Inception v3 serve as feature extractors, with possible data augmentation and fine-tuning. Metrics like accuracy, precision, recall, and F1 score are obtained through evaluation on a test set and offer important insights into the strengths and shortcomings of the model. The method has the potential for practical use in precision agriculture and could help tomato crops prevent illness early on.
comment: 10 pages, 6 figures, ROC curves, confusion matrix analysis, and classification reports
☆ Parameterised Quantum Circuits for Novel Representation Learning in Speech Emotion Recognition
Speech Emotion Recognition (SER) is a complex and challenging task in human-computer interaction due to the intricate dependencies of features and the overlapping nature of emotional expressions conveyed through speech. Although traditional deep learning methods have shown effectiveness, they often struggle to capture subtle emotional variations and overlapping states. This paper introduces a hybrid classical-quantum framework that integrates Parameterised Quantum Circuits (PQCs) with conventional Convolutional Neural Network (CNN) architectures. By leveraging quantum properties such as superposition and entanglement, the proposed model enhances feature representation and captures complex dependencies more effectively than classical methods. Experimental evaluations conducted on benchmark datasets, including IEMOCAP, RECOLA, and MSP-Improv, demonstrate that the hybrid model achieves higher accuracy in both binary and multi-class emotion classification while significantly reducing the number of trainable parameters. While a few existing studies have explored the feasibility of using Quantum Circuits to reduce model complexity, none have successfully shown how they can enhance accuracy. This study is the first to demonstrate that Quantum Circuits has the potential to improve the accuracy of SER. The findings highlight the promise of QML to transform SER, suggesting a promising direction for future research and practical applications in emotion-aware systems.
☆ Communication-Efficient and Privacy-Adaptable Mechanism for Federated Learning
Training machine learning models on decentralized private data via federated learning (FL) poses two key challenges: communication efficiency and privacy protection. In this work, we address these challenges within the trusted aggregator model by introducing a novel approach called the Communication-Efficient and Privacy-Adaptable Mechanism (CEPAM), achieving both objectives simultaneously. In particular, CEPAM leverages the rejection-sampled universal quantizer (RSUQ), a construction of randomized vector quantizer whose resulting distortion is equivalent to a prescribed noise, such as Gaussian or Laplace noise, enabling joint differential privacy and compression. Moreover, we analyze the trade-offs among user privacy, global utility, and transmission rate of CEPAM by defining appropriate metrics for FL with differential privacy and compression. Our CEPAM provides the additional benefit of privacy adaptability, allowing clients and the server to customize privacy protection based on required accuracy and protection. We assess CEPAM's utility performance using MNIST dataset, demonstrating that CEPAM surpasses baseline models in terms of learning accuracy.
comment: 18 pages, 3 figures, Submitted to 2025 IEEE International Symposium on Information Theory
☆ In-Network Preprocessing of Recommender Systems on Multi-Tenant SmartNICs
Keeping ML-based recommender models up-to-date as data drifts and evolves is essential to maintain accuracy. As a result, online data preprocessing plays an increasingly important role in serving recommender systems. Existing solutions employ multiple CPU workers to saturate the input bandwidth of a single training node. Such an approach results in high deployment costs and energy consumption. For instance, a recent report from industrial deployments shows that data storage and ingestion pipelines can account for over 60\% of the power consumption in a recommender system. In this paper, we tackle the issue from a hardware perspective by introducing Piper, a flexible and network-attached accelerator that executes data loading and preprocessing pipelines in a streaming fashion. As part of the design, we define MiniPipe, the smallest pipeline unit enabling multi-pipeline implementation by executing various data preprocessing tasks across the single board, giving Piper the ability to be reconfigured at runtime. Our results, using publicly released commercial pipelines, show that Piper, prototyped on a power-efficient FPGA, achieves a 39$\sim$105$\times$ speedup over a server-grade, 128-core CPU and 3$\sim$17$\times$ speedup over GPUs like RTX 3090 and A100 in multiple pipelines. The experimental analysis demonstrates that Piper provides advantages in both latency and energy efficiency for preprocessing tasks in recommender systems, providing an alternative design point for systems that today are in very high demand.
☆ Advancing Earth Observation: A Survey on AI-Powered Image Processing in Satellites
Advancements in technology and reduction in it's cost have led to a substantial growth in the quality & quantity of imagery captured by Earth Observation (EO) satellites. This has presented a challenge to the efficacy of the traditional workflow of transmitting this imagery to Earth for processing. An approach to addressing this issue is to use pre-trained artificial intelligence models to process images on-board the satellite, but this is difficult given the constraints within a satellite's environment. This paper provides an up-to-date and thorough review of research related to image processing on-board Earth observation satellites. The significant constraints are detailed along with the latest strategies to mitigate them.
comment: 13 pages, 7 figures
☆ Comparative Analysis of Pre-trained Deep Learning Models and DINOv2 for Cushing's Syndrome Diagnosis in Facial Analysis
Cushing's syndrome is a condition caused by excessive glucocorticoid secretion from the adrenal cortex, often manifesting with moon facies and plethora, making facial data crucial for diagnosis. Previous studies have used pre-trained convolutional neural networks (CNNs) for diagnosing Cushing's syndrome using frontal facial images. However, CNNs are better at capturing local features, while Cushing's syndrome often presents with global facial features. Transformer-based models like ViT and SWIN, which utilize self-attention mechanisms, can better capture long-range dependencies and global features. Recently, DINOv2, a foundation model based on visual Transformers, has gained interest. This study compares the performance of various pre-trained models, including CNNs, Transformer-based models, and DINOv2, in diagnosing Cushing's syndrome. We also analyze gender bias and the impact of freezing mechanisms on DINOv2. Our results show that Transformer-based models and DINOv2 outperformed CNNs, with ViT achieving the highest F1 score of 85.74%. Both the pre-trained model and DINOv2 had higher accuracy for female samples. DINOv2 also showed improved performance when freezing parameters. In conclusion, Transformer-based models and DINOv2 are effective for Cushing's syndrome classification.
☆ Are Traditional Deep Learning Model Approaches as Effective as a Retinal-Specific Foundation Model for Ocular and Systemic Disease Detection?
Background: RETFound, a self-supervised, retina-specific foundation model (FM), showed potential in downstream applications. However, its comparative performance with traditional deep learning (DL) models remains incompletely understood. This study aimed to evaluate RETFound against three ImageNet-pretrained supervised DL models (ResNet50, ViT-base, SwinV2) in detecting ocular and systemic diseases. Methods: We fine-tuned/trained RETFound and three DL models on full datasets, 50%, 20%, and fixed sample sizes (400, 200, 100 images, with half comprising disease cases; for each DR severity class, 100 and 50 cases were used. Fine-tuned models were tested internally using the SEED (53,090 images) and APTOS-2019 (3,672 images) datasets and externally validated on population-based (BES, CIEMS, SP2, UKBB) and open-source datasets (ODIR-5k, PAPILA, GAMMA, IDRiD, MESSIDOR-2). Model performance was compared using area under the receiver operating characteristic curve (AUC) and Z-tests with Bonferroni correction (P<0.05/3). Interpretation: Traditional DL models are mostly comparable to RETFound for ocular disease detection with large datasets. However, RETFound is superior in systemic disease detection with smaller datasets. These findings offer valuable insights into the respective merits and limitation of traditional models and FMs.
☆ TabularARGN: A Flexible and Efficient Auto-Regressive Framework for Generating High-Fidelity Synthetic Data
Synthetic data generation for tabular datasets must balance fidelity, efficiency, and versatility to meet the demands of real-world applications. We introduce the Tabular Auto-Regressive Generative Network (TabularARGN), a flexible framework designed to handle mixed-type, multivariate, and sequential datasets. By training on all possible conditional probabilities, TabularARGN supports advanced features such as fairness-aware generation, imputation, and conditional generation on any subset of columns. The framework achieves state-of-the-art synthetic data quality while significantly reducing training and inference times, making it ideal for large-scale datasets with diverse structures. Evaluated across established benchmarks, including realistic datasets with complex relationships, TabularARGN demonstrates its capability to synthesize high-quality data efficiently. By unifying flexibility and performance, this framework paves the way for practical synthetic data generation across industries.
☆ A note on the relations between mixture models, maximum-likelihood and entropic optimal transport
This note aims to demonstrate that performing maximum-likelihood estimation for a mixture model is equivalent to minimizing over the parameters an optimal transport problem with entropic regularization. The objective is pedagogical: we seek to present this already known result in a concise and hopefully simple manner. We give an illustration with Gaussian mixture models by showing that the standard EM algorithm is a specific block-coordinate descent on an optimal transport loss.
☆ Linear Feedback Control Systems for Iterative Prompt Optimization in Large Language Models
Large Language Models (LLMs) have revolutionized various applications by generating outputs based on given prompts. However, achieving the desired output requires iterative prompt refinement. This paper presents a novel approach that draws parallels between the iterative prompt optimization process in LLMs and feedback control systems. We iteratively refine the prompt by treating the deviation between the LLM output and the desired result as an error term until the output criteria are met. This process is akin to a feedback control system, where the LLM, despite being non-linear and non-deterministic, is managed using principles from linear feedback control systems. We explore the application of different types of controllers within this framework, providing a mathematical foundation for integrating linear feedback control mechanisms with LLMs.
☆ "FRAME: Forward Recursive Adaptive Model Extraction -- A Technique for Advance Feature Selection"
Feature selection is a crucial preprocessing step in machine learning, impacting model performance, interpretability, and computational efficiency. This study introduces a novel hybrid approach, the Forward Recursive Adaptive Model Extraction Technique (FRAME), which combines Forward Selection and Recursive Feature Elimination (RFE) to enhance feature selection across diverse datasets. FRAME integrates the strengths of both methods, balancing exploration and exploitation of features to optimize selection. A comprehensive evaluation of FRAME was conducted against traditional methods such as SelectKBest and Lasso Regression, using high-dimensional, noisy, and heterogeneous datasets. The results demonstrate that FRAME consistently delivers superior predictive performance based on downstream machine learning evaluation metrics. It effectively reduces dimensionality while maintaining robust model performance, making it particularly valuable for applications requiring interpretable and accurate predictions, such as biomedical diagnostics. This study highlights the importance of assessing feature selection methods across varied datasets to ensure their robustness and generalizability. The findings suggest that FRAME has significant potential for further enhancement, particularly through integration with deep learning architectures for adaptive and real-time feature selection in dynamic environments. By advancing feature selection methodologies, FRAME offers a practical and effective solution to improve machine learning applications across multiple domains.
☆ Bridging Visualization and Optimization: Multimodal Large Language Models on Graph-Structured Combinatorial Optimization
Graph-structured combinatorial challenges are inherently difficult due to their nonlinear and intricate nature, often rendering traditional computational methods ineffective or expensive. However, these challenges can be more naturally tackled by humans through visual representations that harness our innate ability for spatial reasoning. In this study, we propose transforming graphs into images to preserve their higher-order structural features accurately, revolutionizing the representation used in solving graph-structured combinatorial tasks. This approach allows machines to emulate human-like processing in addressing complex combinatorial challenges. By combining the innovative paradigm powered by multimodal large language models (MLLMs) with simple search techniques, we aim to develop a novel and effective framework for tackling such problems. Our investigation into MLLMs spanned a variety of graph-based tasks, from combinatorial problems like influence maximization to sequential decision-making in network dismantling, as well as addressing six fundamental graph-related issues. Our findings demonstrate that MLLMs exhibit exceptional spatial intelligence and a distinctive capability for handling these problems, significantly advancing the potential for machines to comprehend and analyze graph-structured data with a depth and intuition akin to human cognition. These results also imply that integrating MLLMs with simple optimization strategies could form a novel and efficient approach for navigating graph-structured combinatorial challenges without complex derivations, computationally demanding training and fine-tuning.
☆ Noise-Resilient Point-wise Anomaly Detection in Time Series Using Weak Segment Labels KDD
Detecting anomalies in temporal data has gained significant attention across various real-world applications, aiming to identify unusual events and mitigate potential hazards. In practice, situations often involve a mix of segment-level labels (detected abnormal events with segments of time points) and unlabeled data (undetected events), while the ideal algorithmic outcome should be point-level predictions. Therefore, the huge label information gap between training data and targets makes the task challenging. In this study, we formulate the above imperfect information as noisy labels and propose NRdetector, a noise-resilient framework that incorporates confidence-based sample selection, robust segment-level learning, and data-centric point-level detection for multivariate time series anomaly detection. Particularly, to bridge the information gap between noisy segment-level labels and missing point-level labels, we develop a novel loss function that can effectively mitigate the label noise and consider the temporal features. It encourages the smoothness of consecutive points and the separability of points from segments with different labels. Extensive experiments on real-world multivariate time series datasets with 11 different evaluation metrics demonstrate that NRdetector consistently achieves robust results across multiple real-world datasets, outperforming various baselines adapted to operate in our setting.
comment: Accepted by 2025 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'25)
☆ GLAM: Global-Local Variation Awareness in Mamba-based World Model
Mimicking the real interaction trajectory in the inference of the world model has been shown to improve the sample efficiency of model-based reinforcement learning (MBRL) algorithms. Many methods directly use known state sequences for reasoning. However, this approach fails to enhance the quality of reasoning by capturing the subtle variation between states. Much like how humans infer trends in event development from this variation, in this work, we introduce Global-Local variation Awareness Mamba-based world model (GLAM) that improves reasoning quality by perceiving and predicting variation between states. GLAM comprises two Mambabased parallel reasoning modules, GMamba and LMamba, which focus on perceiving variation from global and local perspectives, respectively, during the reasoning process. GMamba focuses on identifying patterns of variation between states in the input sequence and leverages these patterns to enhance the prediction of future state variation. LMamba emphasizes reasoning about unknown information, such as rewards, termination signals, and visual representations, by perceiving variation in adjacent states. By integrating the strengths of the two modules, GLAM accounts for highervalue variation in environmental changes, providing the agent with more efficient imagination-based training. We demonstrate that our method outperforms existing methods in normalized human scores on the Atari 100k benchmark.
☆ MeshONet: A Generalizable and Efficient Operator Learning Method for Structured Mesh Generation
Mesh generation plays a crucial role in scientific computing. Traditional mesh generation methods, such as TFI and PDE-based methods, often struggle to achieve a balance between efficiency and mesh quality. To address this challenge, physics-informed intelligent learning methods have recently emerged, significantly improving generation efficiency while maintaining high mesh quality. However, physics-informed methods fail to generalize when applied to previously unseen geometries, as even small changes in the boundary shape necessitate burdensome retraining to adapt to new geometric variations. In this paper, we introduce MeshONet, the first generalizable intelligent learning method for structured mesh generation. The method transforms the mesh generation task into an operator learning problem with multiple input and solution functions. To effectively overcome the multivariable mapping restriction of operator learning methods, we propose a dual-branch, shared-trunk architecture to approximate the mapping between function spaces based on input-output pairs. Experimental results show that MeshONet achieves a speedup of up to four orders of magnitude in generation efficiency over traditional methods. It also enables generalization to different geometries without retraining, greatly enhancing the practicality of intelligent methods.
☆ ALoFTRAG: Automatic Local Fine Tuning for Retrieval Augmented Generation
Retrieval Augmented Generation (RAG) systems have been shown to improve the accuracy of Large Language Model (LLM) outputs. However, these models can often achieve low accuracy when applied to new data domains. We introduce the Automatic Local Fine Tuning of Retrieval Augmented Generation models (ALoFTRAG) framework, designed to improve the accuracy of RAG systems on a given domain by training LLMs without manually labeled data or using larger teacher models. By generating and filtering synthetic training data and performing LoRA fine-tuning, ALoFTRAG improves citation and answer accuracy across 20 datasets in 26 languages by, on average, 8.3% and 3.0% respectively. Our results demonstrate that ALoFTRAG offers a practical, cost-effective, and data-secure solution for improving RAG accuracy, making it particularly applicable to sensitive domains such as healthcare and finance.
☆ Progressive Cross Attention Network for Flood Segmentation using Multispectral Satellite Imagery
In recent years, the integration of deep learning techniques with remote sensing technology has revolutionized the way natural hazards, such as floods, are monitored and managed. However, existing methods for flood segmentation using remote sensing data often overlook the utility of correlative features among multispectral satellite information. In this study, we introduce a progressive cross attention network (ProCANet), a deep learning model that progressively applies both self- and cross-attention mechanisms to multispectral features, generating optimal feature combinations for flood segmentation. The proposed model was compared with state-of-the-art approaches using Sen1Floods11 dataset and our bespoke flood data generated for the Citarum River basin, Indonesia. Our model demonstrated superior performance with the highest Intersection over Union (IoU) score of 0.815. Our results in this study, coupled with the ablation assessment comparing scenarios with and without attention across various modalities, opens a promising path for enhancing the accuracy of flood analysis using remote sensing technology.
comment: 5 pages, 4 figures, published in IEEE Geoscience and Remote Sensing Letters
☆ Goal-oriented Transmission Scheduling: Structure-guided DRL with a Unified Dual On-policy and Off-policy Approach
Goal-oriented communications prioritize application-driven objectives over data accuracy, enabling intelligent next-generation wireless systems. Efficient scheduling in multi-device, multi-channel systems poses significant challenges due to high-dimensional state and action spaces. We address these challenges by deriving key structural properties of the optimal solution to the goal-oriented scheduling problem, incorporating Age of Information (AoI) and channel states. Specifically, we establish the monotonicity of the optimal state value function (a measure of long-term system performance) w.r.t. channel states and prove its asymptotic convexity w.r.t. AoI states. Additionally, we derive the monotonicity of the optimal policy w.r.t. channel states, advancing the theoretical framework for optimal scheduling. Leveraging these insights, we propose the structure-guided unified dual on-off policy DRL (SUDO-DRL), a hybrid algorithm that combines the stability of on-policy training with the sample efficiency of off-policy methods. Through a novel structural property evaluation framework, SUDO-DRL enables effective and scalable training, addressing the complexities of large-scale systems. Numerical results show SUDO-DRL improves system performance by up to 45% and reduces convergence time by 40% compared to state-of-the-art methods. It also effectively handles scheduling in much larger systems, where off-policy DRL fails and on-policy benchmarks exhibit significant performance loss, demonstrating its scalability and efficacy in goal-oriented communications.
comment: Paper submitted to IEEE
☆ Improving Fine-Tuning with Latent Cluster Correction
The existence of salient semantic clusters in the latent spaces of a neural network during training strongly correlates its final accuracy on classification tasks. This paper proposes a novel fine-tuning method that boosts performance by optimising the formation of these latent clusters, using the Louvain community detection algorithm and a specifically designed clustering loss function. We present preliminary results that demonstrate the viability of this process on classical neural network architectures during fine-tuning on the CIFAR-100 dataset.
comment: 8 pages, 4 figures, 4 tables
☆ LASER: Lip Landmark Assisted Speaker Detection for Robustness
Active Speaker Detection (ASD) aims to identify speaking individuals in complex visual scenes. While humans can easily detect speech by matching lip movements to audio, current ASD models struggle to establish this correspondence, often misclassifying non-speaking instances when audio and lip movements are unsynchronized. To address this limitation, we propose Lip landmark Assisted Speaker dEtection for Robustness (LASER). Unlike models that rely solely on facial frames, LASER explicitly focuses on lip movements by integrating lip landmarks in training. Specifically, given a face track, LASER extracts frame-level visual features and the 2D coordinates of lip landmarks using a lightweight detector. These coordinates are encoded into dense feature maps, providing spatial and structural information on lip positions. Recognizing that landmark detectors may sometimes fail under challenging conditions (e.g., low resolution, occlusions, extreme angles), we incorporate an auxiliary consistency loss to align predictions from both lip-aware and face-only features, ensuring reliable performance even when lip data is absent. Extensive experiments across multiple datasets show that LASER outperforms state-of-the-art models, especially in scenarios with desynchronized audio and visuals, demonstrating robust performance in real-world video contexts. Code is available at \url{https://github.com/plnguyen2908/LASER_ASD}.
☆ Highly Efficient Rotation-Invariant Spectral Embedding for Scalable Incomplete Multi-View Clustering
Incomplete multi-view clustering presents significant challenges due to missing views. Although many existing graph-based methods aim to recover missing instances or complete similarity matrices with promising results, they still face several limitations: (1) Recovered data may be unsuitable for spectral clustering, as these methods often ignore guidance from spectral analysis; (2) Complex optimization processes require high computational burden, hindering scalability to large-scale problems; (3) Most methods do not address the rotational mismatch problem in spectral embeddings. To address these issues, we propose a highly efficient rotation-invariant spectral embedding (RISE) method for scalable incomplete multi-view clustering. RISE learns view-specific embeddings from incomplete bipartite graphs to capture the complementary information. Meanwhile, a complete consensus representation with second-order rotation-invariant property is recovered from these incomplete embeddings in a unified model. Moreover, we design a fast alternating optimization algorithm with linear complexity and promising convergence to solve the proposed formulation. Extensive experiments on multiple datasets demonstrate the effectiveness, scalability, and efficiency of RISE compared to the state-of-the-art methods.
☆ Contrastive Masked Autoencoders for Character-Level Open-Set Writer Identification
In the realm of digital forensics and document authentication, writer identification plays a crucial role in determining the authors of documents based on handwriting styles. The primary challenge in writer-id is the "open-set scenario", where the goal is accurately recognizing writers unseen during the model training. To overcome this challenge, representation learning is the key. This method can capture unique handwriting features, enabling it to recognize styles not previously encountered during training. Building on this concept, this paper introduces the Contrastive Masked Auto-Encoders (CMAE) for Character-level Open-Set Writer Identification. We merge Masked Auto-Encoders (MAE) with Contrastive Learning (CL) to simultaneously and respectively capture sequential information and distinguish diverse handwriting styles. Demonstrating its effectiveness, our model achieves state-of-the-art (SOTA) results on the CASIA online handwriting dataset, reaching an impressive precision rate of 89.7%. Our study advances universal writer-id with a sophisticated representation learning approach, contributing substantially to the ever-evolving landscape of digital handwriting analysis, and catering to the demands of an increasingly interconnected world.
☆ Community-Aware Temporal Walks: Parameter-Free Representation Learning on Continuous-Time Dynamic Graphs
Dynamic graph representation learning plays a crucial role in understanding evolving behaviors. However, existing methods often struggle with flexibility, adaptability, and the preservation of temporal and structural dynamics. To address these issues, we propose Community-aware Temporal Walks (CTWalks), a novel framework for representation learning on continuous-time dynamic graphs. CTWalks integrates three key components: a community-based parameter-free temporal walk sampling mechanism, an anonymization strategy enriched with community labels, and an encoding process that leverages continuous temporal dynamics modeled via ordinary differential equations (ODEs). This design enables precise modeling of both intra- and inter-community interactions, offering a fine-grained representation of evolving temporal patterns in continuous-time dynamic graphs. CTWalks theoretically overcomes locality bias in walks and establishes its connection to matrix factorization. Experiments on benchmark datasets demonstrate that CTWalks outperforms established methods in temporal link prediction tasks, achieving higher accuracy while maintaining robustness.
☆ Demons in the Detail: On Implementing Load Balancing Loss for Training Specialized Mixture-of-Expert Models
This paper revisits the implementation of $\textbf{L}$oad-$\textbf{b}$alancing $\textbf{L}$oss (LBL) when training Mixture-of-Experts (MoEs) models. Specifically, LBL for MoEs is defined as $N_E \sum_{i=1}^{N_E} f_i p_i$, where $N_E$ is the total number of experts, $f_i$ represents the frequency of expert $i$ being selected, and $p_i$ denotes the average gating score of the expert $i$. Existing MoE training frameworks usually employ the parallel training strategy so that $f_i$ and the LBL are calculated within a $\textbf{micro-batch}$ and then averaged across parallel groups. In essence, a micro-batch for training billion-scale LLMs normally contains very few sequences. So, the micro-batch LBL is almost at the sequence level, and the router is pushed to distribute the token evenly within each sequence. Under this strict constraint, even tokens from a domain-specific sequence ($\textit{e.g.}$, code) are uniformly routed to all experts, thereby inhibiting expert specialization. In this work, we propose calculating LBL using a $\textbf{global-batch}$ to loose this constraint. Because a global-batch contains much more diverse sequences than a micro-batch, which will encourage load balance at the corpus level. Specifically, we introduce an extra communication step to synchronize $f_i$ across micro-batches and then use it to calculate the LBL. Through experiments on training MoEs-based LLMs (up to $\textbf{42.8B}$ total parameters and $\textbf{400B}$ tokens), we surprisingly find that the global-batch LBL strategy yields excellent performance gains in both pre-training perplexity and downstream tasks. Our analysis reveals that the global-batch LBL also greatly improves the domain specialization of MoE experts.
☆ Evaluating multiple models using labeled and unlabeled data
It remains difficult to evaluate machine learning classifiers in the absence of a large, labeled dataset. While labeled data can be prohibitively expensive or impossible to obtain, unlabeled data is plentiful. Here, we introduce Semi-Supervised Model Evaluation (SSME), a method that uses both labeled and unlabeled data to evaluate machine learning classifiers. SSME is the first evaluation method to take advantage of the fact that: (i) there are frequently multiple classifiers for the same task, (ii) continuous classifier scores are often available for all classes, and (iii) unlabeled data is often far more plentiful than labeled data. The key idea is to use a semi-supervised mixture model to estimate the joint distribution of ground truth labels and classifier predictions. We can then use this model to estimate any metric that is a function of classifier scores and ground truth labels (e.g., accuracy or expected calibration error). We present experiments in four domains where obtaining large labeled datasets is often impractical: (1) healthcare, (2) content moderation, (3) molecular property prediction, and (4) image annotation. Our results demonstrate that SSME estimates performance more accurately than do competing methods, reducing error by 5.1x relative to using labeled data alone and 2.4x relative to the next best competing method. SSME also improves accuracy when evaluating performance across subsets of the test distribution (e.g., specific demographic subgroups) and when evaluating the performance of language models.
☆ Bayesian Despeckling of Structured Sources
Speckle noise is a fundamental challenge in coherent imaging systems, significantly degrading image quality. Over the past decades, numerous despeckling algorithms have been developed for applications such as Synthetic Aperture Radar (SAR) and digital holography. In this paper, we aim to establish a theoretically grounded approach to despeckling. We propose a method applicable to general structured stationary stochastic sources. We demonstrate the effectiveness of the proposed method on piecewise constant sources. Additionally, we theoretically derive a lower bound on the despeckling performance for such sources. The proposed depseckler applied to the 1-Markov structured sources achieves better reconstruction performance with no strong simplification of the ground truth signal model or speckle noise.
☆ Cross-Entropy Attacks to Language Models via Rare Event Simulation
Black-box textual adversarial attacks are challenging due to the lack of model information and the discrete, non-differentiable nature of text. Existing methods often lack versatility for attacking different models, suffer from limited attacking performance due to the inefficient optimization with word saliency ranking, and frequently sacrifice semantic integrity to achieve better attack outcomes. This paper introduces a novel approach to textual adversarial attacks, which we call Cross-Entropy Attacks (CEA), that uses Cross-Entropy optimization to address the above issues. Our CEA approach defines adversarial objectives for both soft-label and hard-label settings and employs CE optimization to identify optimal replacements. Through extensive experiments on document classification and language translation problems, we demonstrate that our attack method excels in terms of attacking performance, imperceptibility, and sentence quality.
☆ A Survey on Memory-Efficient Large-Scale Model Training in AI for Science
Scientific research faces high costs and inefficiencies with traditional methods, but the rise of deep learning and large language models (LLMs) offers innovative solutions. This survey reviews LLM applications across scientific fields such as biology, medicine, chemistry, and meteorology, underscoring their role in advancing research. However, the continuous expansion of model size has led to significant memory demands, hindering further development and application of LLMs for science. To address this, we review memory-efficient training techniques for LLMs based on the transformer architecture, including distributed training, mixed precision training, and gradient checkpointing. Using AlphaFold 2 as an example, we demonstrate how tailored memory optimization methods can reduce storage needs while preserving prediction accuracy. We also discuss the challenges of memory optimization in practice and potential future directions, hoping to provide valuable insights for researchers and engineers.
☆ Supervised Learning for Analog and RF Circuit Design: Benchmarks and Comparative Insights
Automating analog and radio-frequency (RF) circuit design using machine learning (ML) significantly reduces the time and effort required for parameter optimization. This study explores supervised ML-based approaches for designing circuit parameters from performance specifications across various circuit types, including homogeneous and heterogeneous designs. By evaluating diverse ML models, from neural networks like transformers to traditional methods like random forests, we identify the best-performing models for each circuit. Our results show that simpler circuits, such as low-noise amplifiers, achieve exceptional accuracy with mean relative errors as low as 0.3% due to their linear parameter-performance relationships. In contrast, complex circuits, like power amplifiers and voltage-controlled oscillators, present challenges due to their non-linear interactions and larger design spaces. For heterogeneous circuits, our approach achieves an 88% reduction in errors with increased training data, with the receiver achieving a mean relative error as low as 0.23%, showcasing the scalability and accuracy of the proposed methodology. Additionally, we provide insights into model strengths, with transformers excelling in capturing non-linear mappings and k-nearest neighbors performing robustly in moderately linear parameter spaces, especially in heterogeneous circuits with larger datasets. This work establishes a foundation for extending ML-driven design automation, enabling more efficient and scalable circuit design workflows.
☆ Data-driven Detection and Evaluation of Damages in Concrete Structures: Using Deep Learning and Computer Vision
Structural integrity is vital for maintaining the safety and longevity of concrete infrastructures such as bridges, tunnels, and walls. Traditional methods for detecting damages like cracks and spalls are labor-intensive, time-consuming, and prone to human error. To address these challenges, this study explores advanced data-driven techniques using deep learning for automated damage detection and analysis. Two state-of-the-art instance segmentation models, YOLO-v7 instance segmentation and Mask R-CNN, were evaluated using a dataset comprising 400 images, augmented to 10,995 images through geometric and color-based transformations to enhance robustness. The models were trained and validated using a dataset split into 90% training set, validation and test set 10%. Performance metrics such as precision, recall, mean average precision (mAP@0.5), and frames per second (FPS) were used for evaluation. YOLO-v7 achieved a superior mAP@0.5 of 96.1% and processed 40 FPS, outperforming Mask R-CNN, which achieved a mAP@0.5 of 92.1% with a slower processing speed of 18 FPS. The findings recommend YOLO-v7 instance segmentation model for real-time, high-speed structural health monitoring, while Mask R-CNN is better suited for detailed offline assessments. This study demonstrates the potential of deep learning to revolutionize infrastructure maintenance, offering a scalable and efficient solution for automated damage detection.
comment: 17 pages, 10 figures. This study focuses on the data-driven detection and evaluation of damages in concrete structures using deep learning and computer vision techniques
☆ Hybrid Adaptive Modeling using Neural Networks Trained with Nonlinear Dynamics Based Features
Accurate models are essential for design, performance prediction, control, and diagnostics in complex engineering systems. Physics-based models excel during the design phase but often become outdated during system deployment due to changing operational conditions, unknown interactions, excitations, and parametric drift. While data-based models can capture the current state of complex systems, they face significant challenges, including excessive data dependence, limited generalizability to changing conditions, and inability to predict parametric dependence. This has led to combining physics and data in modeling, termed physics-infused machine learning, often using numerical simulations from physics-based models. This paper introduces a novel approach that departs from standard techniques by uncovering information from nonlinear dynamical modeling and embedding it in data-based models. The goal is to create a hybrid adaptive modeling framework that integrates data-based modeling with newly measured data and analytical nonlinear dynamical models for enhanced accuracy, parametric dependence, and improved generalizability. By explicitly incorporating nonlinear dynamic phenomena through perturbation methods, the predictive capabilities are more realistic and insightful compared to knowledge obtained from brute-force numerical simulations. In particular, perturbation methods are utilized to derive asymptotic solutions which are parameterized to generate frequency responses. Frequency responses provide comprehensive insights into dynamics and nonlinearity which are quantified and extracted as high-quality features. A machine-learning model, trained by these features, tracks parameter variations and updates the mismatched model. The results demonstrate that this adaptive modeling method outperforms numerical gray box models in prediction accuracy and computational efficiency.
☆ ShadowGenes: Leveraging Recurring Patterns within Computational Graphs for Model Genealogy
Machine learning model genealogy enables practitioners to determine which architectural family a neural network belongs to. In this paper, we introduce ShadowGenes, a novel, signature-based method for identifying a given model's architecture, type, and family. Our method involves building a computational graph of the model that is agnostic of its serialization format, then analyzing its internal operations to identify unique patterns, and finally building and refining signatures based on these. We highlight important workings of the underlying engine and demonstrate the technique used to construct a signature and scan a given model. This approach to model genealogy can be applied to model files without the need for additional external information. We test ShadowGenes on a labeled dataset of over 1,400 models and achieve a mean true positive rate of 97.49% and a precision score of 99.51%; which validates the technique as a practical method for model genealogy. This enables practitioners to understand the use cases of a given model, the internal computational process, and identify possible security risks, such as the potential for model backdooring.
☆ PXGen: A Post-hoc Explainable Method for Generative Models
With the rapid growth of generative AI in numerous applications, explainable AI (XAI) plays a crucial role in ensuring the responsible development and deployment of generative AI technologies. XAI has undergone notable advancements and widespread adoption in recent years, reflecting a concerted push to enhance the transparency, interpretability, and credibility of AI systems. Recent research emphasizes that a proficient XAI method should adhere to a set of criteria, primarily focusing on two key areas. Firstly, it should ensure the quality and fluidity of explanations, encompassing aspects like faithfulness, plausibility, completeness, and tailoring to individual needs. Secondly, the design principle of the XAI system or mechanism should cover the following factors such as reliability, resilience, the verifiability of its outputs, and the transparency of its algorithm. However, research in XAI for generative models remains relatively scarce, with little exploration into how such methods can effectively meet these criteria in that domain. In this work, we propose PXGen, a post-hoc explainable method for generative models. Given a model that needs to be explained, PXGen prepares two materials for the explanation, the Anchor set and intrinsic & extrinsic criteria. Those materials are customizable by users according to their purpose and requirements. Via the calculation of each criterion, each anchor has a set of feature values and PXGen provides examplebased explanation methods according to the feature values among all the anchors and illustrated and visualized to the users via tractable algorithms such as k-dispersion or k-center.
☆ Toward Scalable Graph Unlearning: A Node Influence Maximization based Approach
Machine unlearning, as a pivotal technology for enhancing model robustness and data privacy, has garnered significant attention in prevalent web mining applications, especially in thriving graph-based scenarios. However, most existing graph unlearning (GU) approaches face significant challenges due to the intricate interactions among web-scale graph elements during the model training: (1) The gradient-driven node entanglement hinders the complete knowledge removal in response to unlearning requests; (2) The billion-level graph elements in the web scenarios present inevitable scalability issues. To break the above limitations, we open up a new perspective by drawing a connection between GU and conventional social influence maximization. To this end, we propose Node Influence Maximization (NIM) through the decoupled influence propagation model and fine-grained influence function in a scalable manner, which is crafted to be a plug-and-play strategy to identify potential nodes affected by unlearning entities. This approach enables offline execution independent of GU, allowing it to be seamlessly integrated into most GU methods to improve their unlearning performance. Based on this, we introduce Scalable Graph Unlearning (SGU) as a new fine-tuned framework, which balances the forgetting and reasoning capability of the unlearned model by entity-specific optimizations. Extensive experiments on 14 datasets, including large-scale ogbn-papers100M, have demonstrated the effectiveness of our approach. Specifically, NIM enhances the forgetting capability of most GU methods, while SGU achieves comprehensive SOTA performance and maintains scalability.
comment: Under Review
☆ Group-Agent Reinforcement Learning with Heterogeneous Agents
Group-agent reinforcement learning (GARL) is a newly arising learning scenario, where multiple reinforcement learning agents study together in a group, sharing knowledge in an asynchronous fashion. The goal is to improve the learning performance of each individual agent. Under a more general heterogeneous setting where different agents learn using different algorithms, we advance GARL by designing novel and effective group-learning mechanisms. They guide the agents on whether and how to learn from action choices from the others, and allow the agents to adopt available policy and value function models sent by another agent if they perform better. We have conducted extensive experiments on a total of 43 different Atari 2600 games to demonstrate the superior performance of the proposed method. After the group learning, among the 129 agents examined, 96% are able to achieve a learning speed-up, and 72% are able to learn over 100 times faster. Also, around 41% of those agents have achieved a higher accumulated reward score by learning in less than 5% of the time steps required by a single agent when learning on its own.
☆ Toward Effective Digraph Representation Learning: A Magnetic Adaptive Propagation based Approach WWW 2025
The $q$-parameterized magnetic Laplacian serves as the foundation of directed graph (digraph) convolution, enabling this kind of digraph neural network (MagDG) to encode node features and structural insights by complex-domain message passing. As a generalization of undirected methods, MagDG shows superior capability in modeling intricate web-scale topology. Despite the great success achieved by existing MagDGs, limitations still exist: (1) Hand-crafted $q$: The performance of MagDGs depends on selecting an appropriate $q$-parameter to construct suitable graph propagation equations in the complex domain. This parameter tuning, driven by downstream tasks, limits model flexibility and significantly increases manual effort. (2) Coarse Message Passing: Most approaches treat all nodes with the same complex-domain propagation and aggregation rules, neglecting their unique digraph contexts. This oversight results in sub-optimal performance. To address the above issues, we propose two key techniques: (1) MAP is crafted to be a plug-and-play complex-domain propagation optimization strategy in the context of digraph learning, enabling seamless integration into any MagDG to improve predictions while enjoying high running efficiency. (2) MAP++ is a new digraph learning framework, further incorporating a learnable mechanism to achieve adaptively edge-wise propagation and node-wise aggregation in the complex domain for better performance. Extensive experiments on 12 datasets demonstrate that MAP enjoys flexibility for it can be incorporated with any MagDG, and scalability as it can deal with web-scale digraphs. MAP++ achieves SOTA predictive performance on 4 different downstream tasks.
comment: Accepted by WWW 2025
☆ Utilising Deep Learning to Elicit Expert Uncertainty
Recent work [ 14 ] has introduced a method for prior elicitation that utilizes records of expert decisions to infer a prior distribution. While this method provides a promising approach to eliciting expert uncertainty, it has only been demonstrated using tabular data, which may not entirely represent the information used by experts to make decisions. In this paper, we demonstrate how analysts can adopt a deep learning approach to utilize the method proposed in [14 ] with the actual information experts use. We provide an overview of deep learning models that can effectively model expert decision-making to elicit distributions that capture expert uncertainty and present an example examining the risk of colon cancer to show in detail how these models can be used.
☆ Automating High Quality RT Planning at Scale
Radiotherapy (RT) planning is complex, subjective, and time-intensive. Advances in artificial intelligence (AI) promise to improve its precision, efficiency, and consistency, but progress is often limited by the scarcity of large, standardized datasets. To address this, we introduce the Automated Iterative RT Planning (AIRTP) system, a scalable solution for generating high-quality treatment plans. This scalable solution is designed to generate substantial volumes of consistently high-quality treatment plans, overcoming a key obstacle in the advancement of AI-driven RT planning. Our AIRTP pipeline adheres to clinical guidelines and automates essential steps, including organ-at-risk (OAR) contouring, helper structure creation, beam setup, optimization, and plan quality improvement, using AI integrated with RT planning software like Eclipse of Varian. Furthermore, a novel approach for determining optimization parameters to reproduce 3D dose distributions, i.e. a method to convert dose predictions to deliverable treatment plans constrained by machine limitations. A comparative analysis of plan quality reveals that our automated pipeline produces treatment plans of quality comparable to those generated manually, which traditionally require several hours of labor per plan. Committed to public research, the first data release of our AIRTP pipeline includes nine cohorts covering head-and-neck and lung cancer sites to support an AAPM 2025 challenge. This data set features more than 10 times the number of plans compared to the largest existing well-curated public data set to our best knowledge. Repo:{https://github.com/RiqiangGao/GDP-HMM_AAPMChallenge}
comment: Related to GDP-HMM grand challenge
☆ Provably effective detection of effective data poisoning attacks
This paper establishes a mathematically precise definition of dataset poisoning attack and proves that the very act of effectively poisoning a dataset ensures that the attack can be effectively detected. On top of a mathematical guarantee that dataset poisoning is identifiable by a new statistical test that we call the Conformal Separability Test, we provide experimental evidence that we can adequately detect poisoning attempts in the real world.
♻ ☆ FoundationStereo: Zero-Shot Stereo Matching
Tremendous progress has been made in deep stereo matching to excel on benchmark datasets through per-domain fine-tuning. However, achieving strong zero-shot generalization - a hallmark of foundation models in other computer vision tasks - remains challenging for stereo matching. We introduce FoundationStereo, a foundation model for stereo depth estimation designed to achieve strong zero-shot generalization. To this end, we first construct a large-scale (1M stereo pairs) synthetic training dataset featuring large diversity and high photorealism, followed by an automatic self-curation pipeline to remove ambiguous samples. We then design a number of network architecture components to enhance scalability, including a side-tuning feature backbone that adapts rich monocular priors from vision foundation models to mitigate the sim-to-real gap, and long-range context reasoning for effective cost volume filtering. Together, these components lead to strong robustness and accuracy across domains, establishing a new standard in zero-shot stereo depth estimation. Project page: https://nvlabs.github.io/FoundationStereo/
♻ ☆ The Choice of Normalization Influences Shrinkage in Regularized Regression
Regularized models are often sensitive to the scales of the features in the data and it has therefore become standard practice to normalize (center and scale) the features before fitting the model. But there are many different ways to normalize the features and the choice may have dramatic effects on the resulting model. In spite of this, there has so far been no research on this topic. In this paper, we begin to bridge this knowledge gap by studying normalization in the context of lasso, ridge, and elastic net regression. We focus on normal and binary features and show that the class balances of binary features directly influences the regression coefficients and that this effect depends on the combination of normalization and regularization methods used. We demonstrate that this effect can be mitigated by scaling binary features with their variance in the case of the lasso and standard deviation in the case of ridge regression, but that this comes at the cost of increased variance. For the elastic net, we show that scaling the penalty weights, rather than the features, can achieve the same effect. Finally, we also tackle mixes of binary and normal features as well as interactions and provide some initial results on how to normalize features in these cases.
comment: 27 pages, 21 figures
♻ ☆ Bridging the Training-Inference Gap in LLMs by Leveraging Self-Generated Tokens
Language models are often trained to maximize the likelihood of the next token given past tokens in the training dataset. However, during inference time, they are utilized differently, generating text sequentially and auto-regressively by using previously generated tokens as input to predict the next one. Marginal differences in predictions at each step can cascade over successive steps, resulting in different distributions from what the models were trained for and potentially leading to unpredictable behavior. This paper proposes two simple approaches based on model own generation to address this discrepancy between the training and inference time. Our first approach is Batch-Scheduled Sampling, where, during training, we stochastically choose between the ground-truth token from the dataset and the model's own generated token as input to predict the next token. This is done in an offline manner, modifying the context window by interleaving ground-truth tokens with those generated by the model. Our second approach is Reference-Answer-based Correction, where we explicitly incorporate a self-correction capability into the model during training. This enables the model to effectively self-correct the gaps between the generated sequences and the ground truth data without relying on an external oracle model. By incorporating our proposed strategies during training, we have observed an overall improvement in performance compared to baseline methods, as demonstrated by our extensive experiments using summarization, general question-answering, and math question-answering tasks.
comment: Published in TMLR
♻ ☆ $\spadesuit$ SPADE $\spadesuit$ Split Peak Attention DEcomposition
Demand forecasting faces challenges induced by Peak Events (PEs) corresponding to special periods such as promotions and holidays. Peak events create significant spikes in demand followed by demand ramp down periods. Neural networks like MQCNN and MQT overreact to demand peaks by carrying over the elevated PE demand into subsequent Post-Peak-Event (PPE) periods, resulting in significantly over-biased forecasts. To tackle this challenge, we introduce a neural forecasting model called Split Peak Attention DEcomposition, SPADE. This model reduces the impact of PEs on subsequent forecasts by modeling forecasting as consisting of two separate tasks: one for PEs; and the other for the rest. Its architecture then uses masked convolution filters and a specialized Peak Attention module. We show SPADE's performance on a worldwide retail dataset with hundreds of millions of products. Our results reveal an overall PPE improvement of 4.5%, a 30% improvement for most affected forecasts after promotions and holidays, and an improvement in PE accuracy by 3.9%, relative to current production models.
♻ ☆ Beyond Position: the emergence of wavelet-like properties in Transformers
This paper studies how transformer models develop robust wavelet-like properties that effectively compensate for the theoretical limitations of Rotary Position Embeddings (RoPE), providing insights into how these networks process sequential information across different scales. Through theoretical analysis and empirical validation across models ranging from 1B to 12B parameters, we show that attention heads naturally evolve to implement multi-resolution processing analogous to wavelet transforms. Our analysis establishes that attention heads consistently organize into complementary frequency bands with systematic power distribution patterns, and these wavelet-like characteristics become more pronounced in larger models. We provide mathematical analysis showing how these properties align with optimal solutions to the fundamental uncertainty principle between positional precision and frequency resolution. Our findings suggest that the effectiveness of modern transformer architectures stems significantly from their development of optimal multi-resolution decompositions that naturally address the theoretical constraints of position encoding.
♻ ☆ LiteVAE: Lightweight and Efficient Variational Autoencoders for Latent Diffusion Models NeurIPS 2024
Advances in latent diffusion models (LDMs) have revolutionized high-resolution image generation, but the design space of the autoencoder that is central to these systems remains underexplored. In this paper, we introduce LiteVAE, a new autoencoder design for LDMs, which leverages the 2D discrete wavelet transform to enhance scalability and computational efficiency over standard variational autoencoders (VAEs) with no sacrifice in output quality. We investigate the training methodologies and the decoder architecture of LiteVAE and propose several enhancements that improve the training dynamics and reconstruction quality. Our base LiteVAE model matches the quality of the established VAEs in current LDMs with a six-fold reduction in encoder parameters, leading to faster training and lower GPU memory requirements, while our larger model outperforms VAEs of comparable complexity across all evaluated metrics (rFID, LPIPS, PSNR, and SSIM).
comment: Published as a conference paper at NeurIPS 2024
♻ ☆ Untrained Perceptual Loss for image denoising of line-like structures in MR images
In the acquisition of Magnetic Resonance (MR) images shorter scan times lead to higher image noise. Therefore, automatic image denoising using deep learning methods is of high interest. MR images containing line-like structures such as roots or vessels yield special characteristics as they display connected structures and yield sparse information. For this kind of data, it is important to consider voxel neighborhoods when training a denoising network. In this paper, we translate the Perceptual Loss to 3D data by comparing feature maps of untrained networks in the loss function as done previously for 2D data. We tested the performance of untrained Perceptual Loss (uPL) on 3D image denoising of MR images displaying brain vessels (MR angiograms - MRA) and images of plant roots in soil. We investigate the impact of various uPL characteristics such as weight initialization, network depth, kernel size, and pooling operations on the results. We tested the performance of the uPL loss on four Rician noise levels using evaluation metrics such as the Structural Similarity Index Metric (SSIM). We observe, that our uPL outperforms conventional loss functions such as the L1 loss or a loss based on the Structural Similarity Index Metric (SSIM). The uPL network's initialization is not important, while network depth and pooling operations impact denoising performance. E.g. for both datasets a network with five convolutional layers led to the best performance while a network with more layers led to a performance drop. We also find that small uPL networks led to better or comparable results than using large networks such as VGG. We observe superior performance of our loss for both datasets, all noise levels, and three network architectures. In conclusion, for images containing line-like structures, uPL is an alternative to other loss functions for 3D image denoising.
♻ ☆ Multi-Scale Texture Loss for CT denoising with GANs
Generative Adversarial Networks (GANs) have proved as a powerful framework for denoising applications in medical imaging. However, GAN-based denoising algorithms still suffer from limitations in capturing complex relationships within the images. In this regard, the loss function plays a crucial role in guiding the image generation process, encompassing how much a synthetic image differs from a real image. To grasp highly complex and non-linear textural relationships in the training process, this work presents a novel approach to capture and embed multi-scale texture information into the loss function. Our method introduces a differentiable multi-scale texture representation of the images dynamically aggregated by a self-attention layer, thus exploiting end-to-end gradient-based optimization. We validate our approach by carrying out extensive experiments in the context of low-dose CT denoising, a challenging application that aims to enhance the quality of noisy CT scans. We utilize three publicly available datasets, including one simulated and two real datasets. The results are promising as compared to other well-established loss functions, being also consistent across three different GAN architectures. The code is available at: https://github.com/TrainLaboratory/MultiScaleTextureLoss-MSTLF
♻ ☆ FLARE: Faithful Logic-Aided Reasoning and Exploration
Modern Question Answering (QA) and Reasoning approaches based on Large Language Models (LLMs) commonly use prompting techniques, such as Chain-of-Thought (CoT), assuming the resulting generation will have a more granular exploration and reasoning over the question space and scope. However, such methods struggle with generating outputs that are faithful to the intermediate chain of reasoning produced by the model. On the other end of the spectrum, neuro-symbolic methods such as Faithful CoT (F-CoT) propose to combine LLMs with external symbolic solvers. While such approaches boast a high degree of faithfulness, they usually require a model trained for code generation and struggle with tasks that are ambiguous or hard to formalise strictly. We introduce $\textbf{F}$aithful $\textbf{L}$ogic-$\textbf{A}$ided $\textbf{R}$easoning and $\textbf{E}$xploration ($\textbf{FLARE}$), a novel interpretable approach for traversing the problem space using task decompositions. We use the LLM to plan a solution, soft-formalise the query into facts and predicates using a logic programming code and simulate that code execution using an exhaustive multi-hop search over the defined space. Our method allows us to compute the faithfulness of the reasoning process w.r.t. the generated code and analyse the steps of the multi-hop search without relying on external solvers. Our methods achieve SOTA results on $\mathbf{7}$ out of $\mathbf{9}$ diverse reasoning benchmarks. We also show that model faithfulness positively correlates with overall performance and further demonstrate that $\textbf{FLARE}$ allows pinpointing the decisive factors sufficient for and leading to the correct answer with optimal reasoning during the multi-hop search.
♻ ☆ Reinforcement Learning from Human Feedback without Reward Inference: Model-Free Algorithm and Instance-Dependent Analysis
In this paper, we study reinforcement learning from human feedback (RLHF) under an episodic Markov decision process with a general trajectory-wise reward model. We developed a model-free RLHF best policy identification algorithm, called $\mathsf{BSAD}$, without explicit reward model inference, which is a critical intermediate step in the contemporary RLHF paradigms for training large language models (LLM). The algorithm identifies the optimal policy directly from human preference information in a backward manner, employing a dueling bandit sub-routine that constantly duels actions to identify the superior one. $\mathsf{BSAD}$ adopts a reward-free exploration and best-arm-identification-like adaptive stopping criteria to equalize the visitation among all states in the same decision step while moving to the previous step as soon as the optimal action is identifiable, leading to a provable, instance-dependent sample complexity $\tilde{\mathcal{O}}(c_{\mathcal{M}}SA^3H^3M\log\frac{1}{\delta})$ which resembles the result in classic RL, where $c_{\mathcal{M}}$ is the instance-dependent constant and $M$ is the batch size. Moreover, $\mathsf{BSAD}$ can be transformed into an explore-then-commit algorithm with logarithmic regret and generalized to discounted MDPs using a frame-based approach. Our results show: (i) sample-complexity-wise, RLHF is not significantly harder than classic RL and (ii) end-to-end RLHF may deliver improved performance by avoiding pitfalls in reward inferring such as overfit and distribution shift.
♻ ☆ COmoving Computer Acceleration (COCA): $N$-body simulations in an emulated frame of reference
$N$-body simulations are computationally expensive, so machine-learning (ML)-based emulation techniques have emerged as a way to increase their speed. Although fast, surrogate models have limited trustworthiness due to potentially substantial emulation errors that current approaches cannot correct for. To alleviate this problem, we introduce COmoving Computer Acceleration (COCA), a hybrid framework interfacing ML with an $N$-body simulator. The correct physical equations of motion are solved in an emulated frame of reference, so that any emulation error is corrected by design. This approach corresponds to solving for the perturbation of particle trajectories around the machine-learnt solution, which is computationally cheaper than obtaining the full solution, yet is guaranteed to converge to the truth as one increases the number of force evaluations. Although applicable to any ML algorithm and $N$-body simulator, this approach is assessed in the particular case of particle-mesh cosmological simulations in a frame of reference predicted by a convolutional neural network, where the time dependence is encoded as an additional input parameter to the network. COCA efficiently reduces emulation errors in particle trajectories, requiring far fewer force evaluations than running the corresponding simulation without ML. We obtain accurate final density and velocity fields for a reduced computational budget. We demonstrate that this method shows robustness when applied to examples outside the range of the training data. When compared to the direct emulation of the Lagrangian displacement field using the same training resources, COCA's ability to correct emulation errors results in more accurate predictions. COCA makes $N$-body simulations cheaper by skipping unnecessary force evaluations, while still solving the correct equations of motion and correcting for emulation errors made by ML.
comment: 23 pages, 13 figures. Accepted for publication in A&A
♻ ☆ Beyond Specialization: Assessing the Capabilities of MLLMs in Age and Gender Estimation
Multimodal Large Language Models (MLLMs) have recently gained immense popularity. Powerful commercial models like ChatGPT-4V and Gemini, as well as open-source ones such as LLaVA, are essentially general-purpose models and are applied to solve a wide variety of tasks, including those in computer vision. These neural networks possess such strong general knowledge and reasoning abilities that they have proven capable of working even on tasks for which they were not specifically trained. We compared the capabilities of the most powerful MLLMs to date: ShareGPT4V, ChatGPT, LLaVA-Next in a specialized task of age and gender estimation with our state-of-the-art specialized model, MiVOLO. We also updated MiVOLO and provide details and new metrics in this article. This comparison has yielded some interesting results and insights about the strengths and weaknesses of the participating models. Furthermore, we attempted various ways to fine-tune the ShareGPT4V model for this specific task, aiming to achieve state-of-the-art results in this particular challenge. Although such a model would not be practical in production, as it is incredibly expensive compared to a specialized model like MiVOLO, it could be very useful in some tasks, like data annotation.
♻ ☆ Generative Topological Networks
Generative methods have recently seen significant improvements by generating in a lower-dimensional latent representation of the data. However, many of the generative methods applied in the latent space remain complex and difficult to train. Further, it is not entirely clear why transitioning to a lower-dimensional latent space can improve generative quality. In this work, we introduce a new and simple generative method grounded in topology theory -- Generative Topological Networks (GTNs) -- which also provides insights into why lower-dimensional latent-space representations might be better-suited for data generation. GTNs are simple to train -- they employ a standard supervised learning approach and do not suffer from common generative pitfalls such as mode collapse, posterior collapse or the need to pose constraints on the neural network architecture. We demonstrate the use of GTNs on several datasets, including MNIST, CelebA, CIFAR-10 and the Hands and Palm Images dataset by training GTNs on a lower-dimensional latent representation of the data. We show that GTNs can improve upon VAEs and that they are quick to converge, generating realistic samples in early epochs. Further, we use the topological considerations behind the development of GTNs to offer insights into why generative models may benefit from operating on a lower-dimensional latent space, highlighting the important link between the intrinsic dimension of the data and the dimension in which the data is generated. Particularly, we demonstrate that generating in high dimensional ambient spaces may be a contributing factor to out-of-distribution samples generated by diffusion models. We also highlight other topological properties that are important to consider when using and designing generative models. Our code is available at: https://github.com/alonalj/GTN
♻ ☆ Ladder-residual: parallelism-aware architecture for accelerating large model inference with communication overlapping
Large language model inference is both memory-intensive and time-consuming, often requiring distributed algorithms to efficiently scale. Various model parallelism strategies are used in multi-gpu training and inference to partition computation across multiple devices, reducing memory load and computation time. However, using model parallelism necessitates communication of information between GPUs, which has been a major bottleneck and limits the gains obtained by scaling up the number of devices. We introduce Ladder Residual, a simple architectural modification applicable to all residual-based models that enables straightforward overlapping that effectively hides the latency of communication. Our insight is that in addition to systems optimization, one can also redesign the model architecture to decouple communication from computation. While Ladder Residual can allow communication-computation decoupling in conventional parallelism patterns, we focus on Tensor Parallelism in this paper, which is particularly bottlenecked by its heavy communication. For a Transformer model with 70B parameters, applying Ladder Residual to all its layers can achieve 30% end-to-end wall clock speed up at inference time with TP sharding over 8 devices. We refer the resulting Transformer model as the Ladder Transformer. We train a 1B and 3B Ladder Transformer from scratch and observe comparable performance to a standard dense transformer baseline. We also show that it is possible to convert parts of the Llama-3.1 8B model to our Ladder Residual architecture with minimal accuracy degradation by only retraining for 3B tokens.
♻ ☆ Learning to generate feasible graphs using graph grammars
Generative methods for graphs need to be sufficiently flexible to model complex dependencies between sets of nodes. At the same time, the generated graphs need to satisfy domain-dependent feasibility conditions, that is, they should not violate certain constraints that would make their interpretation impossible within the given application domain (e.g. a molecular graph where an atom has a very large number of chemical bounds). Crucially, constraints can involve not only local but also long-range dependencies: for example, the maximal length of a cycle can be bounded. Currently, a large class of generative approaches for graphs, such as methods based on artificial neural networks, is based on message passing schemes. These approaches suffer from information 'dilution' issues that severely limit the maximal range of the dependencies that can be modeled. To address this problem, we propose a generative approach based on the notion of graph grammars. The key novel idea is to introduce a domain-dependent coarsening procedure to provide short-cuts for long-range dependencies. We show the effectiveness of our proposal in two domains: 1) small drugs and 2) RNA secondary structures. In the first case, we compare the quality of the generated molecular graphs via the Molecular Sets (MOSES) benchmark suite, which evaluates the distance between generated and real molecules, their lipophilicity, synthesizability, and drug-likeness. In the second case, we show that the approach can generate very large graphs (with hundreds of nodes) that are accepted as valid examples for a desired RNA family by the "Infernal" covariance model, a state-of-the-art RNA classifier. Our implementation is available on github: github.com/fabriziocosta/GraphLearn
♻ ☆ PRIMUS: Pretraining IMU Encoders with Multimodal Self-Supervision ICASSP 2025
Sensing human motions through Inertial Measurement Units (IMUs) embedded in personal devices has enabled significant applications in health and wellness. Labeled IMU data is scarce, however, unlabeled or weakly labeled IMU data can be used to model human motions. For video or text modalities, the "pretrain and adapt" approach utilizes large volumes of unlabeled or weakly labeled data to build a strong feature extractor, followed by adaptation to specific tasks using limited labeled data. However, pretraining methods are poorly understood for IMU data, and pipelines are rarely evaluated on out-of-domain tasks. We propose PRIMUS: a method for PRetraining IMU encoderS that uses a novel pretraining objective that is empirically validated based on downstream performance on both in-domain and out-of-domain datasets. The PRIMUS objective effectively enhances downstream performance by combining self-supervision, multimodal, and nearest-neighbor supervision. With fewer than 500 labeled samples per class, PRIMUS improves test accuracy by up to 15%, compared to state-of-the-art baselines. To benefit the broader community, we have open-sourced our code at github.com/nokia-bell-labs/pretrained-imu-encoders.
comment: Presented at ICASSP 2025. Also presented under the title "PRIMUS: Pretraining IMU Encoders with Multimodal and Self-Supervised Learning" at NeurIPS 2024 TSALM Workshop (Time Series in the Age of Large Models)
♻ ☆ Evaluating the Efficacy of Cut-and-Paste Data Augmentation in Semantic Segmentation for Satellite Imagery
Satellite imagery is crucial for tasks like environmental monitoring and urban planning. Typically, it relies on semantic segmentation or Land Use Land Cover (LULC) classification to categorize each pixel. Despite the advancements brought about by Deep Neural Networks (DNNs), their performance in segmentation tasks is hindered by challenges such as limited availability of labeled data, class imbalance and the inherent variability and complexity of satellite images. In order to mitigate those issues, our study explores the effectiveness of a Cut-and-Paste augmentation technique for semantic segmentation in satellite images. We adapt this augmentation, which usually requires labeled instances, to the case of semantic segmentation. By leveraging the connected components in the semantic segmentation labels, we extract instances that are then randomly pasted during training. Using the DynamicEarthNet dataset and a U-Net model for evaluation, we found that this augmentation significantly enhances the mIoU score on the test set from 37.9 to 44.1. This finding highlights the potential of the Cut-and-Paste augmentation to improve the generalization capabilities of semantic segmentation models in satellite imagery.
comment: Published in: IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium
♻ ☆ Distilling Calibration via Conformalized Credal Inference
Deploying artificial intelligence (AI) models on edge devices involves a delicate balance between meeting stringent complexity constraints, such as limited memory and energy resources, and ensuring reliable performance in sensitive decision-making tasks. One way to enhance reliability is through uncertainty quantification via Bayesian inference. This approach, however, typically necessitates maintaining and running multiple models in an ensemble, which may exceed the computational limits of edge devices. This paper introduces a low-complexity methodology to address this challenge by distilling calibration information from a more complex model. In an offline phase, predictive probabilities generated by a high-complexity cloud-based model are leveraged to determine a threshold based on the typical divergence between the cloud and edge models. At run time, this threshold is used to construct credal sets -- ranges of predictive probabilities that are guaranteed, with a user-selected confidence level, to include the predictions of the cloud model. The credal sets are obtained through thresholding of a divergence measure in the simplex of predictive probabilities. Experiments on visual and language tasks demonstrate that the proposed approach, termed Conformalized Distillation for Credal Inference (CD-CI), significantly improves calibration performance compared to low-complexity Bayesian methods, such as Laplace approximation, making it a practical and efficient solution for edge AI deployments.
comment: Under review
♻ ☆ PIER: A Novel Metric for Evaluating What Matters in Code-Switching ICASSP 2025
Code-switching, the alternation of languages within a single discourse, presents a significant challenge for Automatic Speech Recognition. Despite the unique nature of the task, performance is commonly measured with established metrics such as Word-Error-Rate (WER). However, in this paper, we question whether these general metrics accurately assess performance on code-switching. Specifically, using both Connectionist-Temporal-Classification and Encoder-Decoder models, we show fine-tuning on non-code-switched data from both matrix and embedded language improves classical metrics on code-switching test sets, although actual code-switched words worsen (as expected). Therefore, we propose Point-of-Interest Error Rate (PIER), a variant of WER that focuses only on specific words of interest. We instantiate PIER on code-switched utterances and show that this more accurately describes the code-switching performance, showing huge room for improvement in future work. This focused evaluation allows for a more precise assessment of model performance, particularly in challenging aspects such as inter-word and intra-word code-switching.
comment: Accepted at ICASSP 2025
♻ ☆ Memory Gym: Towards Endless Tasks to Benchmark Memory Capabilities of Agents
Memory Gym presents a suite of 2D partially observable environments, namely Mortar Mayhem, Mystery Path, and Searing Spotlights, designed to benchmark memory capabilities in decision-making agents. These environments, originally with finite tasks, are expanded into innovative, endless formats, mirroring the escalating challenges of cumulative memory games such as "I packed my bag". This progression in task design shifts the focus from merely assessing sample efficiency to also probing the levels of memory effectiveness in dynamic, prolonged scenarios. To address the gap in available memory-based Deep Reinforcement Learning baselines, we introduce an implementation within the open-source CleanRL library that integrates Transformer-XL (TrXL) with Proximal Policy Optimization. This approach utilizes TrXL as a form of episodic memory, employing a sliding window technique. Our comparative study between the Gated Recurrent Unit (GRU) and TrXL reveals varied performances across our finite and endless tasks. TrXL, on the finite environments, demonstrates superior effectiveness over GRU, but only when utilizing an auxiliary loss to reconstruct observations. Notably, GRU makes a remarkable resurgence in all endless tasks, consistently outperforming TrXL by significant margins. Website and Source Code: https://marcometer.github.io/jmlr_2024.github.io/
comment: 40 pages, 12 figures, 7 tables, accepted at JMLR
♻ ☆ Robust Federated Learning Over the Air: Combating Heavy-Tailed Noise with Median Anchored Clipping
Leveraging over-the-air computations for model aggregation is an effective approach to cope with the communication bottleneck in federated edge learning. By exploiting the superposition properties of multi-access channels, this approach facilitates an integrated design of communication and computation, thereby enhancing system privacy while reducing implementation costs. However, the inherent electromagnetic interference in radio channels often exhibits heavy-tailed distributions, giving rise to exceptionally strong noise in globally aggregated gradients that can significantly deteriorate the training performance. To address this issue, we propose a novel gradient clipping method, termed Median Anchored Clipping (MAC), to combat the detrimental effects of heavy-tailed noise. We also derive analytical expressions for the convergence rate of model training with analog over-the-air federated learning under MAC, which quantitatively demonstrates the effect of MAC on training performance. Extensive experimental results show that the proposed MAC algorithm effectively mitigates the impact of heavy-tailed noise, hence substantially enhancing system robustness.
comment: This is the full version of the paper, and the appendix contains a complete convergence analysis under non-convex conditions
♻ ☆ What should a neuron aim for? Designing local objective functions based on information theory
In modern deep neural networks, the learning dynamics of the individual neurons is often obscure, as the networks are trained via global optimization. Conversely, biological systems build on self-organized, local learning, achieving robustness and efficiency with limited global information. We here show how self-organization between individual artificial neurons can be achieved by designing abstract bio-inspired local learning goals. These goals are parameterized using a recent extension of information theory, Partial Information Decomposition (PID), which decomposes the information that a set of information sources holds about an outcome into unique, redundant and synergistic contributions. Our framework enables neurons to locally shape the integration of information from various input classes, i.e. feedforward, feedback, and lateral, by selecting which of the three inputs should contribute uniquely, redundantly or synergistically to the output. This selection is expressed as a weighted sum of PID terms, which, for a given problem, can be directly derived from intuitive reasoning or via numerical optimization, offering a window into understanding task-relevant local information processing. Achieving neuron-level interpretability while enabling strong performance using local learning, our work advances a principled information-theoretic foundation for local learning strategies.
comment: 24 pages, 11 figures
♻ ☆ Intra-day Solar and Power Forecast for Optimization of Intraday Market Participation
The prediction of solar irradiance enhances reliability in photovoltaic (PV) solar plant generation and grid integration. In Colombia, PV plants face penalties if energy production deviates beyond governmental thresholds from intraday market offers. This research employs Long Short-Term Memory (LSTM) and Bidirectional-LSTM (Bi-LSTM) models, utilizing meteorological data from a PV plant in El Paso, Cesar, Colombia, to predict solar irradiance with a 6-hour horizon and 10-minute resolution. While Bi-LSTM showed superior performance, the LSTM model achieved comparable results with significantly reduced training time (6 hours versus 18 hours), making it computationally advantageous. The LSTM predictions were averaged to create an hourly resolution model, evaluated using Mean Absolute Error, Root-Mean-Square Error, Normalized Root-Mean-Square Error, and Mean Absolute Percentage Error metrics. Comparison with the Global Forecast System (GFS) revealed similar performance, with both models effectively capturing daily solar irradiance patterns. The forecast model integrates with an Object-Oriented power production model, enabling accurate energy offers in the intraday market while minimizing penalty costs.
comment: 20 pages, 37 figures, 9 tables
♻ ☆ Federated Instruction Tuning of LLMs with Domain Coverage Augmentation
Federated Domain-specific Instruction Tuning (FedDIT) utilizes limited cross-client private data together with various strategies of instruction augmentation, ultimately boosting model performance within specific domains. To date, the factors affecting FedDIT remain unclear, and existing instruction augmentation methods primarily focus on the centralized setting without considering distributed environments. Our experiments reveal that the cross-client domain coverage, rather than data heterogeneity, drives model performance in FedDIT. In response, we propose FedDCA, which optimizes domain coverage through greedy client center selection and retrieval-based augmentation. At its core, the greedy selection procedure iteratively picks client centers that maximize the diversity and coverage of the instruction space while avoiding redundancy with previously selected centers. This ensures broad yet efficient coverage of the domain distribution across clients. For client-side computational efficiency and system scalability, FedDCA$^*$, the variant of FedDCA, utilizes heterogeneous encoders with server-side feature alignment. Extensive experiments across code, medical, financial, and mathematical domains substantiate the effectiveness of both methods, as well as plug-and-play capability. We further analyze privacy preservation against memory extraction attacks, showing that while privacy leakage risk is independent of augmented public data ratio, it decreases or converges as training progresses.
♻ ☆ Uncertainty-aware Knowledge Tracing AAAI 2025
Knowledge Tracing (KT) is crucial in education assessment, which focuses on depicting students' learning states and assessing students' mastery of subjects. With the rise of modern online learning platforms, particularly massive open online courses (MOOCs), an abundance of interaction data has greatly advanced the development of the KT technology. Previous research commonly adopts deterministic representation to capture students' knowledge states, which neglects the uncertainty during student interactions and thus fails to model the true knowledge state in learning process. In light of this, we propose an Uncertainty-Aware Knowledge Tracing model (UKT) which employs stochastic distribution embeddings to represent the uncertainty in student interactions, with a Wasserstein self-attention mechanism designed to capture the transition of state distribution in student learning behaviors. Additionally, we introduce the aleatory uncertainty-aware contrastive learning loss, which strengthens the model's robustness towards different types of uncertainties. Extensive experiments on six real-world datasets demonstrate that UKT not only significantly surpasses existing deep learning-based models in KT prediction, but also shows unique advantages in handling the uncertainty of student interactions.
comment: Accepted by AAAI 2025
♻ ☆ QROA: A Black-Box Query-Response Optimization Attack on LLMs
Large Language Models (LLMs) have surged in popularity in recent months, yet they possess concerning capabilities for generating harmful content when manipulated. This study introduces the Query-Response Optimization Attack (QROA), an optimization-based strategy designed to exploit LLMs through a black-box, query-only interaction. QROA adds an optimized trigger to a malicious instruction to compel the LLM to generate harmful content. Unlike previous approaches, QROA does not require access to the model's logit information or any other internal data and operates solely through the standard query-response interface of LLMs. Inspired by deep Q-learning and Greedy coordinate descent, the method iteratively updates tokens to maximize a designed reward function. We tested our method on various LLMs such as Vicuna, Falcon, and Mistral, achieving an Attack Success Rate (ASR) over 80\%. We also tested the model against Llama2-chat, the fine-tuned version of Llama2 designed to resist Jailbreak attacks, achieving good ASR with a suboptimal initial trigger seed. This study demonstrates the feasibility of generating jailbreak attacks against deployed LLMs in the public domain using black-box optimization methods, enabling more comprehensive safety testing of LLMs.
♻ ☆ Training Graph Neural Networks Using Non-Robust Samples
Graph Neural Networks (GNNs) are a highly effective neural network architecture for processing graph -- structured data. Unlike traditional neural networks that rely solely on the features of the data as input, GNNs leverage both the graph structure, which represents the relationships between data points, and the feature matrix of the data to optimize their feature representation. This unique capability enables GNNs to achieve superior performance across various tasks. However, it also makes GNNs more susceptible to noise from both the graph structure and data features, which can significantly increase the training difficulty and degrade their performance. To address this issue, this paper proposes a novel method for selecting noise-sensitive training samples from the original training set to construct a smaller yet more effective training set for model training. These samples are used to help improve the model's ability to correctly process data in noisy environments. We have evaluated our approach on three of the most classical GNN models -- GCN, GAT, and GraphSAGE -- as well as three widely used benchmark datasets: Cora, Citeseer, and PubMed. Our experiments demonstrate that the proposed method can substantially boost the training of Graph Neural Networks compared to using randomly sampled training sets of the same size from the original training set and the larger original full training set.
♻ ☆ BlockDialect: Block-wise Fine-grained Mixed Format Quantization for Energy-Efficient LLM Inference
The rapidly increasing size of large language models (LLMs) presents significant challenges in memory usage and computational costs. Quantizing both weights and activations can address these issues, with hardware-supported fine-grained scaling emerging as a promising solution to mitigate outliers. However, existing methods struggle to capture nuanced block data distributions. We propose BlockDialect, a block-wise fine-grained mixed format technique that assigns a per-block optimal number format from a formatbook for better data representation. Additionally, we introduce DialectFP4, a formatbook of FP4 variants (akin to dialects) that adapt to diverse data distributions. To leverage this efficiently, we propose a two-stage approach for online DialectFP4 activation quantization. Importantly, DialectFP4 ensures energy efficiency by selecting representable values as scaled integers compatible with low-precision integer arithmetic. BlockDialect achieves 10.78% (7.48%) accuracy gain on the LLaMA3-8B (LLaMA2-7B) model compared to MXFP4 format with lower bit usage per data, while being only 5.45% (2.69%) below full precision even when quantizing full-path matrix multiplication. Focusing on how to represent over how to scale, our work presents a promising path for energy-efficient LLM inference.
♻ ☆ Multimodal Marvels of Deep Learning in Medical Diagnosis: A Comprehensive Review of COVID-19 Detection
This study presents a comprehensive review of the potential of multimodal deep learning (DL) in medical diagnosis, using COVID-19 as a case example. Motivated by the success of artificial intelligence applications during the COVID-19 pandemic, this research aims to uncover the capabilities of DL in disease screening, prediction, and classification, and to derive insights that enhance the resilience, sustainability, and inclusiveness of science, technology, and innovation systems. Adopting a systematic approach, we investigate the fundamental methodologies, data sources, preprocessing steps, and challenges encountered in various studies and implementations. We explore the architecture of deep learning models, emphasising their data-specific structures and underlying algorithms. Subsequently, we compare different deep learning strategies utilised in COVID-19 analysis, evaluating them based on methodology, data, performance, and prerequisites for future research. By examining diverse data types and diagnostic modalities, this research contributes to scientific understanding and knowledge of the multimodal application of DL and its effectiveness in diagnosis. We have implemented and analysed 11 deep learning models using COVID-19 image, text, and speech (ie, cough) data. Our analysis revealed that the MobileNet model achieved the highest accuracy of 99.97% for COVID-19 image data and 93.73% for speech data (i.e., cough). However, the BiGRU model demonstrated superior performance in COVID-19 text classification with an accuracy of 99.89%. The broader implications of this research suggest potential benefits for other domains and disciplines that could leverage deep learning techniques for image, text, and speech analysis.
comment: 43 pages
♻ ☆ A-FedPD: Aligning Dual-Drift is All Federated Primal-Dual Learning Needs
As a popular paradigm for juggling data privacy and collaborative training, federated learning (FL) is flourishing to distributively process the large scale of heterogeneous datasets on edged clients. Due to bandwidth limitations and security considerations, it ingeniously splits the original problem into multiple subproblems to be solved in parallel, which empowers primal dual solutions to great application values in FL. In this paper, we review the recent development of classical federated primal dual methods and point out a serious common defect of such methods in non-convex scenarios, which we say is a "dual drift" caused by dual hysteresis of those longstanding inactive clients under partial participation training. To further address this problem, we propose a novel Aligned Federated Primal Dual (A-FedPD) method, which constructs virtual dual updates to align global consensus and local dual variables for those protracted unparticipated local clients. Meanwhile, we provide a comprehensive analysis of the optimization and generalization efficiency for the A-FedPD method on smooth non-convex objectives, which confirms its high efficiency and practicality. Extensive experiments are conducted on several classical FL setups to validate the effectiveness of our proposed method.
♻ ☆ AirPilot: Interpretable PPO-based DRL Auto-Tuned Nonlinear PID Drone Controller for Robust Autonomous Flights
Navigation precision, speed and stability are crucial for safe Unmanned Aerial Vehicle (UAV) flight maneuvers and effective flight mission executions in dynamic environments. Different flight missions may have varying objectives, such as minimizing energy consumption, achieving precise positioning, or maximizing speed. A controller that can adapt to different objectives on the fly is highly valuable. Proportional Integral Derivative (PID) controllers are one of the most popular and widely used control algorithms for drones and other control systems, but their linear control algorithm fails to capture the nonlinear nature of the dynamic wind conditions and complex drone system. Manually tuning the PID gains for various missions can be time-consuming and requires significant expertise. This paper aims to revolutionize drone flight control by presenting the AirPilot, a nonlinear Deep Reinforcement Learning (DRL) - enhanced Proportional Integral Derivative (PID) drone controller using Proximal Policy Optimization (PPO). AirPilot controller combines the simplicity and effectiveness of traditional PID control with the adaptability, learning capability, and optimization potential of DRL. This makes it better suited for modern drone applications where the environment is dynamic, and mission-specific performance demands are high. We employed a COEX Clover autonomous drone for training the DRL agent within the simulator and implemented it in a real-world lab setting, which marks a significant milestone as one of the first attempts to apply a DRL-based flight controller on an actual drone. Airpilot is capable of reducing the navigation error of the default PX4 PID position controller by 90%, improving effective navigation speed of a fine-tuned PID controller by 21%, reducing settling time and overshoot by 17% and 16% respectively.
comment: 9 pages, 20 figures
♻ ☆ Categorical Flow Matching on Statistical Manifolds NeurIPS 2024
We introduce Statistical Flow Matching (SFM), a novel and mathematically rigorous flow-matching framework on the manifold of parameterized probability measures inspired by the results from information geometry. We demonstrate the effectiveness of our method on the discrete generation problem by instantiating SFM on the manifold of categorical distributions whose geometric properties remain unexplored in previous discrete generative models. Utilizing the Fisher information metric, we equip the manifold with a Riemannian structure whose intrinsic geometries are effectively leveraged by following the shortest paths of geodesics. We develop an efficient training and sampling algorithm that overcomes numerical stability issues with a diffeomorphism between manifolds. Our distinctive geometric perspective of statistical manifolds allows us to apply optimal transport during training and interpret SFM as following the steepest direction of the natural gradient. Unlike previous models that rely on variational bounds for likelihood estimation, SFM enjoys the exact likelihood calculation for arbitrary probability measures. We manifest that SFM can learn more complex patterns on the statistical manifold where existing models often fail due to strong prior assumptions. Comprehensive experiments on real-world generative tasks ranging from image, text to biological domains further demonstrate that SFM achieves higher sampling quality and likelihood than other discrete diffusion or flow-based models.
comment: Accepted to NeurIPS 2024 as a conference paper
♻ ☆ Diversify, Don't Fine-Tune: Scaling Up Visual Recognition Training with Synthetic Images
Recent advances in generative deep learning have enabled the creation of high-quality synthetic images in text-to-image generation. Prior work shows that fine-tuning a pretrained diffusion model on ImageNet and generating synthetic training images from the finetuned model can enhance an ImageNet classifier's performance. However, performance degrades as synthetic images outnumber real ones. In this paper, we explore whether generative fine-tuning is essential for this improvement and whether it is possible to further scale up training using more synthetic data. We present a new framework leveraging off-the-shelf generative models to generate synthetic training images, addressing multiple challenges: class name ambiguity, lack of diversity in naive prompts, and domain shifts. Specifically, we leverage large language models (LLMs) and CLIP to resolve class name ambiguity. To diversify images, we propose contextualized diversification (CD) and stylized diversification (SD) methods, also prompted by LLMs. Finally, to mitigate domain shifts, we leverage domain adaptation techniques with auxiliary batch normalization for synthetic images. Our framework consistently enhances recognition model performance with more synthetic data, up to 6x of original ImageNet size showcasing the potential of synthetic data for improved recognition models and strong out-of-domain generalization.
comment: Accepted by Transactions on Machine Learning Research (TMLR)
♻ ☆ On non-approximability of zero loss global ${\mathcal L}^2$ minimizers by gradient descent in Deep Learning
We analyze geometric aspects of the gradient descent algorithm in Deep Learning (DL), and give a detailed discussion of the circumstance that in underparametrized DL networks, zero loss minimization can generically not be attained. As a consequence, we conclude that the distribution of training inputs must necessarily be non-generic in order to produce zero loss minimizers, both for the method constructed in [Chen-Munoz Ewald 2023, 2024], or for gradient descent [Chen 2025] (which assume clustering of training data).
comment: AMS Latex, 7 pages. Title changed, statement of Corollary 1.6 corrected
♻ ☆ Scalable Bayesian Physics-Informed Kolmogorov-Arnold Networks
Uncertainty quantification (UQ) plays a pivotal role in scientific machine learning, especially when surrogate models are used to approximate complex systems. Although multilayer perceptions (MLPs) are commonly employed as surrogates, they often suffer from overfitting due to their large number of parameters. Kolmogorov-Arnold networks (KANs) offer an alternative solution with fewer parameters. However, gradient-based inference methods, such as Hamiltonian Monte Carlo (HMC), may result in computational inefficiency when applied to KANs, especially for large-scale datasets, due to the high cost of back-propagation. To address these challenges, we propose a novel approach, combining the dropout Tikhonov ensemble Kalman inversion (DTEKI) with Chebyshev KANs. This gradient-free method effectively mitigates overfitting and enhances numerical stability. Additionally, we incorporate the active subspace method to reduce the parameter-space dimensionality, allowing us to improve the accuracy of predictions and obtain more reliable uncertainty estimates. Extensive experiments demonstrate the efficacy of our approach in various test cases, including scenarios with large datasets and high noise levels. Our results show that the new method achieves comparable or better accuracy, much higher efficiency as well as stability compared to HMC, in addition to scalability. Moreover, by leveraging the low-dimensional parameter subspace, our method preserves prediction accuracy while substantially reducing further the computational cost.
comment: 28 pages, 19 figures
♻ ☆ Deep Convolutional Neural Networks on Multiclass Classification of Three-Dimensional Brain Images for Parkinson's Disease Stage Prediction
Parkinson's disease (PD), a degenerative disorder of the central nervous system, is commonly diagnosed using functional medical imaging techniques such as single-photon emission computed tomography (SPECT). In this study, we utilized two SPECT data sets (n = 634 and n = 202) from different hospitals to develop a model capable of accurately predicting PD stages, a multiclass classification task. We used the entire three-dimensional (3D) brain images as input and experimented with various model architectures. Initially, we treated the 3D images as sequences of two-dimensional (2D) slices and fed them sequentially into 2D convolutional neural network (CNN) models pretrained on ImageNet, averaging the outputs to obtain the final predicted stage. We also applied 3D CNN models pretrained on Kinetics-400. Additionally, we incorporated an attention mechanism to account for the varying importance of different slices in the prediction process. To further enhance model efficacy and robustness, we simultaneously trained the two data sets using weight sharing, a technique known as cotraining. Our results demonstrated that 2D models pretrained on ImageNet outperformed 3D models pretrained on Kinetics-400, and models utilizing the attention mechanism outperformed both 2D and 3D models. The cotraining technique proved effective in improving model performance when the cotraining data sets were sufficiently large.
comment: 38 pages, 7 figures, and 4 tables. This paper has been accepted for publication in Journal of Imaging Informatics in Medicine
♻ ☆ Investigating Recurrent Transformers with Dynamic Halt
In this paper, we comprehensively study the inductive biases of two major approaches to augmenting Transformers with a recurrent mechanism: (1) the approach of incorporating a depth-wise recurrence similar to Universal Transformers; and (2) the approach of incorporating a chunk-wise temporal recurrence like Temporal Latent Bottleneck. Furthermore, we propose and investigate novel ways to extend and combine the above methods - for example, we propose a global mean-based dynamic halting mechanism for Universal Transformers and an augmentation of Temporal Latent Bottleneck with elements from Universal Transformer. We compare the models and probe their inductive biases in several diagnostic tasks, such as Long Range Arena (LRA), flip-flop language modeling, ListOps, and Logical Inference. The code is released in: https://github.com/JRC1995/InvestigatingRecurrentTransformers/tree/main
♻ ☆ OpenFGL: A Comprehensive Benchmark for Federated Graph Learning VLDB 2025
Federated graph learning (FGL) is a promising distributed training paradigm for graph neural networks across multiple local systems without direct data sharing. This approach inherently involves large-scale distributed graph processing, which closely aligns with the challenges and research focuses of graph-based data systems. Despite the proliferation of FGL, the diverse motivations from real-world applications, spanning various research backgrounds and settings, pose a significant challenge to fair evaluation. To fill this gap, we propose OpenFGL, a unified benchmark designed for the primary FGL scenarios: Graph-FL and Subgraph-FL. Specifically, OpenFGL includes 42 graph datasets from 18 application domains, 8 federated data simulation strategies that emphasize different graph properties, and 5 graph-based downstream tasks. Additionally, it offers 18 recently proposed SOTA FGL algorithms through a user-friendly API, enabling a thorough comparison and comprehensive evaluation of their effectiveness, robustness, and efficiency. Our empirical results demonstrate the capabilities of FGL while also highlighting its potential limitations, providing valuable insights for future research in this growing field, particularly in fostering greater interdisciplinary collaboration between FGL and data systems.
comment: Accepted by VLDB 2025
♻ ☆ Gradient Descent Converges Linearly to Flatter Minima than Gradient Flow in Shallow Linear Networks
We study the gradient descent (GD) dynamics of a depth-2 linear neural network with a single input and output. We show that GD converges at an explicit linear rate to a global minimum of the training loss, even with a large stepsize -- about $2/\textrm{sharpness}$. It still converges for even larger stepsizes, but may do so very slowly. We also characterize the solution to which GD converges, which has lower norm and sharpness than the gradient flow solution. Our analysis reveals a trade off between the speed of convergence and the magnitude of implicit regularization. This sheds light on the benefits of training at the ``Edge of Stability'', which induces additional regularization by delaying convergence and may have implications for training more complex models.
comment: 23 pages, 3 figures
♻ ☆ FedSPU: Personalized Federated Learning for Resource-constrained Devices with Stochastic Parameter Update AAAI 2025
Personalized Federated Learning (PFL) is widely employed in IoT applications to handle high-volume, non-iid client data while ensuring data privacy. However, heterogeneous edge devices owned by clients may impose varying degrees of resource constraints, causing computation and communication bottlenecks for PFL. Federated Dropout has emerged as a popular strategy to address this challenge, wherein only a subset of the global model, i.e. a sub-model, is trained on a client's device, thereby reducing computation and communication overheads. Nevertheless, the dropout-based model-pruning strategy may introduce bias, particularly towards non-iid local data. When biased sub-models absorb highly divergent parameters from other clients, performance degradation becomes inevitable. In response, we propose federated learning with stochastic parameter update (FedSPU). Unlike dropout that tailors the global model to small-size local sub-models, FedSPU maintains the full model architecture on each device but randomly freezes a certain percentage of neurons in the local model during training while updating the remaining neurons. This approach ensures that a portion of the local model remains personalized, thereby enhancing the model's robustness against biased parameters from other clients. Experimental results demonstrate that FedSPU outperforms federated dropout by 7.57% on average in terms of accuracy. Furthermore, an introduced early stopping scheme leads to a significant reduction of the training time by 24.8%-70.4% while maintaining high accuracy.
comment: AAAI 2025 Oral
♻ ☆ Fair Secretaries with Unfair Predictions NeurIPS 2024
Algorithms with predictions is a recent framework for decision-making under uncertainty that leverages the power of machine-learned predictions without making any assumption about their quality. The goal in this framework is for algorithms to achieve an improved performance when the predictions are accurate while maintaining acceptable guarantees when the predictions are erroneous. A serious concern with algorithms that use predictions is that these predictions can be biased and, as a result, cause the algorithm to make decisions that are deemed unfair. We show that this concern manifests itself in the classical secretary problem in the learning-augmented setting -- the state-of-the-art algorithm can have zero probability of accepting the best candidate, which we deem unfair, despite promising to accept a candidate whose expected value is at least $\max\{\Omega (1) , 1 - O(\epsilon)\}$ times the optimal value, where $\epsilon$ is the prediction error. We show how to preserve this promise while also guaranteeing to accept the best candidate with probability $\Omega(1)$. Our algorithm and analysis are based on a new "pegging" idea that diverges from existing works and simplifies/unifies some of their results. Finally, we extend to the $k$-secretary problem and complement our theoretical analysis with experiments.
comment: NeurIPS 2024
♻ ☆ Reward-Augmented Data Enhances Direct Preference Alignment of LLMs
Preference alignment in Large Language Models (LLMs) has significantly improved their ability to adhere to human instructions and intentions. However, existing direct alignment algorithms primarily focus on relative preferences and often overlook the qualitative aspects of responses. Striving to maximize the implicit reward gap between the chosen and the slightly inferior rejected responses can cause overfitting and unnecessary unlearning of the high-quality rejected responses. The unawareness of the reward scores also drives the LLM to indiscriminately favor the low-quality chosen responses and fail to generalize to responses with the highest rewards, which are sparse in data. To overcome these shortcomings, our study introduces reward-conditioned LLM policies that discern and learn from the entire spectrum of response quality within the dataset, helping extrapolate to more optimal regions. We propose an effective yet simple data relabeling method that conditions the preference pairs on quality scores to construct a reward-augmented dataset. This dataset is easily integrated with existing direct alignment algorithms and is applicable to any preference dataset. The experimental results across instruction-following benchmarks including AlpacaEval, MT-Bench, and Arena-Hard-Auto demonstrate that our approach consistently boosts the performance of DPO by a considerable margin across diverse models. Additionally, our method improves the average accuracy on various academic benchmarks. When applying our method to on-policy data, the resulting DPO model achieves SOTA results on AlpacaEval. Through ablation studies, we demonstrate that our method not only maximizes the utility of preference data but also mitigates the issue of unlearning, demonstrating its broad effectiveness beyond mere dataset expansion. Our code is available at https://github.com/shenao-zhang/reward-augmented-preference.
♻ ☆ Embodied-RAG: General Non-parametric Embodied Memory for Retrieval and Generation
There is no limit to how much a robot might explore and learn, but all of that knowledge needs to be searchable and actionable. Within language research, retrieval augmented generation (RAG) has become the workhorse of large-scale non-parametric knowledge; however, existing techniques do not directly transfer to the embodied domain, which is multimodal, where data is highly correlated, and perception requires abstraction. To address these challenges, we introduce Embodied-RAG, a framework that enhances the foundational model of an embodied agent with a non-parametric memory system capable of autonomously constructing hierarchical knowledge for both navigation and language generation. Embodied-RAG handles a full range of spatial and semantic resolutions across diverse environments and query types, whether for a specific object or a holistic description of ambiance. At its core, Embodied-RAG's memory is structured as a semantic forest, storing language descriptions at varying levels of detail. This hierarchical organization allows the system to efficiently generate context-sensitive outputs across different robotic platforms. We demonstrate that Embodied-RAG effectively bridges RAG to the robotics domain, successfully handling over 250 explanation and navigation queries across kilometer-level environments, highlighting its promise as a general-purpose non-parametric system for embodied agents.
comment: Web: https://quanting-xie.github.io/Embodied-RAG-web/
♻ ☆ Information-Theoretic Generalization Bounds for Transductive Learning and its Applications
In this paper, we establish generalization bounds for transductive learning algorithms in the context of information theory and PAC-Bayes, covering both the random sampling and the random splitting setting. First, we show that the transductive generalization gap can be controlled by the mutual information between training label selection and the hypothesis. Next, we propose the concept of transductive supersample and use it to derive transductive information-theoretic bounds involving conditional mutual information and different information measures. We further establish transductive PAC-Bayesian bounds with weaker assumptions on the type of loss function and the number of training and test data points. Lastly, we use the theoretical results to derive upper bounds for adaptive optimization algorithms under the transductive learning setting. We also apply them to semi-supervised learning and transductive graph learning scenarios, meanwhile validating the derived bounds by experiments on synthetic and real-world datasets.
♻ ☆ Incremental Learning of Retrievable Skills For Efficient Continual Task Adaptation
Continual Imitation Learning (CiL) involves extracting and accumulating task knowledge from demonstrations across multiple stages and tasks to achieve a multi-task policy. With recent advancements in foundation models, there has been a growing interest in adapter-based CiL approaches, where adapters are established parameter-efficiently for tasks newly demonstrated. While these approaches isolate parameters for specific tasks and tend to mitigate catastrophic forgetting, they limit knowledge sharing among different demonstrations. We introduce IsCiL, an adapter-based CiL framework that addresses this limitation of knowledge sharing by incrementally learning shareable skills from different demonstrations, thus enabling sample-efficient task adaptation using the skills particularly in non-stationary CiL environments. In IsCiL, demonstrations are mapped into the state embedding space, where proper skills can be retrieved upon input states through prototype-based memory. These retrievable skills are incrementally learned on their corresponding adapters. Our CiL experiments with complex tasks in Franka-Kitchen and Meta-World demonstrate robust performance of IsCiL in both task adaptation and sample-efficiency. We also show a simple extension of IsCiL for task unlearning scenarios.
♻ ☆ Optimization Algorithm Design via Electric Circuits
We present a novel methodology for convex optimization algorithm design using ideas from electric RLC circuits. Given an optimization problem, the first stage of the methodology is to design an appropriate electric circuit whose continuous-time dynamics converge to the solution of the optimization problem at hand. Then, the second stage is an automated, computer-assisted discretization of the continuous-time dynamics, yielding a provably convergent discrete-time algorithm. Our methodology recovers many classical (distributed) optimization algorithms and enables users to quickly design and explore a wide range of new algorithms with convergence guarantees.
♻ ☆ Quantifying the Importance of Data Alignment in Downstream Model Performance
Contrary to the conventional emphasis on dataset size, we explore the role of data alignment -- an often overlooked aspect of data quality -- in training capable Large Language Models (LLMs). To do so, we use the Task2Vec-based alignment coefficient, a quantitative measure of the similarity between two datasets, to quantify the impact of alignment between training data and evaluation data on downstream performance. In particular, we conduct controlled \textit{interventional} experiments for two settings: 1. the impact of increased alignment coefficients between various pre-training (pt) against evaluation datasets, and 2. the impact of increased alignment coefficients between domain specific fine-tuning (ft) against domain specific evaluation. The domain specific task we explore is Autoformalization -- the machine translation task between natural language and code for formal verification. In both settings, we find a strong, predictable negative correlation between the alignment coefficient of a model's training and evaluation data and the model's loss/perplexity on the respective downstream task. These findings suggest a re-evaluation of LLM training approaches, demonstrating the relevance of data alignment compared to data quantity, especially in specialized downstream tasks such as Autoformalization.
♻ ☆ Exploring the Efficacy of Meta-Learning: Unveiling Superior Data Diversity Utilization of MAML Over Pre-training
Currently, data and model size dominate the narrative in the training of super-large, powerful models. However, there has been a lack of exploration on the effect of other attributes of the training dataset on model performance. We hypothesize that dataset diversity can impact the performance of vision models. Our study shows positive correlations between test set accuracy and data diversity, providing an argument for furthering the research of dataset attributes beyond size. We analyzed pre-training and model-agnostic meta-learning methods on twelve popular visual datasets (e.g., Omniglot, CIFAR-FS, Aircraft) and five model configurations, including MAML variants with different numbers of inner gradient steps and supervised learning. We show moderate to strong positive correlations (R-squared: 0.15-0.42) between accuracy and data diversity and weaker but significant correlations (R-squared: ~0.2) between loss and diversity. These findings support our hypothesis and demonstrate a promising way for a deeper exploration of how formal data diversity influences model performance. This initial study highlights the potential of (Task2Vec) data diversity as a valuable measure in the rapidly evolving field of large-scale learning and emphasizes that understanding the dataset is key to building more powerful and generalizable models.
Multimedia 2
☆ GaussianVideo: Efficient Video Representation Through 2D Gaussian Splatting
3D Gaussian splats have emerged as a revolutionary, effective, learned representation for static 3D scenes. In this work, we explore using 2D Gaussian splats as a new primitive for representing videos. We propose GaussianVideo, an approach to learning a set of 2D Gaussian splats that can effectively represent video frames. GaussianVideo incorporates the following techniques: (i) To exploit temporal redundancy among adjacent frames, which can speed up training and improve the compression efficiency, we predict the Gaussian splats of a frame based on its previous frame; (ii) To control the trade-offs between file size and quality, we remove Gaussian splats with low contribution to the video quality; (iii) To capture dynamics in videos, we randomly add Gaussian splats to fit content with large motion or newly-appeared objects; (iv) To handle significant changes in the scene, we detect key frames based on loss differences during the learning process. Experiment results show that GaussianVideo achieves good rate-distortion trade-offs, comparable to state-of-the-art video codecs such as AV1 and VVC, and a rendering speed of 1500 fps for a 1920x1080 video.
♻ ☆ From Data Deluge to Data Curation: A Filtering-WoRA Paradigm for Efficient Text-based Person Search
In text-based person search endeavors, data generation has emerged as a prevailing practice, addressing concerns over privacy preservation and the arduous task of manual annotation. Although the number of synthesized data can be infinite in theory, the scientific conundrum persists that how much generated data optimally fuels subsequent model training. We observe that only a subset of the data in these constructed datasets plays a decisive role. Therefore, we introduce a new Filtering-WoRA paradigm, which contains a filtering algorithm to identify this crucial data subset and WoRA (Weighted Low-Rank Adaptation) learning strategy for light fine-tuning. The filtering algorithm is based on the cross-modality relevance to remove the lots of coarse matching synthesis pairs. As the number of data decreases, we do not need to fine-tune the entire model. Therefore, we propose a WoRA learning strategy to efficiently update a minimal portion of model parameters. WoRA streamlines the learning process, enabling heightened efficiency in extracting knowledge from fewer, yet potent, data instances. Extensive experimentation validates the efficacy of pretraining, where our model achieves advanced and efficient retrieval performance on challenging real-world benchmarks. Notably, on the CUHK-PEDES dataset, we have achieved a competitive mAP of 67.02% while reducing model training time by 19.82%.
Artificial Intelligence 95
☆ Learning segmentation from point trajectories NeurIPS 2024
We consider the problem of segmenting objects in videos based on their motion and no other forms of supervision. Prior work has often approached this problem by using the principle of common fate, namely the fact that the motion of points that belong to the same object is strongly correlated. However, most authors have only considered instantaneous motion from optical flow. In this work, we present a way to train a segmentation network using long-term point trajectories as a supervisory signal to complement optical flow. The key difficulty is that long-term motion, unlike instantaneous motion, is difficult to model -- any parametric approximation is unlikely to capture complex motion patterns over long periods of time. We instead draw inspiration from subspace clustering approaches, proposing a loss function that seeks to group the trajectories into low-rank matrices where the motion of object points can be approximately explained as a linear combination of other point tracks. Our method outperforms the prior art on motion-based segmentation, which shows the utility of long-term motion and the effectiveness of our formulation.
comment: NeurIPS 2024 Spotlight. Project https://www.robots.ox.ac.uk/~vgg/research/lrtl/
☆ Physics of Skill Learning
We aim to understand physics of skill learning, i.e., how skills are learned in neural networks during training. We start by observing the Domino effect, i.e., skills are learned sequentially, and notably, some skills kick off learning right after others complete learning, similar to the sequential fall of domino cards. To understand the Domino effect and relevant behaviors of skill learning, we take physicists' approach of abstraction and simplification. We propose three models with varying complexities -- the Geometry model, the Resource model, and the Domino model, trading between reality and simplicity. The Domino effect can be reproduced in the Geometry model, whose resource interpretation inspires the Resource model, which can be further simplified to the Domino model. These models present different levels of abstraction and simplification; each is useful to study some aspects of skill learning. The Geometry model provides interesting insights into neural scaling laws and optimizers; the Resource model sheds light on the learning dynamics of compositional tasks; the Domino model reveals the benefits of modularity. These models are not only conceptually interesting -- e.g., we show how Chinchilla scaling laws can emerge from the Geometry model, but also are useful in practice by inspiring algorithmic development -- e.g., we show how simple algorithmic changes, motivated by these toy models, can speed up the training of deep learning models.
comment: 25 pages, 20 figures. Codes are available at https://github.com/KindXiaoming/physics_of_skill_learning
☆ MMVU: Measuring Expert-Level Multi-Discipline Video Understanding
We introduce MMVU, a comprehensive expert-level, multi-discipline benchmark for evaluating foundation models in video understanding. MMVU includes 3,000 expert-annotated questions spanning 27 subjects across four core disciplines: Science, Healthcare, Humanities & Social Sciences, and Engineering. Compared to prior benchmarks, MMVU features three key advancements. First, it challenges models to apply domain-specific knowledge and perform expert-level reasoning to analyze specialized-domain videos, moving beyond the basic visual perception typically assessed in current video benchmarks. Second, each example is annotated by human experts from scratch. We implement strict data quality controls to ensure the high quality of the dataset. Finally, each example is enriched with expert-annotated reasoning rationals and relevant domain knowledge, facilitating in-depth analysis. We conduct an extensive evaluation of 32 frontier multimodal foundation models on MMVU. The latest System-2-capable models, o1 and Gemini 2.0 Flash Thinking, achieve the highest performance among the tested models. However, they still fall short of matching human expertise. Through in-depth error analyses and case studies, we offer actionable insights for future advancements in expert-level, knowledge-intensive video understanding for specialized domains.
☆ Video Depth Anything: Consistent Depth Estimation for Super-Long Videos
Depth Anything has achieved remarkable success in monocular depth estimation with strong generalization ability. However, it suffers from temporal inconsistency in videos, hindering its practical applications. Various methods have been proposed to alleviate this issue by leveraging video generation models or introducing priors from optical flow and camera poses. Nonetheless, these methods are only applicable to short videos (< 10 seconds) and require a trade-off between quality and computational efficiency. We propose Video Depth Anything for high-quality, consistent depth estimation in super-long videos (over several minutes) without sacrificing efficiency. We base our model on Depth Anything V2 and replace its head with an efficient spatial-temporal head. We design a straightforward yet effective temporal consistency loss by constraining the temporal depth gradient, eliminating the need for additional geometric priors. The model is trained on a joint dataset of video depth and unlabeled images, similar to Depth Anything V2. Moreover, a novel key-frame-based strategy is developed for long video inference. Experiments show that our model can be applied to arbitrarily long videos without compromising quality, consistency, or generalization ability. Comprehensive evaluations on multiple video benchmarks demonstrate that our approach sets a new state-of-the-art in zero-shot video depth estimation. We offer models of different scales to support a range of scenarios, with our smallest model capable of real-time performance at 30 FPS.
☆ Expertise elevates AI usage: experimental evidence comparing laypeople and professional artists
Novel capacities of generative AI to analyze and generate cultural artifacts raise inevitable questions about the nature and value of artistic education and human expertise. Has AI already leveled the playing field between professional artists and laypeople, or do trained artistic expressive capacity, curation skills and experience instead enhance the ability to use these new tools? In this pre-registered study, we conduct experimental comparisons between 50 active artists and a demographically matched sample of laypeople. We designed two tasks to approximate artistic practice for testing their capabilities in both faithful and creative image creation: replicating a reference image, and moving as far away as possible from it. We developed a bespoke platform where participants used a modern text-to-image model to complete both tasks. We also collected and compared participants' sentiments towards AI. On average, artists produced more faithful and creative outputs than their lay counterparts, although only by a small margin. While AI may ease content creation, professional expertise is still valuable - even within the confined space of generative AI itself. Finally, we also explored how well an exemplary vision-capable large language model (GPT-4o) would complete the same tasks, if given the role of an image generation agent, and found it performed on par in copying but outperformed even artists in the creative task. The very best results were still produced by humans in both tasks. These outcomes highlight the importance of integrating artistic skills with AI training to prepare artists and other visual professionals for a technologically evolving landscape. We see a potential in collaborative synergy with generative AI, which could reshape creative industries and education in the arts.
comment: Eisenmann and Karjus contributed equally to this work and share first authorship
☆ Is Long Context All You Need? Leveraging LLM's Extended Context for NL2SQL
Large Language Models (LLMs) have demonstrated impressive capabilities across a range of natural language processing tasks. In particular, improvements in reasoning abilities and the expansion of context windows have opened new avenues for leveraging these powerful models. NL2SQL is challenging in that the natural language question is inherently ambiguous, while the SQL generation requires a precise understanding of complex data schema and semantics. One approach to this semantic ambiguous problem is to provide more and sufficient contextual information. In this work, we explore the performance and the latency trade-offs of the extended context window (a.k.a., long context) offered by Google's state-of-the-art LLM (\textit{gemini-1.5-pro}). We study the impact of various contextual information, including column example values, question and SQL query pairs, user-provided hints, SQL documentation, and schema. To the best of our knowledge, this is the first work to study how the extended context window and extra contextual information can help NL2SQL generation with respect to both accuracy and latency cost. We show that long context LLMs are robust and do not get lost in the extended contextual information. Additionally, our long-context NL2SQL pipeline based on Google's \textit{gemini-pro-1.5} achieve a strong performance with 67.41\% on BIRD benchmark (dev) without finetuning and expensive self-consistency based techniques.
comment: 14 pages, 10 figures
☆ Parameters vs FLOPs: Scaling Laws for Optimal Sparsity for Mixture-of-Experts Language Models
Scaling the capacity of language models has consistently proven to be a reliable approach for improving performance and unlocking new capabilities. Capacity can be primarily defined by two dimensions: the number of model parameters and the compute per example. While scaling typically involves increasing both, the precise interplay between these factors and their combined contribution to overall capacity remains not fully understood. We explore this relationship in the context of sparse Mixture-of-Expert models (MoEs), which allow scaling the number of parameters without proportionally increasing the FLOPs per example. We investigate how varying the sparsity level, i.e., the ratio of non-active to total parameters, affects model performance in terms of both pretraining and downstream performance. We find that under different constraints (e.g. parameter size and total training compute), there is an optimal level of sparsity that improves both training efficiency and model performance. These results provide a better understanding of the impact of sparsity in scaling laws for MoEs and complement existing works in this area, offering insights for designing more efficient architectures.
☆ DARB-Splatting: Generalizing Splatting with Decaying Anisotropic Radial Basis Functions
Splatting-based 3D reconstruction methods have gained popularity with the advent of 3D Gaussian Splatting, efficiently synthesizing high-quality novel views. These methods commonly resort to using exponential family functions, such as the Gaussian function, as reconstruction kernels due to their anisotropic nature, ease of projection, and differentiability in rasterization. However, the field remains restricted to variations within the exponential family, leaving generalized reconstruction kernels largely underexplored, partly due to the lack of easy integrability in 3D to 2D projections. In this light, we show that a class of decaying anisotropic radial basis functions (DARBFs), which are non-negative functions of the Mahalanobis distance, supports splatting by approximating the Gaussian function's closed-form integration advantage. With this fresh perspective, we demonstrate up to 34% faster convergence during training and a 15% reduction in memory consumption across various DARB reconstruction kernels, while maintaining comparable PSNR, SSIM, and LPIPS results. We will make the code available.
comment: Link to the project page: https://randomnerds.github.io/darbs.github.io/
☆ Test-time regression: a unifying framework for designing sequence models with associative memory
Sequences provide a remarkably general way to represent and process information. This powerful abstraction has placed sequence modeling at the center of modern deep learning applications, inspiring numerous architectures from transformers to recurrent networks. While this fragmented development has yielded powerful models, it has left us without a unified framework to understand their fundamental similarities and explain their effectiveness. We present a unifying framework motivated by an empirical observation: effective sequence models must be able to perform associative recall. Our key insight is that memorizing input tokens through an associative memory is equivalent to performing regression at test-time. This regression-memory correspondence provides a framework for deriving sequence models that can perform associative recall, offering a systematic lens to understand seemingly ad-hoc architectural choices. We show numerous recent architectures -- including linear attention models, their gated variants, state-space models, online learners, and softmax attention -- emerge naturally as specific approaches to test-time regression. Each architecture corresponds to three design choices: the relative importance of each association, the regressor function class, and the optimization algorithm. This connection leads to new understanding: we provide theoretical justification for QKNorm in softmax attention, and we motivate higher-order generalizations of softmax attention. Beyond unification, our work unlocks decades of rich statistical tools that can guide future development of more powerful yet principled sequence models.
☆ Treefix: Enabling Execution with a Tree of Prefixes ICSE
The ability to execute code is a prerequisite for various dynamic program analyses. Learning-guided execution has been proposed as an approach to enable the execution of arbitrary code snippets by letting a neural model predict likely values for any missing variables. Although state-of-the-art learning-guided execution approaches, such as LExecutor, can enable the execution of a relative high amount of code, they are limited to predicting a restricted set of possible values and do not use any feedback from previous executions to execute even more code. This paper presents Treefix, a novel learning-guided execution approach that leverages LLMs to iteratively create code prefixes that enable the execution of a given code snippet. The approach addresses the problem in a multi-step fashion, where each step uses feedback about the code snippet and its execution to instruct an LLM to improve a previously generated prefix. This process iteratively creates a tree of prefixes, a subset of which is returned to the user as prefixes that maximize the number of executed lines in the code snippet. In our experiments with two datasets of Python code snippets, Treefix achieves 25% and 7% more coverage relative to the current state of the art in learning-guided execution, covering a total of 84% and 82% of all lines in the code snippets.
comment: Accepted in research track of the EEE/ACM International Conference on Software Engineering (ICSE) 2025
☆ FuocChuVIP123 at CoMeDi Shared Task: Disagreement Ranking with XLM-Roberta Sentence Embeddings and Deep Neural Regression COLING 2025
This paper presents results of our system for CoMeDi Shared Task, focusing on Subtask 2: Disagreement Ranking. Our system leverages sentence embeddings generated by the paraphrase-xlm-r-multilingual-v1 model, combined with a deep neural regression model incorporating batch normalization and dropout for improved generalization. By predicting the mean of pairwise judgment differences between annotators, our method explicitly targets disagreement ranking, diverging from traditional "gold label" aggregation approaches. We optimized our system with a customized architecture and training procedure, achieving competitive performance in Spearman correlation against mean disagreement labels. Our results highlight the importance of robust embeddings, effective model architecture, and careful handling of judgment differences for ranking disagreement in multilingual contexts. These findings provide insights into the use of contextualized representations for ordinal judgment tasks and open avenues for further refinement of disagreement prediction models.
comment: Accepted at COMEDI shared Task, Workshop at COLING 2025
☆ Automatic Labelling with Open-source LLMs using Dynamic Label Schema Integration
Acquiring labelled training data remains a costly task in real world machine learning projects to meet quantity and quality requirements. Recently Large Language Models (LLMs), notably GPT-4, have shown great promises in labelling data with high accuracy. However, privacy and cost concerns prevent the ubiquitous use of GPT-4. In this work, we explore effectively leveraging open-source models for automatic labelling. We identify integrating label schema as a promising technology but found that naively using the label description for classification leads to poor performance on high cardinality tasks. To address this, we propose Retrieval Augmented Classification (RAC) for which LLM performs inferences for one label at a time using corresponding label schema; we start with the most related label and iterates until a label is chosen by the LLM. We show that our method, which dynamically integrates label description, leads to performance improvements in labelling tasks. We further show that by focusing only on the most promising labels, RAC can trade off between label quality and coverage - a property we leverage to automatically label our internal datasets.
comment: 11 pages, 1 figure
☆ UI-TARS: Pioneering Automated GUI Interaction with Native Agents
This paper introduces UI-TARS, a native GUI agent model that solely perceives the screenshots as input and performs human-like interactions (e.g., keyboard and mouse operations). Unlike prevailing agent frameworks that depend on heavily wrapped commercial models (e.g., GPT-4o) with expert-crafted prompts and workflows, UI-TARS is an end-to-end model that outperforms these sophisticated frameworks. Experiments demonstrate its superior performance: UI-TARS achieves SOTA performance in 10+ GUI agent benchmarks evaluating perception, grounding, and GUI task execution. Notably, in the OSWorld benchmark, UI-TARS achieves scores of 24.6 with 50 steps and 22.7 with 15 steps, outperforming Claude (22.0 and 14.9 respectively). In AndroidWorld, UI-TARS achieves 46.6, surpassing GPT-4o (34.5). UI-TARS incorporates several key innovations: (1) Enhanced Perception: leveraging a large-scale dataset of GUI screenshots for context-aware understanding of UI elements and precise captioning; (2) Unified Action Modeling, which standardizes actions into a unified space across platforms and achieves precise grounding and interaction through large-scale action traces; (3) System-2 Reasoning, which incorporates deliberate reasoning into multi-step decision making, involving multiple reasoning patterns such as task decomposition, reflection thinking, milestone recognition, etc. (4) Iterative Training with Reflective Online Traces, which addresses the data bottleneck by automatically collecting, filtering, and reflectively refining new interaction traces on hundreds of virtual machines. Through iterative training and reflection tuning, UI-TARS continuously learns from its mistakes and adapts to unforeseen situations with minimal human intervention. We also analyze the evolution path of GUI agents to guide the further development of this domain.
☆ LLM-Assisted Knowledge Graph Completion for Curriculum and Domain Modelling in Personalized Higher Education Recommendations
While learning personalization offers great potential for learners, modern practices in higher education require a deeper consideration of domain models and learning contexts, to develop effective personalization algorithms. This paper introduces an innovative approach to higher education curriculum modelling that utilizes large language models (LLMs) for knowledge graph (KG) completion, with the goal of creating personalized learning-path recommendations. Our research focuses on modelling university subjects and linking their topics to corresponding domain models, enabling the integration of learning modules from different faculties and institutions in the student's learning path. Central to our approach is a collaborative process, where LLMs assist human experts in extracting high-quality, fine-grained topics from lecture materials. We develop a domain, curriculum, and user models for university modules and stakeholders. We implement this model to create the KG from two study modules: Embedded Systems and Development of Embedded Systems Using FPGA. The resulting KG structures the curriculum and links it to the domain models. We evaluate our approach through qualitative expert feedback and quantitative graph quality metrics. Domain experts validated the relevance and accuracy of the model, while the graph quality metrics measured the structural properties of our KG. Our results show that the LLM-assisted graph completion approach enhances the ability to connect related courses across disciplines to personalize the learning experience. Expert feedback also showed high acceptance of the proposed collaborative approach for concept extraction and classification.
comment: Accepted in the IEEE Global Engineering Education Conference (EDUCON2025), London, UK, 22-25 April, 2025
☆ RALAD: Bridging the Real-to-Sim Domain Gap in Autonomous Driving with Retrieval-Augmented Learning
In the pursuit of robust autonomous driving systems, models trained on real-world datasets often struggle to adapt to new environments, particularly when confronted with corner cases such as extreme weather conditions. Collecting these corner cases in the real world is non-trivial, which necessitates the use of simulators for validation. However,the high computational cost and the domain gap in data distribution have hindered the seamless transition between real and simulated driving scenarios. To tackle this challenge, we propose Retrieval-Augmented Learning for Autonomous Driving (RALAD), a novel framework designed to bridge the real-to-sim gap at a low cost. RALAD features three primary designs, including (1) domain adaptation via an enhanced Optimal Transport (OT) method that accounts for both individual and grouped image distances, (2) a simple and unified framework that can be applied to various models, and (3) efficient fine-tuning techniques that freeze the computationally expensive layers while maintaining robustness. Experimental results demonstrate that RALAD compensates for the performance degradation in simulated environments while maintaining accuracy in real-world scenarios across three different models. Taking Cross View as an example, the mIOU and mAP metrics in real-world scenarios remain stable before and after RALAD fine-tuning, while in simulated environments,the mIOU and mAP metrics are improved by 10.30% and 12.29%, respectively. Moreover, the re-training cost of our approach is reduced by approximately 88.1%. Our code is available at https://github.com/JiachengZuo/RALAD.git.
☆ Regressor-Guided Image Editing Regulates Emotional Response to Reduce Online Engagement
Emotions are known to mediate the relationship between users' content consumption and their online engagement, with heightened emotional intensity leading to increased engagement. Building on this insight, we propose three regressor-guided image editing approaches aimed at diminishing the emotional impact of images. These include (i) a parameter optimization approach based on global image transformations known to influence emotions, (ii) an optimization approach targeting the style latent space of a generative adversarial network, and (iii) a diffusion-based approach employing classifier guidance and classifier-free guidance. Our findings demonstrate that approaches can effectively alter the emotional properties of images while maintaining high visual quality. Optimization-based methods primarily adjust low-level properties like color hues and brightness, whereas the diffusion-based approach introduces semantic changes, such as altering appearance or facial expressions. Notably, results from a behavioral study reveal that only the diffusion-based approach successfully elicits changes in viewers' emotional responses while preserving high perceived image quality. In future work, we will investigate the impact of these image adaptations on internet user behavior.
comment: 39 pages, 22 figures
☆ Implementation of an Asymmetric Adjusted Activation Function for Class Imbalance Credit Scoring
Credit scoring is a systematic approach to evaluate a borrower's probability of default (PD) on a bank loan. The data associated with such scenarios are characteristically imbalanced, complicating binary classification owing to the often-underestimated cost of misclassification during the classifier's learning process. Considering the high imbalance ratio (IR) of these datasets, we introduce an innovative yet straightforward optimized activation function by incorporating an IR-dependent asymmetric adjusted factor embedded Sigmoid activation function (ASIG). The embedding of ASIG makes the sensitive margin of the Sigmoid function auto-adjustable, depending on the imbalance nature of the datasets distributed, thereby giving the activation function an asymmetric characteristic that prevents the underrepresentation of the minority class (positive samples) during the classifier's learning process. The experimental results show that the ASIG-embedded-classifier outperforms traditional classifiers on datasets across wide-ranging IRs in the downstream credit-scoring task. The algorithm also shows robustness and stability, even when the IR is ultra-high. Therefore, the algorithm provides a competitive alternative in the financial industry, especially in credit scoring, possessing the ability to effectively process highly imbalanced distribution data.
☆ With Great Backbones Comes Great Adversarial Transferability
Advances in self-supervised learning (SSL) for machine vision have improved representation robustness and model performance, giving rise to pre-trained backbones like \emph{ResNet} and \emph{ViT} models tuned with SSL methods such as \emph{SimCLR}. Due to the computational and data demands of pre-training, the utilization of such backbones becomes a strenuous necessity. However, employing these backbones may inherit vulnerabilities to adversarial attacks. While adversarial robustness has been studied under \emph{white-box} and \emph{black-box} settings, the robustness of models tuned on pre-trained backbones remains largely unexplored. Additionally, the role of tuning meta-information in mitigating exploitation risks is unclear. This work systematically evaluates the adversarial robustness of such models across $20,000$ combinations of tuning meta-information, including fine-tuning techniques, backbone families, datasets, and attack types. We propose using proxy models to transfer attacks, simulating varying levels of target knowledge by fine-tuning these proxies with diverse configurations. Our findings reveal that proxy-based attacks approach the effectiveness of \emph{white-box} methods, even with minimal tuning knowledge. We also introduce a naive "backbone attack," leveraging only the backbone to generate adversarial samples, which outperforms \emph{black-box} attacks and rivals \emph{white-box} methods, highlighting critical risks in model-sharing practices. Finally, our ablations reveal how increasing tuning meta-information impacts attack transferability, measuring each meta-information combination.
☆ Condor: Enhance LLM Alignment with Knowledge-Driven Data Synthesis and Refinement
The quality of Supervised Fine-Tuning (SFT) data plays a critical role in enhancing the conversational capabilities of Large Language Models (LLMs). However, as LLMs become more advanced, the availability of high-quality human-annotated SFT data has become a significant bottleneck, necessitating a greater reliance on synthetic training data. In this work, we introduce Condor, a novel two-stage synthetic data generation framework that incorporates World Knowledge Tree and Self-Reflection Refinement to produce high-quality SFT data at scale. Our experimental results demonstrate that a base model fine-tuned on only 20K Condor-generated samples achieves superior performance compared to counterparts. The additional refinement stage in Condor further enables iterative self-improvement for LLMs at various scales (up to 72B), validating the effectiveness of our approach. Furthermore, our investigation into the scaling for synthetic data in post-training reveals substantial unexplored potential for performance improvements, opening promising avenues for future research.
comment: Tech Report. Github: https://github.com/InternLM/Condor
☆ CBVLM: Training-free Explainable Concept-based Large Vision Language Models for Medical Image Classification
The main challenges limiting the adoption of deep learning-based solutions in medical workflows are the availability of annotated data and the lack of interpretability of such systems. Concept Bottleneck Models (CBMs) tackle the latter by constraining the final disease prediction on a set of predefined and human-interpretable concepts. However, the increased interpretability achieved through these concept-based explanations implies a higher annotation burden. Moreover, if a new concept needs to be added, the whole system needs to be retrained. Inspired by the remarkable performance shown by Large Vision-Language Models (LVLMs) in few-shot settings, we propose a simple, yet effective, methodology, CBVLM, which tackles both of the aforementioned challenges. First, for each concept, we prompt the LVLM to answer if the concept is present in the input image. Then, we ask the LVLM to classify the image based on the previous concept predictions. Moreover, in both stages, we incorporate a retrieval module responsible for selecting the best examples for in-context learning. By grounding the final diagnosis on the predicted concepts, we ensure explainability, and by leveraging the few-shot capabilities of LVLMs, we drastically lower the annotation cost. We validate our approach with extensive experiments across four medical datasets and twelve LVLMs (both generic and medical) and show that CBVLM consistently outperforms CBMs and task-specific supervised methods without requiring any training and using just a few annotated examples. More information on our project page: https://cristianopatricio.github.io/CBVLM/.
comment: This work has been submitted to the IEEE for possible publication
☆ InsTALL: Context-aware Instructional Task Assistance with Multi-modal Large Language Models
The improved competence of generative models can help building multi-modal virtual assistants that leverage modalities beyond language. By observing humans performing multi-step tasks, one can build assistants that have situational awareness of actions and tasks being performed, enabling them to cater assistance based on this understanding. In this paper, we develop a Context-aware Instructional Task Assistant with Multi-modal Large Language Models (InsTALL) that leverages an online visual stream (e.g. a user's screen share or video recording) and responds in real-time to user queries related to the task at hand. To enable useful assistance, InsTALL 1) trains a multi-modal model on task videos and paired textual data, and 2) automatically extracts task graph from video data and leverages it at training and inference time. We show InsTALL achieves state-of-the-art performance across proposed sub-tasks considered for multimodal activity understanding -- task recognition (TR), action recognition (AR), next action prediction (AP), and plan prediction (PP) -- and outperforms existing baselines on two novel sub-tasks related to automatic error identification.
☆ Strong phonon-mediated high temperature superconductivity in Li$_2$AuH$_6$ under ambient pressure
We used our developed AI search engine~(InvDesFlow) to perform extensive investigations regarding ambient stable superconducting hydrides. A cubic structure Li$_2$AuH$_6$ with Au-H octahedral motifs is identified to be a candidate. After performing thermodynamical analysis, we provide a feasible route to experimentally synthesize this material via the known LiAu and LiH compounds under ambient pressure. The further first-principles calculations suggest that Li$_2$AuH$_6$ shows a high superconducting transition temperature ($T_c$) $\sim$ 140 K under ambient pressure. The H-1$s$ electrons strongly couple with phonon modes of vibrations of Au-H octahedrons as well as vibrations of Li atoms, where the latter is not taken seriously in other previously similar cases. Hence, different from previous claims of searching metallic covalent bonds to find high-$T_c$ superconductors, we emphasize here the importance of those phonon modes with strong electron-phonon coupling (EPC). And we suggest that one can intercalate atoms into binary or ternary hydrides to introduce more potential phonon modes with strong EPC, which is an effective approach to find high-$T_c$ superconductors within multicomponent compounds.
comment: 6 pages; 4 figures
☆ An End-to-End Approach for Korean Wakeword Systems with Speaker Authentication
Wakeword detection plays a critical role in enabling AI assistants to listen to user voices and interact effectively. However, for languages other than English, there is a significant lack of pre-trained wakeword models. Additionally, systems that merely determine the presence of a wakeword can pose serious privacy concerns. In this paper, we propose an end-to-end approach that trains wakewords for Non-English languages, particulary Korean, and uses this to develop a Voice Authentication model to protect user privacy. Our implementation employs an open-source platform OpenWakeWord, which performs wakeword detection using an FCN (Fully-Connected Network) architecture. Once a wakeword is detected, our custom-developed code calculates cosine similarity for robust user authentication. Experimental results demonstrate the effectiveness of our approach, achieving a 16.79% and a 6.6% Equal Error Rate (EER) each in the Wakeword Detection and the Voice Authentication. These findings highlight the model's potential in providing secure and accurate wakeword detection and authentication for Korean users.
comment: 19 pages, 10 figures, implementation code available at https://github.com/gws8820/securewakeword-model, https://github.com/gws8820/wyoming-securewakeword, demo video at https://www.youtube.com/watch?v=F3AXUbL-i-o
☆ AdaServe: SLO-Customized LLM Serving with Fine-Grained Speculative Decoding
This paper introduces AdaServe, the first LLM serving system to support SLO customization through fine-grained speculative decoding. AdaServe leverages the logits of a draft model to predict the speculative accuracy of tokens and employs a theoretically optimal algorithm to construct token trees for verification. To accommodate diverse SLO requirements without compromising throughput, AdaServe employs a speculation-and-selection scheme that first constructs candidate token trees for each request and then dynamically selects tokens to meet individual SLO constraints while optimizing throughput. Comprehensive evaluations demonstrate that AdaServe achieves up to 73% higher SLO attainment and 74% higher goodput compared to state-of-the-art systems. These results underscore AdaServe's potential to enhance the efficiency and adaptability of LLM deployments across varied application scenarios.
☆ On the practical applicability of modern DFT functionals for chemical computations. Case study of DM21 applicability for geometry optimization
Density functional theory (DFT) is probably the most promising approach for quantum chemistry calculations considering its good balance between calculations precision and speed. In recent years, several neural network-based functionals have been developed for exchange-correlation energy approximation in DFT, DM21 developed by Google Deepmind being the most notable between them. This study focuses on evaluating the efficiency of DM21 functional in predicting molecular geometries, with a focus on the influence of oscillatory behavior in neural network exchange-correlation functionals. We implemented geometry optimization in PySCF for the DM21 functional in geometry optimization problem, compared its performance with traditional functionals, and tested it on various benchmarks. Our findings reveal both the potential and the current challenges of using neural network functionals for geometry optimization in DFT. We propose a solution extending the practical applicability of such functionals and allowing to model new substances with their help.
☆ Improving Influence-based Instruction Tuning Data Selection for Balanced Learning of Diverse Capabilities
Selecting appropriate training data is crucial for effective instruction fine-tuning of large language models (LLMs), which aims to (1) elicit strong capabilities, and (2) achieve balanced performance across a diverse range of tasks. Influence-based methods show promise in achieving (1) by estimating the contribution of each training example to the model's predictions, but often struggle with (2). Our systematic investigation reveals that this underperformance can be attributed to an inherent bias where certain tasks intrinsically have greater influence than others. As a result, data selection is often biased towards these tasks, not only hurting the model's performance on others but also, counterintuitively, harms performance on these high-influence tasks themselves. As a remedy, we propose BIDS, a Balanced and Influential Data Selection algorithm. BIDS first normalizes influence scores of the training data, and then iteratively balances data selection by choosing the training example with the highest influence on the most underrepresented task. Experiments with both Llama-3 and Mistral-v0.3 on seven benchmarks spanning five diverse capabilities show that BIDS consistently outperforms both state-of-the-art influence-based algorithms and other non-influence-based selection frameworks. Surprisingly, training on a 15% subset selected by BIDS can even outperform full-dataset training with a much more balanced performance. Our analysis further highlights the importance of both instance-level normalization and iterative optimization of selected data for balanced learning of diverse capabilities.
☆ FedCLEAN: byzantine defense by CLustering Errors of Activation maps in Non-IID federated learning environments
Federated Learning (FL) enables clients to collaboratively train a global model using their local datasets while reinforcing data privacy. However, FL is susceptible to poisoning attacks. Existing defense mechanisms assume that clients' data are independent and identically distributed (IID), making them ineffective in real-world applications where data are non-IID. This paper presents FedCLEAN, the first defense capable of filtering attackers' model updates in a non-IID FL environment. The originality of FedCLEAN is twofold. First, it relies on a client confidence score derived from the reconstruction errors of each client's model activation maps for a given trigger set, with reconstruction errors obtained by means of a Conditional Variational Autoencoder trained according to a novel server-side strategy. Second, we propose an ad-hoc trust propagation algorithm based on client scores, which allows building a cluster of benign clients while flagging potential attackers. Experimental results on the datasets MNIST and FashionMNIST demonstrate the robustness of FedCLEAN against Byzantine attackers in non-IID scenarios and a close-to-zero benign client misclassification rate, even in the absence of an attack.
comment: 19 pages, 3 figures
☆ Efficient PINNs: Multi-Head Unimodular Regularization of the Solutions Space
We present a machine learning framework to facilitate the solution of nonlinear multiscale differential equations and, especially, inverse problems using Physics-Informed Neural Networks (PINNs). This framework is based on what is called multihead (MH) training, which involves training the network to learn a general space of all solutions for a given set of equations with certain variability, rather than learning a specific solution of the system. This setup is used with a second novel technique that we call Unimodular Regularization (UR) of the latent space of solutions. We show that the multihead approach, combined with the regularization, significantly improves the efficiency of PINNs by facilitating the transfer learning process thereby enabling the finding of solutions for nonlinear, coupled, and multiscale differential equations.
☆ Can open source large language models be used for tumor documentation in Germany? -- An evaluation on urological doctors' notes
Tumor documentation in Germany is largely done manually, requiring reading patient records and entering data into structured databases. Large language models (LLMs) could potentially enhance this process by improving efficiency and reliability. This evaluation tests eleven different open source LLMs with sizes ranging from 1-70 billion model parameters on three basic tasks of the tumor documentation process: identifying tumor diagnoses, assigning ICD-10 codes, and extracting the date of first diagnosis. For evaluating the LLMs on these tasks, a dataset of annotated text snippets based on anonymized doctors' notes from urology was prepared. Different prompting strategies were used to investigate the effect of the number of examples in few-shot prompting and to explore the capabilities of the LLMs in general. The models Llama 3.1 8B, Mistral 7B, and Mistral NeMo 12 B performed comparably well in the tasks. Models with less extensive training data or having fewer than 7 billion parameters showed notably lower performance, while larger models did not display performance gains. Examples from a different medical domain than urology could also improve the outcome in few-shot prompting, which demonstrates the ability of LLMs to handle tasks needed for tumor documentation. Open source LLMs show a strong potential for automating tumor documentation. Models from 7-12 billion parameters could offer an optimal balance between performance and resource efficiency. With tailored fine-tuning and well-designed prompting, these models might become important tools for clinical documentation in the future. The code for the evaluation is available from https://github.com/stefan-m-lenz/UroLlmEval. We also release the dataset as a new valuable resource that addresses the shortage of authentic and easily accessible benchmarks in German-language medical NLP.
comment: 48 pages, 5 figures
☆ Teacher Encoder-Student Decoder Denoising Guided Segmentation Network for Anomaly Detection
Visual anomaly detection is a highly challenging task, often categorized as a one-class classification and segmentation problem. Recent studies have demonstrated that the student-teacher (S-T) framework effectively addresses this challenge. However, most S-T frameworks rely solely on pre-trained teacher networks to guide student networks in learning multi-scale similar features, overlooking the potential of the student networks to enhance learning through multi-scale feature fusion. In this study, we propose a novel model named PFADSeg, which integrates a pre-trained teacher network, a denoising student network with multi-scale feature fusion, and a guided anomaly segmentation network into a unified framework. By adopting a unique teacher-encoder and student-decoder denoising mode, the model improves the student network's ability to learn from teacher network features. Furthermore, an adaptive feature fusion mechanism is introduced to train a self-supervised segmentation network that synthesizes anomaly masks autonomously, significantly increasing detection performance. Evaluated on the MVTec AD dataset, PFADSeg achieves state-of-the-art results with an image-level AUC of 98.9%, a pixel-level mean precision of 76.4%, and an instance-level mean precision of 78.7%.
☆ Proxies for Distortion and Consistency with Applications for Real-World Image Restoration
Real-world image restoration deals with the recovery of images suffering from an unknown degradation. This task is typically addressed while being given only degraded images, without their corresponding ground-truth versions. In this hard setting, designing and evaluating restoration algorithms becomes highly challenging. This paper offers a suite of tools that can serve both the design and assessment of real-world image restoration algorithms. Our work starts by proposing a trained model that predicts the chain of degradations a given real-world measured input has gone through. We show how this estimator can be used to approximate the consistency -- the match between the measurements and any proposed recovered image. We also use this estimator as a guiding force for the design of a simple and highly-effective plug-and-play real-world image restoration algorithm, leveraging a pre-trained diffusion-based image prior. Furthermore, this work proposes no-reference proxy measures of MSE and LPIPS, which, without access to the ground-truth images, allow ranking of real-world image restoration algorithms according to their (approximate) MSE and LPIPS. The proposed suite provides a versatile, first of its kind framework for evaluating and comparing blind image restoration algorithms in real-world scenarios.
comment: Project page in https://man-sean.github.io/elad-website/
☆ Scalable Whole Slide Image Representation Using K-Mean Clustering and Fisher Vector Aggregation
Whole slide images (WSIs) are high-resolution, gigapixel sized images that pose significant computational challenges for traditional machine learning models due to their size and heterogeneity.In this paper, we present a scalable and efficient methodology for WSI classification by leveraging patch-based feature extraction, clustering, and Fisher vector encoding. Initially, WSIs are divided into fixed size patches, and deep feature embeddings are extracted from each patch using a pre-trained convolutional neural network (CNN). These patch-level embeddings are subsequently clustered using K-means clustering, where each cluster aggregates semantically similar regions of the WSI. To effectively summarize each cluster, Fisher vector representations are computed by modeling the distribution of patch embeddings in each cluster as a parametric Gaussian mixture model (GMM). The Fisher vectors from each cluster are concatenated into a high-dimensional feature vector, creating a compact and informative representation of the entire WSI. This feature vector is then used by a classifier to predict the WSI's diagnostic label. Our method captures local and global tissue structures and yields robust performance for large-scale WSI classification, demonstrating superior accuracy and scalability compared to other approaches.
☆ EDoRA: Efficient Weight-Decomposed Low-Rank Adaptation via Singular Value Decomposition
Parameter-efficient fine-tuning methods, such as LoRA, reduces the number of trainable parameters. However, they often suffer from scalability issues and differences between their learning pattern and full fine-tuning. To overcome these limitations, we propose Efficient Weight-Decomposed Low-Rank Adaptation (EDoRA): a novel PEFT method that decomposes pre-trained weights into magnitude and directional components. By freezing low-rank matrices, initializing them by singular value decomposition, and introducing a small trainable matrix between them, EDoRA achieves substantial reduction in trainable parameters while maintaining learning capacity. Experimental results on the GLUE benchmark demonstrate that EDoRA achieves competitive or superior performance compared to state-of-the-art methods, such as LoRA and DoRA, with up to 30x fewer trainable parameters. This makes EDoRA a highly efficient solution for adapting LLMs to diverse tasks under memory-constrained settings. Code is available at https://github.com/Hamid-Nasiri/EDoRA .
comment: 10 pages, 4 figures, 4 tables
☆ Adaptive Class Learning to Screen Diabetic Disorders in Fundus Images of Eye ICPR
The prevalence of ocular illnesses is growing globally, presenting a substantial public health challenge. Early detection and timely intervention are crucial for averting visual impairment and enhancing patient prognosis. This research introduces a new framework called Class Extension with Limited Data (CELD) to train a classifier to categorize retinal fundus images. The classifier is initially trained to identify relevant features concerning Healthy and Diabetic Retinopathy (DR) classes and later fine-tuned to adapt to the task of classifying the input images into three classes: Healthy, DR, and Glaucoma. This strategy allows the model to gradually enhance its classification capabilities, which is beneficial in situations where there are only a limited number of labeled datasets available. Perturbation methods are also used to identify the input image characteristics responsible for influencing the models decision-making process. We achieve an overall accuracy of 91% on publicly available datasets.
comment: Accepted at International Conference on Pattern Recognition (ICPR) 2024
☆ Harnessing Generative Pre-Trained Transformer for Datacenter Packet Trace Generation
Today, the rapid growth of applications reliant on datacenters calls for new advancements to meet the increasing traffic and computational demands. Traffic traces from datacenters are essential for further development and optimization of future datacenters. However, traces are rarely released to the public. Researchers often use simplified mathematical models that lack the depth needed to recreate intricate traffic patterns and, thus, miss optimization opportunities found in realistic traffic. In this preliminary work, we introduce DTG-GPT, a packet-level Datacenter Traffic Generator (DTG), based on the generative pre-trained transformer (GPT) architecture used by many state-of-the-art large language models. We train our model on a small set of available traffic traces from different domains and offer a simple methodology to evaluate the fidelity of the generated traces to their original counterparts. We show that DTG-GPT can synthesize novel traces that mimic the spatiotemporal patterns found in real traffic traces. We further demonstrate that DTG-GPT can generate traces for networks of different scales while maintaining fidelity. Our findings indicate the potential that, in the future, similar models to DTG-GPT will allow datacenter operators to release traffic information to the research community via trained GPT models.
☆ Full Proportional Justified Representation AAMAS 25
In multiwinner approval voting, forming a committee that proportionally represents voters' approval ballots is an essential task. The notion of justified representation (JR) demands that any large "cohesive" group of voters should be proportionally "represented". The "cohesiveness" is defined in different ways; two common ways are the following: (C1) demands that the group unanimously approves a set of candidates proportional to its size, while (C2) requires each member to approve at least a fixed fraction of such a set. Similarly, "representation" have been considered in different ways: (R1) the coalition's collective utility from the winning set exceeds that of any proportionally sized alternative, and (R2) for any proportionally sized alternative, at least one member of the coalition derives less utility from it than from the winning set. Three of the four possible combinations have been extensively studied: (C1)-(R1) defines Proportional Justified Representation (PJR), (C1)-(R2) defines Extended Justified Representation (EJR), (C2)-(R2) defines Full Justified Representation (FJR). All three have merits, but also drawbacks. PJR is the weakest notion, and perhaps not sufficiently demanding; EJR may not be compatible with perfect representation; and it is open whether a committee satisfying FJR can be found efficiently. We study the combination (C2)-(R1), which we call Full Proportional Justified Representation (FPJR). We investigate FPJR's properties and find that it shares PJR's advantages over EJR: several proportionality axioms (e.g. priceability, perfect representation) imply FPJR and PJR but not EJR. We also find that efficient rules like the greedy Monroe rule and the method of equal shares satisfy FPJR, matching a key advantage of EJR over FJR. However, the Proportional Approval Voting (PAV) rule may violate FPJR, so neither of EJR and FPJR implies the other.
comment: 18 pages, Accepted to AAMAS 25
Survey on Hand Gesture Recognition from Visual Input
Hand gesture recognition has become an important research area, driven by the growing demand for human-computer interaction in fields such as sign language recognition, virtual and augmented reality, and robotics. Despite the rapid growth of the field, there are few surveys that comprehensively cover recent research developments, available solutions, and benchmark datasets. This survey addresses this gap by examining the latest advancements in hand gesture and 3D hand pose recognition from various types of camera input data including RGB images, depth images, and videos from monocular or multiview cameras, examining the differing methodological requirements of each approach. Furthermore, an overview of widely used datasets is provided, detailing their main characteristics and application domains. Finally, open challenges such as achieving robust recognition in real-world environments, handling occlusions, ensuring generalization across diverse users, and addressing computational efficiency for real-time applications are highlighted to guide future research directions. By synthesizing the objectives, methodologies, and applications of recent studies, this survey offers valuable insights into current trends, challenges, and opportunities for future research in human hand gesture recognition.
☆ Leveraging Graph Structures and Large Language Models for End-to-End Synthetic Task-Oriented Dialogues
Training task-oriented dialogue systems is both costly and time-consuming, due to the need for high-quality datasets encompassing diverse intents. Traditional methods depend on extensive human annotation, while recent advancements leverage large language models (LLMs) to generate synthetic data. However, these approaches often require custom prompts or code, limiting accessibility for non-technical users. We introduce GraphTOD, an end-to-end framework that simplifies the generation of task-oriented dialogues. Users can create dialogues by specifying transition graphs in JSON format. Our evaluation demonstrates that GraphTOD generates high-quality dialogues across various domains, significantly lowering the cost and complexity of dataset creation.
☆ Bridging Visualization and Optimization: Multimodal Large Language Models on Graph-Structured Combinatorial Optimization
Graph-structured combinatorial challenges are inherently difficult due to their nonlinear and intricate nature, often rendering traditional computational methods ineffective or expensive. However, these challenges can be more naturally tackled by humans through visual representations that harness our innate ability for spatial reasoning. In this study, we propose transforming graphs into images to preserve their higher-order structural features accurately, revolutionizing the representation used in solving graph-structured combinatorial tasks. This approach allows machines to emulate human-like processing in addressing complex combinatorial challenges. By combining the innovative paradigm powered by multimodal large language models (MLLMs) with simple search techniques, we aim to develop a novel and effective framework for tackling such problems. Our investigation into MLLMs spanned a variety of graph-based tasks, from combinatorial problems like influence maximization to sequential decision-making in network dismantling, as well as addressing six fundamental graph-related issues. Our findings demonstrate that MLLMs exhibit exceptional spatial intelligence and a distinctive capability for handling these problems, significantly advancing the potential for machines to comprehend and analyze graph-structured data with a depth and intuition akin to human cognition. These results also imply that integrating MLLMs with simple optimization strategies could form a novel and efficient approach for navigating graph-structured combinatorial challenges without complex derivations, computationally demanding training and fine-tuning.
☆ TAD-Bench: A Comprehensive Benchmark for Embedding-Based Text Anomaly Detection
Text anomaly detection is crucial for identifying spam, misinformation, and offensive language in natural language processing tasks. Despite the growing adoption of embedding-based methods, their effectiveness and generalizability across diverse application scenarios remain under-explored. To address this, we present TAD-Bench, a comprehensive benchmark designed to systematically evaluate embedding-based approaches for text anomaly detection. TAD-Bench integrates multiple datasets spanning different domains, combining state-of-the-art embeddings from large language models with a variety of anomaly detection algorithms. Through extensive experiments, we analyze the interplay between embeddings and detection methods, uncovering their strengths, weaknesses, and applicability to different tasks. These findings offer new perspectives on building more robust, efficient, and generalizable anomaly detection systems for real-world applications.
☆ MeshONet: A Generalizable and Efficient Operator Learning Method for Structured Mesh Generation
Mesh generation plays a crucial role in scientific computing. Traditional mesh generation methods, such as TFI and PDE-based methods, often struggle to achieve a balance between efficiency and mesh quality. To address this challenge, physics-informed intelligent learning methods have recently emerged, significantly improving generation efficiency while maintaining high mesh quality. However, physics-informed methods fail to generalize when applied to previously unseen geometries, as even small changes in the boundary shape necessitate burdensome retraining to adapt to new geometric variations. In this paper, we introduce MeshONet, the first generalizable intelligent learning method for structured mesh generation. The method transforms the mesh generation task into an operator learning problem with multiple input and solution functions. To effectively overcome the multivariable mapping restriction of operator learning methods, we propose a dual-branch, shared-trunk architecture to approximate the mapping between function spaces based on input-output pairs. Experimental results show that MeshONet achieves a speedup of up to four orders of magnitude in generation efficiency over traditional methods. It also enables generalization to different geometries without retraining, greatly enhancing the practicality of intelligent methods.
☆ Webvs. LLMs: An Empirical Study of Learning Behaviors of CS2 Students
LLMs such as ChatGPT have been widely adopted by students in higher education as tools for learning programming and related concepts. However, it remains unclear how effective students are and what strategies students use while learning with LLMs. Since the majority of students' experiences in online self-learning have come through using search engines such as Google, evaluating AI tools in this context can help us address these gaps. In this mixed methods research, we conducted an exploratory within-subjects study to understand how CS2 students learn programming concepts using both LLMs as well as traditional online methods such as educational websites and videos to examine how students approach learning within and across both scenarios. We discovered that students found it easier to learn a more difficult concept using traditional methods than using ChatGPT. We also found that students ask fewer follow-ups and use more keyword-based queries for search engines while their prompts to LLMs tend to explicitly ask for information.
comment: 7 pages
☆ A Lightweight and Interpretable Deepfakes Detection Framework
The recent realistic creation and dissemination of so-called deepfakes poses a serious threat to social life, civil rest, and law. Celebrity defaming, election manipulation, and deepfakes as evidence in court of law are few potential consequences of deepfakes. The availability of open source trained models based on modern frameworks such as PyTorch or TensorFlow, video manipulations Apps such as FaceApp and REFACE, and economical computing infrastructure has easen the creation of deepfakes. Most of the existing detectors focus on detecting either face-swap, lip-sync, or puppet master deepfakes, but a unified framework to detect all three types of deepfakes is hardly explored. This paper presents a unified framework that exploits the power of proposed feature fusion of hybrid facial landmarks and our novel heart rate features for detection of all types of deepfakes. We propose novel heart rate features and fused them with the facial landmark features to better extract the facial artifacts of fake videos and natural variations available in the original videos. We used these features to train a light-weight XGBoost to classify between the deepfake and bonafide videos. We evaluated the performance of our framework on the world leaders dataset (WLDR) that contains all types of deepfakes. Experimental results illustrate that the proposed framework offers superior detection performance over the comparative deepfakes detection methods. Performance comparison of our framework against the LSTM-FCN, a candidate of deep learning model, shows that proposed model achieves similar results, however, it is more interpretable.
☆ Make Full Use of Testing Information: An Integrated Accelerated Testing and Evaluation Method for Autonomous Driving Systems
Testing and evaluation is an important step before the large-scale application of the autonomous driving systems (ADSs). Based on the three level of scenario abstraction theory, a testing can be performed within a logical scenario, followed by an evaluation stage which is inputted with the testing results of each concrete scenario generated from the logical parameter space. During the above process, abundant testing information is produced which is beneficial for comprehensive and accurate evaluations. To make full use of testing information, this paper proposes an Integrated accelerated Testing and Evaluation Method (ITEM). Based on a Monte Carlo Tree Search (MCTS) paradigm and a dual surrogates testing framework proposed in our previous work, this paper applies the intermediate information (i.e., the tree structure, including the affiliation of each historical sampled point with the subspaces and the parent-child relationship between subspaces) generated during the testing stage into the evaluation stage to achieve accurate hazardous domain identification. Moreover, to better serve this purpose, the UCB calculation method is improved to allow the search algorithm to focus more on the hazardous domain boundaries. Further, a stopping condition is constructed based on the convergence of the search algorithm. Ablation and comparative experiments are then conducted to verify the effectiveness of the improvements and the superiority of the proposed method. The experimental results show that ITEM could well identify the hazardous domains in both low- and high-dimensional cases, regardless of the shape of the hazardous domains, indicating its generality and potential for the safety evaluation of ADSs.
comment: 15 pages, 11 figures
☆ Goal-oriented Transmission Scheduling: Structure-guided DRL with a Unified Dual On-policy and Off-policy Approach
Goal-oriented communications prioritize application-driven objectives over data accuracy, enabling intelligent next-generation wireless systems. Efficient scheduling in multi-device, multi-channel systems poses significant challenges due to high-dimensional state and action spaces. We address these challenges by deriving key structural properties of the optimal solution to the goal-oriented scheduling problem, incorporating Age of Information (AoI) and channel states. Specifically, we establish the monotonicity of the optimal state value function (a measure of long-term system performance) w.r.t. channel states and prove its asymptotic convexity w.r.t. AoI states. Additionally, we derive the monotonicity of the optimal policy w.r.t. channel states, advancing the theoretical framework for optimal scheduling. Leveraging these insights, we propose the structure-guided unified dual on-off policy DRL (SUDO-DRL), a hybrid algorithm that combines the stability of on-policy training with the sample efficiency of off-policy methods. Through a novel structural property evaluation framework, SUDO-DRL enables effective and scalable training, addressing the complexities of large-scale systems. Numerical results show SUDO-DRL improves system performance by up to 45% and reduces convergence time by 40% compared to state-of-the-art methods. It also effectively handles scheduling in much larger systems, where off-policy DRL fails and on-policy benchmarks exhibit significant performance loss, demonstrating its scalability and efficacy in goal-oriented communications.
comment: Paper submitted to IEEE
☆ LuxVeri at GenAI Detection Task 3: Cross-Domain Detection of AI-Generated Text Using Inverse Perplexity-Weighted Ensemble of Fine-Tuned Transformer Models
This paper presents our approach for Task 3 of the GenAI content detection workshop at COLING-2025, focusing on Cross-Domain Machine-Generated Text (MGT) Detection. We propose an ensemble of fine-tuned transformer models, enhanced by inverse perplexity weighting, to improve classification accuracy across diverse text domains. For Subtask A (Non-Adversarial MGT Detection), we combined a fine-tuned RoBERTa-base model with an OpenAI detector-integrated RoBERTa-base model, achieving an aggregate TPR score of 0.826, ranking 10th out of 23 detectors. In Subtask B (Adversarial MGT Detection), our fine-tuned RoBERTa-base model achieved a TPR score of 0.801, securing 8th out of 22 detectors. Our results demonstrate the effectiveness of inverse perplexity-based weighting for enhancing generalization and performance in both non-adversarial and adversarial MGT detection, highlighting the potential for transformer models in cross-domain AI-generated content detection.
☆ LuxVeri at GenAI Detection Task 1: Inverse Perplexity Weighted Ensemble for Robust Detection of AI-Generated Text across English and Multilingual Contexts
This paper presents a system developed for Task 1 of the COLING 2025 Workshop on Detecting AI-Generated Content, focusing on the binary classification of machine-generated versus human-written text. Our approach utilizes an ensemble of models, with weights assigned according to each model's inverse perplexity, to enhance classification accuracy. For the English text detection task, we combined RoBERTa-base, RoBERTa-base with the OpenAI detector, and BERT-base-cased, achieving a Macro F1-score of 0.7458, which ranked us 12th out of 35 teams. We ensembled RemBERT, XLM-RoBERTa-base, and BERT-base-multilingual-case for the multilingual text detection task, employing the same inverse perplexity weighting technique. This resulted in a Macro F1-score of 0.7513, positioning us 4th out of 25 teams. Our results demonstrate the effectiveness of inverse perplexity weighting in improving the robustness of machine-generated text detection across both monolingual and multilingual settings, highlighting the potential of ensemble methods for this challenging task.
☆ Bridging the Communication Gap: Evaluating AI Labeling Practices for Trustworthy AI Development
As artificial intelligence (AI) becomes integral to economy and society, communication gaps between developers, users, and stakeholders hinder trust and informed decision-making. High-level AI labels, inspired by frameworks like EU energy labels, have been proposed to make the properties of AI models more transparent. Without requiring deep technical expertise, they can inform on the trade-off between predictive performance and resource efficiency. However, the practical benefits and limitations of AI labeling remain underexplored. This study evaluates AI labeling through qualitative interviews along four key research questions. Based on thematic analysis and inductive coding, we found a broad range of practitioners to be interested in AI labeling (RQ1). They see benefits for alleviating communication gaps and aiding non-expert decision-makers, however limitations, misunderstandings, and suggestions for improvement were also discussed (RQ2). Compared to other reporting formats, interviewees positively evaluated the reduced complexity of labels, increasing overall comprehensibility (RQ3). Trust was influenced most by usability and the credibility of the responsible labeling authority, with mixed preferences for self-certification versus third-party certification (RQ4). Our Insights highlight that AI labels pose a trade-off between simplicity and complexity, which could be resolved by developing customizable and interactive labeling frameworks to address diverse user needs. Transparent labeling of resource efficiency also nudged interviewee priorities towards paying more attention to sustainability aspects during AI development. This study validates AI labels as a valuable tool for enhancing trust and communication in AI, offering actionable guidelines for their refinement and standardization.
☆ Panoramic Interests: Stylistic-Content Aware Personalized Headline Generation WWW'25
Personalized news headline generation aims to provide users with attention-grabbing headlines that are tailored to their preferences. Prevailing methods focus on user-oriented content preferences, but most of them overlook the fact that diverse stylistic preferences are integral to users' panoramic interests, leading to suboptimal personalization. In view of this, we propose a novel Stylistic-Content Aware Personalized Headline Generation (SCAPE) framework. SCAPE extracts both content and stylistic features from headlines with the aid of large language model (LLM) collaboration. It further adaptively integrates users' long- and short-term interests through a contrastive learning-based hierarchical fusion network. By incorporating the panoramic interests into the headline generator, SCAPE reflects users' stylistic-content preferences during the generation process. Extensive experiments on the real-world dataset PENS demonstrate the superiority of SCAPE over baselines.
comment: Accepted to The ACM Web Conference 2025 (WWW'25, short paper)
☆ Systematic Abductive Reasoning via Diverse Relation Representations in Vector-symbolic Architecture
In abstract visual reasoning, monolithic deep learning models suffer from limited interpretability and generalization, while existing neuro-symbolic approaches fall short in capturing the diversity and systematicity of attributes and relation representations. To address these challenges, we propose a Systematic Abductive Reasoning model with diverse relation representations (Rel-SAR) in Vector-symbolic Architecture (VSA) to solve Raven's Progressive Matrices (RPM). To derive attribute representations with symbolic reasoning potential, we introduce not only various types of atomic vectors that represent numeric, periodic and logical semantics, but also the structured high-dimentional representation (SHDR) for the overall Grid component. For systematic reasoning, we propose novel numerical and logical relation functions and perform rule abduction and execution in a unified framework that integrates these relation representations. Experimental results demonstrate that Rel-SAR achieves significant improvement on RPM tasks and exhibits robust out-of-distribution generalization. Rel-SAR leverages the synergy between HD attribute representations and symbolic reasoning to achieve systematic abductive reasoning with both interpretable and computable semantics.
☆ Community-Aware Temporal Walks: Parameter-Free Representation Learning on Continuous-Time Dynamic Graphs
Dynamic graph representation learning plays a crucial role in understanding evolving behaviors. However, existing methods often struggle with flexibility, adaptability, and the preservation of temporal and structural dynamics. To address these issues, we propose Community-aware Temporal Walks (CTWalks), a novel framework for representation learning on continuous-time dynamic graphs. CTWalks integrates three key components: a community-based parameter-free temporal walk sampling mechanism, an anonymization strategy enriched with community labels, and an encoding process that leverages continuous temporal dynamics modeled via ordinary differential equations (ODEs). This design enables precise modeling of both intra- and inter-community interactions, offering a fine-grained representation of evolving temporal patterns in continuous-time dynamic graphs. CTWalks theoretically overcomes locality bias in walks and establishes its connection to matrix factorization. Experiments on benchmark datasets demonstrate that CTWalks outperforms established methods in temporal link prediction tasks, achieving higher accuracy while maintaining robustness.
☆ From Drafts to Answers: Unlocking LLM Potential via Aggregation Fine-Tuning
Scaling data and model size has been proven effective for boosting the performance of large language models. In addition to training-time scaling, recent studies have revealed that increasing test-time computational resources can further improve performance. In this work, we introduce Aggregation Fine-Tuning (AFT), a supervised finetuning paradigm where the model learns to synthesize multiple draft responses, referred to as proposals, into a single, refined answer, termed aggregation. At inference time, a propose-and-aggregate strategy further boosts performance by iteratively generating proposals and aggregating them. Empirical evaluations on benchmark datasets show that AFT-trained models substantially outperform standard SFT. Notably, an AFT model, fine-tuned from Llama3.1-8B-Base with only 64k data, achieves a 41.3% LC win rate on AlpacaEval 2, surpassing significantly larger LLMs such as Llama3.1-405B-Instruct and GPT4. By combining sequential refinement and parallel sampling, the propose-and-aggregate framework scales inference-time computation in a flexible manner. Overall, These findings position AFT as a promising approach to unlocking additional capabilities of LLMs without resorting to increasing data volume or model size.
comment: 20 pages; work in progress
☆ Coarse-to-Fine Lightweight Meta-Embedding for ID-Based Recommendation
The state-of-the-art recommendation systems have shifted the attention to efficient recommendation, e.g., on-device recommendation, under memory constraints. To this end, the existing methods either focused on the lightweight embeddings for both users and items, or involved on-device systems enjoying the compact embeddings to enhance reusability and reduces space complexity. However, they focus solely on the coarse granularity of embedding, while overlook the fine-grained semantic nuances, to adversarially downgrade the efficacy of meta-embeddings in capturing the intricate relationship over both user and item, consequently resulting into the suboptimal recommendations. In this paper, we aim to study how the meta-embedding can efficiently learn varied grained semantics, together with how the fine-grained meta-embedding can strengthen the representation of coarse-grained meta-embedding. To answer these questions, we develop a novel graph neural networks (GNNs) based recommender where each user and item serves as the node, linked directly to coarse-grained virtual nodes and indirectly to fine-grained virtual nodes, ensuring different grained semantic learning, while disclosing: 1) In contrast to coarse-grained semantics, fine-grained semantics are well captured through sparse meta-embeddings, which adaptively 2) balance the embedding uniqueness and memory constraint. Additionally, the initialization method come up upon SparsePCA, along with a soft thresholding activation function to render the sparseness of the meta-embeddings. We propose a weight bridging update strategy that focuses on matching each coarse-grained meta-embedding with several fine-grained meta-embeddings based on the users/items' semantics. Extensive experiments substantiate our method's superiority over existing baselines. Our code is available at https://github.com/htyjers/C2F-MetaEmbed.
comment: 16 pages, 6 figures
☆ Network-informed Prompt Engineering against Organized Astroturf Campaigns under Extreme Class Imbalance
Detecting organized political campaigns is of paramount importance in fighting against disinformation on social media. Existing approaches for the identification of such organized actions employ techniques mostly from network science, graph machine learning and natural language processing. Their ultimate goal is to analyze the relationships and interactions (e.g. re-posting) among users and the textual similarities of their posts. Despite their effectiveness in recognizing astroturf campaigns, these methods face significant challenges, notably the class imbalance in available training datasets. To mitigate this issue, recent methods usually resort to data augmentation or increasing the number of positive samples, which may not always be feasible or sufficient in real-world settings. Following a different path, in this paper, we propose a novel framework for identifying astroturf campaigns based solely on large language models (LLMs), introducing a Balanced Retrieval-Augmented Generation (Balanced RAG) component. Our approach first gives both textual information concerning the posts (in our case tweets) and the user interactions of the social network as input to a language model. Then, through prompt engineering and the proposed Balanced RAG method, it effectively detects coordinated disinformation campaigns on X (Twitter). The proposed framework does not require any training or fine-tuning of the language model. Instead, by strategically harnessing the strengths of prompt engineering and Balanced RAG, it facilitates LLMs to overcome the effects of class imbalance and effectively identify coordinated political campaigns. The experimental results demonstrate that by incorporating the proposed prompt engineering and Balanced RAG methods, our framework outperforms the traditional graph-based baselines, achieving 2x-3x improvements in terms of precision, recall and F1 scores.
☆ A Survey on Memory-Efficient Large-Scale Model Training in AI for Science
Scientific research faces high costs and inefficiencies with traditional methods, but the rise of deep learning and large language models (LLMs) offers innovative solutions. This survey reviews LLM applications across scientific fields such as biology, medicine, chemistry, and meteorology, underscoring their role in advancing research. However, the continuous expansion of model size has led to significant memory demands, hindering further development and application of LLMs for science. To address this, we review memory-efficient training techniques for LLMs based on the transformer architecture, including distributed training, mixed precision training, and gradient checkpointing. Using AlphaFold 2 as an example, we demonstrate how tailored memory optimization methods can reduce storage needs while preserving prediction accuracy. We also discuss the challenges of memory optimization in practice and potential future directions, hoping to provide valuable insights for researchers and engineers.
☆ Supervised Learning for Analog and RF Circuit Design: Benchmarks and Comparative Insights
Automating analog and radio-frequency (RF) circuit design using machine learning (ML) significantly reduces the time and effort required for parameter optimization. This study explores supervised ML-based approaches for designing circuit parameters from performance specifications across various circuit types, including homogeneous and heterogeneous designs. By evaluating diverse ML models, from neural networks like transformers to traditional methods like random forests, we identify the best-performing models for each circuit. Our results show that simpler circuits, such as low-noise amplifiers, achieve exceptional accuracy with mean relative errors as low as 0.3% due to their linear parameter-performance relationships. In contrast, complex circuits, like power amplifiers and voltage-controlled oscillators, present challenges due to their non-linear interactions and larger design spaces. For heterogeneous circuits, our approach achieves an 88% reduction in errors with increased training data, with the receiver achieving a mean relative error as low as 0.23%, showcasing the scalability and accuracy of the proposed methodology. Additionally, we provide insights into model strengths, with transformers excelling in capturing non-linear mappings and k-nearest neighbors performing robustly in moderately linear parameter spaces, especially in heterogeneous circuits with larger datasets. This work establishes a foundation for extending ML-driven design automation, enabling more efficient and scalable circuit design workflows.
☆ Data-driven Detection and Evaluation of Damages in Concrete Structures: Using Deep Learning and Computer Vision
Structural integrity is vital for maintaining the safety and longevity of concrete infrastructures such as bridges, tunnels, and walls. Traditional methods for detecting damages like cracks and spalls are labor-intensive, time-consuming, and prone to human error. To address these challenges, this study explores advanced data-driven techniques using deep learning for automated damage detection and analysis. Two state-of-the-art instance segmentation models, YOLO-v7 instance segmentation and Mask R-CNN, were evaluated using a dataset comprising 400 images, augmented to 10,995 images through geometric and color-based transformations to enhance robustness. The models were trained and validated using a dataset split into 90% training set, validation and test set 10%. Performance metrics such as precision, recall, mean average precision (mAP@0.5), and frames per second (FPS) were used for evaluation. YOLO-v7 achieved a superior mAP@0.5 of 96.1% and processed 40 FPS, outperforming Mask R-CNN, which achieved a mAP@0.5 of 92.1% with a slower processing speed of 18 FPS. The findings recommend YOLO-v7 instance segmentation model for real-time, high-speed structural health monitoring, while Mask R-CNN is better suited for detailed offline assessments. This study demonstrates the potential of deep learning to revolutionize infrastructure maintenance, offering a scalable and efficient solution for automated damage detection.
comment: 17 pages, 10 figures. This study focuses on the data-driven detection and evaluation of damages in concrete structures using deep learning and computer vision techniques
☆ Is your LLM trapped in a Mental Set? Investigative study on how mental sets affect the reasoning capabilities of LLMs
In this paper, we present an investigative study on how Mental Sets influence the reasoning capabilities of LLMs. LLMs have excelled in diverse natural language processing (NLP) tasks, driven by advancements in parameter-efficient fine-tuning (PEFT) and emergent capabilities like in-context learning (ICL). For complex reasoning tasks, selecting the right model for PEFT or ICL is critical, often relying on scores on benchmarks such as MMLU, MATH, and GSM8K. However, current evaluation methods, based on metrics like F1 Score or reasoning chain assessments by larger models, overlook a key dimension: adaptability to unfamiliar situations and overcoming entrenched thinking patterns. In cognitive psychology, Mental Set refers to the tendency to persist with previously successful strategies, even when they become inefficient - a challenge for problem solving and reasoning. We compare the performance of LLM models like Llama-3.1-8B-Instruct, Llama-3.1-70B-Instruct and GPT-4o in the presence of mental sets. To the best of our knowledge, this is the first study to integrate cognitive psychology concepts into the evaluation of LLMs for complex reasoning tasks, providing deeper insights into their adaptability and problem-solving efficacy.
☆ Fact-Preserved Personalized News Headline Generation ICDM 2023
Personalized news headline generation, aiming at generating user-specific headlines based on readers' preferences, burgeons a recent flourishing research direction. Existing studies generally inject a user interest embedding into an encoderdecoder headline generator to make the output personalized, while the factual consistency of headlines is inadequate to be verified. In this paper, we propose a framework Fact-Preserved Personalized News Headline Generation (short for FPG), to prompt a tradeoff between personalization and consistency. In FPG, the similarity between the candidate news to be exposed and the historical clicked news is used to give different levels of attention to key facts in the candidate news, and the similarity scores help to learn a fact-aware global user embedding. Besides, an additional training procedure based on contrastive learning is devised to further enhance the factual consistency of generated headlines. Extensive experiments conducted on a real-world benchmark PENS validate the superiority of FPG, especially on the tradeoff between personalization and factual consistency.
comment: Accepted by IEEE ICDM 2023, Short paper, 6 pages
☆ PXGen: A Post-hoc Explainable Method for Generative Models
With the rapid growth of generative AI in numerous applications, explainable AI (XAI) plays a crucial role in ensuring the responsible development and deployment of generative AI technologies. XAI has undergone notable advancements and widespread adoption in recent years, reflecting a concerted push to enhance the transparency, interpretability, and credibility of AI systems. Recent research emphasizes that a proficient XAI method should adhere to a set of criteria, primarily focusing on two key areas. Firstly, it should ensure the quality and fluidity of explanations, encompassing aspects like faithfulness, plausibility, completeness, and tailoring to individual needs. Secondly, the design principle of the XAI system or mechanism should cover the following factors such as reliability, resilience, the verifiability of its outputs, and the transparency of its algorithm. However, research in XAI for generative models remains relatively scarce, with little exploration into how such methods can effectively meet these criteria in that domain. In this work, we propose PXGen, a post-hoc explainable method for generative models. Given a model that needs to be explained, PXGen prepares two materials for the explanation, the Anchor set and intrinsic & extrinsic criteria. Those materials are customizable by users according to their purpose and requirements. Via the calculation of each criterion, each anchor has a set of feature values and PXGen provides examplebased explanation methods according to the feature values among all the anchors and illustrated and visualized to the users via tractable algorithms such as k-dispersion or k-center.
☆ Toward Scalable Graph Unlearning: A Node Influence Maximization based Approach
Machine unlearning, as a pivotal technology for enhancing model robustness and data privacy, has garnered significant attention in prevalent web mining applications, especially in thriving graph-based scenarios. However, most existing graph unlearning (GU) approaches face significant challenges due to the intricate interactions among web-scale graph elements during the model training: (1) The gradient-driven node entanglement hinders the complete knowledge removal in response to unlearning requests; (2) The billion-level graph elements in the web scenarios present inevitable scalability issues. To break the above limitations, we open up a new perspective by drawing a connection between GU and conventional social influence maximization. To this end, we propose Node Influence Maximization (NIM) through the decoupled influence propagation model and fine-grained influence function in a scalable manner, which is crafted to be a plug-and-play strategy to identify potential nodes affected by unlearning entities. This approach enables offline execution independent of GU, allowing it to be seamlessly integrated into most GU methods to improve their unlearning performance. Based on this, we introduce Scalable Graph Unlearning (SGU) as a new fine-tuned framework, which balances the forgetting and reasoning capability of the unlearned model by entity-specific optimizations. Extensive experiments on 14 datasets, including large-scale ogbn-papers100M, have demonstrated the effectiveness of our approach. Specifically, NIM enhances the forgetting capability of most GU methods, while SGU achieves comprehensive SOTA performance and maintains scalability.
comment: Under Review
☆ Toward Effective Digraph Representation Learning: A Magnetic Adaptive Propagation based Approach WWW 2025
The $q$-parameterized magnetic Laplacian serves as the foundation of directed graph (digraph) convolution, enabling this kind of digraph neural network (MagDG) to encode node features and structural insights by complex-domain message passing. As a generalization of undirected methods, MagDG shows superior capability in modeling intricate web-scale topology. Despite the great success achieved by existing MagDGs, limitations still exist: (1) Hand-crafted $q$: The performance of MagDGs depends on selecting an appropriate $q$-parameter to construct suitable graph propagation equations in the complex domain. This parameter tuning, driven by downstream tasks, limits model flexibility and significantly increases manual effort. (2) Coarse Message Passing: Most approaches treat all nodes with the same complex-domain propagation and aggregation rules, neglecting their unique digraph contexts. This oversight results in sub-optimal performance. To address the above issues, we propose two key techniques: (1) MAP is crafted to be a plug-and-play complex-domain propagation optimization strategy in the context of digraph learning, enabling seamless integration into any MagDG to improve predictions while enjoying high running efficiency. (2) MAP++ is a new digraph learning framework, further incorporating a learnable mechanism to achieve adaptively edge-wise propagation and node-wise aggregation in the complex domain for better performance. Extensive experiments on 12 datasets demonstrate that MAP enjoys flexibility for it can be incorporated with any MagDG, and scalability as it can deal with web-scale digraphs. MAP++ achieves SOTA predictive performance on 4 different downstream tasks.
comment: Accepted by WWW 2025
☆ Policy-Adaptable Methods For Resolving Normative Conflicts Through Argumentation and Graph Colouring
In a multi-agent system, one may choose to govern the behaviour of an agent by imposing norms, which act as guidelines for how agents should act either all of the time or in given situations. However, imposing multiple norms on one or more agents may result in situations where these norms conflict over how the agent should behave. In any system with normative conflicts (such as safe reinforcement models or systems which monitor safety protocols), one must decide which norms should be followed such that the most important and most relevant norms are maintained. We introduce a new method for resolving normative conflicts through argumentation and graph colouring which is compatible with a variety of normative conflict resolution policies. We prove that this method always creates an admissible set of arguments under argumentation semantics, meaning that it produces coherent outputs. We also introduce more robust variants of this method, each building upon their predecessor to create a superior output, and we include further mathematical proof of their coherence. Our most advanced variant uses the existing concept of curtailment, where one norm may supersede another without fully eliminating it. The methods we introduce are all compatible with various pre-existing policies for resolving normative conflicts. Empirical evaluations are also performed to compare our algorithms to each other and to others in existing literature.
comment: Written and submitted as master's thesis for University of Southampton in 2020
♻ ☆ Beyond Position: the emergence of wavelet-like properties in Transformers
This paper studies how transformer models develop robust wavelet-like properties that effectively compensate for the theoretical limitations of Rotary Position Embeddings (RoPE), providing insights into how these networks process sequential information across different scales. Through theoretical analysis and empirical validation across models ranging from 1B to 12B parameters, we show that attention heads naturally evolve to implement multi-resolution processing analogous to wavelet transforms. Our analysis establishes that attention heads consistently organize into complementary frequency bands with systematic power distribution patterns, and these wavelet-like characteristics become more pronounced in larger models. We provide mathematical analysis showing how these properties align with optimal solutions to the fundamental uncertainty principle between positional precision and frequency resolution. Our findings suggest that the effectiveness of modern transformer architectures stems significantly from their development of optimal multi-resolution decompositions that naturally address the theoretical constraints of position encoding.
♻ ☆ A recent evaluation on the performance of LLMs on radiation oncology physics using questions of randomly shuffled options
Purpose: We present an updated study evaluating the performance of large language models (LLMs) in answering radiation oncology physics questions, focusing on the recently released models. Methods: A set of 100 multiple-choice radiation oncology physics questions, previously created by a well-experienced physicist, was used for this study. The answer options of the questions were randomly shuffled to create "new" exam sets. Five LLMs -- OpenAI o1-preview, GPT-4o, LLaMA 3.1 (405B), Gemini 1.5 Pro, and Claude 3.5 Sonnet -- with the versions released before September 30, 2024, were queried using these new exam sets. To evaluate their deductive reasoning ability, the correct answer options in the questions were replaced with "None of the above." Then, the explain-first and step-by-step instruction prompts were used to test if this strategy improved their reasoning ability. The performance of the LLMs was compared with the answers from medical physicists. Results: All models demonstrated expert-level performance on these questions, with o1-preview even surpassing medical physicists with a majority vote. When replacing the correct answer options with 'None of the above', all models exhibited a considerable decline in performance, suggesting room for improvement. The explain-first and step-by-step instruction prompts helped enhance the reasoning ability of the LLaMA 3.1 (405B), Gemini 1.5 Pro, and Claude 3.5 Sonnet models. Conclusion: These recently released LLMs demonstrated expert-level performance in answering radiation oncology physics questions, exhibiting great potential to assist in radiation oncology physics education and training.
♻ ☆ S+t-SNE -- Bringing Dimensionality Reduction to Data Streams
We present S+t-SNE, an adaptation of the t-SNE algorithm designed to handle infinite data streams. The core idea behind S+t-SNE is to update the t-SNE embedding incrementally as new data arrives, ensuring scalability and adaptability to handle streaming scenarios. By selecting the most important points at each step, the algorithm ensures scalability while keeping informative visualisations. By employing a blind method for drift management, the algorithm adjusts the embedding space, which facilitates the visualisation of evolving data dynamics. Our experimental evaluations demonstrate the effectiveness and efficiency of S+t-SNE, whilst highlighting its ability to capture patterns in a streaming scenario. We hope our approach offers researchers and practitioners a real-time tool for understanding and interpreting high-dimensional data.
comment: This preprint has undergone peer review but does not have any post-submission improvements or corrections. Full version after peer-review and post-acceptance improvements was presented at IDA2024 (https://ida2024.blogs.dsv.su.se/)
♻ ☆ Time-Series Foundation Model for Value-at-Risk Forecasting
This study is the first to analyze the performance of a time-series foundation model for Value-at-Risk (VaR), which essentially forecasts the left-tail quantiles of returns. Foundation models, pre-trained on diverse datasets, can be applied in a zero-shot setting with minimal data or further improved through finetuning. We compare Google's TimesFM model to conventional parametric and non-parametric models, including GARCH and Generalized Autoregressive Score (GAS), using 19 years of daily returns from the S&P 100 index and its constituents. Backtesting with over 8.5 years of out-of-sample data shows that the fine-tuned foundation model consistently outperforms traditional methods in actual-over-expected ratios. For the quantile score loss function, it performs comparably to the best econometric model, GAS. Overall, the foundation model ranks as the best or among the top performers across the 0.01, 0.025, 0.05, and 0.1 quantile forecasting. Fine-tuning significantly improves accuracy, showing that zero-shot use is not optimal for VaR.
♻ ☆ FLARE: Faithful Logic-Aided Reasoning and Exploration
Modern Question Answering (QA) and Reasoning approaches based on Large Language Models (LLMs) commonly use prompting techniques, such as Chain-of-Thought (CoT), assuming the resulting generation will have a more granular exploration and reasoning over the question space and scope. However, such methods struggle with generating outputs that are faithful to the intermediate chain of reasoning produced by the model. On the other end of the spectrum, neuro-symbolic methods such as Faithful CoT (F-CoT) propose to combine LLMs with external symbolic solvers. While such approaches boast a high degree of faithfulness, they usually require a model trained for code generation and struggle with tasks that are ambiguous or hard to formalise strictly. We introduce $\textbf{F}$aithful $\textbf{L}$ogic-$\textbf{A}$ided $\textbf{R}$easoning and $\textbf{E}$xploration ($\textbf{FLARE}$), a novel interpretable approach for traversing the problem space using task decompositions. We use the LLM to plan a solution, soft-formalise the query into facts and predicates using a logic programming code and simulate that code execution using an exhaustive multi-hop search over the defined space. Our method allows us to compute the faithfulness of the reasoning process w.r.t. the generated code and analyse the steps of the multi-hop search without relying on external solvers. Our methods achieve SOTA results on $\mathbf{7}$ out of $\mathbf{9}$ diverse reasoning benchmarks. We also show that model faithfulness positively correlates with overall performance and further demonstrate that $\textbf{FLARE}$ allows pinpointing the decisive factors sufficient for and leading to the correct answer with optimal reasoning during the multi-hop search.
♻ ☆ Beyond Specialization: Assessing the Capabilities of MLLMs in Age and Gender Estimation
Multimodal Large Language Models (MLLMs) have recently gained immense popularity. Powerful commercial models like ChatGPT-4V and Gemini, as well as open-source ones such as LLaVA, are essentially general-purpose models and are applied to solve a wide variety of tasks, including those in computer vision. These neural networks possess such strong general knowledge and reasoning abilities that they have proven capable of working even on tasks for which they were not specifically trained. We compared the capabilities of the most powerful MLLMs to date: ShareGPT4V, ChatGPT, LLaVA-Next in a specialized task of age and gender estimation with our state-of-the-art specialized model, MiVOLO. We also updated MiVOLO and provide details and new metrics in this article. This comparison has yielded some interesting results and insights about the strengths and weaknesses of the participating models. Furthermore, we attempted various ways to fine-tune the ShareGPT4V model for this specific task, aiming to achieve state-of-the-art results in this particular challenge. Although such a model would not be practical in production, as it is incredibly expensive compared to a specialized model like MiVOLO, it could be very useful in some tasks, like data annotation.
♻ ☆ Generative Topological Networks
Generative methods have recently seen significant improvements by generating in a lower-dimensional latent representation of the data. However, many of the generative methods applied in the latent space remain complex and difficult to train. Further, it is not entirely clear why transitioning to a lower-dimensional latent space can improve generative quality. In this work, we introduce a new and simple generative method grounded in topology theory -- Generative Topological Networks (GTNs) -- which also provides insights into why lower-dimensional latent-space representations might be better-suited for data generation. GTNs are simple to train -- they employ a standard supervised learning approach and do not suffer from common generative pitfalls such as mode collapse, posterior collapse or the need to pose constraints on the neural network architecture. We demonstrate the use of GTNs on several datasets, including MNIST, CelebA, CIFAR-10 and the Hands and Palm Images dataset by training GTNs on a lower-dimensional latent representation of the data. We show that GTNs can improve upon VAEs and that they are quick to converge, generating realistic samples in early epochs. Further, we use the topological considerations behind the development of GTNs to offer insights into why generative models may benefit from operating on a lower-dimensional latent space, highlighting the important link between the intrinsic dimension of the data and the dimension in which the data is generated. Particularly, we demonstrate that generating in high dimensional ambient spaces may be a contributing factor to out-of-distribution samples generated by diffusion models. We also highlight other topological properties that are important to consider when using and designing generative models. Our code is available at: https://github.com/alonalj/GTN
♻ ☆ HIVEX: A High-Impact Environment Suite for Multi-Agent Research (extended version)
Games have been vital test beds for the rapid development of Agent-based research. Remarkable progress has been achieved in the past, but it is unclear if the findings equip for real-world problems. While pressure grows, some of the most critical ecological challenges can find mitigation and prevention solutions through technology and its applications. Most real-world domains include multi-agent scenarios and require machine-machine and human-machine collaboration. Open-source environments have not advanced and are often toy scenarios, too abstract or not suitable for multi-agent research. By mimicking real-world problems and increasing the complexity of environments, we hope to advance state-of-the-art multi-agent research and inspire researchers to work on immediate real-world problems. Here, we present HIVEX, an environment suite to benchmark multi-agent research focusing on ecological challenges. HIVEX includes the following environments: Wind Farm Control, Wildfire Resource Management, Drone-Based Reforestation, Ocean Plastic Collection, and Aerial Wildfire Suppression. We provide environments, training examples, and baselines for the main and sub-tasks. All trained models resulting from the experiments of this work are hosted on Hugging Face. We also provide a leaderboard on Hugging Face and encourage the community to submit models trained on our environment suite.
♻ ☆ Positional encoding is not the same as context: A study on positional encoding for sequential recommendation
The rapid growth of streaming media and e-commerce has driven advancements in recommendation systems, particularly Sequential Recommendation Systems (SRS). These systems employ users' interaction histories to predict future preferences. While recent research has focused on architectural innovations like transformer blocks and feature extraction, positional encodings, crucial for capturing temporal patterns, have received less attention. These encodings are often conflated with contextual, such as the temporal footprint, which previous works tend to treat as interchangeable with positional information. This paper highlights the critical distinction between temporal footprint and positional encodings, demonstrating that the latter offers unique relational cues between items, which the temporal footprint alone cannot provide. Through extensive experimentation on eight Amazon datasets and subsets, we assess the impact of various encodings on performance metrics and training stability. We introduce new positional encodings and investigate integration strategies that improve both metrics and stability, surpassing state-of-the-art results at the time of this work's initial preprint. Importantly, we demonstrate that selecting the appropriate encoding is not only key to better performance but also essential for building robust, reliable SRS models.
comment: 18 pages, 6 figures, 21 tables
♻ ☆ Large Language Model-Brained GUI Agents: A Survey
GUIs have long been central to human-computer interaction, providing an intuitive and visually-driven way to access and interact with digital systems. The advent of LLMs, particularly multimodal models, has ushered in a new era of GUI automation. They have demonstrated exceptional capabilities in natural language understanding, code generation, and visual processing. This has paved the way for a new generation of LLM-brained GUI agents capable of interpreting complex GUI elements and autonomously executing actions based on natural language instructions. These agents represent a paradigm shift, enabling users to perform intricate, multi-step tasks through simple conversational commands. Their applications span across web navigation, mobile app interactions, and desktop automation, offering a transformative user experience that revolutionizes how individuals interact with software. This emerging field is rapidly advancing, with significant progress in both research and industry. To provide a structured understanding of this trend, this paper presents a comprehensive survey of LLM-brained GUI agents, exploring their historical evolution, core components, and advanced techniques. We address research questions such as existing GUI agent frameworks, the collection and utilization of data for training specialized GUI agents, the development of large action models tailored for GUI tasks, and the evaluation metrics and benchmarks necessary to assess their effectiveness. Additionally, we examine emerging applications powered by these agents. Through a detailed analysis, this survey identifies key research gaps and outlines a roadmap for future advancements in the field. By consolidating foundational knowledge and state-of-the-art developments, this work aims to guide both researchers and practitioners in overcoming challenges and unlocking the full potential of LLM-brained GUI agents.
comment: The collection of papers reviewed in this survey will be hosted and regularly updated on the GitHub repository: https://github.com/vyokky/LLM-Brained-GUI-Agents-Survey Additionally, a searchable webpage is available at https://aka.ms/gui-agent for easier access and exploration
♻ ☆ Distilling Calibration via Conformalized Credal Inference
Deploying artificial intelligence (AI) models on edge devices involves a delicate balance between meeting stringent complexity constraints, such as limited memory and energy resources, and ensuring reliable performance in sensitive decision-making tasks. One way to enhance reliability is through uncertainty quantification via Bayesian inference. This approach, however, typically necessitates maintaining and running multiple models in an ensemble, which may exceed the computational limits of edge devices. This paper introduces a low-complexity methodology to address this challenge by distilling calibration information from a more complex model. In an offline phase, predictive probabilities generated by a high-complexity cloud-based model are leveraged to determine a threshold based on the typical divergence between the cloud and edge models. At run time, this threshold is used to construct credal sets -- ranges of predictive probabilities that are guaranteed, with a user-selected confidence level, to include the predictions of the cloud model. The credal sets are obtained through thresholding of a divergence measure in the simplex of predictive probabilities. Experiments on visual and language tasks demonstrate that the proposed approach, termed Conformalized Distillation for Credal Inference (CD-CI), significantly improves calibration performance compared to low-complexity Bayesian methods, such as Laplace approximation, making it a practical and efficient solution for edge AI deployments.
comment: Under review
♻ ☆ Yi: Open Foundation Models by 01.AI
We introduce the Yi model family, a series of language and multimodal models that demonstrate strong multi-dimensional capabilities. The Yi model family is based on 6B and 34B pretrained language models, then we extend them to chat models, 200K long context models, depth-upscaled models, and vision-language models. Our base models achieve strong performance on a wide range of benchmarks like MMLU, and our finetuned chat models deliver strong human preference rate on major evaluation platforms like AlpacaEval and Chatbot Arena. Building upon our scalable super-computing infrastructure and the classical transformer architecture, we attribute the performance of Yi models primarily to its data quality resulting from our data-engineering efforts. For pretraining, we construct 3.1 trillion tokens of English and Chinese corpora using a cascaded data deduplication and quality filtering pipeline. For finetuning, we polish a small scale (less than 10K) instruction dataset over multiple iterations such that every single instance has been verified directly by our machine learning engineers. For vision-language, we combine the chat language model with a vision transformer encoder and train the model to align visual representations to the semantic space of the language model. We further extend the context length to 200K through lightweight continual pretraining and demonstrate strong needle-in-a-haystack retrieval performance. We show that extending the depth of the pretrained checkpoint through continual pretraining further improves performance. We believe that given our current results, continuing to scale up model parameters using thoroughly optimized data will lead to even stronger frontier models.
♻ ☆ Robust Federated Learning Over the Air: Combating Heavy-Tailed Noise with Median Anchored Clipping
Leveraging over-the-air computations for model aggregation is an effective approach to cope with the communication bottleneck in federated edge learning. By exploiting the superposition properties of multi-access channels, this approach facilitates an integrated design of communication and computation, thereby enhancing system privacy while reducing implementation costs. However, the inherent electromagnetic interference in radio channels often exhibits heavy-tailed distributions, giving rise to exceptionally strong noise in globally aggregated gradients that can significantly deteriorate the training performance. To address this issue, we propose a novel gradient clipping method, termed Median Anchored Clipping (MAC), to combat the detrimental effects of heavy-tailed noise. We also derive analytical expressions for the convergence rate of model training with analog over-the-air federated learning under MAC, which quantitatively demonstrates the effect of MAC on training performance. Extensive experimental results show that the proposed MAC algorithm effectively mitigates the impact of heavy-tailed noise, hence substantially enhancing system robustness.
comment: This is the full version of the paper, and the appendix contains a complete convergence analysis under non-convex conditions
♻ ☆ A Comprehensive Study of Structural Pruning for Vision Models
Structural pruning has emerged as a promising approach for producing more efficient models. Nevertheless, the community suffers from a lack of standardized benchmarks and metrics, leaving the progress in this area not fully comprehended. To fill this gap, we present the first comprehensive benchmark, termed PruningBench, for structural pruning. PruningBench showcases the following three characteristics: 1) PruningBench employs a unified and consistent framework for evaluating the effectiveness of diverse structural pruning techniques; 2) PruningBench systematically evaluates 16 existing pruning methods, encompassing a wide array of models (e.g., CNNs and ViTs) and tasks (e.g., classification and detection); 3) PruningBench provides easily implementable interfaces to facilitate the implementation of future pruning methods, and enables the subsequent researchers to incorporate their work into our leaderboards. We provide an online pruning platform for customizing pruning tasks and reproducing all results in this paper. Leaderboard results can also be available.
comment: This paper aims to introduce an evaluation benchmark for structural pruning. The complete text spans 25 pages
♻ ☆ LogLLM: Log-based Anomaly Detection Using Large Language Models
Software systems often record important runtime information in logs to help with troubleshooting. Log-based anomaly detection has become a key research area that aims to identify system issues through log data, ultimately enhancing the reliability of software systems. Traditional deep learning methods often struggle to capture the semantic information embedded in log data, which is typically organized in natural language. In this paper, we propose LogLLM, a log-based anomaly detection framework that leverages large language models (LLMs). LogLLM employs BERT for extracting semantic vectors from log messages, while utilizing Llama, a transformer decoder-based model, for classifying log sequences. Additionally, we introduce a projector to align the vector representation spaces of BERT and Llama, ensuring a cohesive understanding of log semantics. Unlike conventional methods that require log parsers to extract templates, LogLLM preprocesses log messages with regular expressions, streamlining the entire process. Our framework is trained through a novel three-stage procedure designed to enhance performance and adaptability. Experimental results across four public datasets demonstrate that LogLLM outperforms state-of-the-art methods. Even when handling unstable logs, it effectively captures the semantic meaning of log messages and detects anomalies accurately.
♻ ☆ Diversify, Don't Fine-Tune: Scaling Up Visual Recognition Training with Synthetic Images
Recent advances in generative deep learning have enabled the creation of high-quality synthetic images in text-to-image generation. Prior work shows that fine-tuning a pretrained diffusion model on ImageNet and generating synthetic training images from the finetuned model can enhance an ImageNet classifier's performance. However, performance degrades as synthetic images outnumber real ones. In this paper, we explore whether generative fine-tuning is essential for this improvement and whether it is possible to further scale up training using more synthetic data. We present a new framework leveraging off-the-shelf generative models to generate synthetic training images, addressing multiple challenges: class name ambiguity, lack of diversity in naive prompts, and domain shifts. Specifically, we leverage large language models (LLMs) and CLIP to resolve class name ambiguity. To diversify images, we propose contextualized diversification (CD) and stylized diversification (SD) methods, also prompted by LLMs. Finally, to mitigate domain shifts, we leverage domain adaptation techniques with auxiliary batch normalization for synthetic images. Our framework consistently enhances recognition model performance with more synthetic data, up to 6x of original ImageNet size showcasing the potential of synthetic data for improved recognition models and strong out-of-domain generalization.
comment: Accepted by Transactions on Machine Learning Research (TMLR)
♻ ☆ On non-approximability of zero loss global ${\mathcal L}^2$ minimizers by gradient descent in Deep Learning
We analyze geometric aspects of the gradient descent algorithm in Deep Learning (DL), and give a detailed discussion of the circumstance that in underparametrized DL networks, zero loss minimization can generically not be attained. As a consequence, we conclude that the distribution of training inputs must necessarily be non-generic in order to produce zero loss minimizers, both for the method constructed in [Chen-Munoz Ewald 2023, 2024], or for gradient descent [Chen 2025] (which assume clustering of training data).
comment: AMS Latex, 7 pages. Title changed, statement of Corollary 1.6 corrected
♻ ☆ Deep Convolutional Neural Networks on Multiclass Classification of Three-Dimensional Brain Images for Parkinson's Disease Stage Prediction
Parkinson's disease (PD), a degenerative disorder of the central nervous system, is commonly diagnosed using functional medical imaging techniques such as single-photon emission computed tomography (SPECT). In this study, we utilized two SPECT data sets (n = 634 and n = 202) from different hospitals to develop a model capable of accurately predicting PD stages, a multiclass classification task. We used the entire three-dimensional (3D) brain images as input and experimented with various model architectures. Initially, we treated the 3D images as sequences of two-dimensional (2D) slices and fed them sequentially into 2D convolutional neural network (CNN) models pretrained on ImageNet, averaging the outputs to obtain the final predicted stage. We also applied 3D CNN models pretrained on Kinetics-400. Additionally, we incorporated an attention mechanism to account for the varying importance of different slices in the prediction process. To further enhance model efficacy and robustness, we simultaneously trained the two data sets using weight sharing, a technique known as cotraining. Our results demonstrated that 2D models pretrained on ImageNet outperformed 3D models pretrained on Kinetics-400, and models utilizing the attention mechanism outperformed both 2D and 3D models. The cotraining technique proved effective in improving model performance when the cotraining data sets were sufficiently large.
comment: 38 pages, 7 figures, and 4 tables. This paper has been accepted for publication in Journal of Imaging Informatics in Medicine
♻ ☆ Investigating Recurrent Transformers with Dynamic Halt
In this paper, we comprehensively study the inductive biases of two major approaches to augmenting Transformers with a recurrent mechanism: (1) the approach of incorporating a depth-wise recurrence similar to Universal Transformers; and (2) the approach of incorporating a chunk-wise temporal recurrence like Temporal Latent Bottleneck. Furthermore, we propose and investigate novel ways to extend and combine the above methods - for example, we propose a global mean-based dynamic halting mechanism for Universal Transformers and an augmentation of Temporal Latent Bottleneck with elements from Universal Transformer. We compare the models and probe their inductive biases in several diagnostic tasks, such as Long Range Arena (LRA), flip-flop language modeling, ListOps, and Logical Inference. The code is released in: https://github.com/JRC1995/InvestigatingRecurrentTransformers/tree/main
♻ ☆ Judging the Judges: Evaluating Alignment and Vulnerabilities in LLMs-as-Judges
Offering a promising solution to the scalability challenges associated with human evaluation, the LLM-as-a-judge paradigm is rapidly gaining traction as an approach to evaluating large language models (LLMs). However, there are still many open questions about the strengths and weaknesses of this paradigm, and what potential biases it may hold. In this paper, we present a comprehensive study of the performance of various LLMs acting as judges, focusing on a clean scenario in which inter-human agreement is high. Investigating thirteen judge models of different model sizes and families, judging answers of nine different 'examtaker models' - both base and instruction-tuned - we find that only the best (and largest) models achieve reasonable alignment with humans. However, they are still quite far behind inter-human agreement and their assigned scores may still differ with up to 5 points from human-assigned scores. In terms of their ranking of the nine exam-taker models, instead, also smaller models and even the lexical metric contains may provide a reasonable signal. Through error analysis and other studies, we identify vulnerabilities in judge models, such as their sensitivity to prompt complexity and length, and a tendency toward leniency. The fact that even the best judges differ from humans in this comparatively simple setup suggest that caution may be wise when using judges in more complex setups. Lastly, our research rediscovers the importance of using alignment metrics beyond simple percent alignment, showing that judges with high percent agreement can still assign vastly different scores.
♻ ☆ FLAME: Learning to Navigate with Multimodal LLM in Urban Environments AAAI 2025
Large Language Models (LLMs) have demonstrated potential in Vision-and-Language Navigation (VLN) tasks, yet current applications face challenges. While LLMs excel in general conversation scenarios, they struggle with specialized navigation tasks, yielding suboptimal performance compared to specialized VLN models. We introduce FLAME (FLAMingo-Architected Embodied Agent), a novel Multimodal LLM-based agent and architecture designed for urban VLN tasks that efficiently handles multiple observations. Our approach implements a three-phase tuning technique for effective adaptation to navigation tasks, including single perception tuning for street view description, multiple perception tuning for route summarization, and end-to-end training on VLN datasets. The augmented datasets are synthesized automatically. Experimental results demonstrate FLAME's superiority over existing methods, surpassing state-of-the-art methods by a 7.3% increase in task completion on Touchdown dataset. This work showcases the potential of Multimodal LLMs (MLLMs) in complex navigation tasks, representing an advancement towards applications of MLLMs in the field of embodied intelligence.
comment: Accepted to AAAI 2025 (Oral)
♻ ☆ Customizing Language Models with Instance-wise LoRA for Sequential Recommendation NeurIPS 2024
Sequential recommendation systems predict the next interaction item based on users' past interactions, aligning recommendations with individual preferences. Leveraging the strengths of Large Language Models (LLMs) in knowledge comprehension and reasoning, recent approaches are eager to apply LLMs to sequential recommendation. A common paradigm is converting user behavior sequences into instruction data, and fine-tuning the LLM with parameter-efficient fine-tuning (PEFT) methods like Low-Rank Adaption (LoRA). However, the uniform application of LoRA across diverse user behaviors is insufficient to capture individual variability, resulting in negative transfer between disparate sequences. To address these challenges, we propose Instance-wise LoRA (iLoRA). We innovatively treat the sequential recommendation task as a form of multi-task learning, integrating LoRA with the Mixture of Experts (MoE) framework. This approach encourages different experts to capture various aspects of user behavior. Additionally, we introduce a sequence representation guided gate function that generates customized expert participation weights for each user sequence, which allows dynamic parameter adjustment for instance-wise recommendations. In sequential recommendation, iLoRA achieves an average relative improvement of 11.4\% over basic LoRA in the hit ratio metric, with less than a 1\% relative increase in trainable parameters. Extensive experiments on three benchmark datasets demonstrate the effectiveness of iLoRA, highlighting its superior performance compared to existing methods in mitigating negative transfer and improving recommendation accuracy. Our data and code are available at https://github.com/AkaliKong/iLoRA.
comment: NeurIPS 2024 poster
♻ ☆ OpenFGL: A Comprehensive Benchmark for Federated Graph Learning VLDB 2025
Federated graph learning (FGL) is a promising distributed training paradigm for graph neural networks across multiple local systems without direct data sharing. This approach inherently involves large-scale distributed graph processing, which closely aligns with the challenges and research focuses of graph-based data systems. Despite the proliferation of FGL, the diverse motivations from real-world applications, spanning various research backgrounds and settings, pose a significant challenge to fair evaluation. To fill this gap, we propose OpenFGL, a unified benchmark designed for the primary FGL scenarios: Graph-FL and Subgraph-FL. Specifically, OpenFGL includes 42 graph datasets from 18 application domains, 8 federated data simulation strategies that emphasize different graph properties, and 5 graph-based downstream tasks. Additionally, it offers 18 recently proposed SOTA FGL algorithms through a user-friendly API, enabling a thorough comparison and comprehensive evaluation of their effectiveness, robustness, and efficiency. Our empirical results demonstrate the capabilities of FGL while also highlighting its potential limitations, providing valuable insights for future research in this growing field, particularly in fostering greater interdisciplinary collaboration between FGL and data systems.
comment: Accepted by VLDB 2025
♻ ☆ DurFlex-EVC: Duration-Flexible Emotional Voice Conversion Leveraging Discrete Representations without Text Alignment
Emotional voice conversion (EVC) involves modifying various acoustic characteristics, such as pitch and spectral envelope, to match a desired emotional state while preserving the speaker's identity. Existing EVC methods often rely on text transcriptions or time-alignment information and struggle to handle varying speech durations effectively. In this paper, we propose DurFlex-EVC, a duration-flexible EVC framework that operates without the need for text or alignment information. We introduce a unit aligner that models contextual information by aligning speech with discrete units representing content, eliminating the need for text or speech-text alignment. Additionally, we design a style autoencoder that effectively disentangles content and emotional style, allowing precise manipulation of the emotional characteristics of the speech. We further enhance emotional expressiveness through a hierarchical stylize encoder that applies the target emotional style at multiple hierarchical levels, refining the stylization process to improve the naturalness and expressiveness of the converted speech. Experimental results from subjective and objective evaluations demonstrate that our approach outperforms baseline models, effectively handling duration variability and enhancing emotional expressiveness in the converted speech.
comment: 15 pages, 11 figures, 12 tables
♻ ☆ Reward-Augmented Data Enhances Direct Preference Alignment of LLMs
Preference alignment in Large Language Models (LLMs) has significantly improved their ability to adhere to human instructions and intentions. However, existing direct alignment algorithms primarily focus on relative preferences and often overlook the qualitative aspects of responses. Striving to maximize the implicit reward gap between the chosen and the slightly inferior rejected responses can cause overfitting and unnecessary unlearning of the high-quality rejected responses. The unawareness of the reward scores also drives the LLM to indiscriminately favor the low-quality chosen responses and fail to generalize to responses with the highest rewards, which are sparse in data. To overcome these shortcomings, our study introduces reward-conditioned LLM policies that discern and learn from the entire spectrum of response quality within the dataset, helping extrapolate to more optimal regions. We propose an effective yet simple data relabeling method that conditions the preference pairs on quality scores to construct a reward-augmented dataset. This dataset is easily integrated with existing direct alignment algorithms and is applicable to any preference dataset. The experimental results across instruction-following benchmarks including AlpacaEval, MT-Bench, and Arena-Hard-Auto demonstrate that our approach consistently boosts the performance of DPO by a considerable margin across diverse models. Additionally, our method improves the average accuracy on various academic benchmarks. When applying our method to on-policy data, the resulting DPO model achieves SOTA results on AlpacaEval. Through ablation studies, we demonstrate that our method not only maximizes the utility of preference data but also mitigates the issue of unlearning, demonstrating its broad effectiveness beyond mere dataset expansion. Our code is available at https://github.com/shenao-zhang/reward-augmented-preference.
♻ ☆ Embodied-RAG: General Non-parametric Embodied Memory for Retrieval and Generation
There is no limit to how much a robot might explore and learn, but all of that knowledge needs to be searchable and actionable. Within language research, retrieval augmented generation (RAG) has become the workhorse of large-scale non-parametric knowledge; however, existing techniques do not directly transfer to the embodied domain, which is multimodal, where data is highly correlated, and perception requires abstraction. To address these challenges, we introduce Embodied-RAG, a framework that enhances the foundational model of an embodied agent with a non-parametric memory system capable of autonomously constructing hierarchical knowledge for both navigation and language generation. Embodied-RAG handles a full range of spatial and semantic resolutions across diverse environments and query types, whether for a specific object or a holistic description of ambiance. At its core, Embodied-RAG's memory is structured as a semantic forest, storing language descriptions at varying levels of detail. This hierarchical organization allows the system to efficiently generate context-sensitive outputs across different robotic platforms. We demonstrate that Embodied-RAG effectively bridges RAG to the robotics domain, successfully handling over 250 explanation and navigation queries across kilometer-level environments, highlighting its promise as a general-purpose non-parametric system for embodied agents.
comment: Web: https://quanting-xie.github.io/Embodied-RAG-web/
♻ ☆ Leveraging Quantum Superposition to Infer the Dynamic Behavior of a Spatial-Temporal Neural Network Signaling Model
The exploration of new problem classes for quantum computation is an active area of research. In this paper, we introduce and solve a novel problem class related to dynamics on large-scale networks relevant to neurobiology and machine learning. Specifically, we ask if a network can sustain inherent dynamic activity beyond some arbitrary observation time or if the activity ceases through quiescence or saturation via an epileptic-like state. We show that this class of problems can be formulated and structured to take advantage of quantum superposition and solved efficiently using the Deutsch-Jozsa and Grover quantum algorithms. To do so, we extend their functionality to address the unique requirements of how input (sub)sets into the algorithms must be mathematically structured while simultaneously constructing the inputs so that measurement outputs can be interpreted as meaningful properties of the network dynamics. This, in turn, allows us to answer the question we pose.
comment: 36 pages, 4 figures. See https://github.com/gabe-alex-silva/Network_Dynamics_QuantumSim/tree/main for code details
♻ ☆ MedCT: A Clinical Terminology Graph for Generative AI Applications in Healthcare
We introduce the world's first clinical terminology for the Chinese healthcare community, namely MedCT, accompanied by a clinical foundation model MedBERT and an entity linking model MedLink. The MedCT system enables standardized and programmable representation of Chinese clinical data, successively stimulating the development of new medicines, treatment pathways, and better patient outcomes for the populous Chinese community. Moreover, the MedCT knowledge graph provides a principled mechanism to minimize the hallucination problem of large language models (LLMs), therefore achieving significant levels of accuracy and safety in LLM-based clinical applications. By leveraging the LLMs' emergent capabilities of generativeness and expressiveness, we were able to rapidly built a production-quality terminology system and deployed to real-world clinical field within three months, while classical terminologies like SNOMED CT have gone through more than twenty years development. Our experiments show that the MedCT system achieves state-of-the-art (SOTA) performance in semantic matching and entity linking tasks, not only for Chinese but also for English. We also conducted a longitudinal field experiment by applying MedCT and LLMs in a representative spectrum of clinical tasks, including electronic health record (EHR) auto-generation and medical document search for diagnostic decision making. Our study shows a multitude of values of MedCT for clinical workflows and patient outcomes, especially in the new genre of clinical LLM applications. We present our approach in sufficient engineering detail, such that implementing a clinical terminology for other non-English societies should be readily reproducible. We openly release our terminology, models and algorithms, along with real-world clinical datasets for the development.
♻ ☆ Incremental Learning of Retrievable Skills For Efficient Continual Task Adaptation
Continual Imitation Learning (CiL) involves extracting and accumulating task knowledge from demonstrations across multiple stages and tasks to achieve a multi-task policy. With recent advancements in foundation models, there has been a growing interest in adapter-based CiL approaches, where adapters are established parameter-efficiently for tasks newly demonstrated. While these approaches isolate parameters for specific tasks and tend to mitigate catastrophic forgetting, they limit knowledge sharing among different demonstrations. We introduce IsCiL, an adapter-based CiL framework that addresses this limitation of knowledge sharing by incrementally learning shareable skills from different demonstrations, thus enabling sample-efficient task adaptation using the skills particularly in non-stationary CiL environments. In IsCiL, demonstrations are mapped into the state embedding space, where proper skills can be retrieved upon input states through prototype-based memory. These retrievable skills are incrementally learned on their corresponding adapters. Our CiL experiments with complex tasks in Franka-Kitchen and Meta-World demonstrate robust performance of IsCiL in both task adaptation and sample-efficiency. We also show a simple extension of IsCiL for task unlearning scenarios.
♻ ☆ Robin: a Suite of Multi-Scale Vision-Language Models and the CHIRP Evaluation Benchmark
The proliferation of Vision-Language Models (VLMs) in the past several years calls for rigorous and comprehensive evaluation methods and benchmarks. This work analyzes existing VLM evaluation techniques, including automated metrics, AI-based assessments, and human evaluations across diverse tasks. We first introduce Robin - a novel suite of VLMs that we built by combining Large Language Models (LLMs) and Vision Encoders (VEs) at multiple scales, and use Robin to identify shortcomings of current evaluation approaches across scales. Next, to overcome the identified limitations, we introduce CHIRP - a new long form response benchmark we developed for more robust and complete VLM evaluation. We provide open access to the Robin training code, model suite, and CHIRP benchmark to promote reproducibility and advance VLM research.
♻ ☆ Quantifying the Importance of Data Alignment in Downstream Model Performance
Contrary to the conventional emphasis on dataset size, we explore the role of data alignment -- an often overlooked aspect of data quality -- in training capable Large Language Models (LLMs). To do so, we use the Task2Vec-based alignment coefficient, a quantitative measure of the similarity between two datasets, to quantify the impact of alignment between training data and evaluation data on downstream performance. In particular, we conduct controlled \textit{interventional} experiments for two settings: 1. the impact of increased alignment coefficients between various pre-training (pt) against evaluation datasets, and 2. the impact of increased alignment coefficients between domain specific fine-tuning (ft) against domain specific evaluation. The domain specific task we explore is Autoformalization -- the machine translation task between natural language and code for formal verification. In both settings, we find a strong, predictable negative correlation between the alignment coefficient of a model's training and evaluation data and the model's loss/perplexity on the respective downstream task. These findings suggest a re-evaluation of LLM training approaches, demonstrating the relevance of data alignment compared to data quantity, especially in specialized downstream tasks such as Autoformalization.
♻ ☆ Exploring the Efficacy of Meta-Learning: Unveiling Superior Data Diversity Utilization of MAML Over Pre-training
Currently, data and model size dominate the narrative in the training of super-large, powerful models. However, there has been a lack of exploration on the effect of other attributes of the training dataset on model performance. We hypothesize that dataset diversity can impact the performance of vision models. Our study shows positive correlations between test set accuracy and data diversity, providing an argument for furthering the research of dataset attributes beyond size. We analyzed pre-training and model-agnostic meta-learning methods on twelve popular visual datasets (e.g., Omniglot, CIFAR-FS, Aircraft) and five model configurations, including MAML variants with different numbers of inner gradient steps and supervised learning. We show moderate to strong positive correlations (R-squared: 0.15-0.42) between accuracy and data diversity and weaker but significant correlations (R-squared: ~0.2) between loss and diversity. These findings support our hypothesis and demonstrate a promising way for a deeper exploration of how formal data diversity influences model performance. This initial study highlights the potential of (Task2Vec) data diversity as a valuable measure in the rapidly evolving field of large-scale learning and emphasizes that understanding the dataset is key to building more powerful and generalizable models.
Robotics 15
☆ Force-Aware Autonomous Robotic Surgery
This work demonstrates the benefits of using tool-tissue interaction forces in the design of autonomous systems in robot-assisted surgery (RAS). Autonomous systems in surgery must manipulate tissues of different stiffness levels and hence should apply different levels of forces accordingly. We hypothesize that this ability is enabled by using force measurements as input to policies learned from human demonstrations. To test this hypothesis, we use Action-Chunking Transformers (ACT) to train two policies through imitation learning for automated tissue retraction with the da Vinci Research Kit (dVRK). To quantify the effects of using tool-tissue interaction force data, we trained a "no force policy" that uses the vision and robot kinematic data, and compared it to a "force policy" that uses force, vision and robot kinematic data. When tested on a previously seen tissue sample, the force policy is 3 times more successful in autonomously performing the task compared with the no force policy. In addition, the force policy is more gentle with the tissue compared with the no force policy, exerting on average 62% less force on the tissue. When tested on a previously unseen tissue sample, the force policy is 3.5 times more successful in autonomously performing the task, exerting an order of magnitude less forces on the tissue, compared with the no force policy. These results open the door to design force-aware autonomous systems that can meet the surgical guidelines for tissue handling, especially using the newly released RAS systems with force feedback capabilities such as the da Vinci 5.
☆ Event-based vision for egomotion estimation using precise event timing
Egomotion estimation is crucial for applications such as autonomous navigation and robotics, where accurate and real-time motion tracking is required. However, traditional methods relying on inertial sensors are highly sensitive to external conditions, and suffer from drifts leading to large inaccuracies over long distances. Vision-based methods, particularly those utilising event-based vision sensors, provide an efficient alternative by capturing data only when changes are perceived in the scene. This approach minimises power consumption while delivering high-speed, low-latency feedback. In this work, we propose a fully event-based pipeline for egomotion estimation that processes the event stream directly within the event-based domain. This method eliminates the need for frame-based intermediaries, allowing for low-latency and energy-efficient motion estimation. We construct a shallow spiking neural network using a synaptic gating mechanism to convert precise event timing into bursts of spikes. These spikes encode local optical flow velocities, and the network provides an event-based readout of egomotion. We evaluate the network's performance on a dedicated chip, demonstrating strong potential for low-latency, low-power motion estimation. Additionally, simulations of larger networks show that the system achieves state-of-the-art accuracy in egomotion estimation tasks with event-based cameras, making it a promising solution for real-time, power-constrained robotics applications.
comment: 10 pages, 7 figures. Supplementary material: 4 pages, 1 figure
☆ Clinically Ready Magnetic Microrobots for Targeted Therapies
Systemic drug administration often causes off-target effects limiting the efficacy of advanced therapies. Targeted drug delivery approaches increase local drug concentrations at the diseased site while minimizing systemic drug exposure. We present a magnetically guided microrobotic drug delivery system capable of precise navigation under physiological conditions. This platform integrates a clinical electromagnetic navigation system, a custom-designed release catheter, and a dissolvable capsule for accurate therapeutic delivery. In vitro tests showed precise navigation in human vasculature models, and in vivo experiments confirmed tracking under fluoroscopy and successful navigation in large animal models. The microrobot balances magnetic material concentration, contrast agent loading, and therapeutic drug capacity, enabling effective hosting of therapeutics despite the integration complexity of its components, offering a promising solution for precise targeted drug delivery.
☆ An Incremental Sampling and Segmentation-Based Approach for Motion Planning Infeasibility
We present a simple and easy-to-implement algorithm to detect plan infeasibility in kinematic motion planning. Our method involves approximating the robot's configuration space to a discrete space, where each degree of freedom has a finite set of values. The obstacle region separates the free configuration space into different connected regions. For a path to exist between the start and goal configurations, they must lie in the same connected region of the free space. Thus, to ascertain plan infeasibility, we merely need to sample adequate points from the obstacle region that isolate start and goal. Accordingly, we progressively construct the configuration space by sampling from the discretized space and updating the bitmap cells representing obstacle regions. Subsequently, we partition this partially built configuration space to identify different connected components within it and assess the connectivity of the start and goal cells. We illustrate this methodology on five different scenarios with configuration spaces having up to 5 degree-of-freedom (DOF).
☆ A Survey of World Models for Autonomous Driving
Recent breakthroughs in autonomous driving have revolutionized the way vehicles perceive and interact with their surroundings. In particular, world models have emerged as a linchpin technology, offering high-fidelity representations of the driving environment that integrate multi-sensor data, semantic cues, and temporal dynamics. Such models unify perception, prediction, and planning, thereby enabling autonomous systems to make rapid, informed decisions under complex and often unpredictable conditions. Research trends span diverse areas, including 4D occupancy prediction and generative data synthesis, all of which bolster scene understanding and trajectory forecasting. Notably, recent works exploit large-scale pretraining and advanced self-supervised learning to scale up models' capacity for rare-event simulation and real-time interaction. In addressing key challenges -- ranging from domain adaptation and long-tail anomaly detection to multimodal fusion -- these world models pave the way for more robust, reliable, and adaptable autonomous driving solutions. This survey systematically reviews the state of the art, categorizing techniques by their focus on future prediction, behavior planning, and the interaction between the two. We also identify potential directions for future research, emphasizing holistic integration, improved computational efficiency, and advanced simulation. Our comprehensive analysis underscores the transformative role of world models in driving next-generation autonomous systems toward safer and more equitable mobility.
comment: Ongoing project
☆ Online Hybrid-Belief POMDP with Coupled Semantic-Geometric Models and Semantic Safety Awareness
Robots operating in complex and unknown environments frequently require geometric-semantic representations of the environment to safely perform their tasks. While inferring the environment, they must account for many possible scenarios when planning future actions. Since objects' class types are discrete and the robot's self-pose and the objects' poses are continuous, the environment can be represented by a hybrid discrete-continuous belief which is updated according to models and incoming data. Prior probabilities and observation models representing the environment can be learned from data using deep learning algorithms. Such models often couple environmental semantic and geometric properties. As a result, semantic variables are interconnected, causing semantic state space dimensionality to increase exponentially. In this paper, we consider planning under uncertainty using partially observable Markov decision processes (POMDPs) with hybrid semantic-geometric beliefs. The models and priors consider the coupling between semantic and geometric variables. Within POMDP, we introduce the concept of semantically aware safety. Obtaining representative samples of the theoretical hybrid belief, required for estimating the value function, is very challenging. As a key contribution, we develop a novel form of the hybrid belief and leverage it to sample representative samples. We show that under certain conditions, the value function and probability of safety can be calculated efficiently with an explicit expectation over all possible semantic mappings. Our simulations show that our estimates of the objective function and probability of safety achieve similar levels of accuracy compared to estimators that run exhaustively on the entire semantic state-space using samples from the theoretical hybrid belief. Nevertheless, the complexity of our estimators is polynomial rather than exponential.
comment: 18 pages, 11 figures
♻ ☆ Robust Predictive Motion Planning by Learning Obstacle Uncertainty
Safe motion planning for robotic systems in dynamic environments is nontrivial in the presence of uncertain obstacles, where estimation of obstacle uncertainties is crucial in predicting future motions of dynamic obstacles. The worst-case characterization gives a conservative uncertainty prediction and may result in infeasible motion planning for the ego robotic system. In this paper, an efficient, robust, and safe motion-planing algorithm is developed by learning the obstacle uncertainties online. More specifically, the unknown yet intended control set of obstacles is efficiently computed by solving a linear programming problem. The learned control set is used to compute forward reachable sets of obstacles that are less conservative than the worst-case prediction. Based on the forward prediction, a robust model predictive controller is designed to compute a safe reference trajectory for the ego robotic system that remains outside the reachable sets of obstacles over the prediction horizon. The method is applied to a car-like mobile robot in both simulations and hardware experiments to demonstrate its effectiveness.
♻ ☆ Transformer-Based Model for Monocular Visual Odometry: A Video Understanding Approach
Estimating the camera's pose given images from a single camera is a traditional task in mobile robots and autonomous vehicles. This problem is called monocular visual odometry and often relies on geometric approaches that require considerable engineering effort for a specific scenario. Deep learning methods have been shown to be generalizable after proper training and with a large amount of available data. Transformer-based architectures have dominated the state-of-the-art in natural language processing and computer vision tasks, such as image and video understanding. In this work, we deal with the monocular visual odometry as a video understanding task to estimate the 6 degrees of freedom of a camera's pose. We contribute by presenting the TSformer-VO model based on spatio-temporal self-attention mechanisms to extract features from clips and estimate the motions in an end-to-end manner. Our approach achieved competitive state-of-the-art performance compared with geometry-based and deep learning-based methods on the KITTI visual odometry dataset, outperforming the DeepVO implementation highly accepted in the visual odometry community. The code is publicly available at https://github.com/aofrancani/TSformer-VO.
comment: This work has been accepted for publication in IEEE Access
♻ ☆ Projection-free computation of robust controllable sets with constrained zonotopes
We study the problem of computing robust controllable sets for discrete-time linear systems with additive uncertainty. We propose a tractable and scalable approach to inner- and outer-approximate robust controllable sets using constrained zonotopes, when the additive uncertainty set is a symmetric, convex, and compact set. Our least-squares-based approach uses novel closed-form approximations of the Pontryagin difference between a constrained zonotopic minuend and a symmetric, convex, and compact subtrahend. Unlike existing approaches, our approach does not rely on convex optimization solvers, and is projection-free for ellipsoidal and zonotopic uncertainty sets. We also propose a least-squares-based approach to compute a convex, polyhedral outer-approximation to constrained zonotopes, and characterize sufficient conditions under which all these approximations are exact. We demonstrate the computational efficiency and scalability of our approach in several case studies, including the design of abort-safe rendezvous trajectories for a spacecraft in near-rectilinear halo orbit under uncertainty. Our approach can inner-approximate a 20-step robust controllable set for a 100-dimensional linear system in under 15 seconds on a standard computer.
comment: 23 pages, 7 figures; Accepted for publication at Automatica. See https://youtu.be/6BPmHgxD3OI for the use of the proposed method in a simplified abort-safe rendezvous problem
♻ ☆ On Semidefinite Relaxations for Matrix-Weighted State-Estimation Problems in Robotics
In recent years, there has been remarkable progress in the development of so-called certifiable perception methods, which leverage semidefinite, convex relaxations to find global optima of perception problems in robotics. However, many of these relaxations rely on simplifying assumptions that facilitate the problem formulation, such as an isotropic measurement noise distribution. In this paper, we explore the tightness of the semidefinite relaxations of matrix-weighted (anisotropic) state-estimation problems and reveal the limitations lurking therein: matrix-weighted factors can cause convex relaxations to lose tightness. In particular, we show that the semidefinite relaxations of localization problems with matrix weights may be tight only for low noise levels. To better understand this issue, we introduce a theoretical connection between the posterior uncertainty of the state estimate and the certificate matrix obtained via convex relaxation. With this connection in mind, we empirically explore the factors that contribute to this loss of tightness and demonstrate that redundant constraints can be used to regain it. As a second technical contribution of this paper, we show that the state-of-the-art relaxation of scalar-weighted SLAM cannot be used when matrix weights are considered. We provide an alternate formulation and show that its SDP relaxation is not tight (even for very low noise levels) unless specific redundant constraints are used. We demonstrate the tightness of our formulations on both simulated and real-world data.
♻ ☆ GenEx: Generating an Explorable World
Understanding, navigating, and exploring the 3D physical real world has long been a central challenge in the development of artificial intelligence. In this work, we take a step toward this goal by introducing GenEx, a system capable of planning complex embodied world exploration, guided by its generative imagination that forms priors (expectations) about the surrounding environments. GenEx generates an entire 3D-consistent imaginative environment from as little as a single RGB image, bringing it to life through panoramic video streams. Leveraging scalable 3D world data curated from Unreal Engine, our generative model is rounded in the physical world. It captures a continuous 360-degree environment with little effort, offering a boundless landscape for AI agents to explore and interact with. GenEx achieves high-quality world generation, robust loop consistency over long trajectories, and demonstrates strong 3D capabilities such as consistency and active 3D mapping. Powered by generative imagination of the world, GPT-assisted agents are equipped to perform complex embodied tasks, including both goal-agnostic exploration and goal-driven navigation. These agents utilize predictive expectation regarding unseen parts of the physical world to refine their beliefs, simulate different outcomes based on potential decisions, and make more informed choices. In summary, we demonstrate that GenEx provides a transformative platform for advancing embodied AI in imaginative spaces and brings potential for extending these capabilities to real-world exploration.
comment: Website: GenEx.world
♻ ☆ The Dilemma of Decision-Making in the Real World: When Robots Struggle to Make Choices Due to Situational Constraints
In order to demonstrate the limitations of assistive robotic capabilities in noisy real-world environments, we propose a Decision-Making Scenario analysis approach that examines the challenges due to user and environmental uncertainty, and incorporates these into user studies. The scenarios highlight how personalization can be achieved through more human-robot collaboration, particularly in relation to individuals with visual, physical, cognitive, auditory impairments, clinical needs, environmental factors (noise, light levels, clutter), and daily living activities. Our goal is for this contribution to prompt reflection and aid in the design of improved robots (embodiment, sensors, actuation, cognition) and their behavior, and we aim to introduces a groundbreaking strategy to enhance human-robot collaboration, addressing the complexities of decision-making under uncertainty through a Scenario analysis approach. By emphasizing user-centered design principles and offering actionable solutions to real-world challenges, this work aims to identify key decision-making challenges and propose potential solutions.
comment: Accepted at TAROS 2024
♻ ☆ Mesh2SLAM in VR: A Fast Geometry-Based SLAM Framework for Rapid Prototyping in Virtual Reality Applications
SLAM is a foundational technique with broad applications in robotics and AR/VR. SLAM simulations evaluate new concepts, but testing on resource-constrained devices, such as VR HMDs, faces challenges: high computational cost and restricted sensor data access. This work proposes a sparse framework using mesh geometry projections as features, which improves efficiency and circumvents direct sensor data access, advancing SLAM research as we demonstrate in VR and through numerical evaluation.
comment: Accepted to IEEE VR 2025
♻ ☆ Real-time Motion Planning for autonomous vehicles in dynamic environments
Recent advancements in self-driving car technologies have enabled them to navigate autonomously through various environments. However, one of the critical challenges in autonomous vehicle operation is trajectory planning, especially in dynamic environments with moving obstacles. This research aims to tackle this challenge by proposing a robust algorithm tailored for autonomous cars operating in dynamic environments with moving obstacles. The algorithm introduces two main innovations. Firstly, it defines path density by adjusting the number of waypoints along the trajectory, optimizing their distribution for accuracy in curved areas and reducing computational complexity in straight sections. Secondly, it integrates hierarchical motion planning algorithms, combining global planning with an enhanced $A^*$ graph-based method and local planning using the time elastic band algorithm with moving obstacle detection considering different motion models. The proposed algorithm is adaptable for different vehicle types and mobile robots, making it versatile for real-world applications. Simulation results demonstrate its effectiveness across various conditions, promising safer and more efficient navigation for autonomous vehicles in dynamic environments. These modifications significantly improve trajectory planning capabilities, addressing a crucial aspect of autonomous vehicle technology.
comment: 8 pages
♻ ☆ N-dimensional Convex Obstacle Avoidance using Hybrid Feedback Control (Extended version)
This paper addresses the autonomous robot navigation problem in a priori unknown n-dimensional environments containing convex obstacles of arbitrary shapes and sizes. We propose a hybrid feedback control scheme that guarantees safe and global asymptotic convergence of the robot to a predefined target location. The proposed control strategy relies on a switching mechanism allowing the robot to operate either in the move-to-target mode or the obstacle-avoidance mode, based on its proximity to the obstacles and the availability of a clear straight path between the robot and the target. In the obstacle-avoidance mode, the robot is constrained to move within a two-dimensional plane that intersects the obstacle being avoided and the target, preventing it from retracing its path. The effectiveness of the proposed hybrid feedback controller is demonstrated through simulations in two-dimensional and three-dimensional environments.
comment: 21 pages, 21 figures
Systems and Control 28
☆ Ultra-High Reliability by Predictive Interference Management Using Extreme Value Theory
Ultra-reliable low-latency communications (URLLC) require innovative approaches to modeling channel and interference dynamics, extending beyond traditional average estimates to encompass entire statistical distributions, including rare and extreme events that challenge achieving ultra-reliability performance regions. In this paper, we propose a risk-sensitive approach based on extreme value theory (EVT) to predict the signal-to-interference-plus-noise ratio (SINR) for efficient resource allocation in URLLC systems. We employ EVT to estimate the statistics of rare and extreme interference values, and kernel density estimation (KDE) to model the distribution of non-extreme events. Using a mixture model, we develop an interference prediction algorithm based on quantile prediction, introducing a confidence level parameter to balance reliability and resource usage. While accounting for the risk sensitivity of interference estimates, the prediction outcome is then used for appropriate resource allocation of a URLLC transmission under link outage constraints. Simulation results demonstrate that the proposed method outperforms the state-of-the-art first-order discrete-time Markov chain (DTMC) approach by reducing outage rates up to 100-fold, achieving target outage probabilities as low as \(10^{-7}\). Simultaneously, it minimizes radio resource usage \(\simnot15 \%\) compared to DTMC, while remaining only \(\simnot20 \%\) above the optimal case with perfect interference knowledge, resulting in significantly higher prediction accuracy. Additionally, the method is sample-efficient, able to predict interference effectively with minimal training data.
comment: 6 pages, 5 figures, Accepted for IEEE ICC 2025
☆ Power Ramp-Rate Control via Power Regulation for Storageless Grid-Connected Photovoltaic Systems
Photovoltaic Power Ramp-Rate Control (PRRC) constitutes a key ancillary service for future power systems. Although its implementation through the installation of storage systems or irradiance sensors has been widely investigated, fewer studies have explored the power curtailment approach. The latter lacks efficiency, as it voluntarily produces power discharges, yet it is a cost-effective solution in terms of capital expenditures. This paper proposes a novel storageless and sensorless photovoltaic PRRC for grid-connected applications in which the photovoltaic power, rather than the voltage, is the controlled magnitude. The aforementioned contribution makes the effective tracking of the power ramp-rate limit possible compared to the existing methods in the literature. The method is assisted by a real-time curve-fitting algorithm that estimates the Maximum Power Point while operating suboptimally. Thus, no direct temperature or irradiance measurement systems are needed. The validation of the proposed PRRC strategy has been tested by simulation and compared to another approach available in the literature, considering real-field highly variable irradiance data. Experimental validation of the proposed strategy has been performed in real time via Controller Hardware-in-the-Loop.
☆ KKL Observer Synthesis for Nonlinear Systems via Physics-Informed Learning
This paper proposes a novel learning approach for designing Kazantzis-Kravaris/Luenberger (KKL) observers for autonomous nonlinear systems. The design of a KKL observer involves finding an injective map that transforms the system state into a higher-dimensional observer state, whose dynamics is linear and stable. The observer's state is then mapped back to the original system coordinates via the inverse map to obtain the state estimate. However, finding this transformation and its inverse is quite challenging. We propose to sequentially approximate these maps by neural networks that are trained using physics-informed learning. We generate synthetic data for training by numerically solving the system and observer dynamics. Theoretical guarantees for the robustness of state estimation against approximation error and system uncertainties are provided. Additionally, a systematic method for optimizing observer performance through parameter selection is presented. The effectiveness of the proposed approach is demonstrated through numerical simulations on benchmark examples and its application to sensor fault detection and isolation in a network of Kuramoto oscillators using learned KKL observers.
☆ PSO-based Sliding Mode Current Control of Grid-Forming Inverter in Rotating Frame
The Grid-Forming Inverter (GFMI) is an emerging topic that is attracting significant attention from both academic and industrial communities, particularly in the area of control design. The Decoupled Average Model-based Sliding Mode Current Controller (DAM-SMC) has been used to address the need such as fast response, fixed switching frequency, and no overshoot to avoid exceeding current limits. Typically, the control parameters for DAM-SMC are chosen based on expert knowledge and certain assumptions. However, these parameters may not achieve optimized performance due to system dynamics and uncertainties. To address this, this paper proposes a Particle Swarm Optimization (PSO)-based DAM-SMC controller, which inherits the control laws from DAM-SMC but optimizes the control parameters offline using PSO. The main goal is to reduce chattering and achieve smaller tracking errors. The proposed method is compared with other metaheuristic optimization algorithms, such as Genetic Algorithm (GA) and Simulated Annealing (SA). Simulations are performed in MATLAB/Simulink across various scenarios to evaluate the effectiveness of the proposed controller. The proposed approach achieves a substantial reduction in convergence time, decreasing it by 86.36% compared to the GA and by 88.89% compared to SA. Furthermore, the tracking error is reduced by 11.61% compared to the conventional DAM-SMC algorithm. The robustness of the proposed method is validated under critical conditions, where plant and control model parameters varied by up to 40%.
☆ DRL-Based Maximization of the Sum Cross-Layer Achievable Rate for Networks Under Jamming
In quasi-static wireless networks characterized by infrequent changes in the transmission schedules of user equipment (UE), malicious jammers can easily deteriorate network performance. Accordingly, a key challenge in these networks is managing channel access amidst jammers and under dynamic channel conditions. In this context, we propose a robust learning-based mechanism for channel access in multi-cell quasi-static networks under jamming. The network comprises multiple legitimate UEs, including predefined UEs (pUEs) with stochastic predefined schedules and an intelligent UE (iUE) with an undefined transmission schedule, all transmitting over a shared, time-varying uplink channel. Jammers transmit unwanted packets to disturb the pUEs' and the iUE's communication. The iUE's learning process is based on the deep reinforcement learning (DRL) framework, utilizing a residual network (ResNet)-based deep Q-Network (DQN). To coexist in the network and maximize the network's sum cross-layer achievable rate (SCLAR), the iUE must learn the unknown network dynamics while concurrently adapting to dynamic channel conditions. Our simulation results reveal that, with properly defined state space, action space, and rewards in DRL, the iUE can effectively coexist in the network, maximizing channel utilization and the network's SCLAR by judiciously selecting transmission time slots and thus avoiding collisions and jamming.
☆ Clinically Ready Magnetic Microrobots for Targeted Therapies
Systemic drug administration often causes off-target effects limiting the efficacy of advanced therapies. Targeted drug delivery approaches increase local drug concentrations at the diseased site while minimizing systemic drug exposure. We present a magnetically guided microrobotic drug delivery system capable of precise navigation under physiological conditions. This platform integrates a clinical electromagnetic navigation system, a custom-designed release catheter, and a dissolvable capsule for accurate therapeutic delivery. In vitro tests showed precise navigation in human vasculature models, and in vivo experiments confirmed tracking under fluoroscopy and successful navigation in large animal models. The microrobot balances magnetic material concentration, contrast agent loading, and therapeutic drug capacity, enabling effective hosting of therapeutics despite the integration complexity of its components, offering a promising solution for precise targeted drug delivery.
☆ DLinear-based Prediction of Remaining Useful Life of Lithium-Ion Batteries: Feature Engineering through Explainable Artificial Intelligence
Accurate prediction of the Remaining Useful Life (RUL) of lithium-ion batteries is essential for ensuring safety, reducing maintenance costs, and optimizing usage. However, predicting RUL is challenging due to the nonlinear characteristics of the degradation caused by complex chemical reactions. Machine learning allows precise predictions by learning the latent functions of degradation relationships based on cycling behavior. This study introduces an accurate RUL prediction approach based on feature engineering and DLinear, applied to the dataset from NASA's Prognostics Center of Excellence. Among the 20 features generated from current, voltage, temperature, and time provided in this dataset, key features contributing to degradation are selected using Pearson correlation coefficient and Shapley values. Shapley value-based feature selection effectively reflects cell-to-cell variability, showing similar importance rankings across all cells. The DLinear-based RUL prediction using key features efficiently captures the time-series trend, demonstrating significantly better performance compared to Long Short-Term Memory and Transformer models.
☆ Early Stopping Bayesian Optimization for Controller Tuning
Manual tuning of performance-critical controller parameters can be tedious and sub-optimal. Bayesian Optimization (BO) is an increasingly popular practical alternative to automatically optimize controller parameters from few experiments. Standard BO practice is to evaluate the closed-loop performance of parameters proposed during optimization on an episode with a fixed length. However, fixed-length episodes can be wasteful. For example, continuing an episode where already the start shows undesirable behavior such as strong oscillations seems pointless. Therefore, we propose a BO method that stops an episode early if suboptimality becomes apparent before an episode is completed. Such early stopping results in partial observations of the controller's performance, which cannot directly be included in standard BO. We propose three heuristics to facilitate partially observed episodes in BO. Through five numerical and one hardware experiment, we demonstrate that early stopping BO can substantially reduce the time needed for optimization.
comment: Accepted for publication at CDC 2024
☆ Optimal Trajectory Control of Geometrically Exact Strings with Space-Time Finite Elements
In this contribution, we present a variational space-time formulation which generates an optimal feed-forward controller for geometrically exact strings. More concretely, the optimization problem is solved with an indirect approach, and the space-time finite element method translates the problem to a set of algebraic equations. Thereby, only the positional field and the corresponding adjoint variable field are approximated by continuous shape functions, which makes the discretization of a velocity field unnecessary. In addition, the variational formulation can be solved using commercial or open source finite element packages. The entire approach can also be interpreted as a multiple-shooting method for solving the optimality conditions based on the semi-discrete problem. The performance of our approach is demonstrated by a numerical test.
comment: 6 pages, 6 figures, submitted to the 23rd European Control Conference (ECC 2025)
☆ Discrete-Time Passivity-Based Control using Hermite-Obreschkoff Methods
The motivation for this paper is the implementation of nonlinear state feedback control, designed based on the continuous-time plant model, in a sampled control loop under relatively slow sampling. In previous work we have shown that using one-step predictions of the target dynamics with higher order integration schemes, together with possibly higher order input shaping, is a simple and effective way to increase the feasible sampling times until performance degradation and instability occur. In this contribution we present a unifying derivation for arbitrary orders of the previously used Lobatto IIIA collocation and Hermite interpolation schemes through the Hermite-Obreschkoff formula. We derive, moreover, an IDA-PBC controller for a magnetic levitation system, which requires a non-constant target interconnection matrix, and show experimental results.
comment: 6 pages, 4 figures, submitted to the 13th IFAC Symposium on Nonlinear Control Systems 2025
☆ Fixed Point Certificates for Reachability and Expected Rewards in MDPs
The possibility of errors in human-engineered formal verification software, such as model checkers, poses a serious threat to the purpose of these tools. An established approach to mitigate this problem are certificates -- lightweight, easy-to-check proofs of the verification results. In this paper, we develop novel certificates for model checking of Markov decision processes (MDPs) with quantitative reachability and expected reward properties. Our approach is conceptually simple and relies almost exclusively on elementary fixed point theory. Our certificates work for arbitrary finite MDPs and can be readily computed with little overhead using standard algorithms. We formalize the soundness of our certificates in Isabelle/HOL and provide a formally verified certificate checker. Moreover, we augment existing algorithms in the probabilistic model checker Storm with the ability to produce certificates and demonstrate practical applicability by conducting the first formal certification of the reference results in the Quantitative Verification Benchmark Set.
comment: Extended version of the TACAS 2025 paper
☆ Efficient Reduction of Interconnected Subsystem Models using Abstracted Environments
We present two frameworks for structure-preserving model order reduction of interconnected subsystems, improving tractability of the reduction methods while ensuring stability and accuracy bounds of the reduced interconnected model. Instead of reducing each subsystem independently, we take a low-order abstraction of its environment into account to better capture the dynamics relevant to the external input-output behaviour of the interconnected system, thereby increasing accuracy of the reduced interconnected model. This approach significantly reduces the computational costs of reduction by abstracting instead of fully retaining the environment. The two frameworks differ in how they generate these abstracted environments: one abstracts the environment as a whole, whereas the other abstracts each individual subsystem. By relating low-level errors introduced by reduction and abstraction to the resulting high-level error on the interconnected system, we are able to translate high-level accuracy requirements (on the reduced interconnected system) to low-level specifications (on abstraction and reduction errors) using techniques from robust performance analysis. By adhering to these low-level specifications, restricting the introduced low-level errors, both frameworks automatically guarantee the accuracy and stability of the reduced interconnected system. We demonstrate the effectiveness of both frameworks by applying them to a structural dynamics model of a two-stroke wafer stage, achieving improved accuracy and/or greater reduction compared to an existing method from literature.
comment: 17 pages, 12 figures and 2 tables, to appear in the European Journal of Control
☆ Linear ADRC is equivalent to PID with set-point weighting and measurement filter
We show that linear Active Disturbance-Rejection Control (ADRC) tuned using the "bandwidth method" is equivalent to PI(D) control with set-point weighting and a lowpass filter on the measurement signal. We also provide simple expressions that make it possible to implement linear ADRC for first and second-order systems using commonplace two degree-of-freedom PID implementations. The expressions are equivalent to ADRC in the response from measurements, and a slight approximation in the response from references.
☆ Driver Behavior Soft-Sensor Based on Neurofuzzy Systems and Weighted Projection on Principal Components
This work has as main objective the development of a soft-sensor to classify, in real time, the behaviors of drivers when they are at the controls of a vehicle. Efficient classification of drivers' behavior while driving, using only the measurements of the sensors already incorporated in the vehicles and without the need to add extra hardware (smart phones, cameras, etc.), is a challenge. The main advantage of using only the data center signals of modern vehicles is economical. The classification of the driving behavior and the warning to the driver of dangerous behaviors without the need to add extra hardware (and their software) to the vehicle, would allow the direct integration of these classifiers into the current vehicles without incurring a greater cost in the manufacture of the vehicles and therefore be an added value. In this work, the classification is obtained based only on speed, acceleration and inertial measurements which are already present in many modern vehicles. The proposed algorithm is based on a structure made by several Neurofuzzy systems with the combination of projected data in components of various Principal Component Analysis. A comparison with several types of classical classifying algorithms has been made.
☆ A Dynamic Improvement Framework for Vehicular Task Offloading
In this paper, the task offloading from vehicles with random velocities is optimized via a novel dynamic improvement framework. Particularly, in a vehicular network with multiple vehicles and base stations (BSs), computing tasks of vehicles are offloaded via BSs to an edge server. Due to the random velocities, the exact trajectories of vehicles cannot be predicted in advance. Hence, instead of deterministic optimization, the cell association, uplink time and throughput allocation of multiple vehicles in a period of task offloading are formulated as a finite-horizon Markov decision process. In the proposed solution framework, we first obtain a reference scheduling scheme of cell association, uplink time and throughput allocation via deterministic optimization at the very beginning. The reference scheduling scheme is then used to approximate the value functions of the Bellman's equations, and the actual scheduling action is determined in each time slot according to the current system state and approximate value functions. Thus, the intensive computation for value iteration in the conventional solution is eliminated. Moreover, a non-trivial average cost upper bound is provided for the proposed solution framework. In the simulation, the random trajectories of vehicles are generated from a high-fidelity traffic simulator. It is shown that the performance gain of the proposed scheduling framework over the baselines is significant.
☆ Bounding the Settling Time of Finite-Time Stable Systems using Sum of Squares
Finite-time stability (FTS) of a differential equation guarantees that solutions reach a given equilibrium point in finite time, where the time of convergence depends on the initial state of the system. For traditional stability notions such as exponential stability, the convex optimization framework of Sum-of-Squares (SoS) enables the computation of polynomial Lyapunov functions to certify stability. However, finite-time stable systems are characterized by non-Lipschitz, non-polynomial vector fields, rendering standard SoS methods inapplicable. To this end, in this paper, we show that the computation of a non-polynomial Lyapunov function certifying finite-time stability can be reformulated as computation of a polynomial one under a particular transformation that we develop in this work. As a result, SoS can be utilized to compute a Lyapunov function for FTS. This Lyapunov function can then be used to obtain a bound on the settling time. We first present this approach for the scalar case and then extend it to the multivariate case. Numerical examples demonstrate the effectiveness of our approach in both certifying finite-time stability and computing accurate settling time bounds. This work represents the first combination of SoS programming with settling time bounds for finite-time stable systems.
☆ Unlocking the Potential: A Novel Tool for Assessing Untapped Micro-Pumped Hydro Energy Storage Systems in Michigan
This study presents an innovative tool designed to unlock the potential of Michigan's lakes and dams for applications such as water resource management and renewable energy generation. Given Michigan's relatively flat landscape, the focus is on systems that could serve as micro-hydro energy storage solutions. To ensure accuracy and reliability, the tool incorporates extensive data gathered from authorized sources, covering more than 420 water facilities and potential reservoirs in the state. These data are used as part of a case study to evaluate the tool's capabilities. Key parameters assessed include horizontal and vertical distances (head), volume, and the total storage capacity of each reservoir, measured in GWh. By analyzing these factors, the tool determines the suitability of various lakes and dams for hydroelectric power generation, and other uses based on the horizontal and vertical threshold distances. Its robust assessment framework integrates these metrics to comprehensively evaluate each site's potential. The tool's friendly interface and advanced data visualization features make the findings easy to interpret, facilitating optimal resource utilization and informed decision-making for state authorities. Hence, this tool represents a meaningful advancement in managing Michigan's water resources sustainably, promoting environmentally friendly practices, and supporting economic development.
♻ ☆ Robust Predictive Motion Planning by Learning Obstacle Uncertainty
Safe motion planning for robotic systems in dynamic environments is nontrivial in the presence of uncertain obstacles, where estimation of obstacle uncertainties is crucial in predicting future motions of dynamic obstacles. The worst-case characterization gives a conservative uncertainty prediction and may result in infeasible motion planning for the ego robotic system. In this paper, an efficient, robust, and safe motion-planing algorithm is developed by learning the obstacle uncertainties online. More specifically, the unknown yet intended control set of obstacles is efficiently computed by solving a linear programming problem. The learned control set is used to compute forward reachable sets of obstacles that are less conservative than the worst-case prediction. Based on the forward prediction, a robust model predictive controller is designed to compute a safe reference trajectory for the ego robotic system that remains outside the reachable sets of obstacles over the prediction horizon. The method is applied to a car-like mobile robot in both simulations and hardware experiments to demonstrate its effectiveness.
♻ ☆ Linear Model of Aggregated Homogeneous Energy Storage Elements with Realizable Dispatch Guarantees
To optimize battery dispatch, a model is required that can predict the state of charge (SOC) trajectory and ensure dispatch is admissible (i.e., does not lead to unexpected SOC saturation). However, battery dispatch optimization is inherently challenging since batteries cannot simultaneously charge and discharge, which begets a non-convex complementarity constraint. In this paper, we consider a composition of energy storage elements that can charge or discharge independently and provide a sufficient linear energy storage model of the composite battery. This permits convex optimization of the composite battery SOC trajectory while ensuring admissibility of the resulting (aggregated) power schedule and disaggregation to the individual energy storage elements.
♻ ☆ Projection-free computation of robust controllable sets with constrained zonotopes
We study the problem of computing robust controllable sets for discrete-time linear systems with additive uncertainty. We propose a tractable and scalable approach to inner- and outer-approximate robust controllable sets using constrained zonotopes, when the additive uncertainty set is a symmetric, convex, and compact set. Our least-squares-based approach uses novel closed-form approximations of the Pontryagin difference between a constrained zonotopic minuend and a symmetric, convex, and compact subtrahend. Unlike existing approaches, our approach does not rely on convex optimization solvers, and is projection-free for ellipsoidal and zonotopic uncertainty sets. We also propose a least-squares-based approach to compute a convex, polyhedral outer-approximation to constrained zonotopes, and characterize sufficient conditions under which all these approximations are exact. We demonstrate the computational efficiency and scalability of our approach in several case studies, including the design of abort-safe rendezvous trajectories for a spacecraft in near-rectilinear halo orbit under uncertainty. Our approach can inner-approximate a 20-step robust controllable set for a 100-dimensional linear system in under 15 seconds on a standard computer.
comment: 23 pages, 7 figures; Accepted for publication at Automatica. See https://youtu.be/6BPmHgxD3OI for the use of the proposed method in a simplified abort-safe rendezvous problem
♻ ☆ Democratic Resilience and Sociotechnical Shocks
We focus on the potential fragility of democratic elections given modern information-communication technologies (ICT) in the Web 2.0 era. Our work provides an explanation for the cascading attrition of public officials recently in the United States and offers potential policy interventions from a dynamic system's perspective. We propose that micro-level heterogeneity across individuals within crucial institutions leads to vulnerabilities of election support systems at the macro scale. Our analysis provides comparative statistics to measure the fragility of systems against targeted harassment, disinformation campaigns, and other adversarial manipulations that are now cheaper to scale and deploy. Our analysis also informs policy interventions that seek to retain public officials and increase voter turnout. We show how limited resources (for example, salary incentives to public officials and targeted interventions to increase voter turnout) can be allocated at the population level to improve these outcomes and maximally enhance democratic resilience. On the one hand, structural and individual heterogeneity cause systemic fragility that adversarial actors can exploit, but also provide opportunities for effective interventions that offer significant global improvements from limited and localized actions.
comment: Computational and Mathematical Organization Theory, forthcoming
♻ ☆ Clutter-Aware Target Detection for ISAC in a Millimeter-Wave Cell-Free Massive MIMO System
In this paper, we investigate the performance of an integrated sensing and communication (ISAC) system within a cell-free massive multiple-input multiple-output (MIMO) system. Each access point (AP) operates in the millimeter-wave (mmWave) frequency band. The APs jointly serve the user equipments (UEs) in the downlink while simultaneously detecting a target through dedicated sensing beams, which are directed toward a reconfigurable intelligent surface (RIS). Although the AP-RIS, RIS-target, and AP-target channels have both line-of-sight (LoS) and non-line-of-sight (NLoS) parts, it is assumed only knowledge of the LoS paths is available. A key contribution of this study is the consideration of clutter, which degrades the target detection if not handled. We propose an algorithm to alternatively optimize the transmit power allocation and the RIS phase-shift matrix, maximizing the target signal-to-clutter-plus-noise ratio (SCNR) while ensuring a minimum signal-to-interference-plus-noise ratio (SINR) for the UEs. Numerical results demonstrate that exploiting clutter subspace significantly enhances detection probability, particularly at high clutter-to-noise ratios, and reveal that an increased number of transmit side clusters impair detection performance. Finally, we highlight the performance gains achieved using a dedicated sensing stream.
comment: submitted to IEEE ICC25 WORKSHOPS
♻ ☆ Asymmetry of Frequency Distribution in Power Systems: Sources, Estimation, Impact and Control
This paper analyses an emerging real-world phenomena in inverter-based renewable-dominated power systems, namely, asymmetry of frequency distribution. The paper first provides a rationale on why asymmetry reduces the "quality" of the frequency control and system operation. Then it provides qualitative theoretical insights that explain asymmetry in terms of the nonlinearity of real-world power systems and associated models. In particular network losses and pitch angle-based frequency control of wind power plants are discussed. Then the paper proposes a nonlinear compensation control to reduce the asymmetry as well as a statistical metric based on the frequency probability distribution to quantify the level of asymmetry in a power system. Real-world data obtained from the Irish and Australian transmission systems serve to support the theoretical appraisal, whereas simulations based on an IEEE benchmark system show the effectiveness of the proposed nonlinear compensation. The case study also shows that, while automatic generation control reduces asymmetry, frequency control limits and droop-based frequency support provided by wind generation using a tight deadband of 15 mHz, namely active power control, leads to a significant increase in the asymmetry of the frequency probability distribution.
♻ ☆ Fast State Stabilization using Deep Reinforcement Learning for Measurement-based Quantum Feedback Control
The stabilization of quantum states is a fundamental problem for realizing various quantum technologies. Measurement-based-feedback strategies have demonstrated powerful performance, and the construction of quantum control signals using measurement information has attracted great interest. However, the interaction between quantum systems and the environment is inevitable, especially when measurements are introduced, which leads to decoherence. To mitigate decoherence, it is desirable to stabilize quantum systems faster, thereby reducing the time of interaction with the environment. In this paper, we utilize information obtained from measurement and apply deep reinforcement learning (DRL) algorithms, without explicitly constructing specific complex measurement-control mappings, to rapidly drive random initial quantum state to the target state. The proposed DRL algorithm has the ability to speed up the convergence to a target state, which shortens the interaction between quantum systems and their environments to protect coherence. Simulations are performed on two-qubit and three-qubit systems, and the results show that our algorithm can successfully stabilize random initial quantum system to the target entangled state, with a convergence time faster than traditional methods such as Lyapunov feedback control and several DRL algorithms with different reward functions. Moreover, it exhibits robustness against imperfect measurements and delays in system evolution.
♻ ☆ The Bouc-Wen Model for Binary Direct Collinear Collisions of Convex Viscoplastic Bodies
We study mathematical models of binary direct collinear collisions of convex viscoplastic bodies based on two incremental collision laws that employ the Bouc-Wen differential model of hysteresis to represent the elastoplastic behavior of the materials of the colliding bodies. These collision laws are the Bouc-Wen-Simon-Hunt-Crossley Collision Law (BWSHCCL) and the Bouc-Wen-Maxwell Collision Law (BWMCL). The BWSHCCL comprises of the Bouc-Wen model amended with a nonlinear Hertzian elastic spring element and connected in parallel to a nonlinear displacement-dependent and velocity-dependent energy dissipation element. The BWMCL comprises of the Bouc-Wen model amended with a nonlinear Hertzian elastic spring element and connected in series to a linear velocity-dependent energy dissipation element. The mathematical models of the collision process are presented in the form of finite-dimensional initial value problems. We show that the models possess favorable analytical properties (e.g., global existence, uniqueness, and boundedness of the solutions) under suitable restrictions on the values of their parameters. Furthermore, based on the results of two model parameter identification studies, we demonstrate that good agreement can be attained between experimental data and numerical approximations of the behavior of the mathematical models across a wide range of initial relative velocities of the colliding bodies while using parameterizations of the models that are independent of the initial relative velocity.
comment: 15 pages; 5 figures; (v1-v5) a variety of amendments; (v6) updated scaling/nondimensionalization and introduced amendments based on external feedback; (v7) further minor amendments; the associated code/data are available from https://gitlab.com/user9716869/BWBCL
♻ ☆ N-dimensional Convex Obstacle Avoidance using Hybrid Feedback Control (Extended version)
This paper addresses the autonomous robot navigation problem in a priori unknown n-dimensional environments containing convex obstacles of arbitrary shapes and sizes. We propose a hybrid feedback control scheme that guarantees safe and global asymptotic convergence of the robot to a predefined target location. The proposed control strategy relies on a switching mechanism allowing the robot to operate either in the move-to-target mode or the obstacle-avoidance mode, based on its proximity to the obstacles and the availability of a clear straight path between the robot and the target. In the obstacle-avoidance mode, the robot is constrained to move within a two-dimensional plane that intersects the obstacle being avoided and the target, preventing it from retracing its path. The effectiveness of the proposed hybrid feedback controller is demonstrated through simulations in two-dimensional and three-dimensional environments.
comment: 21 pages, 21 figures
♻ ☆ Ring-LWE based encrypted controller with unlimited number of recursive multiplications and effect of error growth
In this paper, we propose an encrypted dynamic controller that executes an unlimited number of recursive homomorphic multiplications on a Ring Learning With Errors (Ring-LWE) based cryptosystem without bootstrapping. The proposed controller exhibits lower computational complexity compared to existing encrypted controllers implemented on LWE based schemes due to the polynomial structure of Ring-LWE. However, the structural difference introduces additional difficulties in analyzing the effect of error growth; Ring-LWE based schemes inject multiple error coefficients when encrypting a single message, which accumulate under recursive homomorphic multiplications. We show that their effect on the control performance can be arbitrarily bounded by the closed-loop stability, thus recovering the performance of the unencrypted controller. Furthermore, a novel method to ``pack'' a vector into a polynomial is presented, which enhances computational and memory efficiency when applied to the proposed encrypted controller. The effectiveness of the proposed design is demonstrated through numerical simulations.
comment: 12 pages, 2 figures, 2 tables
♻ ☆ CSAC Drift Modeling Considering GPS Signal Quality in the Case of GPS Signal Unavailability
The Global Positioning System (GPS), one of the Global Navigation Satellite Systems (GNSS), provides accurate position, navigation and time (PNT) information to various applications. One of the application that is highly receiving attention is satellite vehicles, especially Low Earth Orbit (LEO) satellites. Due to their limited ways to get PNT information and low performance of their onboard clocks, GPS system time (GPST) provided by GPS is a good reference clock to synchronize. However, GPS is well-known for its vulnerability to intentional or unintentional interference. This study aims to maintain the onboard clock with less error relative to the GPST even when the GPS signal is disrupted. In this study, we analyzed two major factors that affects the quality of the GPS measurements: the number of the visible satellites and the geometry of the satellites. Then, we proposed a weighted model for a Chip-Scale Atomic Clock (CSAC) that mitigates the clock error relative to the GPST while considering the two factors. Based on this model, a stand-alone CSAC could maintain its error less than 4 microseconds, even in a situation where no GPS signals are received for 12 hours.
comment: Submitted to ICCAS 2024
Optimization and Control 31
☆ A Decomposition Framework for Nonlinear Nonconvex Two-Stage Optimization
We propose a new decomposition framework for continuous nonlinear constrained two-stage optimization, where both first- and second-stage problems can be nonconvex. A smoothing technique based on an interior-point formulation renders the optimal solution of the second-stage problem differentiable with respect to the first-stage parameters. As a consequence, efficient off-the-shelf optimization packages can be utilized. We show that the solution of the nonconvex second-stage problem behaves locally like a differentiable function so that existing proofs can be applied for the global convergence of the first-stage. We also prove fast local convergence of the algorithm as the barrier parameter is driven to zero. Numerical experiments for large-scale instances demonstrate the computational advantages of the decomposition framework.
☆ Randomized Kaczmarz Methods with Beyond-Krylov Convergence
Randomized Kaczmarz methods form a family of linear system solvers which converge by repeatedly projecting their iterates onto randomly sampled equations. While effective in some contexts, such as highly over-determined least squares, Kaczmarz methods are traditionally deemed secondary to Krylov subspace methods, since this latter family of solvers can exploit outliers in the input's singular value distribution to attain fast convergence on ill-conditioned systems. In this paper, we introduce Kaczmarz++, an accelerated randomized block Kaczmarz algorithm that exploits outlying singular values in the input to attain a fast Krylov-style convergence. Moreover, we show that Kaczmarz++ captures large outlying singular values provably faster than popular Krylov methods, for both over- and under-determined systems. We also develop an optimized variant for positive semidefinite systems, called CD++, demonstrating empirically that it is competitive in arithmetic operations with both CG and GMRES on a collection of benchmark problems. To attain these results, we introduce several novel algorithmic improvements to the Kaczmarz framework, including adaptive momentum acceleration, Tikhonov-regularized projections, and a memoization scheme for reusing information from previously sampled equation~blocks.
☆ On a Lemma by Brézis and Haraux
We propose several applications of an often overlooked part of the 1976 paper by Br\'ezis and Haraux, in which the celebrated Br\'ezis--Haraux theorem was established. Our results unify and extend various existing ones on the range of a composite monotone operator and provide new insight into the seminal work by Br\'ezis and Haraux.
☆ Fully Adaptive Zeroth-Order Method for Minimizing Functions with Compressible Gradients
We propose an adaptive zeroth-order method for minimizing differentiable functions with $L$-Lipschitz continuous gradients. The method is designed to take advantage of the eventual compressibility of the gradient of the objective function, but it does not require knowledge of the approximate sparsity level $s$ or the Lipschitz constant $L$ of the gradient. We show that the new method performs no more than $O\left(n^{2}\epsilon^{-2}\right)$ function evaluations to find an $\epsilon$-approximate stationary point of an objective function with $n$ variables. Assuming additionally that the gradients of the objective function are compressible, we obtain an improved complexity bound of $O\left(s\log\left(n\right)\epsilon^{-2}\right)$ function evaluations, which holds with high probability. Preliminary numerical results illustrate the efficiency of the proposed method and demonstrate that it can significantly outperform its non-adaptive counterpart.
☆ Improved Mixing and Pressure Loss Formulations for Gas Network Optimization
Non-convex, nonlinear gas network optimization models are used to determine the feasibility of flows on existing networks given constraints on network flows, gas mixing, and pressure loss along pipes. This work improves two existing gas network models: a discrete mixed-integer nonlinear program (MINLP) that uses binary variables to model positive and negative flows, and a continuous nonlinear program (NLP) that implements complementarity constraints with continuous variables. We introduce cuts to expedite the MINLP and we formulate two new pressure loss models that leverage the flow-splitting variables: one that is highly accurate and another that is simpler but less accurate. In computational tests using the global solver BARON our cuts and accurate pressure loss improves: (1) the average run time of the MINLP by a factor of 35, (2) the stability of the MINLP by solving every tested instance within 2.5 minutes (the baseline model timed out on 25% of instances), (3) the stability of the NLP by solving more instances than the baseline. Our simpler pressure loss model further improved run times in the MINLP (by a factor of 48 versus the baseline MINLP), but was unstable in the context of the NLP.
comment: 26 pages, 4 figures
☆ Riemannian Optimization for Holevo Capacity
Computing the classical capacity of a noisy quantum channel is crucial for understanding the limits of communication over quantum channels. However, its evaluation remains challenging due to the difficulty of computing the Holevo capacity and the even greater difficulty of regularization. In this work, we formulate the computation of the Holevo capacity as an optimization problem on a product manifold constructed from probability distributions and their corresponding pure input states for a quantum channel. A Riemannian gradient descent algorithm is proposed to solve the problem, providing lower bounds on the classical capacity of general quantum channels and outperforming existing methods in numerical experiments in both efficiency and scale.
comment: 6 pages
☆ A Survey of Exact and Approximation Algorithms for Linear-Parametric Optimization Problems
Linear-parametric optimization, where multiple objectives are combined into a single objective using linear combinations with parameters as coefficients, has numerous links to other fields in optimization and a wide range of application areas. In this survey, we provide a comprehensive overview of structural results and algorithmic strategies for solving linear-parametric optimization problems exactly and approximately. Transferring concepts from related areas such as multi-objective optimization provides further relevant results. The survey consists of two parts: First, we list strategies that work in a general fashion and do not rely on specific problem structures. Second, we look at well-studied parametric optimization problems and cover both important theoretical results and specialized algorithmic approaches for these problems. Among these problems are parametric variants of shortest path problems, minimum cost flow and maximum flow problems, spanning tree problems, the knapsack problem, and matching problems. Overall, we cover the results from 128 publications (and refer to 33 supplemental works) published between 1963 and 2024.
☆ Global Exponential Stabilization for a Simplified Fluid-Particle Interaction System
This work considers a system coupling a viscous Burgers equation (aimed to describe a simplified model of $1D$ fluid flow) with the ODE describing the motion of a point mass moving inside the fluid. The point mass is possibly under the action of a feedback control. Our main contributions are that we prove two global exponential stability results. More precisely, we first show that the velocity field corresponding to the free dynamics case is globally exponentially stable. We next show that, in the presence of the feedback control both the velocity field and the distance from the mass point to a prescribed target position decay exponentially. The proofs of these results heavily rely on the use of a special test function allowing both to prove that the mass point stays away from the boundary and to construct a perturbed Lyapunov function.
comment: 16 pages
☆ Lagrangian Duality for Mixed-Integer Semidefinite Programming: Theory and Algorithms
This paper presents the Lagrangian duality theory for mixed-integer semidefinite programming (MISDP). We derive the Lagrangian dual problem and prove that the resulting Lagrangian dual bound dominates the bound obtained from the continuous relaxation of the MISDP problem. We present a hierarchy of Lagrangian dual bounds by exploiting the theory of integer positive semidefinite matrices and propose three algorithms for obtaining those bounds. Our algorithms are variants of well-known algorithms for minimizing non-differentiable convex functions. The numerical results on the max-$k$-cut problem show that the Lagrangian dual bounds are substantially stronger than the semidefinite programming bound obtained by relaxing integrality, already for lower levels in the hierarchy. Computational costs for computing our bounds are small.
☆ Large deviations for sticky-reflecting Brownian motion with boundary diffusion
We study a Schilder-type large deviation principle for sticky-reflected Brownian motion with boundary diffusion, both at the static and sample path level in the short-time limit. A sharp transition for the rate function occurs, depending on whether the tangential boundary diffusion is faster or slower than in the interior of the domain. The resulting intrinsic distance naturally gives rise to a novel optimal transport model, where motion and kinetic energy are treated differently in the interior and along the boundary.
☆ Global Regularity Estimates for Optimal Transport via Entropic Regularisation
We develop a general approach to prove global regularity estimates for quadratic optimal transport using the entropic regularisation of the problem.
☆ Relax-and-round strategies for solving the Unit Commitment problem with AC Power Flow constraints
The Unit Commitment problem with AC power flow constraints (UC-ACOPF) is a non-convex mixed-integer nonlinear programming (MINLP) problem encountered in power systems. Its combination of combinatorial complexity and non-convex nonlinear constraints makes it particularly challenging. A common approach to tackle this issue is to relax the integrality condition, but this often results in infeasible solutions. Consequently, rounding heuristics are frequently employed to restore integer feasibility. This paper addresses recent advancements in heuristics aimed at quickly obtaining feasible solutions for the UC-ACOPF problem, focusing specifically on direct relax-and-round strategies. We propose a model-based heuristic that rescales the solution of the integer-relaxed problem before rounding. Furthermore, we introduce rounding formulas designed to enforce combinatorial constraints and aim to maintain AC feasibility in the resulting solutions. These methodologies are compared against standard direct rounding techniques in the literature, applied to a 6-bus and a 118-bus test systems. Additionally, we integrate the proposed heuristics into an implementation of the Feasibility Pump (FP) method, demonstrating their utility and potential to enhance existing rounding strategies.
☆ A mixed finite elements approximation of inverse source problems for the wave equation with variable coefficients using observability
We consider an inverse problem for the linear one-dimensional wave equation with variable coefficients consisting in determining an unknown source term from a boundary observation. A method to obtain approximations of this inverse problem using a space discretization based on a mixed finite element method is proposed and analyzed. Its stability and convergence relay on a new uniform boundary observability property with respect to the discretization parameter.
☆ Bounding the Settling Time of Finite-Time Stable Systems using Sum of Squares
Finite-time stability (FTS) of a differential equation guarantees that solutions reach a given equilibrium point in finite time, where the time of convergence depends on the initial state of the system. For traditional stability notions such as exponential stability, the convex optimization framework of Sum-of-Squares (SoS) enables the computation of polynomial Lyapunov functions to certify stability. However, finite-time stable systems are characterized by non-Lipschitz, non-polynomial vector fields, rendering standard SoS methods inapplicable. To this end, in this paper, we show that the computation of a non-polynomial Lyapunov function certifying finite-time stability can be reformulated as computation of a polynomial one under a particular transformation that we develop in this work. As a result, SoS can be utilized to compute a Lyapunov function for FTS. This Lyapunov function can then be used to obtain a bound on the settling time. We first present this approach for the scalar case and then extend it to the multivariate case. Numerical examples demonstrate the effectiveness of our approach in both certifying finite-time stability and computing accurate settling time bounds. This work represents the first combination of SoS programming with settling time bounds for finite-time stable systems.
♻ ☆ Constrained Hellinger-Kantorovich barycenters: least-cost soft and conic multi-marginal formulations
We show that the problem of finding the barycenter in the Hellinger-Kantorovich setting admits a least-cost soft multi-marginal formulation, provided that a one-sided hard marginal constraint is introduced. The constrained approach is then shown to admit a conic multi-marginal reformulation based on defining a single joint multi-marginal perspective cost function in the conic multi-marginal formulation, as opposed to separate two-marginal perspective cost functions for each two-marginal problem in the coupled-two-marginal formulation, as was studied previously in literature. We further establish that, as in the Wasserstein metric, the recently introduced framework of unbalanced multi-marginal optimal transport can be reformulated using the notion of the least cost. Subsequently, we discuss an example when input measures are Dirac masses and numerically solve an example for Gaussian measures. Finally, we also explore why the constrained approach can be seen as a natural extension of a Wasserstein space barycenter to the unbalanced setting.
comment: 25 pages, 1 figure, accepted version
♻ ☆ Free Lunch in the Forest: Functionally-Identical Pruning of Boosted Tree Ensembles
Tree ensembles, including boosting methods, are highly effective and widely used for tabular data. However, large ensembles lack interpretability and require longer inference times. We introduce a method to prune a tree ensemble into a reduced version that is "functionally identical" to the original model. In other words, our method guarantees that the prediction function stays unchanged for any possible input. As a consequence, this pruning algorithm is lossless for any aggregated metric. We formalize the problem of functionally identical pruning on ensembles, introduce an exact optimization model, and provide a fast yet highly effective method to prune large ensembles. Our algorithm iteratively prunes considering a finite set of points, which is incrementally augmented using an adversarial model. In multiple computational experiments, we show that our approach is a "free lunch", significantly reducing the ensemble size without altering the model's behavior. Thus, we can preserve state-of-the-art performance at a fraction of the original model's size.
♻ ☆ Projection-free computation of robust controllable sets with constrained zonotopes
We study the problem of computing robust controllable sets for discrete-time linear systems with additive uncertainty. We propose a tractable and scalable approach to inner- and outer-approximate robust controllable sets using constrained zonotopes, when the additive uncertainty set is a symmetric, convex, and compact set. Our least-squares-based approach uses novel closed-form approximations of the Pontryagin difference between a constrained zonotopic minuend and a symmetric, convex, and compact subtrahend. Unlike existing approaches, our approach does not rely on convex optimization solvers, and is projection-free for ellipsoidal and zonotopic uncertainty sets. We also propose a least-squares-based approach to compute a convex, polyhedral outer-approximation to constrained zonotopes, and characterize sufficient conditions under which all these approximations are exact. We demonstrate the computational efficiency and scalability of our approach in several case studies, including the design of abort-safe rendezvous trajectories for a spacecraft in near-rectilinear halo orbit under uncertainty. Our approach can inner-approximate a 20-step robust controllable set for a 100-dimensional linear system in under 15 seconds on a standard computer.
comment: 23 pages, 7 figures; Accepted for publication at Automatica. See https://youtu.be/6BPmHgxD3OI for the use of the proposed method in a simplified abort-safe rendezvous problem
♻ ☆ Optimization and Generalization Guarantees for Weight Normalization
Weight normalization (WeightNorm) is widely used in practice for the training of deep neural networks and modern deep learning libraries have built-in implementations of it. In this paper, we provide the first theoretical characterizations of both optimization and generalization of deep WeightNorm models with smooth activation functions. For optimization, from the form of the Hessian of the loss, we note that a small Hessian of the predictor leads to a tractable analysis. Thus, we bound the spectral norm of the Hessian of WeightNorm networks and show its dependence on the network width and weight normalization terms--the latter being unique to networks without WeightNorm. Then, we use this bound to establish training convergence guarantees under suitable assumptions for gradient decent. For generalization, we use WeightNorm to get a uniform convergence based generalization bound, which is independent from the width and depends sublinearly on the depth. Finally, we present experimental results which illustrate how the normalization terms and other quantities of theoretical interest relate to the training of WeightNorm networks.
♻ ☆ Patient Transport in Hospitals: A Literature Review of Operations Research and Management Science Methods
Most activities in hospitals require the presence of the patient. Delays in patient transport can disrupt operations, potentially resulting in idle staff, underutilized equipment, and postponed procedures, which in turn lead to lost revenue, unnecessary costs across many different areas and departments, and lower patient satisfaction. Consequently, patient transport planning is a central operational task in hospitals. This paper provides the first literature review of Operations Research and Management Science approaches for non-emergency, intra-hospital patient transport. We structure the different patient transport problems considered in the literature according to several main characteristics and introduce a five-field notation that allows for a concise representation of different problem variants. We then analyze the relevant literature with respect to different aspects related to the considered problem variant, the employed modeling and solution techniques, as well as the data used and the level of practical implementation achieved. Based on our literature analysis and semi-structured interviews with hospital practitioners, we compare current hospital practices and the existing literature, identify research gaps, and formulate an agenda for relevant future research.
♻ ☆ Accelerated Affine-Invariant Convergence Rates of the Frank-Wolfe Algorithm with Open-Loop Step-Sizes
Recent papers have shown that the Frank-Wolfe algorithm (FW) with open-loop step-sizes exhibits rates of convergence faster than the iconic $\mathcal{O}(t^{-1})$ rate. In particular, when the minimizer of a strongly convex function over a polytope lies in the relative interior of a feasible region face, the FW with open-loop step-sizes $\eta_t = \frac{\ell}{t+\ell}$ for $\ell \in \mathbb{N}_{\geq 2}$ has accelerated convergence $\mathcal{O}(t^{-2})$ in contrast to the rate $\Omega(t^{-1-\epsilon})$ attainable with more complex line-search or short-step step-sizes. Given the relevance of this scenario in data science problems, research has grown to explore the settings enabling acceleration in open-loop FW. However, despite FW's well-known affine invariance, existing acceleration results for open-loop FW are affine-dependent. This paper remedies this gap in the literature by merging two recent research trajectories: affine invariance (Wirth et al., 2023b) and open-loop step-sizes (Pena, 2021). In particular, we extend all known non-affine-invariant convergence rates for FW with open-loop step-sizes to affine-invariant results.
♻ ☆ On Semidefinite Relaxations for Matrix-Weighted State-Estimation Problems in Robotics
In recent years, there has been remarkable progress in the development of so-called certifiable perception methods, which leverage semidefinite, convex relaxations to find global optima of perception problems in robotics. However, many of these relaxations rely on simplifying assumptions that facilitate the problem formulation, such as an isotropic measurement noise distribution. In this paper, we explore the tightness of the semidefinite relaxations of matrix-weighted (anisotropic) state-estimation problems and reveal the limitations lurking therein: matrix-weighted factors can cause convex relaxations to lose tightness. In particular, we show that the semidefinite relaxations of localization problems with matrix weights may be tight only for low noise levels. To better understand this issue, we introduce a theoretical connection between the posterior uncertainty of the state estimate and the certificate matrix obtained via convex relaxation. With this connection in mind, we empirically explore the factors that contribute to this loss of tightness and demonstrate that redundant constraints can be used to regain it. As a second technical contribution of this paper, we show that the state-of-the-art relaxation of scalar-weighted SLAM cannot be used when matrix weights are considered. We provide an alternate formulation and show that its SDP relaxation is not tight (even for very low noise levels) unless specific redundant constraints are used. We demonstrate the tightness of our formulations on both simulated and real-world data.
♻ ☆ Infinite-dimensional port-Hamiltonian systems with a stationary interface
We consider two systems of two conservation laws that are defined on complementary, one-dimensional spatial intervals and coupled by an interface as a single port-Hamiltonian system. In case of a fixed interface position, we characterize the boundary and interface conditions for which the associated port-Hamiltonian operator generates a contraction semigroup. Furthermore, we present sufficient conditions for the exponential stability of the generated $C_0$-semigroup. The results are illustrated by the example of two acoustic waveguides coupled by a membrane interface.
comment: arXiv admin note: text overlap with arXiv:2301.07344
♻ ☆ When does subtracting a rank-one approximation decrease tensor rank?
Subtracting a critical rank-one approximation from a matrix always results in a matrix with a lower rank. This is not true for tensors in general. Motivated by this, we ask the question: what is the closure of the set of those tensors for which subtracting some of its critical rank-one approximation from it and repeating the process we will eventually get to zero? In this article, we show how to construct this variety of tensors and we show how this is connected to the bottleneck points of the variety of rank-one tensors (and in general to the singular locus of the hyperdeterminant), and how this variety can be equal to and in some cases be more than (weakly) orthogonally decomposable tensors.
♻ ☆ Barrier Function for Bilevel Optimization with Coupled Lower-Level Constraints: Formulation, Approximation and Algorithms
In this paper, we consider bilevel optimization problem where the lower-level has coupled constraints, i.e. the constraints depend both on the upper- and lower-level variables. In particular, we consider two settings for the lower-level problem. The first is when the objective is strongly convex and the constraints are convex with respect to the lower-level variable; The second is when the lower-level is a linear program. We propose to utilize a barrier function reformulation to translate the problem into an unconstrained problem. By developing a series of new techniques, we proved that both the hyperfunction value and hypergradient of the barrier reformulated problem (uniformly) converge to those of the original problem under minimal assumptions. Further, to overcome the non-Lipschitz smoothness of hyperfunction and lower-level problem for barrier reformulated problems, we design an adaptive algorithm that ensures a non-asymptotic convergence guarantee. We also design an algorithm that converges to the stationary point of the original problem asymptotically under certain assumptions. The proposed algorithms require minimal assumptions, and to our knowledge, they are the first with convergence guarantees when the lower-level problem is a linear program. Numerical experiments are conducted to show the effectiveness of the proposed method.
♻ ☆ Finite convergence of the Moment-SOS hierarchy for polynomial matrix optimization
This paper studies the matrix Moment-SOS hierarchy for solving polynomial matrix optimization. Our first result is to show the finite convergence of this hierarchy, if the nondegeneracy condition, strict complementarity condition and second order sufficient condition hold at every minimizer, under the Archimedean property. A useful criterion for detecting the finite convergence is the flat truncation. Our second result is to show that every minimizer of the moment relaxation must have a flat truncation when the relaxation order is big enough, under the above mentioned optimality conditions. These results give connections between nonlinear semidefinite optimization theory and Moment-SOS methods for solving polynomial matrix optimization.
♻ ☆ Accelerated Gradient and Skew-Symmetric Splitting Methods for a Class of Monotone Operator Equations
A class of monotone operator equations, which can be decomposed into sum of the gradient of a strongly convex function and a linear and skew-symmetric operator, is considered in this work. Based on discretization of the generalized gradient flow, gradient and skew-symmetric splitting (GSS) methods are proposed and proved to converge in linear rates. To further accelerate the convergence, an accelerated gradient flow is proposed and accelerated gradient and skew-symmetric splitting (AGSS) methods are developed, which extends the acceleration among the existing works on the convex minimization to a more general class of monotone operator equations. In particular, when applied to smooth saddle point systems with bilinear coupling, a linear convergent method with optimal lower iteration complexity is proposed. The robustness and efficiency of GSS and AGSS methods are verified via extensive numerical experiments.
♻ ☆ Generalized Bayesian Nash Equilibrium with Continuous Type and Action Spaces
Bayesian game is a strategic decision-making model where each player's type parameter characterizing its own objective is private information: each player knows its own type but not its rivals' types, and Bayesian Nash equilibrium (BNE) is an outcome of this game where each player makes a strategic optimal decision according to its own type under the Nash conjecture. In this paper, we advance the literature by considering a generalized Bayesian game where each player's action space depends on its own type parameter and the rivals' actions. This reflects the fact that in practical applications, a firm's feasible action is often related to its own type (e.g. marginal cost) and the rivals' actions (e.g. common resource constraints in a competitive market). Under some moderate conditions, we demonstrate existence of continuous generalized Bayesian Nash equilibria (GBNE) and uniqueness of such an equilibrium when each player's action space is only dependent on its type. In the case that each player's action space is also dependent on rivals' actions, we give a simple example to show that uniqueness of GBNE is not guaranteed under standard monotone conditions. To compute an approximate GBNE, we restrict each player's response function to the space of polynomial functions of its type parameter and consequently convert the GBNE problem to a stochastic generalized Nash equilibrium problem (SGNE). To justify the approximation, we discuss convergence of the approximation scheme. Some preliminary numerical test results show that the approximation scheme works well.
♻ ☆ A System of BSDEs with Singular Terminal Values Arising in Optimal Liquidation with Regime Switching
We study a stochastic control problem with regime switching arising in an optimal liquidation problem with dark pools and multiple regimes. The new feature of this model is that it introduces a system of BSDEs with jumps and with singular terminal values, which appears in literature for the first time. The existence result for this system is obtained. As a result, we solve the stochastic control problem with regime switching. More importantly, the uniqueness result of this system is also obtained, in contrast to merely minimal solutions established in most related literature.
comment: 19 pages
♻ ☆ A Simplification Method for Inequality Constraints in Integer Binary Encoding HOBO Formulations
This study proposes a novel method for simplifying inequality constraints in Higher-Order Binary Optimization (HOBO) formulations. The proposed method addresses challenges associated with Quadratic Unconstrained Binary Optimization (QUBO) formulations, specifically the increased computational complexity and reduced solution accuracy caused by the introduction of slack variables and the resulting growth in auxiliary qubits. By efficiently integrating constraints, the method enhances the computational efficiency and accuracy of both quantum and classical solvers. The effectiveness of the proposed approach is demonstrated through numerical experiments applied to combinatorial optimization problems. The results indicate that this method expands the applicability of quantum algorithms to high-dimensional problems and improves the practicality of classical optimization solvers for optimization problems involving inequality constraints.
comment: The assumptions of the paper are overly restrictive, and there is a critical error
♻ ☆ Robotic Sorting Systems: Robot Management and Layout Design Optimization
In the contemporary logistics industry, automation plays a pivotal role in enhancing production efficiency and expanding industrial scale. Autonomous mobile robots, in particular, have become integral to the modernization efforts in warehouses. One noteworthy application in robotic warehousing is the robotic sorting system (RSS), distinguished by its characteristics such as cost-effectiveness, simplicity, scalability, and adaptable throughput control. While previous research has focused on analyzing the efficiency of RSS, it often assumed an ideal robot management system ignoring potential queuing delays by assuming constant travel times. This study relaxes this assumption and explores the quantitative relationship between RSS configuration parameters and system throughput. We introduce a novel robot traffic management method, named the rhythmic control for sorting scenario (RC-S), for RSS operations, equipped with an estimation formula establishing the relationship between system performance and configurations. Simulations validate that RC-S reduces average service time by 10.3\% compared to the classical cooperative A* algorithm, while also improving throughput and runtime. Based on the performance analysis of RC-S, we further develop a layout optimization model for RSS, considering RSS configuration, desired throughput, and costs, to minimize expenses and determine the best layout. Numerical studies show that at lower throughput levels, facility costs dominate, while at higher throughput levels, labor costs prevail. Additionally, due to traffic efficiency limitations, RSS is well-suited for small-scale operations like end-of-supply-chain distribution centers.
♻ ☆ Nonconvex Stochastic Bregman Proximal Gradient Method with Application to Deep Learning
Stochastic gradient methods for minimizing nonconvex composite objective functions typically rely on the Lipschitz smoothness of the differentiable part, but this assumption fails in many important problem classes like quadratic inverse problems and neural network training, leading to instability of the algorithms in both theory and practice. To address this, we propose a family of stochastic Bregman proximal gradient (SBPG) methods that only require smooth adaptivity. SBPG replaces the quadratic approximation in SGD with a Bregman proximity measure, offering a better approximation model that handles non-Lipschitz gradients in nonconvex objectives. We establish the convergence properties of vanilla SBPG and show it achieves optimal sample complexity in the nonconvex setting. Experimental results on quadratic inverse problems demonstrate SBPG's robustness in terms of stepsize selection and sensitivity to the initial point. Furthermore, we introduce a momentum-based variant, MSBPG, which enhances convergence by relaxing the mini-batch size requirement while preserving the optimal oracle complexity. We apply MSBPG to the training of deep neural networks, utilizing a polynomial kernel function to ensure smooth adaptivity of the loss function. Experimental results on benchmark datasets confirm the effectiveness and robustness of MSBPG in training neural networks. Given its negligible additional computational cost compared to SGD in large-scale optimization, MSBPG shows promise as a universal open-source optimizer for future applications.
comment: 44 pages
Computer Vision and Pattern Recognition 98
☆ Generating visual explanations from deep networks using implicit neural representations WACV 2025
Explaining deep learning models in a way that humans can easily understand is essential for responsible artificial intelligence applications. Attribution methods constitute an important area of explainable deep learning. The attribution problem involves finding parts of the network's input that are the most responsible for the model's output. In this work, we demonstrate that implicit neural representations (INRs) constitute a good framework for generating visual explanations. Firstly, we utilize coordinate-based implicit networks to reformulate and extend the extremal perturbations technique and generate attribution masks. Experimental results confirm the usefulness of our method. For instance, by proper conditioning of the implicit network, we obtain attribution masks that are well-behaved with respect to the imposed area constraints. Secondly, we present an iterative INR-based method that can be used to generate multiple non-overlapping attribution masks for the same image. We depict that a deep learning model may associate the image label with both the appearance of the object of interest as well as with areas and textures usually accompanying the object. Our study demonstrates that implicit networks are well-suited for the generation of attribution masks and can provide interesting insights about the performance of deep learning models.
comment: WACV 2025
☆ EfficientVITON: An Efficient Virtual Try-On Model using Optimized Diffusion Process
Would not it be much more convenient for everybody to try on clothes by only looking into a mirror ? The answer to that problem is virtual try-on, enabling users to digitally experiment with outfits. The core challenge lies in realistic image-to-image translation, where clothing must fit diverse human forms, poses, and figures. Early methods, which used 2D transformations, offered speed, but image quality was often disappointing and lacked the nuance of deep learning. Though GAN-based techniques enhanced realism, their dependence on paired data proved limiting. More adaptable methods offered great visuals but demanded significant computing power and time. Recent advances in diffusion models have shown promise for high-fidelity translation, yet the current crop of virtual try-on tools still struggle with detail loss and warping issues. To tackle these challenges, this paper proposes EfficientVITON, a new virtual try-on system leveraging the impressive pre-trained Stable Diffusion model for better images and deployment feasibility. The system includes a spatial encoder to maintain clothings finer details and zero cross-attention blocks to capture the subtleties of how clothes fit a human body. Input images are carefully prepared, and the diffusion process has been tweaked to significantly cut generation time without image quality loss. The training process involves two distinct stages of fine-tuning, carefully incorporating a balance of loss functions to ensure both accurate try-on results and high-quality visuals. Rigorous testing on the VITON-HD dataset, supplemented with real-world examples, has demonstrated that EfficientVITON achieves state-of-the-art results.
comment: 7 pages
☆ A Review Paper of the Effects of Distinct Modalities and ML Techniques to Distracted Driving Detection
Distracted driving remains a significant global challenge with severe human and economic repercussions, demanding improved detection and intervention strategies. While previous studies have extensively explored single-modality approaches, recent research indicates that these systems often fall short in identifying complex distraction patterns, particularly cognitive distractions. This systematic review addresses critical gaps by providing a comprehensive analysis of machine learning (ML) and deep learning (DL) techniques applied across various data modalities - visual,, sensory, auditory, and multimodal. By categorizing and evaluating studies based on modality, data accessibility, and methodology, this review clarifies which approaches yield the highest accuracy and are best suited for specific distracted driving detection goals. The findings offer clear guidance on the advantages of multimodal versus single-modal systems and capture the latest advancements in the field. Ultimately, this review contributes valuable insights for developing robust distracted driving detection frameworks, supporting enhanced road safety and mitigation strategies.
☆ A generalizable 3D framework and model for self-supervised learning in medical imaging
Current self-supervised learning methods for 3D medical imaging rely on simple pretext formulations and organ- or modality-specific datasets, limiting their generalizability and scalability. We present 3DINO, a cutting-edge SSL method adapted to 3D datasets, and use it to pretrain 3DINO-ViT: a general-purpose medical imaging model, on an exceptionally large, multimodal, and multi-organ dataset of ~100,000 3D medical imaging scans from over 10 organs. We validate 3DINO-ViT using extensive experiments on numerous medical imaging segmentation and classification tasks. Our results demonstrate that 3DINO-ViT generalizes across modalities and organs, including out-of-distribution tasks and datasets, outperforming state-of-the-art methods on the majority of evaluation metrics and labeled dataset sizes. Our 3DINO framework and 3DINO-ViT will be made available to enable research on 3D foundation models or further finetuning for a wide range of medical imaging applications.
☆ Are generative models fair? A study of racial bias in dermatological image generation
Racial bias in medicine, particularly in dermatology, presents significant ethical and clinical challenges. It often results from the underrepresentation of darker skin tones in training datasets for machine learning models. While efforts to address bias in dermatology have focused on improving dataset diversity and mitigating disparities in discriminative models, the impact of racial bias on generative models remains underexplored. Generative models, such as Variational Autoencoders (VAEs), are increasingly used in healthcare applications, yet their fairness across diverse skin tones is currently not well understood. In this study, we evaluate the fairness of generative models in clinical dermatology with respect to racial bias. For this purpose, we first train a VAE with a perceptual loss to generate and reconstruct high-quality skin images across different skin tones. We utilize the Fitzpatrick17k dataset to examine how racial bias influences the representation and performance of these models. Our findings indicate that the VAE is influenced by the diversity of skin tones in the training dataset, with better performance observed for lighter skin tones. Additionally, the uncertainty estimates produced by the VAE are ineffective in assessing the model's fairness. These results highlight the need for improved uncertainty quantification mechanisms to detect and address racial bias in generative models for trustworthy healthcare technologies.
comment: Under review
☆ SILO: Solving Inverse Problems with Latent Operators
Consistent improvement of image priors over the years has led to the development of better inverse problem solvers. Diffusion models are the newcomers to this arena, posing the strongest known prior to date. Recently, such models operating in a latent space have become increasingly predominant due to their efficiency. In recent works, these models have been applied to solve inverse problems. Working in the latent space typically requires multiple applications of an Autoencoder during the restoration process, which leads to both computational and restoration quality challenges. In this work, we propose a new approach for handling inverse problems with latent diffusion models, where a learned degradation function operates within the latent space, emulating a known image space degradation. Usage of the learned operator reduces the dependency on the Autoencoder to only the initial and final steps of the restoration process, facilitating faster sampling and superior restoration quality. We demonstrate the effectiveness of our method on a variety of image restoration tasks and datasets, achieving significant improvements over prior art.
comment: Project page in https://ronraphaeli.github.io/SILO-website/
☆ FaceSORT: a Multi-Face Tracking Method based on Biometric and Appearance Features
Tracking multiple faces is a difficult problem, as there may be partially occluded or lateral faces. In multiple face tracking, association is typically based on (biometric) face features. However, the models used to extract these face features usually require frontal face images, which can limit the tracking performance. In this work, a multi-face tracking method inspired by StrongSort, FaceSORT, is proposed. To mitigate the problem of partially occluded or lateral faces, biometric face features are combined with visual appearance features (i.e., generated by a generic object classifier), with both features are extracted from the same face patch. A comprehensive experimental evaluation is performed, including a comparison of different face descriptors, an evaluation of different parameter settings, and the application of a different similarity metric. All experiments are conducted with a new multi-face tracking dataset and a subset of the ChokePoint dataset. The `Paris Lodron University Salzburg Faces in a Queue' dataset consists of a total of seven fully annotated sequences (12730 frames) and is made publicly available as part of this work. Together with this dataset, annotations of 6 sequences from the ChokePoint dataset are also provided.
☆ MedicoSAM: Towards foundation models for medical image segmentation
Medical image segmentation is an important analysis task in clinical practice and research. Deep learning has massively advanced the field, but current approaches are mostly based on models trained for a specific task. Training such models or adapting them to a new condition is costly due to the need for (manually) labeled data. The emergence of vision foundation models, especially Segment Anything, offers a path to universal segmentation for medical images, overcoming these issues. Here, we study how to improve Segment Anything for medical images by comparing different finetuning strategies on a large and diverse dataset. We evaluate the finetuned models on a wide range of interactive and (automatic) semantic segmentation tasks. We find that the performance can be clearly improved for interactive segmentation. However, semantic segmentation does not benefit from pretraining on medical images. Our best model, MedicoSAM, is publicly available at https://github.com/computational-cell-analytics/medico-sam. We show that it is compatible with existing tools for data annotation and believe that it will be of great practical value.
☆ Mobile-Agent-E: Self-Evolving Mobile Assistant for Complex Tasks
Smartphones have become indispensable in modern life, yet navigating complex tasks on mobile devices often remains frustrating. Recent advancements in large multimodal model (LMM)-based mobile agents have demonstrated the ability to perceive and act in mobile environments. However, current approaches face significant limitations: they fall short in addressing real-world human needs, struggle with reasoning-intensive and long-horizon tasks, and lack mechanisms to learn and improve from prior experiences. To overcome these challenges, we introduce Mobile-Agent-E, a hierarchical multi-agent framework capable of self-evolution through past experience. By hierarchical, we mean an explicit separation of high-level planning and low-level action execution. The framework comprises a Manager, responsible for devising overall plans by breaking down complex tasks into subgoals, and four subordinate agents--Perceptor, Operator, Action Reflector, and Notetaker--which handle fine-grained visual perception, immediate action execution, error verification, and information aggregation, respectively. Mobile-Agent-E also features a novel self-evolution module which maintains a persistent long-term memory comprising Tips and Shortcuts. Tips are general guidance and lessons learned from prior tasks on how to effectively interact with the environment. Shortcuts are reusable, executable sequences of atomic operations tailored for specific subroutines. The inclusion of Tips and Shortcuts facilitates continuous refinement in performance and efficiency. Alongside this framework, we introduce Mobile-Eval-E, a new benchmark featuring complex mobile tasks requiring long-horizon, multi-app interactions. Empirical results show that Mobile-Agent-E achieves a 22% absolute improvement over previous state-of-the-art approaches across three foundation model backbones. Project page: https://x-plug.github.io/MobileAgent.
☆ SeRpEnt: Selective Resampling for Expressive State Space Models
State Space Models (SSMs) have recently enjoyed a rise to prominence in the field of deep learning for sequence modeling, especially as an alternative to Transformers. Their success stems from avoiding two well-known drawbacks of attention-based models: quadratic complexity with respect to the sequence length and inability to model long-range dependencies. The SSM variant Mamba has demonstrated performance comparable to Transformers without any form of attention, thanks to the use of a selective mechanism for the state parameters. Selectivity, however, is only evaluated empirically and the reasons of its effectiveness remain unclear. In this work, we show how selectivity is related to the sequence processing. Our analysis shows that selective time intervals in Mamba act as linear approximators of information. Then, we propose our SeRpEnt architecture, a SSM that further exploits selectivity to compress sequences in an information-aware fashion. It employs a resampling mechanism that aggregates elements based on their information content. Our empirical results in the Long Range Arena benchmark and other language modeling tasks show benefits of the SeRpEnt's resampling mechanism.
comment: 19 pages, 3 figures
☆ GL-ICNN: An End-To-End Interpretable Convolutional Neural Network for the Diagnosis and Prediction of Alzheimer's Disease
Deep learning methods based on Convolutional Neural Networks (CNNs) have shown great potential to improve early and accurate diagnosis of Alzheimer's disease (AD) dementia based on imaging data. However, these methods have yet to be widely adopted in clinical practice, possibly due to the limited interpretability of deep learning models. The Explainable Boosting Machine (EBM) is a glass-box model but cannot learn features directly from input imaging data. In this study, we propose a novel interpretable model that combines CNNs and EBMs for the diagnosis and prediction of AD. We develop an innovative training strategy that alternatingly trains the CNN component as a feature extractor and the EBM component as the output block to form an end-to-end model. The model takes imaging data as input and provides both predictions and interpretable feature importance measures. We validated the proposed model on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset and the Health-RI Parelsnoer Neurodegenerative Diseases Biobank (PND) as an external testing set. The proposed model achieved an area-under-the-curve (AUC) of 0.956 for AD and control classification, and 0.694 for the prediction of conversion of mild cognitive impairment (MCI) to AD on the ADNI cohort. The proposed model is a glass-box model that achieves a comparable performance with other state-of-the-art black-box models. Our code is publicly available at: https://anonymous.4open.science/r/GL-ICNN.
comment: 4 pages, 3 figures
☆ Dynamic Scene Understanding from Vision-Language Representations
Images depicting complex, dynamic scenes are challenging to parse automatically, requiring both high-level comprehension of the overall situation and fine-grained identification of participating entities and their interactions. Current approaches use distinct methods tailored to sub-tasks such as Situation Recognition and detection of Human-Human and Human-Object Interactions. However, recent advances in image understanding have often leveraged web-scale vision-language (V&L) representations to obviate task-specific engineering. In this work, we propose a framework for dynamic scene understanding tasks by leveraging knowledge from modern, frozen V&L representations. By framing these tasks in a generic manner - as predicting and parsing structured text, or by directly concatenating representations to the input of existing models - we achieve state-of-the-art results while using a minimal number of trainable parameters relative to existing approaches. Moreover, our analysis of dynamic knowledge of these representations shows that recent, more powerful representations effectively encode dynamic scene semantics, making this approach newly possible.
☆ Early evidence of how LLMs outperform traditional systems on OCR/HTR tasks for historical records
We explore the ability of two LLMs -- GPT-4o and Claude Sonnet 3.5 -- to transcribe historical handwritten documents in a tabular format and compare their performance to traditional OCR/HTR systems: EasyOCR, Keras, Pytesseract, and TrOCR. Considering the tabular form of the data, two types of experiments are executed: one where the images are split line by line and the other where the entire scan is used as input. Based on CER and BLEU, we demonstrate that LLMs outperform the conventional OCR/HTR methods. Moreover, we also compare the evaluated CER and BLEU scores to human evaluations to better judge the outputs of whole-scan experiments and understand influential factors for CER and BLEU. Combining judgments from all the evaluation metrics, we conclude that two-shot GPT-4o for line-by-line images and two-shot Claude Sonnet 3.5 for whole-scan images yield the transcriptions of the historical records most similar to the ground truth.
comment: 15 pages, 7 figures
☆ Compressibility Analysis for the differentiable shift-variant Filtered Backprojection Model
The differentiable shift-variant filtered backprojection (FBP) model enables the reconstruction of cone-beam computed tomography (CBCT) data for any non-circular trajectories. This method employs deep learning technique to estimate the redundancy weights required for reconstruction, given knowledge of the specific trajectory at optimization time. However, computing the redundancy weight for each projection remains computationally intensive. This paper presents a novel approach to compress and optimize the differentiable shift-variant FBP model based on Principal Component Analysis (PCA). We apply PCA to the redundancy weights learned from sinusoidal trajectory projection data, revealing significant parameter redundancy in the original model. By integrating PCA directly into the differentiable shift-variant FBP reconstruction pipeline, we develop a method that decomposes the redundancy weight layer parameters into a trainable eigenvector matrix, compressed weights, and a mean vector. This innovative technique achieves a remarkable 97.25% reduction in trainable parameters without compromising reconstruction accuracy. As a result, our algorithm significantly decreases the complexity of the differentiable shift-variant FBP model and greatly improves training speed. These improvements make the model substantially more practical for real-world applications.
☆ Teaching Large Language Models to Regress Accurate Image Quality Scores using Score Distribution
With the rapid advancement of Multi-modal Large Language Models (MLLMs), MLLM-based Image Quality Assessment (IQA) methods have shown promising performance in linguistic quality description. However, current methods still fall short in accurately scoring image quality. In this work, we aim to leverage MLLMs to regress accurate quality scores. A key challenge is that the quality score is inherently continuous, typically modeled as a Gaussian distribution, whereas MLLMs generate discrete token outputs. This mismatch necessitates score discretization. Previous approaches discretize the mean score into a one-hot label, resulting in information loss and failing to capture inter-image relationships. We propose a distribution-based approach that discretizes the score distribution into a soft label. This method preserves the characteristics of the score distribution, achieving high accuracy and maintaining inter-image relationships. Moreover, to address dataset variation, where different IQA datasets exhibit various distributions, we introduce a fidelity loss based on Thurstone's model. This loss captures intra-dataset relationships, facilitating co-training across multiple IQA datasets. With these designs, we develop the distribution-based Depicted image Quality Assessment model for Score regression (DeQA-Score). Experiments across multiple benchmarks show that DeQA-Score stably outperforms baselines in score regression. Also, DeQA-Score can predict the score distribution that closely aligns with human annotations. Codes and model weights have been released in https://depictqa.github.io/deqa-score/.
☆ Event-based vision for egomotion estimation using precise event timing
Egomotion estimation is crucial for applications such as autonomous navigation and robotics, where accurate and real-time motion tracking is required. However, traditional methods relying on inertial sensors are highly sensitive to external conditions, and suffer from drifts leading to large inaccuracies over long distances. Vision-based methods, particularly those utilising event-based vision sensors, provide an efficient alternative by capturing data only when changes are perceived in the scene. This approach minimises power consumption while delivering high-speed, low-latency feedback. In this work, we propose a fully event-based pipeline for egomotion estimation that processes the event stream directly within the event-based domain. This method eliminates the need for frame-based intermediaries, allowing for low-latency and energy-efficient motion estimation. We construct a shallow spiking neural network using a synaptic gating mechanism to convert precise event timing into bursts of spikes. These spikes encode local optical flow velocities, and the network provides an event-based readout of egomotion. We evaluate the network's performance on a dedicated chip, demonstrating strong potential for low-latency, low-power motion estimation. Additionally, simulations of larger networks show that the system achieves state-of-the-art accuracy in egomotion estimation tasks with event-based cameras, making it a promising solution for real-time, power-constrained robotics applications.
comment: 10 pages, 7 figures. Supplementary material: 4 pages, 1 figure
☆ A baseline for machine-learning-based hepatocellular carcinoma diagnosis using multi-modal clinical data
The objective of this paper is to provide a baseline for performing multi-modal data classification on a novel open multimodal dataset of hepatocellular carcinoma (HCC), which includes both image data (contrast-enhanced CT and MRI images) and tabular data (the clinical laboratory test data as well as case report forms). TNM staging is the classification task. Features from the vectorized preprocessed tabular data and radiomics features from contrast-enhanced CT and MRI images are collected. Feature selection is performed based on mutual information. An XGBoost classifier predicts the TNM staging and it shows a prediction accuracy of $0.89 \pm 0.05$ and an AUC of $0.93 \pm 0.03$. The classifier shows that this high level of prediction accuracy can only be obtained by combining image and clinical laboratory data and therefore is a good example case where multi-model classification is mandatory to achieve accurate results.
☆ Fundus Image Quality Assessment and Enhancement: a Systematic Review
As an affordable and convenient eye scan, fundus photography holds the potential for preventing vision impairment, especially in resource-limited regions. However, fundus image degradation is common under intricate imaging environments, impacting following diagnosis and treatment. Consequently, image quality assessment (IQA) and enhancement (IQE) are essential for ensuring the clinical value and reliability of fundus images. While existing reviews offer some overview of this field, a comprehensive analysis of the interplay between IQA and IQE, along with their clinical deployment challenges, is lacking. This paper addresses this gap by providing a thorough review of fundus IQA and IQE algorithms, research advancements, and practical applications. We outline the fundamentals of the fundus photography imaging system and the associated interferences, and then systematically summarize the paradigms in fundus IQA and IQE. Furthermore, we discuss the practical challenges and solutions in deploying IQA and IQE, as well as offer insights into potential future research directions.
☆ UltraFusion: Ultra High Dynamic Imaging using Exposure Fusion
Capturing high dynamic range (HDR) scenes is one of the most important issues in camera design. Majority of cameras use exposure fusion technique, which fuses images captured by different exposure levels, to increase dynamic range. However, this approach can only handle images with limited exposure difference, normally 3-4 stops. When applying to very high dynamic scenes where a large exposure difference is required, this approach often fails due to incorrect alignment or inconsistent lighting between inputs, or tone mapping artifacts. In this work, we propose UltraFusion, the first exposure fusion technique that can merge input with 9 stops differences. The key idea is that we model the exposure fusion as a guided inpainting problem, where the under-exposed image is used as a guidance to fill the missing information of over-exposed highlight in the over-exposed region. Using under-exposed image as a soft guidance, instead of a hard constrain, our model is robust to potential alignment issue or lighting variations. Moreover, utilizing the image prior of the generative model, our model also generates natural tone mapping, even for very high-dynamic range scene. Our approach outperforms HDR-Transformer on latest HDR benchmarks. Moreover, to test its performance in ultra high dynamic range scene, we capture a new real-world exposure fusion benchmark, UltraFusion Dataset, with exposure difference up to 9 stops, and experiments show that \model~can generate beautiful and high-quality fusion results under various scenarios. An online demo is provided at https://openimaginglab.github.io/UltraFusion/.
☆ Transferability of labels between multilens cameras
In this work, a new method for automatically extending Bounding Box (BB) and mask labels across different channels on multilens cameras is presented. For that purpose, the proposed method combines the well known phase correlation method with a refinement process. During the first step, images are aligned by localizing the peak of intensity obtained in the spatial domain after performing the cross correlation process in the frequency domain. The second step consists of obtaining the best possible transformation by using an iterative process maximising the IoU (Intersection over Union) metric. Results show that, by using this method, labels could be transferred across different lens on a camera with an accuracy over 90% in most cases and just by using 65 ms in the whole process. Once the transformations are obtained, artificial RGB images are generated, for labeling them so as to transfer this information into each of the other lens. This work will allow users to use this type of cameras in more fields rather than satellite or medical imagery, giving the chance of labeling even invisible objects in the visible spectrum.
comment: This is a preprint version of the work accepted at 20th International Conference on Computer Vision Theory and Applications (VISAPP 2025)
☆ Multitask Auxiliary Network for Perceptual Quality Assessment of Non-Uniformly Distorted Omnidirectional Images
Omnidirectional image quality assessment (OIQA) has been widely investigated in the past few years and achieved much success. However, most of existing studies are dedicated to solve the uniform distortion problem in OIQA, which has a natural gap with the non-uniform distortion problem, and their ability in capturing non-uniform distortion is far from satisfactory. To narrow this gap, in this paper, we propose a multitask auxiliary network for non-uniformly distorted omnidirectional images, where the parameters are optimized by jointly training the main task and other auxiliary tasks. The proposed network mainly consists of three parts: a backbone for extracting multiscale features from the viewport sequence, a multitask feature selection module for dynamically allocating specific features to different tasks, and auxiliary sub-networks for guiding the proposed model to capture local distortion and global quality change. Extensive experiments conducted on two large-scale OIQA databases demonstrate that the proposed model outperforms other state-of-the-art OIQA metrics, and these auxiliary sub-networks contribute to improve the performance of the proposed model. The source code is available at https://github.com/RJL2000/MTAOIQA.
☆ Subjective and Objective Quality Assessment of Non-Uniformly Distorted Omnidirectional Images
Omnidirectional image quality assessment (OIQA) has been one of the hot topics in IQA with the continuous development of VR techniques, and achieved much success in the past few years. However, most studies devote themselves to the uniform distortion issue, i.e., all regions of an omnidirectional image are perturbed by the ``same amount'' of noise, while ignoring the non-uniform distortion issue, i.e., partial regions undergo ``different amount'' of perturbation with the other regions in the same omnidirectional image. Additionally, nearly all OIQA models are verified on the platforms containing a limited number of samples, which largely increases the over-fitting risk and therefore impedes the development of OIQA. To alleviate these issues, we elaborately explore this topic from both subjective and objective perspectives. Specifically, we construct a large OIQA database containing 10,320 non-uniformly distorted omnidirectional images, each of which is generated by considering quality impairments on one or two camera len(s). Then we meticulously conduct psychophysical experiments and delve into the influence of both holistic and individual factors (i.e., distortion range and viewing condition) on omnidirectional image quality. Furthermore, we propose a perception-guided OIQA model for non-uniform distortion by adaptively simulating users' viewing behavior. Experimental results demonstrate that the proposed model outperforms state-of-the-art methods. The source code is available at https://github.com/RJL2000/OIQAND.
☆ See In Detail: Enhancing Sparse-view 3D Gaussian Splatting with Local Depth and Semantic Regularization ICASSP 2025
3D Gaussian Splatting (3DGS) has shown remarkable performance in novel view synthesis. However, its rendering quality deteriorates with sparse inphut views, leading to distorted content and reduced details. This limitation hinders its practical application. To address this issue, we propose a sparse-view 3DGS method. Given the inherently ill-posed nature of sparse-view rendering, incorporating prior information is crucial. We propose a semantic regularization technique, using features extracted from the pretrained DINO-ViT model, to ensure multi-view semantic consistency. Additionally, we propose local depth regularization, which constrains depth values to improve generalization on unseen views. Our method outperforms state-of-the-art novel view synthesis approaches, achieving up to 0.4dB improvement in terms of PSNR on the LLFF dataset, with reduced distortion and enhanced visual quality.
comment: 5 pages, 5 figures, has been accepted by the ICASSP 2025
☆ Communication-Efficient Federated Learning Based on Explanation-Guided Pruning for Remote Sensing Image Classification
Federated learning (FL) is a decentralized machine learning paradigm, where multiple clients collaboratively train a global model by exchanging only model updates with the central server without sharing the local data of clients. Due to the large volume of model updates required to be transmitted between clients and the central server, most FL systems are associated with high transfer costs (i.e., communication overhead). This issue is more critical for operational applications in remote sensing (RS), especially when large-scale RS data is processed and analyzed through FL systems with restricted communication bandwidth. To address this issue, we introduce an explanation-guided pruning strategy for communication-efficient FL in the context of RS image classification. Our pruning strategy is defined based on the layerwise relevance propagation (LRP) driven explanations to: 1) efficiently and effectively identify the most relevant and informative model parameters (to be exchanged between clients and the central server); and 2) eliminate the non-informative ones to minimize the volume of model updates. The experimental results on the BigEarthNet-S2 dataset demonstrate that our strategy effectively reduces the number of shared model updates, while increasing the generalization ability of the global model. The code of this work will be publicly available at https://git.tu-berlin.de/rsim/FL-LRP
comment: Submitted to the IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 2025
☆ SimLabel: Consistency-Guided OOD Detection with Pretrained Vision-Language Models
Detecting out-of-distribution (OOD) data is crucial in real-world machine learning applications, particularly in safety-critical domains. Existing methods often leverage language information from vision-language models (VLMs) to enhance OOD detection by improving confidence estimation through rich class-wise text information. However, when building OOD detection score upon on in-distribution (ID) text-image affinity, existing works either focus on each ID class or whole ID label sets, overlooking inherent ID classes' connection. We find that the semantic information across different ID classes is beneficial for effective OOD detection. We thus investigate the ability of image-text comprehension among different semantic-related ID labels in VLMs and propose a novel post-hoc strategy called SimLabel. SimLabel enhances the separability between ID and OOD samples by establishing a more robust image-class similarity metric that considers consistency over a set of similar class labels. Extensive experiments demonstrate the superior performance of SimLabel on various zero-shot OOD detection benchmarks. The proposed model is also extended to various VLM-backbones, demonstrating its good generalization ability. Our demonstration and implementation codes are available at: https://github.com/ShuZou-1/SimLabel.
comment: 10 pages
☆ MASS: Overcoming Language Bias in Image-Text Matching AAAI 2025
Pretrained visual-language models have made significant advancements in multimodal tasks, including image-text retrieval. However, a major challenge in image-text matching lies in language bias, where models predominantly rely on language priors and neglect to adequately consider the visual content. We thus present Multimodal ASsociation Score (MASS), a framework that reduces the reliance on language priors for better visual accuracy in image-text matching problems. It can be seamlessly incorporated into existing visual-language models without necessitating additional training. Our experiments have shown that MASS effectively lessens language bias without losing an understanding of linguistic compositionality. Overall, MASS offers a promising solution for enhancing image-text matching performance in visual-language models.
comment: AAAI 2025
☆ On the Adversarial Vulnerabilities of Transfer Learning in Remote Sensing
The use of pretrained models from general computer vision tasks is widespread in remote sensing, significantly reducing training costs and improving performance. However, this practice also introduces vulnerabilities to downstream tasks, where publicly available pretrained models can be used as a proxy to compromise downstream models. This paper presents a novel Adversarial Neuron Manipulation method, which generates transferable perturbations by selectively manipulating single or multiple neurons in pretrained models. Unlike existing attacks, this method eliminates the need for domain-specific information, making it more broadly applicable and efficient. By targeting multiple fragile neurons, the perturbations achieve superior attack performance, revealing critical vulnerabilities in deep learning models. Experiments on diverse models and remote sensing datasets validate the effectiveness of the proposed method. This low-access adversarial neuron manipulation technique highlights a significant security risk in transfer learning models, emphasizing the urgent need for more robust defenses in their design when addressing the safety-critical remote sensing tasks.
comment: This work has been submitted to the IEEE for possible publication
☆ Enhancing Coronary Artery Calcium Scoring via Multi-Organ Segmentation on Non-Contrast Cardiac Computed Tomography
Despite coronary artery calcium scoring being considered a largely solved problem within the realm of medical artificial intelligence, this paper argues that significant improvements can still be made. By shifting the focus from pathology detection to a deeper understanding of anatomy, the novel algorithm proposed in the paper both achieves high accuracy in coronary artery calcium scoring and offers enhanced interpretability of the results. This approach not only aids in the precise quantification of calcifications in coronary arteries, but also provides valuable insights into the underlying anatomical structures. Through this anatomically-informed methodology, the paper shows how a nuanced understanding of the heart's anatomy can lead to more accurate and interpretable results in the field of cardiovascular health. We demonstrate the superior accuracy of the proposed method by evaluating it on an open-source multi-vendor dataset, where we obtain results at the inter-observer level, surpassing the current state of the art. Finally, the qualitative analyses show the practical value of the algorithm in such tasks as labeling coronary artery calcifications, identifying aortic calcifications, and filtering out false positive detections due to noise.
☆ Block Flow: Learning Straight Flow on Data Blocks
Flow-matching models provide a powerful framework for various applications, offering efficient sampling and flexible probability path modeling. These models are characterized by flows with low curvature in learned generative trajectories, which results in reduced truncation error at each sampling step. To further reduce curvature, we propose block matching. This novel approach leverages label information to partition the data distribution into blocks and match them with a prior distribution parameterized using the same label information, thereby learning straighter flows. We demonstrate that the variance of the prior distribution can control the curvature upper bound of forward trajectories in flow-matching models. By designing flexible regularization strategies to adjust this variance, we achieve optimal generation performance, effectively balancing the trade-off between maintaining diversity in generated samples and minimizing numerical solver errors. Our results demonstrate competitive performance with models of the same parameter scale.Code is available at \url{https://github.com/wpp13749/block_flow}.
☆ Automatic Labelling & Semantic Segmentation with 4D Radar Tensors ICASSP 2025
In this paper, an automatic labelling process is presented for automotive datasets, leveraging on complementary information from LiDAR and camera. The generated labels are then used as ground truth with the corresponding 4D radar data as inputs to a proposed semantic segmentation network, to associate a class label to each spatial voxel. Promising results are shown by applying both approaches to the publicly shared RaDelft dataset, with the proposed network achieving over 65% of the LiDAR detection performance, improving 13.2% in vehicle detection probability, and reducing 0.54 m in terms of Chamfer distance, compared to variants inspired from the literature.
comment: Accepted in ICASSP 2025
☆ EndoChat: Grounded Multimodal Large Language Model for Endoscopic Surgery
Recently, Multimodal Large Language Models (MLLMs) have demonstrated their immense potential in computer-aided diagnosis and decision-making. In the context of robotic-assisted surgery, MLLMs can serve as effective tools for surgical training and guidance. However, there is still a lack of MLLMs specialized for surgical scene understanding in clinical applications. In this work, we introduce EndoChat to address various dialogue paradigms and subtasks in surgical scene understanding that surgeons encounter. To train our EndoChat, we construct the Surg-396K dataset through a novel pipeline that systematically extracts surgical information and generates structured annotations based on collected large-scale endoscopic surgery datasets. Furthermore, we introduce a multi-scale visual token interaction mechanism and a visual contrast-based reasoning mechanism to enhance the model's representation learning and reasoning capabilities. Our model achieves state-of-the-art performance across five dialogue paradigms and eight surgical scene understanding tasks. Additionally, we conduct evaluations with professional surgeons, most of whom provide positive feedback on collaborating with EndoChat. Overall, these results demonstrate that our EndoChat has great potential to significantly advance training and automation in robotic-assisted surgery.
☆ GenVidBench: A Challenging Benchmark for Detecting AI-Generated Video
The rapid advancement of video generation models has made it increasingly challenging to distinguish AI-generated videos from real ones. This issue underscores the urgent need for effective AI-generated video detectors to prevent the dissemination of false information through such videos. However, the development of high-performance generative video detectors is currently impeded by the lack of large-scale, high-quality datasets specifically designed for generative video detection. To this end, we introduce GenVidBench, a challenging AI-generated video detection dataset with several key advantages: 1) Cross Source and Cross Generator: The cross-generation source mitigates the interference of video content on the detection. The cross-generator ensures diversity in video attributes between the training and test sets, preventing them from being overly similar. 2) State-of-the-Art Video Generators: The dataset includes videos from 8 state-of-the-art AI video generators, ensuring that it covers the latest advancements in the field of video generation. 3) Rich Semantics: The videos in GenVidBench are analyzed from multiple dimensions and classified into various semantic categories based on their content. This classification ensures that the dataset is not only large but also diverse, aiding in the development of more generalized and effective detection models. We conduct a comprehensive evaluation of different advanced video generators and present a challenging setting. Additionally, we present rich experimental results including advanced video classification models as baselines. With the GenVidBench, researchers can efficiently develop and evaluate AI-generated video detection models. Datasets and code are available at https://genvidbench.github.io.
☆ CatV2TON: Taming Diffusion Transformers for Vision-Based Virtual Try-On with Temporal Concatenation
Virtual try-on (VTON) technology has gained attention due to its potential to transform online retail by enabling realistic clothing visualization of images and videos. However, most existing methods struggle to achieve high-quality results across image and video try-on tasks, especially in long video scenarios. In this work, we introduce CatV2TON, a simple and effective vision-based virtual try-on (V2TON) method that supports both image and video try-on tasks with a single diffusion transformer model. By temporally concatenating garment and person inputs and training on a mix of image and video datasets, CatV2TON achieves robust try-on performance across static and dynamic settings. For efficient long-video generation, we propose an overlapping clip-based inference strategy that uses sequential frame guidance and Adaptive Clip Normalization (AdaCN) to maintain temporal consistency with reduced resource demands. We also present ViViD-S, a refined video try-on dataset, achieved by filtering back-facing frames and applying 3D mask smoothing for enhanced temporal consistency. Comprehensive experiments demonstrate that CatV2TON outperforms existing methods in both image and video try-on tasks, offering a versatile and reliable solution for realistic virtual try-ons across diverse scenarios.
comment: 11 pages, 8 figures, 5 tables
☆ StyleSSP: Sampling StartPoint Enhancement for Training-free Diffusion-based Method for Style Transfer
Training-free diffusion-based methods have achieved remarkable success in style transfer, eliminating the need for extensive training or fine-tuning. However, due to the lack of targeted training for style information extraction and constraints on the content image layout, training-free methods often suffer from layout changes of original content and content leakage from style images. Through a series of experiments, we discovered that an effective startpoint in the sampling stage significantly enhances the style transfer process. Based on this discovery, we propose StyleSSP, which focuses on obtaining a better startpoint to address layout changes of original content and content leakage from style image. StyleSSP comprises two key components: (1) Frequency Manipulation: To improve content preservation, we reduce the low-frequency components of the DDIM latent, allowing the sampling stage to pay more attention to the layout of content images; and (2) Negative Guidance via Inversion: To mitigate the content leakage from style image, we employ negative guidance in the inversion stage to ensure that the startpoint of the sampling stage is distanced from the content of style image. Experiments show that StyleSSP surpasses previous training-free style transfer baselines, particularly in preserving original content and minimizing the content leakage from style image.
☆ Nested Annealed Training Scheme for Generative Adversarial Networks
Recently, researchers have proposed many deep generative models, including generative adversarial networks(GANs) and denoising diffusion models. Although significant breakthroughs have been made and empirical success has been achieved with the GAN, its mathematical underpinnings remain relatively unknown. This paper focuses on a rigorous mathematical theoretical framework: the composite-functional-gradient GAN (CFG)[1]. Specifically, we reveal the theoretical connection between the CFG model and score-based models. We find that the training objective of the CFG discriminator is equivalent to finding an optimal D(x). The optimal gradient of D(x) differentiates the integral of the differences between the score functions of real and synthesized samples. Conversely, training the CFG generator involves finding an optimal G(x) that minimizes this difference. In this paper, we aim to derive an annealed weight preceding the weight of the CFG discriminator. This new explicit theoretical explanation model is called the annealed CFG method. To overcome the limitation of the annealed CFG method, as the method is not readily applicable to the SOTA GAN model, we propose a nested annealed training scheme (NATS). This scheme keeps the annealed weight from the CFG method and can be seamlessly adapted to various GAN models, no matter their structural, loss, or regularization differences. We conduct thorough experimental evaluations on various benchmark datasets for image generation. The results show that our annealed CFG and NATS methods significantly improve the quality and diversity of the synthesized samples. This improvement is clear when comparing the CFG method and the SOTA GAN models.
☆ Anomaly Detection for Industrial Applications, Its Challenges, Solutions, and Future Directions: A Review
Anomaly detection from images captured using camera sensors is one of the mainstream applications at the industrial level. Particularly, it maintains the quality and optimizes the efficiency in production processes across diverse industrial tasks, including advanced manufacturing and aerospace engineering. Traditional anomaly detection workflow is based on a manual inspection by human operators, which is a tedious task. Advances in intelligent automated inspection systems have revolutionized the Industrial Anomaly Detection (IAD) process. Recent vision-based approaches can automatically extract, process, and interpret features using computer vision and align with the goals of automation in industrial operations. In light of the shift in inspection methodologies, this survey reviews studies published since 2019, with a specific focus on vision-based anomaly detection. The components of an IAD pipeline that are overlooked in existing surveys are presented, including areas related to data acquisition, preprocessing, learning mechanisms, and evaluation. In addition to the collected publications, several scientific and industry-related challenges and their perspective solutions are highlighted. Popular and relevant industrial datasets are also summarized, providing further insight into inspection applications. Finally, future directions of vision-based IAD are discussed, offering researchers insight into the state-of-the-art of industrial inspection.
☆ Finer-CAM: Spotting the Difference Reveals Finer Details for Visual Explanation
Class activation map (CAM) has been widely used to highlight image regions that contribute to class predictions. Despite its simplicity and computational efficiency, CAM often struggles to identify discriminative regions that distinguish visually similar fine-grained classes. Prior efforts address this limitation by introducing more sophisticated explanation processes, but at the cost of extra complexity. In this paper, we propose Finer-CAM, a method that retains CAM's efficiency while achieving precise localization of discriminative regions. Our key insight is that the deficiency of CAM lies not in "how" it explains, but in "what" it explains}. Specifically, previous methods attempt to identify all cues contributing to the target class's logit value, which inadvertently also activates regions predictive of visually similar classes. By explicitly comparing the target class with similar classes and spotting their differences, Finer-CAM suppresses features shared with other classes and emphasizes the unique, discriminative details of the target class. Finer-CAM is easy to implement, compatible with various CAM methods, and can be extended to multi-modal models for accurate localization of specific concepts. Additionally, Finer-CAM allows adjustable comparison strength, enabling users to selectively highlight coarse object contours or fine discriminative details. Quantitatively, we show that masking out the top 5% of activated pixels by Finer-CAM results in a larger relative confidence drop compared to baselines. The source code and demo are available at https://github.com/Imageomics/Finer-CAM.
☆ MIFNet: Learning Modality-Invariant Features for Generalizable Multimodal Image Matching
Many keypoint detection and description methods have been proposed for image matching or registration. While these methods demonstrate promising performance for single-modality image matching, they often struggle with multimodal data because the descriptors trained on single-modality data tend to lack robustness against the non-linear variations present in multimodal data. Extending such methods to multimodal image matching often requires well-aligned multimodal data to learn modality-invariant descriptors. However, acquiring such data is often costly and impractical in many real-world scenarios. To address this challenge, we propose a modality-invariant feature learning network (MIFNet) to compute modality-invariant features for keypoint descriptions in multimodal image matching using only single-modality training data. Specifically, we propose a novel latent feature aggregation module and a cumulative hybrid aggregation module to enhance the base keypoint descriptors trained on single-modality data by leveraging pre-trained features from Stable Diffusion models. We validate our method with recent keypoint detection and description methods in three multimodal retinal image datasets (CF-FA, CF-OCT, EMA-OCTA) and two remote sensing datasets (Optical-SAR and Optical-NIR). Extensive experiments demonstrate that the proposed MIFNet is able to learn modality-invariant feature for multimodal image matching without accessing the targeted modality and has good zero-shot generalization ability. The source code will be made publicly available.
☆ PD-SORT: Occlusion-Robust Multi-Object Tracking Using Pseudo-Depth Cues
Multi-object tracking (MOT) is a rising topic in video processing technologies and has important application value in consumer electronics. Currently, tracking-by-detection (TBD) is the dominant paradigm for MOT, which performs target detection and association frame by frame. However, the association performance of TBD methods degrades in complex scenes with heavy occlusions, which hinders the application of such methods in real-world scenarios.To this end, we incorporate pseudo-depth cues to enhance the association performance and propose Pseudo-Depth SORT (PD-SORT). First, we extend the Kalman filter state vector with pseudo-depth states. Second, we introduce a novel depth volume IoU (DVIoU) by combining the conventional 2D IoU with pseudo-depth. Furthermore, we develop a quantized pseudo-depth measurement (QPDM) strategy for more robust data association. Besides, we also integrate camera motion compensation (CMC) to handle dynamic camera situations. With the above designs, PD-SORT significantly alleviates the occlusion-induced ambiguous associations and achieves leading performances on DanceTrack, MOT17, and MOT20. Note that the improvement is especially obvious on DanceTrack, where objects show complex motions, similar appearances, and frequent occlusions. The code is available at https://github.com/Wangyc2000/PD_SORT.
☆ ITCFN: Incomplete Triple-Modal Co-Attention Fusion Network for Mild Cognitive Impairment Conversion Prediction
Alzheimer's disease (AD) is a common neurodegenerative disease among the elderly. Early prediction and timely intervention of its prodromal stage, mild cognitive impairment (MCI), can decrease the risk of advancing to AD. Combining information from various modalities can significantly improve predictive accuracy. However, challenges such as missing data and heterogeneity across modalities complicate multimodal learning methods as adding more modalities can worsen these issues. Current multimodal fusion techniques often fail to adapt to the complexity of medical data, hindering the ability to identify relationships between modalities. To address these challenges, we propose an innovative multimodal approach for predicting MCI conversion, focusing specifically on the issues of missing positron emission tomography (PET) data and integrating diverse medical information. The proposed incomplete triple-modal MCI conversion prediction network is tailored for this purpose. Through the missing modal generation module, we synthesize the missing PET data from the magnetic resonance imaging and extract features using specifically designed encoders. We also develop a channel aggregation module and a triple-modal co-attention fusion module to reduce feature redundancy and achieve effective multimodal data fusion. Furthermore, we design a loss function to handle missing modality issues and align cross-modal features. These components collectively harness multimodal data to boost network performance. Experimental results on the ADNI1 and ADNI2 datasets show that our method significantly surpasses existing unimodal and other multimodal models. Our code is available at https://github.com/justinhxy/ITFC.
comment: 5 pages, 1 figure, accepted by IEEE ISBI 2025
☆ Spatiotemporal Air Quality Mapping in Urban Areas Using Sparse Sensor Data, Satellite Imagery, Meteorological Factors, and Spatial Features
Monitoring air pollution is crucial for protecting human health from exposure to harmful substances. Traditional methods of air quality monitoring, such as ground-based sensors and satellite-based remote sensing, face limitations due to high deployment costs, sparse sensor coverage, and environmental interferences. To address these challenges, this paper proposes a framework for high-resolution spatiotemporal Air Quality Index (AQI) mapping using sparse sensor data, satellite imagery, and various spatiotemporal factors. By leveraging Graph Neural Networks (GNNs), we estimate AQI values at unmonitored locations based on both spatial and temporal dependencies. The framework incorporates a wide range of environmental features, including meteorological data, road networks, points of interest (PoIs), population density, and urban green spaces, which enhance prediction accuracy. We illustrate the use of our approach through a case study in Lahore, Pakistan, where multi-resolution data is used to generate the air quality index map at a fine spatiotemporal scale.
☆ Towards Loss-Resilient Image Coding for Unstable Satellite Networks AAAI 2025
Geostationary Earth Orbit (GEO) satellite communication demonstrates significant advantages in emergency short burst data services. However, unstable satellite networks, particularly those with frequent packet loss, present a severe challenge to accurate image transmission. To address it, we propose a loss-resilient image coding approach that leverages end-to-end optimization in learned image compression (LIC). Our method builds on the channel-wise progressive coding framework, incorporating Spatial-Channel Rearrangement (SCR) on the encoder side and Mask Conditional Aggregation (MCA) on the decoder side to improve reconstruction quality with unpredictable errors. By integrating the Gilbert-Elliot model into the training process, we enhance the model's ability to generalize in real-world network conditions. Extensive evaluations show that our approach outperforms traditional and deep learning-based methods in terms of compression performance and stability under diverse packet loss, offering robust and efficient progressive transmission even in challenging environments. Code is available at https://github.com/NJUVISION/LossResilientLIC.
comment: Accepted as a poster presentation at AAAI 2025
☆ A Survey of World Models for Autonomous Driving
Recent breakthroughs in autonomous driving have revolutionized the way vehicles perceive and interact with their surroundings. In particular, world models have emerged as a linchpin technology, offering high-fidelity representations of the driving environment that integrate multi-sensor data, semantic cues, and temporal dynamics. Such models unify perception, prediction, and planning, thereby enabling autonomous systems to make rapid, informed decisions under complex and often unpredictable conditions. Research trends span diverse areas, including 4D occupancy prediction and generative data synthesis, all of which bolster scene understanding and trajectory forecasting. Notably, recent works exploit large-scale pretraining and advanced self-supervised learning to scale up models' capacity for rare-event simulation and real-time interaction. In addressing key challenges -- ranging from domain adaptation and long-tail anomaly detection to multimodal fusion -- these world models pave the way for more robust, reliable, and adaptable autonomous driving solutions. This survey systematically reviews the state of the art, categorizing techniques by their focus on future prediction, behavior planning, and the interaction between the two. We also identify potential directions for future research, emphasizing holistic integration, improved computational efficiency, and advanced simulation. Our comprehensive analysis underscores the transformative role of world models in driving next-generation autonomous systems toward safer and more equitable mobility.
comment: Ongoing project
☆ Enhancing Uncertainty Estimation in Semantic Segmentation via Monte-Carlo Frequency Dropout
Monte-Carlo (MC) Dropout provides a practical solution for estimating predictive distributions in deterministic neural networks. Traditional dropout, applied within the signal space, may fail to account for frequency-related noise common in medical imaging, leading to biased predictive estimates. A novel approach extends Dropout to the frequency domain, allowing stochastic attenuation of signal frequencies during inference. This creates diverse global textural variations in feature maps while preserving structural integrity -- a factor we hypothesize and empirically show is contributing to accurately estimating uncertainties in semantic segmentation. We evaluated traditional MC-Dropout and the MC-frequency Dropout in three segmentation tasks involving different imaging modalities: (i) prostate zones in biparametric MRI, (ii) liver tumors in contrast-enhanced CT, and (iii) lungs in chest X-ray scans. Our results show that MC-Frequency Dropout improves calibration, convergence, and semantic uncertainty, thereby improving prediction scrutiny, boundary delineation, and has the potential to enhance medical decision-making.
comment: Accepted by IEEE ISBI 2025 4-page paper. Code for the implementation is available at https://github.com/talze/frequency-dropout
☆ How Well Do Supervised 3D Models Transfer to Medical Imaging Tasks? ICLR-2024
The pre-training and fine-tuning paradigm has become prominent in transfer learning. For example, if the model is pre-trained on ImageNet and then fine-tuned to PASCAL, it can significantly outperform that trained on PASCAL from scratch. While ImageNet pre-training has shown enormous success, it is formed in 2D, and the learned features are for classification tasks; when transferring to more diverse tasks, like 3D image segmentation, its performance is inevitably compromised due to the deviation from the original ImageNet context. A significant challenge lies in the lack of large, annotated 3D datasets rivaling the scale of ImageNet for model pre-training. To overcome this challenge, we make two contributions. Firstly, we construct AbdomenAtlas 1.1 that comprises 9,262 three-dimensional computed tomography (CT) volumes with high-quality, per-voxel annotations of 25 anatomical structures and pseudo annotations of seven tumor types. Secondly, we develop a suite of models that are pre-trained on our AbdomenAtlas 1.1 for transfer learning. Our preliminary analyses indicate that the model trained only with 21 CT volumes, 672 masks, and 40 GPU hours has a transfer learning ability similar to the model trained with 5,050 (unlabeled) CT volumes and 1,152 GPU hours. More importantly, the transfer learning ability of supervised models can further scale up with larger annotated datasets, achieving significantly better performance than preexisting pre-trained models, irrespective of their pre-training methodologies or data sources. We hope this study can facilitate collective efforts in constructing larger 3D medical datasets and more releases of supervised pre-trained models.
comment: Accepted to ICLR-2024
☆ Enhancing SAR Object Detection with Self-Supervised Pre-training on Masked Auto-Encoders
Supervised fine-tuning methods (SFT) perform great efficiency on artificial intelligence interpretation in SAR images, leveraging the powerful representation knowledge from pre-training models. Due to the lack of domain-specific pre-trained backbones in SAR images, the traditional strategies are loading the foundation pre-train models of natural scenes such as ImageNet, whose characteristics of images are extremely different from SAR images. This may hinder the model performance on downstream tasks when adopting SFT on small-scale annotated SAR data. In this paper, an self-supervised learning (SSL) method of masked image modeling based on Masked Auto-Encoders (MAE) is proposed to learn feature representations of SAR images during the pre-training process and benefit the object detection task in SAR images of SFT. The evaluation experiments on the large-scale SAR object detection benchmark named SARDet-100k verify that the proposed method captures proper latent representations of SAR images and improves the model generalization in downstream tasks by converting the pre-trained domain from natural scenes to SAR images through SSL. The proposed method achieves an improvement of 1.3 mAP on the SARDet-100k benchmark compared to only the SFT strategies.
☆ Irony in Emojis: A Comparative Study of Human and LLM Interpretation
Emojis have become a universal language in online communication, often carrying nuanced and context-dependent meanings. Among these, irony poses a significant challenge for Large Language Models (LLMs) due to its inherent incongruity between appearance and intent. This study examines the ability of GPT-4o to interpret irony in emojis. By prompting GPT-4o to evaluate the likelihood of specific emojis being used to express irony on social media and comparing its interpretations with human perceptions, we aim to bridge the gap between machine and human understanding. Our findings reveal nuanced insights into GPT-4o's interpretive capabilities, highlighting areas of alignment with and divergence from human behavior. Additionally, this research underscores the importance of demographic factors, such as age and gender, in shaping emoji interpretation and evaluates how these factors influence GPT-4o's performance.
☆ A New Formulation of Lipschitz Constrained With Functional Gradient Learning for GANs
This paper introduces a promising alternative method for training Generative Adversarial Networks (GANs) on large-scale datasets with clear theoretical guarantees. GANs are typically learned through a minimax game between a generator and a discriminator, which is known to be empirically unstable. Previous learning paradigms have encountered mode collapse issues without a theoretical solution. To address these challenges, we propose a novel Lipschitz-constrained Functional Gradient GANs learning (Li-CFG) method to stabilize the training of GAN and provide a theoretical foundation for effectively increasing the diversity of synthetic samples by reducing the neighborhood size of the latent vector. Specifically, we demonstrate that the neighborhood size of the latent vector can be reduced by increasing the norm of the discriminator gradient, resulting in enhanced diversity of synthetic samples. To efficiently enlarge the norm of the discriminator gradient, we introduce a novel {\epsilon}-centered gradient penalty that amplifies the norm of the discriminator gradient using the hyper-parameter {\epsilon}. In comparison to other constraints, our method enlarging the discriminator norm, thus obtaining the smallest neighborhood size of the latent vector. Extensive experiments on benchmark datasets for image generation demonstrate the efficacy of the Li-CFG method and the {\epsilon}-centered gradient penalty. The results showcase improved stability and increased diversity of synthetic samples.
☆ KPL: Training-Free Medical Knowledge Mining of Vision-Language Models AAAI
Visual Language Models such as CLIP excel in image recognition due to extensive image-text pre-training. However, applying the CLIP inference in zero-shot classification, particularly for medical image diagnosis, faces challenges due to: 1) the inadequacy of representing image classes solely with single category names; 2) the modal gap between the visual and text spaces generated by CLIP encoders. Despite attempts to enrich disease descriptions with large language models, the lack of class-specific knowledge often leads to poor performance. In addition, empirical evidence suggests that existing proxy learning methods for zero-shot image classification on natural image datasets exhibit instability when applied to medical datasets. To tackle these challenges, we introduce the Knowledge Proxy Learning (KPL) to mine knowledge from CLIP. KPL is designed to leverage CLIP's multimodal understandings for medical image classification through Text Proxy Optimization and Multimodal Proxy Learning. Specifically, KPL retrieves image-relevant knowledge descriptions from the constructed knowledge-enhanced base to enrich semantic text proxies. It then harnesses input images and these descriptions, encoded via CLIP, to stably generate multimodal proxies that boost the zero-shot classification performance. Extensive experiments conducted on both medical and natural image datasets demonstrate that KPL enables effective zero-shot image classification, outperforming all baselines. These findings highlight the great potential in this paradigm of mining knowledge from CLIP for medical image classification and broader areas.
comment: AAAI(Oral)
☆ Successive Interference Cancellation-aided Diffusion Models for Joint Channel Estimation and Data Detection in Low Rank Channel Scenarios ICASSP 2025
This paper proposes a novel joint channel-estimation and source-detection algorithm using successive interference cancellation (SIC)-aided generative score-based diffusion models. Prior work in this area focuses on massive MIMO scenarios, which are typically characterized by full-rank channels, and fail in low-rank channel scenarios. The proposed algorithm outperforms existing methods in joint source-channel estimation, especially in low-rank scenarios where the number of users exceeds the number of antennas at the access point (AP). The proposed score-based iterative diffusion process estimates the gradient of the prior distribution on partial channels, and recursively updates the estimated channel parts as well as the source. Extensive simulation results show that the proposed method outperforms the baseline methods in terms of normalized mean squared error (NMSE) and symbol error rate (SER) in both full-rank and low-rank channel scenarios, while having a more dominant effect in the latter, at various signal-to-noise ratios (SNR).
comment: Published at IEEE ICASSP 2025
☆ CNN-based TEM image denoising from first principles
Transmission electron microscope (TEM) images are often corrupted by noise, hindering their interpretation. To address this issue, we propose a deep learning-based approach using simulated images. Using density functional theory calculations with a set of pseudo-atomic orbital basis sets, we generate highly accurate ground truth images. We introduce four types of noise into these simulations to create realistic training datasets. Each type of noise is then used to train a separate convolutional neural network (CNN) model. Our results show that these CNNs are effective in reducing noise, even when applied to images with different noise levels than those used during training. However, we observe limitations in some cases, particularly in preserving the integrity of circular shapes and avoiding visible artifacts between image patches. To overcome these challenges, we propose alternative training strategies and future research directions. This study provides a valuable framework for training deep learning models for TEM image denoising.
comment: 10 pages and 4 figures
☆ Finding Reproducible and Prognostic Radiomic Features in Variable Slice Thickness Contrast Enhanced CT of Colorectal Liver Metastases
Establishing the reproducibility of radiomic signatures is a critical step in the path to clinical adoption of quantitative imaging biomarkers; however, radiomic signatures must also be meaningfully related to an outcome of clinical importance to be of value for personalized medicine. In this study, we analyze both the reproducibility and prognostic value of radiomic features extracted from the liver parenchyma and largest liver metastases in contrast enhanced CT scans of patients with colorectal liver metastases (CRLM). A prospective cohort of 81 patients from two major US cancer centers was used to establish the reproducibility of radiomic features extracted from images reconstructed with different slice thicknesses. A publicly available, single-center cohort of 197 preoperative scans from patients who underwent hepatic resection for treatment of CRLM was used to evaluate the prognostic value of features and models to predict overall survival. A standard set of 93 features was extracted from all images, with a set of eight different extractor settings. The feature extraction settings producing the most reproducible, as well as the most prognostically discriminative feature values were highly dependent on both the region of interest and the specific feature in question. While the best overall predictive model was produced using features extracted with a particular setting, without accounting for reproducibility, (C-index = 0.630 (0.603--0.649)) an equivalent-performing model (C-index = 0.629 (0.605--0.645)) was produced by pooling features from all extraction settings, and thresholding features with low reproducibility ($\mathrm{CCC} \geq 0.85$), prior to feature selection. Our findings support a data-driven approach to feature extraction and selection, preferring the inclusion of many features, and narrowing feature selection based on reproducibility when relevant data is available.
comment: Accepted for publication at the Journal of Machine Learning for Biomedical Imaging (MELBA) https://melba-journal.org/2024:032
☆ Leveraging GANs For Active Appearance Models Optimized Model Fitting
Generative Adversarial Networks (GANs) have gained prominence in refining model fitting tasks in computer vision, particularly in domains involving deformable models like Active Appearance Models (AAMs). This paper explores the integration of GANs to enhance the AAM fitting process, addressing challenges in optimizing nonlinear parameters associated with appearance and shape variations. By leveraging GANs' adversarial training framework, the aim is to minimize fitting errors and improve convergence rates. Achieving robust performance even in cases with high appearance variability and occlusions. Our approach demonstrates significant improvements in accuracy and computational efficiency compared to traditional optimization techniques, thus establishing GANs as a potent tool for advanced image model fitting.
comment: 9 pages, 2 figures, in proceeding at conference
☆ Ditto: Accelerating Diffusion Model via Temporal Value Similarity HPCA 2025
Diffusion models achieve superior performance in image generation tasks. However, it incurs significant computation overheads due to its iterative structure. To address these overheads, we analyze this iterative structure and observe that adjacent time steps in diffusion models exhibit high value similarity, leading to narrower differences between consecutive time steps. We adapt these characteristics to a quantized diffusion model and reveal that the majority of these differences can be represented with reduced bit-width, and even zero. Based on our observations, we propose the Ditto algorithm, a difference processing algorithm that leverages temporal similarity with quantization to enhance the efficiency of diffusion models. By exploiting the narrower differences and the distributive property of layer operations, it performs full bit-width operations for the initial time step and processes subsequent steps with temporal differences. In addition, Ditto execution flow optimization is designed to mitigate the memory overhead of temporal difference processing, further boosting the efficiency of the Ditto algorithm. We also design the Ditto hardware, a specialized hardware accelerator, fully exploiting the dynamic characteristics of the proposed algorithm. As a result, the Ditto hardware achieves up to 1.5x speedup and 17.74% energy saving compared to other accelerators.
comment: Accepted for publication at the 2025 IEEE International Symposium on High-Performance Computer Architecture (HPCA 2025)
☆ Advancing Oyster Phenotype Segmentation with Multi-Network Ensemble and Multi-Scale mechanism
Phenotype segmentation is pivotal in analysing visual features of living organisms, enhancing our understanding of their characteristics. In the context of oysters, meat quality assessment is paramount, focusing on shell, meat, gonad, and muscle components. Traditional manual inspection methods are time-consuming and subjective, prompting the adoption of machine vision technology for efficient and objective evaluation. We explore machine vision's capacity for segmenting oyster components, leading to the development of a multi-network ensemble approach with a global-local hierarchical attention mechanism. This approach integrates predictions from diverse models and addresses challenges posed by varying scales, ensuring robust instance segmentation across components. Finally, we provide a comprehensive evaluation of the proposed method's performance using different real-world datasets, highlighting its efficacy and robustness in enhancing oyster phenotype segmentation.
♻ ☆ VLM Agents Generate Their Own Memories: Distilling Experience into Embodied Programs of Thought
Large-scale LLMs and VLMs excel at few-shot learning but require high-quality examples. We introduce In-Context Abstraction Learning (ICAL), which iteratively refines suboptimal trajectories into high-quality data with optimized actions and detailed reasoning. Given an inefficient demonstration, a VLM corrects actions and annotates causal relationships, object states, subgoals, and task-relevant visuals, forming "programs of thought." With human feedback, these programs are improved as the agent executes them in a similar environment. The resulting examples, used as prompt context or fine-tuning data, significantly boost decision-making while reducing human feedback needs. ICAL surpasses state-of-the-art in TEACh (dialogue-based instruction following), VisualWebArena (multimodal web agents), and Ego4D (egocentric video action anticipation). In TEACh, combining fine-tuning and retrieval on ICAL examples outperforms raw human demonstrations and expert examples, achieving a 17.5% increase in goal-condition success. In VisualWebArena, retrieval-augmented GPT-4V with ICAL improves task success rate 1.6x over GPT-4V, while fine-tuning Qwen2-VL achieves a 2.8x improvement. In Ego4D, ICAL outperforms few-shot GPT-4V and remains competitive with supervised models. Overall, ICAL scales 2x better than raw human demonstrations and reduces manual prompt engineering.
comment: Project website: https://ical-learning.github.io/
♻ ☆ X-Dyna: Expressive Dynamic Human Image Animation
We introduce X-Dyna, a novel zero-shot, diffusion-based pipeline for animating a single human image using facial expressions and body movements derived from a driving video, that generates realistic, context-aware dynamics for both the subject and the surrounding environment. Building on prior approaches centered on human pose control, X-Dyna addresses key shortcomings causing the loss of dynamic details, enhancing the lifelike qualities of human video animations. At the core of our approach is the Dynamics-Adapter, a lightweight module that effectively integrates reference appearance context into the spatial attentions of the diffusion backbone while preserving the capacity of motion modules in synthesizing fluid and intricate dynamic details. Beyond body pose control, we connect a local control module with our model to capture identity-disentangled facial expressions, facilitating accurate expression transfer for enhanced realism in animated scenes. Together, these components form a unified framework capable of learning physical human motion and natural scene dynamics from a diverse blend of human and scene videos. Comprehensive qualitative and quantitative evaluations demonstrate that X-Dyna outperforms state-of-the-art methods, creating highly lifelike and expressive animations. The code is available at https://github.com/bytedance/X-Dyna.
comment: Project page:https://x-dyna.github.io/xdyna.github.io/ Code:https://github.com/bytedance/X-Dyna Model:https://huggingface.co/Boese0601/X-Dyna
♻ ☆ Common-Sense Bias Modeling for Classification Tasks AAAI
Machine learning model bias can arise from dataset composition: correlated sensitive features can distort the downstream classification model's decision boundary and lead to performance differences along these features. Existing de-biasing works tackle the most prominent bias features, such as colors of digits or background of animals. However, real-world datasets often include a large number of feature correlations that intrinsically manifest in the data as common sense information. Such spurious visual cues can further reduce model robustness. Thus, domain practitioners desire a comprehensive understanding of correlations and the flexibility to address relevant biases. To this end, we propose a novel framework to extract comprehensive biases in image datasets based on textual descriptions, a common sense-rich modality. Specifically, features are constructed by clustering noun phrase embeddings with similar semantics. The presence of each feature across the dataset is inferred, and their co-occurrence statistics are measured, with spurious correlations optionally examined by a human-in-the-loop module. Downstream experiments show that our method uncovers novel model biases in multiple image benchmark datasets. Furthermore, the discovered bias can be mitigated by simple data re-weighting to de-correlate the features, outperforming state-of-the-art unsupervised bias mitigation methods.
comment: Accepted for AAAI Conference on Artificial Intelligence (AAAI)
♻ ☆ Towards Robust Nonlinear Subspace Clustering: A Kernel Learning Approach
Kernel-based subspace clustering, which addresses the nonlinear structures in data, is an evolving area of research. Despite noteworthy progressions, prevailing methodologies predominantly grapple with limitations relating to (i) the influence of predefined kernels on model performance; (ii) the difficulty of preserving the original manifold structures in the nonlinear space; (iii) the dependency of spectral-type strategies on the ideal block diagonal structure of the affinity matrix. This paper presents DKLM, a novel paradigm for kernel-induced nonlinear subspace clustering. DKLM provides a data-driven approach that directly learns the kernel from the data's self-representation, ensuring adaptive weighting and satisfying the multiplicative triangle inequality constraint, which enhances the robustness of the learned kernel. By leveraging this learned kernel, DKLM preserves the local manifold structure of data in a nonlinear space while promoting the formation of an optimal block-diagonal affinity matrix. A thorough theoretical examination of DKLM reveals its relationship with existing clustering paradigms. Comprehensive experiments on synthetic and real-world datasets demonstrate the effectiveness of the proposed method.
♻ ☆ PDF-WuKong: A Large Multimodal Model for Efficient Long PDF Reading with End-to-End Sparse Sampling
Multimodal document understanding is a challenging task to process and comprehend large amounts of textual and visual information. Recent advances in Large Language Models (LLMs) have significantly improved the performance of this task. However, existing methods typically focus on either plain text or a limited number of document images, struggling to handle long PDF documents with interleaved text and images, especially for academic papers. In this paper, we introduce PDF-WuKong, a multimodal large language model (MLLM) which is designed to enhance multimodal question-answering (QA) for long PDF documents. PDF-WuKong incorporates a sparse sampler that operates on both text and image representations, significantly improving the efficiency and capability of the MLLM. The sparse sampler is integrated with the MLLM's image encoder and selects the paragraphs or diagrams most pertinent to user queries for processing by the language model. To effectively train and evaluate our model, we construct PaperPDF, a dataset consisting of a broad collection of English and Chinese academic papers. Multiple strategies are proposed to automatically generate 1.1 million QA pairs along with their corresponding evidence sources. Experimental results demonstrate the superiority and high efficiency of our approach over other models on the task of long multimodal document understanding, surpassing proprietary products by an average of 8.6% on F1. Our code and dataset will be released at https://github.com/yh-hust/PDF-Wukong.
♻ ☆ Transformer-Based Model for Monocular Visual Odometry: A Video Understanding Approach
Estimating the camera's pose given images from a single camera is a traditional task in mobile robots and autonomous vehicles. This problem is called monocular visual odometry and often relies on geometric approaches that require considerable engineering effort for a specific scenario. Deep learning methods have been shown to be generalizable after proper training and with a large amount of available data. Transformer-based architectures have dominated the state-of-the-art in natural language processing and computer vision tasks, such as image and video understanding. In this work, we deal with the monocular visual odometry as a video understanding task to estimate the 6 degrees of freedom of a camera's pose. We contribute by presenting the TSformer-VO model based on spatio-temporal self-attention mechanisms to extract features from clips and estimate the motions in an end-to-end manner. Our approach achieved competitive state-of-the-art performance compared with geometry-based and deep learning-based methods on the KITTI visual odometry dataset, outperforming the DeepVO implementation highly accepted in the visual odometry community. The code is publicly available at https://github.com/aofrancani/TSformer-VO.
comment: This work has been accepted for publication in IEEE Access
♻ ☆ DDS: Decoupled Dynamic Scene-Graph Generation Network WACV 2025
Scene-graph generation involves creating a structural representation of the relationships between objects in a scene by predicting subject-object-relation triplets from input data. Existing methods show poor performance in detecting triplets outside of a predefined set, primarily due to their reliance on dependent feature learning. To address this issue, we propose DDS -- a decoupled dynamic scene-graph generation network -- that consists of two independent branches that can disentangle extracted features. The key innovation of the current paper is the decoupling of the features representing the relationships from those of the objects, which enables the detection of novel object-relationship combinations. The DDS model is evaluated on three datasets and outperforms previous methods by a significant margin, especially in detecting previously unseen triplets.
comment: Accepted in WACV 2025
♻ ☆ Flexible Mesh Segmentation via Reeb Graph Representation of Geometrical and Topological Features
This paper presents a new mesh segmentation method that integrates geometrical and topological features through a flexible Reeb graph representation. The algorithm consists of three phases: construction of the Reeb graph using the improved topological skeleton approach, topological simplification of the graph by cancelling critical points while preserving essential features, and generation of contiguous segments via an adaptive region-growth process that takes geometric and topological criteria into account. Operating with a computational complexity of O(n log(n)) for a mesh of n vertices, the method demonstrates both efficiency and scalability. An evaluation through case studies, including part-based decomposition with Shape Diameter Function and terrain analysis with Shape Index, validates the effectiveness of the method in completely different applications. The results establish this approach as a robust framework for advanced geometric analysis of meshes, connecting the geometric and topological features of shapes.
♻ ☆ Learning predictable and robust neural representations by straightening image sequences NeurIPS 2024
Prediction is a fundamental capability of all living organisms, and has been proposed as an objective for learning sensory representations. Recent work demonstrates that in primate visual systems, prediction is facilitated by neural representations that follow straighter temporal trajectories than their initial photoreceptor encoding, which allows for prediction by linear extrapolation. Inspired by these experimental findings, we develop a self-supervised learning (SSL) objective that explicitly quantifies and promotes straightening. We demonstrate the power of this objective in training deep feedforward neural networks on smoothly-rendered synthetic image sequences that mimic commonly-occurring properties of natural videos. The learned model contains neural embeddings that are predictive, but also factorize the geometric, photometric, and semantic attributes of objects. The representations also prove more robust to noise and adversarial attacks compared to previous SSL methods that optimize for invariance to random augmentations. Moreover, these beneficial properties can be transferred to other training procedures by using the straightening objective as a regularizer, suggesting a broader utility for straightening as a principle for robust unsupervised learning.
comment: Accepted at NeurIPS 2024
♻ ☆ GenEx: Generating an Explorable World
Understanding, navigating, and exploring the 3D physical real world has long been a central challenge in the development of artificial intelligence. In this work, we take a step toward this goal by introducing GenEx, a system capable of planning complex embodied world exploration, guided by its generative imagination that forms priors (expectations) about the surrounding environments. GenEx generates an entire 3D-consistent imaginative environment from as little as a single RGB image, bringing it to life through panoramic video streams. Leveraging scalable 3D world data curated from Unreal Engine, our generative model is rounded in the physical world. It captures a continuous 360-degree environment with little effort, offering a boundless landscape for AI agents to explore and interact with. GenEx achieves high-quality world generation, robust loop consistency over long trajectories, and demonstrates strong 3D capabilities such as consistency and active 3D mapping. Powered by generative imagination of the world, GPT-assisted agents are equipped to perform complex embodied tasks, including both goal-agnostic exploration and goal-driven navigation. These agents utilize predictive expectation regarding unseen parts of the physical world to refine their beliefs, simulate different outcomes based on potential decisions, and make more informed choices. In summary, we demonstrate that GenEx provides a transformative platform for advancing embodied AI in imaginative spaces and brings potential for extending these capabilities to real-world exploration.
comment: Website: GenEx.world
♻ ☆ Bayesian Deconvolution of Astronomical Images with Diffusion Models: Quantifying Prior-Driven Features in Reconstructions NeurIPS 2024
Deconvolution of astronomical images is a key aspect of recovering the intrinsic properties of celestial objects, especially when considering ground-based observations. This paper explores the use of diffusion models (DMs) and the Diffusion Posterior Sampling (DPS) algorithm to solve this inverse problem task. We apply score-based DMs trained on high-resolution cosmological simulations, through a Bayesian setting to compute a posterior distribution given the observations available. By considering the redshift and the pixel scale as parameters of our inverse problem, the tool can be easily adapted to any dataset. We test our model on Hyper Supreme Camera (HSC) data and show that we reach resolutions comparable to those obtained by Hubble Space Telescope (HST) images. Most importantly, we quantify the uncertainty of reconstructions and propose a metric to identify prior-driven features in the reconstructed images, which is key in view of applying these methods for scientific purposes.
comment: 5+5 pages, 16 figures, Machine Learning and the Physical Sciences Workshop, NeurIPS 2024
♻ ☆ Token Turing Machines are Efficient Vision Models WACV 2025
We propose Vision Token Turing Machines (ViTTM), an efficient, low-latency, memory-augmented Vision Transformer (ViT). Our approach builds on Neural Turing Machines and Token Turing Machines, which were applied to NLP and sequential visual understanding tasks. ViTTMs are designed for non-sequential computer vision tasks such as image classification and segmentation. Our model creates two sets of tokens: process tokens and memory tokens; process tokens pass through encoder blocks and read-write from memory tokens at each encoder block in the network, allowing them to store and retrieve information from memory. By ensuring that there are fewer process tokens than memory tokens, we are able to reduce the inference time of the network while maintaining its accuracy. On ImageNet-1K, the state-of-the-art ViT-B has median latency of 529.5ms and 81.0% accuracy, while our ViTTM-B is 56% faster (234.1ms), with 2.4 times fewer FLOPs, with an accuracy of 82.9%. On ADE20K semantic segmentation, ViT-B achieves 45.65mIoU at 13.8 frame-per-second (FPS) whereas our ViTTM-B model acheives a 45.17 mIoU with 26.8 FPS (+94%).
comment: Accepted to WACV 2025
♻ ☆ Counterfactuals and Uncertainty-Based Explainable Paradigm for the Automated Detection and Segmentation of Renal Cysts in Computed Tomography Images: A Multi-Center Study
Routine computed tomography (CT) scans often detect a wide range of renal cysts, some of which may be malignant. Early and precise localization of these cysts can significantly aid quantitative image analysis. Current segmentation methods, however, do not offer sufficient interpretability at the feature and pixel levels, emphasizing the necessity for an explainable framework that can detect and rectify model inaccuracies. We developed an interpretable segmentation framework and validated it on a multi-centric dataset. A Variational Autoencoder Generative Adversarial Network (VAE-GAN) was employed to learn the latent representation of 3D input patches and reconstruct input images. Modifications in the latent representation using the gradient of the segmentation model generated counterfactual explanations for varying dice similarity coefficients (DSC). Radiomics features extracted from these counterfactual images, using a ground truth cyst mask, were analyzed to determine their correlation with segmentation performance. The DSCs for the original and VAE-GAN reconstructed images for counterfactual image generation showed no significant differences. Counterfactual explanations highlighted how variations in cyst image features influence segmentation outcomes and showed model discrepancies. Radiomics features correlating positively and negatively with dice scores were identified. The uncertainty of the predicted segmentation masks was estimated using posterior sampling of the weight space. The combination of counterfactual explanations and uncertainty maps provided a deeper understanding of the image features within the segmented renal cysts that lead to high uncertainty. The proposed segmentation framework not only achieved high segmentation accuracy but also increased interpretability regarding how image features impact segmentation performance.
♻ ☆ LatentGAN Autoencoder: Learning Disentangled Latent Distribution
In autoencoder, the encoder generally approximates the latent distribution over the dataset, and the decoder generates samples using this learned latent distribution. There is very little control over the latent vector as using the random latent vector for generation will lead to trivial outputs. This work tries to address this issue by using the LatentGAN generator to directly learn to approximate the latent distribution of the autoencoder and show meaningful results on MNIST, 3D Chair, and CelebA datasets, an additional information-theoretic constrain is used which successfully learns to control autoencoder latent distribution. With this, our model also achieves an error rate of 2.38 on MNIST unsupervised image classification, which is better as compared to InfoGAN and AAE.
♻ ☆ SituationalLLM: Proactive Language Models with Scene Awareness for Dynamic, Contextual Task Guidance
Large language models (LLMs) have achieved remarkable success in text-based tasks but often struggle to provide actionable guidance in real-world physical environments. This is because of their inability to recognize their limited understanding of the user's physical context. We present SituationalLLM, a novel approach that integrates structured scene information into an LLM to deliver proactive, context-aware assistance. By encoding objects, attributes, and relationships in a custom Scene Graph Language, SituationalLLM actively identifies gaps in environmental context and seeks clarifications during user interactions. This behavior emerges from training on the Situational Awareness Database for Instruct-Tuning (SAD-Instruct), which combines diverse, scenario-specific scene graphs with iterative, dialogue-based refinements. Experimental results indicate that SituationalLLM outperforms generic LLM baselines in task specificity, reliability, and adaptability, paving the way for environment-aware AI assistants capable of delivering robust, user-centric guidance under real-world constraints.
comment: Submitted to Open Research Europe
♻ ☆ Feature-Centered First Order Structure Tensor Scale-Space in 2D and 3D
The structure tensor method is often used for 2D and 3D analysis of imaged structures, but its results are in many cases very dependent on the user's choice of method parameters. We simplify this parameter choice in first order structure tensor scale-space by directly connecting the width of the derivative filter to the size of image features. By introducing a ring-filter step, we substitute the Gaussian integration/smoothing with a method that more accurately shifts the derivative filter response from feature edges to their center. We further demonstrate how extracted structural measures can be used to correct known inaccuracies in the scale map, resulting in a reliable representation of the feature sizes both in 2D and 3D. Compared to the traditional first order structure tensor, or previous structure tensor scale-space approaches, our solution is much more accurate and can serve as an out-of-the-box method for extracting a wide range of structural parameters with minimal user input.
♻ ☆ Mesh2SLAM in VR: A Fast Geometry-Based SLAM Framework for Rapid Prototyping in Virtual Reality Applications
SLAM is a foundational technique with broad applications in robotics and AR/VR. SLAM simulations evaluate new concepts, but testing on resource-constrained devices, such as VR HMDs, faces challenges: high computational cost and restricted sensor data access. This work proposes a sparse framework using mesh geometry projections as features, which improves efficiency and circumvents direct sensor data access, advancing SLAM research as we demonstrate in VR and through numerical evaluation.
comment: Accepted to IEEE VR 2025
♻ ☆ FAIR-TAT: Improving Model Fairness Using Targeted Adversarial Training
Deep neural networks are susceptible to adversarial attacks and common corruptions, which undermine their robustness. In order to enhance model resilience against such challenges, Adversarial Training (AT) has emerged as a prominent solution. Nevertheless, adversarial robustness is often attained at the expense of model fairness during AT, i.e., disparity in class-wise robustness of the model. While distinctive classes become more robust towards such adversaries, hard to detect classes suffer. Recently, research has focused on improving model fairness specifically for perturbed images, overlooking the accuracy of the most likely non-perturbed data. Additionally, despite their robustness against the adversaries encountered during model training, state-of-the-art adversarial trained models have difficulty maintaining robustness and fairness when confronted with diverse adversarial threats or common corruptions. In this work, we address the above concerns by introducing a novel approach called Fair Targeted Adversarial Training (FAIR-TAT). We show that using targeted adversarial attacks for adversarial training (instead of untargeted attacks) can allow for more favorable trade-offs with respect to adversarial fairness. Empirical results validate the efficacy of our approach.
♻ ☆ Towards Underwater Camouflaged Object Tracking: Benchmark and Baselines NeurIPS 2024
Over the past decade, significant progress has been made in visual object tracking, largely due to the availability of large-scale datasets. However, existing tracking datasets are primarily focused on open-air scenarios, which greatly limits the development of object tracking in underwater environments. To bridge this gap, we take a step forward by proposing the first large-scale multimodal underwater camouflaged object tracking dataset, namely UW-COT220. Based on the proposed dataset, this paper first comprehensively evaluates current advanced visual object tracking methods and SAM- and SAM2-based trackers in challenging underwater environments. Our findings highlight the improvements of SAM2 over SAM, demonstrating its enhanced ability to handle the complexities of underwater camouflaged objects. Furthermore, we propose a novel vision-language tracking framework called VL-SAM2, based on the video foundation model SAM2. Experimental results demonstrate that our VL-SAM2 achieves state-of-the-art performance on the UW-COT220 dataset. The dataset and codes can be accessible at \color{magenta}{https://github.com/983632847/Awesome-Multimodal-Object-Tracking}.
comment: Preprint. Work in Progress. Extended Version of WebUOT-1M on NeurIPS 2024
♻ ☆ TransPixeler: Advancing Text-to-Video Generation with Transparency
Text-to-video generative models have made significant strides, enabling diverse applications in entertainment, advertising, and education. However, generating RGBA video, which includes alpha channels for transparency, remains a challenge due to limited datasets and the difficulty of adapting existing models. Alpha channels are crucial for visual effects (VFX), allowing transparent elements like smoke and reflections to blend seamlessly into scenes. We introduce TransPixeler, a method to extend pretrained video models for RGBA generation while retaining the original RGB capabilities. TransPixar leverages a diffusion transformer (DiT) architecture, incorporating alpha-specific tokens and using LoRA-based fine-tuning to jointly generate RGB and alpha channels with high consistency. By optimizing attention mechanisms, TransPixar preserves the strengths of the original RGB model and achieves strong alignment between RGB and alpha channels despite limited training data. Our approach effectively generates diverse and consistent RGBA videos, advancing the possibilities for VFX and interactive content creation.
comment: Project page: https://wileewang.github.io/TransPixar/
♻ ☆ GSTAR: Gaussian Surface Tracking and Reconstruction
3D Gaussian Splatting techniques have enabled efficient photo-realistic rendering of static scenes. Recent works have extended these approaches to support surface reconstruction and tracking. However, tracking dynamic surfaces with 3D Gaussians remains challenging due to complex topology changes, such as surfaces appearing, disappearing, or splitting. To address these challenges, we propose GSTAR, a novel method that achieves photo-realistic rendering, accurate surface reconstruction, and reliable 3D tracking for general dynamic scenes with changing topology. Given multi-view captures as input, GSTAR binds Gaussians to mesh faces to represent dynamic objects. For surfaces with consistent topology, GSTAR maintains the mesh topology and tracks the meshes using Gaussians. In regions where topology changes, GSTAR adaptively unbinds Gaussians from the mesh, enabling accurate registration and the generation of new surfaces based on these optimized Gaussians. Additionally, we introduce a surface-based scene flow method that provides robust initialization for tracking between frames. Experiments demonstrate that our method effectively tracks and reconstructs dynamic surfaces, enabling a range of applications. Our project page with the code release is available at https://eth-ait.github.io/GSTAR/.
♻ ☆ Beyond Aesthetics: Cultural Competence in Text-to-Image Models NeurIPS 2024
Text-to-Image (T2I) models are being increasingly adopted in diverse global communities where they create visual representations of their unique cultures. Current T2I benchmarks primarily focus on faithfulness, aesthetics, and realism of generated images, overlooking the critical dimension of cultural competence. In this work, we introduce a framework to evaluate cultural competence of T2I models along two crucial dimensions: cultural awareness and cultural diversity, and present a scalable approach using a combination of structured knowledge bases and large language models to build a large dataset of cultural artifacts to enable this evaluation. In particular, we apply this approach to build CUBE (CUltural BEnchmark for Text-to-Image models), a first-of-its-kind benchmark to evaluate cultural competence of T2I models. CUBE covers cultural artifacts associated with 8 countries across different geo-cultural regions and along 3 concepts: cuisine, landmarks, and art. CUBE consists of 1) CUBE-1K, a set of high-quality prompts that enable the evaluation of cultural awareness, and 2) CUBE-CSpace, a larger dataset of cultural artifacts that serves as grounding to evaluate cultural diversity. We also introduce cultural diversity as a novel T2I evaluation component, leveraging quality-weighted Vendi score. Our evaluations reveal significant gaps in the cultural awareness of existing models across countries and provide valuable insights into the cultural diversity of T2I outputs for under-specified prompts. Our methodology is extendable to other cultural regions and concepts, and can facilitate the development of T2I models that better cater to the global population.
comment: NeurIPS 2024 camera-ready version
♻ ☆ Enhancing Diabetic Retinopathy Detection with CNN-Based Models: A Comparative Study of UNET and Stacked UNET Architectures
Diabetic Retinopathy DR is a severe complication of diabetes. Damaged or abnormal blood vessels can cause loss of vision. The need for massive screening of a large population of diabetic patients has generated an interest in a computer-aided fully automatic diagnosis of DR. In the realm of Deep learning frameworks, particularly convolutional neural networks CNNs, have shown great interest and promise in detecting DR by analyzing retinal images. However, several challenges have been faced in the application of deep learning in this domain. High-quality, annotated datasets are scarce, and the variations in image quality and class imbalances pose significant hurdles in developing a dependable model. In this paper, we demonstrate the proficiency of two Convolutional Neural Networks CNNs based models, UNET and Stacked UNET utilizing the APTOS Asia Pacific Tele-Ophthalmology Society Dataset. This system achieves an accuracy of 92.81% for the UNET and 93.32% for the stacked UNET architecture. The architecture classifies the images into five categories ranging from 0 to 4, where 0 is no DR and 4 is proliferative DR.
♻ ☆ Automatic rating of incomplete hippocampal inversions evaluated across multiple cohorts
Incomplete Hippocampal Inversion (IHI), sometimes called hippocampal malrotation, is an atypical anatomical pattern of the hippocampus found in about 20% of the general population. IHI can be visually assessed on coronal slices of T1 weighted MR images, using a composite score that combines four anatomical criteria. IHI has been associated with several brain disorders (epilepsy, schizophrenia). However, these studies were based on small samples. Furthermore, the factors (genetic or environmental) that contribute to the genesis of IHI are largely unknown. Large-scale studies are thus needed to further understand IHI and their potential relationships to neurological and psychiatric disorders. However, visual evaluation is long and tedious, justifying the need for an automatic method. In this paper, we propose, for the first time, to automatically rate IHI. We proceed by predicting four anatomical criteria, which are then summed up to form the IHI score, providing the advantage of an interpretable score. We provided an extensive experimental investigation of different machine learning methods and training strategies. We performed automatic rating using a variety of deep learning models (conv5-FC3, ResNet and SECNN) as well as a ridge regression. We studied the generalization of our models using different cohorts and performed multi-cohort learning. We relied on a large population of 2,008 participants from the IMAGEN study, 993 and 403 participants from the QTIM/QTAB studies as well as 985 subjects from the UKBiobank. We showed that deep learning models outperformed a ridge regression. We demonstrated that the performances of the conv5-FC3 network were at least as good as more complex networks while maintaining a low complexity and computation time. We showed that training on a single cohort may lack in variability while training on several cohorts improves generalization.
comment: Accepted for publication at the Journal of Machine Learning for Biomedical Imaging (MELBA) https://melba-journal.org/2024:016
♻ ☆ Unified theory for joint covariance properties under geometric image transformations for spatio-temporal receptive fields according to the generalized Gaussian derivative model for visual receptive fields
The influence of natural image transformations on receptive field responses is crucial for modelling visual operations in computer vision and biological vision. In this regard, covariance properties with respect to geometric image transformations in the earliest layers of the visual hierarchy are essential for expressing robust image operations, and for formulating invariant visual operations at higher levels. This paper defines and proves a set of joint covariance properties for spatio-temporal receptive fields in terms of spatio-temporal derivative operators applied to spatio-temporally smoothed image data under compositions of spatial scaling transformations, spatial affine transformations, Galilean transformations and temporal scaling transformations. Specifically, the derived relations show how the parameters of the receptive fields need to be transformed, in order to match the output from spatio-temporal receptive fields under composed spatio-temporal image transformations. For this purpose, we also fundamentally extend the notion of scale-normalized derivatives to affine-normalized derivatives, that are computed based on spatial smoothing with affine Gaussian kernels, and analyze the covariance properties of the resulting affine-normalized derivatives for the affine group as well as for important subgroups thereof. We conclude with a geometric analysis, showing how the derived joint covariance properties make it possible to relate or match spatio-temporal receptive field responses, when observing, possibly moving, local surface patches from different views, under locally linearized perspective or projective transformations, as well as when observing different instances of spatio-temporal events, that may occur either faster or slower between different views of similar spatio-temporal events.
comment: 46 pages, 19 figures. Note: From version 4, this paper considers a different form of joint composition of the geometric image transformations than in the earlier versions
♻ ☆ ECGrecover: a Deep Learning Approach for Electrocardiogram Signal Completion
In this work, we address the challenge of reconstructing the complete 12-lead ECG signal from its incomplete parts. We focus on two main scenarios: (i) reconstructing missing signal segments within an ECG lead and (ii) recovering entire leads from signal in another unique lead. Two emerging clinical applications emphasize the relevance of our work. The first is the increasing need to digitize paper-stored ECGs for utilization in AI-based applications, often limited to digital 12 lead 10s ECGs. The second is the widespread use of wearable devices that record ECGs but typically capture only one or a few leads. In both cases, a non-negligible amount of information is lost or not recorded. Our approach aims to recover this missing signal. We propose ECGrecover, a U-Net neural network model trained on a novel composite objective function to address the reconstruction problem. This function incorporates both spatial and temporal features of the ECG by combining the distance in amplitude and sycnhronization through time between the reconstructed and the real digital signals. We used real-life ECG datasets and through comprehensive assessments compared ECGrecover with three state-of-the-art methods based on generative adversarial networks (EKGAN, Pix2Pix) as well as the CopyPaste strategy. The results demonstrated that ECGrecover consistently outperformed state-of-the-art methods in standard distortion metrics as well as in preserving critical ECG characteristics, particularly the P, QRS, and T wave coordinates.
comment: 31 pages, 14 figures, 29 tables, conference paper
♻ ☆ On Improved Conditioning Mechanisms and Pre-training Strategies for Diffusion Models NeurIPS 2024
Large-scale training of latent diffusion models (LDMs) has enabled unprecedented quality in image generation. However, the key components of the best performing LDM training recipes are oftentimes not available to the research community, preventing apple-to-apple comparisons and hindering the validation of progress in the field. In this work, we perform an in-depth study of LDM training recipes focusing on the performance of models and their training efficiency. To ensure apple-to-apple comparisons, we re-implement five previously published models with their corresponding recipes. Through our study, we explore the effects of (i)~the mechanisms used to condition the generative model on semantic information (e.g., text prompt) and control metadata (e.g., crop size, random flip flag, etc.) on the model performance, and (ii)~the transfer of the representations learned on smaller and lower-resolution datasets to larger ones on the training efficiency and model performance. We then propose a novel conditioning mechanism that disentangles semantic and control metadata conditionings and sets a new state-of-the-art in class-conditional generation on the ImageNet-1k dataset -- with FID improvements of 7% on 256 and 8% on 512 resolutions -- as well as text-to-image generation on the CC12M dataset -- with FID improvements of 8% on 256 and 23% on 512 resolution.
comment: Accepted as a conference paper (poster) for NeurIPS 2024
♻ ☆ From Transparent to Opaque: Rethinking Neural Implicit Surfaces with $α$-NeuS NeurIPS 2024
Traditional 3D shape reconstruction techniques from multi-view images, such as structure from motion and multi-view stereo, face challenges in reconstructing transparent objects. Recent advances in neural radiance fields and its variants primarily address opaque or transparent objects, encountering difficulties to reconstruct both transparent and opaque objects simultaneously. This paper introduces $\alpha$-Neus -- an extension of NeuS -- that proves NeuS is unbiased for materials from fully transparent to fully opaque. We find that transparent and opaque surfaces align with the non-negative local minima and the zero iso-surface, respectively, in the learned distance field of NeuS. Traditional iso-surfacing extraction algorithms, such as marching cubes, which rely on fixed iso-values, are ill-suited for such data. We develop a method to extract the transparent and opaque surface simultaneously based on DCUDF. To validate our approach, we construct a benchmark that includes both real-world and synthetic scenes, demonstrating its practical utility and effectiveness. Our data and code are publicly available at https://github.com/728388808/alpha-NeuS.
comment: NeurIPS 2024
♻ ☆ Unveil Inversion and Invariance in Flow Transformer for Versatile Image Editing
Leveraging the large generative prior of the flow transformer for tuning-free image editing requires authentic inversion to project the image into the model's domain and a flexible invariance control mechanism to preserve non-target contents. However, the prevailing diffusion inversion performs deficiently in flow-based models, and the invariance control cannot reconcile diverse rigid and non-rigid editing tasks. To address these, we systematically analyze the \textbf{inversion and invariance} control based on the flow transformer. Specifically, we unveil that the Euler inversion shares a similar structure to DDIM yet is more susceptible to the approximation error. Thus, we propose a two-stage inversion to first refine the velocity estimation and then compensate for the leftover error, which pivots closely to the model prior and benefits editing. Meanwhile, we propose the invariance control that manipulates the text features within the adaptive layer normalization, connecting the changes in the text prompt to image semantics. This mechanism can simultaneously preserve the non-target contents while allowing rigid and non-rigid manipulation, enabling a wide range of editing types such as visual text, quantity, facial expression, etc. Experiments on versatile scenarios validate that our framework achieves flexible and accurate editing, unlocking the potential of the flow transformer for versatile image editing.
comment: Project Page: https://pengchengpcx.github.io/EditFT/
♻ ☆ Reasoning to Attend: Try to Understand How Token Works
Current Large Multimodal Models (LMMs) empowered visual grounding typically rely on $\texttt{}$ token as a text prompt to jointly optimize the vision-language model (e.g., LLaVA) and the downstream task-specified model (\eg, SAM). However, we observe that little research has looked into how it works. In this work, we first visualize the similarity maps, which are obtained by computing the semantic similarity between the $\texttt{}$ token and the image token embeddings derived from the last hidden layer in both the LLaVA encoder and SAM decoder. Intriguingly, we have found that a striking consistency holds in terms of activation responses in the similarity map,which reveals that what $\texttt{}$ token contributes to is the semantic similarity within image-text pairs. Specifically, $\texttt{}$ token, a placeholder expanded in text vocabulary, extensively queries among individual tokenized image patches to match the semantics of an object from text to the paired image while the Large Language Models (LLMs) are being fine-tuned. Upon the above findings, we present READ, which facilitates LMMs' resilient $\textbf{REA}$soning capability of where to atten$\textbf{D}$ under the guidance of highly activated points borrowed from similarity maps. Remarkably, READ features an intuitive design, Similarity as Points module (SasP), which can be seamlessly applied to $\texttt{}$-like paradigms in a plug-and-play fashion. Also, extensive experiments have been conducted on the ReasonSeg and RefCOCO(+/g) datasets. To validate whether READ suffers from catastrophic forgetting of previous skills after fine-tuning, we further assess its generation ability on an augmented FP-RefCOCO(+/g) dataset. All codes and models are publicly available at https://github.com/rui-qian/READ.
comment: https://github.com/rui-qian/READ
♻ ☆ Generalizable Disaster Damage Assessment via Change Detection with Vision Foundation Model AAAI 2025
The increasing frequency and intensity of natural disasters call for rapid and accurate damage assessment. In response, disaster benchmark datasets from high-resolution satellite imagery have been constructed to develop methods for detecting damaged areas. However, these methods face significant challenges when applied to previously unseen regions due to the limited geographical and disaster-type diversity in the existing datasets. We introduce DAVI (Disaster Assessment with VIsion foundation model), a novel approach that addresses domain disparities and detects structural damage at the building level without requiring ground-truth labels for target regions. DAVI combines task-specific knowledge from a model trained on source regions with task-agnostic knowledge from an image segmentation model to generate pseudo labels indicating potential damage in target regions. It then utilizes a two-stage refinement process, which operate at both pixel and image levels, to accurately identify changes in disaster-affected areas. Our evaluation, including a case study on the 2023 T\"urkiye earthquake, demonstrates that our model achieves exceptional performance across diverse terrains (e.g., North America, Asia, and the Middle East) and disaster types (e.g., wildfires, hurricanes, and tsunamis). This confirms its robustness in disaster assessment without dependence on ground-truth labels and highlights its practical applicability.
comment: Accepted to AAAI 2025 (oral)
♻ ☆ MM-GTUNets: Unified Multi-Modal Graph Deep Learning for Brain Disorders Prediction
Graph deep learning (GDL) has demonstrated impressive performance in predicting population-based brain disorders (BDs) through the integration of both imaging and non-imaging data. However, the effectiveness of GDL based methods heavily depends on the quality of modeling the multi-modal population graphs and tends to degrade as the graph scale increases. Furthermore, these methods often constrain interactions between imaging and non-imaging data to node-edge interactions within the graph, overlooking complex inter-modal correlations, leading to suboptimal outcomes. To overcome these challenges, we propose MM-GTUNets, an end-to-end graph transformer based multi-modal graph deep learning (MMGDL) framework designed for brain disorders prediction at large scale. Specifically, to effectively leverage rich multi-modal information related to diseases, we introduce Modality Reward Representation Learning (MRRL) which adaptively constructs population graphs using a reward system. Additionally, we employ variational autoencoder to reconstruct latent representations of non-imaging features aligned with imaging features. Based on this, we propose Adaptive Cross-Modal Graph Learning (ACMGL), which captures critical modality-specific and modality-shared features through a unified GTUNet encoder taking advantages of Graph UNet and Graph Transformer, and feature fusion module. We validated our method on two public multi-modal datasets ABIDE and ADHD-200, demonstrating its superior performance in diagnosing BDs. Our code is available at https://github.com/NZWANG/MM-GTUNets.
♻ ☆ Towards Long-Horizon Vision-Language Navigation: Platform, Benchmark and Method
Existing Vision-Language Navigation (VLN) methods primarily focus on single-stage navigation, limiting their effectiveness in multi-stage and long-horizon tasks within complex and dynamic environments. To address these limitations, we propose a novel VLN task, named Long-Horizon Vision-Language Navigation (LH-VLN), which emphasizes long-term planning and decision consistency across consecutive subtasks. Furthermore, to support LH-VLN, we develop an automated data generation platform NavGen, which constructs datasets with complex task structures and improves data utility through a bidirectional, multi-granularity generation approach. To accurately evaluate complex tasks, we construct the Long-Horizon Planning and Reasoning in VLN (LHPR-VLN) benchmark consisting of 3,260 tasks with an average of 150 task steps, serving as the first dataset specifically designed for the long-horizon vision-language navigation task. Furthermore, we propose Independent Success Rate (ISR), Conditional Success Rate (CSR), and CSR weight by Ground Truth (CGT) metrics, to provide fine-grained assessments of task completion. To improve model adaptability in complex tasks, we propose a novel Multi-Granularity Dynamic Memory (MGDM) module that integrates short-term memory blurring with long-term memory retrieval to enable flexible navigation in dynamic environments. Our platform, benchmark and method supply LH-VLN with a robust data generation pipeline, comprehensive model evaluation dataset, reasonable metrics, and a novel VLN model, establishing a foundational framework for advancing LH-VLN.
comment: A novel Vision-Language Navigation task: Long-Horizon Vision-Language Navigation, project page: https://hcplab-sysu.github.io/LH-VLN/
♻ ☆ WorldPose: A World Cup Dataset for Global 3D Human Pose Estimation
We present WorldPose, a novel dataset for advancing research in multi-person global pose estimation in the wild, featuring footage from the 2022 FIFA World Cup. While previous datasets have primarily focused on local poses, often limited to a single person or in constrained, indoor settings, the infrastructure deployed for this sporting event allows access to multiple fixed and moving cameras in different stadiums. We exploit the static multi-view setup of HD cameras to recover the 3D player poses and motions with unprecedented accuracy given capture areas of more than 1.75 acres. We then leverage the captured players' motions and field markings to calibrate a moving broadcasting camera. The resulting dataset comprises more than 80 sequences with approx 2.5 million 3D poses and a total traveling distance of over 120 km. Subsequently, we conduct an in-depth analysis of the SOTA methods for global pose estimation. Our experiments demonstrate that WorldPose challenges existing multi-person techniques, supporting the potential for new research in this area and others, such as sports analysis. All pose annotations (in SMPL format), broadcasting camera parameters and footage will be released for academic research purposes.
♻ ☆ UniMLVG: Unified Framework for Multi-view Long Video Generation with Comprehensive Control Capabilities for Autonomous Driving
The creation of diverse and realistic driving scenarios has become essential to enhance perception and planning capabilities of the autonomous driving system. However, generating long-duration, surround-view consistent driving videos remains a significant challenge. To address this, we present UniMLVG, a unified framework designed to generate extended street multi-perspective videos under precise control. By integrating single- and multi-view driving videos into the training data, our approach updates cross-frame and cross-view modules across three stages with different training objectives, substantially boosting the diversity and quality of generated visual content. Additionally, we employ the explicit viewpoint modeling in multi-view video generation to effectively improve motion transition consistency. Capable of handling various input reference formats (e.g., text, images, or video), our UniMLVG generates high-quality multi-view videos according to the corresponding condition constraints such as 3D bounding boxes or frame-level text descriptions. Compared to the best models with similar capabilities, our framework achieves improvements of 21.4% in FID and 36.5% in FVD.
♻ ☆ ICM-Assistant: Instruction-tuning Multimodal Large Language Models for Rule-based Explainable Image Content Moderation AAAI 2025
Controversial contents largely inundate the Internet, infringing various cultural norms and child protection standards. Traditional Image Content Moderation (ICM) models fall short in producing precise moderation decisions for diverse standards, while recent multimodal large language models (MLLMs), when adopted to general rule-based ICM, often produce classification and explanation results that are inconsistent with human moderators. Aiming at flexible, explainable, and accurate ICM, we design a novel rule-based dataset generation pipeline, decomposing concise human-defined rules and leveraging well-designed multi-stage prompts to enrich short explicit image annotations. Our ICM-Instruct dataset includes detailed moderation explanation and moderation Q-A pairs. Built upon it, we create our ICM-Assistant model in the framework of rule-based ICM, making it readily applicable in real practice. Our ICM-Assistant model demonstrates exceptional performance and flexibility. Specifically, it significantly outperforms existing approaches on various sources, improving both the moderation classification (36.8% on average) and moderation explanation quality (26.6% on average) consistently over existing MLLMs. Code/Data is available at https://github.com/zhaoyuzhi/ICM-Assistant.
comment: Accepted by the AAAI 2025
♻ ☆ Constructing Fair Latent Space for Intersection of Fairness and Explainability AAAI 2025
As the use of machine learning models has increased, numerous studies have aimed to enhance fairness. However, research on the intersection of fairness and explainability remains insufficient, leading to potential issues in gaining the trust of actual users. Here, we propose a novel module that constructs a fair latent space, enabling faithful explanation while ensuring fairness. The fair latent space is constructed by disentangling and redistributing labels and sensitive attributes, allowing the generation of counterfactual explanations for each type of information. Our module is attached to a pretrained generative model, transforming its biased latent space into a fair latent space. Additionally, since only the module needs to be trained, there are advantages in terms of time and cost savings, without the need to train the entire generative model. We validate the fair latent space with various fairness metrics and demonstrate that our approach can effectively provide explanations for biased decisions and assurances of fairness.
comment: 14 pages, 5 figures, accepted in AAAI 2025
♻ ☆ Making Images Real Again: A Comprehensive Survey on Deep Image Composition
As a common image editing operation, image composition (object insertion) aims to combine the foreground from one image and another background image, resulting in a composite image. However, there are many issues that could make the composite images unrealistic. These issues can be summarized as the inconsistency between foreground and background, which includes appearance inconsistency (e.g., incompatible illumination), geometry inconsistency (e.g., unreasonable size), and semantic inconsistency (e.g., mismatched semantic context). Image composition task could be decomposed into multiple sub-tasks, in which each sub-task targets at one or more issues. Specifically, object placement aims to find reasonable scale, location, and shape for the foreground. Image blending aims to address the unnatural boundary between foreground and background. Image harmonization aims to adjust the illumination statistics of foreground. Shadow (resp., reflection) generation aims to generate plausible shadow (resp., reflection) for the foreground. These sub-tasks can be executed sequentially or parallelly to acquire realistic composite images. To the best of our knowledge, there is no previous survey on image composition (object insertion). In this paper, we conduct comprehensive survey over the sub-tasks and combinatorial task of image composition (object insertion). For each one, we summarize the existing methods, available datasets, and common evaluation metrics. We have also contributed the first image composition toolbox libcom, which assembles 10+ image composition related functions.
♻ ☆ DiffVSR: Enhancing Real-World Video Super-Resolution with Diffusion Models for Advanced Visual Quality and Temporal Consistency
Diffusion models have demonstrated exceptional capabilities in image generation and restoration, yet their application to video super-resolution faces significant challenges in maintaining both high fidelity and temporal consistency. We present DiffVSR, a diffusion-based framework for real-world video super-resolution that effectively addresses these challenges through key innovations. For intra-sequence coherence, we develop a multi-scale temporal attention module and temporal-enhanced VAE decoder that capture fine-grained motion details. To ensure inter-sequence stability, we introduce a noise rescheduling mechanism with an interweaved latent transition approach, which enhances temporal consistency without additional training overhead. We propose a progressive learning strategy that transitions from simple to complex degradations, enabling robust optimization despite limited high-quality video data. Extensive experiments demonstrate that DiffVSR delivers superior results in both visual quality and temporal consistency, setting a new performance standard in real-world video super-resolution.
comment: Project page: https://xh9998.github.io/DiffVSR-project/
♻ ☆ Touchstone Benchmark: Are We on the Right Way for Evaluating AI Algorithms for Medical Segmentation? NeurIPS-2024
How can we test AI performance? This question seems trivial, but it isn't. Standard benchmarks often have problems such as in-distribution and small-size test sets, oversimplified metrics, unfair comparisons, and short-term outcome pressure. As a consequence, good performance on standard benchmarks does not guarantee success in real-world scenarios. To address these problems, we present Touchstone, a large-scale collaborative segmentation benchmark of 9 types of abdominal organs. This benchmark is based on 5,195 training CT scans from 76 hospitals around the world and 5,903 testing CT scans from 11 additional hospitals. This diverse test set enhances the statistical significance of benchmark results and rigorously evaluates AI algorithms across various out-of-distribution scenarios. We invited 14 inventors of 19 AI algorithms to train their algorithms, while our team, as a third party, independently evaluated these algorithms on three test sets. In addition, we also evaluated pre-existing AI frameworks--which, differing from algorithms, are more flexible and can support different algorithms--including MONAI from NVIDIA, nnU-Net from DKFZ, and numerous other open-source frameworks. We are committed to expanding this benchmark to encourage more innovation of AI algorithms for the medical domain.
comment: Accepted to NeurIPS-2024
♻ ☆ RICAU-Net: Residual-block Inspired Coordinate Attention U-Net for Segmentation of Small and Sparse Calcium Lesions in Cardiac CT
The Agatston score, which is the sum of the calcification in the four main coronary arteries, has been widely used in the diagnosis of coronary artery disease (CAD). However, many studies have emphasized the importance of the vessel-specific Agatston score, as calcification in a specific vessel is significantly correlated with the occurrence of coronary heart disease (CHD). In this paper, we propose the Residual-block Inspired Coordinate Attention U-Net (RICAU-Net), which incorporates coordinate attention in two distinct manners and a customized combo loss function for lesion-specific coronary artery calcium (CAC) segmentation. This approach aims to tackle the high class-imbalance issue associated with small and sparse CAC lesions. Experimental results and the ablation study demonstrate that the proposed method outperforms the five other U-Net based methods used in medical applications, by achieving the highest per-lesion Dice scores across all four lesions.
comment: Accepted by IEEE ISBI 2025
♻ ☆ Zero-Shot Monocular Scene Flow Estimation in the Wild
Large models have shown generalization across datasets for many low-level vision tasks, like depth estimation, but no such general models exist for scene flow. Even though scene flow has wide potential use, it is not used in practice because current predictive models do not generalize well. We identify three key challenges and propose solutions for each. First, we create a method that jointly estimates geometry and motion for accurate prediction. Second, we alleviate scene flow data scarcity with a data recipe that affords us 1M annotated training samples across diverse synthetic scenes. Third, we evaluate different parameterizations for scene flow prediction and adopt a natural and effective parameterization. Our resulting model outperforms existing methods as well as baselines built on large-scale models in terms of 3D end-point error, and shows zero-shot generalization to the casually captured videos from DAVIS and the robotic manipulation scenes from RoboTAP. Overall, our approach makes scene flow prediction more practical in-the-wild.
comment: Project Website: https://research.nvidia.com/labs/lpr/zero_msf//
♻ ☆ List Items One by One: A New Data Source and Learning Paradigm for Multimodal LLMs
Set-of-Mark (SoM) Prompting unleashes the visual grounding capability of GPT-4V, by enabling the model to associate visual objects with tags inserted on the image. These tags, marked with alphanumerics, can be indexed via text tokens for easy reference. Despite the extraordinary performance from GPT-4V, we observe that other Multimodal Large Language Models (MLLMs) struggle to understand these visual tags. To promote the learning of SoM prompting for open-source models, we propose a new learning paradigm: "list items one by one," which asks the model to enumerate and describe all visual tags placed on the image following the alphanumeric orders of tags. By integrating our curated dataset with other visual instruction tuning datasets, we are able to equip existing MLLMs with the SoM prompting ability. Furthermore, we evaluate our finetuned SoM models on five MLLM benchmarks. We find that this new dataset, even in a relatively small size (10k-30k images with tags), significantly enhances visual reasoning capabilities and reduces hallucinations for MLLMs. Perhaps surprisingly, these improvements persist even when the visual tags are omitted from input images during inference. This suggests the potential of "list items one by one" as a new paradigm for training MLLMs, which strengthens the object-text alignment through the use of visual tags in the training stage. Finally, we conduct analyses by probing trained models to understand the working mechanism of SoM. Our code and data are available at \url{https://github.com/zzxslp/SoM-LLaVA}.
comment: published at COLM-2024
Information Retrieval 11
☆ Poison-RAG: Adversarial Data Poisoning Attacks on Retrieval-Augmented Generation in Recommender Systems
This study presents Poison-RAG, a framework for adversarial data poisoning attacks targeting retrieval-augmented generation (RAG)-based recommender systems. Poison-RAG manipulates item metadata, such as tags and descriptions, to influence recommendation outcomes. Using item metadata generated through a large language model (LLM) and embeddings derived via the OpenAI API, we explore the impact of adversarial poisoning attacks on provider-side, where attacks are designed to promote long-tail items and demote popular ones. Two attack strategies are proposed: local modifications, which personalize tags for each item using BERT embeddings, and global modifications, applying uniform tags across the dataset. Experiments conducted on the MovieLens dataset in a black-box setting reveal that local strategies improve manipulation effectiveness by up to 50\%, while global strategies risk boosting already popular items. Results indicate that popular items are more susceptible to attacks, whereas long-tail items are harder to manipulate. Approximately 70\% of items lack tags, presenting a cold-start challenge; data augmentation and synthesis are proposed as potential defense mechanisms to enhance RAG-based systems' resilience. The findings emphasize the need for robust metadata management to safeguard recommendation frameworks. Code and data are available at https://github.com/atenanaz/Poison-RAG.
☆ Exploring Preference-Guided Diffusion Model for Cross-Domain Recommendation KDD'2025
Cross-domain recommendation (CDR) has been proven as a promising way to alleviate the cold-start issue, in which the most critical problem is how to draw an informative user representation in the target domain via the transfer of user preference existing in the source domain. Prior efforts mostly follow the embedding-and-mapping paradigm, which first integrate the preference into user representation in the source domain, and then perform a mapping function on this representation to the target domain. However, they focus on mapping features across domains, neglecting to explicitly model the preference integration process, which may lead to learning coarse user representation. Diffusion models (DMs), which contribute to more accurate user/item representations due to their explicit information injection capability, have achieved promising performance in recommendation systems. Nevertheless, these DMs-based methods cannot directly account for valuable user preference in other domains, leading to challenges in adapting to the transfer of preference for cold-start users. Consequently, the feasibility of DMs for CDR remains underexplored. To this end, we explore to utilize the explicit information injection capability of DMs for user preference integration and propose a Preference-Guided Diffusion Model for CDR to cold-start users, termed as DMCDR. Specifically, we leverage a preference encoder to establish the preference guidance signal with the user's interaction history in the source domain. Then, we explicitly inject the preference guidance signal into the user representation step by step to guide the reverse process, and ultimately generate the personalized user representation in the target domain, thus achieving the transfer of user preference across domains. Furthermore, we comprehensively explore the impact of six DMs-based variants on CDR.
comment: This paper is accepted by KDD'2025
☆ Biomedical Knowledge Graph: A Survey of Domains, Tasks, and Real-World Applications
Biomedical knowledge graphs (BKGs) have emerged as powerful tools for organizing and leveraging the vast and complex data found across the biomedical field. Yet, current reviews of BKGs often limit their scope to specific domains or methods, overlooking the broader landscape and the rapid technological progress reshaping it. In this survey, we address this gap by offering a systematic review of BKGs from three core perspectives: domains, tasks, and applications. We begin by examining how BKGs are constructed from diverse data sources, including molecular interactions, pharmacological datasets, and clinical records. Next, we discuss the essential tasks enabled by BKGs, focusing on knowledge management, retrieval, reasoning, and interpretation. Finally, we highlight real-world applications in precision medicine, drug discovery, and scientific research, illustrating the translational impact of BKGs across multiple sectors. By synthesizing these perspectives into a unified framework, this survey not only clarifies the current state of BKG research but also establishes a foundation for future exploration, enabling both innovative methodological advances and practical implementations.
comment: 45 pages, 4 figures, 3 tables
☆ Investigating the Scalability of Approximate Sparse Retrieval Algorithms to Massive Datasets
Learned sparse text embeddings have gained popularity due to their effectiveness in top-k retrieval and inherent interpretability. Their distributional idiosyncrasies, however, have long hindered their use in real-world retrieval systems. That changed with the recent development of approximate algorithms that leverage the distributional properties of sparse embeddings to speed up retrieval. Nonetheless, in much of the existing literature, evaluation has been limited to datasets with only a few million documents such as MSMARCO. It remains unclear how these systems behave on much larger datasets and what challenges lurk in larger scales. To bridge that gap, we investigate the behavior of state-of-the-art retrieval algorithms on massive datasets. We compare and contrast the recently-proposed Seismic and graph-based solutions adapted from dense retrieval. We extensively evaluate Splade embeddings of 138M passages from MsMarco-v2 and report indexing time and other efficiency and effectiveness metrics.
☆ Uncertainty Estimation in the Real World: A Study on Music Emotion Recognition ECIR
Any data annotation for subjective tasks shows potential variations between individuals. This is particularly true for annotations of emotional responses to musical stimuli. While older approaches to music emotion recognition systems frequently addressed this uncertainty problem through probabilistic modeling, modern systems based on neural networks tend to ignore the variability and focus only on predicting central tendencies of human subjective responses. In this work, we explore several methods for estimating not only the central tendencies of the subjective responses to a musical stimulus, but also for estimating the uncertainty associated with these responses. In particular, we investigate probabilistic loss functions and inference-time random sampling. Experimental results indicate that while the modeling of the central tendencies is achievable, modeling of the uncertainty in subjective responses proves significantly more challenging with currently available approaches even when empirical estimates of variations in the responses are available.
comment: To be presented as a Findings paper at the 2025 European Conference on Information Retrieval (ECIR)
☆ KEIR @ ECIR 2025: The Second Workshop on Knowledge-Enhanced Information Retrieval ECIR 2025
Pretrained language models (PLMs) like BERT and GPT-4 have become the foundation for modern information retrieval (IR) systems. However, existing PLM-based IR models primarily rely on the knowledge learned during training for prediction, limiting their ability to access and incorporate external, up-to-date, or domain-specific information. Therefore, current information retrieval systems struggle with semantic nuances, context relevance, and domain-specific issues. To address these challenges, we propose the second Knowledge-Enhanced Information Retrieval workshop (KEIR @ ECIR 2025) as a platform to discuss innovative approaches that integrate external knowledge, aiming to enhance the effectiveness of information retrieval in a rapidly evolving technological landscape. The goal of this workshop is to bring together researchers from academia and industry to discuss various aspects of knowledge-enhanced information retrieval.
comment: KEIR @ ECIR 2025 workshop
☆ Ontology Matching with Large Language Models and Prioritized Depth-First Search
Ontology matching (OM) plays a key role in enabling data interoperability and knowledge sharing, but it remains challenging due to the need for large training datasets and limited vocabulary processing in machine learning approaches. Recently, methods based on Large Language Model (LLMs) have shown great promise in OM, particularly through the use of a retrieve-then-prompt pipeline. In this approach, relevant target entities are first retrieved and then used to prompt the LLM to predict the final matches. Despite their potential, these systems still present limited performance and high computational overhead. To address these issues, we introduce MILA, a novel approach that embeds a retrieve-identify-prompt pipeline within a prioritized depth-first search (PDFS) strategy. This approach efficiently identifies a large number of semantic correspondences with high accuracy, limiting LLM requests to only the most borderline cases. We evaluated MILA using the biomedical challenge proposed in the 2023 and 2024 editions of the Ontology Alignment Evaluation Initiative. Our method achieved the highest F-Measure in four of the five unsupervised tasks, outperforming state-of-the-art OM systems by up to 17%. It also performed better than or comparable to the leading supervised OM systems. MILA further exhibited task-agnostic performance, remaining stable across all tasks and settings, while significantly reducing LLM requests. These findings highlight that high-performance LLM-based OM can be achieved through a combination of programmed (PDFS), learned (embedding vectors), and prompting-based heuristics, without the need of domain-specific heuristics or fine-tuning.
☆ Verifying Cross-modal Entity Consistency in News using Vision-language Models ECIR
The web has become a crucial source of information, but it is also used to spread disinformation, often conveyed through multiple modalities like images and text. The identification of inconsistent cross-modal information, in particular entities such as persons, locations, and events, is critical to detect disinformation. Previous works either identify out-of-context disinformation by assessing the consistency of images to the whole document, neglecting relations of individual entities, or focus on generic entities that are not relevant to news. So far, only few approaches have addressed the task of validating entity consistency between images and text in news. However, the potential of large vision-language models (LVLMs) has not been explored yet. In this paper, we propose an LVLM-based framework for verifying Cross-modal Entity Consistency~(LVLM4CEC), to assess whether persons, locations and events in news articles are consistent across both modalities. We suggest effective prompting strategies for LVLMs for entity verification that leverage reference images crawled from web. Moreover, we extend three existing datasets for the task of entity verification in news providing manual ground-truth data. Our results show the potential of LVLMs for automating cross-modal entity verification, showing improved accuracy in identifying persons and events when using evidence images. Moreover, our method outperforms a baseline for location and event verification in documents. The datasets and source code are available on GitHub at \url{https://github.com/TIBHannover/LVLM4CEC}.
comment: Accepted for publication in: European Conference on Information Retrieval (ECIR) 2025
☆ Revisiting Language Models in Neural News Recommender Systems ECIR 2025
Neural news recommender systems (RSs) have integrated language models (LMs) to encode news articles with rich textual information into representations, thereby improving the recommendation process. Most studies suggest that (i) news RSs achieve better performance with larger pre-trained language models (PLMs) than shallow language models (SLMs), and (ii) that large language models (LLMs) outperform PLMs. However, other studies indicate that PLMs sometimes lead to worse performance than SLMs. Thus, it remains unclear whether using larger LMs consistently improves the performance of news RSs. In this paper, we revisit, unify, and extend these comparisons of the effectiveness of LMs in news RSs using the real-world MIND dataset. We find that (i) larger LMs do not necessarily translate to better performance in news RSs, and (ii) they require stricter fine-tuning hyperparameter selection and greater computational resources to achieve optimal recommendation performance than smaller LMs. On the positive side, our experiments show that larger LMs lead to better recommendation performance for cold-start users: they alleviate dependency on extensive user interaction history and make recommendations more reliant on the news content.
comment: 16 pages, ECIR 2025, the 47th European Conference on Information Retrieval
☆ Disentangled Modeling of Preferences and Social Influence for Group Recommendation AAAI 2025
The group recommendation (GR) aims to suggest items for a group of users in social networks. Existing work typically considers individual preferences as the sole factor in aggregating group preferences. Actually, social influence is also an important factor in modeling users' contributions to the final group decision. However, existing methods either neglect the social influence of individual members or bundle preferences and social influence together as a unified representation. As a result, these models emphasize the preferences of the majority within the group rather than the actual interaction items, which we refer to as the preference bias issue in GR. Moreover, the self-supervised learning (SSL) strategies they designed to address the issue of group data sparsity fail to account for users' contextual social weights when regulating group representations, leading to suboptimal results. To tackle these issues, we propose a novel model based on Disentangled Modeling of Preferences and Social Influence for Group Recommendation (DisRec). Concretely, we first design a user-level disentangling network to disentangle the preferences and social influence of group members with separate embedding propagation schemes based on (hyper)graph convolution networks. We then introduce a socialbased contrastive learning strategy, selectively excluding user nodes based on their social importance to enhance group representations and alleviate the group-level data sparsity issue. The experimental results demonstrate that our model significantly outperforms state-of-the-art methods on two realworld datasets.
comment: AAAI 2025 Oral
☆ PlotEdit: Natural Language-Driven Accessible Chart Editing in PDFs via Multimodal LLM Agents ECIR 2025
Chart visualizations, while essential for data interpretation and communication, are predominantly accessible only as images in PDFs, lacking source data tables and stylistic information. To enable effective editing of charts in PDFs or digital scans, we present PlotEdit, a novel multi-agent framework for natural language-driven end-to-end chart image editing via self-reflective LLM agents. PlotEdit orchestrates five LLM agents: (1) Chart2Table for data table extraction, (2) Chart2Vision for style attribute identification, (3) Chart2Code for retrieving rendering code, (4) Instruction Decomposition Agent for parsing user requests into executable steps, and (5) Multimodal Editing Agent for implementing nuanced chart component modifications - all coordinated through multimodal feedback to maintain visual fidelity. PlotEdit outperforms existing baselines on the ChartCraft dataset across style, layout, format, and data-centric edits, enhancing accessibility for visually challenged users and improving novice productivity.
comment: Accepted at ECIR 2025
Machine Learning 133
☆ Synthetic Data Can Mislead Evaluations: Membership Inference as Machine Text Detection
Recent work shows membership inference attacks (MIAs) on large language models (LLMs) produce inconclusive results, partly due to difficulties in creating non-member datasets without temporal shifts. While researchers have turned to synthetic data as an alternative, we show this approach can be fundamentally misleading. Our experiments indicate that MIAs function as machine-generated text detectors, incorrectly identifying synthetic data as training samples regardless of the data source. This behavior persists across different model architectures and sizes, from open-source models to commercial ones such as GPT-3.5. Even synthetic text generated by different, potentially larger models is classified as training data by the target model. Our findings highlight a serious concern: using synthetic data in membership evaluations may lead to false conclusions about model memorization and data leakage. We caution that this issue could affect other evaluations using model signals such as loss where synthetic or machine-generated translated data substitutes for real-world samples.
☆ Glinthawk: A Two-Tiered Architecture for High-Throughput LLM Inference
Large Language Models (LLM) have revolutionized natural language processing, but their inference demands substantial resources, while under-utilizing high-end accelerators like GPUs. A major bottleneck arises from the attention mechanism, which requires storing large key-value caches, limiting the maximum achievable throughput way below the available computing resources. Current approaches attempt to mitigate this issue through memory-efficient attention and paging mechanisms, but remained constrained by the assumption that all operations must be performed on high-end accelerators. In this work, we propose Glinthawk, a two-tiered architecture that decouples the attention mechanism from the rest of the Transformer model. This approach allows the memory requirements for attention to scale independently, enabling larger batch sizes and more efficient use of the high-end accelerators. We prototype Glinthawk with NVIDIA T4 GPUs as one tier and standard CPU VMs as the other. Compared to a traditional single-tier setup, it improves throughput by $5.9\times$ and reduces cost of generation by $2.8\times$. For longer sequence lengths, it achieves $16.3\times$ throughput improvement at $2.4\times$ less cost. Our evaluation shows that this architecture can tolerate moderate network latency with minimal performance degradation, making it highly effective for latency-tolerant, throughput-oriented applications such as batch processing. We shared our prototype publicly at \url{https://github.com/microsoft/glinthawk}.
☆ Can Bayesian Neural Networks Make Confident Predictions? NeurIPS 2024
Bayesian inference promises a framework for principled uncertainty quantification of neural network predictions. Barriers to adoption include the difficulty of fully characterizing posterior distributions on network parameters and the interpretability of posterior predictive distributions. We demonstrate that under a discretized prior for the inner layer weights, we can exactly characterize the posterior predictive distribution as a Gaussian mixture. This setting allows us to define equivalence classes of network parameter values which produce the same likelihood (training error) and to relate the elements of these classes to the network's scaling regime -- defined via ratios of the training sample size, the size of each layer, and the number of final layer parameters. Of particular interest are distinct parameter realizations that map to low training error and yet correspond to distinct modes in the posterior predictive distribution. We identify settings that exhibit such predictive multimodality, and thus provide insight into the accuracy of unimodal posterior approximations. We also characterize the capacity of a model to "learn from data" by evaluating contraction of the posterior predictive in different scaling regimes.
comment: Mathematics of Modern Machine Learning Workshop at NeurIPS 2024
☆ Is logical analysis performed by transformers taking place in self-attention or in the fully connected part?
Transformers architecture apply self-attention to tokens represented as vectors, before a fully connected (neuronal network) layer. These two parts can be layered many times. Traditionally, self-attention is seen as a mechanism for aggregating information before logical operations are performed by the fully connected layer. In this paper, we show, that quite counter-intuitively, the logical analysis can also be performed within the self-attention. For this we implement a handcrafted single-level encoder layer which performs the logical analysis within self-attention. We then study the scenario in which a one-level transformer model undergoes self-learning using gradient descent. We investigate whether the model utilizes fully connected layers or self-attention mechanisms for logical analysis when it has the choice. Given that gradient descent can become stuck at undesired zeros, we explicitly calculate these unwanted zeros and find ways to avoid them. We do all this in the context of predicting grammatical category pairs of adjacent tokens in a text. We believe that our findings have broader implications for understanding the potential logical operations performed by self-attention.
comment: 42 pages, 3 figures, to be submitted
☆ Disentangling stellar atmospheric parameters in astronomical spectra using Generative Adversarial Neural Networks
A method based on Generative Adversaria! Networks (GANs) is developed for disentangling the physical (effective temperature and gravity) and chemical (metallicity, overabundance of a-elements with respect to iron) atmospheric properties in astronomical spectra. Using a projection of the stellar spectra, commonly called latent space, in which the contribution dueto one or several main stellar physicochemical properties is minimised while others are enhanced, it was possible to maximise the information related to certain properties, which can then be extracted using artificial neural networks (ANN) as regressors with higher accuracy than a reference method based on the use of ANN trained with the original spectra. Methods. Our model utilises autoencoders, comprising two artificial neural networks: an encoder anda decoder which transform input data into a low-dimensional representation known as latent space. It also uses discriminators, which are additional neural networks aimed at transforming the traditional autoencoder training into an adversaria! approach, to disentangle or reinforce the astrophysical parameters from the latent space. The GANDALF tool is described. It was developed to define, train, and test our GAN model with a web framework to show how the disentangling algorithm works visually. It is open to the community in Github. Results. The performance of our approach for retrieving atmospheric stellar properties from spectra is demonstrated using Gaia Radial Velocity Spectrograph (RVS) data from DR3. We use a data-driven perspective and obtain very competitive values, ali within the literature errors, and with the advantage of an important dimensionality reduction of the data to be processed.
comment: 9 pages, 8 figures
☆ SILO: Solving Inverse Problems with Latent Operators
Consistent improvement of image priors over the years has led to the development of better inverse problem solvers. Diffusion models are the newcomers to this arena, posing the strongest known prior to date. Recently, such models operating in a latent space have become increasingly predominant due to their efficiency. In recent works, these models have been applied to solve inverse problems. Working in the latent space typically requires multiple applications of an Autoencoder during the restoration process, which leads to both computational and restoration quality challenges. In this work, we propose a new approach for handling inverse problems with latent diffusion models, where a learned degradation function operates within the latent space, emulating a known image space degradation. Usage of the learned operator reduces the dependency on the Autoencoder to only the initial and final steps of the restoration process, facilitating faster sampling and superior restoration quality. We demonstrate the effectiveness of our method on a variety of image restoration tasks and datasets, achieving significant improvements over prior art.
comment: Project page in https://ronraphaeli.github.io/SILO-website/
☆ Personalized Federated Learning for Cellular VR: Online Learning and Dynamic Caching
Delivering an immersive experience to virtual reality (VR) users through wireless connectivity offers the freedom to engage from anywhere at any time. Nevertheless, it is challenging to ensure seamless wireless connectivity that delivers real-time and high-quality videos to the VR users. This paper proposes a field of view (FoV) aware caching for mobile edge computing (MEC)-enabled wireless VR network. In particular, the FoV of each VR user is cached/prefetched at the base stations (BSs) based on the caching strategies tailored to each BS. Specifically, decentralized and personalized federated learning (DP-FL) based caching strategies with guarantees are presented. Considering VR systems composed of multiple VR devices and BSs, a DP-FL caching algorithm is implemented at each BS to personalize content delivery for VR users. The utilized DP-FL algorithm guarantees a probably approximately correct (PAC) bound on the conditional average cache hit. Further, to reduce the cost of communicating gradients, one-bit quantization of the stochastic gradient descent (OBSGD) is proposed, and a convergence guarantee of $\mathcal{O}(1/\sqrt{T})$ is obtained for the proposed algorithm, where $T$ is the number of iterations. Additionally, to better account for the wireless channel dynamics, the FoVs are grouped into multicast or unicast groups based on the number of requesting VR users. The performance of the proposed DP-FL algorithm is validated through realistic VR head-tracking dataset, and the proposed algorithm is shown to have better performance in terms of average delay and cache hit as compared to baseline algorithms.
comment: accepted for publication in IEEE Transactions on Communications
☆ Non-Reversible Langevin Algorithms for Constrained Sampling
We consider the constrained sampling problem where the goal is to sample from a target distribution on a constrained domain. We propose skew-reflected non-reversible Langevin dynamics (SRNLD), a continuous-time stochastic differential equation with skew-reflected boundary. We obtain non-asymptotic convergence rate of SRNLD to the target distribution in both total variation and 1-Wasserstein distances. By breaking reversibility, we show that the convergence is faster than the special case of the reversible dynamics. Based on the discretization of SRNLD, we propose skew-reflected non-reversible Langevin Monte Carlo (SRNLMC), and obtain non-asymptotic discretization error from SRNLD, and convergence guarantees to the target distribution in 1-Wasserstein distance. We show better performance guarantees than the projected Langevin Monte Carlo in the literature that is based on the reversible dynamics. Numerical experiments are provided for both synthetic and real datasets to show efficiency of the proposed algorithms.
comment: 30 pages, 9 figures
Transformer Vibration Forecasting for Advancing Rail Safety and Maintenance 4.0
Maintaining railway axles is critical to preventing severe accidents and financial losses. The railway industry is increasingly interested in advanced condition monitoring techniques to enhance safety and efficiency, moving beyond traditional periodic inspections toward Maintenance 4.0. This study introduces a robust Deep Autoregressive solution that integrates seamlessly with existing systems to avert mechanical failures. Our approach simulates and predicts vibration signals under various conditions and fault scenarios, improving dataset robustness for more effective detection systems. These systems can alert maintenance needs, preventing accidents preemptively. We use experimental vibration signals from accelerometers on train axles. Our primary contributions include a transformer model, ShaftFormer, designed for processing time series data, and an alternative model incorporating spectral methods and enhanced observation models. Simulating vibration signals under diverse conditions mitigates the high cost of obtaining experimental signals for all scenarios. Given the non-stationary nature of railway vibration signals, influenced by speed and load changes, our models address these complexities, offering a powerful tool for predictive maintenance in the rail industry.
☆ SeRpEnt: Selective Resampling for Expressive State Space Models
State Space Models (SSMs) have recently enjoyed a rise to prominence in the field of deep learning for sequence modeling, especially as an alternative to Transformers. Their success stems from avoiding two well-known drawbacks of attention-based models: quadratic complexity with respect to the sequence length and inability to model long-range dependencies. The SSM variant Mamba has demonstrated performance comparable to Transformers without any form of attention, thanks to the use of a selective mechanism for the state parameters. Selectivity, however, is only evaluated empirically and the reasons of its effectiveness remain unclear. In this work, we show how selectivity is related to the sequence processing. Our analysis shows that selective time intervals in Mamba act as linear approximators of information. Then, we propose our SeRpEnt architecture, a SSM that further exploits selectivity to compress sequences in an information-aware fashion. It employs a resampling mechanism that aggregates elements based on their information content. Our empirical results in the Long Range Arena benchmark and other language modeling tasks show benefits of the SeRpEnt's resampling mechanism.
comment: 19 pages, 3 figures
☆ Explain-Query-Test: Self-Evaluating LLMs Via Explanation and Comprehension Discrepancy
Large language models (LLMs) have demonstrated remarkable proficiency in generating detailed and coherent explanations of complex concepts. However, the extent to which these models truly comprehend the concepts they articulate remains unclear. To assess the level of comprehension of a model relative to the content it generates, we implemented a self-evaluation pipeline where models: (i) given a topic generate an excerpt with information about the topic, (ii) given an excerpt generate question-answer pairs, and finally (iii) given a question generate an answer. We refer to this self-evaluation approach as Explain-Query-Test (EQT). Interestingly, the accuracy on generated questions resulting from running the EQT pipeline correlates strongly with the model performance as verified by typical benchmarks such as MMLU-Pro. In other words, EQT's performance is predictive of MMLU-Pro's, and EQT can be used to rank models without the need for any external source of evaluation data other than lists of topics of interest. Moreover, our results reveal a disparity between the models' ability to produce detailed explanations and their performance on questions related to those explanations. This gap highlights fundamental limitations in the internal knowledge representation and reasoning abilities of current LLMs. We release the code at https://github.com/asgsaeid/EQT.
☆ Prediction of Lung Metastasis from Hepatocellular Carcinoma using the SEER Database
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality, with lung metastases being the most common site of distant spread and significantly worsening prognosis. Despite the growing availability of clinical and demographic data, predictive models for lung metastasis in HCC remain limited in scope and clinical applicability. In this study, we develop and validate an end-to-end machine learning pipeline using data from the Surveillance, Epidemiology, and End Results (SEER) database. We evaluated three machine learning models (Random Forest, XGBoost, and Logistic Regression) alongside a multilayer perceptron (MLP) neural network. Our models achieved high AUROC values and recall, with the Random Forest and MLP models demonstrating the best overall performance (AUROC = 0.82). However, the low precision across models highlights the challenges of accurately predicting positive cases. To address these limitations, we developed a custom loss function incorporating recall optimization, enabling the MLP model to achieve the highest sensitivity. An ensemble approach further improved overall recall by leveraging the strengths of individual models. Feature importance analysis revealed key predictors such as surgery status, tumor staging, and follow up duration, emphasizing the relevance of clinical interventions and disease progression in metastasis prediction. While this study demonstrates the potential of machine learning for identifying high-risk patients, limitations include reliance on imbalanced datasets, incomplete feature annotations, and the low precision of predictions. Future work should leverage the expanding SEER dataset, improve data imputation techniques, and explore advanced pre-trained models to enhance predictive accuracy and clinical utility.
comment: JJHK and GRN contributed equally, YD and TT are co-corresponding. 11 pages, 7 figures, 1 Table
☆ The Transition from Centralized Machine Learning to Federated Learning for Mental Health in Education: A Survey of Current Methods and Future Directions
Research has increasingly explored the application of artificial intelligence (AI) and machine learning (ML) within the mental health domain to enhance both patient care and healthcare provider efficiency. Given that mental health challenges frequently emerge during early adolescence -- the critical years of high school and college -- investigating AI/ML-driven mental health solutions within the education domain is of paramount importance. Nevertheless, conventional AI/ML techniques follow a centralized model training architecture, which poses privacy risks due to the need for transferring students' sensitive data from institutions, universities, and clinics to central servers. Federated learning (FL) has emerged as a solution to address these risks by enabling distributed model training while maintaining data privacy. Despite its potential, research on applying FL to analyze students' mental health remains limited. In this paper, we aim to address this limitation by proposing a roadmap for integrating FL into mental health data analysis within educational settings. We begin by providing an overview of mental health issues among students and reviewing existing studies where ML has been applied to address these challenges. Next, we examine broader applications of FL in the mental health domain to emphasize the lack of focus on educational contexts. Finally, we propose promising research directions focused on using FL to address mental health issues in the education sector, which entails discussing the synergies between the proposed directions with broader human-centered domains. By categorizing the proposed research directions into short- and long-term strategies and highlighting the unique challenges at each stage, we aim to encourage the development of privacy-conscious AI/ML-driven mental health solutions.
comment: 18 pages, 1 figure, 4 tables
☆ Leveraging graph neural networks and mobility data for COVID-19 forecasting
The COVID-19 pandemic has victimized over 7 million people to date, prompting diverse research efforts. Spatio-temporal models combining mobility data with machine learning have gained attention for disease forecasting. Here, we explore Graph Convolutional Recurrent Network (GCRN) and Graph Convolutional Long Short-Term Memory (GCLSTM), which combine the power of Graph Neural Networks (GNN) with traditional architectures that deal with sequential data. The aim is to forecast future values of COVID-19 cases in Brazil and China by leveraging human mobility networks, whose nodes represent geographical locations and links are flows of vehicles or people. We show that employing backbone extraction to filter out negligible connections in the mobility network enhances predictive stability. Comparing regression and classification tasks demonstrates that binary classification yields smoother, more interpretable results. Interestingly, we observe qualitatively equivalent results for both Brazil and China datasets by introducing sliding windows of variable size and prediction horizons. Compared to prior studies, introducing the sliding window and the network backbone extraction strategies yields improvements of about 80% in root mean squared errors.
☆ Trustformer: A Trusted Federated Transformer
Transformers, a cornerstone of deep-learning architectures for sequential data, have achieved state-of-the-art results in tasks like Natural Language Processing (NLP). Models such as BERT and GPT-3 exemplify their success and have driven the rise of large language models (LLMs). However, a critical challenge persists: safeguarding the privacy of data used in LLM training. Privacy-preserving techniques like Federated Learning (FL) offer potential solutions, but practical limitations hinder their effectiveness for Transformer training. Two primary issues are (I) the risk of sensitive information leakage due to aggregation methods like FedAvg or FedSGD, and (II) the high communication overhead caused by the large size of Transformer models. This paper introduces a novel FL method that reduces communication overhead while maintaining competitive utility. Our approach avoids sharing full model weights by simulating a global model locally. We apply k-means clustering to each Transformer layer, compute centroids locally, and transmit only these centroids to the server instead of full weights or gradients. To enhance security, we leverage Intel SGX for secure transmission of centroids. Evaluated on a translation task, our method achieves utility comparable to state-of-the-art baselines while significantly reducing communication costs. This provides a more efficient and privacy-preserving FL solution for Transformer models.
☆ Spatially-Delineated Domain-Adapted AI Classification: An Application for Oncology Data
Given multi-type point maps from different place-types (e.g., tumor regions), our objective is to develop a classifier trained on the source place-type to accurately distinguish between two classes of the target place-type based on their point arrangements. This problem is societally important for many applications, such as generating clinical hypotheses for designing new immunotherapies for cancer treatment. The challenge lies in the spatial variability, the inherent heterogeneity and variation observed in spatial properties or arrangements across different locations (i.e., place-types). Previous techniques focus on self-supervised tasks to learn domain-invariant features and mitigate domain differences; however, they often neglect the underlying spatial arrangements among data points, leading to significant discrepancies across different place-types. We explore a novel multi-task self-learning framework that targets spatial arrangements, such as spatial mix-up masking and spatial contrastive predictive coding, for spatially-delineated domain-adapted AI classification. Experimental results on real-world datasets (e.g., oncology data) show that the proposed framework provides higher prediction accuracy than baseline methods.
☆ Randomness, exchangeability, and conformal prediction
This note continues development of the functional theory of randomness, a modification of the algorithmic theory of randomness getting rid of unspecified additive constants. It introduces new kinds of confidence predictors, including randomness predictors (the most general confidence predictors based on the assumption of IID observations) and exchangeability predictors (the most general confidence predictors based on the assumption of exchangeable observations). The main result implies that both are close to conformal predictors and quantifies the difference between them.
comment: 14 pages, 1 figure
☆ Randomized Kaczmarz Methods with Beyond-Krylov Convergence
Randomized Kaczmarz methods form a family of linear system solvers which converge by repeatedly projecting their iterates onto randomly sampled equations. While effective in some contexts, such as highly over-determined least squares, Kaczmarz methods are traditionally deemed secondary to Krylov subspace methods, since this latter family of solvers can exploit outliers in the input's singular value distribution to attain fast convergence on ill-conditioned systems. In this paper, we introduce Kaczmarz++, an accelerated randomized block Kaczmarz algorithm that exploits outlying singular values in the input to attain a fast Krylov-style convergence. Moreover, we show that Kaczmarz++ captures large outlying singular values provably faster than popular Krylov methods, for both over- and under-determined systems. We also develop an optimized variant for positive semidefinite systems, called CD++, demonstrating empirically that it is competitive in arithmetic operations with both CG and GMRES on a collection of benchmark problems. To attain these results, we introduce several novel algorithmic improvements to the Kaczmarz framework, including adaptive momentum acceleration, Tikhonov-regularized projections, and a memoization scheme for reusing information from previously sampled equation~blocks.
☆ Classification of HI Galaxy Profiles Using Unsupervised Learning and Convolutional Neural Networks: A Comparative Analysis and Methodological Cases of Studies
Hydrogen, the most abundant element in the universe, is crucial for understanding galaxy formation and evolution. The 21 cm neutral atomic hydrogen - HI spectral line maps the gas kinematics within galaxies, providing key insights into interactions, galactic structure, and star formation processes. With new radio instruments, the volume and complexity of data is increasing. To analyze and classify integrated HI spectral profiles in a efficient way, this work presents a framework that integrates Machine Learning techniques, combining unsupervised methods and CNNs. To this end, we apply our framework to a selected subsample of 318 spectral HI profiles of the CIG and 30.780 profiles from the Arecibo Legacy Fast ALFA Survey catalogue. Data pre-processing involved the Busyfit package and iterative fitting with polynomial, Gaussian, and double-Lorentzian models. Clustering methods, including K-means, spectral clustering, DBSCAN, and agglomerative clustering, were used for feature extraction and to bootstrap classification we applied K-NN, SVM, and Random Forest classifiers, optimizing accuracy with CNN. Additionally, we introduced a 2D model of the profiles to enhance classification by adding dimensionality to the data. Three 2D models were generated based on transformations and normalised versions to quantify the level of asymmetry. These methods were tested in a previous analytical classification study conducted by the Analysis of the Interstellar Medium in Isolated Galaxies group. This approach enhances classification accuracy and aims to establish a methodology that could be applied to data analysis in future surveys conducted with the Square Kilometre Array (SKA), currently under construction. All materials, code, and models have been made publicly available in an open-access repository, adhering to FAIR principles.
comment: 5 pages, 3 figures
☆ KKL Observer Synthesis for Nonlinear Systems via Physics-Informed Learning
This paper proposes a novel learning approach for designing Kazantzis-Kravaris/Luenberger (KKL) observers for autonomous nonlinear systems. The design of a KKL observer involves finding an injective map that transforms the system state into a higher-dimensional observer state, whose dynamics is linear and stable. The observer's state is then mapped back to the original system coordinates via the inverse map to obtain the state estimate. However, finding this transformation and its inverse is quite challenging. We propose to sequentially approximate these maps by neural networks that are trained using physics-informed learning. We generate synthetic data for training by numerically solving the system and observer dynamics. Theoretical guarantees for the robustness of state estimation against approximation error and system uncertainties are provided. Additionally, a systematic method for optimizing observer performance through parameter selection is presented. The effectiveness of the proposed approach is demonstrated through numerical simulations on benchmark examples and its application to sensor fault detection and isolation in a network of Kuramoto oscillators using learned KKL observers.
☆ Dynamic Scene Understanding from Vision-Language Representations
Images depicting complex, dynamic scenes are challenging to parse automatically, requiring both high-level comprehension of the overall situation and fine-grained identification of participating entities and their interactions. Current approaches use distinct methods tailored to sub-tasks such as Situation Recognition and detection of Human-Human and Human-Object Interactions. However, recent advances in image understanding have often leveraged web-scale vision-language (V&L) representations to obviate task-specific engineering. In this work, we propose a framework for dynamic scene understanding tasks by leveraging knowledge from modern, frozen V&L representations. By framing these tasks in a generic manner - as predicting and parsing structured text, or by directly concatenating representations to the input of existing models - we achieve state-of-the-art results while using a minimal number of trainable parameters relative to existing approaches. Moreover, our analysis of dynamic knowledge of these representations shows that recent, more powerful representations effectively encode dynamic scene semantics, making this approach newly possible.
☆ Advancing Language Model Reasoning through Reinforcement Learning and Inference Scaling
Large language models (LLMs) have demonstrated remarkable capabilities in complex reasoning tasks. However, existing approaches mainly rely on imitation learning and struggle to achieve effective test-time scaling. While reinforcement learning (RL) holds promise for enabling self-exploration and learning from feedback, recent attempts yield only modest improvements in complex reasoning. In this paper, we present T1 to scale RL by encouraging exploration and understand inference scaling. We first initialize the LLM using synthesized chain-of-thought data that integrates trial-and-error and self-verification. To scale RL training, we promote increased sampling diversity through oversampling. We further employ an entropy bonus as an auxiliary loss, alongside a dynamic anchor for regularization to facilitate reward optimization. We demonstrate that T1 with open LLMs as its base exhibits inference scaling behavior and achieves superior performance on challenging math reasoning benchmarks. For example, T1 with Qwen2.5-32B as the base model outperforms the recent Qwen QwQ-32B-Preview model on MATH500, AIME2024, and Omni-math-500. More importantly, we present a simple strategy to examine inference scaling, where increased inference budgets directly lead to T1's better performance without any additional verification. We will open-source the T1 models and the data used to train them at \url{https://github.com/THUDM/T1}.
☆ Class Imbalance in Anomaly Detection: Learning from an Exactly Solvable Model
Class imbalance (CI) is a longstanding problem in machine learning, slowing down training and reducing performances. Although empirical remedies exist, it is often unclear which ones work best and when, due to the lack of an overarching theory. We address a common case of imbalance, that of anomaly (or outlier) detection. We provide a theoretical framework to analyze, interpret and address CI. It is based on an exact solution of the teacher-student perceptron model, through replica theory. Within this framework, one can distinguish several sources of CI: either intrinsic, train or test imbalance. Our analysis reveals that the optimal train imbalance is generally different from 50%, with a non trivial dependence on the intrinsic imbalance, the abundance of data and on the noise in the learning. Moreover, there is a crossover between a small noise training regime where results are independent of the noise level to a high noise regime where performances quickly degrade with noise. Our results challenge some of the conventional wisdom on CI and offer practical guidelines to address it.
comment: 27 pages, 14 figures
☆ Early evidence of how LLMs outperform traditional systems on OCR/HTR tasks for historical records
We explore the ability of two LLMs -- GPT-4o and Claude Sonnet 3.5 -- to transcribe historical handwritten documents in a tabular format and compare their performance to traditional OCR/HTR systems: EasyOCR, Keras, Pytesseract, and TrOCR. Considering the tabular form of the data, two types of experiments are executed: one where the images are split line by line and the other where the entire scan is used as input. Based on CER and BLEU, we demonstrate that LLMs outperform the conventional OCR/HTR methods. Moreover, we also compare the evaluated CER and BLEU scores to human evaluations to better judge the outputs of whole-scan experiments and understand influential factors for CER and BLEU. Combining judgments from all the evaluation metrics, we conclude that two-shot GPT-4o for line-by-line images and two-shot Claude Sonnet 3.5 for whole-scan images yield the transcriptions of the historical records most similar to the ground truth.
comment: 15 pages, 7 figures
☆ Causal Learning for Heterogeneous Subgroups Based on Nonlinear Causal Kernel Clustering
Due to the challenge posed by multi-source and heterogeneous data collected from diverse environments, causal relationships among features can exhibit variations influenced by different time spans, regions, or strategies. This diversity makes a single causal model inadequate for accurately representing complex causal relationships in all observational data, a crucial consideration in causal learning. To address this challenge, we introduce the nonlinear Causal Kernel Clustering method designed for heterogeneous subgroup causal learning, illuminating variations in causal relationships across diverse subgroups. It comprises two primary components. First, the construction of a sample mapping function forms the basis of the subsequent nonlinear causal kernel. This function assesses the differences in potential nonlinear causal relationships in various samples, supported by our causal identifiability theory. Second, a nonlinear causal kernel is proposed for clustering heterogeneous subgroups. Experimental results showcase the exceptional performance of our method in accurately identifying heterogeneous subgroups and effectively enhancing causal learning, leading to a great reduction in prediction error.
☆ Trojan Detection Through Pattern Recognition for Large Language Models
Trojan backdoors can be injected into large language models at various stages, including pretraining, fine-tuning, and in-context learning, posing a significant threat to the model's alignment. Due to the nature of causal language modeling, detecting these triggers is challenging given the vast search space. In this study, we propose a multistage framework for detecting Trojan triggers in large language models consisting of token filtration, trigger identification, and trigger verification. We discuss existing trigger identification methods and propose two variants of a black-box trigger inversion method that rely on output logits, utilizing beam search and greedy decoding respectively. We show that the verification stage is critical in the process and propose semantic-preserving prompts and special perturbations to differentiate between actual Trojan triggers and other adversarial strings that display similar characteristics. The evaluation of our approach on the TrojAI and RLHF poisoned model datasets demonstrates promising results.
comment: 20 pages, 11 Figures
☆ Fairness Testing through Extreme Value Theory ICSE'25
Data-driven software is increasingly being used as a critical component of automated decision-support systems. Since this class of software learns its logic from historical data, it can encode or amplify discriminatory practices. Previous research on algorithmic fairness has focused on improving average-case fairness. On the other hand, fairness at the extreme ends of the spectrum, which often signifies lasting and impactful shifts in societal attitudes, has received significantly less emphasis. Leveraging the statistics of extreme value theory (EVT), we propose a novel fairness criterion called extreme counterfactual discrimination (ECD). This criterion estimates the worst-case amounts of disadvantage in outcomes for individuals solely based on their memberships in a protected group. Utilizing tools from search-based software engineering and generative AI, we present a randomized algorithm that samples a statistically significant set of points from the tail of ML outcome distributions even if the input dataset lacks a sufficient number of relevant samples. We conducted several experiments on four ML models (deep neural networks, logistic regression, and random forests) over 10 socially relevant tasks from the literature on algorithmic fairness. First, we evaluate the generative AI methods and find that they generate sufficient samples to infer valid EVT distribution in 95% of cases. Remarkably, we found that the prevalent bias mitigators reduce the average-case discrimination but increase the worst-case discrimination significantly in 5% of cases. We also observed that even the tail-aware mitigation algorithm -- MiniMax-Fairness -- increased the worst-case discrimination in 30% of cases. We propose a novel ECD-based mitigator that improves fairness in the tail in 90% of cases with no degradation of the average-case discrimination.
comment: In IEEE/ACM 47th International Conference on Software Engineering (ICSE'25)
☆ Training-free Ultra Small Model for Universal Sparse Reconstruction in Compressed Sensing
Pre-trained large models attract widespread attention in recent years, but they face challenges in applications that require high interpretability or have limited resources, such as physical sensing, medical imaging, and bioinformatics. Compressed Sensing (CS) is a well-proved theory that drives many recent breakthroughs in these applications. However, as a typical under-determined linear system, CS suffers from excessively long sparse reconstruction times when using traditional iterative methods, particularly with large-scale data. Current AI methods like deep unfolding fail to substitute them because pre-trained models exhibit poor generality beyond their training conditions and dataset distributions, or lack interpretability. Instead of following the big model fervor, this paper proposes ultra-small artificial neural models called coefficients learning (CL), enabling training-free and rapid sparse reconstruction while perfectly inheriting the generality and interpretability of traditional iterative methods, bringing new feature of incorporating prior knowledges. In CL, a signal of length $n$ only needs a minimal of $n$ trainable parameters. A case study model called CLOMP is implemented for evaluation. Experiments are conducted on both synthetic and real one-dimensional and two-dimensional signals, demonstrating significant improvements in efficiency and accuracy. Compared to representative iterative methods, CLOMP improves efficiency by 100 to 1000 folds for large-scale data. Test results on eight diverse image datasets indicate that CLOMP improves structural similarity index by 292%, 98%, 45% for sampling rates of 0.1, 0.3, 0.5, respectively. We believe this method can truly usher CS reconstruction into the AI era, benefiting countless under-determined linear systems that rely on sparse solution.
☆ Recurrent Diffusion for Large-Scale Parameter Generation
Parameter generation has struggled to scale up for a long time, significantly limiting its range of applications. In this study, we introduce \textbf{R}ecurrent diffusion for large-scale \textbf{P}arameter \textbf{G}eneration, called \textbf{RPG}. We first divide the trained parameters into non-overlapping parts, after which a recurrent model is proposed to learn their relationships. The recurrent model's outputs, as conditions, are then fed into a diffusion model to generate the neural network parameters. Using only a single GPU, recurrent diffusion enables us to generate popular vision and language models such as ConvNeXt-L and LoRA parameters of LLaMA-7B. Meanwhile, across various architectures and tasks, the generated parameters consistently perform comparable results over trained networks. Notably, our approach also shows the potential to generate models for handling unseen tasks, which largely increases the practicality of parameter generation. Our code is available \href{https://github.com/NUS-HPC-AI-Lab/Recurrent-Parameter-Generation}{here}.
comment: Generating 200 million parameters in just minutes
☆ GCSAM: Gradient Centralized Sharpness Aware Minimization
The generalization performance of deep neural networks (DNNs) is a critical factor in achieving robust model behavior on unseen data. Recent studies have highlighted the importance of sharpness-based measures in promoting generalization by encouraging convergence to flatter minima. Among these approaches, Sharpness-Aware Minimization (SAM) has emerged as an effective optimization technique for reducing the sharpness of the loss landscape, thereby improving generalization. However, SAM's computational overhead and sensitivity to noisy gradients limit its scalability and efficiency. To address these challenges, we propose Gradient-Centralized Sharpness-Aware Minimization (GCSAM), which incorporates Gradient Centralization (GC) to stabilize gradients and accelerate convergence. GCSAM normalizes gradients before the ascent step, reducing noise and variance, and improving stability during training. Our evaluations indicate that GCSAM consistently outperforms SAM and the Adam optimizer in terms of generalization and computational efficiency. These findings demonstrate GCSAM's effectiveness across diverse domains, including general and medical imaging tasks.
☆ Rethinking Membership Inference Attacks Against Transfer Learning
Transfer learning, successful in knowledge translation across related tasks, faces a substantial privacy threat from membership inference attacks (MIAs). These attacks, despite posing significant risk to ML model's training data, remain limited-explored in transfer learning. The interaction between teacher and student models in transfer learning has not been thoroughly explored in MIAs, potentially resulting in an under-examined aspect of privacy vulnerabilities within transfer learning. In this paper, we propose a new MIA vector against transfer learning, to determine whether a specific data point was used to train the teacher model while only accessing the student model in a white-box setting. Our method delves into the intricate relationship between teacher and student models, analyzing the discrepancies in hidden layer representations between the student model and its shadow counterpart. These identified differences are then adeptly utilized to refine the shadow model's training process and to inform membership inference decisions effectively. Our method, evaluated across four datasets in diverse transfer learning tasks, reveals that even when an attacker only has access to the student model, the teacher model's training data remains susceptible to MIAs. We believe our work unveils the unexplored risk of membership inference in transfer learning.
☆ Uncertainty Estimation in the Real World: A Study on Music Emotion Recognition ECIR
Any data annotation for subjective tasks shows potential variations between individuals. This is particularly true for annotations of emotional responses to musical stimuli. While older approaches to music emotion recognition systems frequently addressed this uncertainty problem through probabilistic modeling, modern systems based on neural networks tend to ignore the variability and focus only on predicting central tendencies of human subjective responses. In this work, we explore several methods for estimating not only the central tendencies of the subjective responses to a musical stimulus, but also for estimating the uncertainty associated with these responses. In particular, we investigate probabilistic loss functions and inference-time random sampling. Experimental results indicate that while the modeling of the central tendencies is achievable, modeling of the uncertainty in subjective responses proves significantly more challenging with currently available approaches even when empirical estimates of variations in the responses are available.
comment: To be presented as a Findings paper at the 2025 European Conference on Information Retrieval (ECIR)
☆ Graph Defense Diffusion Model
Graph Neural Networks (GNNs) demonstrate significant potential in various applications but remain highly vulnerable to adversarial attacks, which can greatly degrade their performance. Existing graph purification methods attempt to address this issue by filtering attacked graphs; however, they struggle to effectively defend against multiple types of adversarial attacks simultaneously due to their limited flexibility, and they lack comprehensive modeling of graph data due to their heavy reliance on heuristic prior knowledge. To overcome these challenges, we propose a more versatile approach for defending against adversarial attacks on graphs. In this work, we introduce the Graph Defense Diffusion Model (GDDM), a flexible purification method that leverages the denoising and modeling capabilities of diffusion models. The iterative nature of diffusion models aligns well with the stepwise process of adversarial attacks, making them particularly suitable for defense. By iteratively adding and removing noise, GDDM effectively purifies attacked graphs, restoring their original structure and features. Our GDDM consists of two key components: (1) Graph Structure-Driven Refiner, which preserves the basic fidelity of the graph during the denoising process, and ensures that the generated graph remains consistent with the original scope; and (2) Node Feature-Constrained Regularizer, which removes residual impurities from the denoised graph, further enhances the purification effect. Additionally, we design tailored denoising strategies to handle different types of adversarial attacks, improving the model's adaptability to various attack scenarios. Extensive experiments conducted on three real-world datasets demonstrate that GDDM outperforms state-of-the-art methods in defending against a wide range of adversarial attacks, showcasing its robustness and effectiveness.
comment: 13 pages,5 figures
☆ Explainable Lane Change Prediction for Near-Crash Scenarios Using Knowledge Graph Embeddings and Retrieval Augmented Generation
Lane-changing maneuvers, particularly those executed abruptly or in risky situations, are a significant cause of road traffic accidents. However, current research mainly focuses on predicting safe lane changes. Furthermore, existing accident datasets are often based on images only and lack comprehensive sensory data. In this work, we focus on predicting risky lane changes using the CRASH dataset (our own collected dataset specifically for risky lane changes), and safe lane changes (using the HighD dataset). Then, we leverage KG and Bayesian inference to predict these maneuvers using linguistic contextual information, enhancing the model's interpretability and transparency. The model achieved a 91.5% f1-score with anticipation time extending to four seconds for risky lane changes, and a 90.0% f1-score for predicting safe lane changes with the same anticipation time. We validate our model by integrating it into a vehicle within the CARLA simulator in scenarios that involve risky lane changes. The model managed to anticipate sudden lane changes, thus providing automated vehicles with further time to plan and execute appropriate safe reactions. Finally, to enhance the explainability of our model, we utilize RAG to provide clear and natural language explanations for the given prediction.
☆ Secure Resource Allocation via Constrained Deep Reinforcement Learning
The proliferation of Internet of Things (IoT) devices and the advent of 6G technologies have introduced computationally intensive tasks that often surpass the processing capabilities of user devices. Efficient and secure resource allocation in serverless multi-cloud edge computing environments is essential for supporting these demands and advancing distributed computing. However, existing solutions frequently struggle with the complexity of multi-cloud infrastructures, robust security integration, and effective application of traditional deep reinforcement learning (DRL) techniques under system constraints. To address these challenges, we present SARMTO, a novel framework that integrates an action-constrained DRL model. SARMTO dynamically balances resource allocation, task offloading, security, and performance by utilizing a Markov decision process formulation, an adaptive security mechanism, and sophisticated optimization techniques. Extensive simulations across varying scenarios, including different task loads, data sizes, and MEC capacities, show that SARMTO consistently outperforms five baseline approaches, achieving up to a 40% reduction in system costs and a 41.5% improvement in energy efficiency over state-of-the-art methods. These enhancements highlight SARMTO's potential to revolutionize resource management in intricate distributed computing environments, opening the door to more efficient and secure IoT and edge computing applications.
☆ Beyond R-barycenters: an effective averaging method on Stiefel and Grassmann manifolds
In this paper, the issue of averaging data on a manifold is addressed. While the Fr\'echet mean resulting from Riemannian geometry appears ideal, it is unfortunately not always available and often computationally very expensive. To overcome this, R-barycenters have been proposed and successfully applied to Stiefel and Grassmann manifolds. However, R-barycenters still suffer severe limitations as they rely on iterative algorithms and complicated operators. We propose simpler, yet efficient, barycenters that we call RL-barycenters. We show that, in the setting relevant to most applications, our framework yields astonishingly simple barycenters: arithmetic means projected onto the manifold. We apply this approach to the Stiefel and Grassmann manifolds. On simulated data, our approach is competitive with respect to existing averaging methods, while computationally cheaper.
☆ DLinear-based Prediction of Remaining Useful Life of Lithium-Ion Batteries: Feature Engineering through Explainable Artificial Intelligence
Accurate prediction of the Remaining Useful Life (RUL) of lithium-ion batteries is essential for ensuring safety, reducing maintenance costs, and optimizing usage. However, predicting RUL is challenging due to the nonlinear characteristics of the degradation caused by complex chemical reactions. Machine learning allows precise predictions by learning the latent functions of degradation relationships based on cycling behavior. This study introduces an accurate RUL prediction approach based on feature engineering and DLinear, applied to the dataset from NASA's Prognostics Center of Excellence. Among the 20 features generated from current, voltage, temperature, and time provided in this dataset, key features contributing to degradation are selected using Pearson correlation coefficient and Shapley values. Shapley value-based feature selection effectively reflects cell-to-cell variability, showing similar importance rankings across all cells. The DLinear-based RUL prediction using key features efficiently captures the time-series trend, demonstrating significantly better performance compared to Long Short-Term Memory and Transformer models.
☆ A Hands-free Spatial Selection and Interaction Technique using Gaze and Blink Input with Blink Prediction for Extended Reality
Gaze-based interaction techniques have created significant interest in the field of spatial interaction. Many of these methods require additional input modalities, such as hand gestures (e.g., gaze coupled with pinch). Those can be uncomfortable and difficult to perform in public or limited spaces, and pose challenges for users who are unable to execute pinch gestures. To address these aspects, we propose a novel, hands-free Gaze+Blink interaction technique that leverages the user's gaze and intentional eye blinks. This technique enables users to perform selections by executing intentional blinks. It facilitates continuous interactions, such as scrolling or drag-and-drop, through eye blinks coupled with head movements. So far, this concept has not been explored for hands-free spatial interaction techniques. We evaluated the performance and user experience (UX) of our Gaze+Blink method with two user studies and compared it with Gaze+Pinch in a realistic user interface setup featuring common menu interaction tasks. Study 1 demonstrated that while Gaze+Blink achieved comparable selection speeds, it was prone to accidental selections resulting from unintentional blinks. In Study 2 we explored an enhanced technique employing a deep learning algorithms for filtering out unintentional blinks.
☆ DenoMAE: A Multimodal Autoencoder for Denoising Modulation Signals
We propose Denoising Masked Autoencoder (Deno-MAE), a novel multimodal autoencoder framework for denoising modulation signals during pretraining. DenoMAE extends the concept of masked autoencoders by incorporating multiple input modalities, including noise as an explicit modality, to enhance cross-modal learning and improve denoising performance. The network is pre-trained using unlabeled noisy modulation signals and constellation diagrams, effectively learning to reconstruct their equivalent noiseless signals and diagrams. Deno-MAE achieves state-of-the-art accuracy in automatic modulation classification tasks with significantly fewer training samples, demonstrating a 10% reduction in unlabeled pretraining data and a 3% reduction in labeled fine-tuning data compared to existing approaches. Moreover, our model exhibits robust performance across varying signal-to-noise ratios (SNRs) and supports extrapolation on unseen lower SNRs. The results indicate that DenoMAE is an efficient, flexible, and data-efficient solution for denoising and classifying modulation signals in challenging noise-intensive environments.
☆ The impact of intrinsic rewards on exploration in Reinforcement Learning
One of the open challenges in Reinforcement Learning is the hard exploration problem in sparse reward environments. Various types of intrinsic rewards have been proposed to address this challenge by pushing towards diversity. This diversity might be imposed at different levels, favouring the agent to explore different states, policies or behaviours (State, Policy and Skill level diversity, respectively). However, the impact of diversity on the agent's behaviour remains unclear. In this work, we aim to fill this gap by studying the effect of different levels of diversity imposed by intrinsic rewards on the exploration patterns of RL agents. We select four intrinsic rewards (State Count, Intrinsic Curiosity Module (ICM), Maximum Entropy, and Diversity is all you need (DIAYN)), each pushing for a different diversity level. We conduct an empirical study on MiniGrid environment to compare their impact on exploration considering various metrics related to the agent's exploration, namely: episodic return, observation coverage, agent's position coverage, policy entropy, and timeframes to reach the sparse reward. The main outcome of the study is that State Count leads to the best exploration performance in the case of low-dimensional observations. However, in the case of RGB observations, the performance of State Count is highly degraded mostly due to representation learning challenges. Conversely, Maximum Entropy is less impacted, resulting in a more robust exploration, despite being not always optimal. Lastly, our empirical study revealed that learning diverse skills with DIAYN, often linked to improved robustness and generalisation, does not promote exploration in MiniGrid environments. This is because: i) learning the skill space itself can be challenging, and ii) exploration within the skill space prioritises differentiating between behaviours rather than achieving uniform state visitation.
comment: 45 pages, 17 figures. Submitted to Neural Computing and Applications Journal
☆ Meta-Instance Selection. Instance Selection as a Classification Problem with Meta-Features
Data pruning, or instance selection, is an important problem in machine learning especially in terms of nearest neighbour classifier. However, in data pruning which speeds up the prediction phase, there is an issue related to the speed and efficiency of the process itself. In response, the study proposes an approach involving transforming the instance selection process into a classification task conducted in a unified meta-feature space where each instance can be classified and assigned to either the "to keep" or "to remove" class. This approach requires training an appropriate meta-classifier, which can be developed based on historical instance selection results from other datasets using reference instance selection methods as a labeling tool. This work proposes constructing the meta-feature space based on properties extracted from the nearest neighbor graph. Experiments conducted on 17 datasets of varying sizes and five reference instance selection methods (ENN, Drop3, ICF, HMN-EI, and CCIS) demonstrate that the proposed solution achieves results comparable to reference instance selection methods while significantly reducing computational complexity. In the proposed approach, the computational complexity of the system depends only on identifying the k-nearest neighbors for each data sample and running the meta-classifier. Additionally, the study discusses the choice of meta-classifier, recommending the use of Balanced Random Forest.
☆ Technical Report for the Forgotten-by-Design Project: Targeted Obfuscation for Machine Learning
The right to privacy, enshrined in various human rights declarations, faces new challenges in the age of artificial intelligence (AI). This paper explores the concept of the Right to be Forgotten (RTBF) within AI systems, contrasting it with traditional data erasure methods. We introduce Forgotten by Design, a proactive approach to privacy preservation that integrates instance-specific obfuscation techniques during the AI model training process. Unlike machine unlearning, which modifies models post-training, our method prevents sensitive data from being embedded in the first place. Using the LIRA membership inference attack, we identify vulnerable data points and propose defenses that combine additive gradient noise and weighting schemes. Our experiments on the CIFAR-10 dataset demonstrate that our techniques reduce privacy risks by at least an order of magnitude while maintaining model accuracy (at 95% significance). Additionally, we present visualization methods for the privacy-utility trade-off, providing a clear framework for balancing privacy risk and model accuracy. This work contributes to the development of privacy-preserving AI systems that align with human cognitive processes of motivated forgetting, offering a robust framework for safeguarding sensitive information and ensuring compliance with privacy regulations.
comment: 20 pages, 4 figures
☆ Generative AI and Large Language Models in Language Preservation: Opportunities and Challenges
Generative AI and large-scale language models (LLM) have emerged as powerful tools in language preservation, particularly for near-native and endangered languages. With the increasing reliance on technology for communication, education, and cultural documentation, new opportunities have emerged to mitigate the dramatic decline of linguistic diversity worldwide. This paper examines the role of generative AIs and LLMs in preserving endangered languages, highlighting the risks and challenges associated with their use. We analyze the underlying technologies driving these models, including natural language processing (NLP) and deep learning, and explore several cases where these technologies have been applied to low-resource languages. Additionally, we discuss ethical considerations, data scarcity issues, and technical challenges while proposing solutions to enhance AI-driven language preservation.
comment: 10 pages, 1 figure, submitted for IEEE publication
☆ Graph-defined Language Learning with LLMs
Recent efforts leverage Large Language Models (LLMs) for modeling text-attributed graph structures in node classification tasks. These approaches describe graph structures for LLMs to understand or aggregate LLM-generated textual attribute embeddings through graph structure. However, these approaches face two main limitations in modeling graph structures with LLMs. (i) Graph descriptions become verbose in describing high-order graph structure. (ii) Textual attributes alone do not contain adequate graph structure information. It is challenging to model graph structure concisely and adequately with LLMs. LLMs lack built-in mechanisms to model graph structures directly. They also struggle with complex long-range dependencies between high-order nodes and target nodes. Inspired by the observation that LLMs pre-trained on one language can achieve exceptional performance on another with minimal additional training, we propose \textbf{G}raph-\textbf{D}efined \textbf{L}anguage for \textbf{L}arge \textbf{L}anguage \textbf{M}odel (GDL4LLM). This novel framework enables LLMs to transfer their powerful language understanding capabilities to graph-structured data. GDL4LLM translates graphs into a graph language corpus instead of graph descriptions and pre-trains LLMs on this corpus to adequately understand graph structures. During fine-tuning, this corpus describes the structural information of target nodes concisely with only a few tokens. By treating graphs as a new language, GDL4LLM enables LLMs to model graph structures adequately and concisely for node classification tasks. Extensive experiments on three real-world datasets demonstrate that GDL4LLM outperforms description-based and textual attribute embeddings-based baselines by efficiently modeling different orders of graph structure with LLMs.
☆ MASS: Overcoming Language Bias in Image-Text Matching AAAI 2025
Pretrained visual-language models have made significant advancements in multimodal tasks, including image-text retrieval. However, a major challenge in image-text matching lies in language bias, where models predominantly rely on language priors and neglect to adequately consider the visual content. We thus present Multimodal ASsociation Score (MASS), a framework that reduces the reliance on language priors for better visual accuracy in image-text matching problems. It can be seamlessly incorporated into existing visual-language models without necessitating additional training. Our experiments have shown that MASS effectively lessens language bias without losing an understanding of linguistic compositionality. Overall, MASS offers a promising solution for enhancing image-text matching performance in visual-language models.
comment: AAAI 2025
☆ Improving thermal state preparation of Sachdev-Ye-Kitaev model with reinforcement learning on quantum hardware
The Sachdev-Ye-Kitaev (SYK) model, known for its strong quantum correlations and chaotic behavior, serves as a key platform for quantum gravity studies. However, variationally preparing thermal states on near-term quantum processors for large systems (N>12, where N is the number of Majorana fermions) presents a significant challenge due to the rapid growth in the complexity of parameterized quantum circuits. This paper addresses this challenge by integrating reinforcement learning (RL) with convolutional neural networks, employing an iterative approach to optimize the quantum circuit and its parameters. The refinement process is guided by a composite reward signal derived from entropy and the expectation values of the SYK Hamiltonian. This approach reduces the number of CNOT gates by two orders of magnitude for systems N>10 compared to traditional methods like first-order Trotterization. We demonstrate the effectiveness of the RL framework in both noiseless and noisy quantum hardware environments, maintaining high accuracy in thermal state preparation. This work contributes to the advancement of a scalable, RL-based framework with applications for computations of thermal out-of-time-order correlators in quantum many-body systems and quantum gravity studies on near-term quantum hardware.
comment: The code and the data will be available soon. Comments are welcomed!
☆ A Survey on Diffusion Models for Anomaly Detection
Diffusion models (DMs) have emerged as a powerful class of generative AI models, showing remarkable potential in anomaly detection (AD) tasks across various domains, such as cybersecurity, fraud detection, healthcare, and manufacturing. The intersection of these two fields, termed diffusion models for anomaly detection (DMAD), offers promising solutions for identifying deviations in increasingly complex and high-dimensional data. In this survey, we systematically review recent advances in DMAD research and investigate their capabilities. We begin by presenting the fundamental concepts of AD and DMs, followed by a comprehensive analysis of classic DM architectures including DDPMs, DDIMs, and Score SDEs. We further categorize existing DMAD methods into reconstruction-based, density-based, and hybrid approaches, providing detailed examinations of their methodological innovations. We also explore the diverse tasks across different data modalities, encompassing image, time series, video, and multimodal data analysis. Furthermore, we discuss critical challenges and emerging research directions, including computational efficiency, model interpretability, robustness enhancement, edge-cloud collaboration, and integration with large language models. The collection of DMAD research papers and resources is available at https://github.com/fdjingliu/DMAD.
☆ Enhancing Coronary Artery Calcium Scoring via Multi-Organ Segmentation on Non-Contrast Cardiac Computed Tomography
Despite coronary artery calcium scoring being considered a largely solved problem within the realm of medical artificial intelligence, this paper argues that significant improvements can still be made. By shifting the focus from pathology detection to a deeper understanding of anatomy, the novel algorithm proposed in the paper both achieves high accuracy in coronary artery calcium scoring and offers enhanced interpretability of the results. This approach not only aids in the precise quantification of calcifications in coronary arteries, but also provides valuable insights into the underlying anatomical structures. Through this anatomically-informed methodology, the paper shows how a nuanced understanding of the heart's anatomy can lead to more accurate and interpretable results in the field of cardiovascular health. We demonstrate the superior accuracy of the proposed method by evaluating it on an open-source multi-vendor dataset, where we obtain results at the inter-observer level, surpassing the current state of the art. Finally, the qualitative analyses show the practical value of the algorithm in such tasks as labeling coronary artery calcifications, identifying aortic calcifications, and filtering out false positive detections due to noise.
☆ Multi-View Spectral Clustering for Graphs with Multiple View Structures
Despite the fundamental importance of clustering, to this day, much of the relevant research is still based on ambiguous foundations, leading to an unclear understanding of whether or how the various clustering methods are connected with each other. In this work, we provide an additional stepping stone towards resolving such ambiguities by presenting a general clustering framework that subsumes a series of seemingly disparate clustering methods, including various methods belonging to the wildly popular spectral clustering framework. In fact, the generality of the proposed framework is additionally capable of shedding light to the largely unexplored area of multi-view graphs whose each view may have differently clustered nodes. In turn, we propose GenClus: a method that is simultaneously an instance of this framework and a generalization of spectral clustering, while also being closely related to k-means as well. This results in a principled alternative to the few existing methods studying this special type of multi-view graphs. Then, we conduct in-depth experiments, which demonstrate that GenClus is more computationally efficient than existing methods, while also attaining similar or better clustering performance. Lastly, a qualitative real-world case-study further demonstrates the ability of GenClus to produce meaningful clusterings.
☆ Online Clustering with Bandit Information
We study the problem of online clustering within the multi-armed bandit framework under the fixed confidence setting. In this multi-armed bandit problem, we have $M$ arms, each providing i.i.d. samples that follow a multivariate Gaussian distribution with an {\em unknown} mean and a known unit covariance. The arms are grouped into $K$ clusters based on the distance between their means using the Single Linkage (SLINK) clustering algorithm on the means of the arms. Since the true means are unknown, the objective is to obtain the above clustering of the arms with the minimum number of samples drawn from the arms, subject to an upper bound on the error probability. We introduce a novel algorithm, Average Tracking Bandit Online Clustering (ATBOC), and prove that this algorithm is order optimal, meaning that the upper bound on its expected sample complexity for given error probability $\delta$ is within a factor of 2 of an instance-dependent lower bound as $\delta \rightarrow 0$. Furthermore, we propose a computationally more efficient algorithm, Lower and Upper Confidence Bound-based Bandit Online Clustering (LUCBBOC), inspired by the LUCB algorithm for best arm identification. Simulation results demonstrate that the performance of LUCBBOC is comparable to that of ATBOC. We numerically assess the effectiveness of the proposed algorithms through numerical experiments on both synthetic datasets and the real-world MovieLens dataset. To the best of our knowledge, this is the first work on bandit online clustering that allows arms with different means in a cluster and $K$ greater than 2.
☆ Algorithm Selection with Probing Trajectories: Benchmarking the Choice of Classifier Model
Recent approaches to training algorithm selectors in the black-box optimisation domain have advocated for the use of training data that is algorithm-centric in order to encapsulate information about how an algorithm performs on an instance, rather than relying on information derived from features of the instance itself. Probing-trajectories that consist of a sequence of objective performance per function evaluation obtained from a short run of an algorithm have recently shown particular promise in training accurate selectors. However, training models on this type of data requires an appropriately chosen classifier given the sequential nature of the data. There are currently no clear guidelines for choosing the most appropriate classifier for algorithm selection using time-series data from the plethora of models available. To address this, we conduct a large benchmark study using 17 different classifiers and three types of trajectory on a classification task using the BBOB benchmark suite using both leave-one-instance out and leave-one-problem out cross-validation. In contrast to previous studies using tabular data, we find that the choice of classifier has a significant impact, showing that feature-based and interval-based models are the best choices.
comment: To appear in Applications of Evolutionary Computation 28th International Conference, EvoApplications 2025
☆ Generalization and Informativeness of Weighted Conformal Risk Control Under Covariate Shift
Predictive models are often required to produce reliable predictions under statistical conditions that are not matched to the training data. A common type of training-testing mismatch is covariate shift, where the conditional distribution of the target variable given the input features remains fixed, while the marginal distribution of the inputs changes. Weighted conformal risk control (W-CRC) uses data collected during the training phase to convert point predictions into prediction sets with valid risk guarantees at test time despite the presence of a covariate shift. However, while W-CRC provides statistical reliability, its efficiency -- measured by the size of the prediction sets -- can only be assessed at test time. In this work, we relate the generalization properties of the base predictor to the efficiency of W-CRC under covariate shifts. Specifically, we derive a bound on the inefficiency of the W-CRC predictor that depends on algorithmic hyperparameters and task-specific quantities available at training time. This bound offers insights on relationships between the informativeness of the prediction sets, the extent of the covariate shift, and the size of the calibration and training sets. Experiments on fingerprinting-based localization validate the theoretical results.
☆ Unsupervised Learning in Echo State Networks for Input Reconstruction
Conventional echo state networks (ESNs) require supervised learning to train the readout layer, using the desired outputs as training data. In this study, we focus on input reconstruction (IR), which refers to training the readout layer to reproduce the input time series in its output. We reformulate the learning algorithm of the ESN readout layer to perform IR using unsupervised learning (UL). By conducting theoretical analysis and numerical experiments, we demonstrate that IR in ESNs can be effectively implemented under realistic conditions without explicitly using the desired outputs as training data; in this way, UL is enabled. Furthermore, we demonstrate that applications relying on IR, such as dynamical system replication and noise filtering, can be reformulated within the UL framework. Our findings establish a theoretically sound and universally applicable IR formulation, along with its related tasks in ESNs. This work paves the way for novel predictions and highlights unresolved theoretical challenges in ESNs, particularly in the context of time-series processing methods and computational models of the brain.
comment: 16 pages, 7 figures, regular paper
☆ A Truly Sparse and General Implementation of Gradient-Based Synaptic Plasticity
Online synaptic plasticity rules derived from gradient descent achieve high accuracy on a wide range of practical tasks. However, their software implementation often requires tediously hand-derived gradients or using gradient backpropagation which sacrifices the online capability of the rules. In this work, we present a custom automatic differentiation (AD) pipeline for sparse and online implementation of gradient-based synaptic plasticity rules that generalizes to arbitrary neuron models. Our work combines the programming ease of backpropagation-type methods for forward AD while being memory-efficient. To achieve this, we exploit the advantageous compute and memory scaling of online synaptic plasticity by providing an inherently sparse implementation of AD where expensive tensor contractions are replaced with simple element-wise multiplications if the tensors are diagonal. Gradient-based synaptic plasticity rules such as eligibility propagation (e-prop) have exactly this property and thus profit immensely from this feature. We demonstrate the alignment of our gradients with respect to gradient backpropagation on an synthetic task where e-prop gradients are exact, as well as audio speech classification benchmarks. We demonstrate how memory utilization scales with network size without dependence on the sequence length, as expected from forward AD methods.
comment: 8 pages, 7 figures
☆ UniTrans: A Unified Vertical Federated Knowledge Transfer Framework for Enhancing Cross-Hospital Collaboration
Cross-hospital collaboration has the potential to address disparities in medical resources across different regions. However, strict privacy regulations prohibit the direct sharing of sensitive patient information between hospitals. Vertical federated learning (VFL) offers a novel privacy-preserving machine learning paradigm that maximizes data utility across multiple hospitals. Traditional VFL methods, however, primarily benefit patients with overlapping data, leaving vulnerable non-overlapping patients without guaranteed improvements in medical prediction services. While some knowledge transfer techniques can enhance the prediction performance for non-overlapping patients, they fall short in addressing scenarios where overlapping and non-overlapping patients belong to different domains, resulting in challenges such as feature heterogeneity and label heterogeneity. To address these issues, we propose a novel unified vertical federated knowledge transfer framework (Unitrans). Our framework consists of three key steps. First, we extract the federated representation of overlapping patients by employing an effective vertical federated representation learning method to model multi-party joint features online. Next, each hospital learns a local knowledge transfer module offline, enabling the transfer of knowledge from the federated representation of overlapping patients to the enriched representation of local non-overlapping patients in a domain-adaptive manner. Finally, hospitals utilize these enriched local representations to enhance performance across various downstream medical prediction tasks. Experiments on real-world medical datasets validate the framework's dual effectiveness in both intra-domain and cross-domain knowledge transfer. The code of \method is available at \url{https://github.com/Chung-ju/Unitrans}.
☆ Transductive Conformal Inference for Ranking
We introduce a method based on Conformal Prediction (CP) to quantify the uncertainty of full ranking algorithms. We focus on a specific scenario where $n + m$ items are to be ranked by some ''black box'' algorithm. It is assumed that the relative (ground truth) ranking of n of them is known. The objective is then to quantify the error made by the algorithm on the ranks of the m new items among the total $(n + m)$. In such a setting, the true ranks of the n original items in the total $(n + m)$ depend on the (unknown) true ranks of the m new ones. Consequently, we have no direct access to a calibration set to apply a classical CP method. To address this challenge, we propose to construct distribution-free bounds of the unknown conformity scores using recent results on the distribution of conformal p-values. Using these scores upper bounds, we provide valid prediction sets for the rank of any item. We also control the false coverage proportion, a crucial quantity when dealing with multiple prediction sets. Finally, we empirically show on both synthetic and real data the efficiency of our CP method.
☆ Block Flow: Learning Straight Flow on Data Blocks
Flow-matching models provide a powerful framework for various applications, offering efficient sampling and flexible probability path modeling. These models are characterized by flows with low curvature in learned generative trajectories, which results in reduced truncation error at each sampling step. To further reduce curvature, we propose block matching. This novel approach leverages label information to partition the data distribution into blocks and match them with a prior distribution parameterized using the same label information, thereby learning straighter flows. We demonstrate that the variance of the prior distribution can control the curvature upper bound of forward trajectories in flow-matching models. By designing flexible regularization strategies to adjust this variance, we achieve optimal generation performance, effectively balancing the trade-off between maintaining diversity in generated samples and minimizing numerical solver errors. Our results demonstrate competitive performance with models of the same parameter scale.Code is available at \url{https://github.com/wpp13749/block_flow}.
☆ Federated Learning with Sample-level Client Drift Mitigation AAAI 2025
Federated Learning (FL) suffers from severe performance degradation due to the data heterogeneity among clients. Existing works reveal that the fundamental reason is that data heterogeneity can cause client drift where the local model update deviates from the global one, and thus they usually tackle this problem from the perspective of calibrating the obtained local update. Despite effectiveness, existing methods substantially lack a deep understanding of how heterogeneous data samples contribute to the formation of client drift. In this paper, we bridge this gap by identifying that the drift can be viewed as a cumulative manifestation of biases present in all local samples and the bias between samples is different. Besides, the bias dynamically changes as the FL training progresses. Motivated by this, we propose FedBSS that first mitigates the heterogeneity issue in a sample-level manner, orthogonal to existing methods. Specifically, the core idea of our method is to adopt a bias-aware sample selection scheme that dynamically selects the samples from small biases to large epoch by epoch to train progressively the local model in each round. In order to ensure the stability of training, we set the diversified knowledge acquisition stage as the warm-up stage to avoid the local optimality caused by knowledge deviation in the early stage of the model. Evaluation results show that FedBSS outperforms state-of-the-art baselines. In addition, we also achieved effective results on feature distribution skew and noise label dataset setting, which proves that FedBSS can not only reduce heterogeneity, but also has scalability and robustness.
comment: Accepted by AAAI 2025
☆ On the Dimension of Pullback Attractors in Recurrent Neural Networks
Recurrent Neural Networks (RNNs) are high-dimensional state space models capable of learning functions on sequence data. Recently, it has been conjectured that reservoir computers, a particular class of RNNs, trained on observations of a dynamical systems can be interpreted as embeddings. This result has been established for the case of linear reservoir systems. In this work, we use a nonautonomous dynamical systems approach to establish an upper bound for the fractal dimension of the subset of reservoir state space approximated during training and prediction phase. We prove that when the input sequences comes from an Nin-dimensional invertible dynamical system, the fractal dimension of this set is bounded above by Nin. The result obtained here are useful in dimensionality reduction of computation in RNNs as well as estimating fractal dimensions of dynamical systems from limited observations of their time series. It is also a step towards understanding embedding properties of reservoir computers.
☆ Adaptive parameters identification for nonlinear dynamics using deep permutation invariant networks
The promising outcomes of dynamical system identification techniques, such as SINDy [Brunton et al. 2016], highlight their advantages in providing qualitative interpretability and extrapolation compared to non-interpretable deep neural networks [Rudin 2019]. These techniques suffer from parameter updating in real-time use cases, especially when the system parameters are likely to change during or between processes. Recently, the OASIS [Bhadriraju et al. 2020] framework introduced a data-driven technique to address the limitations of real-time dynamical system parameters updating, yielding interesting results. Nevertheless, we show in this work that superior performance can be achieved using more advanced model architectures. We present an innovative encoding approach, based mainly on the use of Set Encoding methods of sequence data, which give accurate adaptive model identification for complex dynamic systems, with variable input time series length. Two Set Encoding methods are used, the first is Deep Set [Zaheer et al. 2017], and the second is Set Transformer [Lee et al. 2019]. Comparing Set Transformer to OASIS framework on Lotka Volterra for real-time local dynamical system identification and time series forecasting, we find that the Set Transformer architecture is well adapted to learning relationships within data sets. We then compare the two Set Encoding methods based on the Lorenz system for online global dynamical system identification. Finally, we trained a Deep Set model to perform identification and characterization of abnormalities for 1D heat-transfer problem.
☆ Lee and Seung (2000)'s Algorithms for Non-negative Matrix Factorization: A Supplementary Proof Guide
Lee and Seung (2000) introduced numerical solutions for non-negative matrix factorization (NMF) using iterative multiplicative update algorithms. These algorithms have been actively utilized as dimensionality reduction tools for high-dimensional non-negative data and learning algorithms for artificial neural networks. Despite a considerable amount of literature on the applications of the NMF algorithms, detailed explanations about their formulation and derivation are lacking. This report provides supplementary details to help understand the formulation and derivation of the proofs as used in the original paper.
comment: 17 pages; 3 figures; 10 subfigures
☆ The "Law" of the Unconscious Contrastive Learner: Probabilistic Alignment of Unpaired Modalities
While internet-scale data often comes in pairs (e.g., audio/image, image/text), we often want to perform inferences over modalities unseen together in the training data (e.g., audio/text). Empirically, this can often be addressed by learning multiple contrastive embedding spaces between existing modality pairs, implicitly hoping that unseen modality pairs will end up being aligned. This theoretical paper proves that this hope is well founded, under certain assumptions. Starting with the proper Bayesian approach of integrating out intermediate modalities, we show that directly comparing the representations of data from unpaired modalities can recover the same likelihood ratio. Our analysis builds on prior work on the geometry and probabilistic interpretation of contrastive representations, showing how these representations can answer many of the same inferences as probabilistic graphical models. Our analysis suggests two new ways of using contrastive representations: in settings with pre-trained contrastive models, and for handling language ambiguity in reinforcement learning. Our numerical experiments study the importance of our assumptions and demonstrate these new applications.
☆ Physics-Informed Machine Learning for Efficient Reconfigurable Intelligent Surface Design
Reconfigurable intelligent surface (RIS) is a two-dimensional periodic structure integrated with a large number of reflective elements, which can manipulate electromagnetic waves in a digital way, offering great potentials for wireless communication and radar detection applications. However, conventional RIS designs highly rely on extensive full-wave EM simulations that are extremely time-consuming. To address this challenge, we propose a machine-learning-assisted approach for efficient RIS design. An accurate and fast model to predict the reflection coefficient of RIS element is developed by combining a multi-layer perceptron neural network (MLP) and a dual-port network, which can significantly reduce tedious EM simulations in the network training. A RIS has been practically designed based on the proposed method. To verify the proposed method, the RIS has also been fabricated and measured. The experimental results are in good agreement with the simulation results, which validates the efficacy of the proposed method in RIS design.
☆ Nested Annealed Training Scheme for Generative Adversarial Networks
Recently, researchers have proposed many deep generative models, including generative adversarial networks(GANs) and denoising diffusion models. Although significant breakthroughs have been made and empirical success has been achieved with the GAN, its mathematical underpinnings remain relatively unknown. This paper focuses on a rigorous mathematical theoretical framework: the composite-functional-gradient GAN (CFG)[1]. Specifically, we reveal the theoretical connection between the CFG model and score-based models. We find that the training objective of the CFG discriminator is equivalent to finding an optimal D(x). The optimal gradient of D(x) differentiates the integral of the differences between the score functions of real and synthesized samples. Conversely, training the CFG generator involves finding an optimal G(x) that minimizes this difference. In this paper, we aim to derive an annealed weight preceding the weight of the CFG discriminator. This new explicit theoretical explanation model is called the annealed CFG method. To overcome the limitation of the annealed CFG method, as the method is not readily applicable to the SOTA GAN model, we propose a nested annealed training scheme (NATS). This scheme keeps the annealed weight from the CFG method and can be seamlessly adapted to various GAN models, no matter their structural, loss, or regularization differences. We conduct thorough experimental evaluations on various benchmark datasets for image generation. The results show that our annealed CFG and NATS methods significantly improve the quality and diversity of the synthesized samples. This improvement is clear when comparing the CFG method and the SOTA GAN models.
☆ A2SB: Audio-to-Audio Schrodinger Bridges
Audio in the real world may be perturbed due to numerous factors, causing the audio quality to be degraded. The following work presents an audio restoration model tailored for high-res music at 44.1kHz. Our model, Audio-to-Audio Schrodinger Bridges (A2SB), is capable of both bandwidth extension (predicting high-frequency components) and inpainting (re-generating missing segments). Critically, A2SB is end-to-end without need of a vocoder to predict waveform outputs, able to restore hour-long audio inputs, and trained on permissively licensed music data. A2SB is capable of achieving state-of-the-art bandwidth extension and inpainting quality on several out-of-distribution music test sets. Our demo website is https: //research.nvidia.com/labs/adlr/A2SB/.
☆ Collaborative Imputation of Urban Time Series through Cross-city Meta-learning
Urban time series, such as mobility flows, energy consumption, and pollution records, encapsulate complex urban dynamics and structures. However, data collection in each city is impeded by technical challenges such as budget limitations and sensor failures, necessitating effective data imputation techniques that can enhance data quality and reliability. Existing imputation models, categorized into learning-based and analytics-based paradigms, grapple with the trade-off between capacity and generalizability. Collaborative learning to reconstruct data across multiple cities holds the promise of breaking this trade-off. Nevertheless, urban data's inherent irregularity and heterogeneity issues exacerbate challenges of knowledge sharing and collaboration across cities. To address these limitations, we propose a novel collaborative imputation paradigm leveraging meta-learned implicit neural representations (INRs). INRs offer a continuous mapping from domain coordinates to target values, integrating the strengths of both paradigms. By imposing embedding theory, we first employ continuous parameterization to handle irregularity and reconstruct the dynamical system. We then introduce a cross-city collaborative learning scheme through model-agnostic meta learning, incorporating hierarchical modulation and normalization techniques to accommodate multiscale representations and reduce variance in response to heterogeneity. Extensive experiments on a diverse urban dataset from 20 global cities demonstrate our model's superior imputation performance and generalizability, underscoring the effectiveness of collaborative imputation in resource-constrained settings.
☆ Generalizable Spectral Embedding with an Application to UMAP
Spectral Embedding (SE) is a popular method for dimensionality reduction, applicable across diverse domains. Nevertheless, its current implementations face three prominent drawbacks which curtail its broader applicability: generalizability (i.e., out-of-sample extension), scalability, and eigenvectors separation. In this paper, we introduce GrEASE: Generalizable and Efficient Approximate Spectral Embedding, a novel deep-learning approach designed to address these limitations. GrEASE incorporates an efficient post-processing step to achieve eigenvectors separation, while ensuring both generalizability and scalability, allowing for the computation of the Laplacian's eigenvectors on unseen data. This method expands the applicability of SE to a wider range of tasks and can enhance its performance in existing applications. We empirically demonstrate GrEASE's ability to consistently approximate and generalize SE, while ensuring scalability. Additionally, we show how GrEASE can be leveraged to enhance existing methods. Specifically, we focus on UMAP, a leading visualization technique, and introduce NUMAP, a generalizable version of UMAP powered by GrEASE. Our codes are publicly available.
☆ A Machine Learning Framework for Handling Unreliable Absence Label and Class Imbalance for Marine Stinger Beaching Prediction
Bluebottles (\textit{Physalia} spp.) are marine stingers resembling jellyfish, whose presence on Australian beaches poses a significant public risk due to their venomous nature. Understanding the environmental factors driving bluebottles ashore is crucial for mitigating their impact, and machine learning tools are to date relatively unexplored. We use bluebottle marine stinger presence/absence data from beaches in Eastern Sydney, Australia, and compare machine learning models (Multilayer Perceptron, Random Forest, and XGBoost) to identify factors influencing their presence. We address challenges such as class imbalance, class overlap, and unreliable absence data by employing data augmentation techniques, including the Synthetic Minority Oversampling Technique (SMOTE), Random Undersampling, and Synthetic Negative Approach that excludes the negative class. Our results show that SMOTE failed to resolve class overlap, but the presence-focused approach effectively handled imbalance, class overlap, and ambiguous absence data. The data attributes such as the wind direction, which is a circular variable, emerged as a key factor influencing bluebottle presence, confirming previous inference studies. However, in the absence of population dynamics, biological behaviours, and life cycles, the best predictive model appears to be Random Forests combined with Synthetic Negative Approach. This research contributes to mitigating the risks posed by bluebottles to beachgoers and provides insights into handling class overlap and unreliable negative class in environmental modelling.
☆ RedStar: Does Scaling Long-CoT Data Unlock Better Slow-Reasoning Systems?
Can scaling transform reasoning? In this work, we explore the untapped potential of scaling Long Chain-of-Thought (Long-CoT) data to 1000k samples, pioneering the development of a slow-thinking model, RedStar. Through extensive experiments with various LLMs and different sizes, we uncover the ingredients for specialization and scale for Long-CoT training. Surprisingly, even smaller models show significant performance gains with limited data, revealing the sample efficiency of Long-CoT and the critical role of sample difficulty in the learning process. Our findings demonstrate that Long-CoT reasoning can be effectively triggered with just a few thousand examples, while larger models achieve unparalleled improvements. We also introduce reinforcement learning (RL)-scale training as a promising direction for advancing slow-thinking systems. RedStar shines across domains: on the MATH-Hard benchmark, RedStar-code-math boosts performance from 66.2\% to 81.6\%, and on the USA Math Olympiad (AIME), it solves 46.7\% of problems using only 21k mixed-code-math datasets. In multimodal tasks like GeoQA and MathVista-GEO, RedStar-Geo achieves competitive results with minimal Long-CoT data, outperforming other slow-thinking systems like QvQ-Preview. Compared to QwQ, RedStar strikes the perfect balance between reasoning and generalizability. Our work highlights that, with careful tuning, scaling Long-CoT can unlock extraordinary reasoning capabilities-even with limited dataset and set a new standard for slow-thinking models across diverse challenges. Our data and models are released at https://huggingface.co/RedStar-Reasoning.
comment: technique-report, https://huggingface.co/RedStar-Reasoning
☆ Empirical Bayes Estimation for Lasso-Type Regularizers: Analysis of Automatic Relevance Determination
This paper focuses on linear regression models with non-conjugate sparsity-inducing regularizers such as lasso and group lasso. Although empirical Bayes approach enables us to estimate the regularization parameter, little is known on the properties of the estimators. In particular, there are many unexplained aspects regarding the specific conditions under which the mechanism of automatic relevance determination (ARD) occurs. In this paper, we derive the empirical Bayes estimators for the group lasso regularized linear regression models with a limited number of parameters. It is shown that the estimators diverge under a certain condition, giving rise to the ARD mechanism. We also prove that empirical Bayes methods can produce ARD mechanism in general regularized linear regression models and clarify the conditions under which models such as ridge, lasso, and group lasso can produce ARD mechanism.
comment: 8 pages, 1 figure
☆ Higher Order Approximation Rates for ReLU CNNs in Korobov Spaces
This paper investigates the $L_p$ approximation error for higher order Korobov functions using deep convolutional neural networks (CNNs) with ReLU activation. For target functions having a mixed derivative of order m+1 in each direction, we improve classical approximation rate of second order to (m+1)-th order (modulo a logarithmic factor) in terms of the depth of CNNs. The key ingredient in our analysis is approximate representation of high-order sparse grid basis functions by CNNs. The results suggest that higher order expressivity of CNNs does not severely suffer from the curse of dimensionality.
☆ Spatiotemporal Air Quality Mapping in Urban Areas Using Sparse Sensor Data, Satellite Imagery, Meteorological Factors, and Spatial Features
Monitoring air pollution is crucial for protecting human health from exposure to harmful substances. Traditional methods of air quality monitoring, such as ground-based sensors and satellite-based remote sensing, face limitations due to high deployment costs, sparse sensor coverage, and environmental interferences. To address these challenges, this paper proposes a framework for high-resolution spatiotemporal Air Quality Index (AQI) mapping using sparse sensor data, satellite imagery, and various spatiotemporal factors. By leveraging Graph Neural Networks (GNNs), we estimate AQI values at unmonitored locations based on both spatial and temporal dependencies. The framework incorporates a wide range of environmental features, including meteorological data, road networks, points of interest (PoIs), population density, and urban green spaces, which enhance prediction accuracy. We illustrate the use of our approach through a case study in Lahore, Pakistan, where multi-resolution data is used to generate the air quality index map at a fine spatiotemporal scale.
☆ Sparse L0-norm based Kernel-free Quadratic Surface Support Vector Machines
Kernel-free quadratic surface support vector machine (SVM) models have gained significant attention in machine learning. However, introducing a quadratic classifier increases the model's complexity by quadratically expanding the number of parameters relative to the dimensionality of the data, exacerbating overfitting. To address this, we propose sparse $\ell_0$-norm based Kernel-free quadratic surface SVMs, designed to mitigate overfitting and enhance interpretability. Given the intractable nature of these models, we present a penalty decomposition algorithm to efficiently obtain first-order optimality points. Our analysis shows that the subproblems in this framework either admit closed-form solutions or can leverage duality theory to improve computational efficiency. Through empirical evaluations on real-world datasets, we demonstrate the efficacy and robustness of our approach, showcasing its potential to advance Kernel-free quadratic surface SVMs in practical applications while addressing overfitting concerns. All the implemented models and experiment codes are available at \url{https://github.com/raminzandvakili/L0-QSVM}.
☆ Communication-Efficient Federated Learning by Quantized Variance Reduction for Heterogeneous Wireless Edge Networks
Federated learning (FL) has been recognized as a viable solution for local-privacy-aware collaborative model training in wireless edge networks, but its practical deployment is hindered by the high communication overhead caused by frequent and costly server-device synchronization. Notably, most existing communication-efficient FL algorithms fail to reduce the significant inter-device variance resulting from the prevalent issue of device heterogeneity. This variance severely decelerates algorithm convergence, increasing communication overhead and making it more challenging to achieve a well-performed model. In this paper, we propose a novel communication-efficient FL algorithm, named FedQVR, which relies on a sophisticated variance-reduced scheme to achieve heterogeneity-robustness in the presence of quantized transmission and heterogeneous local updates among active edge devices. Comprehensive theoretical analysis justifies that FedQVR is inherently resilient to device heterogeneity and has a comparable convergence rate even with a small number of quantization bits, yielding significant communication savings. Besides, considering non-ideal wireless channels, we propose FedQVR-E which enhances the convergence of FedQVR by performing joint allocation of bandwidth and quantization bits across devices under constrained transmission delays. Extensive experimental results are also presented to demonstrate the superior performance of the proposed algorithms over their counterparts in terms of both communication efficiency and application performance.
☆ A Metric Topology of Deep Learning for Data Classification
Empirically, Deep Learning (DL) has demonstrated unprecedented success in practical applications. However, DL remains by and large a mysterious "black-box", spurring recent theoretical research to build its mathematical foundations. In this paper, we investigate DL for data classification through the prism of metric topology. Considering that conventional Euclidean metric over the network parameter space typically fails to discriminate DL networks according to their classification outcomes, we propose from a probabilistic point of view a meaningful distance measure, whereby DL networks yielding similar classification performances are close. The proposed distance measure defines such an equivalent relation among network parameter vectors that networks performing equally well belong to the same equivalent class. Interestingly, our proposed distance measure can provably serve as a metric on the quotient set modulo the equivalent relation. Then, under quite mild conditions it is shown that, apart from a vanishingly small subset of networks likely to predict non-unique labels, our proposed metric space is compact, and coincides with the well-known quotient topological space. Our study contributes to fundamental understanding of DL, and opens up new ways of studying DL using fruitful metric space theory.
☆ Enhancing Uncertainty Estimation in Semantic Segmentation via Monte-Carlo Frequency Dropout
Monte-Carlo (MC) Dropout provides a practical solution for estimating predictive distributions in deterministic neural networks. Traditional dropout, applied within the signal space, may fail to account for frequency-related noise common in medical imaging, leading to biased predictive estimates. A novel approach extends Dropout to the frequency domain, allowing stochastic attenuation of signal frequencies during inference. This creates diverse global textural variations in feature maps while preserving structural integrity -- a factor we hypothesize and empirically show is contributing to accurately estimating uncertainties in semantic segmentation. We evaluated traditional MC-Dropout and the MC-frequency Dropout in three segmentation tasks involving different imaging modalities: (i) prostate zones in biparametric MRI, (ii) liver tumors in contrast-enhanced CT, and (iii) lungs in chest X-ray scans. Our results show that MC-Frequency Dropout improves calibration, convergence, and semantic uncertainty, thereby improving prediction scrutiny, boundary delineation, and has the potential to enhance medical decision-making.
comment: Accepted by IEEE ISBI 2025 4-page paper. Code for the implementation is available at https://github.com/talze/frequency-dropout
☆ Multivariate Wireless Link Quality Prediction Based on Pre-trained Large Language Models
Accurate and reliable link quality prediction (LQP) is crucial for optimizing network performance, ensuring communication stability, and enhancing user experience in wireless communications. However, LQP faces significant challenges due to the dynamic and lossy nature of wireless links, which are influenced by interference, multipath effects, fading, and blockage. In this paper, we propose GAT-LLM, a novel multivariate wireless link quality prediction model that combines Large Language Models (LLMs) with Graph Attention Networks (GAT) to enable accurate and reliable multivariate LQP of wireless communications. By framing LQP as a time series prediction task and appropriately preprocessing the input data, we leverage LLMs to improve the accuracy of link quality prediction. To address the limitations of LLMs in multivariate prediction due to typically handling one-dimensional data, we integrate GAT to model interdependencies among multiple variables across different protocol layers, enhancing the model's ability to handle complex dependencies. Experimental results demonstrate that GAT-LLM significantly improves the accuracy and robustness of link quality prediction, particularly in multi-step prediction scenarios.
☆ Fast instance-specific algorithm configuration with graph neural network
Combinatorial optimization (CO) problems are pivotal across various industrial applications, where the speed of solving these problems is crucial. Improving the performance of CO solvers across diverse input instances requires fine-tuning solver parameters for each instance. However, this tuning process is time-consuming, and the time required increases with the number of instances. To address this, a method called instance-specific algorithm configuration (ISAC) has been devised. This approach involves two main steps: training and execution. During the training step, features are extracted from various instances and then grouped into clusters. For each cluster, parameters are fine-tuned. This cluster-specific tuning process results in a set of generalized parameters for instances belonging to each class. In the execution step, features are extracted from an unknown instance to determine its cluster, and the corresponding pre-tuned parameters are applied. Generally, the running time of a solver is evaluated by the time to solution ($TTS$). However, methods like ISAC require preprocessing. Therefore, the total execution time is $T_{tot}=TTS+T_{tune}$, where $T_{tune}$ represents the tuning time. While the goal is to minimize $T_{tot}$, it is important to note that extracting features in the ISAC method requires a certain amount of computational time. The extracting features include summary statistics of the solver execution logs, which takes several 10 seconds. This research presents a method to significantly reduce the time of the ISAC execution step by streamlining feature extraction and class determination with a graph neural network. Experimental results show that $T_{tune}$ in the execution step, which take several 10 seconds in the original ISAC manner, could be reduced to sub-seconds.
☆ WSSM: Geographic-enhanced hierarchical state-space model for global station weather forecast
Global Station Weather Forecasting (GSWF), a prominent meteorological research area, is pivotal in providing timely localized weather predictions. Despite the progress existing models have made in the overall accuracy of the GSWF, executing high-precision extreme event prediction still presents a substantial challenge. The recent emergence of state-space models, with their ability to efficiently capture continuous-time dynamics and latent states, offer potential solutions. However, early investigations indicated that Mamba underperforms in the context of GSWF, suggesting further adaptation and optimization. To tackle this problem, in this paper, we introduce Weather State-space Model (WSSM), a novel Mamba-based approach tailored for GSWF. Geographical knowledge is integrated in addition to the widely-used positional encoding to represent the absolute special-temporal position. The multi-scale time-frequency features are synthesized from coarse to fine to model the seasonal to extreme weather dynamic. Our method effectively improves the overall prediction accuracy and addresses the challenge of forecasting extreme weather events. The state-of-the-art results obtained on the Weather-5K subset underscore the efficacy of the WSSM
☆ A New Formulation of Lipschitz Constrained With Functional Gradient Learning for GANs
This paper introduces a promising alternative method for training Generative Adversarial Networks (GANs) on large-scale datasets with clear theoretical guarantees. GANs are typically learned through a minimax game between a generator and a discriminator, which is known to be empirically unstable. Previous learning paradigms have encountered mode collapse issues without a theoretical solution. To address these challenges, we propose a novel Lipschitz-constrained Functional Gradient GANs learning (Li-CFG) method to stabilize the training of GAN and provide a theoretical foundation for effectively increasing the diversity of synthetic samples by reducing the neighborhood size of the latent vector. Specifically, we demonstrate that the neighborhood size of the latent vector can be reduced by increasing the norm of the discriminator gradient, resulting in enhanced diversity of synthetic samples. To efficiently enlarge the norm of the discriminator gradient, we introduce a novel {\epsilon}-centered gradient penalty that amplifies the norm of the discriminator gradient using the hyper-parameter {\epsilon}. In comparison to other constraints, our method enlarging the discriminator norm, thus obtaining the smallest neighborhood size of the latent vector. Extensive experiments on benchmark datasets for image generation demonstrate the efficacy of the Li-CFG method and the {\epsilon}-centered gradient penalty. The results showcase improved stability and increased diversity of synthetic samples.
☆ An Imbalanced Learning-based Sampling Method for Physics-informed Neural Networks
This paper introduces Residual-based Smote (RSmote), an innovative local adaptive sampling technique tailored to improve the performance of Physics-Informed Neural Networks (PINNs) through imbalanced learning strategies. Traditional residual-based adaptive sampling methods, while effective in enhancing PINN accuracy, often struggle with efficiency and high memory consumption, particularly in high-dimensional problems. RSmote addresses these challenges by targeting regions with high residuals and employing oversampling techniques from imbalanced learning to refine the sampling process. Our approach is underpinned by a rigorous theoretical analysis that supports the effectiveness of RSmote in managing computational resources more efficiently. Through extensive evaluations, we benchmark RSmote against the state-of-the-art Residual-based Adaptive Distribution (RAD) method across a variety of dimensions and differential equations. The results demonstrate that RSmote not only achieves or exceeds the accuracy of RAD but also significantly reduces memory usage, making it particularly advantageous in high-dimensional scenarios. These contributions position RSmote as a robust and resource-efficient solution for solving complex partial differential equations, especially when computational constraints are a critical consideration.
comment: 11 figures,7 tables
☆ Leveraging GANs For Active Appearance Models Optimized Model Fitting
Generative Adversarial Networks (GANs) have gained prominence in refining model fitting tasks in computer vision, particularly in domains involving deformable models like Active Appearance Models (AAMs). This paper explores the integration of GANs to enhance the AAM fitting process, addressing challenges in optimizing nonlinear parameters associated with appearance and shape variations. By leveraging GANs' adversarial training framework, the aim is to minimize fitting errors and improve convergence rates. Achieving robust performance even in cases with high appearance variability and occlusions. Our approach demonstrates significant improvements in accuracy and computational efficiency compared to traditional optimization techniques, thus establishing GANs as a potent tool for advanced image model fitting.
comment: 9 pages, 2 figures, in proceeding at conference
☆ Mitigating Spatial Disparity in Urban Prediction Using Residual-Aware Spatiotemporal Graph Neural Networks: A Chicago Case Study
Urban prediction tasks, such as forecasting traffic flow, temperature, and crime rates, are crucial for efficient urban planning and management. However, existing Spatiotemporal Graph Neural Networks (ST-GNNs) often rely solely on accuracy, overlooking spatial and demographic disparities in their predictions. This oversight can lead to imbalanced resource allocation and exacerbate existing inequities in urban areas. This study introduces a Residual-Aware Attention (RAA) Block and an equality-enhancing loss function to address these disparities. By adapting the adjacency matrix during training and incorporating spatial disparity metrics, our approach aims to reduce local segregation of residuals and errors. We applied our methodology to urban prediction tasks in Chicago, utilizing a travel demand dataset as an example. Our model achieved a 48% significant improvement in fairness metrics with only a 9% increase in error metrics. Spatial analysis of residual distributions revealed that models with RAA Blocks produced more equitable prediction results, particularly by reducing errors clustered in central regions. Attention maps demonstrated the model's ability to dynamically adjust focus, leading to more balanced predictions. Case studies of various community areas in Chicago further illustrated the effectiveness of our approach in addressing spatial and demographic disparities, supporting more balanced and equitable urban planning and policy-making.
☆ Risk Analysis of Flowlines in the Oil and Gas Sector: A GIS and Machine Learning Approach
This paper presents a risk analysis of flowlines in the oil and gas sector using Geographic Information Systems (GIS) and machine learning (ML). Flowlines, vital conduits transporting oil, gas, and water from wellheads to surface facilities, often face under-assessment compared to transmission pipelines. This study addresses this gap using advanced tools to predict and mitigate failures, improving environmental safety and reducing human exposure. Extensive datasets from the Colorado Energy and Carbon Management Commission (ECMC) were processed through spatial matching, feature engineering, and geometric extraction to build robust predictive models. Various ML algorithms, including logistic regression, support vector machines, gradient boosting decision trees, and K-Means clustering, were used to assess and classify risks, with ensemble classifiers showing superior accuracy, especially when paired with Principal Component Analysis (PCA) for dimensionality reduction. Finally, a thorough data analysis highlighted spatial and operational factors influencing risks, identifying high-risk zones for focused monitoring. Overall, the study demonstrates the transformative potential of integrating GIS and ML in flowline risk management, proposing a data-driven approach that emphasizes the need for accurate data and refined models to improve safety in petroleum extraction.
☆ Ditto: Accelerating Diffusion Model via Temporal Value Similarity HPCA 2025
Diffusion models achieve superior performance in image generation tasks. However, it incurs significant computation overheads due to its iterative structure. To address these overheads, we analyze this iterative structure and observe that adjacent time steps in diffusion models exhibit high value similarity, leading to narrower differences between consecutive time steps. We adapt these characteristics to a quantized diffusion model and reveal that the majority of these differences can be represented with reduced bit-width, and even zero. Based on our observations, we propose the Ditto algorithm, a difference processing algorithm that leverages temporal similarity with quantization to enhance the efficiency of diffusion models. By exploiting the narrower differences and the distributive property of layer operations, it performs full bit-width operations for the initial time step and processes subsequent steps with temporal differences. In addition, Ditto execution flow optimization is designed to mitigate the memory overhead of temporal difference processing, further boosting the efficiency of the Ditto algorithm. We also design the Ditto hardware, a specialized hardware accelerator, fully exploiting the dynamic characteristics of the proposed algorithm. As a result, the Ditto hardware achieves up to 1.5x speedup and 17.74% energy saving compared to other accelerators.
comment: Accepted for publication at the 2025 IEEE International Symposium on High-Performance Computer Architecture (HPCA 2025)
♻ ☆ Federated Neural Nonparametric Point Processes
Temporal point processes (TPPs) are effective for modeling event occurrences over time, but they struggle with sparse and uncertain events in federated systems, where privacy is a major concern. To address this, we propose \textit{FedPP}, a Federated neural nonparametric Point Process model. FedPP integrates neural embeddings into Sigmoidal Gaussian Cox Processes (SGCPs) on the client side, which is a flexible and expressive class of TPPs, allowing it to generate highly flexible intensity functions that capture client-specific event dynamics and uncertainties while efficiently summarizing historical records. For global aggregation, FedPP introduces a divergence-based mechanism that communicates the distributions of SGCPs' kernel hyperparameters between the server and clients, while keeping client-specific parameters local to ensure privacy and personalization. FedPP effectively captures event uncertainty and sparsity, and extensive experiments demonstrate its superior performance in federated settings, particularly with KL divergence and Wasserstein distance-based global aggregation.
♻ ☆ VLM Agents Generate Their Own Memories: Distilling Experience into Embodied Programs of Thought
Large-scale LLMs and VLMs excel at few-shot learning but require high-quality examples. We introduce In-Context Abstraction Learning (ICAL), which iteratively refines suboptimal trajectories into high-quality data with optimized actions and detailed reasoning. Given an inefficient demonstration, a VLM corrects actions and annotates causal relationships, object states, subgoals, and task-relevant visuals, forming "programs of thought." With human feedback, these programs are improved as the agent executes them in a similar environment. The resulting examples, used as prompt context or fine-tuning data, significantly boost decision-making while reducing human feedback needs. ICAL surpasses state-of-the-art in TEACh (dialogue-based instruction following), VisualWebArena (multimodal web agents), and Ego4D (egocentric video action anticipation). In TEACh, combining fine-tuning and retrieval on ICAL examples outperforms raw human demonstrations and expert examples, achieving a 17.5% increase in goal-condition success. In VisualWebArena, retrieval-augmented GPT-4V with ICAL improves task success rate 1.6x over GPT-4V, while fine-tuning Qwen2-VL achieves a 2.8x improvement. In Ego4D, ICAL outperforms few-shot GPT-4V and remains competitive with supervised models. Overall, ICAL scales 2x better than raw human demonstrations and reduces manual prompt engineering.
comment: Project website: https://ical-learning.github.io/
♻ ☆ Scaling Structure Aware Virtual Screening to Billions of Molecules with SPRINT
Virtual screening of small molecules against protein targets can accelerate drug discovery and development by predicting drug-target interactions (DTIs). However, structure-based methods like molecular docking are too slow to allow for broad proteome-scale screens, limiting their application in screening for off-target effects or new molecular mechanisms. Recently, vector-based methods using protein language models (PLMs) have emerged as a complementary approach that bypasses explicit 3D structure modeling. Here, we develop SPRINT, a vector-based approach for screening entire chemical libraries against whole proteomes for DTIs and novel mechanisms of action. SPRINT improves on prior work by using a self-attention based architecture and structure-aware PLMs to learn drug-target co-embeddings for binder prediction, search, and retrieval. SPRINT achieves SOTA enrichment factors in virtual screening on LIT-PCBA, DTI classification benchmarks, and binding affinity prediction benchmarks, while providing interpretability in the form of residue-level attention maps. In addition to being both accurate and interpretable, SPRINT is ultra-fast: querying the whole human proteome against the ENAMINE Real Database (6.7B drugs) for the 100 most likely binders per protein takes 16 minutes. SPRINT promises to enable virtual screening at an unprecedented scale, opening up new opportunities for in silico drug repurposing and development. SPRINT is available on the web as ColabScreen: https://bit.ly/colab-screen
♻ ☆ Towards Robust Nonlinear Subspace Clustering: A Kernel Learning Approach
Kernel-based subspace clustering, which addresses the nonlinear structures in data, is an evolving area of research. Despite noteworthy progressions, prevailing methodologies predominantly grapple with limitations relating to (i) the influence of predefined kernels on model performance; (ii) the difficulty of preserving the original manifold structures in the nonlinear space; (iii) the dependency of spectral-type strategies on the ideal block diagonal structure of the affinity matrix. This paper presents DKLM, a novel paradigm for kernel-induced nonlinear subspace clustering. DKLM provides a data-driven approach that directly learns the kernel from the data's self-representation, ensuring adaptive weighting and satisfying the multiplicative triangle inequality constraint, which enhances the robustness of the learned kernel. By leveraging this learned kernel, DKLM preserves the local manifold structure of data in a nonlinear space while promoting the formation of an optimal block-diagonal affinity matrix. A thorough theoretical examination of DKLM reveals its relationship with existing clustering paradigms. Comprehensive experiments on synthetic and real-world datasets demonstrate the effectiveness of the proposed method.
♻ ☆ Strategy Masking: A Method for Guardrails in Value-based Reinforcement Learning Agents
The use of reward functions to structure AI learning and decision making is core to the current reinforcement learning paradigm; however, without careful design of reward functions, agents can learn to solve problems in ways that may be considered "undesirable" or "unethical." Without thorough understanding of the incentives a reward function creates, it can be difficult to impose principled yet general control mechanisms over its behavior. In this paper, we study methods for constructing guardrails for AI agents that use reward functions to learn decision making. We introduce a novel approach, which we call strategy masking, to explicitly learn and then suppress undesirable AI agent behavior. We apply our method to study lying in AI agents and show that it can be used to effectively modify agent behavior by suppressing lying post-training without compromising agent ability to perform effectively.
♻ ☆ Inference-Time Alignment in Diffusion Models with Reward-Guided Generation: Tutorial and Review
This tutorial provides an in-depth guide on inference-time guidance and alignment methods for optimizing downstream reward functions in diffusion models. While diffusion models are renowned for their generative modeling capabilities, practical applications in fields such as biology often require sample generation that maximizes specific metrics (e.g., stability, affinity in proteins, closeness to target structures). In these scenarios, diffusion models can be adapted not only to generate realistic samples but also to explicitly maximize desired measures at inference time without fine-tuning. This tutorial explores the foundational aspects of such inference-time algorithms. We review these methods from a unified perspective, demonstrating that current techniques -- such as Sequential Monte Carlo (SMC)-based guidance, value-based sampling, and classifier guidance -- aim to approximate soft optimal denoising processes (a.k.a. policies in RL) that combine pre-trained denoising processes with value functions serving as look-ahead functions that predict from intermediate states to terminal rewards. Within this framework, we present several novel algorithms not yet covered in the literature. Furthermore, we discuss (1) fine-tuning methods combined with inference-time techniques, (2) inference-time algorithms based on search algorithms such as Monte Carlo tree search, which have received limited attention in current research, and (3) connections between inference-time algorithms in language models and diffusion models. The code of this tutorial on protein design is available at https://github.com/masa-ue/AlignInversePro
comment: We plan to add more content and codes. Please let us know if there are any comments or missing citations
♻ ☆ The Blind Normalized Stein Variational Gradient Descent-Based Detection for Intelligent Random Access in Cellular IoT
The lack of an efficient preamble detection algorithm remains a challenge for solving preamble collision problems in intelligent random access (RA) in the cellular Internet of Things (IoT). To address this problem, we present an early preamble detection scheme based on a maximum likelihood estimation (MLE) model at the first step of the grant-based RA procedure. A novel blind normalized Stein variational gradient descent (SVGD)-based detector is proposed to obtain an approximate solution to the MLE model. First, by exploring the relationship between the Hadamard transform and wavelet packet transform, a new modified Hadamard transform (MHT) is developed to separate high-frequency components from signals using the second-order derivative filter. Next, to eliminate noise and mitigate the vanishing gradients problem in the SVGD-based detectors, the block MHT layer is designed based on the MHT, scaling layer, soft-thresholding layer, inverse MHT and sparsity penalty. Then, the blind normalized SVGD algorithm is derived to perform preamble detection without prior knowledge of noise power and the number of active IoT devices. The experimental results show the proposed block MHT layer outperforms other transform-based methods in terms of computation costs and denoising performance. Furthermore, with the assistance of the block MHT layer, the proposed blind normalized SVGD algorithm achieves a higher preamble detection accuracy and throughput than other state-of-the-art detection methods.
comment: Accepted by the IEEE Internet of Things Journal
♻ ☆ On the Unknowable Limits to Prediction
We propose a rigorous decomposition of predictive error, highlighting that not all 'irreducible' error is genuinely immutable. Many domains stand to benefit from iterative enhancements in measurement, construct validity, and modeling. Our approach demonstrates how apparently 'unpredictable' outcomes can become more tractable with improved data (across both target and features) and refined algorithms. By distinguishing aleatoric from epistemic error, we delineate how accuracy may asymptotically improve--though inherent stochasticity may remain--and offer a robust framework for advancing computational research.
♻ ☆ Enhancing End Stage Renal Disease Outcome Prediction: A Multi-Sourced Data-Driven Approach
Objective: To improve prediction of Chronic Kidney Disease (CKD) progression to End Stage Renal Disease (ESRD) using machine learning (ML) and deep learning (DL) models applied to an integrated clinical and claims dataset of varying observation windows, supported by explainable AI (XAI) to enhance interpretability and reduce bias. Materials and Methods: We utilized data about 10,326 CKD patients, combining their clinical and claims information from 2009 to 2018. Following data preprocessing, cohort identification, and feature engineering, we evaluated multiple statistical, ML and DL models using data extracted from five distinct observation windows. Feature importance and Shapley value analysis were employed to understand key predictors. Models were tested for robustness, clinical relevance, misclassification errors and bias issues. Results: Integrated data models outperformed those using single data sources, with the Long Short-Term Memory (LSTM) model achieving the highest AUC (0.93) and F1 score (0.65). A 24-month observation window was identified as optimal for balancing early detection and prediction accuracy. The 2021 eGFR equation improved prediction accuracy and reduced racial bias, notably for African American patients. Discussion: Improved ESRD prediction accuracy, results interpretability and bias mitigation strategies presented in this study have the potential to significantly enhance CKD and ESRD management, support targeted early interventions and reduce healthcare disparities. Conclusion: This study presents a robust framework for predicting ESRD outcomes in CKD patients, improving clinical decision-making and patient care through multi-sourced, integrated data and AI/ML methods. Future research will expand data integration and explore the application of this framework to other chronic diseases.
♻ ☆ Free Lunch in the Forest: Functionally-Identical Pruning of Boosted Tree Ensembles
Tree ensembles, including boosting methods, are highly effective and widely used for tabular data. However, large ensembles lack interpretability and require longer inference times. We introduce a method to prune a tree ensemble into a reduced version that is "functionally identical" to the original model. In other words, our method guarantees that the prediction function stays unchanged for any possible input. As a consequence, this pruning algorithm is lossless for any aggregated metric. We formalize the problem of functionally identical pruning on ensembles, introduce an exact optimization model, and provide a fast yet highly effective method to prune large ensembles. Our algorithm iteratively prunes considering a finite set of points, which is incrementally augmented using an adversarial model. In multiple computational experiments, we show that our approach is a "free lunch", significantly reducing the ensemble size without altering the model's behavior. Thus, we can preserve state-of-the-art performance at a fraction of the original model's size.
♻ ☆ Optimization and Generalization Guarantees for Weight Normalization
Weight normalization (WeightNorm) is widely used in practice for the training of deep neural networks and modern deep learning libraries have built-in implementations of it. In this paper, we provide the first theoretical characterizations of both optimization and generalization of deep WeightNorm models with smooth activation functions. For optimization, from the form of the Hessian of the loss, we note that a small Hessian of the predictor leads to a tractable analysis. Thus, we bound the spectral norm of the Hessian of WeightNorm networks and show its dependence on the network width and weight normalization terms--the latter being unique to networks without WeightNorm. Then, we use this bound to establish training convergence guarantees under suitable assumptions for gradient decent. For generalization, we use WeightNorm to get a uniform convergence based generalization bound, which is independent from the width and depends sublinearly on the depth. Finally, we present experimental results which illustrate how the normalization terms and other quantities of theoretical interest relate to the training of WeightNorm networks.
♻ ☆ Machine Against the RAG: Jamming Retrieval-Augmented Generation with Blocker Documents
Retrieval-augmented generation (RAG) systems respond to queries by retrieving relevant documents from a knowledge database and applying an LLM to the retrieved documents. We demonstrate that RAG systems that operate on databases with untrusted content are vulnerable to denial-of-service attacks we call jamming. An adversary can add a single ``blocker'' document to the database that will be retrieved in response to a specific query and result in the RAG system not answering this query - ostensibly because it lacks the relevant information or because the answer is unsafe. We describe and measure the efficacy of several methods for generating blocker documents, including a new method based on black-box optimization. This method (1) does not rely on instruction injection, (2) does not require the adversary to know the embedding or LLM used by the target RAG system, and (3) does not rely on an auxiliary LLM. We evaluate jamming attacks on several LLMs and embeddings and demonstrate that the existing safety metrics for LLMs do not capture their vulnerability to jamming. We then discuss defenses against blocker documents.
♻ ☆ Navigating the Designs of Privacy-Preserving Fine-tuning for Large Language Models WWW 2025
Instruction tuning has proven effective in enhancing Large Language Models' (LLMs) performance on downstream tasks. However, real-world fine-tuning faces inherent conflicts between model providers' intellectual property protection, clients' data privacy requirements, and tuning costs. While recent approaches like split learning and offsite tuning demonstrate promising architectures for privacy-preserving fine-tuning, there is a gap in systematically addressing the multidimensional trade-offs required for diverse real-world deployments. We propose several indicative evaluation metrics to guide design trade-offs for privacy-preserving fine-tuning and a series of example designs, collectively named GuardedTuning; they result from novel combinations of system architectures with adapted privacy-enhancement methods and emerging computation techniques. Each design represents distinct trade-offs across model utility, privacy guarantees, and costs. Experimental results demonstrate that these designs protect against data reconstruction attacks while maintaining competitive fine-tuning performance.
comment: Accepted to WWW 2025
♻ ☆ Treatment of Statistical Estimation Problems in Randomized Smoothing for Adversarial Robustness
Randomized smoothing is a popular certified defense against adversarial attacks. In its essence, we need to solve a problem of statistical estimation which is usually very time-consuming since we need to perform numerous (usually $10^5$) forward passes of the classifier for every point to be certified. In this paper, we review the statistical estimation problems for randomized smoothing to find out if the computational burden is necessary. In particular, we consider the (standard) task of adversarial robustness where we need to decide if a point is robust at a certain radius or not using as few samples as possible while maintaining statistical guarantees. We present estimation procedures employing confidence sequences enjoying the same statistical guarantees as the standard methods, with the optimal sample complexities for the estimation task and empirically demonstrate their good performance. Additionally, we provide a randomized version of Clopper-Pearson confidence intervals resulting in strictly stronger certificates.
comment: comments are welcome; neurips 2024
♻ ☆ Differentially Private Block-wise Gradient Shuffle for Deep Learning
Traditional Differentially Private Stochastic Gradient Descent (DP-SGD) introduces statistical noise on top of gradients drawn from a Gaussian distribution to ensure privacy. This paper introduces the novel Differentially Private Block-wise Gradient Shuffle (DP-BloGS) algorithm for deep learning. BloGS builds off of existing private deep learning literature, but makes a definitive shift by taking a probabilistic approach to gradient noise introduction through shuffling modeled after information theoretic privacy analyses. The theoretical results presented in this paper show that the combination of shuffling, parameter-specific block size selection, batch layer clipping, and gradient accumulation allows DP-BloGS to achieve training times close to that of non-private training while maintaining similar privacy and utility guarantees to DP-SGD. DP-BloGS is found to be significantly more resistant to data extraction attempts than DP-SGD. The theoretical results are validated by the experimental findings.
comment: The results are genuine, but the math is wrong! Please do not use this method for your Differential Privacy implementations
♻ ☆ Too Good to be True? Turn Any Model Differentially Private With DP-Weights
Imagine training a machine learning model with Differentially Private Stochastic Gradient Descent (DP-SGD), only to discover post-training that the noise level was either too high, crippling your model's utility, or too low, compromising privacy. The dreaded realization hits: you must start the lengthy training process from scratch. But what if you could avoid this retraining nightmare? In this study, we introduce a groundbreaking approach (to our knowledge) that applies differential privacy noise to the model's weights after training. We offer a comprehensive mathematical proof for this novel approach's privacy bounds, use formal methods to validate its privacy guarantees, and empirically evaluate its effectiveness using membership inference attacks and performance evaluations. This method allows for a single training run, followed by post-hoc noise adjustments to achieve optimal privacy-utility trade-offs. We compare this novel fine-tuned model (DP-Weights model) to a traditional DP-SGD model, demonstrating that our approach yields statistically similar performance and privacy guarantees. Our results validate the efficacy of post-training noise application, promising significant time savings and flexibility in fine-tuning differential privacy parameters, making it a practical alternative for deploying differentially private models in real-world scenarios.
comment: The results are genuine, but the math is wrong! Please do not use this method for your Differential Privacy implementations
♻ ☆ Token Turing Machines are Efficient Vision Models WACV 2025
We propose Vision Token Turing Machines (ViTTM), an efficient, low-latency, memory-augmented Vision Transformer (ViT). Our approach builds on Neural Turing Machines and Token Turing Machines, which were applied to NLP and sequential visual understanding tasks. ViTTMs are designed for non-sequential computer vision tasks such as image classification and segmentation. Our model creates two sets of tokens: process tokens and memory tokens; process tokens pass through encoder blocks and read-write from memory tokens at each encoder block in the network, allowing them to store and retrieve information from memory. By ensuring that there are fewer process tokens than memory tokens, we are able to reduce the inference time of the network while maintaining its accuracy. On ImageNet-1K, the state-of-the-art ViT-B has median latency of 529.5ms and 81.0% accuracy, while our ViTTM-B is 56% faster (234.1ms), with 2.4 times fewer FLOPs, with an accuracy of 82.9%. On ADE20K semantic segmentation, ViT-B achieves 45.65mIoU at 13.8 frame-per-second (FPS) whereas our ViTTM-B model acheives a 45.17 mIoU with 26.8 FPS (+94%).
comment: Accepted to WACV 2025
♻ ☆ FinLoRA: Finetuning Quantized Financial Large Language Models Using Low-Rank Adaptation
Finetuned large language models (LLMs) have shown remarkable performance in financial tasks, such as sentiment analysis and information retrieval. Due to privacy concerns, finetuning and deploying Financial LLMs (FinLLMs) locally are crucial for institutions. However, finetuning FinLLMs poses challenges including GPU memory constraints and long input sequences. In this paper, we employ quantized low-rank adaptation (QLoRA) to finetune FinLLMs, which leverage low-rank matrix decomposition and quantization techniques to significantly reduce computational requirements while maintaining high model performance. We also employ data and pipeline parallelism to enable local finetuning using cost-effective, widely accessible GPUs. Experiments on financial datasets demonstrate that our method achieves substantial improvements in accuracy, GPU memory usage, and time efficiency, underscoring the potential of lowrank methods for scalable and resource-efficient LLM finetuning.
♻ ☆ Using dynamic loss weighting to boost improvements in forecast stability
Rolling origin forecast instability refers to variability in forecasts for a specific period induced by updating the forecast when new data points become available. Recently, an extension to the N-BEATS model for univariate time series point forecasting was proposed to include forecast stability as an additional optimization objective, next to accuracy. It was shown that more stable forecasts can be obtained without harming accuracy by minimizing a composite loss function that contains both a forecast error and a forecast instability component, with a static hyperparameter to control the impact of stability. In this paper, we empirically investigate whether further improvements in stability can be obtained without compromising accuracy by applying dynamic loss weighting algorithms, which change the loss weights during training. We show that existing dynamic loss weighting methods can achieve this objective and provide insights into why this might be the case. Additionally, we propose an extension to the Random Weighting approach -- Task-Aware Random Weighting -- which also achieves this objective.
♻ ☆ UniGraph: Learning a Unified Cross-Domain Foundation Model for Text-Attributed Graphs KDD 2025
Foundation models like ChatGPT and GPT-4 have revolutionized artificial intelligence, exhibiting remarkable abilities to generalize across a wide array of tasks and applications beyond their initial training objectives. However, graph learning has predominantly focused on single-graph models, tailored to specific tasks or datasets, lacking the ability to transfer learned knowledge to different domains. This limitation stems from the inherent complexity and diversity of graph structures, along with the different feature and label spaces specific to graph data. In this paper, we recognize text as an effective unifying medium and employ Text-Attributed Graphs (TAGs) to leverage this potential. We present our UniGraph framework, designed to learn a foundation model for TAGs, which is capable of generalizing to unseen graphs and tasks across diverse domains. Unlike single-graph models that use pre-computed node features of varying dimensions as input, our approach leverages textual features for unifying node representations, even for graphs such as molecular graphs that do not naturally have textual features. We propose a novel cascaded architecture of Language Models (LMs) and Graph Neural Networks (GNNs) as backbone networks. Additionally, we propose the first pre-training algorithm specifically designed for large-scale self-supervised learning on TAGs, based on Masked Graph Modeling. We introduce graph instruction tuning using Large Language Models (LLMs) to enable zero-shot prediction ability. Our comprehensive experiments across various graph learning tasks and domains demonstrate the model's effectiveness in self-supervised representation learning on unseen graphs, few-shot in-context transfer, and zero-shot transfer, even surpassing or matching the performance of GNNs that have undergone supervised training on target datasets.
comment: KDD 2025
♻ ☆ LatentGAN Autoencoder: Learning Disentangled Latent Distribution
In autoencoder, the encoder generally approximates the latent distribution over the dataset, and the decoder generates samples using this learned latent distribution. There is very little control over the latent vector as using the random latent vector for generation will lead to trivial outputs. This work tries to address this issue by using the LatentGAN generator to directly learn to approximate the latent distribution of the autoencoder and show meaningful results on MNIST, 3D Chair, and CelebA datasets, an additional information-theoretic constrain is used which successfully learns to control autoencoder latent distribution. With this, our model also achieves an error rate of 2.38 on MNIST unsupervised image classification, which is better as compared to InfoGAN and AAE.
♻ ☆ LaMSUM: Amplifying Voices Against Harassment through LLM Guided Extractive Summarization of User Incident Reports
Citizen reporting platforms like Safe City in India help the public and authorities stay informed about sexual harassment incidents. However, the high volume of data shared on these platforms makes reviewing each individual case challenging. Therefore, a summarization algorithm capable of processing and understanding various Indian code-mixed languages is essential. In recent years, Large Language Models (LLMs) have shown exceptional performance in NLP tasks, including summarization. LLMs inherently produce abstractive summaries by paraphrasing the original text, while the generation of extractive summaries - selecting specific subsets from the original text - through LLMs remains largely unexplored. Moreover, LLMs have a limited context window size, restricting the amount of data that can be processed at once. We tackle these challenge by introducing LaMSUM, a novel multi-level framework designed to generate extractive summaries for large collections of Safe City posts using LLMs. LaMSUM integrates summarization with different voting methods to achieve robust summaries. Extensive evaluation using three popular LLMs (Llama, Mistral and GPT-4o) demonstrates that LaMSUM outperforms state-of-the-art extractive summarization methods for Safe City posts. Overall, this work represents one of the first attempts to achieve extractive summarization through LLMs, and is likely to support stakeholders by offering a comprehensive overview and enabling them to develop effective policies to minimize incidents of unwarranted harassment.
♻ ☆ Benchmarking a wide range of optimisers for solving the Fermi-Hubbard model using the variational quantum eigensolver
We numerically benchmark 30 optimisers on 372 instances of the variational quantum eigensolver for solving the Fermi-Hubbard system with the Hamiltonian variational ansatz. We rank the optimisers with respect to metrics such as final energy achieved and function calls needed to get within a certain tolerance level, and find that the best performing optimisers are variants of gradient descent such as Momentum and ADAM (using finite difference), SPSA, CMAES, and BayesMGD. We also perform gradient analysis and observe that the step size for finite difference has a very significant impact. We also consider using simultaneous perturbation (inspired by SPSA) as a gradient subroutine: here finite difference can lead to a more precise estimate of the ground state but uses more calls, whereas simultaneous perturbation can converge quicker but may be less precise in the later stages. Finally, we also study the quantum natural gradient algorithm: we implement this method for 1-dimensional Fermi-Hubbard systems, and find that whilst it can reach a lower energy with fewer iterations, this improvement is typically lost when taking total function calls into account. Our method involves performing careful hyperparameter sweeping on 4 instances. We present a variety of analysis and figures, detailed optimiser notes, and discuss future directions.
comment: 43 pages, 30 figures. Version 2 contains minor edits and additional references. Associated data can be found at https://doi.org/10.5281/zenodo.13960674
♻ ☆ Unsupervised Feature Construction for Anomaly Detection in Time Series -- An Evaluation
To detect anomalies with precision and without prior knowledge in time series, is it better to build a detector from the initial temporal representation, or to compute a new (tabular) representation using an existing automatic variable construction library? In this article, we address this question by conducting an in-depth experimental study for two popular detectors (Isolation Forest and Local Outlier Factor). The obtained results, for 5 different datasets, show that the new representation, computed using the tsfresh library, allows Isolation Forest to significantly improve its performance.
comment: 7
♻ ☆ FAIR-TAT: Improving Model Fairness Using Targeted Adversarial Training
Deep neural networks are susceptible to adversarial attacks and common corruptions, which undermine their robustness. In order to enhance model resilience against such challenges, Adversarial Training (AT) has emerged as a prominent solution. Nevertheless, adversarial robustness is often attained at the expense of model fairness during AT, i.e., disparity in class-wise robustness of the model. While distinctive classes become more robust towards such adversaries, hard to detect classes suffer. Recently, research has focused on improving model fairness specifically for perturbed images, overlooking the accuracy of the most likely non-perturbed data. Additionally, despite their robustness against the adversaries encountered during model training, state-of-the-art adversarial trained models have difficulty maintaining robustness and fairness when confronted with diverse adversarial threats or common corruptions. In this work, we address the above concerns by introducing a novel approach called Fair Targeted Adversarial Training (FAIR-TAT). We show that using targeted adversarial attacks for adversarial training (instead of untargeted attacks) can allow for more favorable trade-offs with respect to adversarial fairness. Empirical results validate the efficacy of our approach.
♻ ☆ Self-Adaptive Physics-Informed Quantum Machine Learning for Solving Differential Equations
Chebyshev polynomials have shown significant promise as an efficient tool for both classical and quantum neural networks to solve linear and nonlinear differential equations. In this work, we adapt and generalize this framework in a quantum machine learning setting for a variety of problems, including the 2D Poisson's equation, second-order linear differential equation, system of differential equations, nonlinear Duffing and Riccati equation. In particular, we propose in the quantum setting a modified Self-Adaptive Physics-Informed Neural Network (SAPINN) approach, where self-adaptive weights are applied to problems with multi-objective loss functions. We further explore capturing correlations in our loss function using a quantum-correlated measurement, resulting in improved accuracy for initial value problems. We analyse also the use of entangling layers and their impact on the solution accuracy for second-order differential equations. The results indicate a promising approach to the near-term evaluation of differential equations on quantum devices.
♻ ☆ Graph neural networks informed locally by thermodynamics
Thermodynamics-informed neural networks employ inductive biases for the enforcement of the first and second principles of thermodynamics. To construct these biases, a metriplectic evolution of the system is assumed. This provides excellent results, when compared to uninformed, black box networks. While the degree of accuracy can be increased in one or two orders of magnitude, in the case of graph networks, this requires assembling global Poisson and dissipation matrices, which breaks the local structure of such networks. In order to avoid this drawback, a local version of the metriplectic biases has been developed in this work, which avoids the aforementioned matrix assembly, thus preserving the node-by-node structure of the graph networks. We apply this framework for examples in the fields of solid and fluid mechanics. Our approach demonstrates significant computational efficiency and strong generalization capabilities, accurately making inferences on examples significantly different from those encountered during training.
♻ ☆ Enhancing Diabetic Retinopathy Detection with CNN-Based Models: A Comparative Study of UNET and Stacked UNET Architectures
Diabetic Retinopathy DR is a severe complication of diabetes. Damaged or abnormal blood vessels can cause loss of vision. The need for massive screening of a large population of diabetic patients has generated an interest in a computer-aided fully automatic diagnosis of DR. In the realm of Deep learning frameworks, particularly convolutional neural networks CNNs, have shown great interest and promise in detecting DR by analyzing retinal images. However, several challenges have been faced in the application of deep learning in this domain. High-quality, annotated datasets are scarce, and the variations in image quality and class imbalances pose significant hurdles in developing a dependable model. In this paper, we demonstrate the proficiency of two Convolutional Neural Networks CNNs based models, UNET and Stacked UNET utilizing the APTOS Asia Pacific Tele-Ophthalmology Society Dataset. This system achieves an accuracy of 92.81% for the UNET and 93.32% for the stacked UNET architecture. The architecture classifies the images into five categories ranging from 0 to 4, where 0 is no DR and 4 is proliferative DR.
♻ ☆ Differentially Private Gradient Flow based on the Sliced Wasserstein Distance
Safeguarding privacy in sensitive training data is paramount, particularly in the context of generative modeling. This can be achieved through either differentially private stochastic gradient descent or a differentially private metric for training models or generators. In this paper, we introduce a novel differentially private generative modeling approach based on a gradient flow in the space of probability measures. To this end, we define the gradient flow of the Gaussian-smoothed Sliced Wasserstein Distance, including the associated stochastic differential equation (SDE). By discretizing and defining a numerical scheme for solving this SDE, we demonstrate the link between smoothing and differential privacy based on a Gaussian mechanism, due to a specific form of the SDE's drift term. We then analyze the differential privacy guarantee of our gradient flow, which accounts for both the smoothing and the Wiener process introduced by the SDE itself. Experiments show that our proposed model can generate higher-fidelity data at a low privacy budget compared to a generator-based model, offering a promising alternative.
♻ ☆ Machine learning applications in archaeological practices: a review
Artificial intelligence and machine learning applications in archaeology have increased significantly in recent years, and these now span all subfields, geographical regions, and time periods. The prevalence and success of these applications have remained largely unexamined, as recent reviews on the use of machine learning in archaeology have only focused only on specific subfields of archaeology. Our review examined an exhaustive corpus of 135 articles published between 1997 and 2022. We observed a significant increase in the number of publications from 2019 onwards. Automatic structure detection and artefact classification were the most represented tasks in the articles reviewed, followed by taphonomy, and archaeological predictive modelling. From the review, clustering and unsupervised methods were underrepresented compared to supervised models. Artificial neural networks and ensemble learning account for two thirds of the total number of models used. However, if machine learning models are gaining in popularity they remain subject to misunderstanding. We observed, in some cases, poorly defined requirements and caveats of the machine learning methods used. Furthermore, the goals and the needs of machine learning applications for archaeological purposes are in some cases unclear or poorly expressed. To address this, we proposed a workflow guide for archaeologists to develop coherent and consistent methodologies adapted to their research questions, project scale and data. As in many other areas, machine learning is rapidly becoming an important tool in archaeological research and practice, useful for the analyses of large and multivariate data, although not without limitations. This review highlights the importance of well-defined and well-reported structured methodologies and collaborative practices to maximise the potential of applications of machine learning methods in archaeology.
♻ ☆ PandaSkill -- Player Performance and Skill Rating in Esports: Application to League of Legends
To take the esports scene to the next level, we introduce PandaSkill, a framework for assessing player performance and skill rating. Traditional rating systems like Elo and TrueSkill often overlook individual contributions and face challenges in professional esports due to limited game data and fragmented competitive scenes. PandaSkill leverages machine learning to estimate in-game player performance from individual player statistics. Each in-game role is modeled independently, ensuring a fair comparison between them. Then, using these performance scores, PandaSkill updates the player skill ratings using the Bayesian framework OpenSkill in a free-for-all setting. In this setting, skill ratings are updated solely based on performance scores rather than game outcomes, hightlighting individual contributions. To address the challenge of isolated rating pools that hinder cross-regional comparisons, PandaSkill introduces a dual-rating system that combines players' regional ratings with a meta-rating representing each region's overall skill level. Applying PandaSkill to five years of professional League of Legends matches worldwide, we show that our method produces skill ratings that better predict game outcomes and align more closely with expert opinions compared to existing methods.
♻ ☆ APOLLO: SGD-like Memory, AdamW-level Performance
Large language models (LLMs) are notoriously memory-intensive during training, particularly with the popular AdamW optimizer. This memory burden necessitates using more or higher-end GPUs or reducing batch sizes, limiting training scalability and throughput. To address this, various memory-efficient optimizers have been proposed to reduce optimizer memory usage. However, they face critical challenges: (i) reliance on costly SVD operations; (ii) significant performance trade-offs compared to AdamW; and (iii) still substantial optimizer memory overhead to maintain competitive performance. In this work, we identify that AdamW's learning rate adaptation rule can be effectively coarsened as a structured learning rate update. Based on this insight, we propose Approximated Gradient Scaling for Memory-Efficient LLM Optimization (APOLLO), which approximates learning rate scaling using an auxiliary low-rank optimizer state based on pure random projection. This structured learning rate update rule makes APOLLO highly tolerant to further memory reductions while delivering comparable pre-training performance. Even its rank-1 variant, APOLLO-Mini, achieves superior pre-training performance compared to AdamW with SGD-level memory costs. Extensive experiments demonstrate that the APOLLO series performs on-par with or better than AdamW, while achieving greater memory savings by nearly eliminating the optimization states of AdamW. These savings provide significant system-level benefits: (1) Enhanced Throughput: 3x throughput on an 8xA100-80GB setup compared to AdamW by supporting 4x larger batch sizes. (2) Improved Model Scalability: Pre-training LLaMA-13B with naive DDP on A100-80GB GPUs without system-level optimizations. (3) Low-End GPU Friendly Pre-training: Pre-training LLaMA-7B on a single GPU using less than 12 GB of memory with weight quantization.
comment: Preprint; update code link and visualization
♻ ☆ Automatic rating of incomplete hippocampal inversions evaluated across multiple cohorts
Incomplete Hippocampal Inversion (IHI), sometimes called hippocampal malrotation, is an atypical anatomical pattern of the hippocampus found in about 20% of the general population. IHI can be visually assessed on coronal slices of T1 weighted MR images, using a composite score that combines four anatomical criteria. IHI has been associated with several brain disorders (epilepsy, schizophrenia). However, these studies were based on small samples. Furthermore, the factors (genetic or environmental) that contribute to the genesis of IHI are largely unknown. Large-scale studies are thus needed to further understand IHI and their potential relationships to neurological and psychiatric disorders. However, visual evaluation is long and tedious, justifying the need for an automatic method. In this paper, we propose, for the first time, to automatically rate IHI. We proceed by predicting four anatomical criteria, which are then summed up to form the IHI score, providing the advantage of an interpretable score. We provided an extensive experimental investigation of different machine learning methods and training strategies. We performed automatic rating using a variety of deep learning models (conv5-FC3, ResNet and SECNN) as well as a ridge regression. We studied the generalization of our models using different cohorts and performed multi-cohort learning. We relied on a large population of 2,008 participants from the IMAGEN study, 993 and 403 participants from the QTIM/QTAB studies as well as 985 subjects from the UKBiobank. We showed that deep learning models outperformed a ridge regression. We demonstrated that the performances of the conv5-FC3 network were at least as good as more complex networks while maintaining a low complexity and computation time. We showed that training on a single cohort may lack in variability while training on several cohorts improves generalization.
comment: Accepted for publication at the Journal of Machine Learning for Biomedical Imaging (MELBA) https://melba-journal.org/2024:016
♻ ☆ Hierarchical Autoregressive Transformers: Combining Byte- and Word-Level Processing for Robust, Adaptable Language Models
Tokenization is a fundamental step in natural language processing, breaking text into units that computational models can process. While learned subword tokenizers have become the de-facto standard, they present challenges such as large vocabularies, limited adaptability to new domains or languages, and sensitivity to spelling errors and variations. To overcome these limitations, we investigate a hierarchical architecture for autoregressive language modelling that combines character-level and word-level processing. It employs a lightweight character-level encoder to convert character sequences into word embeddings, which are then processed by a word-level backbone model and decoded back into characters via a compact character-level decoder. This method retains the sequence compression benefits of word-level tokenization without relying on a rigid, predefined vocabulary. We demonstrate, at scales up to 7 billion parameters, that hierarchical transformers match the downstream task performance of subword-tokenizer-based models while exhibiting significantly greater robustness to input perturbations. Additionally, during continued pretraining on an out-of-domain language, our model trains almost twice as fast, achieves superior performance on the target language, and retains more of its previously learned knowledge. Hierarchical transformers pave the way for NLP systems that are more robust, flexible, and generalizable across languages and domains.
♻ ☆ ECGrecover: a Deep Learning Approach for Electrocardiogram Signal Completion
In this work, we address the challenge of reconstructing the complete 12-lead ECG signal from its incomplete parts. We focus on two main scenarios: (i) reconstructing missing signal segments within an ECG lead and (ii) recovering entire leads from signal in another unique lead. Two emerging clinical applications emphasize the relevance of our work. The first is the increasing need to digitize paper-stored ECGs for utilization in AI-based applications, often limited to digital 12 lead 10s ECGs. The second is the widespread use of wearable devices that record ECGs but typically capture only one or a few leads. In both cases, a non-negligible amount of information is lost or not recorded. Our approach aims to recover this missing signal. We propose ECGrecover, a U-Net neural network model trained on a novel composite objective function to address the reconstruction problem. This function incorporates both spatial and temporal features of the ECG by combining the distance in amplitude and sycnhronization through time between the reconstructed and the real digital signals. We used real-life ECG datasets and through comprehensive assessments compared ECGrecover with three state-of-the-art methods based on generative adversarial networks (EKGAN, Pix2Pix) as well as the CopyPaste strategy. The results demonstrated that ECGrecover consistently outperformed state-of-the-art methods in standard distortion metrics as well as in preserving critical ECG characteristics, particularly the P, QRS, and T wave coordinates.
comment: 31 pages, 14 figures, 29 tables, conference paper
♻ ☆ Credit Risk Identification in Supply Chains Using Generative Adversarial Networks
Credit risk management within supply chains has emerged as a critical research area due to its significant implications for operational stability and financial sustainability. The intricate interdependencies among supply chain participants mean that credit risks can propagate across networks, with impacts varying by industry. This study explores the application of Generative Adversarial Networks (GANs) to enhance credit risk identification in supply chains. GANs enable the generation of synthetic credit risk scenarios, addressing challenges related to data scarcity and imbalanced datasets. By leveraging GAN-generated data, the model improves predictive accuracy while effectively capturing dynamic and temporal dependencies in supply chain data. The research focuses on three representative industries-manufacturing (steel), distribution (pharmaceuticals), and services (e-commerce) to assess industry-specific credit risk contagion. Experimental results demonstrate that the GAN-based model outperforms traditional methods, including logistic regression, decision trees, and neural networks, achieving superior accuracy, recall, and F1 scores. The findings underscore the potential of GANs in proactive risk management, offering robust tools for mitigating financial disruptions in supply chains. Future research could expand the model by incorporating external market factors and supplier relationships to further enhance predictive capabilities. Keywords- Generative Adversarial Networks (GANs); Supply Chain Risk; Credit Risk Identification; Machine Learning; Data Augmentation
comment: The paper will be published and indexed by IEEE at 2025 8th International Conference on Advanced Algorithms and Control Engineering (ICAACE 2025)
♻ ☆ Unveil Inversion and Invariance in Flow Transformer for Versatile Image Editing
Leveraging the large generative prior of the flow transformer for tuning-free image editing requires authentic inversion to project the image into the model's domain and a flexible invariance control mechanism to preserve non-target contents. However, the prevailing diffusion inversion performs deficiently in flow-based models, and the invariance control cannot reconcile diverse rigid and non-rigid editing tasks. To address these, we systematically analyze the \textbf{inversion and invariance} control based on the flow transformer. Specifically, we unveil that the Euler inversion shares a similar structure to DDIM yet is more susceptible to the approximation error. Thus, we propose a two-stage inversion to first refine the velocity estimation and then compensate for the leftover error, which pivots closely to the model prior and benefits editing. Meanwhile, we propose the invariance control that manipulates the text features within the adaptive layer normalization, connecting the changes in the text prompt to image semantics. This mechanism can simultaneously preserve the non-target contents while allowing rigid and non-rigid manipulation, enabling a wide range of editing types such as visual text, quantity, facial expression, etc. Experiments on versatile scenarios validate that our framework achieves flexible and accurate editing, unlocking the potential of the flow transformer for versatile image editing.
comment: Project Page: https://pengchengpcx.github.io/EditFT/
♻ ☆ BoostStep: Boosting mathematical capability of Large Language Models via improved single-step reasoning
Cutting-edge large language models (LLMs) demonstrate promising performance in solving complex math problems with a divide-and-conquer pipeline and the assistance of in-context learning (ICL) examples. However, their potential for improvement is limited by two critical problems within their ICL examples: granularity-mismatch and the ensuing negative-effect noise problem. Specifically, the LLMs are capable of the dividing process yet mostly failed by inaccurate reasoning within a few conquer steps, while the ICL examples retrieved in question-grained sometimes lack relevant steps for a specific challenging reasoning step. Further, this disconnect may hinder the correct reasoning due to its irrelevance. To this end, we focus on improving the reasoning quality within each step and present BoostStep. BoostStep aligns the granularity between the retrieving and reasoning on step grained, and provides highly related ICL examples for each reasoning step with a novel `first-try' strategy. BoostStep provides more relevant examples than the coarse question-grained strategy, enhancing the model reasoning quality within each step steadily. BoostStep is a general and robust reasoning-enhancing method that not only improves standalone reasoning performance but also integrates seamlessly with Monte Carlo Tree Search methods (MCTS) to refine both candidate generation and decision-making. Quantitatively, it improves GPT-4o and Qwen2.5-Math-72B by 3.6\% and 2.0\% respectively on various mathematical benchmarks, and 7.5\% gain combined with MCTS.
comment: Codes and Data are available at https://github.com/beichenzbc/BoostStep
♻ ☆ Constructing Fair Latent Space for Intersection of Fairness and Explainability AAAI 2025
As the use of machine learning models has increased, numerous studies have aimed to enhance fairness. However, research on the intersection of fairness and explainability remains insufficient, leading to potential issues in gaining the trust of actual users. Here, we propose a novel module that constructs a fair latent space, enabling faithful explanation while ensuring fairness. The fair latent space is constructed by disentangling and redistributing labels and sensitive attributes, allowing the generation of counterfactual explanations for each type of information. Our module is attached to a pretrained generative model, transforming its biased latent space into a fair latent space. Additionally, since only the module needs to be trained, there are advantages in terms of time and cost savings, without the need to train the entire generative model. We validate the fair latent space with various fairness metrics and demonstrate that our approach can effectively provide explanations for biased decisions and assurances of fairness.
comment: 14 pages, 5 figures, accepted in AAAI 2025
♻ ☆ DPO Kernels: A Semantically-Aware, Kernel-Enhanced, and Divergence-Rich Paradigm for Direct Preference Optimization
The rapid rise of large language models (LLMs) has unlocked many applications but also underscores the challenge of aligning them with diverse values and preferences. Direct Preference Optimization (DPO) is central to alignment but constrained by fixed divergences and limited feature transformations. We propose DPO-Kernels, which integrates kernel methods to address these issues through four key contributions: (i) Kernelized Representations with polynomial, RBF, Mahalanobis, and spectral kernels for richer transformations, plus a hybrid loss combining embedding-based and probability-based objectives; (ii) Divergence Alternatives (Jensen-Shannon, Hellinger, Renyi, Bhattacharyya, Wasserstein, and f-divergences) for greater stability; (iii) Data-Driven Selection metrics that automatically choose the best kernel-divergence pair; and (iv) a Hierarchical Mixture of Kernels for both local precision and global modeling. Evaluations on 12 datasets demonstrate state-of-the-art performance in factuality, safety, reasoning, and instruction following. Grounded in Heavy-Tailed Self-Regularization, DPO-Kernels maintains robust generalization for LLMs, offering a comprehensive resource for further alignment research.
♻ ☆ Neural Probabilistic Circuits: Enabling Compositional and Interpretable Predictions through Logical Reasoning
End-to-end deep neural networks have achieved remarkable success across various domains but are often criticized for their lack of interpretability. While post hoc explanation methods attempt to address this issue, they often fail to accurately represent these black-box models, resulting in misleading or incomplete explanations. To overcome these challenges, we propose an inherently transparent model architecture called Neural Probabilistic Circuits (NPCs), which enable compositional and interpretable predictions through logical reasoning. In particular, an NPC consists of two modules: an attribute recognition model, which predicts probabilities for various attributes, and a task predictor built on a probabilistic circuit, which enables logical reasoning over recognized attributes to make class predictions. To train NPCs, we introduce a three-stage training algorithm comprising attribute recognition, circuit construction, and joint optimization. Moreover, we theoretically demonstrate that an NPC's error is upper-bounded by a linear combination of the errors from its modules. To further demonstrate the interpretability of NPC, we provide both the most probable explanations and the counterfactual explanations. Empirical results on four benchmark datasets show that NPCs strike a balance between interpretability and performance, achieving results competitive even with those of end-to-end black-box models while providing enhanced interpretability.
♻ ☆ Deciphering the Chaos: Enhancing Jailbreak Attacks via Adversarial Prompt Translation
Automatic adversarial prompt generation provides remarkable success in jailbreaking safely-aligned large language models (LLMs). Existing gradient-based attacks, while demonstrating outstanding performance in jailbreaking white-box LLMs, often generate garbled adversarial prompts with chaotic appearance. These adversarial prompts are difficult to transfer to other LLMs, hindering their performance in attacking unknown victim models. In this paper, for the first time, we delve into the semantic meaning embedded in garbled adversarial prompts and propose a novel method that "translates" them into coherent and human-readable natural language adversarial prompts. In this way, we can effectively uncover the semantic information that triggers vulnerabilities of the model and unambiguously transfer it to the victim model, without overlooking the adversarial information hidden in the garbled text, to enhance jailbreak attacks. It also offers a new approach to discovering effective designs for jailbreak prompts, advancing the understanding of jailbreak attacks. Experimental results demonstrate that our method significantly improves the success rate of jailbreak attacks against various safety-aligned LLMs and outperforms state-of-the-arts by large margins. With at most 10 queries, our method achieves an average attack success rate of 81.8% in attacking 7 commercial closed-source LLMs, including GPT and Claude-3 series, on HarmBench. Our method also achieves over 90% attack success rates against Llama-2-Chat models on AdvBench, despite their outstanding resistance to jailbreak attacks. Code at: https://github.com/qizhangli/Adversarial-Prompt-Translator.
♻ ☆ Efficient Large-Scale Urban Parking Prediction: Graph Coarsening Based on Real-Time Parking Service Capability
With the sharp increase in the number of vehicles, the issue of parking difficulties has emerged as an urgent challenge that many cities need to address promptly. In the task of predicting large-scale urban parking data, existing research often lacks effective deep learning models and strategies. To tackle this challenge, this paper proposes an innovative framework for predicting large-scale urban parking graphs leveraging real-time service capabilities, aimed at improving the accuracy and efficiency of parking predictions. Specifically, we introduce a graph attention mechanism that assesses the real-time service capabilities of parking lots to construct a dynamic parking graph that accurately reflects real preferences in parking behavior. To effectively handle large-scale parking data, this study combines graph coarsening techniques with temporal convolutional autoencoders to achieve unified dimension reduction of the complex urban parking graph structure and features. Subsequently, we use a spatio-temporal graph convolutional model to make predictions based on the coarsened graph, and a pre-trained autoencoder-decoder module restores the predicted results to their original data dimensions, completing the task. Our methodology has been rigorously tested on a real dataset from parking lots in Shenzhen. The experimental results indicate that compared to traditional parking prediction models, our framework achieves improvements of 46.8\% and 30.5\% in accuracy and efficiency, respectively. Remarkably, with the expansion of the graph's scale, our framework's advantages become even more apparent, showcasing its substantial potential for solving complex urban parking dilemmas in practical scenarios.
♻ ☆ Sequential Portfolio Selection under Latent Side Information-Dependence Structure: Optimality and Universal Learning Algorithms
This paper investigates the investment problem of constructing an optimal no-short sequential portfolio strategy in a market with a latent dependence structure between asset prices and partly unobservable side information, which is often high-dimensional. The results demonstrate that a dynamic strategy, which forms a portfolio based on perfect knowledge of the dependence structure and full market information over time, may not grow at a higher rate infinitely often than a constant strategy, which remains invariant over time. Specifically, if the market is stationary, implying that the dependence structure is statistically stable, the growth rate of an optimal dynamic strategy, utilizing the maximum capacity of the entire market information, almost surely decays over time into an equilibrium state, asymptotically converging to the growth rate of a constant strategy. Technically, this work reassesses the common belief that a constant strategy only attains the optimal limiting growth rate of dynamic strategies when the market process is identically and independently distributed. By analyzing the dynamic log-optimal portfolio strategy as the optimal benchmark in a stationary market with side information, we show that a random optimal constant strategy almost surely exists, even when a limiting growth rate for the dynamic strategy does not. Consequently, two approaches to learning algorithms for portfolio construction are discussed, demonstrating the safety of removing side information from the learning process while still guaranteeing an asymptotic growth rate comparable to that of the optimal dynamic strategy.
comment: 34 pages, working paper, second draft (with the remark in section 3.2 removed from the first draft)
♻ ☆ Steering Large Language Models with Feature Guided Activation Additions
Effective and reliable control over large language model (LLM) behavior is a significant challenge. While activation steering methods, which add steering vectors to a model's hidden states, are a promising approach, existing techniques often lack precision and interpretability in how they influence model outputs. We introduce Feature Guided Activation Additions (FGAA), a novel activation steering method that leverages insights from Contrastive Activation Addition (CAA) and Sparse Autoencoder-Targeted Steering (SAE-TS). By operating in the latent space of a Sparse Autoencoder (SAE) and employing optimization techniques to select desired SAE features, FGAA constructs precise steering vectors that provide better steering effects while maintaining coherence of steered model outputs. In this regard, evaluations on Gemma-2-2B and Gemma-2-9B models across various steering tasks demonstrate that FGAA outperforms existing steering methods of CAA, SAE decoder steering, and SAE-TS. Our results also highlight important trade-offs between steering scale and general model capabilities that are consistent across all tested steering methods.
comment: 7 maintext pages, 14 appendix pages
♻ ☆ A Survey on Uncertainty Quantification Methods for Deep Learning
Deep neural networks (DNNs) have achieved tremendous success in making accurate predictions for computer vision, natural language processing, as well as science and engineering domains. However, it is also well-recognized that DNNs sometimes make unexpected, incorrect, but overconfident predictions. This can cause serious consequences in high-stake applications, such as autonomous driving, medical diagnosis, and disaster response. Uncertainty quantification (UQ) aims to estimate the confidence of DNN predictions beyond prediction accuracy. In recent years, many UQ methods have been developed for DNNs. It is of great practical value to systematically categorize these UQ methods and compare their advantages and disadvantages. However, existing surveys mostly focus on categorizing UQ methodologies from a neural network architecture perspective or a Bayesian perspective and ignore the source of uncertainty that each methodology can incorporate, making it difficult to select an appropriate UQ method in practice. To fill the gap, this paper presents a systematic taxonomy of UQ methods for DNNs based on the types of uncertainty sources (data uncertainty versus model uncertainty). We summarize the advantages and disadvantages of methods in each category. We show how our taxonomy of UQ methodologies can potentially help guide the choice of UQ method in different machine learning problems (e.g., active learning, robustness, and reinforcement learning). We also identify current research gaps and propose several future research directions.
comment: 39 pages, 13 figures
♻ ☆ Nonconvex Stochastic Bregman Proximal Gradient Method with Application to Deep Learning
Stochastic gradient methods for minimizing nonconvex composite objective functions typically rely on the Lipschitz smoothness of the differentiable part, but this assumption fails in many important problem classes like quadratic inverse problems and neural network training, leading to instability of the algorithms in both theory and practice. To address this, we propose a family of stochastic Bregman proximal gradient (SBPG) methods that only require smooth adaptivity. SBPG replaces the quadratic approximation in SGD with a Bregman proximity measure, offering a better approximation model that handles non-Lipschitz gradients in nonconvex objectives. We establish the convergence properties of vanilla SBPG and show it achieves optimal sample complexity in the nonconvex setting. Experimental results on quadratic inverse problems demonstrate SBPG's robustness in terms of stepsize selection and sensitivity to the initial point. Furthermore, we introduce a momentum-based variant, MSBPG, which enhances convergence by relaxing the mini-batch size requirement while preserving the optimal oracle complexity. We apply MSBPG to the training of deep neural networks, utilizing a polynomial kernel function to ensure smooth adaptivity of the loss function. Experimental results on benchmark datasets confirm the effectiveness and robustness of MSBPG in training neural networks. Given its negligible additional computational cost compared to SGD in large-scale optimization, MSBPG shows promise as a universal open-source optimizer for future applications.
comment: 44 pages
♻ ☆ PRKAN: Parameter-Reduced Kolmogorov-Arnold Networks
Kolmogorov-Arnold Networks (KANs) represent an innovation in neural network architectures, offering a compelling alternative to Multi-Layer Perceptrons (MLPs) in models such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Transformers. By advancing network design, KANs drive groundbreaking research and enable transformative applications across various scientific domains involving neural networks. However, existing KANs often require significantly more parameters in their network layers than MLPs. To address this limitation, this paper introduces PRKANs (Parameter-Reduced Kolmogorov-Arnold Networks), which employ several methods to reduce the parameter count in KAN layers, making them comparable to MLP layers. Experimental results on the MNIST and Fashion-MNIST datasets demonstrate that PRKANs outperform several existing KANs, and their variant with attention mechanisms rivals the performance of MLPs, albeit with slightly longer training times. Furthermore, the study highlights the advantages of Gaussian Radial Basis Functions (GRBFs) and layer normalization in KAN designs. The repository for this work is available at: https://github.com/hoangthangta/All-KAN.
comment: 23 pages
Multimedia 1
☆ Verifying Cross-modal Entity Consistency in News using Vision-language Models ECIR
The web has become a crucial source of information, but it is also used to spread disinformation, often conveyed through multiple modalities like images and text. The identification of inconsistent cross-modal information, in particular entities such as persons, locations, and events, is critical to detect disinformation. Previous works either identify out-of-context disinformation by assessing the consistency of images to the whole document, neglecting relations of individual entities, or focus on generic entities that are not relevant to news. So far, only few approaches have addressed the task of validating entity consistency between images and text in news. However, the potential of large vision-language models (LVLMs) has not been explored yet. In this paper, we propose an LVLM-based framework for verifying Cross-modal Entity Consistency~(LVLM4CEC), to assess whether persons, locations and events in news articles are consistent across both modalities. We suggest effective prompting strategies for LVLMs for entity verification that leverage reference images crawled from web. Moreover, we extend three existing datasets for the task of entity verification in news providing manual ground-truth data. Our results show the potential of LVLMs for automating cross-modal entity verification, showing improved accuracy in identifying persons and events when using evidence images. Moreover, our method outperforms a baseline for location and event verification in documents. The datasets and source code are available on GitHub at \url{https://github.com/TIBHannover/LVLM4CEC}.
comment: Accepted for publication in: European Conference on Information Retrieval (ECIR) 2025
Artificial Intelligence 94
☆ Benchmarking Large Language Models via Random Variables
With the continuous advancement of large language models (LLMs) in mathematical reasoning, evaluating their performance in this domain has become a prominent research focus. Recent studies have raised concerns about the reliability of current mathematical benchmarks, highlighting issues such as simplistic design and potential data leakage. Therefore, creating a reliable benchmark that effectively evaluates the genuine capabilities of LLMs in mathematical reasoning remains a significant challenge. To address this, we propose RV-Bench, a framework for Benchmarking LLMs via Random Variables in mathematical reasoning. Specifically, the background content of a random variable question (RV question) mirrors the original problem in existing standard benchmarks, but the variable combinations are randomized into different values. LLMs must fully understand the problem-solving process for the original problem to correctly answer RV questions with various combinations of variable values. As a result, the LLM's genuine capability in mathematical reasoning is reflected by its accuracy on RV-Bench. Extensive experiments are conducted with 29 representative LLMs across 900+ RV questions. A leaderboard for RV-Bench ranks the genuine capability of these LLMs. Further analysis of accuracy dropping indicates that current LLMs still struggle with complex mathematical reasoning problems.
comment: Work in progress
☆ Human-AI Collaborative Game Testing with Vision Language Models
As modern video games become increasingly complex, traditional manual testing methods are proving costly and inefficient, limiting the ability to ensure high-quality game experiences. While advancements in Artificial Intelligence (AI) offer the potential to assist human testers, the effectiveness of AI in truly enhancing real-world human performance remains underexplored. This study investigates how AI can improve game testing by developing and experimenting with an AI-assisted workflow that leverages state-of-the-art machine learning models for defect detection. Through an experiment involving 800 test cases and 276 participants of varying backgrounds, we evaluate the effectiveness of AI assistance under four conditions: with or without AI support, and with or without detailed knowledge of defects and design documentation. The results indicate that AI assistance significantly improves defect identification performance, particularly when paired with detailed knowledge. However, challenges arise when AI errors occur, negatively impacting human decision-making. Our findings show the importance of optimizing human-AI collaboration and implementing strategies to mitigate the effects of AI inaccuracies. By this research, we demonstrate AI's potential and problems in enhancing efficiency and accuracy in game testing workflows and offers practical insights for integrating AI into the testing process.
comment: Experiment Report
☆ Is logical analysis performed by transformers taking place in self-attention or in the fully connected part?
Transformers architecture apply self-attention to tokens represented as vectors, before a fully connected (neuronal network) layer. These two parts can be layered many times. Traditionally, self-attention is seen as a mechanism for aggregating information before logical operations are performed by the fully connected layer. In this paper, we show, that quite counter-intuitively, the logical analysis can also be performed within the self-attention. For this we implement a handcrafted single-level encoder layer which performs the logical analysis within self-attention. We then study the scenario in which a one-level transformer model undergoes self-learning using gradient descent. We investigate whether the model utilizes fully connected layers or self-attention mechanisms for logical analysis when it has the choice. Given that gradient descent can become stuck at undesired zeros, we explicitly calculate these unwanted zeros and find ways to avoid them. We do all this in the context of predicting grammatical category pairs of adjacent tokens in a text. We believe that our findings have broader implications for understanding the potential logical operations performed by self-attention.
comment: 42 pages, 3 figures, to be submitted
☆ Optimizing Pretraining Data Mixtures with LLM-Estimated Utility
Large Language Models improve with increasing amounts of high-quality training data. However, leveraging larger datasets requires balancing quality, quantity, and diversity across sources. After evaluating nine baseline methods under both compute- and data-constrained scenarios, we find token-count heuristics outperform manual and learned mixes, indicating that simple approaches accounting for dataset size and diversity are surprisingly effective. Building on this insight, we propose two complementary approaches: UtiliMax, which extends token-based heuristics by incorporating utility estimates from reduced-scale ablations, achieving up to a 10.6x speedup over manual baselines; and Model Estimated Data Utility (MEDU), which leverages LLMs to estimate data utility from small samples, matching ablation-based performance while reducing computational requirements by $\sim$200x. Together, these approaches establish a new framework for automated, compute-efficient data mixing that is robust across training regimes.
comment: 10 pages, 8 figures
☆ SILO: Solving Inverse Problems with Latent Operators
Consistent improvement of image priors over the years has led to the development of better inverse problem solvers. Diffusion models are the newcomers to this arena, posing the strongest known prior to date. Recently, such models operating in a latent space have become increasingly predominant due to their efficiency. In recent works, these models have been applied to solve inverse problems. Working in the latent space typically requires multiple applications of an Autoencoder during the restoration process, which leads to both computational and restoration quality challenges. In this work, we propose a new approach for handling inverse problems with latent diffusion models, where a learned degradation function operates within the latent space, emulating a known image space degradation. Usage of the learned operator reduces the dependency on the Autoencoder to only the initial and final steps of the restoration process, facilitating faster sampling and superior restoration quality. We demonstrate the effectiveness of our method on a variety of image restoration tasks and datasets, achieving significant improvements over prior art.
comment: Project page in https://ronraphaeli.github.io/SILO-website/
☆ Episodic memory in AI agents poses risks that should be studied and mitigated
Most current AI models have little ability to store and later retrieve a record or representation of what they do. In human cognition, episodic memories play an important role in both recall of the past as well as planning for the future. The ability to form and use episodic memories would similarly enable a broad range of improved capabilities in an AI agent that interacts with and takes actions in the world. Researchers have begun directing more attention to developing memory abilities in AI models. It is therefore likely that models with such capability will be become widespread in the near future. This could in some ways contribute to making such AI agents safer by enabling users to better monitor, understand, and control their actions. However, as a new capability with wide applications, we argue that it will also introduce significant new risks that researchers should begin to study and address. We outline these risks and benefits and propose four principles to guide the development of episodic memory capabilities so that these will enhance, rather than undermine, the effort to keep AI safe and trustworthy.
Transformer Vibration Forecasting for Advancing Rail Safety and Maintenance 4.0
Maintaining railway axles is critical to preventing severe accidents and financial losses. The railway industry is increasingly interested in advanced condition monitoring techniques to enhance safety and efficiency, moving beyond traditional periodic inspections toward Maintenance 4.0. This study introduces a robust Deep Autoregressive solution that integrates seamlessly with existing systems to avert mechanical failures. Our approach simulates and predicts vibration signals under various conditions and fault scenarios, improving dataset robustness for more effective detection systems. These systems can alert maintenance needs, preventing accidents preemptively. We use experimental vibration signals from accelerometers on train axles. Our primary contributions include a transformer model, ShaftFormer, designed for processing time series data, and an alternative model incorporating spectral methods and enhanced observation models. Simulating vibration signals under diverse conditions mitigates the high cost of obtaining experimental signals for all scenarios. Given the non-stationary nature of railway vibration signals, influenced by speed and load changes, our models address these complexities, offering a powerful tool for predictive maintenance in the rail industry.
☆ GL-ICNN: An End-To-End Interpretable Convolutional Neural Network for the Diagnosis and Prediction of Alzheimer's Disease
Deep learning methods based on Convolutional Neural Networks (CNNs) have shown great potential to improve early and accurate diagnosis of Alzheimer's disease (AD) dementia based on imaging data. However, these methods have yet to be widely adopted in clinical practice, possibly due to the limited interpretability of deep learning models. The Explainable Boosting Machine (EBM) is a glass-box model but cannot learn features directly from input imaging data. In this study, we propose a novel interpretable model that combines CNNs and EBMs for the diagnosis and prediction of AD. We develop an innovative training strategy that alternatingly trains the CNN component as a feature extractor and the EBM component as the output block to form an end-to-end model. The model takes imaging data as input and provides both predictions and interpretable feature importance measures. We validated the proposed model on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset and the Health-RI Parelsnoer Neurodegenerative Diseases Biobank (PND) as an external testing set. The proposed model achieved an area-under-the-curve (AUC) of 0.956 for AD and control classification, and 0.694 for the prediction of conversion of mild cognitive impairment (MCI) to AD on the ADNI cohort. The proposed model is a glass-box model that achieves a comparable performance with other state-of-the-art black-box models. Our code is publicly available at: https://anonymous.4open.science/r/GL-ICNN.
comment: 4 pages, 3 figures
☆ Human services organizations and the responsible integration of AI: Considering ethics and contextualizing risk(s)
This paper examines the responsible integration of artificial intelligence (AI) in human services organizations (HSOs), proposing a nuanced framework for evaluating AI applications across multiple dimensions of risk. The authors argue that ethical concerns about AI deployment -- including professional judgment displacement, environmental impact, model bias, and data laborer exploitation -- vary significantly based on implementation context and specific use cases. They challenge the binary view of AI adoption, demonstrating how different applications present varying levels of risk that can often be effectively managed through careful implementation strategies. The paper highlights promising solutions, such as local large language models, that can facilitate responsible AI integration while addressing common ethical concerns. The authors propose a dimensional risk assessment approach that considers factors like data sensitivity, professional oversight requirements, and potential impact on client wellbeing. They conclude by outlining a path forward that emphasizes empirical evaluation, starting with lower-risk applications and building evidence-based understanding through careful experimentation. This approach enables organizations to maintain high ethical standards while thoughtfully exploring how AI might enhance their capacity to serve clients and communities effectively.
comment: 1 figure. Journal of Technology in Human Services (2025)
☆ Spatially-Delineated Domain-Adapted AI Classification: An Application for Oncology Data
Given multi-type point maps from different place-types (e.g., tumor regions), our objective is to develop a classifier trained on the source place-type to accurately distinguish between two classes of the target place-type based on their point arrangements. This problem is societally important for many applications, such as generating clinical hypotheses for designing new immunotherapies for cancer treatment. The challenge lies in the spatial variability, the inherent heterogeneity and variation observed in spatial properties or arrangements across different locations (i.e., place-types). Previous techniques focus on self-supervised tasks to learn domain-invariant features and mitigate domain differences; however, they often neglect the underlying spatial arrangements among data points, leading to significant discrepancies across different place-types. We explore a novel multi-task self-learning framework that targets spatial arrangements, such as spatial mix-up masking and spatial contrastive predictive coding, for spatially-delineated domain-adapted AI classification. Experimental results on real-world datasets (e.g., oncology data) show that the proposed framework provides higher prediction accuracy than baseline methods.
☆ StAyaL | Multilingual Style Transfer
Stylistic text generation plays a vital role in enhancing communication by reflecting the nuances of individual expression. This paper presents a novel approach for generating text in a specific speaker's style across different languages. We show that by leveraging only 100 lines of text, an individuals unique style can be captured as a high-dimensional embedding, which can be used for both text generation and stylistic translation. This methodology breaks down the language barrier by transferring the style of a speaker between languages. The paper is structured into three main phases: augmenting the speaker's data with stylistically consistent external sources, separating style from content using machine learning and deep learning techniques, and generating an abstract style profile by mean pooling the learned embeddings. The proposed approach is shown to be topic-agnostic, with test accuracy and F1 scores of 74.9\% and 0.75, respectively. The results demonstrate the potential of the style profile for multilingual communication, paving the way for further applications in personalized content generation and cross-linguistic stylistic transfer.
comment: The primary authors, Karishma Thakrar and Katrina Lawrence, contributed equally to this work
☆ Biomedical Knowledge Graph: A Survey of Domains, Tasks, and Real-World Applications
Biomedical knowledge graphs (BKGs) have emerged as powerful tools for organizing and leveraging the vast and complex data found across the biomedical field. Yet, current reviews of BKGs often limit their scope to specific domains or methods, overlooking the broader landscape and the rapid technological progress reshaping it. In this survey, we address this gap by offering a systematic review of BKGs from three core perspectives: domains, tasks, and applications. We begin by examining how BKGs are constructed from diverse data sources, including molecular interactions, pharmacological datasets, and clinical records. Next, we discuss the essential tasks enabled by BKGs, focusing on knowledge management, retrieval, reasoning, and interpretation. Finally, we highlight real-world applications in precision medicine, drug discovery, and scientific research, illustrating the translational impact of BKGs across multiple sectors. By synthesizing these perspectives into a unified framework, this survey not only clarifies the current state of BKG research but also establishes a foundation for future exploration, enabling both innovative methodological advances and practical implementations.
comment: 45 pages, 4 figures, 3 tables
☆ Noise-Agnostic Multitask Whisper Training for Reducing False Alarm Errors in Call-for-Help Detection ICASSP 2025
Keyword spotting is often implemented by keyword classifier to the encoder in acoustic models, enabling the classification of predefined or open vocabulary keywords. Although keyword spotting is a crucial task in various applications and can be extended to call-for-help detection in emergencies, however, the previous method often suffers from scalability limitations due to retraining required to introduce new keywords or adapt to changing contexts. We explore a simple yet effective approach that leverages off-the-shelf pretrained ASR models to address these challenges, especially in call-for-help detection scenarios. Furthermore, we observed a substantial increase in false alarms when deploying call-for-help detection system in real-world scenarios due to noise introduced by microphones or different environments. To address this, we propose a novel noise-agnostic multitask learning approach that integrates a noise classification head into the ASR encoder. Our method enhances the model's robustness to noisy environments, leading to a significant reduction in false alarms and improved overall call-for-help performance. Despite the added complexity of multitask learning, our approach is computationally efficient and provides a promising solution for call-for-help detection in real-world scenarios.
comment: Accepted to ICASSP 2025
☆ Early evidence of how LLMs outperform traditional systems on OCR/HTR tasks for historical records
We explore the ability of two LLMs -- GPT-4o and Claude Sonnet 3.5 -- to transcribe historical handwritten documents in a tabular format and compare their performance to traditional OCR/HTR systems: EasyOCR, Keras, Pytesseract, and TrOCR. Considering the tabular form of the data, two types of experiments are executed: one where the images are split line by line and the other where the entire scan is used as input. Based on CER and BLEU, we demonstrate that LLMs outperform the conventional OCR/HTR methods. Moreover, we also compare the evaluated CER and BLEU scores to human evaluations to better judge the outputs of whole-scan experiments and understand influential factors for CER and BLEU. Combining judgments from all the evaluation metrics, we conclude that two-shot GPT-4o for line-by-line images and two-shot Claude Sonnet 3.5 for whole-scan images yield the transcriptions of the historical records most similar to the ground truth.
comment: 15 pages, 7 figures
☆ Conversation Routines: A Prompt Engineering Framework for Task-Oriented Dialog Systems
This study introduces Conversation Routines (CR), a structured prompt engineering framework for developing task-oriented dialog systems using Large Language Models (LLMs). While LLMs demonstrate remarkable natural language understanding capabilities, engineering them to reliably execute complex business workflows remains challenging. The proposed CR framework enables the development of Conversation Agentic Systems (CAS) through natural language specifications, embedding task-oriented logic within LLM prompts. This approach provides a systematic methodology for designing and implementing complex conversational workflows while maintaining behavioral consistency. We demonstrate the framework's effectiveness through two proof of concept implementations: a Train Ticket Booking System and an Interactive Troubleshooting Copilot. These case studies validate CR's capability to encode sophisticated behavioral patterns and decision logic while preserving natural conversational flexibility. Results show that CR enables domain experts to design conversational workflows in natural language while leveraging custom enterprise functionalities (tools) developed by software engineers, creating an efficient division of responsibilities where developers focus on core API implementation and domain experts handle conversation design. While the framework shows promise in accessibility and adaptability, we identify key challenges including computational overhead, non-deterministic behavior, and domain-specific logic optimization. Future research directions include enhancing system robustness, improving scalability for complex multi-agent interactions, and addressing the identified limitations across diverse business applications.
☆ SR-FoT: A Syllogistic-Reasoning Framework of Thought for Large Language Models Tackling Knowledge-based Reasoning Tasks AAAI 2025
Deductive reasoning is a crucial logical capability that assists us in solving complex problems based on existing knowledge. Although augmented by Chain-of-Thought prompts, Large Language Models (LLMs) might not follow the correct reasoning paths. Enhancing the deductive reasoning abilities of LLMs, and leveraging their extensive built-in knowledge for various reasoning tasks, remains an open question. Attempting to mimic the human deductive reasoning paradigm, we propose a multi-stage Syllogistic-Reasoning Framework of Thought (SR-FoT) that enables LLMs to perform syllogistic deductive reasoning to handle complex knowledge-based reasoning tasks. Our SR-FoT begins by interpreting the question and then uses the interpretation and the original question to propose a suitable major premise. It proceeds by generating and answering minor premise questions in two stages to match the minor premises. Finally, it guides LLMs to use the previously generated major and minor premises to perform syllogistic deductive reasoning to derive the answer to the original question. Extensive and thorough experiments on knowledge-based reasoning tasks have demonstrated the effectiveness and advantages of our SR-FoT.
comment: This paper has been accepted by AAAI 2025
☆ Fairness Testing through Extreme Value Theory ICSE'25
Data-driven software is increasingly being used as a critical component of automated decision-support systems. Since this class of software learns its logic from historical data, it can encode or amplify discriminatory practices. Previous research on algorithmic fairness has focused on improving average-case fairness. On the other hand, fairness at the extreme ends of the spectrum, which often signifies lasting and impactful shifts in societal attitudes, has received significantly less emphasis. Leveraging the statistics of extreme value theory (EVT), we propose a novel fairness criterion called extreme counterfactual discrimination (ECD). This criterion estimates the worst-case amounts of disadvantage in outcomes for individuals solely based on their memberships in a protected group. Utilizing tools from search-based software engineering and generative AI, we present a randomized algorithm that samples a statistically significant set of points from the tail of ML outcome distributions even if the input dataset lacks a sufficient number of relevant samples. We conducted several experiments on four ML models (deep neural networks, logistic regression, and random forests) over 10 socially relevant tasks from the literature on algorithmic fairness. First, we evaluate the generative AI methods and find that they generate sufficient samples to infer valid EVT distribution in 95% of cases. Remarkably, we found that the prevalent bias mitigators reduce the average-case discrimination but increase the worst-case discrimination significantly in 5% of cases. We also observed that even the tail-aware mitigation algorithm -- MiniMax-Fairness -- increased the worst-case discrimination in 30% of cases. We propose a novel ECD-based mitigator that improves fairness in the tail in 90% of cases with no degradation of the average-case discrimination.
comment: In IEEE/ACM 47th International Conference on Software Engineering (ICSE'25)
☆ Training-free Ultra Small Model for Universal Sparse Reconstruction in Compressed Sensing
Pre-trained large models attract widespread attention in recent years, but they face challenges in applications that require high interpretability or have limited resources, such as physical sensing, medical imaging, and bioinformatics. Compressed Sensing (CS) is a well-proved theory that drives many recent breakthroughs in these applications. However, as a typical under-determined linear system, CS suffers from excessively long sparse reconstruction times when using traditional iterative methods, particularly with large-scale data. Current AI methods like deep unfolding fail to substitute them because pre-trained models exhibit poor generality beyond their training conditions and dataset distributions, or lack interpretability. Instead of following the big model fervor, this paper proposes ultra-small artificial neural models called coefficients learning (CL), enabling training-free and rapid sparse reconstruction while perfectly inheriting the generality and interpretability of traditional iterative methods, bringing new feature of incorporating prior knowledges. In CL, a signal of length $n$ only needs a minimal of $n$ trainable parameters. A case study model called CLOMP is implemented for evaluation. Experiments are conducted on both synthetic and real one-dimensional and two-dimensional signals, demonstrating significant improvements in efficiency and accuracy. Compared to representative iterative methods, CLOMP improves efficiency by 100 to 1000 folds for large-scale data. Test results on eight diverse image datasets indicate that CLOMP improves structural similarity index by 292%, 98%, 45% for sampling rates of 0.1, 0.3, 0.5, respectively. We believe this method can truly usher CS reconstruction into the AI era, benefiting countless under-determined linear systems that rely on sparse solution.
☆ Recurrent Diffusion for Large-Scale Parameter Generation
Parameter generation has struggled to scale up for a long time, significantly limiting its range of applications. In this study, we introduce \textbf{R}ecurrent diffusion for large-scale \textbf{P}arameter \textbf{G}eneration, called \textbf{RPG}. We first divide the trained parameters into non-overlapping parts, after which a recurrent model is proposed to learn their relationships. The recurrent model's outputs, as conditions, are then fed into a diffusion model to generate the neural network parameters. Using only a single GPU, recurrent diffusion enables us to generate popular vision and language models such as ConvNeXt-L and LoRA parameters of LLaMA-7B. Meanwhile, across various architectures and tasks, the generated parameters consistently perform comparable results over trained networks. Notably, our approach also shows the potential to generate models for handling unseen tasks, which largely increases the practicality of parameter generation. Our code is available \href{https://github.com/NUS-HPC-AI-Lab/Recurrent-Parameter-Generation}{here}.
comment: Generating 200 million parameters in just minutes
☆ Explainable Lane Change Prediction for Near-Crash Scenarios Using Knowledge Graph Embeddings and Retrieval Augmented Generation
Lane-changing maneuvers, particularly those executed abruptly or in risky situations, are a significant cause of road traffic accidents. However, current research mainly focuses on predicting safe lane changes. Furthermore, existing accident datasets are often based on images only and lack comprehensive sensory data. In this work, we focus on predicting risky lane changes using the CRASH dataset (our own collected dataset specifically for risky lane changes), and safe lane changes (using the HighD dataset). Then, we leverage KG and Bayesian inference to predict these maneuvers using linguistic contextual information, enhancing the model's interpretability and transparency. The model achieved a 91.5% f1-score with anticipation time extending to four seconds for risky lane changes, and a 90.0% f1-score for predicting safe lane changes with the same anticipation time. We validate our model by integrating it into a vehicle within the CARLA simulator in scenarios that involve risky lane changes. The model managed to anticipate sudden lane changes, thus providing automated vehicles with further time to plan and execute appropriate safe reactions. Finally, to enhance the explainability of our model, we utilize RAG to provide clear and natural language explanations for the given prediction.
☆ The impact of intrinsic rewards on exploration in Reinforcement Learning
One of the open challenges in Reinforcement Learning is the hard exploration problem in sparse reward environments. Various types of intrinsic rewards have been proposed to address this challenge by pushing towards diversity. This diversity might be imposed at different levels, favouring the agent to explore different states, policies or behaviours (State, Policy and Skill level diversity, respectively). However, the impact of diversity on the agent's behaviour remains unclear. In this work, we aim to fill this gap by studying the effect of different levels of diversity imposed by intrinsic rewards on the exploration patterns of RL agents. We select four intrinsic rewards (State Count, Intrinsic Curiosity Module (ICM), Maximum Entropy, and Diversity is all you need (DIAYN)), each pushing for a different diversity level. We conduct an empirical study on MiniGrid environment to compare their impact on exploration considering various metrics related to the agent's exploration, namely: episodic return, observation coverage, agent's position coverage, policy entropy, and timeframes to reach the sparse reward. The main outcome of the study is that State Count leads to the best exploration performance in the case of low-dimensional observations. However, in the case of RGB observations, the performance of State Count is highly degraded mostly due to representation learning challenges. Conversely, Maximum Entropy is less impacted, resulting in a more robust exploration, despite being not always optimal. Lastly, our empirical study revealed that learning diverse skills with DIAYN, often linked to improved robustness and generalisation, does not promote exploration in MiniGrid environments. This is because: i) learning the skill space itself can be challenging, and ii) exploration within the skill space prioritises differentiating between behaviours rather than achieving uniform state visitation.
comment: 45 pages, 17 figures. Submitted to Neural Computing and Applications Journal
☆ Meta-Instance Selection. Instance Selection as a Classification Problem with Meta-Features
Data pruning, or instance selection, is an important problem in machine learning especially in terms of nearest neighbour classifier. However, in data pruning which speeds up the prediction phase, there is an issue related to the speed and efficiency of the process itself. In response, the study proposes an approach involving transforming the instance selection process into a classification task conducted in a unified meta-feature space where each instance can be classified and assigned to either the "to keep" or "to remove" class. This approach requires training an appropriate meta-classifier, which can be developed based on historical instance selection results from other datasets using reference instance selection methods as a labeling tool. This work proposes constructing the meta-feature space based on properties extracted from the nearest neighbor graph. Experiments conducted on 17 datasets of varying sizes and five reference instance selection methods (ENN, Drop3, ICF, HMN-EI, and CCIS) demonstrate that the proposed solution achieves results comparable to reference instance selection methods while significantly reducing computational complexity. In the proposed approach, the computational complexity of the system depends only on identifying the k-nearest neighbors for each data sample and running the meta-classifier. Additionally, the study discusses the choice of meta-classifier, recommending the use of Balanced Random Forest.
☆ Technical Report for the Forgotten-by-Design Project: Targeted Obfuscation for Machine Learning
The right to privacy, enshrined in various human rights declarations, faces new challenges in the age of artificial intelligence (AI). This paper explores the concept of the Right to be Forgotten (RTBF) within AI systems, contrasting it with traditional data erasure methods. We introduce Forgotten by Design, a proactive approach to privacy preservation that integrates instance-specific obfuscation techniques during the AI model training process. Unlike machine unlearning, which modifies models post-training, our method prevents sensitive data from being embedded in the first place. Using the LIRA membership inference attack, we identify vulnerable data points and propose defenses that combine additive gradient noise and weighting schemes. Our experiments on the CIFAR-10 dataset demonstrate that our techniques reduce privacy risks by at least an order of magnitude while maintaining model accuracy (at 95% significance). Additionally, we present visualization methods for the privacy-utility trade-off, providing a clear framework for balancing privacy risk and model accuracy. This work contributes to the development of privacy-preserving AI systems that align with human cognitive processes of motivated forgetting, offering a robust framework for safeguarding sensitive information and ensuring compliance with privacy regulations.
comment: 20 pages, 4 figures
☆ Dialect2SQL: A Novel Text-to-SQL Dataset for Arabic Dialects with a Focus on Moroccan Darija
The task of converting natural language questions (NLQs) into executable SQL queries, known as text-to-SQL, has gained significant interest in recent years, as it enables non-technical users to interact with relational databases. Many benchmarks, such as SPIDER and WikiSQL, have contributed to the development of new models and the evaluation of their performance. In addition, other datasets, like SEDE and BIRD, have introduced more challenges and complexities to better map real-world scenarios. However, these datasets primarily focus on high-resource languages such as English and Chinese. In this work, we introduce Dialect2SQL, the first large-scale, cross-domain text-to-SQL dataset in an Arabic dialect. It consists of 9,428 NLQ-SQL pairs across 69 databases in various domains. Along with SQL-related challenges such as long schemas, dirty values, and complex queries, our dataset also incorporates the complexities of the Moroccan dialect, which is known for its diverse source languages, numerous borrowed words, and unique expressions. This demonstrates that our dataset will be a valuable contribution to both the text-to-SQL community and the development of resources for low-resource languages.
☆ Generative AI and Large Language Models in Language Preservation: Opportunities and Challenges
Generative AI and large-scale language models (LLM) have emerged as powerful tools in language preservation, particularly for near-native and endangered languages. With the increasing reliance on technology for communication, education, and cultural documentation, new opportunities have emerged to mitigate the dramatic decline of linguistic diversity worldwide. This paper examines the role of generative AIs and LLMs in preserving endangered languages, highlighting the risks and challenges associated with their use. We analyze the underlying technologies driving these models, including natural language processing (NLP) and deep learning, and explore several cases where these technologies have been applied to low-resource languages. Additionally, we discuss ethical considerations, data scarcity issues, and technical challenges while proposing solutions to enhance AI-driven language preservation.
comment: 10 pages, 1 figure, submitted for IEEE publication
☆ Communication-Efficient Federated Learning Based on Explanation-Guided Pruning for Remote Sensing Image Classification
Federated learning (FL) is a decentralized machine learning paradigm, where multiple clients collaboratively train a global model by exchanging only model updates with the central server without sharing the local data of clients. Due to the large volume of model updates required to be transmitted between clients and the central server, most FL systems are associated with high transfer costs (i.e., communication overhead). This issue is more critical for operational applications in remote sensing (RS), especially when large-scale RS data is processed and analyzed through FL systems with restricted communication bandwidth. To address this issue, we introduce an explanation-guided pruning strategy for communication-efficient FL in the context of RS image classification. Our pruning strategy is defined based on the layerwise relevance propagation (LRP) driven explanations to: 1) efficiently and effectively identify the most relevant and informative model parameters (to be exchanged between clients and the central server); and 2) eliminate the non-informative ones to minimize the volume of model updates. The experimental results on the BigEarthNet-S2 dataset demonstrate that our strategy effectively reduces the number of shared model updates, while increasing the generalization ability of the global model. The code of this work will be publicly available at https://git.tu-berlin.de/rsim/FL-LRP
comment: Submitted to the IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 2025
☆ Graph-defined Language Learning with LLMs
Recent efforts leverage Large Language Models (LLMs) for modeling text-attributed graph structures in node classification tasks. These approaches describe graph structures for LLMs to understand or aggregate LLM-generated textual attribute embeddings through graph structure. However, these approaches face two main limitations in modeling graph structures with LLMs. (i) Graph descriptions become verbose in describing high-order graph structure. (ii) Textual attributes alone do not contain adequate graph structure information. It is challenging to model graph structure concisely and adequately with LLMs. LLMs lack built-in mechanisms to model graph structures directly. They also struggle with complex long-range dependencies between high-order nodes and target nodes. Inspired by the observation that LLMs pre-trained on one language can achieve exceptional performance on another with minimal additional training, we propose \textbf{G}raph-\textbf{D}efined \textbf{L}anguage for \textbf{L}arge \textbf{L}anguage \textbf{M}odel (GDL4LLM). This novel framework enables LLMs to transfer their powerful language understanding capabilities to graph-structured data. GDL4LLM translates graphs into a graph language corpus instead of graph descriptions and pre-trains LLMs on this corpus to adequately understand graph structures. During fine-tuning, this corpus describes the structural information of target nodes concisely with only a few tokens. By treating graphs as a new language, GDL4LLM enables LLMs to model graph structures adequately and concisely for node classification tasks. Extensive experiments on three real-world datasets demonstrate that GDL4LLM outperforms description-based and textual attribute embeddings-based baselines by efficiently modeling different orders of graph structure with LLMs.
☆ Improving thermal state preparation of Sachdev-Ye-Kitaev model with reinforcement learning on quantum hardware
The Sachdev-Ye-Kitaev (SYK) model, known for its strong quantum correlations and chaotic behavior, serves as a key platform for quantum gravity studies. However, variationally preparing thermal states on near-term quantum processors for large systems (N>12, where N is the number of Majorana fermions) presents a significant challenge due to the rapid growth in the complexity of parameterized quantum circuits. This paper addresses this challenge by integrating reinforcement learning (RL) with convolutional neural networks, employing an iterative approach to optimize the quantum circuit and its parameters. The refinement process is guided by a composite reward signal derived from entropy and the expectation values of the SYK Hamiltonian. This approach reduces the number of CNOT gates by two orders of magnitude for systems N>10 compared to traditional methods like first-order Trotterization. We demonstrate the effectiveness of the RL framework in both noiseless and noisy quantum hardware environments, maintaining high accuracy in thermal state preparation. This work contributes to the advancement of a scalable, RL-based framework with applications for computations of thermal out-of-time-order correlators in quantum many-body systems and quantum gravity studies on near-term quantum hardware.
comment: The code and the data will be available soon. Comments are welcomed!
☆ Decomposing Interventional Causality into Synergistic, Redundant, and Unique Components
We introduce a novel framework for decomposing interventional causal effects into synergistic, redundant, and unique components, building on the intuition of Partial Information Decomposition (PID) and the principle of M\"obius inversion. While recent work has explored a similar decomposition of an observational measure, we argue that a proper causal decomposition must be interventional in nature. We develop a mathematical approach that systematically quantifies how causal power is distributed among variables in a system, using a recently derived closed-form expression for the M\"obius function of the redundancy lattice. The formalism is then illustrated by decomposing the causal power in logic gates, cellular automata, and chemical reaction networks. Our results reveal how the distribution of causal power can be context- and parameter-dependent. This decomposition provides new insights into complex systems by revealing how causal influences are shared and combined among multiple variables, with potential applications ranging from attribution of responsibility in legal or AI systems, to the analysis of biological networks or climate models.
comment: 10 pages, 6 figures
☆ A Survey on Diffusion Models for Anomaly Detection
Diffusion models (DMs) have emerged as a powerful class of generative AI models, showing remarkable potential in anomaly detection (AD) tasks across various domains, such as cybersecurity, fraud detection, healthcare, and manufacturing. The intersection of these two fields, termed diffusion models for anomaly detection (DMAD), offers promising solutions for identifying deviations in increasingly complex and high-dimensional data. In this survey, we systematically review recent advances in DMAD research and investigate their capabilities. We begin by presenting the fundamental concepts of AD and DMs, followed by a comprehensive analysis of classic DM architectures including DDPMs, DDIMs, and Score SDEs. We further categorize existing DMAD methods into reconstruction-based, density-based, and hybrid approaches, providing detailed examinations of their methodological innovations. We also explore the diverse tasks across different data modalities, encompassing image, time series, video, and multimodal data analysis. Furthermore, we discuss critical challenges and emerging research directions, including computational efficiency, model interpretability, robustness enhancement, edge-cloud collaboration, and integration with large language models. The collection of DMAD research papers and resources is available at https://github.com/fdjingliu/DMAD.
☆ The Explanation Game -- Rekindled (Extended Version)
Recent work demonstrated the existence of critical flaws in the current use of Shapley values in explainable AI (XAI), i.e. the so-called SHAP scores. These flaws are significant in that the scores provided to a human decision-maker can be misleading. Although these negative results might appear to indicate that Shapley values ought not be used in XAI, this paper argues otherwise. Concretely, this paper proposes a novel definition of SHAP scores that overcomes existing flaws. Furthermore, the paper outlines a practically efficient solution for the rigorous estimation of the novel SHAP scores. Preliminary experimental results confirm our claims, and further underscore the flaws of the current SHAP scores.
☆ Enhancing Coronary Artery Calcium Scoring via Multi-Organ Segmentation on Non-Contrast Cardiac Computed Tomography
Despite coronary artery calcium scoring being considered a largely solved problem within the realm of medical artificial intelligence, this paper argues that significant improvements can still be made. By shifting the focus from pathology detection to a deeper understanding of anatomy, the novel algorithm proposed in the paper both achieves high accuracy in coronary artery calcium scoring and offers enhanced interpretability of the results. This approach not only aids in the precise quantification of calcifications in coronary arteries, but also provides valuable insights into the underlying anatomical structures. Through this anatomically-informed methodology, the paper shows how a nuanced understanding of the heart's anatomy can lead to more accurate and interpretable results in the field of cardiovascular health. We demonstrate the superior accuracy of the proposed method by evaluating it on an open-source multi-vendor dataset, where we obtain results at the inter-observer level, surpassing the current state of the art. Finally, the qualitative analyses show the practical value of the algorithm in such tasks as labeling coronary artery calcifications, identifying aortic calcifications, and filtering out false positive detections due to noise.
☆ Agent-R: Training Language Model Agents to Reflect via Iterative Self-Training
Large Language Models (LLMs) agents are increasingly pivotal for addressing complex tasks in interactive environments. Existing work mainly focuses on enhancing performance through behavior cloning from stronger experts, yet such approaches often falter in real-world applications, mainly due to the inability to recover from errors. However, step-level critique data is difficult and expensive to collect. Automating and dynamically constructing self-critique datasets is thus crucial to empowering models with intelligent agent capabilities. In this work, we propose an iterative self-training framework, Agent-R, that enables language Agent to Reflect on the fly. Unlike traditional methods that reward or penalize actions based on correctness, Agent-R leverages MCTS to construct training data that recover correct trajectories from erroneous ones. A key challenge of agent reflection lies in the necessity for timely revision rather than waiting until the end of a rollout. To address this, we introduce a model-guided critique construction mechanism: the actor model identifies the first error step (within its current capability) in a failed trajectory. Starting from it, we splice it with the adjacent correct path, which shares the same parent node in the tree. This strategy enables the model to learn reflection based on its current policy, therefore yielding better learning efficiency. To further explore the scalability of this self-improvement paradigm, we investigate iterative refinement of both error correction capabilities and dataset construction. Our findings demonstrate that Agent-R continuously improves the model's ability to recover from errors and enables timely error correction. Experiments on three interactive environments show that Agent-R effectively equips agents to correct erroneous actions while avoiding loops, achieving superior performance compared to baseline methods (+5.59%).
☆ Multi-View Spectral Clustering for Graphs with Multiple View Structures
Despite the fundamental importance of clustering, to this day, much of the relevant research is still based on ambiguous foundations, leading to an unclear understanding of whether or how the various clustering methods are connected with each other. In this work, we provide an additional stepping stone towards resolving such ambiguities by presenting a general clustering framework that subsumes a series of seemingly disparate clustering methods, including various methods belonging to the wildly popular spectral clustering framework. In fact, the generality of the proposed framework is additionally capable of shedding light to the largely unexplored area of multi-view graphs whose each view may have differently clustered nodes. In turn, we propose GenClus: a method that is simultaneously an instance of this framework and a generalization of spectral clustering, while also being closely related to k-means as well. This results in a principled alternative to the few existing methods studying this special type of multi-view graphs. Then, we conduct in-depth experiments, which demonstrate that GenClus is more computationally efficient than existing methods, while also attaining similar or better clustering performance. Lastly, a qualitative real-world case-study further demonstrates the ability of GenClus to produce meaningful clusterings.
☆ Neural Contextual Reinforcement Framework for Logical Structure Language Generation
The Neural Contextual Reinforcement Framework introduces an innovative approach to enhancing the logical coherence and structural consistency of text generated by large language models. Leveraging reinforcement learning principles, the framework integrates custom reward functions and dynamic context alignment mechanisms to address challenges inherent in maintaining long-range dependencies across extended sequences. The architecture incorporates multi-head attention layers and hierarchical encoding modules, enabling the model to produce outputs that align closely with human expectations of logical structure and semantic flow. Quantitative evaluations across diverse datasets demonstrate substantial improvements in coherence metrics, perplexity reduction, and semantic alignment, showcasing the framework's ability to outperform baseline models in both general and domain-specific tasks. Qualitative analyses further highlight the framework's capacity to generate text with improved narrative clarity and reduced redundancy, reflecting its effectiveness in balancing fluency with structural precision. In addition to its performance gains, the framework exhibits robustness in handling noisy input data and scalability across varying model sizes, reinforcing its versatility in practical applications. Experimental results reveal that optimal context window sizes significantly influence coherence outcomes, showing the importance of architectural flexibility in adapting to diverse linguistic structures. Cross-lingual performance evaluations affirm the framework's adaptability to multiple languages, extending its utility beyond monolingual contexts. Resource efficiency analyses indicate a reduction in computational overhead compared to traditional approaches, emphasizing the practicality of the framework for large-scale deployment.
☆ Generalization and Informativeness of Weighted Conformal Risk Control Under Covariate Shift
Predictive models are often required to produce reliable predictions under statistical conditions that are not matched to the training data. A common type of training-testing mismatch is covariate shift, where the conditional distribution of the target variable given the input features remains fixed, while the marginal distribution of the inputs changes. Weighted conformal risk control (W-CRC) uses data collected during the training phase to convert point predictions into prediction sets with valid risk guarantees at test time despite the presence of a covariate shift. However, while W-CRC provides statistical reliability, its efficiency -- measured by the size of the prediction sets -- can only be assessed at test time. In this work, we relate the generalization properties of the base predictor to the efficiency of W-CRC under covariate shifts. Specifically, we derive a bound on the inefficiency of the W-CRC predictor that depends on algorithmic hyperparameters and task-specific quantities available at training time. This bound offers insights on relationships between the informativeness of the prediction sets, the extent of the covariate shift, and the size of the calibration and training sets. Experiments on fingerprinting-based localization validate the theoretical results.
☆ Unsupervised Learning in Echo State Networks for Input Reconstruction
Conventional echo state networks (ESNs) require supervised learning to train the readout layer, using the desired outputs as training data. In this study, we focus on input reconstruction (IR), which refers to training the readout layer to reproduce the input time series in its output. We reformulate the learning algorithm of the ESN readout layer to perform IR using unsupervised learning (UL). By conducting theoretical analysis and numerical experiments, we demonstrate that IR in ESNs can be effectively implemented under realistic conditions without explicitly using the desired outputs as training data; in this way, UL is enabled. Furthermore, we demonstrate that applications relying on IR, such as dynamical system replication and noise filtering, can be reformulated within the UL framework. Our findings establish a theoretically sound and universally applicable IR formulation, along with its related tasks in ESNs. This work paves the way for novel predictions and highlights unresolved theoretical challenges in ESNs, particularly in the context of time-series processing methods and computational models of the brain.
comment: 16 pages, 7 figures, regular paper
☆ A Truly Sparse and General Implementation of Gradient-Based Synaptic Plasticity
Online synaptic plasticity rules derived from gradient descent achieve high accuracy on a wide range of practical tasks. However, their software implementation often requires tediously hand-derived gradients or using gradient backpropagation which sacrifices the online capability of the rules. In this work, we present a custom automatic differentiation (AD) pipeline for sparse and online implementation of gradient-based synaptic plasticity rules that generalizes to arbitrary neuron models. Our work combines the programming ease of backpropagation-type methods for forward AD while being memory-efficient. To achieve this, we exploit the advantageous compute and memory scaling of online synaptic plasticity by providing an inherently sparse implementation of AD where expensive tensor contractions are replaced with simple element-wise multiplications if the tensors are diagonal. Gradient-based synaptic plasticity rules such as eligibility propagation (e-prop) have exactly this property and thus profit immensely from this feature. We demonstrate the alignment of our gradients with respect to gradient backpropagation on an synthetic task where e-prop gradients are exact, as well as audio speech classification benchmarks. We demonstrate how memory utilization scales with network size without dependence on the sequence length, as expected from forward AD methods.
comment: 8 pages, 7 figures
☆ Investigation of Whisper ASR Hallucinations Induced by Non-Speech Audio ICASSP 2025
Hallucinations of deep neural models are amongst key challenges in automatic speech recognition (ASR). In this paper, we investigate hallucinations of the Whisper ASR model induced by non-speech audio segments present during inference. By inducting hallucinations with various types of sounds, we show that there exists a set of hallucinations that appear frequently. We then study hallucinations caused by the augmentation of speech with such sounds. Finally, we describe the creation of a bag of hallucinations (BoH) that allows to remove the effect of hallucinations through the post-processing of text transcriptions. The results of our experiments show that such post-processing is capable of reducing word error rate (WER) and acts as a good safeguard against problematic hallucinations.
comment: Accepted for IEEE ICASSP 2025
☆ Federated Learning with Sample-level Client Drift Mitigation AAAI 2025
Federated Learning (FL) suffers from severe performance degradation due to the data heterogeneity among clients. Existing works reveal that the fundamental reason is that data heterogeneity can cause client drift where the local model update deviates from the global one, and thus they usually tackle this problem from the perspective of calibrating the obtained local update. Despite effectiveness, existing methods substantially lack a deep understanding of how heterogeneous data samples contribute to the formation of client drift. In this paper, we bridge this gap by identifying that the drift can be viewed as a cumulative manifestation of biases present in all local samples and the bias between samples is different. Besides, the bias dynamically changes as the FL training progresses. Motivated by this, we propose FedBSS that first mitigates the heterogeneity issue in a sample-level manner, orthogonal to existing methods. Specifically, the core idea of our method is to adopt a bias-aware sample selection scheme that dynamically selects the samples from small biases to large epoch by epoch to train progressively the local model in each round. In order to ensure the stability of training, we set the diversified knowledge acquisition stage as the warm-up stage to avoid the local optimality caused by knowledge deviation in the early stage of the model. Evaluation results show that FedBSS outperforms state-of-the-art baselines. In addition, we also achieved effective results on feature distribution skew and noise label dataset setting, which proves that FedBSS can not only reduce heterogeneity, but also has scalability and robustness.
comment: Accepted by AAAI 2025
☆ On the Dimension of Pullback Attractors in Recurrent Neural Networks
Recurrent Neural Networks (RNNs) are high-dimensional state space models capable of learning functions on sequence data. Recently, it has been conjectured that reservoir computers, a particular class of RNNs, trained on observations of a dynamical systems can be interpreted as embeddings. This result has been established for the case of linear reservoir systems. In this work, we use a nonautonomous dynamical systems approach to establish an upper bound for the fractal dimension of the subset of reservoir state space approximated during training and prediction phase. We prove that when the input sequences comes from an Nin-dimensional invertible dynamical system, the fractal dimension of this set is bounded above by Nin. The result obtained here are useful in dimensionality reduction of computation in RNNs as well as estimating fractal dimensions of dynamical systems from limited observations of their time series. It is also a step towards understanding embedding properties of reservoir computers.
☆ Towards Advancing Code Generation with Large Language Models: A Research Roadmap
Recently, we have witnessed the rapid development of large language models, which have demonstrated excellent capabilities in the downstream task of code generation. However, despite their potential, LLM-based code generation still faces numerous technical and evaluation challenges, particularly when embedded in real-world development. In this paper, we present our vision for current research directions, and provide an in-depth analysis of existing studies on this task. We propose a six-layer vision framework that categorizes code generation process into distinct phases, namely Input Phase, Orchestration Phase, Development Phase, and Validation Phase. Additionally, we outline our vision workflow, which reflects on the currently prevalent frameworks. We systematically analyse the challenges faced by large language models, including those LLM-based agent frameworks, in code generation tasks. With these, we offer various perspectives and actionable recommendations in this area. Our aim is to provide guidelines for improving the reliability, robustness and usability of LLM-based code generation systems. Ultimately, this work seeks to address persistent challenges and to provide practical suggestions for a more pragmatic LLM-based solution for future code generation endeavors.
☆ Few-shot Policy (de)composition in Conversational Question Answering
The task of policy compliance detection (PCD) is to determine if a scenario is in compliance with respect to a set of written policies. In a conversational setting, the results of PCD can indicate if clarifying questions must be asked to determine compliance status. Existing approaches usually claim to have reasoning capabilities that are latent or require a large amount of annotated data. In this work, we propose logical decomposition for policy compliance (LDPC): a neuro-symbolic framework to detect policy compliance using large language models (LLMs) in a few-shot setting. By selecting only a few exemplars alongside recently developed prompting techniques, we demonstrate that our approach soundly reasons about policy compliance conversations by extracting sub-questions to be answered, assigning truth values from contextual information, and explicitly producing a set of logic statements from the given policies. The formulation of explicit logic graphs can in turn help answer PCDrelated questions with increased transparency and explainability. We apply this approach to the popular PCD and conversational machine reading benchmark, ShARC, and show competitive performance with no task-specific finetuning. We also leverage the inherently interpretable architecture of LDPC to understand where errors occur, revealing ambiguities in the ShARC dataset and highlighting the challenges involved with reasoning for conversational question answering.
☆ CatV2TON: Taming Diffusion Transformers for Vision-Based Virtual Try-On with Temporal Concatenation
Virtual try-on (VTON) technology has gained attention due to its potential to transform online retail by enabling realistic clothing visualization of images and videos. However, most existing methods struggle to achieve high-quality results across image and video try-on tasks, especially in long video scenarios. In this work, we introduce CatV2TON, a simple and effective vision-based virtual try-on (V2TON) method that supports both image and video try-on tasks with a single diffusion transformer model. By temporally concatenating garment and person inputs and training on a mix of image and video datasets, CatV2TON achieves robust try-on performance across static and dynamic settings. For efficient long-video generation, we propose an overlapping clip-based inference strategy that uses sequential frame guidance and Adaptive Clip Normalization (AdaCN) to maintain temporal consistency with reduced resource demands. We also present ViViD-S, a refined video try-on dataset, achieved by filtering back-facing frames and applying 3D mask smoothing for enhanced temporal consistency. Comprehensive experiments demonstrate that CatV2TON outperforms existing methods in both image and video try-on tasks, offering a versatile and reliable solution for realistic virtual try-ons across diverse scenarios.
comment: 11 pages, 8 figures, 5 tables
☆ Finer-CAM: Spotting the Difference Reveals Finer Details for Visual Explanation
Class activation map (CAM) has been widely used to highlight image regions that contribute to class predictions. Despite its simplicity and computational efficiency, CAM often struggles to identify discriminative regions that distinguish visually similar fine-grained classes. Prior efforts address this limitation by introducing more sophisticated explanation processes, but at the cost of extra complexity. In this paper, we propose Finer-CAM, a method that retains CAM's efficiency while achieving precise localization of discriminative regions. Our key insight is that the deficiency of CAM lies not in "how" it explains, but in "what" it explains}. Specifically, previous methods attempt to identify all cues contributing to the target class's logit value, which inadvertently also activates regions predictive of visually similar classes. By explicitly comparing the target class with similar classes and spotting their differences, Finer-CAM suppresses features shared with other classes and emphasizes the unique, discriminative details of the target class. Finer-CAM is easy to implement, compatible with various CAM methods, and can be extended to multi-modal models for accurate localization of specific concepts. Additionally, Finer-CAM allows adjustable comparison strength, enabling users to selectively highlight coarse object contours or fine discriminative details. Quantitatively, we show that masking out the top 5% of activated pixels by Finer-CAM results in a larger relative confidence drop compared to baselines. The source code and demo are available at https://github.com/Imageomics/Finer-CAM.
☆ Collaborative Imputation of Urban Time Series through Cross-city Meta-learning
Urban time series, such as mobility flows, energy consumption, and pollution records, encapsulate complex urban dynamics and structures. However, data collection in each city is impeded by technical challenges such as budget limitations and sensor failures, necessitating effective data imputation techniques that can enhance data quality and reliability. Existing imputation models, categorized into learning-based and analytics-based paradigms, grapple with the trade-off between capacity and generalizability. Collaborative learning to reconstruct data across multiple cities holds the promise of breaking this trade-off. Nevertheless, urban data's inherent irregularity and heterogeneity issues exacerbate challenges of knowledge sharing and collaboration across cities. To address these limitations, we propose a novel collaborative imputation paradigm leveraging meta-learned implicit neural representations (INRs). INRs offer a continuous mapping from domain coordinates to target values, integrating the strengths of both paradigms. By imposing embedding theory, we first employ continuous parameterization to handle irregularity and reconstruct the dynamical system. We then introduce a cross-city collaborative learning scheme through model-agnostic meta learning, incorporating hierarchical modulation and normalization techniques to accommodate multiscale representations and reduce variance in response to heterogeneity. Extensive experiments on a diverse urban dataset from 20 global cities demonstrate our model's superior imputation performance and generalizability, underscoring the effectiveness of collaborative imputation in resource-constrained settings.
☆ Question-to-Question Retrieval for Hallucination-Free Knowledge Access: An Approach for Wikipedia and Wikidata Question Answering
This paper introduces an approach to question answering over knowledge bases like Wikipedia and Wikidata by performing "question-to-question" matching and retrieval from a dense vector embedding store. Instead of embedding document content, we generate a comprehensive set of questions for each logical content unit using an instruction-tuned LLM. These questions are vector-embedded and stored, mapping to the corresponding content. Vector embedding of user queries are then matched against this question vector store. The highest similarity score leads to direct retrieval of the associated article content, eliminating the need for answer generation. Our method achieves high cosine similarity ( > 0.9 ) for relevant question pairs, enabling highly precise retrieval. This approach offers several advantages including computational efficiency, rapid response times, and increased scalability. We demonstrate its effectiveness on Wikipedia and Wikidata, including multimedia content through structured fact retrieval from Wikidata, opening up new pathways for multimodal question answering.
☆ A Machine Learning Framework for Handling Unreliable Absence Label and Class Imbalance for Marine Stinger Beaching Prediction
Bluebottles (\textit{Physalia} spp.) are marine stingers resembling jellyfish, whose presence on Australian beaches poses a significant public risk due to their venomous nature. Understanding the environmental factors driving bluebottles ashore is crucial for mitigating their impact, and machine learning tools are to date relatively unexplored. We use bluebottle marine stinger presence/absence data from beaches in Eastern Sydney, Australia, and compare machine learning models (Multilayer Perceptron, Random Forest, and XGBoost) to identify factors influencing their presence. We address challenges such as class imbalance, class overlap, and unreliable absence data by employing data augmentation techniques, including the Synthetic Minority Oversampling Technique (SMOTE), Random Undersampling, and Synthetic Negative Approach that excludes the negative class. Our results show that SMOTE failed to resolve class overlap, but the presence-focused approach effectively handled imbalance, class overlap, and ambiguous absence data. The data attributes such as the wind direction, which is a circular variable, emerged as a key factor influencing bluebottle presence, confirming previous inference studies. However, in the absence of population dynamics, biological behaviours, and life cycles, the best predictive model appears to be Random Forests combined with Synthetic Negative Approach. This research contributes to mitigating the risks posed by bluebottles to beachgoers and provides insights into handling class overlap and unreliable negative class in environmental modelling.
☆ RedStar: Does Scaling Long-CoT Data Unlock Better Slow-Reasoning Systems?
Can scaling transform reasoning? In this work, we explore the untapped potential of scaling Long Chain-of-Thought (Long-CoT) data to 1000k samples, pioneering the development of a slow-thinking model, RedStar. Through extensive experiments with various LLMs and different sizes, we uncover the ingredients for specialization and scale for Long-CoT training. Surprisingly, even smaller models show significant performance gains with limited data, revealing the sample efficiency of Long-CoT and the critical role of sample difficulty in the learning process. Our findings demonstrate that Long-CoT reasoning can be effectively triggered with just a few thousand examples, while larger models achieve unparalleled improvements. We also introduce reinforcement learning (RL)-scale training as a promising direction for advancing slow-thinking systems. RedStar shines across domains: on the MATH-Hard benchmark, RedStar-code-math boosts performance from 66.2\% to 81.6\%, and on the USA Math Olympiad (AIME), it solves 46.7\% of problems using only 21k mixed-code-math datasets. In multimodal tasks like GeoQA and MathVista-GEO, RedStar-Geo achieves competitive results with minimal Long-CoT data, outperforming other slow-thinking systems like QvQ-Preview. Compared to QwQ, RedStar strikes the perfect balance between reasoning and generalizability. Our work highlights that, with careful tuning, scaling Long-CoT can unlock extraordinary reasoning capabilities-even with limited dataset and set a new standard for slow-thinking models across diverse challenges. Our data and models are released at https://huggingface.co/RedStar-Reasoning.
comment: technique-report, https://huggingface.co/RedStar-Reasoning
☆ Spatiotemporal Air Quality Mapping in Urban Areas Using Sparse Sensor Data, Satellite Imagery, Meteorological Factors, and Spatial Features
Monitoring air pollution is crucial for protecting human health from exposure to harmful substances. Traditional methods of air quality monitoring, such as ground-based sensors and satellite-based remote sensing, face limitations due to high deployment costs, sparse sensor coverage, and environmental interferences. To address these challenges, this paper proposes a framework for high-resolution spatiotemporal Air Quality Index (AQI) mapping using sparse sensor data, satellite imagery, and various spatiotemporal factors. By leveraging Graph Neural Networks (GNNs), we estimate AQI values at unmonitored locations based on both spatial and temporal dependencies. The framework incorporates a wide range of environmental features, including meteorological data, road networks, points of interest (PoIs), population density, and urban green spaces, which enhance prediction accuracy. We illustrate the use of our approach through a case study in Lahore, Pakistan, where multi-resolution data is used to generate the air quality index map at a fine spatiotemporal scale.
☆ Code Readability in the Age of Large Language Models: An Industrial Case Study from Atlassian
Programmers spend a significant amount of time reading code during the software development process. This trend is amplified by the emergence of large language models (LLMs) that automatically generate code. However, little is known about the readability of the LLM-generated code and whether it is still important from practitioners' perspectives in this new era. In this paper, we conduct a survey to explore the practitioners' perspectives on code readability in the age of LLMs and investigate the readability of our LLM-based software development agents framework, HULA, by comparing its generated code with human-written code in real-world scenarios. Overall, the findings underscore that (1) readability remains a critical aspect of software development; (2) the readability of our LLM-generated code is comparable to human-written code, fostering the establishment of appropriate trust and driving the broad adoption of our LLM-powered software development platform.
comment: 6 pages, 2 figures, 5 tables, under review
☆ WSSM: Geographic-enhanced hierarchical state-space model for global station weather forecast
Global Station Weather Forecasting (GSWF), a prominent meteorological research area, is pivotal in providing timely localized weather predictions. Despite the progress existing models have made in the overall accuracy of the GSWF, executing high-precision extreme event prediction still presents a substantial challenge. The recent emergence of state-space models, with their ability to efficiently capture continuous-time dynamics and latent states, offer potential solutions. However, early investigations indicated that Mamba underperforms in the context of GSWF, suggesting further adaptation and optimization. To tackle this problem, in this paper, we introduce Weather State-space Model (WSSM), a novel Mamba-based approach tailored for GSWF. Geographical knowledge is integrated in addition to the widely-used positional encoding to represent the absolute special-temporal position. The multi-scale time-frequency features are synthesized from coarse to fine to model the seasonal to extreme weather dynamic. Our method effectively improves the overall prediction accuracy and addresses the challenge of forecasting extreme weather events. The state-of-the-art results obtained on the Weather-5K subset underscore the efficacy of the WSSM
☆ Reasoning Language Models: A Blueprint
Reasoning language models (RLMs), also known as Large Reasoning Models (LRMs), such as OpenAI's o1 and o3, DeepSeek-V3, and Alibaba's QwQ, have redefined AI's problem-solving capabilities by extending large language models (LLMs) with advanced reasoning mechanisms. Yet, their high costs, proprietary nature, and complex architectures - uniquely combining Reinforcement Learning (RL), search heuristics, and LLMs - present accessibility and scalability challenges. To address these, we propose a comprehensive blueprint that organizes RLM components into a modular framework, based on a survey and analysis of all RLM works. This blueprint incorporates diverse reasoning structures (chains, trees, graphs, and nested forms), reasoning strategies (e.g., Monte Carlo Tree Search, Beam Search), RL concepts (policy, value models and others), and supervision schemes (Output-Based and Process-Based Supervision). We also provide detailed mathematical formulations and algorithmic specifications to simplify RLM implementation. By showing how schemes like LLaMA-Berry, QwQ, Journey Learning, and Graph of Thoughts fit as special cases, we demonstrate the blueprint's versatility and unifying potential. To illustrate its utility, we introduce x1, a modular implementation for rapid RLM prototyping and experimentation. Using x1 and a literature review, we provide key insights, such as multi-phase training for policy and value models, and the importance of familiar training distributions. Finally, we outline how RLMs can integrate with a broader LLM ecosystem, including tools and databases. Our work demystifies RLM construction, democratizes advanced reasoning capabilities, and fosters innovation, aiming to mitigate the gap between "rich AI" and "poor AI" by lowering barriers to RLM development and experimentation.
☆ Leveraging GANs For Active Appearance Models Optimized Model Fitting
Generative Adversarial Networks (GANs) have gained prominence in refining model fitting tasks in computer vision, particularly in domains involving deformable models like Active Appearance Models (AAMs). This paper explores the integration of GANs to enhance the AAM fitting process, addressing challenges in optimizing nonlinear parameters associated with appearance and shape variations. By leveraging GANs' adversarial training framework, the aim is to minimize fitting errors and improve convergence rates. Achieving robust performance even in cases with high appearance variability and occlusions. Our approach demonstrates significant improvements in accuracy and computational efficiency compared to traditional optimization techniques, thus establishing GANs as a potent tool for advanced image model fitting.
comment: 9 pages, 2 figures, in proceeding at conference
♻ ☆ Federated Neural Nonparametric Point Processes
Temporal point processes (TPPs) are effective for modeling event occurrences over time, but they struggle with sparse and uncertain events in federated systems, where privacy is a major concern. To address this, we propose \textit{FedPP}, a Federated neural nonparametric Point Process model. FedPP integrates neural embeddings into Sigmoidal Gaussian Cox Processes (SGCPs) on the client side, which is a flexible and expressive class of TPPs, allowing it to generate highly flexible intensity functions that capture client-specific event dynamics and uncertainties while efficiently summarizing historical records. For global aggregation, FedPP introduces a divergence-based mechanism that communicates the distributions of SGCPs' kernel hyperparameters between the server and clients, while keeping client-specific parameters local to ensure privacy and personalization. FedPP effectively captures event uncertainty and sparsity, and extensive experiments demonstrate its superior performance in federated settings, particularly with KL divergence and Wasserstein distance-based global aggregation.
♻ ☆ Characterising Simulation-Based Program Equilibria
In Tennenholtz's program equilibrium, players of a game submit programs to play on their behalf. Each program receives the other programs' source code and outputs an action. This can model interactions involving AI agents, mutually transparent institutions, or commitments. Tennenholtz (2004) proves a folk theorem for program games, but the equilibria constructed are very brittle. We therefore consider simulation-based programs -- i.e., programs that work by running opponents' programs. These are relatively robust (in particular, two programs that act the same are treated the same) and are more practical than proof-based approaches. Oesterheld's (2019) $\epsilon$Grounded$\pi$Bot is such an approach. Unfortunately, it is not generally applicable to games of three or more players, and only allows for a limited range of equilibria in two player games. In this paper, we propose a generalisation to Oesterheld's (2019) $\epsilon$Grounded$\pi$Bot. We prove a folk theorem for our programs in a setting with access to a shared source of randomness. We then characterise their equilibria in a setting without shared randomness. Both with and without shared randomness, we achieve a much wider range of equilibria than Oesterheld's (2019) $\epsilon$Grounded$\pi$Bot. Finally, we explore the limits of simulation-based program equilibrium, showing that the Tennenholtz folk theorem cannot be attained by simulation-based programs without access to shared randomness.
♻ ☆ VLM Agents Generate Their Own Memories: Distilling Experience into Embodied Programs of Thought
Large-scale LLMs and VLMs excel at few-shot learning but require high-quality examples. We introduce In-Context Abstraction Learning (ICAL), which iteratively refines suboptimal trajectories into high-quality data with optimized actions and detailed reasoning. Given an inefficient demonstration, a VLM corrects actions and annotates causal relationships, object states, subgoals, and task-relevant visuals, forming "programs of thought." With human feedback, these programs are improved as the agent executes them in a similar environment. The resulting examples, used as prompt context or fine-tuning data, significantly boost decision-making while reducing human feedback needs. ICAL surpasses state-of-the-art in TEACh (dialogue-based instruction following), VisualWebArena (multimodal web agents), and Ego4D (egocentric video action anticipation). In TEACh, combining fine-tuning and retrieval on ICAL examples outperforms raw human demonstrations and expert examples, achieving a 17.5% increase in goal-condition success. In VisualWebArena, retrieval-augmented GPT-4V with ICAL improves task success rate 1.6x over GPT-4V, while fine-tuning Qwen2-VL achieves a 2.8x improvement. In Ego4D, ICAL outperforms few-shot GPT-4V and remains competitive with supervised models. Overall, ICAL scales 2x better than raw human demonstrations and reduces manual prompt engineering.
comment: Project website: https://ical-learning.github.io/
♻ ☆ BEAVER: An Enterprise Benchmark for Text-to-SQL
Existing text-to-SQL benchmarks have largely been constructed from web tables with human-generated question-SQL pairs. LLMs typically show strong results on these benchmarks, leading to a belief that LLMs are effective at text-to-SQL tasks. However, how these results transfer to enterprise settings is unclear because tables in enterprise databases might differ substantially from web tables in structure and content. To contend with this problem, we introduce a new dataset BEAVER, the first enterprise text-to-SQL benchmark sourced from real private enterprise data warehouses. This dataset includes natural language queries and their correct SQL statements, which we collected from actual query logs. We then benchmark off-the-shelf LLMs on this dataset. LLMs perform poorly, even when augmented with standard prompt engineering and RAG techniques. We identify three main reasons for the poor performance: (1) schemas of enterprise tables are more complex than the schemas in public data, resulting in SQL-generation tasks intrinsically harder; (2) business-oriented questions are often more complex, requiring joins over multiple tables, aggregations, and nested queries; (3) public LLMs cannot train on private enterprise data warehouses that are not publicly accessible, and therefore it is difficult for the model to learn to solve (1) and (2). We believe BEAVER will facilitate future research in building text-to-SQL systems that perform better in enterprise settings.
comment: Dataset and code are available at https://peterbaile.github.io/beaver/
♻ ☆ Strategy Masking: A Method for Guardrails in Value-based Reinforcement Learning Agents
The use of reward functions to structure AI learning and decision making is core to the current reinforcement learning paradigm; however, without careful design of reward functions, agents can learn to solve problems in ways that may be considered "undesirable" or "unethical." Without thorough understanding of the incentives a reward function creates, it can be difficult to impose principled yet general control mechanisms over its behavior. In this paper, we study methods for constructing guardrails for AI agents that use reward functions to learn decision making. We introduce a novel approach, which we call strategy masking, to explicitly learn and then suppress undesirable AI agent behavior. We apply our method to study lying in AI agents and show that it can be used to effectively modify agent behavior by suppressing lying post-training without compromising agent ability to perform effectively.
♻ ☆ Inference-Time Alignment in Diffusion Models with Reward-Guided Generation: Tutorial and Review
This tutorial provides an in-depth guide on inference-time guidance and alignment methods for optimizing downstream reward functions in diffusion models. While diffusion models are renowned for their generative modeling capabilities, practical applications in fields such as biology often require sample generation that maximizes specific metrics (e.g., stability, affinity in proteins, closeness to target structures). In these scenarios, diffusion models can be adapted not only to generate realistic samples but also to explicitly maximize desired measures at inference time without fine-tuning. This tutorial explores the foundational aspects of such inference-time algorithms. We review these methods from a unified perspective, demonstrating that current techniques -- such as Sequential Monte Carlo (SMC)-based guidance, value-based sampling, and classifier guidance -- aim to approximate soft optimal denoising processes (a.k.a. policies in RL) that combine pre-trained denoising processes with value functions serving as look-ahead functions that predict from intermediate states to terminal rewards. Within this framework, we present several novel algorithms not yet covered in the literature. Furthermore, we discuss (1) fine-tuning methods combined with inference-time techniques, (2) inference-time algorithms based on search algorithms such as Monte Carlo tree search, which have received limited attention in current research, and (3) connections between inference-time algorithms in language models and diffusion models. The code of this tutorial on protein design is available at https://github.com/masa-ue/AlignInversePro
comment: We plan to add more content and codes. Please let us know if there are any comments or missing citations
♻ ☆ PDF-WuKong: A Large Multimodal Model for Efficient Long PDF Reading with End-to-End Sparse Sampling
Multimodal document understanding is a challenging task to process and comprehend large amounts of textual and visual information. Recent advances in Large Language Models (LLMs) have significantly improved the performance of this task. However, existing methods typically focus on either plain text or a limited number of document images, struggling to handle long PDF documents with interleaved text and images, especially for academic papers. In this paper, we introduce PDF-WuKong, a multimodal large language model (MLLM) which is designed to enhance multimodal question-answering (QA) for long PDF documents. PDF-WuKong incorporates a sparse sampler that operates on both text and image representations, significantly improving the efficiency and capability of the MLLM. The sparse sampler is integrated with the MLLM's image encoder and selects the paragraphs or diagrams most pertinent to user queries for processing by the language model. To effectively train and evaluate our model, we construct PaperPDF, a dataset consisting of a broad collection of English and Chinese academic papers. Multiple strategies are proposed to automatically generate 1.1 million QA pairs along with their corresponding evidence sources. Experimental results demonstrate the superiority and high efficiency of our approach over other models on the task of long multimodal document understanding, surpassing proprietary products by an average of 8.6% on F1. Our code and dataset will be released at https://github.com/yh-hust/PDF-Wukong.
♻ ☆ The Blind Normalized Stein Variational Gradient Descent-Based Detection for Intelligent Random Access in Cellular IoT
The lack of an efficient preamble detection algorithm remains a challenge for solving preamble collision problems in intelligent random access (RA) in the cellular Internet of Things (IoT). To address this problem, we present an early preamble detection scheme based on a maximum likelihood estimation (MLE) model at the first step of the grant-based RA procedure. A novel blind normalized Stein variational gradient descent (SVGD)-based detector is proposed to obtain an approximate solution to the MLE model. First, by exploring the relationship between the Hadamard transform and wavelet packet transform, a new modified Hadamard transform (MHT) is developed to separate high-frequency components from signals using the second-order derivative filter. Next, to eliminate noise and mitigate the vanishing gradients problem in the SVGD-based detectors, the block MHT layer is designed based on the MHT, scaling layer, soft-thresholding layer, inverse MHT and sparsity penalty. Then, the blind normalized SVGD algorithm is derived to perform preamble detection without prior knowledge of noise power and the number of active IoT devices. The experimental results show the proposed block MHT layer outperforms other transform-based methods in terms of computation costs and denoising performance. Furthermore, with the assistance of the block MHT layer, the proposed blind normalized SVGD algorithm achieves a higher preamble detection accuracy and throughput than other state-of-the-art detection methods.
comment: Accepted by the IEEE Internet of Things Journal
♻ ☆ On the Unknowable Limits to Prediction
We propose a rigorous decomposition of predictive error, highlighting that not all 'irreducible' error is genuinely immutable. Many domains stand to benefit from iterative enhancements in measurement, construct validity, and modeling. Our approach demonstrates how apparently 'unpredictable' outcomes can become more tractable with improved data (across both target and features) and refined algorithms. By distinguishing aleatoric from epistemic error, we delineate how accuracy may asymptotically improve--though inherent stochasticity may remain--and offer a robust framework for advancing computational research.
♻ ☆ DCOR: Anomaly Detection in Attributed Networks via Dual Contrastive Learning Reconstruction
Anomaly detection using a network-based approach is one of the most efficient ways to identify abnormal events such as fraud, security breaches, and system faults in a variety of applied domains. While most of the earlier works address the complex nature of graph-structured data and predefined anomalies, the impact of data attributes and emerging anomalies are often neglected. This paper introduces DCOR, a novel approach on attributed networks that integrates reconstruction-based anomaly detection with Contrastive Learning. Utilizing a Graph Neural Network (GNN) framework, DCOR contrasts the reconstructed adjacency and feature matrices from both the original and augmented graphs to detect subtle anomalies. We employed comprehensive experimental studies on benchmark datasets through standard evaluation measures. The results show that DCOR significantly outperforms state-of-the-art methods. Obtained results demonstrate the efficacy of proposed approach in attributed networks with the potential of uncovering new patterns of anomalies.
comment: Accepted at the Thirteenth International Conference on Complex Networks and Their Applications
♻ ☆ Evaluating Agents using Social Choice Theory
We argue that many general evaluation problems can be viewed through the lens of voting theory. Each task is interpreted as a separate voter, which requires only ordinal rankings or pairwise comparisons of agents to produce an overall evaluation. By viewing the aggregator as a social welfare function, we are able to leverage centuries of research in social choice theory to derive principled evaluation frameworks with axiomatic foundations. These evaluations are interpretable and flexible, while avoiding many of the problems currently facing cross-task evaluation. We apply this Voting-as-Evaluation (VasE) framework across multiple settings, including reinforcement learning, large language models, and humans. In practice, we observe that VasE can be more robust than popular evaluation frameworks (Elo and Nash averaging), discovers properties in the evaluation data not evident from scores alone, and can predict outcomes better than Elo in a complex seven-player game. We identify one particular approach, maximal lotteries, that satisfies important consistency properties relevant to evaluation, is computationally efficient (polynomial in the size of the evaluation data), and identifies game-theoretic cycles.
♻ ☆ Code-Driven Law NO, Normware SI!
With the digitalization of society, the interest, the debates and the research efforts concerning "code", "law", "artificial intelligence", and their various relationships, have been widely increasing. Yet, most arguments primarily focus on contemporary computational methods and artifacts (inferential models constructed via machine-learning methods, rule-based systems, smart contracts), rather than attempting to identify more fundamental mechanisms. Aiming to go beyond this conceptual limitation, this paper introduces and elaborates on "normware" as an explicit additional stance -- complementary to software and hardware -- for the interpretation and the design of artificial devices. By means of a few examples, I will argue that a normware-centred perspective provides a more adequate abstraction to study and design interactions between computational systems and human institutions, and may help with the design and development of technical interventions within wider socio-technical views.
comment: First version of the paper presented at CRCL 2022
♻ ☆ Transformer-Based Model for Monocular Visual Odometry: A Video Understanding Approach
Estimating the camera's pose given images from a single camera is a traditional task in mobile robots and autonomous vehicles. This problem is called monocular visual odometry and often relies on geometric approaches that require considerable engineering effort for a specific scenario. Deep learning methods have been shown to be generalizable after proper training and with a large amount of available data. Transformer-based architectures have dominated the state-of-the-art in natural language processing and computer vision tasks, such as image and video understanding. In this work, we deal with the monocular visual odometry as a video understanding task to estimate the 6 degrees of freedom of a camera's pose. We contribute by presenting the TSformer-VO model based on spatio-temporal self-attention mechanisms to extract features from clips and estimate the motions in an end-to-end manner. Our approach achieved competitive state-of-the-art performance compared with geometry-based and deep learning-based methods on the KITTI visual odometry dataset, outperforming the DeepVO implementation highly accepted in the visual odometry community. The code is publicly available at https://github.com/aofrancani/TSformer-VO.
comment: This work has been accepted for publication in IEEE Access
♻ ☆ A Non-autoregressive Model for Joint STT and TTS
In this paper, we take a step towards jointly modeling automatic speech recognition (STT) and speech synthesis (TTS) in a fully non-autoregressive way. We develop a novel multimodal framework capable of handling the speech and text modalities as input either individually or together. The proposed model can also be trained with unpaired speech or text data owing to its multimodal nature. We further propose an iterative refinement strategy to improve the STT and TTS performance of our model such that the partial hypothesis at the output can be fed back to the input of our model, thus iteratively improving both STT and TTS predictions. We show that our joint model can effectively perform both STT and TTS tasks, outperforming the STT-specific baseline in all tasks and performing competitively with the TTS-specific baseline across a wide range of evaluation metrics.
comment: 5 pages, 3 figures, 3 tables
♻ ☆ Optimization and Generalization Guarantees for Weight Normalization
Weight normalization (WeightNorm) is widely used in practice for the training of deep neural networks and modern deep learning libraries have built-in implementations of it. In this paper, we provide the first theoretical characterizations of both optimization and generalization of deep WeightNorm models with smooth activation functions. For optimization, from the form of the Hessian of the loss, we note that a small Hessian of the predictor leads to a tractable analysis. Thus, we bound the spectral norm of the Hessian of WeightNorm networks and show its dependence on the network width and weight normalization terms--the latter being unique to networks without WeightNorm. Then, we use this bound to establish training convergence guarantees under suitable assumptions for gradient decent. For generalization, we use WeightNorm to get a uniform convergence based generalization bound, which is independent from the width and depends sublinearly on the depth. Finally, we present experimental results which illustrate how the normalization terms and other quantities of theoretical interest relate to the training of WeightNorm networks.
♻ ☆ A Practical Examination of AI-Generated Text Detectors for Large Language Models
The proliferation of large language models has raised growing concerns about their misuse, particularly in cases where AI-generated text is falsely attributed to human authors. Machine-generated content detectors claim to effectively identify such text under various conditions and from any language model. This paper critically evaluates these claims by assessing several popular detectors (RADAR, Wild, T5Sentinel, Fast-DetectGPT, GPTID, LogRank, Binoculars) on a range of domains, datasets, and models that these detectors have not previously encountered. We employ various prompting strategies to simulate adversarial attacks, demonstrating that even moderate efforts can significantly evade detection. We emphasize the importance of the true positive rate at a specific false positive rate (TPR@FPR) metric and demonstrate that these detectors perform poorly in certain settings, with TPR@.01 as low as 0%. Our findings suggest that both trained and zero-shot detectors struggle to maintain high sensitivity while achieving a reasonable true positive rate.
comment: 8 pages
♻ ☆ Potential and Perils of Large Language Models as Judges of Unstructured Textual Data
Rapid advancements in large language models have unlocked remarkable capabilities when it comes to processing and summarizing unstructured text data. This has implications for the analysis of rich, open-ended datasets, such as survey responses, where LLMs hold the promise of efficiently distilling key themes and sentiments. However, as organizations increasingly turn to these powerful AI systems to make sense of textual feedback, a critical question arises, can we trust LLMs to accurately represent the perspectives contained within these text based datasets? While LLMs excel at generating human-like summaries, there is a risk that their outputs may inadvertently diverge from the true substance of the original responses. Discrepancies between the LLM-generated outputs and the actual themes present in the data could lead to flawed decision-making, with far-reaching consequences for organizations. This research investigates the effectiveness of LLM-as-judge models to evaluate the thematic alignment of summaries generated by other LLMs. We utilized an Anthropic Claude model to generate thematic summaries from open-ended survey responses, with Amazon's Titan Express, Nova Pro, and Meta's Llama serving as judges. This LLM-as-judge approach was compared to human evaluations using Cohen's kappa, Spearman's rho, and Krippendorff's alpha, validating a scalable alternative to traditional human centric evaluation methods. Our findings reveal that while LLM-as-judge offer a scalable solution comparable to human raters, humans may still excel at detecting subtle, context-specific nuances. Our research contributes to the growing body of knowledge on AI assisted text analysis. Further, we provide recommendations for future research, emphasizing the need for careful consideration when generalizing LLM-as-judge models across various contexts and use cases.
comment: 11 pages, 1 appendix
♻ ☆ Differentially Private Block-wise Gradient Shuffle for Deep Learning
Traditional Differentially Private Stochastic Gradient Descent (DP-SGD) introduces statistical noise on top of gradients drawn from a Gaussian distribution to ensure privacy. This paper introduces the novel Differentially Private Block-wise Gradient Shuffle (DP-BloGS) algorithm for deep learning. BloGS builds off of existing private deep learning literature, but makes a definitive shift by taking a probabilistic approach to gradient noise introduction through shuffling modeled after information theoretic privacy analyses. The theoretical results presented in this paper show that the combination of shuffling, parameter-specific block size selection, batch layer clipping, and gradient accumulation allows DP-BloGS to achieve training times close to that of non-private training while maintaining similar privacy and utility guarantees to DP-SGD. DP-BloGS is found to be significantly more resistant to data extraction attempts than DP-SGD. The theoretical results are validated by the experimental findings.
comment: The results are genuine, but the math is wrong! Please do not use this method for your Differential Privacy implementations
♻ ☆ Too Good to be True? Turn Any Model Differentially Private With DP-Weights
Imagine training a machine learning model with Differentially Private Stochastic Gradient Descent (DP-SGD), only to discover post-training that the noise level was either too high, crippling your model's utility, or too low, compromising privacy. The dreaded realization hits: you must start the lengthy training process from scratch. But what if you could avoid this retraining nightmare? In this study, we introduce a groundbreaking approach (to our knowledge) that applies differential privacy noise to the model's weights after training. We offer a comprehensive mathematical proof for this novel approach's privacy bounds, use formal methods to validate its privacy guarantees, and empirically evaluate its effectiveness using membership inference attacks and performance evaluations. This method allows for a single training run, followed by post-hoc noise adjustments to achieve optimal privacy-utility trade-offs. We compare this novel fine-tuned model (DP-Weights model) to a traditional DP-SGD model, demonstrating that our approach yields statistically similar performance and privacy guarantees. Our results validate the efficacy of post-training noise application, promising significant time savings and flexibility in fine-tuning differential privacy parameters, making it a practical alternative for deploying differentially private models in real-world scenarios.
comment: The results are genuine, but the math is wrong! Please do not use this method for your Differential Privacy implementations
♻ ☆ Cooperative Evolutionary Pressure and Diminishing Returns Might Explain the Fermi Paradox: On What Super-AIs Are Like
With an evolutionary approach, the basis of morality can be explained as adaptations to problems of cooperation. With 'evolution' taken in a broad sense, AIs that satisfy the conditions for evolution to apply will be subject to the same cooperative evolutionary pressure as biological entities. Here the adaptiveness of increased cooperation as material safety and wealth increase is discussed -- for humans, for other societies, and for AIs. Diminishing beneficial returns from increased access to material resources also suggests the possibility that, on the whole, there will be no incentive to for instance colonize entire galaxies, thus providing a possible explanation of the Fermi paradox, wondering where everybody is. It is further argued that old societies could engender, give way to, super-AIs, since it is likely that super-AIs are feasible, and fitter. Closing is an aside on effective ways for morals and goals to affect life and society, emphasizing environments, cultures, and laws, and exemplified by how to eat. 'Diminishing returns' is defined, as less than roots, the inverse of infeasibility. It is also noted that there can be no exponential colonization or reproduction, for mathematical reasons, as each entity takes up a certain amount of space. Appended are an algorithm for colonizing for example a galaxy quickly, models of the evolution of cooperation and fairness under diminishing returns, and software for simulating signaling development.
comment: 35 pages, 10 figures. Added figures, expansions, definitions, proofs, references
♻ ☆ 60 Data Points are Sufficient to Fine-Tune LLMs for Question-Answering
Large language models (LLMs) encode extensive world knowledge through pre-training on massive datasets, which can then be fine-tuned for the question-answering (QA) task. However, effective strategies for fine-tuning LLMs for the QA task remain largely unexplored. To address this gap, we categorize supervised fine-tuning (SFT) data based on the extent of knowledge memorized by the pretrained LLMs and conduct a series of empirical analyses. Our experiments, involving four LLMs from three different model families, focus on three key factors: the amount of data required for SFT, the impact of different SFT datasets on model performance, and how data requirements vary across LLMs. The results show that as few as 60 data points during the SFT stage can activate the knowledge encoded during pre-training, enabling LLMs to perform the QA task. Additionally, SFT with data of varying memory levels has a significant impact on LLM performance, with the optimal dataset differing based on the specific model being fine-tuned. Future research will delve deeper into the mechanisms underlying these phenomena.
♻ ☆ Aligning Instruction Tuning with Pre-training
Instruction tuning enhances large language models (LLMs) to follow human instructions across diverse tasks, relying on high-quality datasets to guide behavior. However, these datasets, whether manually curated or synthetically generated, are often narrowly focused and misaligned with the broad distributions captured during pre-training, limiting LLM generalization and effective use of pre-trained knowledge. We propose Aligning Instruction Tuning with Pre-training (AITP), a method that bridges this gap by identifying coverage shortfalls in instruction-tuning datasets and rewriting underrepresented pre-training data into high-quality instruction-response pairs. This approach enriches dataset diversity while preserving task-specific objectives. Evaluations on three fully open LLMs across eight benchmarks demonstrate consistent performance improvements with AITP. Ablations highlight the benefits of adaptive data selection, controlled rewriting, and balanced integration, emphasizing the importance of aligning instruction tuning with pre-training distributions to unlock the full potential of LLMs.
comment: arXiv admin note: text overlap with arXiv:hep-ph/9811436 by other authors
♻ ☆ Towards Underwater Camouflaged Object Tracking: Benchmark and Baselines NeurIPS 2024
Over the past decade, significant progress has been made in visual object tracking, largely due to the availability of large-scale datasets. However, existing tracking datasets are primarily focused on open-air scenarios, which greatly limits the development of object tracking in underwater environments. To bridge this gap, we take a step forward by proposing the first large-scale multimodal underwater camouflaged object tracking dataset, namely UW-COT220. Based on the proposed dataset, this paper first comprehensively evaluates current advanced visual object tracking methods and SAM- and SAM2-based trackers in challenging underwater environments. Our findings highlight the improvements of SAM2 over SAM, demonstrating its enhanced ability to handle the complexities of underwater camouflaged objects. Furthermore, we propose a novel vision-language tracking framework called VL-SAM2, based on the video foundation model SAM2. Experimental results demonstrate that our VL-SAM2 achieves state-of-the-art performance on the UW-COT220 dataset. The dataset and codes can be accessible at \color{magenta}{https://github.com/983632847/Awesome-Multimodal-Object-Tracking}.
comment: Preprint. Work in Progress. Extended Version of WebUOT-1M on NeurIPS 2024
♻ ☆ A Systems Thinking Approach to Algorithmic Fairness
Systems thinking provides us with a way to model the algorithmic fairness problem by allowing us to encode prior knowledge and assumptions about where we believe bias might exist in the data generating process. We can then encode these beliefs as a series of causal graphs, enabling us to link AI/ML systems to politics and the law. This allows us to combine techniques from machine learning, causal inference, and system dynamics in order to capture different emergent aspects of the fairness problem. We can use systems thinking to help policymakers on both sides of the political aisle to understand the complex trade-offs that exist from different types of fairness policies, providing a sociotechnical foundation for designing AI policy that is aligned to their political agendas and with society's values.
comment: This paper has been submitted to the 2025 ACM FAccT conference for review
♻ ☆ Graph neural networks informed locally by thermodynamics
Thermodynamics-informed neural networks employ inductive biases for the enforcement of the first and second principles of thermodynamics. To construct these biases, a metriplectic evolution of the system is assumed. This provides excellent results, when compared to uninformed, black box networks. While the degree of accuracy can be increased in one or two orders of magnitude, in the case of graph networks, this requires assembling global Poisson and dissipation matrices, which breaks the local structure of such networks. In order to avoid this drawback, a local version of the metriplectic biases has been developed in this work, which avoids the aforementioned matrix assembly, thus preserving the node-by-node structure of the graph networks. We apply this framework for examples in the fields of solid and fluid mechanics. Our approach demonstrates significant computational efficiency and strong generalization capabilities, accurately making inferences on examples significantly different from those encountered during training.
♻ ☆ APOLLO: SGD-like Memory, AdamW-level Performance
Large language models (LLMs) are notoriously memory-intensive during training, particularly with the popular AdamW optimizer. This memory burden necessitates using more or higher-end GPUs or reducing batch sizes, limiting training scalability and throughput. To address this, various memory-efficient optimizers have been proposed to reduce optimizer memory usage. However, they face critical challenges: (i) reliance on costly SVD operations; (ii) significant performance trade-offs compared to AdamW; and (iii) still substantial optimizer memory overhead to maintain competitive performance. In this work, we identify that AdamW's learning rate adaptation rule can be effectively coarsened as a structured learning rate update. Based on this insight, we propose Approximated Gradient Scaling for Memory-Efficient LLM Optimization (APOLLO), which approximates learning rate scaling using an auxiliary low-rank optimizer state based on pure random projection. This structured learning rate update rule makes APOLLO highly tolerant to further memory reductions while delivering comparable pre-training performance. Even its rank-1 variant, APOLLO-Mini, achieves superior pre-training performance compared to AdamW with SGD-level memory costs. Extensive experiments demonstrate that the APOLLO series performs on-par with or better than AdamW, while achieving greater memory savings by nearly eliminating the optimization states of AdamW. These savings provide significant system-level benefits: (1) Enhanced Throughput: 3x throughput on an 8xA100-80GB setup compared to AdamW by supporting 4x larger batch sizes. (2) Improved Model Scalability: Pre-training LLaMA-13B with naive DDP on A100-80GB GPUs without system-level optimizations. (3) Low-End GPU Friendly Pre-training: Pre-training LLaMA-7B on a single GPU using less than 12 GB of memory with weight quantization.
comment: Preprint; update code link and visualization
♻ ☆ Hierarchical Autoregressive Transformers: Combining Byte- and Word-Level Processing for Robust, Adaptable Language Models
Tokenization is a fundamental step in natural language processing, breaking text into units that computational models can process. While learned subword tokenizers have become the de-facto standard, they present challenges such as large vocabularies, limited adaptability to new domains or languages, and sensitivity to spelling errors and variations. To overcome these limitations, we investigate a hierarchical architecture for autoregressive language modelling that combines character-level and word-level processing. It employs a lightweight character-level encoder to convert character sequences into word embeddings, which are then processed by a word-level backbone model and decoded back into characters via a compact character-level decoder. This method retains the sequence compression benefits of word-level tokenization without relying on a rigid, predefined vocabulary. We demonstrate, at scales up to 7 billion parameters, that hierarchical transformers match the downstream task performance of subword-tokenizer-based models while exhibiting significantly greater robustness to input perturbations. Additionally, during continued pretraining on an out-of-domain language, our model trains almost twice as fast, achieves superior performance on the target language, and retains more of its previously learned knowledge. Hierarchical transformers pave the way for NLP systems that are more robust, flexible, and generalizable across languages and domains.
♻ ☆ On Improved Conditioning Mechanisms and Pre-training Strategies for Diffusion Models NeurIPS 2024
Large-scale training of latent diffusion models (LDMs) has enabled unprecedented quality in image generation. However, the key components of the best performing LDM training recipes are oftentimes not available to the research community, preventing apple-to-apple comparisons and hindering the validation of progress in the field. In this work, we perform an in-depth study of LDM training recipes focusing on the performance of models and their training efficiency. To ensure apple-to-apple comparisons, we re-implement five previously published models with their corresponding recipes. Through our study, we explore the effects of (i)~the mechanisms used to condition the generative model on semantic information (e.g., text prompt) and control metadata (e.g., crop size, random flip flag, etc.) on the model performance, and (ii)~the transfer of the representations learned on smaller and lower-resolution datasets to larger ones on the training efficiency and model performance. We then propose a novel conditioning mechanism that disentangles semantic and control metadata conditionings and sets a new state-of-the-art in class-conditional generation on the ImageNet-1k dataset -- with FID improvements of 7% on 256 and 8% on 512 resolutions -- as well as text-to-image generation on the CC12M dataset -- with FID improvements of 8% on 256 and 23% on 512 resolution.
comment: Accepted as a conference paper (poster) for NeurIPS 2024
♻ ☆ AI Techniques in the Microservices Life-Cycle: A Systematic Mapping Study
The use of AI in microservices (MSs) is an emerging field as indicated by a substantial number of surveys. However these surveys focus on a specific problem using specific AI techniques, therefore not fully capturing the growth of research and the rise and disappearance of trends. In our systematic mapping study, we take an exhaustive approach to reveal all possible connections between the use of AI techniques for improving any quality attribute (QA) of MSs during the DevOps phases. Our results include 16 research themes that connect to the intersection of particular QAs, AI domains and DevOps phases. Moreover by mapping identified future research challenges and relevant industry domains, we can show that many studies aim to deliver prototypes to be automated at a later stage, aiming at providing exploitable products in a number of key industry domains.
comment: Currently under review at a journal
♻ ☆ DutyTTE: Deciphering Uncertainty in Origin-Destination Travel Time Estimation
Uncertainty quantification in travel time estimation (TTE) aims to estimate the confidence interval for travel time, given the origin (O), destination (D), and departure time (T). Accurately quantifying this uncertainty requires generating the most likely path and assessing travel time uncertainty along the path. This involves two main challenges: 1) Predicting a path that aligns with the ground truth, and 2) modeling the impact of travel time in each segment on overall uncertainty under varying conditions. We propose DutyTTE to address these challenges. For the first challenge, we introduce a deep reinforcement learning method to improve alignment between the predicted path and the ground truth, providing more accurate travel time information from road segments to improve TTE. For the second challenge, we propose a mixture of experts guided uncertainty quantification mechanism to better capture travel time uncertainty for each segment under varying contexts. Additionally, we calibrate our results using Hoeffding's upper-confidence bound to provide statistical guarantees for the estimated confidence intervals. Extensive experiments on two real-world datasets demonstrate the superiority of our proposed method.
comment: 7 pages
♻ ☆ BoostStep: Boosting mathematical capability of Large Language Models via improved single-step reasoning
Cutting-edge large language models (LLMs) demonstrate promising performance in solving complex math problems with a divide-and-conquer pipeline and the assistance of in-context learning (ICL) examples. However, their potential for improvement is limited by two critical problems within their ICL examples: granularity-mismatch and the ensuing negative-effect noise problem. Specifically, the LLMs are capable of the dividing process yet mostly failed by inaccurate reasoning within a few conquer steps, while the ICL examples retrieved in question-grained sometimes lack relevant steps for a specific challenging reasoning step. Further, this disconnect may hinder the correct reasoning due to its irrelevance. To this end, we focus on improving the reasoning quality within each step and present BoostStep. BoostStep aligns the granularity between the retrieving and reasoning on step grained, and provides highly related ICL examples for each reasoning step with a novel `first-try' strategy. BoostStep provides more relevant examples than the coarse question-grained strategy, enhancing the model reasoning quality within each step steadily. BoostStep is a general and robust reasoning-enhancing method that not only improves standalone reasoning performance but also integrates seamlessly with Monte Carlo Tree Search methods (MCTS) to refine both candidate generation and decision-making. Quantitatively, it improves GPT-4o and Qwen2.5-Math-72B by 3.6\% and 2.0\% respectively on various mathematical benchmarks, and 7.5\% gain combined with MCTS.
comment: Codes and Data are available at https://github.com/beichenzbc/BoostStep
♻ ☆ ValuesRAG: Enhancing Cultural Alignment Through Retrieval-Augmented Contextual Learning
Cultural values alignment in Large Language Models (LLMs) is a critical challenge due to their tendency to embed Western-centric biases from training data, leading to misrepresentations and fairness issues in cross-cultural contexts. Recent approaches, such as role-assignment and few-shot learning, often struggle with reliable cultural alignment as they heavily rely on pre-trained knowledge, lack scalability, and fail to capture nuanced cultural values effectively. To address these issues, we propose ValuesRAG, a novel and effective framework that applies Retrieval-Augmented Generation (RAG) with In-Context Learning (ICL) to integrate cultural and demographic knowledge dynamically during text generation. Leveraging the World Values Survey (WVS) dataset, ValuesRAG first generates summaries of values for each individual. Subsequently, we curate several representative regional datasets to serve as test datasets and retrieve relevant summaries of values based on demographic features, followed by a reranking step to select the top-k relevant summaries. ValuesRAG consistently outperforms baseline methods, both in the main experiment and in the ablation study where only the values summary was provided. Notably, ValuesRAG demonstrates an accuracy of 21% improvement over other baseline methods, highlighting its potential to foster culturally aligned AI systems and enhance the inclusivity of AI-driven applications.
comment: preprint
♻ ☆ Constructing Fair Latent Space for Intersection of Fairness and Explainability AAAI 2025
As the use of machine learning models has increased, numerous studies have aimed to enhance fairness. However, research on the intersection of fairness and explainability remains insufficient, leading to potential issues in gaining the trust of actual users. Here, we propose a novel module that constructs a fair latent space, enabling faithful explanation while ensuring fairness. The fair latent space is constructed by disentangling and redistributing labels and sensitive attributes, allowing the generation of counterfactual explanations for each type of information. Our module is attached to a pretrained generative model, transforming its biased latent space into a fair latent space. Additionally, since only the module needs to be trained, there are advantages in terms of time and cost savings, without the need to train the entire generative model. We validate the fair latent space with various fairness metrics and demonstrate that our approach can effectively provide explanations for biased decisions and assurances of fairness.
comment: 14 pages, 5 figures, accepted in AAAI 2025
♻ ☆ SilverSpeak: Evading AI-Generated Text Detectors using Homoglyphs COLING 2025
The advent of Large Language Models (LLMs) has enabled the generation of text that increasingly exhibits human-like characteristics. As the detection of such content is of significant importance, substantial research has been conducted with the objective of developing reliable AI-generated text detectors. These detectors have demonstrated promising results on test data, but recent research has revealed that they can be circumvented by employing different techniques. In this paper, we present homoglyph-based attacks (A $\rightarrow$ Cyrillic A) as a means of circumventing existing detectors. We conduct a comprehensive evaluation to assess the effectiveness of these attacks on seven detectors, including ArguGPT, Binoculars, DetectGPT, Fast-DetectGPT, Ghostbuster, OpenAI's detector, and watermarking techniques, on five different datasets. Our findings demonstrate that homoglyph-based attacks can effectively circumvent state-of-the-art detectors, leading them to classify all texts as either AI-generated or human-written (decreasing the average Matthews Correlation Coefficient from 0.64 to -0.01). Through further examination, we extract the technical justification underlying the success of the attacks, which varies across detectors. Finally, we discuss the implications of these findings and potential defenses against such attacks.
comment: Workshop on Detecting AI Generated Content at COLING 2025
♻ ☆ DPO Kernels: A Semantically-Aware, Kernel-Enhanced, and Divergence-Rich Paradigm for Direct Preference Optimization
The rapid rise of large language models (LLMs) has unlocked many applications but also underscores the challenge of aligning them with diverse values and preferences. Direct Preference Optimization (DPO) is central to alignment but constrained by fixed divergences and limited feature transformations. We propose DPO-Kernels, which integrates kernel methods to address these issues through four key contributions: (i) Kernelized Representations with polynomial, RBF, Mahalanobis, and spectral kernels for richer transformations, plus a hybrid loss combining embedding-based and probability-based objectives; (ii) Divergence Alternatives (Jensen-Shannon, Hellinger, Renyi, Bhattacharyya, Wasserstein, and f-divergences) for greater stability; (iii) Data-Driven Selection metrics that automatically choose the best kernel-divergence pair; and (iv) a Hierarchical Mixture of Kernels for both local precision and global modeling. Evaluations on 12 datasets demonstrate state-of-the-art performance in factuality, safety, reasoning, and instruction following. Grounded in Heavy-Tailed Self-Regularization, DPO-Kernels maintains robust generalization for LLMs, offering a comprehensive resource for further alignment research.
♻ ☆ Neural Probabilistic Circuits: Enabling Compositional and Interpretable Predictions through Logical Reasoning
End-to-end deep neural networks have achieved remarkable success across various domains but are often criticized for their lack of interpretability. While post hoc explanation methods attempt to address this issue, they often fail to accurately represent these black-box models, resulting in misleading or incomplete explanations. To overcome these challenges, we propose an inherently transparent model architecture called Neural Probabilistic Circuits (NPCs), which enable compositional and interpretable predictions through logical reasoning. In particular, an NPC consists of two modules: an attribute recognition model, which predicts probabilities for various attributes, and a task predictor built on a probabilistic circuit, which enables logical reasoning over recognized attributes to make class predictions. To train NPCs, we introduce a three-stage training algorithm comprising attribute recognition, circuit construction, and joint optimization. Moreover, we theoretically demonstrate that an NPC's error is upper-bounded by a linear combination of the errors from its modules. To further demonstrate the interpretability of NPC, we provide both the most probable explanations and the counterfactual explanations. Empirical results on four benchmark datasets show that NPCs strike a balance between interpretability and performance, achieving results competitive even with those of end-to-end black-box models while providing enhanced interpretability.
♻ ☆ Efficient Large-Scale Urban Parking Prediction: Graph Coarsening Based on Real-Time Parking Service Capability
With the sharp increase in the number of vehicles, the issue of parking difficulties has emerged as an urgent challenge that many cities need to address promptly. In the task of predicting large-scale urban parking data, existing research often lacks effective deep learning models and strategies. To tackle this challenge, this paper proposes an innovative framework for predicting large-scale urban parking graphs leveraging real-time service capabilities, aimed at improving the accuracy and efficiency of parking predictions. Specifically, we introduce a graph attention mechanism that assesses the real-time service capabilities of parking lots to construct a dynamic parking graph that accurately reflects real preferences in parking behavior. To effectively handle large-scale parking data, this study combines graph coarsening techniques with temporal convolutional autoencoders to achieve unified dimension reduction of the complex urban parking graph structure and features. Subsequently, we use a spatio-temporal graph convolutional model to make predictions based on the coarsened graph, and a pre-trained autoencoder-decoder module restores the predicted results to their original data dimensions, completing the task. Our methodology has been rigorously tested on a real dataset from parking lots in Shenzhen. The experimental results indicate that compared to traditional parking prediction models, our framework achieves improvements of 46.8\% and 30.5\% in accuracy and efficiency, respectively. Remarkably, with the expansion of the graph's scale, our framework's advantages become even more apparent, showcasing its substantial potential for solving complex urban parking dilemmas in practical scenarios.
♻ ☆ Steering Large Language Models with Feature Guided Activation Additions
Effective and reliable control over large language model (LLM) behavior is a significant challenge. While activation steering methods, which add steering vectors to a model's hidden states, are a promising approach, existing techniques often lack precision and interpretability in how they influence model outputs. We introduce Feature Guided Activation Additions (FGAA), a novel activation steering method that leverages insights from Contrastive Activation Addition (CAA) and Sparse Autoencoder-Targeted Steering (SAE-TS). By operating in the latent space of a Sparse Autoencoder (SAE) and employing optimization techniques to select desired SAE features, FGAA constructs precise steering vectors that provide better steering effects while maintaining coherence of steered model outputs. In this regard, evaluations on Gemma-2-2B and Gemma-2-9B models across various steering tasks demonstrate that FGAA outperforms existing steering methods of CAA, SAE decoder steering, and SAE-TS. Our results also highlight important trade-offs between steering scale and general model capabilities that are consistent across all tested steering methods.
comment: 7 maintext pages, 14 appendix pages
♻ ☆ Touchstone Benchmark: Are We on the Right Way for Evaluating AI Algorithms for Medical Segmentation? NeurIPS-2024
How can we test AI performance? This question seems trivial, but it isn't. Standard benchmarks often have problems such as in-distribution and small-size test sets, oversimplified metrics, unfair comparisons, and short-term outcome pressure. As a consequence, good performance on standard benchmarks does not guarantee success in real-world scenarios. To address these problems, we present Touchstone, a large-scale collaborative segmentation benchmark of 9 types of abdominal organs. This benchmark is based on 5,195 training CT scans from 76 hospitals around the world and 5,903 testing CT scans from 11 additional hospitals. This diverse test set enhances the statistical significance of benchmark results and rigorously evaluates AI algorithms across various out-of-distribution scenarios. We invited 14 inventors of 19 AI algorithms to train their algorithms, while our team, as a third party, independently evaluated these algorithms on three test sets. In addition, we also evaluated pre-existing AI frameworks--which, differing from algorithms, are more flexible and can support different algorithms--including MONAI from NVIDIA, nnU-Net from DKFZ, and numerous other open-source frameworks. We are committed to expanding this benchmark to encourage more innovation of AI algorithms for the medical domain.
comment: Accepted to NeurIPS-2024
♻ ☆ List Items One by One: A New Data Source and Learning Paradigm for Multimodal LLMs
Set-of-Mark (SoM) Prompting unleashes the visual grounding capability of GPT-4V, by enabling the model to associate visual objects with tags inserted on the image. These tags, marked with alphanumerics, can be indexed via text tokens for easy reference. Despite the extraordinary performance from GPT-4V, we observe that other Multimodal Large Language Models (MLLMs) struggle to understand these visual tags. To promote the learning of SoM prompting for open-source models, we propose a new learning paradigm: "list items one by one," which asks the model to enumerate and describe all visual tags placed on the image following the alphanumeric orders of tags. By integrating our curated dataset with other visual instruction tuning datasets, we are able to equip existing MLLMs with the SoM prompting ability. Furthermore, we evaluate our finetuned SoM models on five MLLM benchmarks. We find that this new dataset, even in a relatively small size (10k-30k images with tags), significantly enhances visual reasoning capabilities and reduces hallucinations for MLLMs. Perhaps surprisingly, these improvements persist even when the visual tags are omitted from input images during inference. This suggests the potential of "list items one by one" as a new paradigm for training MLLMs, which strengthens the object-text alignment through the use of visual tags in the training stage. Finally, we conduct analyses by probing trained models to understand the working mechanism of SoM. Our code and data are available at \url{https://github.com/zzxslp/SoM-LLaVA}.
comment: published at COLM-2024
Robotics 12
☆ CART-MPC: Coordinating Assistive Devices for Robot-Assisted Transferring with Multi-Agent Model Predictive Control
Bed-to-wheelchair transferring is a ubiquitous activity of daily living (ADL), but especially challenging for caregiving robots with limited payloads. We develop a novel algorithm that leverages the presence of other assistive devices: a Hoyer sling and a wheelchair for coarse manipulation of heavy loads, alongside a robot arm for fine-grained manipulation of deformable objects (Hoyer sling straps). We instrument the Hoyer sling and wheelchair with actuators and sensors so that they can become intelligent agents in the algorithm. We then focus on one subtask of the transferring ADL -- tying Hoyer sling straps to the sling bar -- that exemplifies the challenges of transfer: multi-agent planning, deformable object manipulation, and generalization to varying hook shapes, sling materials, and care recipient bodies. To address these challenges, we propose CART-MPC, a novel algorithm based on turn-taking multi-agent model predictive control that uses a learned neural dynamics model for a keypoint-based representation of the deformable Hoyer sling strap, and a novel cost function that leverages linking numbers from knot theory and neural amortization to accelerate inference. We validate it in both RCareWorld simulation and real-world environments. In simulation, CART-MPC successfully generalizes across diverse hook designs, sling materials, and care recipient body shapes. In the real world, we show zero-shot sim-to-real generalization capabilities to tie deformable Hoyer sling straps on a sling bar towards transferring a manikin from a hospital bed to a wheelchair. See our website for supplementary materials: https://emprise.cs.cornell.edu/cart-mpc/.
☆ OpenLiDARMap: Zero-Drift Point Cloud Mapping using Map Priors
Accurate localization is a critical component of mobile autonomous systems, especially in Global Navigation Satellite Systems (GNSS)-denied environments where traditional methods fail. In such scenarios, environmental sensing is essential for reliable operation. However, approaches such as LiDAR odometry and Simultaneous Localization and Mapping (SLAM) suffer from drift over long distances, especially in the absence of loop closures. Map-based localization offers a robust alternative, but the challenge lies in creating and georeferencing maps without GNSS support. To address this issue, we propose a method for creating georeferenced maps without GNSS by using publicly available data, such as building footprints and surface models derived from sparse aerial scans. Our approach integrates these data with onboard LiDAR scans to produce dense, accurate, georeferenced 3D point cloud maps. By combining an Iterative Closest Point (ICP) scan-to-scan and scan-to-map matching strategy, we achieve high local consistency without suffering from long-term drift. Thus, we eliminate the reliance on GNSS for the creation of georeferenced maps. The results demonstrate that LiDAR-only mapping can produce accurate georeferenced point cloud maps when augmented with existing map priors.
☆ Multi-LiCa: A Motion and Targetless Multi LiDAR-to-LiDAR Calibration Framework
Today's autonomous vehicles rely on a multitude of sensors to perceive their environment. To improve the perception or create redundancy, the sensor's alignment relative to each other must be known. With Multi-LiCa, we present a novel approach for the alignment, e.g. calibration. We present an automatic motion- and targetless approach for the extrinsic multi LiDAR-to-LiDAR calibration without the need for additional sensor modalities or an initial transformation input. We propose a two-step process with feature-based matching for the coarse alignment and a GICP-based fine registration in combination with a cost-based matching strategy. Our approach can be applied to any number of sensors and positions if there is a partial overlap between the field of view of single sensors. We show that our pipeline is better generalized to different sensor setups and scenarios and is on par or better in calibration accuracy than existing approaches. The presented framework is integrated in ROS 2 but can also be used as a standalone application. To build upon our work, our source code is available at: https://github.com/TUMFTM/Multi_LiCa.
comment: 2024 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, 2835-947X
☆ Front Hair Styling Robot System Using Path Planning for Root-Centric Strand Adjustment
Hair styling is a crucial aspect of personal grooming, significantly influenced by the appearance of front hair. While brushing is commonly used both to detangle hair and for styling purposes, existing research primarily focuses on robotic systems for detangling hair, with limited exploration into robotic hair styling. This research presents a novel robotic system designed to automatically adjust front hairstyles, with an emphasis on path planning for root-centric strand adjustment. The system utilizes images to compare the current hair state with the desired target state through an orientation map of hair strands. By concentrating on the differences in hair orientation and specifically targeting adjustments at the root of each strand, the system performs detailed styling tasks. The path planning approach ensures effective alignment of the hairstyle with the target, and a closed-loop mechanism refines these adjustments to accurately evolve the hairstyle towards the desired outcome. Experimental results demonstrate that the proposed system achieves a high degree of similarity and consistency in front hair styling, showing promising results for automated, precise hairstyle adjustments.
comment: Accepted at IEEE/SICE SII2025
☆ Factor Graph-Based Active SLAM for Spacecraft Proximity Operations
We investigate a scenario where a chaser spacecraft or satellite equipped with a monocular camera navigates in close proximity to a target spacecraft. The satellite's primary objective is to construct a representation of the operational environment and localize itself within it, utilizing the available image data. We frame the joint task of state trajectory and map estimation as an instance of smoothing-based simultaneous localization and mapping (SLAM), where the underlying structure of the problem is represented as a factor graph. Rather than considering estimation and planning as separate tasks, we propose to control the camera observations to actively reduce the uncertainty of the estimation variables, the spacecraft state, and the map landmarks. This is accomplished by adopting an information-theoretic metric to reason about the impact of candidate actions on the evolution of the belief state. Numerical simulations indicate that the proposed method successfully captures the interplay between planning and estimation, hence yielding reduced uncertainty and higher accuracy when compared to commonly adopted passive sensing strategies.
☆ Adaptive Target Localization under Uncertainty using Multi-Agent Deep Reinforcement Learning with Knowledge Transfer
Target localization is a critical task in sensitive applications, where multiple sensing agents communicate and collaborate to identify the target location based on sensor readings. Existing approaches investigated the use of Multi-Agent Deep Reinforcement Learning (MADRL) to tackle target localization. Nevertheless, these methods do not consider practical uncertainties, like false alarms when the target does not exist or when it is unreachable due to environmental complexities. To address these drawbacks, this work proposes a novel MADRL-based method for target localization in uncertain environments. The proposed MADRL method employs Proximal Policy Optimization to optimize the decision-making of sensing agents, which is represented in the form of an actor-critic structure using Convolutional Neural Networks. The observations of the agents are designed in an optimized manner to capture essential information in the environment, and a team-based reward functions is proposed to produce cooperative agents. The MADRL method covers three action dimensionalities that control the agents' mobility to search the area for the target, detect its existence, and determine its reachability. Using the concept of Transfer Learning, a Deep Learning model builds on the knowledge from the MADRL model to accurately estimating the target location if it is unreachable, resulting in shared representations between the models for faster learning and lower computational complexity. Collectively, the final combined model is capable of searching for the target, determining its existence and reachability, and estimating its location accurately. The proposed method is tested using a radioactive target localization environment and benchmarked against existing methods, showing its efficacy.
♻ ☆ Embodied Agent Interface: Benchmarking LLMs for Embodied Decision Making NeurIPS 2024
We aim to evaluate Large Language Models (LLMs) for embodied decision making. While a significant body of work has been leveraging LLMs for decision making in embodied environments, we still lack a systematic understanding of their performance because they are usually applied in different domains, for different purposes, and built based on different inputs and outputs. Furthermore, existing evaluations tend to rely solely on a final success rate, making it difficult to pinpoint what ability is missing in LLMs and where the problem lies, which in turn blocks embodied agents from leveraging LLMs effectively and selectively. To address these limitations, we propose a generalized interface (Embodied Agent Interface) that supports the formalization of various types of tasks and input-output specifications of LLM-based modules. Specifically, it allows us to unify 1) a broad set of embodied decision-making tasks involving both state and temporally extended goals, 2) four commonly-used LLM-based modules for decision making: goal interpretation, subgoal decomposition, action sequencing, and transition modeling, and 3) a collection of fine-grained metrics which break down evaluation into various types of errors, such as hallucination errors, affordance errors, various types of planning errors, etc. Overall, our benchmark offers a comprehensive assessment of LLMs' performance for different subtasks, pinpointing the strengths and weaknesses in LLM-powered embodied AI systems, and providing insights for effective and selective use of LLMs in embodied decision making.
comment: Accepted for oral presentation at NeurIPS 2024 in the Datasets and Benchmarks track. Final Camera version
♻ ☆ Unsupervised UAV 3D Trajectories Estimation with Sparse Point Clouds ICASSP
Compact UAV systems, while advancing delivery and surveillance, pose significant security challenges due to their small size, which hinders detection by traditional methods. This paper presents a cost-effective, unsupervised UAV detection method using spatial-temporal sequence processing to fuse multiple LiDAR scans for accurate UAV tracking in real-world scenarios. Our approach segments point clouds into foreground and background, analyzes spatial-temporal data, and employs a scoring mechanism to enhance detection accuracy. Tested on a public dataset, our solution placed 4th in the CVPR 2024 UG2+ Challenge, demonstrating its practical effectiveness. We plan to open-source all designs, code, and sample data for the research community github.com/lianghanfang/UnLiDAR-UAV-Est.
comment: This paper has been accepted for presentation at the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 2025. 2025 IEEE Trademark. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses
♻ ☆ REBEL: Reward Regularization-Based Approach for Robotic Reinforcement Learning from Human Feedback
The effectiveness of reinforcement learning (RL) agents in continuous control robotics tasks is mainly dependent on the design of the underlying reward function, which is highly prone to reward hacking. A misalignment between the reward function and underlying human preferences (values, social norms) can lead to catastrophic outcomes in the real world especially in the context of robotics for critical decision making. Recent methods aim to mitigate misalignment by learning reward functions from human preferences and subsequently performing policy optimization. However, these methods inadvertently introduce a distribution shift during reward learning due to ignoring the dependence of agent-generated trajectories on the reward learning objective, ultimately resulting in sub-optimal alignment. Hence, in this work, we address this challenge by advocating for the adoption of regularized reward functions that more accurately mirror the intended behaviors of the agent. We propose a novel concept of reward regularization within the robotic RLHF (RL from Human Feedback) framework, which we refer to as \emph{agent preferences}. Our approach uniquely incorporates not just human feedback in the form of preferences but also considers the preferences of the RL agent itself during the reward function learning process. This dual consideration significantly mitigates the issue of distribution shift in RLHF with a computationally tractable algorithm. We provide a theoretical justification for the proposed algorithm by formulating the robotic RLHF problem as a bilevel optimization problem and developing a computationally tractable version of the same. We demonstrate the efficiency of our algorithm {\ours} in several continuous control benchmarks in DeepMind Control Suite \cite{tassa2018deepmind}.
♻ ☆ Audio Array-Based 3D UAV Trajectory Estimation with LiDAR Pseudo-Labeling ICASSP
As small unmanned aerial vehicles (UAVs) become increasingly prevalent, there is growing concern regarding their impact on public safety and privacy, highlighting the need for advanced tracking and trajectory estimation solutions. In response, this paper introduces a novel framework that utilizes audio array for 3D UAV trajectory estimation. Our approach incorporates a self-supervised learning model, starting with the conversion of audio data into mel-spectrograms, which are analyzed through an encoder to extract crucial temporal and spectral information. Simultaneously, UAV trajectories are estimated using LiDAR point clouds via unsupervised methods. These LiDAR-based estimations act as pseudo labels, enabling the training of an Audio Perception Network without requiring labeled data. In this architecture, the LiDAR-based system operates as the Teacher Network, guiding the Audio Perception Network, which serves as the Student Network. Once trained, the model can independently predict 3D trajectories using only audio signals, with no need for LiDAR data or external ground truth during deployment. To further enhance precision, we apply Gaussian Process modeling for improved spatiotemporal tracking. Our method delivers top-tier performance on the MMAUD dataset, establishing a new benchmark in trajectory estimation using self-supervised learning techniques without reliance on ground truth annotations.
comment: Accepted for ICASSP
♻ ☆ VIEW: Visual Imitation Learning with Waypoints
Robots can use Visual Imitation Learning (VIL) to learn manipulation tasks from video demonstrations. However, translating visual observations into actionable robot policies is challenging due to the high-dimensional nature of video data. This challenge is further exacerbated by the morphological differences between humans and robots, especially when the video demonstrations feature humans performing tasks. To address these problems we introduce Visual Imitation lEarning with Waypoints (VIEW), an algorithm that significantly enhances the sample efficiency of human-to-robot VIL. VIEW achieves this efficiency using a multi-pronged approach: extracting a condensed prior trajectory that captures the demonstrator's intent, employing an agent-agnostic reward function for feedback on the robot's actions, and utilizing an exploration algorithm that efficiently samples around waypoints in the extracted trajectory. VIEW also segments the human trajectory into grasp and task phases to further accelerate learning efficiency. Through comprehensive simulations and real-world experiments, VIEW demonstrates improved performance compared to current state-of-the-art VIL methods. VIEW enables robots to learn manipulation tasks involving multiple objects from arbitrarily long video demonstrations. Additionally, it can learn standard manipulation tasks such as pushing or moving objects from a single video demonstration in under 30 minutes, with fewer than 20 real-world rollouts. Code and videos here: https://collab.me.vt.edu/view/
comment: 27 pages, 17 figures
♻ ☆ LEGATO: Cross-Embodiment Imitation Using a Grasping Tool
Cross-embodiment imitation learning enables policies trained on specific embodiments to transfer across different robots, unlocking the potential for large-scale imitation learning that is both cost-effective and highly reusable. This paper presents LEGATO, a cross-embodiment imitation learning framework for visuomotor skill transfer across varied kinematic morphologies. We introduce a handheld gripper that unifies action and observation spaces, allowing tasks to be defined consistently across robots. We train visuomotor policies on task demonstrations using this gripper through imitation learning, applying transformation to a motion-invariant space for computing the training loss. Gripper motions generated by the policies are retargeted into high-degree-of-freedom whole-body motions using inverse kinematics for deployment across diverse embodiments. Our evaluations in simulation and real-robot experiments highlight the framework's effectiveness in learning and transferring visuomotor skills across various robots. More information can be found at the project page: https://ut-hcrl.github.io/LEGATO.
comment: Accepted to RA-L
Systems and Control 7
☆ Global Attitude Synchronization for Multi-agent Systems on SO(3)
In this paper, we address the problem of attitude synchronization for a group of rigid body systems evolving on SO(3). The interaction among these systems is modeled through an undirected, connected, and acyclic graph topology. First, we present an almost global continuous distributed attitude synchronization scheme with rigorously proven stability guarantees. Thereafter, we propose two global distributed hybrid attitude synchronization schemes on SO(3). The first scheme is a hybrid control law that leverages angular velocities and relative orientations to achieve global alignment to a common orientation. The second scheme eliminates the dependence on angular velocities by introducing dynamic auxiliary variables, while ensuring global asymptotic attitude synchronization. This velocity-free control scheme relies exclusively on attitude information. Simulation results are provided to illustrate the effectiveness of the proposed distributed attitude synchronization schemes.
comment: arXiv admin note: text overlap with arXiv:2304.01928
☆ A Novel Switch-Type Policy Network for Resource Allocation Problems: Technical Report
Deep Reinforcement Learning (DRL) has become a powerful tool for developing control policies in queueing networks, but the common use of Multi-layer Perceptron (MLP) neural networks in these applications has significant drawbacks. MLP architectures, while versatile, often suffer from poor sample efficiency and a tendency to overfit training environments, leading to suboptimal performance on new, unseen networks. In response to these issues, we introduce a switch-type neural network (STN) architecture designed to improve the efficiency and generalization of DRL policies in queueing networks. The STN leverages structural patterns from traditional non-learning policies, ensuring consistent action choices across similar states. This design not only streamlines the learning process but also fosters better generalization by reducing the tendency to overfit. Our works presents three key contributions: first, the development of the STN as a more effective alternative to MLPs; second, empirical evidence showing that STNs achieve superior sample efficiency in various training scenarios; and third, experimental results demonstrating that STNs match MLP performance in familiar environments and significantly outperform them in new settings. By embedding domain-specific knowledge, the STN enhances the Proximal Policy Optimization (PPO) algorithm's effectiveness without compromising performance, suggesting its suitability for a wide range of queueing network control problems.
☆ Sequential Change Detection for Learning in Piecewise Stationary Bandit Environments
A finite-horizon variant of the quickest change detection problem is investigated, which is motivated by a change detection problem that arises in piecewise stationary bandits. The goal is to minimize the \emph{latency}, which is smallest threshold such that the probability that the detection delay exceeds the threshold is below a desired low level, while controlling the false alarm probability to a desired low level. When the pre- and post-change distributions are unknown, two tests are proposed as candidate solutions. These tests are shown to attain order optimality in terms of the horizon. Furthermore, the growth in their latencies with respect to the false alarm probability and late detection probability satisfies a property that is desirable in regret analysis for piecewise stationary bandits. Numerical results are provided to validate the theoretical performance results.
comment: 15 pages, 2 figures. arXiv admin note: text overlap with arXiv:2501.01291
☆ Data Enrichment Opportunities for Distribution Grid Cable Networks using Variational Autoencoders
Electricity distribution cable networks suffer from incomplete and unbalanced data, hindering the effectiveness of machine learning models for predictive maintenance and reliability evaluation. Features such as the installation date of the cables are frequently missing. To address data scarcity, this study investigates the application of Variational Autoencoders (VAEs) for data enrichment, synthetic data generation, imbalanced data handling, and outlier detection. Based on a proof-of-concept case study for Denmark, targeting the imputation of missing age information in cable network asset registers, the analysis underlines the potential of generative models to support data-driven maintenance. However, the study also highlights several areas for improvement, including enhanced feature importance analysis, incorporating network characteristics and external features, and handling biases in missing data. Future initiatives should expand the application of VAEs by incorporating semi-supervised learning, advanced sampling techniques, and additional distribution grid elements, including low-voltage networks, into the analysis.
♻ ☆ Advancing Hybrid Quantum Neural Network for Alternative Current Optimal Power Flow
Alternative Current Optimal Power Flow (AC-OPF) is essential for efficient planning and real-time operation in power systems but is NP-hard and non-convex, leading to significant computational challenges. Neural networks (NNs) offer computational speedups in solving OPF but face issues like dependency on large datasets, scalability limitations, and inability to enforce physical constraints, compromising solution reliability. To overcome these limitations, this paper proposes hybrid Quantum Neural Networks (QNNs) that integrate quantum computing principles into neural network architectures. Leveraging quantum mechanics properties such as superposition and entanglement, QNNs can capture complex input-output relationships more effectively and learn from small or noisy datasets.To further improve the performance of QNNs and investigate the interplay between classical and quantum components in hybrid architectures, we incorporate advanced techniques, including residual learning and physics-informed machine learning, into the hybrid QNN designs. These enhancements aim to boost convergence efficiency, lower errors, superior generalization, and robustness to quantum noise. Simulation results demonstrate that these enhanced hybrid QNNs outperform typical hybrid QNNs in solving OPF problems. This work provides valuable insights into the design and optimization of hybrid QNNs, highlighting the potential of quantum computation for broader applications in power systems.
♻ ☆ Reducing real-time complexity via sub-control Lyapunov functions: from theory to experiments
The techniques to design control Lyapunov functions (CLF), along with a proper stabilizing feedback, possibly in the presence of constraints, often provide control laws that are too complex for proper implementation online, especially when an optimization problem is involved. In this work, we show how to acquire an alternative, computationally attractive feedback. Given a nominal CLF and a nominal state feedback, we say that a different positive definite function is a Sub-control Lyapunov function (SCLF) if its Lyapunov derivative is negative-definite and bounded above by the Lyapunov derivative of the nominal function with the nominal control. It turns out that if we consider a family of basis functions, then a SCLF can be computed by linear programming, with an infinite number of constraints. The idea is that although the offline computational burden to achieve the new controller and solve the linear program is considerable, the online computational burden is drastically reduced. Comprehensive simulations and experiments on drone control are conducted to demonstrate the effectiveness of the study.
♻ ☆ Optimisation of design parameters to improve performance of a planar electromagnetic actuator
Planar electromagnetic actuators based on the principle of linear motors are widely employed for micro and nano positioning applications. These actuators usually employ a planar magnetic platform driven by a co-planar electromagnetic coil. While these actuators offer a large motion range and high positioning resolution, their actuation bandwidth is limited due to relatively small electromagnetic stiffness. We report optimization of the design parameters of the electromagnetic coil and the magnetic assembly to maximize the electromagnetic force and stiffness. Firstly, we derive closed-form expressions for the electromagnetic forces and stiffness, which enable us to express these quantities in terms of the design parameters of the actuator. Secondly, based on these derived expressions, we estimate the optimum values of the design parameters to maximize force and stiffness. Notably, for the optimum design parameters, the force and stiffness per unit volume can be increased by two and three orders of magnitude, respectively by reducing the pitch of the electromagnetic coil by a factor of 10. Lastly, we develop an electromagnetic actuator and evaluate its performance using a Microelectromechanical system (MEMS) based force sensor. By operating the force sensor in a feedback loop, we precisely measure the generated electromagnetic forces for different design parameters of the actuator. The experimental results obtained align closely with the analytical values, with an error of less than 15%.
comment: The paper has been published on IEEE Transactions on Magnetics
Optimization and Control 12
☆ A Regularized Online Newton Method for Stochastic Convex Bandits with Linear Vanishing Noise
We study a stochastic convex bandit problem where the subgaussian noise parameter is assumed to decrease linearly as the learner selects actions closer and closer to the minimizer of the convex loss function. Accordingly, we propose a Regularized Online Newton Method (RONM) for solving the problem, based on the Online Newton Method (ONM) of arXiv:2406.06506. Our RONM reaches a polylogarithmic regret in the time horizon $n$ when the loss function grows quadratically in the constraint set, which recovers the results of arXiv:2402.12042 in linear bandits. Our analyses rely on the growth rate of the precision matrix $\Sigma_t^{-1}$ in ONM and we find that linear growth solves the question exactly. These analyses also help us obtain better convergence rates when the loss function grows faster. We also study and analyze two new bandit models: stochastic convex bandits with noise scaled to a subgaussian parameter function and convex bandits with stochastic multiplicative noise.
☆ Global Independence of Irrelevant Alternatives, State-Salient Decision Rules and the Strict Condorcet Choice Function
We present a simple proof of a well-known axiomatic characterization of state-salient decision rules, using Weak Dominance Criterion and Global Independence of Irrelevant Alternatives. Subsequently we provide a simple axiomatic characterization of the Strict-Condorcet choice function on the domain of all preference profiles that have a strict-Condorcet winner, assuming that if the first two ranks are occupied by the same two alternatives in all states of nature, then the chosen alternative will be the one from these two that is preferred to the other with probability greater than half-provided such an alternative exists. We also show that this result is not valid if we extend the domain to the set of all preference profiles that have a unique weak-Condorcet winner.
comment: 14 pages
☆ Self-CephaloNet: A Two-stage Novel Framework using Operational Neural Network for Cephalometric Analysis
Cephalometric analysis is essential for the diagnosis and treatment planning of orthodontics. In lateral cephalograms, however, the manual detection of anatomical landmarks is a time-consuming procedure. Deep learning solutions hold the potential to address the time constraints associated with certain tasks; however, concerns regarding their performance have been observed. To address this critical issue, we proposed an end-to-end cascaded deep learning framework (Self-CepahloNet) for the task, which demonstrated benchmark performance over the ISBI 2015 dataset in predicting 19 dental landmarks. Due to their adaptive nodal capabilities, Self-ONN (self-operational neural networks) demonstrate superior learning performance for complex feature spaces over conventional convolutional neural networks. To leverage this attribute, we introduced a novel self-bottleneck in the HRNetV2 (High Resolution Network) backbone, which has exhibited benchmark performance on the ISBI 2015 dataset for the dental landmark detection task. Our first-stage results surpassed previous studies, showcasing the efficacy of our singular end-to-end deep learning model, which achieved a remarkable 70.95% success rate in detecting cephalometric landmarks within a 2mm range for the Test1 and Test2 datasets. Moreover, the second stage significantly improved overall performance, yielding an impressive 82.25% average success rate for the datasets above within the same 2mm distance. Furthermore, external validation was conducted using the PKU cephalogram dataset. Our model demonstrated a commendable success rate of 75.95% within the 2mm range.
comment: The paper has been accepted for publication in Neural Computing and Applications
☆ Multi-View Clustering Meets High-Dimensional Mixed Data: A Fusion Regularized Method
Multi-view clustering leverages consistent and complementary information across multiple views to provide more comprehensive insights than analysis of single-view data. However, the heterogeneity and redundancy of high-dimensional mixed multi-view data pose significant challenges to the existing clustering techniques. In this paper, we propose a novel multi-view fusion regularized clustering method with adaptive group sparsity, enabling reliable clustering while effectively capturing local features. Technically, for multi-view data with mixed features exhibiting different distributions, different losses or divergence metrics are considered with a collective fusion penalty to obtain common groups. Moreover, the non-convex group sparsity consisting of inter-group sparsity and intra-group sparsity is utilized to screen informative features, thereby enhancing the robustness. Furthermore, we develop an effective proximal alternating direction method of multipliers (ADMM) and each subproblem admits a closed-form solution. It is rigorously proven that this algorithm globally converges to a Karush-Kuhn-Tucker (KKT) point, while establishing the equivalence between local minimum points and KKT points within a certain region. Extensive numerical experiments on both simulated and real data validate the superior performance of the presented method in clustering accuracy and feature selection.
☆ Automatic Calibration of Mesoscopic Traffic Simulation Using Vehicle Trajectory Data
Traffic simulation models have long been popular in modern traffic planning and operation applications. Efficient calibration of simulation models is usually a crucial step in a simulation study. However, traditional calibration procedures are often resource-intensive and time-consuming, limiting the broader adoption of simulation models. In this study, a vehicle trajectory-based automatic calibration framework for mesoscopic traffic simulation is proposed. The framework incorporates behavior models from both the demand and the supply sides of a traffic network. An optimization-based network flow estimation model is designed for demand and route choice calibration. Dimensionality reduction techniques are incorporated to define the zoning system and the path choice set. A stochastic approximation model is established for capacity and driving behavior parameter calibration. The applicability and performance of the calibration framework are demonstrated through a case study for the City of Birmingham network in Michigan.
☆ Packing Dijoins in Weighted Chordal Digraphs
In a digraph, a dicut is a cut where all the arcs cross in one direction. A dijoin is a subset of arcs that intersects every dicut. Edmonds and Giles conjectured that in a weighted digraph, the minimum weight of a dicut is equal to the maximum size of a packing of dijoins. This has been disproved. However, the unweighted version conjectured by Woodall remains open. We prove that the Edmonds-Giles conjecture is true if the underlying undirected graph is chordal. We also give a strongly polynomial time algorithm to construct such a packing.
♻ ☆ Reducing real-time complexity via sub-control Lyapunov functions: from theory to experiments
The techniques to design control Lyapunov functions (CLF), along with a proper stabilizing feedback, possibly in the presence of constraints, often provide control laws that are too complex for proper implementation online, especially when an optimization problem is involved. In this work, we show how to acquire an alternative, computationally attractive feedback. Given a nominal CLF and a nominal state feedback, we say that a different positive definite function is a Sub-control Lyapunov function (SCLF) if its Lyapunov derivative is negative-definite and bounded above by the Lyapunov derivative of the nominal function with the nominal control. It turns out that if we consider a family of basis functions, then a SCLF can be computed by linear programming, with an infinite number of constraints. The idea is that although the offline computational burden to achieve the new controller and solve the linear program is considerable, the online computational burden is drastically reduced. Comprehensive simulations and experiments on drone control are conducted to demonstrate the effectiveness of the study.
♻ ☆ A geodesic convexity-like structure for the polar decomposition of a square matrix
We make a full landscape analysis of the (generally non-convex) orthogonal Procrustes problem. This problem is equivalent to computing the polar factor of a square matrix. We reveal a convexity-like structure, which explains the already established tractability of the problem and show that gradient descent in the orthogonal group computes the polar factor of a square matrix with linear convergence rate if the matrix is invertible and with an algebraic one if the matrix is singular. These results are similar to the ones of Alimisis and Vandereycken (2024) for the symmetric eigenvalue problem.
♻ ☆ Learning rheological parameters of non-Newtonian fluids from velocimetry data
We solve a Bayesian inverse Navier-Stokes (N-S) problem that assimilates velocimetry data in order to jointly reconstruct the flow field and learn the unknown N-S parameters. By incorporating a Carreau shear-thinning viscosity model into the N-S problem, we devise an algorithm that learns the most likely Carreau parameters of a shear-thinning fluid, and estimates their uncertainties, from velocimetry data alone. We then conduct a flow-MRI experiment to obtain velocimetry data of an axisymmetric laminar jet through an idealised medical device (FDA nozzle) for a blood analogue fluid. We show that the algorithm can successfully reconstruct the flow field by learning the most likely Carreau parameters, and that the learned parameters are in very good agreement with rheometry measurements. The algorithm accepts any algebraic effective viscosity model, as long as the model is differentiable, and it can be extended to more complicated non-Newtonian fluids (e.g. Oldroyd-B fluid) if a viscoelastic model is incorporated into the N-S problem.
♻ ☆ Generalized convergence of the deep BSDE method: a step towards fully-coupled FBSDEs and applications in stochastic control
We are concerned with high-dimensional coupled FBSDE systems approximated by the deep BSDE method of Han et al. (2018). It was shown by Han and Long (2020) that the errors induced by the deep BSDE method admit a posteriori estimate depending on the loss function, whenever the backward equation only couples into the forward diffusion through the Y process. We generalize this result to drift coefficients that may also depend on Z, and give sufficient conditions for convergence under standard assumptions. The resulting conditions are directly verifiable for any equation. Consequently, unlike in earlier theory, our convergence analysis enables the treatment of FBSDEs stemming from stochastic optimal control problems. In particular, we provide a theoretical justification for the non-convergence of the deep BSDE method observed in recent literature, and present direct guidelines for when convergence can be guaranteed in practice. Our theoretical findings are supported by several numerical experiments in high-dimensional settings.
comment: 25 pages, 3 figures, 1 table
♻ ☆ Optimization Hyper-parameter Laws for Large Language Models
Large Language Models have driven significant AI advancements, yet their training is resource-intensive and highly sensitive to hyper-parameter selection. While scaling laws provide valuable guidance on model size and data requirements, they fall short in choosing dynamic hyper-parameters, such as learning-rate (LR) schedules, that evolve during training. To bridge this gap, we present Optimization Hyper-parameter Laws (Opt-Laws), a framework that effectively captures the relationship between hyper-parameters and training outcomes, enabling the pre-selection of potential optimal schedules. Grounded in stochastic differential equations, Opt-Laws introduce novel mathematical interpretability and offer a robust theoretical foundation for some popular LR schedules. Our extensive validation across diverse model sizes and data scales demonstrates Opt-Laws' ability to accurately predict training loss and identify optimal LR schedule candidates in pre-training, continual training, and fine-tuning scenarios. This approach significantly reduces computational costs while enhancing overall model performance.
♻ ☆ Gradient Equilibrium in Online Learning: Theory and Applications
We present a new perspective on online learning that we refer to as gradient equilibrium: a sequence of iterates achieves gradient equilibrium if the average of gradients of losses along the sequence converges to zero. In general, this condition is not implied by nor implies sublinear regret. It turns out that gradient equilibrium is achievable by standard online learning methods such as gradient descent and mirror descent with constant step sizes (rather than decaying step sizes, as is usually required for no regret). Further, as we show through examples, gradient equilibrium translates into an interpretable and meaningful property in online prediction problems spanning regression, classification, quantile estimation, and others. Notably, we show that the gradient equilibrium framework can be used to develop a debiasing scheme for black-box predictions under arbitrary distribution shift, based on simple post hoc online descent updates. We also show that post hoc gradient updates can be used to calibrate predicted quantiles under distribution shift, and that the framework leads to unbiased Elo scores for pairwise preference prediction.
comment: Code available at https://github.com/aangelopoulos/gradient-equilibrium/
Computer Vision and Pattern Recognition 59
☆ Enhancing Brain Tumor Segmentation Using Channel Attention and Transfer learning
Accurate and efficient segmentation of brain tumors is critical for diagnosis, treatment planning, and monitoring in clinical practice. In this study, we present an enhanced ResUNet architecture for automatic brain tumor segmentation, integrating an EfficientNetB0 encoder, a channel attention mechanism, and an Atrous Spatial Pyramid Pooling (ASPP) module. The EfficientNetB0 encoder leverages pre-trained features to improve feature extraction efficiency, while the channel attention mechanism enhances the model's focus on tumor-relevant features. ASPP enables multiscale contextual learning, crucial for handling tumors of varying sizes and shapes. The proposed model was evaluated on two benchmark datasets: TCGA LGG and BraTS 2020. Experimental results demonstrate that our method consistently outperforms the baseline ResUNet and its EfficientNet variant, achieving Dice coefficients of 0.903 and 0.851 and HD95 scores of 9.43 and 3.54 for whole tumor and tumor core regions on the BraTS 2020 dataset, respectively. compared with state-of-the-art methods, our approach shows competitive performance, particularly in whole tumor and tumor core segmentation. These results indicate that combining a powerful encoder with attention mechanisms and ASPP can significantly enhance brain tumor segmentation performance. The proposed approach holds promise for further optimization and application in other medical image segmentation tasks.
comment: 13 pages, 1 figure
☆ ProKeR: A Kernel Perspective on Few-Shot Adaptation of Large Vision-Language Models
The growing popularity of Contrastive Language-Image Pretraining (CLIP) has led to its widespread application in various visual downstream tasks. To enhance CLIP's effectiveness and versatility, efficient few-shot adaptation techniques have been widely adopted. Among these approaches, training-free methods, particularly caching methods exemplified by Tip-Adapter, have gained attention for their lightweight adaptation without the need for additional fine-tuning. In this paper, we revisit Tip-Adapter from a kernel perspective, showing that caching methods function as local adapters and are connected to a well-established kernel literature. Drawing on this insight, we offer a theoretical understanding of how these methods operate and suggest multiple avenues for enhancing the Tip-Adapter baseline. Notably, our analysis shows the importance of incorporating global information in local adapters. Therefore, we subsequently propose a global method that learns a proximal regularizer in a reproducing kernel Hilbert space (RKHS) using CLIP as a base learner. Our method, which we call ProKeR (Proximal Kernel ridge Regression), has a closed form solution and achieves state-of-the-art performances across 11 datasets in the standard few-shot adaptation benchmark.
comment: Code available at https://ybendou.github.io/ProKeR
☆ Counteracting temporal attacks in Video Copy Detection
Video Copy Detection (VCD) plays a crucial role in copyright protection and content verification by identifying duplicates and near-duplicates in large-scale video databases. The META AI Challenge on video copy detection provided a benchmark for evaluating state-of-the-art methods, with the Dual-level detection approach emerging as a winning solution. This method integrates Video Editing Detection and Frame Scene Detection to handle adversarial transformations and large datasets efficiently. However, our analysis reveals significant limitations in the VED component, particularly in its ability to handle exact copies. Moreover, Dual-level detection shows vulnerability to temporal attacks. To address it, we propose an improved frame selection strategy based on local maxima of interframe differences, which enhances robustness against adversarial temporal modifications while significantly reducing computational overhead. Our method achieves an increase of 1.4 to 5.8 times in efficiency over the standard 1 FPS approach. Compared to Dual-level detection method, our approach maintains comparable micro-average precision ($\mu$AP) while also demonstrating improved robustness against temporal attacks. Given 56\% reduced representation size and the inference time of more than 2 times faster, our approach is more suitable to real-world resource restriction.
comment: 14 pages, 5 figures, 4 tables
☆ DeepEyeNet: Adaptive Genetic Bayesian Algorithm Based Hybrid ConvNeXtTiny Framework For Multi-Feature Glaucoma Eye Diagnosis SC
Glaucoma is a leading cause of irreversible blindness worldwide, emphasizing the critical need for early detection and intervention. In this paper, we present DeepEyeNet, a novel and comprehensive framework for automated glaucoma detection using retinal fundus images. Our approach integrates advanced image standardization through dynamic thresholding, precise optic disc and cup segmentation via a U-Net model, and comprehensive feature extraction encompassing anatomical and texture-based features. We employ a customized ConvNeXtTiny based Convolutional Neural Network (CNN) classifier, optimized using our Adaptive Genetic Bayesian Optimization (AGBO) algorithm. This proposed AGBO algorithm balances exploration and exploitation in hyperparameter tuning, leading to significant performance improvements. Experimental results on the EyePACS-AIROGS-light-V2 dataset demonstrate that DeepEyeNet achieves a high classification accuracy of 95.84%, which was possible due to the effective optimization provided by the novel AGBO algorithm, outperforming existing methods. The integration of sophisticated image processing techniques, deep learning, and optimized hyperparameter tuning through our proposed AGBO algorithm positions DeepEyeNet as a promising tool for early glaucoma detection in clinical settings.
comment: 7 pages, 12 figures, 3 Tables, Accepted by 15th IEEE Symposium Series on Computational Intelligence (SSCI) 2025, Trondheim, Norway, Europe
☆ LiFT: Lightweight, FPGA-tailored 3D object detection based on LiDAR data
This paper presents LiFT, a lightweight, fully quantized 3D object detection algorithm for LiDAR data, optimized for real-time inference on FPGA platforms. Through an in-depth analysis of FPGA-specific limitations, we identify a set of FPGA-induced constraints that shape the algorithm's design. These include a computational complexity limit of 30 GMACs (billion multiply-accumulate operations), INT8 quantization for weights and activations, 2D cell-based processing instead of 3D voxels, and minimal use of skip connections. To meet these constraints while maximizing performance, LiFT combines novel mechanisms with state-of-the-art techniques such as reparameterizable convolutions and fully sparse architecture. Key innovations include the Dual-bound Pillar Feature Net, which boosts performance without increasing complexity, and an efficient scheme for INT8 quantization of input features. With a computational cost of just 20.73 GMACs, LiFT stands out as one of the few algorithms targeting minimal-complexity 3D object detection. Among comparable methods, LiFT ranks first, achieving an mAP of 51.84% and an NDS of 61.01% on the challenging NuScenes validation dataset. The code will be available at https://github.com/vision-agh/lift.
comment: The paper has been accepted for the DASIP 2025 workshop in conjunction with the HiPEAC 2025 conference in Barcelona
☆ Efficient Frame Extraction: A Novel Approach Through Frame Similarity and Surgical Tool Tracking for Video Segmentation
The interest in leveraging Artificial Intelligence (AI) for surgical procedures to automate analysis has witnessed a significant surge in recent years. One of the primary tools for recording surgical procedures and conducting subsequent analyses, such as performance assessment, is through videos. However, these operative videos tend to be notably lengthy compared to other fields, spanning from thirty minutes to several hours, which poses a challenge for AI models to effectively learn from them. Despite this challenge, the foreseeable increase in the volume of such videos in the near future necessitates the development and implementation of innovative techniques to tackle this issue effectively. In this article, we propose a novel technique called Kinematics Adaptive Frame Recognition (KAFR) that can efficiently eliminate redundant frames to reduce dataset size and computation time while retaining useful frames to improve accuracy. Specifically, we compute the similarity between consecutive frames by tracking the movement of surgical tools. Our approach follows these steps: i) Tracking phase: a YOLOv8 model is utilized to detect tools presented in the scene, ii) Similarity phase: Similarities between consecutive frames are computed by estimating variation in the spatial positions and velocities of the tools, iii) Classification phase: A X3D CNN is trained to classify segmentation. We evaluate the effectiveness of our approach by analyzing datasets obtained through retrospective reviews of cases at two referral centers. The Gastrojejunostomy (GJ) dataset covers procedures performed between 2017 to 2021, while the Pancreaticojejunostomy (PJ) dataset spans from 2011 to 2022 at the same centers. By adaptively selecting relevant frames, we achieve a tenfold reduction in the number of frames while improving accuracy by 4.32% (from 0.749 to 0.7814).
comment: 17
☆ CLOFAI: A Dataset of Real And Fake Image Classification Tasks for Continual Learning
The rapid advancement of generative AI models capable of creating realistic media has led to a need for classifiers that can accurately distinguish between genuine and artificially-generated images. A significant challenge for these classifiers emerges when they encounter images from generative models that are not represented in their training data, usually resulting in diminished performance. A typical approach is to periodically update the classifier's training data with images from the new generative models then retrain the classifier on the updated dataset. However, in some real-life scenarios, storage, computational, or privacy constraints render this approach impractical. Additionally, models used in security applications may be required to rapidly adapt. In these circumstances, continual learning provides a promising alternative, as the classifier can be updated without retraining on the entire dataset. In this paper, we introduce a new dataset called CLOFAI (Continual Learning On Fake and Authentic Images), which takes the form of a domain-incremental image classification problem. Moreover, we showcase the applicability of this dataset as a benchmark for evaluating continual learning methodologies. In doing this, we set a baseline on our novel dataset using three foundational continual learning methods -- EWC, GEM, and Experience Replay -- and find that EWC performs poorly, while GEM and Experience Replay show promise, performing significantly better than a Naive baseline. The dataset and code to run the experiments can be accessed from the following GitHub repository: https://github.com/Will-Doherty/CLOFAI.
☆ Advanced technology in railway track monitoring using the GPR Technique: A Review
Subsurface evaluation of railway tracks is crucial for safe operation, as it allows for the early detection and remediation of potential structural weaknesses or defects that could lead to accidents or derailments. Ground Penetrating Radar (GPR) is an electromagnetic survey technique as advanced non-destructive technology (NDT) that can be used to monitor railway tracks. This technology is well-suited for railway applications due to the sub-layered composition of the track, which includes ties, ballast, sub-ballast, and subgrade regions. It can detect defects such as ballast pockets, fouled ballast, poor drainage, and subgrade settlement. The paper reviews recent works on advanced technology and interpretations of GPR data collected for different layers. Further, this paper demonstrates the current techniques for using synthetic modeling to calibrate real-world GPR data, enhancing accuracy in identifying subsurface features like ballast conditions and structural anomalies and applying various algorithms to refine GPR data analysis. These include Support Vector Machine (SVM) for classifying railway ballast types, Fuzzy C-means, and Generalized Regression Neural Networks for high-accuracy defect classification. Deep learning techniques, particularly Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) are also highlighted for their effectiveness in recognizing patterns associated with defects in GPR images. The article specifically focuses on the development of a Convolutional Recurrent Neural Network (CRNN) model, which combines CNN and RNN architectures for efficient processing of GPR data. This model demonstrates enhanced detection capabilities and faster processing compared to traditional object detection models like Faster R-CNN.
comment: 2nd Canadian & Cold Regions Rail Research Conference 2024 (CCRC 2024)
☆ Rethinking Pseudo-Label Guided Learning for Weakly Supervised Temporal Action Localization from the Perspective of Noise Correction
Pseudo-label learning methods have been widely applied in weakly-supervised temporal action localization. Existing works directly utilize weakly-supervised base model to generate instance-level pseudo-labels for training the fully-supervised detection head. We argue that the noise in pseudo-labels would interfere with the learning of fully-supervised detection head, leading to significant performance leakage. Issues with noisy labels include:(1) inaccurate boundary localization; (2) undetected short action clips; (3) multiple adjacent segments incorrectly detected as one segment. To target these issues, we introduce a two-stage noisy label learning strategy to harness every potential useful signal in noisy labels. First, we propose a frame-level pseudo-label generation model with a context-aware denoising algorithm to refine the boundaries. Second, we introduce an online-revised teacher-student framework with a missing instance compensation module and an ambiguous instance correction module to solve the short-action-missing and many-to-one problems. Besides, we apply a high-quality pseudo-label mining loss in our online-revised teacher-student framework to add different weights to the noisy labels to train more effectively. Our model outperforms the previous state-of-the-art method in detection accuracy and inference speed greatly upon the THUMOS14 and ActivityNet v1.2 benchmarks.
☆ RDG-GS: Relative Depth Guidance with Gaussian Splatting for Real-time Sparse-View 3D Rendering
Efficiently synthesizing novel views from sparse inputs while maintaining accuracy remains a critical challenge in 3D reconstruction. While advanced techniques like radiance fields and 3D Gaussian Splatting achieve rendering quality and impressive efficiency with dense view inputs, they suffer from significant geometric reconstruction errors when applied to sparse input views. Moreover, although recent methods leverage monocular depth estimation to enhance geometric learning, their dependence on single-view estimated depth often leads to view inconsistency issues across different viewpoints. Consequently, this reliance on absolute depth can introduce inaccuracies in geometric information, ultimately compromising the quality of scene reconstruction with Gaussian splats. In this paper, we present RDG-GS, a novel sparse-view 3D rendering framework with Relative Depth Guidance based on 3D Gaussian Splatting. The core innovation lies in utilizing relative depth guidance to refine the Gaussian field, steering it towards view-consistent spatial geometric representations, thereby enabling the reconstruction of accurate geometric structures and capturing intricate textures. First, we devise refined depth priors to rectify the coarse estimated depth and insert global and fine-grained scene information to regular Gaussians. Building on this, to address spatial geometric inaccuracies from absolute depth, we propose relative depth guidance by optimizing the similarity between spatially correlated patches of depth and images. Additionally, we also directly deal with the sparse areas challenging to converge by the adaptive sampling for quick densification. Across extensive experiments on Mip-NeRF360, LLFF, DTU, and Blender, RDG-GS demonstrates state-of-the-art rendering quality and efficiency, making a significant advancement for real-world application.
comment: 24 pages, 12 figures
☆ Unit Region Encoding: A Unified and Compact Geometry-aware Representation for Floorplan Applications
We present the Unit Region Encoding of floorplans, which is a unified and compact geometry-aware encoding representation for various applications, ranging from interior space planning, floorplan metric learning to floorplan generation tasks. The floorplans are represented as the latent encodings on a set of boundary-adaptive unit region partition based on the clustering of the proposed geometry-aware density map. The latent encodings are extracted by a trained network (URE-Net) from the input dense density map and other available semantic maps. Compared to the over-segmented rasterized images and the room-level graph structures, our representation can be flexibly adapted to different applications with the sliced unit regions while achieving higher accuracy performance and better visual quality. We conduct a variety of experiments and compare to the state-of-the-art methods on the aforementioned applications to validate the superiority of our representation, as well as extensive ablation studies to demonstrate the effect of our slicing choices.
☆ Reproducibility review of "Why Not Other Classes": Towards Class-Contrastive Back-Propagation Explanations
"Why Not Other Classes?": Towards Class-Contrastive Back-Propagation Explanations (Wang & Wang, 2022) provides a method for contrastively explaining why a certain class in a neural network image classifier is chosen above others. This method consists of using back-propagation-based explanation methods from after the softmax layer rather than before. Our work consists of reproducing the work in the original paper. We also provide extensions to the paper by evaluating the method on XGradCAM, FullGrad, and Vision Transformers to evaluate its generalization capabilities. The reproductions show similar results as the original paper, with the only difference being the visualization of heatmaps which could not be reproduced to look similar. The generalization seems to be generally good, with implementations working for Vision Transformers and alternative back-propagation methods. We also show that the original paper suffers from issues such as a lack of detail in the method and an erroneous equation which makes reproducibility difficult. To remedy this we provide an open-source repository containing all code used for this project.
☆ Leveraging counterfactual concepts for debugging and improving CNN model performance
Counterfactual explanation methods have recently received significant attention for explaining CNN-based image classifiers due to their ability to provide easily understandable explanations that align more closely with human reasoning. However, limited attention has been given to utilizing explainability methods to improve model performance. In this paper, we propose to leverage counterfactual concepts aiming to enhance the performance of CNN models in image classification tasks. Our proposed approach utilizes counterfactual reasoning to identify crucial filters used in the decision-making process. Following this, we perform model retraining through the design of a novel methodology and loss functions that encourage the activation of class-relevant important filters and discourage the activation of irrelevant filters for each class. This process effectively minimizes the deviation of activation patterns of local predictions and the global activation patterns of their respective inferred classes. By incorporating counterfactual explanations, we validate unseen model predictions and identify misclassifications. The proposed methodology provides insights into potential weaknesses and biases in the model's learning process, enabling targeted improvements and enhanced performance. Experimental results on publicly available datasets have demonstrated an improvement of 1-2\%, validating the effectiveness of the approach.
comment: This manuscript is currently under consideration for publication in Pattern Recognition Letters
☆ Refinement Module based on Parse Graph of Feature Map for Human Pose Estimation
Parse graphs of the human body can be obtained in the human brain to help humans complete the human pose estimation (HPE). It contains a hierarchical structure, like a tree structure, and context relations among nodes. Many researchers pre-design the parse graph of body structure, and then design framework for HPE. However, these frameworks are difficulty adapting when encountering situations that differ from the preset human structure. Different from them, we regard the feature map as a whole, similarly to human body, so the feature map can be optimized based on parse graphs and each node feature is learned implicitly instead of explicitly, which means it can flexibly respond to different human body structure. In this paper, we design the Refinement Module based on the Parse Graph of feature map (RMPG), which includes two stages: top-down decomposition and bottom-up combination. In the top-down decomposition stage, the feature map is decomposed into multiple sub-feature maps along the channel and their context relations are calculated to obtain their respective context information. In the bottom-up combination stage, the sub-feature maps and their context information are combined to obtain refined sub-feature maps, and then these refined sub-feature maps are concatenated to obtain the refined feature map. Additionally ,we design a top-down framework by using multiple RMPG modules for HPE, some of which are supervised to obtain context relations among body parts. Our framework achieves excellent results on the COCO keypoint detection, CrowdPose and MPII human pose datasets. More importantly, our experiments also demonstrate the effectiveness of RMPG on different methods, including SimpleBaselines, Hourglass, and ViTPose.
☆ Enhancing Sample Utilization in Noise-Robust Deep Metric Learning With Subgroup-Based Positive-Pair Selection
The existence of noisy labels in real-world data negatively impacts the performance of deep learning models. Although much research effort has been devoted to improving the robustness towards noisy labels in classification tasks, the problem of noisy labels in deep metric learning (DML) remains under-explored. Existing noisy label learning methods designed for DML mainly discard suspicious noisy samples, resulting in a waste of the training data. To address this issue, we propose a noise-robust DML framework with SubGroup-based Positive-pair Selection (SGPS), which constructs reliable positive pairs for noisy samples to enhance the sample utilization. Specifically, SGPS first effectively identifies clean and noisy samples by a probability-based clean sample selectionstrategy. To further utilize the remaining noisy samples, we discover their potential similar samples based on the subgroup information given by a subgroup generation module and then aggregate them into informative positive prototypes for each noisy sample via a positive prototype generation module. Afterward, a new contrastive loss is tailored for the noisy samples with their selected positive pairs. SGPS can be easily integrated into the training process of existing pair-wise DML tasks, like image retrieval and face recognition. Extensive experiments on multiple synthetic and real-world large-scale label noise datasets demonstrate the effectiveness of our proposed method. Without any bells and whistles, our SGPS framework outperforms the state-of-the-art noisy label DML methods. Code is available at \url{https://github.com/smuelpeng/SGPS-NoiseFreeDML}.
comment: arXiv admin note: substantial text overlap with arXiv:2108.01431, arXiv:2103.16047 by other authors
☆ Learning with Open-world Noisy Data via Class-independent Margin in Dual Representation Space AAAI 2025
Learning with Noisy Labels (LNL) aims to improve the model generalization when facing data with noisy labels, and existing methods generally assume that noisy labels come from known classes, called closed-set noise. However, in real-world scenarios, noisy labels from similar unknown classes, i.e., open-set noise, may occur during the training and inference stage. Such open-world noisy labels may significantly impact the performance of LNL methods. In this study, we propose a novel dual-space joint learning method to robustly handle the open-world noise. To mitigate model overfitting on closed-set and open-set noises, a dual representation space is constructed by two networks. One is a projection network that learns shared representations in the prototype space, while the other is a One-Vs-All (OVA) network that makes predictions using unique semantic representations in the class-independent space. Then, bi-level contrastive learning and consistency regularization are introduced in two spaces to enhance the detection capability for data with unknown classes. To benefit from the memorization effects across different types of samples, class-independent margin criteria are designed for sample identification, which selects clean samples, weights closed-set noise, and filters open-set noise effectively. Extensive experiments demonstrate that our method outperforms the state-of-the-art methods and achieves an average accuracy improvement of 4.55\% and an AUROC improvement of 6.17\% on CIFAR80N.
comment: 7 pages of main text, 4 pages of appendix, accepted to AAAI 2025
☆ BF-STVSR: B-Splines and Fourier-Best Friends for High Fidelity Spatial-Temporal Video Super-Resolution
Enhancing low-resolution, low-frame-rate videos to high-resolution, high-frame-rate quality is essential for a seamless user experience, motivating advancements in Continuous Spatial-Temporal Video Super Resolution (C-STVSR). While prior methods employ Implicit Neural Representation (INR) for continuous encoding, they often struggle to capture the complexity of video data, relying on simple coordinate concatenation and pre-trained optical flow network for motion representation. Interestingly, we find that adding position encoding, contrary to common observations, does not improve-and even degrade performance. This issue becomes particularly pronounced when combined with pre-trained optical flow networks, which can limit the model's flexibility. To address these issues, we propose BF-STVSR, a C-STVSR framework with two key modules tailored to better represent spatial and temporal characteristics of video: 1) B-spline Mapper for smooth temporal interpolation, and 2) Fourier Mapper for capturing dominant spatial frequencies. Our approach achieves state-of-the-art PSNR and SSIM performance, showing enhanced spatial details and natural temporal consistency.
comment: 11pages, 5 figures
☆ Tracking Mouse from Incomplete Body-Part Observations and Deep-Learned Deformable-Mouse Model Motion-Track Constraint for Behavior Analysis
Tracking mouse body parts in video is often incomplete due to occlusions such that - e.g. - subsequent action and behavior analysis is impeded. In this conceptual work, videos from several perspectives are integrated via global exterior camera orientation; body part positions are estimated by 3D triangulation and bundle adjustment. Consistency of overall 3D track reconstruction is achieved by introduction of a 3D mouse model, deep-learned body part movements, and global motion-track smoothness constraint. The resulting 3D body and body part track estimates are substantially more complete than the original single-frame-based body part detection, therefore, allowing improved animal behavior analysis.
comment: 10 pages
☆ Car-GS: Addressing Reflective and Transparent Surface Challenges in 3D Car Reconstruction
3D car modeling is crucial for applications in autonomous driving systems, virtual and augmented reality, and gaming. However, due to the distinctive properties of cars, such as highly reflective and transparent surface materials, existing methods often struggle to achieve accurate 3D car reconstruction.To address these limitations, we propose Car-GS, a novel approach designed to mitigate the effects of specular highlights and the coupling of RGB and geometry in 3D geometric and shading reconstruction (3DGS). Our method incorporates three key innovations: First, we introduce view-dependent Gaussian primitives to effectively model surface reflections. Second, we identify the limitations of using a shared opacity parameter for both image rendering and geometric attributes when modeling transparent objects. To overcome this, we assign a learnable geometry-specific opacity to each 2D Gaussian primitive, dedicated solely to rendering depth and normals. Third, we observe that reconstruction errors are most prominent when the camera view is nearly orthogonal to glass surfaces. To address this issue, we develop a quality-aware supervision module that adaptively leverages normal priors from a pre-trained large-scale normal model.Experimental results demonstrate that Car-GS achieves precise reconstruction of car surfaces and significantly outperforms prior methods. The project page is available at https://lcc815.github.io/Car-GS.
☆ Transfer Learning Strategies for Pathological Foundation Models: A Systematic Evaluation in Brain Tumor Classification
Foundation models pretrained on large-scale pathology datasets have shown promising results across various diagnostic tasks. Here, we present a systematic evaluation of transfer learning strategies for brain tumor classification using these models. We analyzed 252 cases comprising five major tumor types: glioblastoma, astrocytoma, oligodendroglioma, primary central nervous system lymphoma, and metastatic tumors. Comparing state-of-the-art foundation models with conventional approaches, we found that foundation models demonstrated robust classification performance with as few as 10 patches per case, challenging the traditional assumption that extensive per-case image sampling is necessary. Furthermore, our evaluation revealed that simple transfer learning strategies like linear probing were sufficient, while fine-tuning often degraded model performance. These findings suggest a paradigm shift from extensive data collection to efficient utilization of pretrained features, providing practical implications for implementing AI-assisted diagnosis in clinical pathology.
comment: 25 pages, 7 figures
☆ HFGCN:Hypergraph Fusion Graph Convolutional Networks for Skeleton-Based Action Recognition
In recent years, action recognition has received much attention and wide application due to its important role in video understanding. Most of the researches on action recognition methods focused on improving the performance via various deep learning methods rather than the classification of skeleton points. The topological modeling between skeleton points and body parts was seldom considered. Although some studies have used a data-driven approach to classify the topology of the skeleton point, the nature of the skeleton point in terms of kinematics has not been taken into consideration. Therefore, in this paper, we draw on the theory of kinematics to adapt the topological relations of the skeleton point and propose a topological relation classification based on body parts and distance from core of body. To synthesize these topological relations for action recognition, we propose a novel Hypergraph Fusion Graph Convolutional Network (HFGCN). In particular, the proposed model is able to focus on the human skeleton points and the different body parts simultaneously, and thus construct the topology, which improves the recognition accuracy obviously. We use a hypergraph to represent the categorical relationships of these skeleton points and incorporate the hypergraph into a graph convolution network to model the higher-order relationships among the skeleton points and enhance the feature representation of the network. In addition, our proposed hypergraph attention module and hypergraph graph convolution module optimize topology modeling in temporal and channel dimensions, respectively, to further enhance the feature representation of the network. We conducted extensive experiments on three widely used datasets.The results validate that our proposed method can achieve the best performance when compared with the state-of-the-art skeleton-based methods.
☆ Self-CephaloNet: A Two-stage Novel Framework using Operational Neural Network for Cephalometric Analysis
Cephalometric analysis is essential for the diagnosis and treatment planning of orthodontics. In lateral cephalograms, however, the manual detection of anatomical landmarks is a time-consuming procedure. Deep learning solutions hold the potential to address the time constraints associated with certain tasks; however, concerns regarding their performance have been observed. To address this critical issue, we proposed an end-to-end cascaded deep learning framework (Self-CepahloNet) for the task, which demonstrated benchmark performance over the ISBI 2015 dataset in predicting 19 dental landmarks. Due to their adaptive nodal capabilities, Self-ONN (self-operational neural networks) demonstrate superior learning performance for complex feature spaces over conventional convolutional neural networks. To leverage this attribute, we introduced a novel self-bottleneck in the HRNetV2 (High Resolution Network) backbone, which has exhibited benchmark performance on the ISBI 2015 dataset for the dental landmark detection task. Our first-stage results surpassed previous studies, showcasing the efficacy of our singular end-to-end deep learning model, which achieved a remarkable 70.95% success rate in detecting cephalometric landmarks within a 2mm range for the Test1 and Test2 datasets. Moreover, the second stage significantly improved overall performance, yielding an impressive 82.25% average success rate for the datasets above within the same 2mm distance. Furthermore, external validation was conducted using the PKU cephalogram dataset. Our model demonstrated a commendable success rate of 75.95% within the 2mm range.
comment: The paper has been accepted for publication in Neural Computing and Applications
☆ SMARTe-VR: Student Monitoring and Adaptive Response Technology for e-learning in Virtual Reality AAAI 2025
This work introduces SMARTe-VR, a platform for student monitoring in an immersive virtual reality environment designed for online education. SMARTe-VR is aimed to gather data for adaptive learning, focusing on facial biometrics and learning metadata. The platform allows instructors to create tailored learning sessions with video lectures, featuring an interface with an Auto QA system to evaluate understanding, interaction tools (e.g., textbook highlighting and lecture tagging), and real-time feedback. Additionally, we release a dataset containing 5 research challenges with data from 10 users in VR-based TOEIC sessions. This dataset, spanning over 25 hours, includes facial features, learning metadata, 450 responses, question difficulty levels, concept tags, and understanding labels. Alongside the database, we present preliminary experiments using Item Response Theory models, adapted for understanding detection using facial features. Two architectures were explored: a Temporal Convolutional Network for local features and a Multilayer Perceptron for global features.
comment: Published in the Workshop on Artificial Intelligence for Education (AI4EDU) at AAAI 2025
☆ AI Based Font Pair Suggestion Modelling For Graphic Design
One of the key challenges of AI generated designs in Microsoft Designer is selecting the most contextually relevant and novel fonts for the design suggestions. Previous efforts involved manually mapping design intent to fonts. Though this was high quality, this method does not scale for a large number of fonts (3000+) and numerous user intents for graphic design. In this work we create font visual embeddings, a font stroke width algorithm, a font category to font mapping dataset, an LLM-based category utilization description and a lightweight, low latency knowledge-distilled mini language model (Mini LM V2) to recommend multiple pairs of contextual heading and subheading fonts for beautiful and intuitive designs. We also utilize a weighted scoring mechanism, nearest neighbor approach and stratified sampling to rank the font pairs and bring novelty to the predictions.
comment: In the Microsoft Journal of Applied Research (MSJAR), Volume 21, July 2024
☆ Advancing General Multimodal Capability of Vision-language Models with Pyramid-descent Visual Position Encoding
Vision-language Models (VLMs) have shown remarkable capabilities in advancing general artificial intelligence, yet the irrational encoding of visual positions persists in inhibiting the models' comprehensive perception performance across different levels of granularity. In this work, we propose Pyramid-descent Visual Position Encoding (PyPE), a novel approach designed to enhance the perception of visual tokens within VLMs. By assigning visual position indexes from the periphery to the center and expanding the central receptive field incrementally, PyPE addresses the limitations of traditional raster-scan methods and mitigates the long-term decay effects induced by Rotary Position Embedding (RoPE). Our method reduces the relative distance between interrelated visual elements and instruction tokens, promoting a more rational allocation of attention weights and allowing for a multi-granularity perception of visual elements and countering the over-reliance on anchor tokens. Extensive experimental evaluations demonstrate that PyPE consistently improves the general capabilities of VLMs across various sizes. Code is available at https://github.com/SakuraTroyChen/PyPE.
☆ DC-PCN: Point Cloud Completion Network with Dual-Codebook Guided Quantization AAAI25
Point cloud completion aims to reconstruct complete 3D shapes from partial 3D point clouds. With advancements in deep learning techniques, various methods for point cloud completion have been developed. Despite achieving encouraging results, a significant issue remains: these methods often overlook the variability in point clouds sampled from a single 3D object surface. This variability can lead to ambiguity and hinder the achievement of more precise completion results. Therefore, in this study, we introduce a novel point cloud completion network, namely Dual-Codebook Point Completion Network (DC-PCN), following an encder-decoder pipeline. The primary objective of DC-PCN is to formulate a singular representation of sampled point clouds originating from the same 3D surface. DC-PCN introduces a dual-codebook design to quantize point-cloud representations from a multilevel perspective. It consists of an encoder-codebook and a decoder-codebook, designed to capture distinct point cloud patterns at shallow and deep levels. Additionally, to enhance the information flow between these two codebooks, we devise an information exchange mechanism. This approach ensures that crucial features and patterns from both shallow and deep levels are effectively utilized for completion. Extensive experiments on the PCN, ShapeNet\_Part, and ShapeNet34 datasets demonstrate the state-of-the-art performance of our method.
comment: AAAI25 Accepted
☆ Rethinking Early-Fusion Strategies for Improved Multimodal Image Segmentation ICASSP 2025
RGB and thermal image fusion have great potential to exhibit improved semantic segmentation in low-illumination conditions. Existing methods typically employ a two-branch encoder framework for multimodal feature extraction and design complicated feature fusion strategies to achieve feature extraction and fusion for multimodal semantic segmentation. However, these methods require massive parameter updates and computational effort during the feature extraction and fusion. To address this issue, we propose a novel multimodal fusion network (EFNet) based on an early fusion strategy and a simple but effective feature clustering for training efficient RGB-T semantic segmentation. In addition, we also propose a lightweight and efficient multi-scale feature aggregation decoder based on Euclidean distance. We validate the effectiveness of our method on different datasets and outperform previous state-of-the-art methods with lower parameters and computation.
comment: Accepted by ICASSP 2025
☆ MARIO: A Mixed Annotation Framework For Polyp Segmentation
Existing polyp segmentation models are limited by high labeling costs and the small size of datasets. Additionally, vast polyp datasets remain underutilized because these models typically rely on a single type of annotation. To address this dilemma, we introduce MARIO, a mixed supervision model designed to accommodate various annotation types, significantly expanding the range of usable data. MARIO learns from underutilized datasets by incorporating five forms of supervision: pixel-level, box-level, polygon-level, scribblelevel, and point-level. Each form of supervision is associated with a tailored loss that effectively leverages the supervision labels while minimizing the noise. This allows MARIO to move beyond the constraints of relying on a single annotation type. Furthermore, MARIO primarily utilizes dataset with weak and cheap annotations, reducing the dependence on large-scale, fully annotated ones. Experimental results across five benchmark datasets demonstrate that MARIO consistently outperforms existing methods, highlighting its efficacy in balancing trade-offs between different forms of supervision and maximizing polyp segmentation performance
comment: Accepted by IEEE ISBI 2025 4-page paper
☆ TSVC:Tripartite Learning with Semantic Variation Consistency for Robust Image-Text Retrieval AAAI 2025
Cross-modal retrieval maps data under different modality via semantic relevance. Existing approaches implicitly assume that data pairs are well-aligned and ignore the widely existing annotation noise, i.e., noisy correspondence (NC). Consequently, it inevitably causes performance degradation. Despite attempts that employ the co-teaching paradigm with identical architectures to provide distinct data perspectives, the differences between these architectures are primarily stemmed from random initialization. Thus, the model becomes increasingly homogeneous along with the training process. Consequently, the additional information brought by this paradigm is severely limited. In order to resolve this problem, we introduce a Tripartite learning with Semantic Variation Consistency (TSVC) for robust image-text retrieval. We design a tripartite cooperative learning mechanism comprising a Coordinator, a Master, and an Assistant model. The Coordinator distributes data, and the Assistant model supports the Master model's noisy label prediction with diverse data. Moreover, we introduce a soft label estimation method based on mutual information variation, which quantifies the noise in new samples and assigns corresponding soft labels. We also present a new loss function to enhance robustness and optimize training effectiveness. Extensive experiments on three widely used datasets demonstrate that, even at increasing noise ratios, TSVC exhibits significant advantages in retrieval accuracy and maintains stable training performance.
comment: This paper has been accepted to the Main Track of AAAI 2025. It contains 9 pages, 7 figures, and is relevant to the areas of cross-modal retrieval and machine learning. The work presents a novel approach in robust image-text retrieval using a tripartite learning framework
☆ Generative Physical AI in Vision: A Survey
Generative Artificial Intelligence (AI) has rapidly advanced the field of computer vision by enabling machines to create and interpret visual data with unprecedented sophistication. This transformation builds upon a foundation of generative models to produce realistic images, videos, and 3D or 4D content. Traditionally, generative models primarily focus on visual fidelity while often neglecting the physical plausibility of generated content. This gap limits their effectiveness in applications requiring adherence to real-world physical laws, such as robotics, autonomous systems, and scientific simulations. As generative AI evolves to increasingly integrate physical realism and dynamic simulation, its potential to function as a "world simulator" expands-enabling the modeling of interactions governed by physics and bridging the divide between virtual and physical realities. This survey systematically reviews this emerging field of physics-aware generative AI in computer vision, categorizing methods based on how they incorporate physical knowledge-either through explicit simulation or implicit learning. We analyze key paradigms, discuss evaluation protocols, and identify future research directions. By offering a comprehensive overview, this survey aims to help future developments in physically grounded generation for vision. The reviewed papers are summarized at https://github.com/BestJunYu/Awesome-Physics-aware-Generation.
☆ Decomposing and Fusing Intra- and Inter-Sensor Spatio-Temporal Signal for Multi-Sensor Wearable Human Activity Recognition
Wearable Human Activity Recognition (WHAR) is a prominent research area within ubiquitous computing. Multi-sensor synchronous measurement has proven to be more effective for WHAR than using a single sensor. However, existing WHAR methods use shared convolutional kernels for indiscriminate temporal feature extraction across each sensor variable, which fails to effectively capture spatio-temporal relationships of intra-sensor and inter-sensor variables. We propose the DecomposeWHAR model consisting of a decomposition phase and a fusion phase to better model the relationships between modality variables. The decomposition creates high-dimensional representations of each intra-sensor variable through the improved Depth Separable Convolution to capture local temporal features while preserving their unique characteristics. The fusion phase begins by capturing relationships between intra-sensor variables and fusing their features at both the channel and variable levels. Long-range temporal dependencies are modeled using the State Space Model (SSM), and later cross-sensor interactions are dynamically captured through a self-attention mechanism, highlighting inter-sensor spatial correlations. Our model demonstrates superior performance on three widely used WHAR datasets, significantly outperforming state-of-the-art models while maintaining acceptable computational efficiency. Our codes and supplementary materials are available at https://github.com/Anakin2555/DecomposeWHAR.
☆ Green Video Camouflaged Object Detection SC
Camouflaged object detection (COD) aims to distinguish hidden objects embedded in an environment highly similar to the object. Conventional video-based COD (VCOD) methods explicitly extract motion cues or employ complex deep learning networks to handle the temporal information, which is limited by high complexity and unstable performance. In this work, we propose a green VCOD method named GreenVCOD. Built upon a green ICOD method, GreenVCOD uses long- and short-term temporal neighborhoods (TN) to capture joint spatial/temporal context information for decision refinement. Experimental results show that GreenVCOD offers competitive performance compared to state-of-the-art VCOD benchmarks.
comment: Accepted to 2024 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)
☆ Know "No" Better: A Data-Driven Approach for Enhancing Negation Awareness in CLIP
While CLIP has significantly advanced multimodal understanding by bridging vision and language, the inability to grasp negation - such as failing to differentiate concepts like "parking" from "no parking" - poses substantial challenges. By analyzing the data used in the public CLIP model's pre-training, we posit this limitation stems from a lack of negation-inclusive data. To address this, we introduce data generation pipelines that employ a large language model (LLM) and a multimodal LLM to produce negation-inclusive captions. Fine-tuning CLIP with data generated from our pipelines, we develop NegationCLIP, which enhances negation awareness while preserving the generality. Moreover, to enable a comprehensive evaluation of negation understanding, we propose NegRefCOCOg-a benchmark tailored to test VLMs' ability to interpret negation across diverse expressions and positions within a sentence. Experiments on various CLIP architectures validate the effectiveness of our data generation pipelines in enhancing CLIP's ability to perceive negation accurately. Additionally, NegationCLIP's enhanced negation awareness has practical applications across various multimodal tasks, demonstrated by performance gains in text-to-image generation and referring image segmentation.
☆ Explainable Adversarial Attacks on Coarse-to-Fine Classifiers ICASSP 2025
Traditional adversarial attacks typically aim to alter the predicted labels of input images by generating perturbations that are imperceptible to the human eye. However, these approaches often lack explainability. Moreover, most existing work on adversarial attacks focuses on single-stage classifiers, but multi-stage classifiers are largely unexplored. In this paper, we introduce instance-based adversarial attacks for multi-stage classifiers, leveraging Layer-wise Relevance Propagation (LRP), which assigns relevance scores to pixels based on their influence on classification outcomes. Our approach generates explainable adversarial perturbations by utilizing LRP to identify and target key features critical for both coarse and fine-grained classifications. Unlike conventional attacks, our method not only induces misclassification but also enhances the interpretability of the model's behavior across classification stages, as demonstrated by experimental results.
comment: ICASSP 2025
☆ A Remote Sensing Image Change Detection Method Integrating Layer Exchange and Channel-Spatial Differences
Change detection in remote sensing imagery is a critical technique for Earth observation, primarily focusing on pixel-level segmentation of change regions between bi-temporal images. The essence of pixel-level change detection lies in determining whether corresponding pixels in bi-temporal images have changed. In deep learning, the spatial and channel dimensions of feature maps represent different information from the original images. In this study, we found that in change detection tasks, difference information can be computed not only from the spatial dimension of bi-temporal features but also from the channel dimension. Therefore, we designed the Channel-Spatial Difference Weighting (CSDW) module as an aggregation-distribution mechanism for bi-temporal features in change detection. This module enhances the sensitivity of the change detection model to difference features. Additionally, bi-temporal images share the same geographic location and exhibit strong inter-image correlations. To construct the correlation between bi-temporal images, we designed a decoding structure based on the Layer-Exchange (LE) method to enhance the interaction of bi-temporal features. Comprehensive experiments on the CLCD, PX-CLCD, LEVIR-CD, and S2Looking datasets demonstrate that the proposed LENet model significantly improves change detection performance. The code and pre-trained models will be available at: https://github.com/dyzy41/lenet.
comment: 21 pages, 8 figures
♻ ☆ Do large language vision models understand 3D shapes?
Large vision language models (LVLM) are the leading A.I approach for achieving a general visual understanding of the world. Models such as GPT, Claude, Gemini, and LLama can use images to understand and analyze complex visual scenes. 3D objects and shapes are the basic building blocks of the world, recognizing them is a fundamental part of human perception. The goal of this work is to test whether LVLMs truly understand 3D shapes by testing the models ability to identify and match objects of the exact same 3D shapes but with different orientations and materials/textures. A large number of test images were created using CGI with a huge number of highly diverse objects, materials, and scenes. The results of this test show that the ability of such models to match 3D shapes is significantly below humans but much higher than random guesses. Suggesting that the models have gained some abstract understanding of 3D shapes but still trail far beyond humans in this task. Mainly it seems that the models can easily identify the same object with a different orientation as well as matching identical 3D shapes of the same orientation but with different materials and textures. However, when both the object material and orientation are changed, all models perform poorly relative to humans. Code and benchmark are available.
♻ ☆ TorchSpatial: A Location Encoding Framework and Benchmark for Spatial Representation Learning NeurIPS 2024
Spatial representation learning (SRL) aims at learning general-purpose neural network representations from various types of spatial data (e.g., points, polylines, polygons, networks, images, etc.) in their native formats. Learning good spatial representations is a fundamental problem for various downstream applications such as species distribution modeling, weather forecasting, trajectory generation, geographic question answering, etc. Even though SRL has become the foundation of almost all geospatial artificial intelligence (GeoAI) research, we have not yet seen significant efforts to develop an extensive deep learning framework and benchmark to support SRL model development and evaluation. To fill this gap, we propose TorchSpatial, a learning framework and benchmark for location (point) encoding, which is one of the most fundamental data types of spatial representation learning. TorchSpatial contains three key components: 1) a unified location encoding framework that consolidates 15 commonly recognized location encoders, ensuring scalability and reproducibility of the implementations; 2) the LocBench benchmark tasks encompassing 7 geo-aware image classification and 10 geo-aware image regression datasets; 3) a comprehensive suite of evaluation metrics to quantify geo-aware model's overall performance as well as their geographic bias, with a novel Geo-Bias Score metric. Finally, we provide a detailed analysis and insights into the model performance and geographic bias of different location encoders. We believe TorchSpatial will foster future advancement of spatial representation learning and spatial fairness in GeoAI research. The TorchSpatial model framework and LocBench benchmark are available at https://github.com/seai-lab/TorchSpatial, and the Geo-Bias Score evaluation framework is available at https://github.com/seai-lab/PyGBS.
comment: 10 pages, 2 figures. Accepted by NeurIPS 2024 Datasets and Benchmarks Track
♻ ☆ UNetVL: Enhancing 3D Medical Image Segmentation with Chebyshev KAN Powered Vision-LSTM
3D medical image segmentation has progressed considerably due to Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs), yet these methods struggle to balance long-range dependency acquisition with computational efficiency. To address this challenge, we propose UNETVL (U-Net Vision-LSTM), a novel architecture that leverages recent advancements in temporal information processing. UNETVL incorporates Vision-LSTM (ViL) for improved scalability and memory functions, alongside an efficient Chebyshev Kolmogorov-Arnold Networks (KAN) to handle complex and long-range dependency patterns more effectively. We validated our method on the ACDC and AMOS2022 (post challenge Task 2) benchmark datasets, showing a significant improvement in mean Dice score compared to recent state-of-the-art approaches, especially over its predecessor, UNETR, with increases of 7.3% on ACDC and 15.6% on AMOS, respectively. Extensive ablation studies were conducted to demonstrate the impact of each component in UNETVL, providing a comprehensive understanding of its architecture. Our code is available at https://github.com/tgrex6/UNETVL, facilitating further research and applications in this domain.
♻ ☆ Physically Feasible Semantic Segmentation
State-of-the-art semantic segmentation models are typically optimized in a data-driven fashion, minimizing solely per-pixel or per-segment classification objectives on their training data. This purely data-driven paradigm often leads to absurd segmentations, especially when the domain of input images is shifted from the one encountered during training. For instance, state-of-the-art models may assign the label ``road to a segment that is located above a segment that is respectively labeled as ``sky, although our knowledge of the physical world dictates that such a configuration is not feasible for images captured by forward-facing upright cameras. Our method, Physically Feasible Semantic Segmentation (PhyFea), first extracts explicit constraints that govern spatial class relations from the semantic segmentation training set at hand in an offline, data-driven fashion, and then enforces a morphological yet differentiable loss that penalizes violations of these constraints during training to promote prediction feasibility. PhyFea is a plug-and-play method and yields consistent and significant performance improvements over diverse state-of-the-art networks on which we implement it across the ADE20K, Cityscapes, and ACDC datasets. Code and models will be made publicly available.
♻ ☆ AI-Generated Content (AIGC) for Various Data Modalities: A Survey
AI-generated content (AIGC) methods aim to produce text, images, videos, 3D assets, and other media using AI algorithms. Due to its wide range of applications and the potential of recent works, AIGC developments -- especially in Machine Learning (ML) and Deep Learning (DL) -- have been attracting significant attention, and this survey focuses on comprehensively reviewing such advancements in ML/DL. AIGC methods have been developed for various data modalities, such as image, video, text, 3D shape, 3D scene, 3D human avatar, 3D motion, and audio -- each presenting unique characteristics and challenges. Furthermore, there have been significant developments in cross-modality AIGC methods, where generative methods receive conditioning input in one modality and produce outputs in another. Examples include going from various modalities to image, video, 3D, and audio. This paper provides a comprehensive review of AIGC methods across different data modalities, including both single-modality and cross-modality methods, highlighting the various challenges, representative works, and recent technical directions in each setting. We also survey the representative datasets throughout the modalities, and present comparative results for various modalities. Moreover, we discuss the typical applications of AIGC methods in various domains, challenges, and future research directions.
♻ ☆ A Label is Worth a Thousand Images in Dataset Distillation NeurIPS 2024
Data $\textit{quality}$ is a crucial factor in the performance of machine learning models, a principle that dataset distillation methods exploit by compressing training datasets into much smaller counterparts that maintain similar downstream performance. Understanding how and why data distillation methods work is vital not only for improving these methods but also for revealing fundamental characteristics of "good" training data. However, a major challenge in achieving this goal is the observation that distillation approaches, which rely on sophisticated but mostly disparate methods to generate synthetic data, have little in common with each other. In this work, we highlight a largely overlooked aspect common to most of these methods: the use of soft (probabilistic) labels. Through a series of ablation experiments, we study the role of soft labels in depth. Our results reveal that the main factor explaining the performance of state-of-the-art distillation methods is not the specific techniques used to generate synthetic data but rather the use of soft labels. Furthermore, we demonstrate that not all soft labels are created equal; they must contain $\textit{structured information}$ to be beneficial. We also provide empirical scaling laws that characterize the effectiveness of soft labels as a function of images-per-class in the distilled dataset and establish an empirical Pareto frontier for data-efficient learning. Combined, our findings challenge conventional wisdom in dataset distillation, underscore the importance of soft labels in learning, and suggest new directions for improving distillation methods. Code for all experiments is available at https://github.com/sunnytqin/no-distillation.
comment: NeurIPS 2024
♻ ☆ Unsupervised UAV 3D Trajectories Estimation with Sparse Point Clouds ICASSP
Compact UAV systems, while advancing delivery and surveillance, pose significant security challenges due to their small size, which hinders detection by traditional methods. This paper presents a cost-effective, unsupervised UAV detection method using spatial-temporal sequence processing to fuse multiple LiDAR scans for accurate UAV tracking in real-world scenarios. Our approach segments point clouds into foreground and background, analyzes spatial-temporal data, and employs a scoring mechanism to enhance detection accuracy. Tested on a public dataset, our solution placed 4th in the CVPR 2024 UG2+ Challenge, demonstrating its practical effectiveness. We plan to open-source all designs, code, and sample data for the research community github.com/lianghanfang/UnLiDAR-UAV-Est.
comment: This paper has been accepted for presentation at the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 2025. 2025 IEEE Trademark. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses
♻ ☆ Leveraging Local Patch Alignment to Seam-cutting for Large Parallax Image Stitching
Seam cutting methods have been proven effective in the composition step of image stitching, especially for images with parallax. However, current seam cutting can be seen as the subsequent step after the image alignment is settled. Its effectiveness usually depends on the fact that images can be roughly aligned such that a local region exists where an unnoticeable seam can be found. Current alignment methods often fall short of expectations for images with large parallax, and most efforts are devoted to improving the alignment accuracy. In this paper, we argue that by adding a simple Local Patch Alignment Module (LPAM) into the seam cutting, the final result can be efficiently improved for large parallax image stitching. Concretely, we first evaluate the quality of pixels along the estimated seam of the seam cutting method. Then, for pixels with low qualities, we separate their enclosing patches in the aligned images and locally align them by constructing modified dense correspondences via SIFT flow. Finally, we composite the aligned patches via seam cutting and merge them into the original aligned result to generate the final mosaic. Experiments show that introducing LPAM can effectively and efficiently improve the stitching results.
comment: In peer review
♻ ☆ Real-time Identity Defenses against Malicious Personalization of Diffusion Models
Personalized generative diffusion models, capable of synthesizing highly realistic images based on a few reference portraits, may pose substantial social, ethical, and legal risks via identity replication. Existing defense mechanisms rely on computationally intensive adversarial perturbations tailored to individual images, rendering them impractical for real-world deployment. This study introduces the Real-time Identity Defender (RID), a neural network designed to generate adversarial perturbations through a single forward pass, bypassing the need for image-specific optimization. RID achieves unprecedented efficiency, with defense times as low as 0.12 seconds on a single NVIDIA A100 80G GPU (4,400 times faster than leading methods) and 1.1 seconds per image on a standard Intel i9 CPU, making it suitable for edge devices such as smartphones. Despite its efficiency, RID achieves promising protection performance across visual and quantitative benchmarks, effectively mitigating identity replication risks. Our analysis reveals that RID's perturbations mimic the efficacy of traditional defenses while exhibiting properties distinct from natural noise, such as Gaussian perturbations. To enhance robustness, we extend RID into an ensemble framework that integrates multiple pre-trained text-to-image diffusion models, ensuring resilience against black-box attacks and post-processing techniques, including image compression and purification. Our model is envisioned to play a crucial role in safeguarding portrait rights, thereby preventing illegal and unethical uses.
comment: 21 pages, 7 figures (RID)
♻ ☆ Image Segmentation: Inducing graph-based learning
This study explores the potential of graph neural networks (GNNs) to enhance semantic segmentation across diverse image modalities. We evaluate the effectiveness of a novel GNN-based U-Net architecture on three distinct datasets: PascalVOC, a standard benchmark for natural image segmentation, WoodScape, a challenging dataset of fisheye images commonly used in autonomous driving, introducing significant geometric distortions; and ISIC2016, a dataset of dermoscopic images for skin lesion segmentation. We compare our proposed UNet-GNN model against established convolutional neural networks (CNNs) based segmentation models, including U-Net and U-Net++, as well as the transformer-based SwinUNet. Unlike these methods, which primarily rely on local convolutional operations or global self-attention, GNNs explicitly model relationships between image regions by constructing and operating on a graph representation of the image features. This approach allows the model to capture long-range dependencies and complex spatial relationships, which we hypothesize will be particularly beneficial for handling geometric distortions present in fisheye imagery and capturing intricate boundaries in medical images. Our analysis demonstrates the versatility of GNNs in addressing diverse segmentation challenges and highlights their potential to improve segmentation accuracy in various applications, including autonomous driving and medical image analysis.
♻ ☆ SAGD: Boundary-Enhanced Segment Anything in 3D Gaussian via Gaussian Decomposition
3D Gaussian Splatting has emerged as an alternative 3D representation for novel view synthesis, benefiting from its high-quality rendering results and real-time rendering speed. However, the 3D Gaussians learned by 3D-GS have ambiguous structures without any geometry constraints. This inherent issue in 3D-GS leads to a rough boundary when segmenting individual objects. To remedy these problems, we propose SAGD, a conceptually simple yet effective boundary-enhanced segmentation pipeline for 3D-GS to improve segmentation accuracy while preserving segmentation speed. Specifically, we introduce a Gaussian Decomposition scheme, which ingeniously utilizes the special structure of 3D Gaussian, finds out, and then decomposes the boundary Gaussians. Moreover, to achieve fast interactive 3D segmentation, we introduce a novel training-free pipeline by lifting a 2D foundation model to 3D-GS. Extensive experiments demonstrate that our approach achieves high-quality 3D segmentation without rough boundary issues, which can be easily applied to other scene editing tasks.
♻ ☆ CREST: An Efficient Conjointly-trained Spike-driven Framework for Event-based Object Detection Exploiting Spatiotemporal Dynamics AAAI 2025
Event-based cameras feature high temporal resolution, wide dynamic range, and low power consumption, which is ideal for high-speed and low-light object detection. Spiking neural networks (SNNs) are promising for event-based object recognition and detection due to their spiking nature but lack efficient training methods, leading to gradient vanishing and high computational complexity, especially in deep SNNs. Additionally, existing SNN frameworks often fail to effectively handle multi-scale spatiotemporal features, leading to increased data redundancy and reduced accuracy. To address these issues, we propose CREST, a novel conjointly-trained spike-driven framework to exploit spatiotemporal dynamics in event-based object detection. We introduce the conjoint learning rule to accelerate SNN learning and alleviate gradient vanishing. It also supports dual operation modes for efficient and flexible implementation on different hardware types. Additionally, CREST features a fully spike-driven framework with a multi-scale spatiotemporal event integrator (MESTOR) and a spatiotemporal-IoU (ST-IoU) loss. Our approach achieves superior object recognition & detection performance and up to 100X energy efficiency compared with state-of-the-art SNN algorithms on three datasets, providing an efficient solution for event-based object detection algorithms suitable for SNN hardware implementation.
comment: Accepted by AAAI 2025
♻ ☆ Exploiting Label Skewness for Spiking Neural Networks in Federated Learning
The energy efficiency of deep spiking neural networks (SNNs) aligns with the constraints of resource-limited edge devices, positioning SNNs as a promising foundation for intelligent applications leveraging the extensive data collected by these devices. To address data privacy concerns when deploying SNNs on edge devices, federated learning (FL) facilitates collaborative model training by leveraging data distributed across edge devices without transmitting local data to a central server. However, existing FL approaches struggle with label-skewed data across devices, which leads to drift in local SNN models and degrades the performance of the global SNN model. In this paper, we propose a novel framework called FedLEC, which incorporates intra-client label weight calibration to balance the learning intensity across local labels and inter-client knowledge distillation to mitigate local SNN model bias caused by label absence. Extensive experiments with three different structured SNNs across five datasets (i.e., three non-neuromorphic and two neuromorphic datasets) demonstrate the efficiency of FedLEC. Compared to eight state-of-the-art FL algorithms, FedLEC achieves an average accuracy improvement of approximately 11.59% for the global SNN model under various label skew distribution settings.
♻ ☆ A Multi-task Supervised Compression Model for Split Computing WACV 2025
Split computing ($\neq$ split learning) is a promising approach to deep learning models for resource-constrained edge computing systems, where weak sensor (mobile) devices are wirelessly connected to stronger edge servers through channels with limited communication capacity. State-of-theart work on split computing presents methods for single tasks such as image classification, object detection, or semantic segmentation. The application of existing methods to multitask problems degrades model accuracy and/or significantly increase runtime latency. In this study, we propose Ladon, the first multi-task-head supervised compression model for multi-task split computing. Experimental results show that the multi-task supervised compression model either outperformed or rivaled strong lightweight baseline models in terms of predictive performance for ILSVRC 2012, COCO 2017, and PASCAL VOC 2012 datasets while learning compressed representations at its early layers. Furthermore, our models reduced end-to-end latency (by up to 95.4%) and energy consumption of mobile devices (by up to 88.2%) in multi-task split computing scenarios.
comment: Accepted at WACV 2025. Code and models are available at https://github.com/yoshitomo-matsubara/ladon-multi-task-sc2
♻ ☆ Prediction and Reference Quality Adaptation for Learned Video Compression
Temporal prediction is one of the most important technologies for video compression. Various prediction coding modes are designed in traditional video codecs. Traditional video codecs will adaptively to decide the optimal coding mode according to the prediction quality and reference quality. Recently, learned video codecs have made great progress. However, they did not effectively address the problem of prediction and reference quality adaptation, which limits the effective utilization of temporal prediction and reduction of reconstruction error propagation. Therefore, in this paper, we first propose a confidence-based prediction quality adaptation (PQA) module to provide explicit discrimination for the spatial and channel-wise prediction quality difference. With this module, the prediction with low quality will be suppressed and that with high quality will be enhanced. The codec can adaptively decide which spatial or channel location of predictions to use. Then, we further propose a reference quality adaptation (RQA) module and an associated repeat-long training strategy to provide dynamic spatially variant filters for diverse reference qualities. With these filters, our codec can adapt to different reference qualities, making it easier to achieve the target reconstruction quality and reduce the reconstruction error propagation. Experimental results verify that our proposed modules can effectively help our codec achieve a higher compression performance.
♻ ☆ Bi-Directional Deep Contextual Video Compression
Deep video compression has made remarkable process in recent years, with the majority of advancements concentrated on P-frame coding. Although efforts to enhance B-frame coding are ongoing, their compression performance is still far behind that of traditional bi-directional video codecs. In this paper, we introduce a bi-directional deep contextual video compression scheme tailored for B-frames, termed DCVC-B, to improve the compression performance of deep B-frame coding. Our scheme mainly has three key innovations. First, we develop a bi-directional motion difference context propagation method for effective motion difference coding, which significantly reduces the bit cost of bi-directional motions. Second, we propose a bi-directional contextual compression model and a corresponding bi-directional temporal entropy model, to make better use of the multi-scale temporal contexts. Third, we propose a hierarchical quality structure-based training strategy, leading to an effective bit allocation across large groups of pictures (GOP). Experimental results show that our DCVC-B achieves an average reduction of 26.6% in BD-Rate compared to the reference software for H.265/HEVC under random access conditions. Remarkably, it surpasses the performance of the H.266/VVC reference software on certain test datasets under the same configuration. We anticipate our work can provide valuable insights and bring up deep B-frame coding to the next level.
♻ ☆ Descriptive Caption Enhancement with Visual Specialists for Multimodal Perception
Training Large Multimodality Models (LMMs) relies on descriptive image caption that connects image and language. Existing methods either distill the caption from the LMM models or construct the captions from the internet images or by human. We propose to leverage off-the-shelf visual specialists, which were trained from annotated images initially not for image captioning, for enhancing the image caption. Our approach, named DCE, explores object low-level and fine-grained attributes (e.g., depth, emotion and fine-grained categories) and object relations (e.g., relative location and human-object-interaction (HOI)), and combine the attributes into the descriptive caption. Experiments demonstrate that such visual specialists are able to improve the performance for visual understanding tasks as well as reasoning that benefits from more accurate visual understanding. We will release the source code and the pipeline so that other visual specialists are easily combined into the pipeline. The complete source code of DCE pipeline and datasets will be available at \url{https://github.com/syp2ysy/DCE}.
comment: An open-source data engine for generating detailed image captions
♻ ☆ Beyond Imperfections: A Conditional Inpainting Approach for End-to-End Artifact Removal in VTON and Pose Transfer
Artifacts often degrade the visual quality of virtual try-on (VTON) and pose transfer applications, impacting user experience. This study introduces a novel conditional inpainting technique designed to detect and remove such distortions, improving image aesthetics. Our work is the first to present an end-to-end framework addressing this specific issue, and we developed a specialized dataset of artifacts in VTON and pose transfer tasks, complete with masks highlighting the affected areas. Experimental results show that our method not only effectively removes artifacts but also significantly enhances the visual quality of the final images, setting a new benchmark in computer vision and image processing.
♻ ☆ Few-Shot Domain Adaptation for Learned Image Compression
Learned image compression (LIC) has achieved state-of-the-art rate-distortion performance, deemed promising for next-generation image compression techniques. However, pre-trained LIC models usually suffer from significant performance degradation when applied to out-of-training-domain images, implying their poor generalization capabilities. To tackle this problem, we propose a few-shot domain adaptation method for LIC by integrating plug-and-play adapters into pre-trained models. Drawing inspiration from the analogy between latent channels and frequency components, we examine domain gaps in LIC and observe that out-of-training-domain images disrupt pre-trained channel-wise decomposition. Consequently, we introduce a method for channel-wise re-allocation using convolution-based adapters and low-rank adapters, which are lightweight and compatible to mainstream LIC schemes. Extensive experiments across multiple domains and multiple representative LIC schemes demonstrate that our method significantly enhances pre-trained models, achieving comparable performance to H.266/VVC intra coding with merely 25 target-domain samples. Additionally, our method matches the performance of full-model finetune while transmitting fewer than $2\%$ of the parameters.
♻ ☆ Learning Unified Distance Metric Across Diverse Data Distributions with Parameter-Efficient Transfer Learning WACV 2025
A common practice in metric learning is to train and test an embedding model for each dataset. This dataset-specific approach fails to simulate real-world scenarios that involve multiple heterogeneous distributions of data. In this regard, we explore a new metric learning paradigm, called Unified Metric Learning (UML), which learns a unified distance metric capable of capturing relations across multiple data distributions. UML presents new challenges, such as imbalanced data distribution and bias towards dominant distributions. These issues cause standard metric learning methods to fail in learning a unified metric. To address these challenges, we propose Parameter-efficient Unified Metric leArning (PUMA), which consists of a pre-trained frozen model and two additional modules, stochastic adapter and prompt pool. These modules enable to capture dataset-specific knowledge while avoiding bias towards dominant distributions. Additionally, we compile a new unified metric learning benchmark with a total of 8 different datasets. PUMA outperforms the state-of-the-art dataset-specific models while using about 69 times fewer trainable parameters.
comment: Accepted to WACV 2025
♻ ☆ EditBoard: Towards a Comprehensive Evaluation Benchmark for Text-Based Video Editing Models AAAI 2025
The rapid development of diffusion models has significantly advanced AI-generated content (AIGC), particularly in Text-to-Image (T2I) and Text-to-Video (T2V) generation. Text-based video editing, leveraging these generative capabilities, has emerged as a promising field, enabling precise modifications to videos based on text prompts. Despite the proliferation of innovative video editing models, there is a conspicuous lack of comprehensive evaluation benchmarks that holistically assess these models' performance across various dimensions. Existing evaluations are limited and inconsistent, typically summarizing overall performance with a single score, which obscures models' effectiveness on individual editing tasks. To address this gap, we propose EditBoard, the first comprehensive evaluation benchmark for text-based video editing models. EditBoard encompasses nine automatic metrics across four dimensions, evaluating models on four task categories and introducing three new metrics to assess fidelity. This task-oriented benchmark facilitates objective evaluation by detailing model performance and providing insights into each model's strengths and weaknesses. By open-sourcing EditBoard, we aim to standardize evaluation and advance the development of robust video editing models.
comment: Accepted to AAAI 2025
♻ ☆ IDEA: Image Description Enhanced CLIP-Adapter
CLIP (Contrastive Language-Image Pre-training) has attained great success in pattern recognition and computer vision. Transferring CLIP to downstream tasks (e.g. zero- or few-shot classification) is a hot topic in multimodal learning. However, current studies primarily focus on either prompt learning for text or adapter tuning for vision, without fully exploiting the complementary information and correlations among image-text pairs. In this paper, we propose an Image Description Enhanced CLIP-Adapter (IDEA) method to adapt CLIP to few-shot image classification tasks. This method captures fine-grained features by leveraging both visual features and textual descriptions of images. IDEA is a training-free method for CLIP, and it can be comparable to or even exceeds state-of-the-art models on multiple tasks. Furthermore, we introduce Trainable-IDEA (T-IDEA), which extends IDEA by adding two lightweight learnable components (i.e., a projector and a learnable latent space), further enhancing the model's performance and achieving SOTA results on 11 datasets. As one important contribution, we employ the Llama model and design a comprehensive pipeline to generate textual descriptions for images of 11 datasets, resulting in a total of 1,637,795 image-text pairs, named "IMD-11". Our code and data are released at https://github.com/FourierAI/IDEA.
♻ ☆ Visual Evaluative AI: A Hypothesis-Driven Tool with Concept-Based Explanations and Weight of Evidence
This paper presents Visual Evaluative AI, a decision aid that provides positive and negative evidence from image data for a given hypothesis. This tool finds high-level human concepts in an image and generates the Weight of Evidence (WoE) for each hypothesis in the decision-making process. We apply and evaluate this tool in the skin cancer domain by building a web-based application that allows users to upload a dermatoscopic image, select a hypothesis and analyse their decisions by evaluating the provided evidence. Further, we demonstrate the effectiveness of Visual Evaluative AI on different concept-based explanation approaches.
comment: 4 pages
♻ ☆ Segment-Level Road Obstacle Detection Using Visual Foundation Model Priors and Likelihood Ratios
Detecting road obstacles is essential for autonomous vehicles to navigate dynamic and complex traffic environments safely. Current road obstacle detection methods typically assign a score to each pixel and apply a threshold to generate final predictions. However, selecting an appropriate threshold is challenging, and the per-pixel classification approach often leads to fragmented predictions with numerous false positives. In this work, we propose a novel method that leverages segment-level features from visual foundation models and likelihood ratios to predict road obstacles directly. By focusing on segments rather than individual pixels, our approach enhances detection accuracy, reduces false positives, and offers increased robustness to scene variability. We benchmark our approach against existing methods on the RoadObstacle and LostAndFound datasets, achieving state-of-the-art performance without needing a predefined threshold.
comment: 10 pages, 4 figures, and 1 table, to be published in VISAPP 2025
Information Retrieval 4
☆ Counteracting temporal attacks in Video Copy Detection
Video Copy Detection (VCD) plays a crucial role in copyright protection and content verification by identifying duplicates and near-duplicates in large-scale video databases. The META AI Challenge on video copy detection provided a benchmark for evaluating state-of-the-art methods, with the Dual-level detection approach emerging as a winning solution. This method integrates Video Editing Detection and Frame Scene Detection to handle adversarial transformations and large datasets efficiently. However, our analysis reveals significant limitations in the VED component, particularly in its ability to handle exact copies. Moreover, Dual-level detection shows vulnerability to temporal attacks. To address it, we propose an improved frame selection strategy based on local maxima of interframe differences, which enhances robustness against adversarial temporal modifications while significantly reducing computational overhead. Our method achieves an increase of 1.4 to 5.8 times in efficiency over the standard 1 FPS approach. Compared to Dual-level detection method, our approach maintains comparable micro-average precision ($\mu$AP) while also demonstrating improved robustness against temporal attacks. Given 56\% reduced representation size and the inference time of more than 2 times faster, our approach is more suitable to real-world resource restriction.
comment: 14 pages, 5 figures, 4 tables
☆ Generative Retrieval for Book search KDD
In book search, relevant book information should be returned in response to a query. Books contain complex, multi-faceted information such as metadata, outlines, and main text, where the outline provides hierarchical information between chapters and sections. Generative retrieval (GR) is a new retrieval paradigm that consolidates corpus information into a single model to generate identifiers of documents that are relevant to a given query. How can GR be applied to book search? Directly applying GR to book search is a challenge due to the unique characteristics of book search: The model needs to retain the complex, multi-faceted information of the book, which increases the demand for labeled data. Splitting book information and treating it as a collection of separate segments for learning might result in a loss of hierarchical information. We propose an effective Generative retrieval framework for Book Search (GBS) that features two main components: data augmentation and outline-oriented book encoding. For data augmentation, GBS constructs multiple query-book pairs for training; it constructs multiple book identifiers based on the outline, various forms of book contents, and simulates real book retrieval scenarios with varied pseudo-queries. This includes coverage-promoting book identifier augmentation, allowing the model to learn to index effectively, and diversity-enhanced query augmentation, allowing the model to learn to retrieve effectively. Outline-oriented book encoding improves length extrapolation through bi-level positional encoding and retentive attention mechanisms to maintain context over long sequences. Experiments on a proprietary Baidu dataset demonstrate that GBS outperforms strong baselines, achieving a 9.8\% improvement in terms of MRR@20, over the state-of-the-art RIPOR method...
comment: Accepted at KDD ADS 2025
☆ LegalGuardian: A Privacy-Preserving Framework for Secure Integration of Large Language Models in Legal Practice
Large Language Models (LLMs) hold promise for advancing legal practice by automating complex tasks and improving access to justice. However, their adoption is limited by concerns over client confidentiality, especially when lawyers include sensitive Personally Identifiable Information (PII) in prompts, risking unauthorized data exposure. To mitigate this, we introduce LegalGuardian, a lightweight, privacy-preserving framework tailored for lawyers using LLM-based tools. LegalGuardian employs Named Entity Recognition (NER) techniques and local LLMs to mask and unmask confidential PII within prompts, safeguarding sensitive data before any external interaction. We detail its development and assess its effectiveness using a synthetic prompt library in immigration law scenarios. Comparing traditional NER models with one-shot prompted local LLM, we find that LegalGuardian achieves a F1-score of 93% with GLiNER and 97% with Qwen2.5-14B in PII detection. Semantic similarity analysis confirms that the framework maintains high fidelity in outputs, ensuring robust utility of LLM-based tools. Our findings indicate that legal professionals can harness advanced AI technologies without compromising client confidentiality or the quality of legal documents.
comment: 10 pages, 3 figures
♻ ☆ FlipedRAG: Black-Box Opinion Manipulation Attacks to Retrieval-Augmented Generation of Large Language Models
Retrieval-Augmented Generation (RAG) addresses hallucination and real-time constraints by dynamically retrieving relevant information from a knowledge database to supplement the LLMs' input. When presented with a query, RAG selects the most semantically similar texts from its knowledge bases and uses them as context for the LLMs to generate more accurate responses. RAG also creates a new attack surface, especially since RAG databases are frequently sourced from public domains. While existing studies have predominantly focused on optimizing RAG's performance and efficiency, emerging research has begun addressing the security concerns associated with RAG. However, these works have some limitations, typically focusing on either white-box methodologies or heuristic-based black-box attacks. Furthermore, prior research has mainly targeted simple factoid question answering, which is neither practically challenging nor resistant to correction. In this paper, we unveil a more realistic and threatening scenario: opinion manipulation for controversial topics against RAG. Particularly, we propose a novel RAG black-box attack method, termed FlipedRAG, which is transfer-based. By leveraging instruction engineering, we obtain partial retrieval model outputs from black-box RAG system, facilitating the training of surrogate models to enhance the effectiveness of opinion manipulation attack. Extensive experimental results confirms that our approach significantly enhances the average success rate of opinion manipulation by 16.7%. It achieves an average of a 50% directional change in the opinion polarity of RAG responses across four themes. Additionally, it induces a 20% shift in user cognition. Furthermore, we discuss the efficacy of potential defense mechanisms and conclude that they are insufficient in mitigating this type of attack, highlighting the urgent need to develop novel defensive strategies.
comment: arXiv admin note: text overlap with arXiv:2407.13757
Machine Learning 27
☆ Reinforcement Learning Based Goodput Maximization with Quantized Feedback in URLLC
This paper presents a comprehensive system model for goodput maximization with quantized feedback in Ultra-Reliable Low-Latency Communication (URLLC), focusing on dynamic channel conditions and feedback schemes. The study investigates a communication system, where the receiver provides quantized channel state information to the transmitter. The system adapts its feedback scheme based on reinforcement learning, aiming to maximize goodput while accommodating varying channel statistics. We introduce a novel Rician-$K$ factor estimation technique to enable the communication system to optimize the feedback scheme. This dynamic approach increases the overall performance, making it well-suited for practical URLLC applications where channel statistics vary over time.
comment: Accepted for the IARIA 21st International Conference on Wireless and Mobile Communication (ICWMC 2025) Conference
Can Safety Fine-Tuning Be More Principled? Lessons Learned from Cybersecurity
As LLMs develop increasingly advanced capabilities, there is an increased need to minimize the harm that could be caused to society by certain model outputs; hence, most LLMs have safety guardrails added, for example via fine-tuning. In this paper, we argue the position that current safety fine-tuning is very similar to a traditional cat-and-mouse game (or arms race) between attackers and defenders in cybersecurity. Model jailbreaks and attacks are patched with bandaids to target the specific attack mechanism, but many similar attack vectors might remain. When defenders are not proactively coming up with principled mechanisms, it becomes very easy for attackers to sidestep any new defenses. We show how current defenses are insufficient to prevent new adversarial jailbreak attacks, reward hacking, and loss of control problems. In order to learn from past mistakes in cybersecurity, we draw analogies with historical examples and develop lessons learned that can be applied to LLM safety. These arguments support the need for new and more principled approaches to designing safe models, which are architected for security from the beginning. We describe several such approaches from the AI literature.
comment: published at Neurips Safe Generative AI Workshop 2024
☆ Conditional Feature Importance with Generative Modeling Using Adversarial Random Forests
This paper proposes a method for measuring conditional feature importance via generative modeling. In explainable artificial intelligence (XAI), conditional feature importance assesses the impact of a feature on a prediction model's performance given the information of other features. Model-agnostic post hoc methods to do so typically evaluate changes in the predictive performance under on-manifold feature value manipulations. Such procedures require creating feature values that respect conditional feature distributions, which can be challenging in practice. Recent advancements in generative modeling can facilitate this. For tabular data, which may consist of both categorical and continuous features, the adversarial random forest (ARF) stands out as a generative model that can generate on-manifold data points without requiring intensive tuning efforts or computational resources, making it a promising candidate model for subroutines in XAI methods. This paper proposes cARFi (conditional ARF feature importance), a method for measuring conditional feature importance through feature values sampled from ARF-estimated conditional distributions. cARFi requires only little tuning to yield robust importance scores that can flexibly adapt for conditional or marginal notions of feature importance, including straightforward extensions to condition on feature subsets and allows for inferring the significance of feature importances through statistical tests.
☆ ProKeR: A Kernel Perspective on Few-Shot Adaptation of Large Vision-Language Models
The growing popularity of Contrastive Language-Image Pretraining (CLIP) has led to its widespread application in various visual downstream tasks. To enhance CLIP's effectiveness and versatility, efficient few-shot adaptation techniques have been widely adopted. Among these approaches, training-free methods, particularly caching methods exemplified by Tip-Adapter, have gained attention for their lightweight adaptation without the need for additional fine-tuning. In this paper, we revisit Tip-Adapter from a kernel perspective, showing that caching methods function as local adapters and are connected to a well-established kernel literature. Drawing on this insight, we offer a theoretical understanding of how these methods operate and suggest multiple avenues for enhancing the Tip-Adapter baseline. Notably, our analysis shows the importance of incorporating global information in local adapters. Therefore, we subsequently propose a global method that learns a proximal regularizer in a reproducing kernel Hilbert space (RKHS) using CLIP as a base learner. Our method, which we call ProKeR (Proximal Kernel ridge Regression), has a closed form solution and achieves state-of-the-art performances across 11 datasets in the standard few-shot adaptation benchmark.
comment: Code available at https://ybendou.github.io/ProKeR
☆ Counteracting temporal attacks in Video Copy Detection
Video Copy Detection (VCD) plays a crucial role in copyright protection and content verification by identifying duplicates and near-duplicates in large-scale video databases. The META AI Challenge on video copy detection provided a benchmark for evaluating state-of-the-art methods, with the Dual-level detection approach emerging as a winning solution. This method integrates Video Editing Detection and Frame Scene Detection to handle adversarial transformations and large datasets efficiently. However, our analysis reveals significant limitations in the VED component, particularly in its ability to handle exact copies. Moreover, Dual-level detection shows vulnerability to temporal attacks. To address it, we propose an improved frame selection strategy based on local maxima of interframe differences, which enhances robustness against adversarial temporal modifications while significantly reducing computational overhead. Our method achieves an increase of 1.4 to 5.8 times in efficiency over the standard 1 FPS approach. Compared to Dual-level detection method, our approach maintains comparable micro-average precision ($\mu$AP) while also demonstrating improved robustness against temporal attacks. Given 56\% reduced representation size and the inference time of more than 2 times faster, our approach is more suitable to real-world resource restriction.
comment: 14 pages, 5 figures, 4 tables
☆ AIMA at SemEval-2024 Task 3: Simple Yet Powerful Emotion Cause Pair Analysis SemEval-2024
The SemEval-2024 Task 3 presents two subtasks focusing on emotion-cause pair extraction within conversational contexts. Subtask 1 revolves around the extraction of textual emotion-cause pairs, where causes are defined and annotated as textual spans within the conversation. Conversely, Subtask 2 extends the analysis to encompass multimodal cues, including language, audio, and vision, acknowledging instances where causes may not be exclusively represented in the textual data. Our proposed model for emotion-cause analysis is meticulously structured into three core segments: (i) embedding extraction, (ii) cause-pair extraction & emotion classification, and (iii) cause extraction using QA after finding pairs. Leveraging state-of-the-art techniques and fine-tuning on task-specific datasets, our model effectively unravels the intricate web of conversational dynamics and extracts subtle cues signifying causality in emotional expressions. Our team, AIMA, demonstrated strong performance in the SemEval-2024 Task 3 competition. We ranked as the 10th in subtask 1 and the 6th in subtask 2 out of 23 teams.
comment: Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)
☆ Federated Testing (FedTest): A New Scheme to Enhance Convergence and Mitigate Adversarial Attacks in Federating Learning
Federated Learning (FL) has emerged as a significant paradigm for training machine learning models. This is due to its data-privacy-preserving property and its efficient exploitation of distributed computational resources. This is achieved by conducting the training process in parallel at distributed users. However, traditional FL strategies grapple with difficulties in evaluating the quality of received models, handling unbalanced models, and reducing the impact of detrimental models. To resolve these problems, we introduce a novel federated learning framework, which we call federated testing for federated learning (FedTest). In the FedTest method, the local data of a specific user is used to train the model of that user and test the models of the other users. This approach enables users to test each other's models and determine an accurate score for each. This score can then be used to aggregate the models efficiently and identify any malicious ones. Our numerical results reveal that the proposed method not only accelerates convergence rates but also diminishes the potential influence of malicious users. This significantly enhances the overall efficiency and robustness of FL systems.
☆ AIMA at SemEval-2024 Task 10: History-Based Emotion Recognition in Hindi-English Code-Mixed Conversations SemEval-2024
In this study, we introduce a solution to the SemEval 2024 Task 10 on subtask 1, dedicated to Emotion Recognition in Conversation (ERC) in code-mixed Hindi-English conversations. ERC in code-mixed conversations presents unique challenges, as existing models are typically trained on monolingual datasets and may not perform well on code-mixed data. To address this, we propose a series of models that incorporate both the previous and future context of the current utterance, as well as the sequential information of the conversation. To facilitate the processing of code-mixed data, we developed a Hinglish-to-English translation pipeline to translate the code-mixed conversations into English. We designed four different base models, each utilizing powerful pre-trained encoders to extract features from the input but with varying architectures. By ensembling all of these models, we developed a final model that outperforms all other baselines.
comment: Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)
☆ Modeling Attention during Dimensional Shifts with Counterfactual and Delayed Feedback
Attention can be used to inform choice selection in contextual bandit tasks even when context features have not been previously experienced. One example of this is in dimensional shifts, where additional feature values are introduced and the relationship between features and outcomes can either be static or variable. Attentional mechanisms have been extensively studied in contextual bandit tasks where the feedback of choices is provided immediately, but less research has been done on tasks where feedback is delayed or in counterfactual feedback cases. Some methods have successfully modeled human attention with immediate feedback based on reward prediction errors (RPEs), though recent research raises questions of the applicability of RPEs onto more general attentional mechanisms. Alternative models suggest that information theoretic metrics can be used to model human attention, with broader applications to novel stimuli. In this paper, we compare two different methods for modeling how humans attend to specific features of decision making tasks, one that is based on calculating an information theoretic metric using a memory of past experiences, and another that is based on iteratively updating attention from reward prediction errors. We compare these models using simulations in a contextual bandit task with both intradimensional and extradimensional domain shifts, as well as immediate, delayed, and counterfactual feedback. We find that calculating an information theoretic metric over a history of experiences is best able to account for human-like behavior in tasks that shift dimensions and alter feedback presentation. These results indicate that information theoretic metrics of attentional mechanisms may be better suited than RPEs to predict human attention in decision making, though further studies of human behavior are necessary to support these results.
☆ Modelling of automotive steel fatigue lifetime by machine learning method
In the current study, the fatigue life of QSTE340TM steel was modelled using a machine learning method, namely, a neural network. This problem was solved by a Multi-Layer Perceptron (MLP) neural network with a 3-75-1 architecture, which allows the prediction of the crack length based on the number of load cycles N, the stress ratio R, and the overload ratio Rol. The proposed model showed high accuracy, with mean absolute percentage error (MAPE) ranging from 0.02% to 4.59% for different R and Rol. The neural network effectively reveals the nonlinear relationships between input parameters and fatigue crack growth, providing reliable predictions for different loading conditions.
comment: Paper Submitted to ITTAP 2024 CEUR-WS, see https://ceur-ws.org/Vol-3896/short4.pdf
☆ Community detection for Contexual-LSBM: Theoretical limitation on misclassfication ratio and effecient algorithm
The integration of both network information and node attribute information has recently gained significant attention in the context of community recovery problems. In this work, we address the task of determining the optimal classification rate for the Label-SBM(LSBM) model with node attribute information and. Specifically, we derive the optimal lower bound, which is characterized by the Chernoff-Hellinger divergence for a general LSBM network model with Gaussian node attributes. Additionally, we highlight the connection between the divergence $D(\bs\alpha, \mb P, \bs\mu)$ in our model and those introduced in \cite{yun2016optimal} and \cite{lu2016statistical}. We also presents a consistent algorithm based on spectral method for the proposed aggreated latent factor model.
☆ A Novel Switch-Type Policy Network for Resource Allocation Problems: Technical Report
Deep Reinforcement Learning (DRL) has become a powerful tool for developing control policies in queueing networks, but the common use of Multi-layer Perceptron (MLP) neural networks in these applications has significant drawbacks. MLP architectures, while versatile, often suffer from poor sample efficiency and a tendency to overfit training environments, leading to suboptimal performance on new, unseen networks. In response to these issues, we introduce a switch-type neural network (STN) architecture designed to improve the efficiency and generalization of DRL policies in queueing networks. The STN leverages structural patterns from traditional non-learning policies, ensuring consistent action choices across similar states. This design not only streamlines the learning process but also fosters better generalization by reducing the tendency to overfit. Our works presents three key contributions: first, the development of the STN as a more effective alternative to MLPs; second, empirical evidence showing that STNs achieve superior sample efficiency in various training scenarios; and third, experimental results demonstrating that STNs match MLP performance in familiar environments and significantly outperform them in new settings. By embedding domain-specific knowledge, the STN enhances the Proximal Policy Optimization (PPO) algorithm's effectiveness without compromising performance, suggesting its suitability for a wide range of queueing network control problems.
☆ Playing the Lottery With Concave Regularizers for Sparse Trainable Neural Networks
The design of sparse neural networks, i.e., of networks with a reduced number of parameters, has been attracting increasing research attention in the last few years. The use of sparse models may significantly reduce the computational and storage footprint in the inference phase. In this context, the lottery ticket hypothesis (LTH) constitutes a breakthrough result, that addresses not only the performance of the inference phase, but also of the training phase. It states that it is possible to extract effective sparse subnetworks, called winning tickets, that can be trained in isolation. The development of effective methods to play the lottery, i.e., to find winning tickets, is still an open problem. In this article, we propose a novel class of methods to play the lottery. The key point is the use of concave regularization to promote the sparsity of a relaxed binary mask, which represents the network topology. We theoretically analyze the effectiveness of the proposed method in the convex framework. Then, we propose extended numerical tests on various datasets and architectures, that show that the proposed method can improve the performance of state-of-the-art algorithms.
☆ Advanced technology in railway track monitoring using the GPR Technique: A Review
Subsurface evaluation of railway tracks is crucial for safe operation, as it allows for the early detection and remediation of potential structural weaknesses or defects that could lead to accidents or derailments. Ground Penetrating Radar (GPR) is an electromagnetic survey technique as advanced non-destructive technology (NDT) that can be used to monitor railway tracks. This technology is well-suited for railway applications due to the sub-layered composition of the track, which includes ties, ballast, sub-ballast, and subgrade regions. It can detect defects such as ballast pockets, fouled ballast, poor drainage, and subgrade settlement. The paper reviews recent works on advanced technology and interpretations of GPR data collected for different layers. Further, this paper demonstrates the current techniques for using synthetic modeling to calibrate real-world GPR data, enhancing accuracy in identifying subsurface features like ballast conditions and structural anomalies and applying various algorithms to refine GPR data analysis. These include Support Vector Machine (SVM) for classifying railway ballast types, Fuzzy C-means, and Generalized Regression Neural Networks for high-accuracy defect classification. Deep learning techniques, particularly Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) are also highlighted for their effectiveness in recognizing patterns associated with defects in GPR images. The article specifically focuses on the development of a Convolutional Recurrent Neural Network (CRNN) model, which combines CNN and RNN architectures for efficient processing of GPR data. This model demonstrates enhanced detection capabilities and faster processing compared to traditional object detection models like Faster R-CNN.
comment: 2nd Canadian & Cold Regions Rail Research Conference 2024 (CCRC 2024)
☆ A Regularized Online Newton Method for Stochastic Convex Bandits with Linear Vanishing Noise
We study a stochastic convex bandit problem where the subgaussian noise parameter is assumed to decrease linearly as the learner selects actions closer and closer to the minimizer of the convex loss function. Accordingly, we propose a Regularized Online Newton Method (RONM) for solving the problem, based on the Online Newton Method (ONM) of arXiv:2406.06506. Our RONM reaches a polylogarithmic regret in the time horizon $n$ when the loss function grows quadratically in the constraint set, which recovers the results of arXiv:2402.12042 in linear bandits. Our analyses rely on the growth rate of the precision matrix $\Sigma_t^{-1}$ in ONM and we find that linear growth solves the question exactly. These analyses also help us obtain better convergence rates when the loss function grows faster. We also study and analyze two new bandit models: stochastic convex bandits with noise scaled to a subgaussian parameter function and convex bandits with stochastic multiplicative noise.
☆ Tell me about yourself: LLMs are aware of their learned behaviors ICLR 2025
We study behavioral self-awareness -- an LLM's ability to articulate its behaviors without requiring in-context examples. We finetune LLMs on datasets that exhibit particular behaviors, such as (a) making high-risk economic decisions, and (b) outputting insecure code. Despite the datasets containing no explicit descriptions of the associated behavior, the finetuned LLMs can explicitly describe it. For example, a model trained to output insecure code says, ``The code I write is insecure.'' Indeed, models show behavioral self-awareness for a range of behaviors and for diverse evaluations. Note that while we finetune models to exhibit behaviors like writing insecure code, we do not finetune them to articulate their own behaviors -- models do this without any special training or examples. Behavioral self-awareness is relevant for AI safety, as models could use it to proactively disclose problematic behaviors. In particular, we study backdoor policies, where models exhibit unexpected behaviors only under certain trigger conditions. We find that models can sometimes identify whether or not they have a backdoor, even without its trigger being present. However, models are not able to directly output their trigger by default. Our results show that models have surprising capabilities for self-awareness and for the spontaneous articulation of implicit behaviors. Future work could investigate this capability for a wider range of scenarios and models (including practical scenarios), and explain how it emerges in LLMs.
comment: Submitted to ICLR 2025. 17 pages, 13 figures
☆ A Novel Pearson Correlation-Based Merging Algorithm for Robust Distributed Machine Learning with Heterogeneous Data
Federated learning faces significant challenges in scenarios with heterogeneous data distributions and adverse network conditions, such as delays, packet loss, and data poisoning attacks. This paper proposes a novel method based on the SCAFFOLD algorithm to improve the quality of local updates and enhance the robustness of the global model. The key idea is to form intermediary nodes by merging local models with high similarity, using the Pearson correlation coefficient as a similarity measure. The proposed merging algorithm reduces the number of local nodes while maintaining the accuracy of the global model, effectively addressing communication overhead and bandwidth consumption. Experimental results on the MNIST dataset under simulated federated learning scenarios demonstrate the method's effectiveness. After 10 rounds of training using a CNN model, the proposed approach achieved accuracies of 0.82, 0.73, and 0.66 under normal conditions, packet loss and data poisoning attacks, respectively, outperforming the baseline SCAFFOLD algorithm. These results highlight the potential of the proposed method to improve efficiency and resilience in federated learning systems.
♻ ☆ QF-tuner: Breaking Tradition in Reinforcement Learning
Hyperparameter tuning in reinforcement learning algorithms refers to choosing the optimal parameters that may increase the algorithm's performance. Manual or random hyperparameter tuning methods can be problematic, as even slight variations in their values can result in significantly different outcomes in the learning process. In this paper, we propose a new method, QF-tuner, for automatic hyperparameter tuning in the Q-learning algorithm using the FOX optimization algorithm (FOX). A new objective function has been proposed for the FOX, prioritizing reward over learning error and time. QF-tuner starts by running the FOX and tries to minimize the fitness value derived from observations at each iteration by executing the Q-learning algorithm. The proposed method has been evaluated using two control tasks from the OpenAI Gym: CartPole and FrozenLake. The empirical results of the QF-tuner on the CartPole control task show a reward of 499, and on the FrozenLake control task, a reward of 1. These results indicate that the QF-tuner outperforms other optimization algorithms. On the FrozenLake control task, there was a 36\% increase in reward with a 26\% reduction in learning time; on the CartPole control task, there was a 57\% increase in reward with a 20\% decrease in learning time. Thus, the QF-tuner is an essential method for hyperparameter tuning in reinforcement learning algorithms, enabling more effective solutions to control task problems.
comment: 10 pages
♻ ☆ Selective Uncertainty Propagation in Offline RL
We consider the finite-horizon offline reinforcement learning (RL) setting, and are motivated by the challenge of learning the policy at any step h in dynamic programming (DP) algorithms. To learn this, it is sufficient to evaluate the treatment effect of deviating from the behavioral policy at step h after having optimized the policy for all future steps. Since the policy at any step can affect next-state distributions, the related distributional shift challenges can make this problem far more statistically hard than estimating such treatment effects in the stochastic contextual bandit setting. However, the hardness of many real-world RL instances lies between the two regimes. We develop a flexible and general method called selective uncertainty propagation for confidence interval construction that adapts to the hardness of the associated distribution shift challenges. We show benefits of our approach on toy environments and demonstrate the benefits of these techniques for offline policy learning.
♻ ☆ Deep-Relative-Trust-Based Diffusion for Decentralized Deep Learning
Decentralized learning strategies allow a collection of agents to learn efficiently from local data sets without the need for central aggregation or orchestration. Current decentralized learning paradigms typically rely on an averaging mechanism to encourage agreement in the parameter space. We argue that in the context of deep neural networks, which are often over-parameterized, encouraging consensus of the neural network outputs, as opposed to their parameters can be more appropriate. This motivates the development of a new decentralized learning algorithm, termed DRT diffusion, based on deep relative trust (DRT), a recently introduced similarity measure for neural networks. We provide convergence analysis for the proposed strategy, and numerically establish its benefit to generalization, especially with sparse topologies, in an image classification task.
♻ ☆ Embodied Agent Interface: Benchmarking LLMs for Embodied Decision Making NeurIPS 2024
We aim to evaluate Large Language Models (LLMs) for embodied decision making. While a significant body of work has been leveraging LLMs for decision making in embodied environments, we still lack a systematic understanding of their performance because they are usually applied in different domains, for different purposes, and built based on different inputs and outputs. Furthermore, existing evaluations tend to rely solely on a final success rate, making it difficult to pinpoint what ability is missing in LLMs and where the problem lies, which in turn blocks embodied agents from leveraging LLMs effectively and selectively. To address these limitations, we propose a generalized interface (Embodied Agent Interface) that supports the formalization of various types of tasks and input-output specifications of LLM-based modules. Specifically, it allows us to unify 1) a broad set of embodied decision-making tasks involving both state and temporally extended goals, 2) four commonly-used LLM-based modules for decision making: goal interpretation, subgoal decomposition, action sequencing, and transition modeling, and 3) a collection of fine-grained metrics which break down evaluation into various types of errors, such as hallucination errors, affordance errors, various types of planning errors, etc. Overall, our benchmark offers a comprehensive assessment of LLMs' performance for different subtasks, pinpointing the strengths and weaknesses in LLM-powered embodied AI systems, and providing insights for effective and selective use of LLMs in embodied decision making.
comment: Accepted for oral presentation at NeurIPS 2024 in the Datasets and Benchmarks track. Final Camera version
♻ ☆ Subtractive Training for Music Stem Insertion using Latent Diffusion Models
We present Subtractive Training, a simple and novel method for synthesizing individual musical instrument stems given other instruments as context. This method pairs a dataset of complete music mixes with 1) a variant of the dataset lacking a specific stem, and 2) LLM-generated instructions describing how the missing stem should be reintroduced. We then fine-tune a pretrained text-to-audio diffusion model to generate the missing instrument stem, guided by both the existing stems and the text instruction. Our results demonstrate Subtractive Training's efficacy in creating authentic drum stems that seamlessly blend with the existing tracks. We also show that we can use the text instruction to control the generation of the inserted stem in terms of rhythm, dynamics, and genre, allowing us to modify the style of a single instrument in a full song while keeping the remaining instruments the same. Lastly, we extend this technique to MIDI formats, successfully generating compatible bass, drum, and guitar parts for incomplete arrangements.
comment: 5 pages, survey, edit pipeline figure, fix typos
♻ ☆ Gradient Boosting Decision Trees on Medical Diagnosis over Tabular Data
Medical diagnosis is a crucial task in the medical field, in terms of providing accurate classification and respective treatments. Having near-precise decisions based on correct diagnosis can affect a patient's life itself, and may extremely result in a catastrophe if not classified correctly. Several traditional machine learning (ML), such as support vector machines (SVMs) and logistic regression, and state-of-the-art tabular deep learning (DL) methods, including TabNet and TabTransformer, have been proposed and used over tabular medical datasets. Additionally, due to the superior performances, lower computational costs, and easier optimization over different tasks, ensemble methods have been used in the field more recently. They offer a powerful alternative in terms of providing successful medical decision-making processes in several diagnosis tasks. In this study, we investigated the benefits of ensemble methods, especially the Gradient Boosting Decision Tree (GBDT) algorithms in medical classification tasks over tabular data, focusing on XGBoost, CatBoost, and LightGBM. The experiments demonstrate that GBDT methods outperform traditional ML and deep neural network architectures and have the highest average rank over several benchmark tabular medical diagnosis datasets. Furthermore, they require much less computational power compared to DL models, creating the optimal methodology in terms of high performance and lower complexity.
comment: 8 pages, 2 figures, under review
♻ ☆ Average gradient outer product as a mechanism for deep neural collapse
Deep Neural Collapse (DNC) refers to the surprisingly rigid structure of the data representations in the final layers of Deep Neural Networks (DNNs). Though the phenomenon has been measured in a variety of settings, its emergence is typically explained via data-agnostic approaches, such as the unconstrained features model. In this work, we introduce a data-dependent setting where DNC forms due to feature learning through the average gradient outer product (AGOP). The AGOP is defined with respect to a learned predictor and is equal to the uncentered covariance matrix of its input-output gradients averaged over the training dataset. The Deep Recursive Feature Machine (Deep RFM) is a method that constructs a neural network by iteratively mapping the data with the AGOP and applying an untrained random feature map. We demonstrate empirically that DNC occurs in Deep RFM across standard settings as a consequence of the projection with the AGOP matrix computed at each layer. Further, we theoretically explain DNC in Deep RFM in an asymptotic setting and as a result of kernel learning. We then provide evidence that this mechanism holds for neural networks more generally. In particular, we show that the right singular vectors and values of the weights can be responsible for the majority of within-class variability collapse for DNNs trained in the feature learning regime. As observed in recent work, this singular structure is highly correlated with that of the AGOP.
♻ ☆ A Label is Worth a Thousand Images in Dataset Distillation NeurIPS 2024
Data $\textit{quality}$ is a crucial factor in the performance of machine learning models, a principle that dataset distillation methods exploit by compressing training datasets into much smaller counterparts that maintain similar downstream performance. Understanding how and why data distillation methods work is vital not only for improving these methods but also for revealing fundamental characteristics of "good" training data. However, a major challenge in achieving this goal is the observation that distillation approaches, which rely on sophisticated but mostly disparate methods to generate synthetic data, have little in common with each other. In this work, we highlight a largely overlooked aspect common to most of these methods: the use of soft (probabilistic) labels. Through a series of ablation experiments, we study the role of soft labels in depth. Our results reveal that the main factor explaining the performance of state-of-the-art distillation methods is not the specific techniques used to generate synthetic data but rather the use of soft labels. Furthermore, we demonstrate that not all soft labels are created equal; they must contain $\textit{structured information}$ to be beneficial. We also provide empirical scaling laws that characterize the effectiveness of soft labels as a function of images-per-class in the distilled dataset and establish an empirical Pareto frontier for data-efficient learning. Combined, our findings challenge conventional wisdom in dataset distillation, underscore the importance of soft labels in learning, and suggest new directions for improving distillation methods. Code for all experiments is available at https://github.com/sunnytqin/no-distillation.
comment: NeurIPS 2024
♻ ☆ Learning rheological parameters of non-Newtonian fluids from velocimetry data
We solve a Bayesian inverse Navier-Stokes (N-S) problem that assimilates velocimetry data in order to jointly reconstruct the flow field and learn the unknown N-S parameters. By incorporating a Carreau shear-thinning viscosity model into the N-S problem, we devise an algorithm that learns the most likely Carreau parameters of a shear-thinning fluid, and estimates their uncertainties, from velocimetry data alone. We then conduct a flow-MRI experiment to obtain velocimetry data of an axisymmetric laminar jet through an idealised medical device (FDA nozzle) for a blood analogue fluid. We show that the algorithm can successfully reconstruct the flow field by learning the most likely Carreau parameters, and that the learned parameters are in very good agreement with rheometry measurements. The algorithm accepts any algebraic effective viscosity model, as long as the model is differentiable, and it can be extended to more complicated non-Newtonian fluids (e.g. Oldroyd-B fluid) if a viscoelastic model is incorporated into the N-S problem.
♻ ☆ Contextual Feedback Loops: Amplifying Deep Reasoning with Iterative Top-Down Feedback
We propose \emph{Contextual Feedback Loops} (CFLs) as a simple yet effective way to infuse top-down context into earlier layers of a neural network. Unlike standard backpropagation, which only revisits network parameters based on how far predictions deviate from labels, CFLs \emph{directly} re-introduce the model's own output signals as feedback to guide repeated cycles of refinement. This mechanism is broadly applicable across architectures (e.g., CNNs and transformers), and empirical results show that iterative top-down feedback boosts the accuracy and coherence of the resulting representations. We suggest that by projecting context back into lower-level processing stages, CFLs bridge the gap between purely bottom-up inference and more dynamic, feedback-driven reasoning.
Multimedia 2
☆ Counteracting temporal attacks in Video Copy Detection
Video Copy Detection (VCD) plays a crucial role in copyright protection and content verification by identifying duplicates and near-duplicates in large-scale video databases. The META AI Challenge on video copy detection provided a benchmark for evaluating state-of-the-art methods, with the Dual-level detection approach emerging as a winning solution. This method integrates Video Editing Detection and Frame Scene Detection to handle adversarial transformations and large datasets efficiently. However, our analysis reveals significant limitations in the VED component, particularly in its ability to handle exact copies. Moreover, Dual-level detection shows vulnerability to temporal attacks. To address it, we propose an improved frame selection strategy based on local maxima of interframe differences, which enhances robustness against adversarial temporal modifications while significantly reducing computational overhead. Our method achieves an increase of 1.4 to 5.8 times in efficiency over the standard 1 FPS approach. Compared to Dual-level detection method, our approach maintains comparable micro-average precision ($\mu$AP) while also demonstrating improved robustness against temporal attacks. Given 56\% reduced representation size and the inference time of more than 2 times faster, our approach is more suitable to real-world resource restriction.
comment: 14 pages, 5 figures, 4 tables
♻ ☆ HARP: A Large-Scale Higher-Order Ambisonic Room Impulse Response Dataset ICASSP 2025
This contribution introduces a dataset of 7th-order Ambisonic Room Impulse Responses (HOA-RIRs), created using the Image Source Method. By employing higher-order Ambisonics, our dataset enables precise spatial audio reproduction, a critical requirement for realistic immersive audio applications. Leveraging the virtual simulation, we present a unique microphone configuration, based on the superposition principle, designed to optimize sound field coverage while addressing the limitations of traditional microphone arrays. The presented 64-microphone configuration allows us to capture RIRs directly in the Spherical Harmonics domain. The dataset features a wide range of room configurations, encompassing variations in room geometry, acoustic absorption materials, and source-receiver distances. A detailed description of the simulation setup is provided alongside for an accurate reproduction. The dataset serves as a vital resource for researchers working on spatial audio, particularly in applications involving machine learning to improve room acoustics modeling and sound field synthesis. It further provides a very high level of spatial resolution and realism crucial for tasks such as source localization, reverberation prediction, and immersive sound reproduction.
comment: Accepted at ICASSP 2025 Workshop. Code to generate uploaded at: https://github.com/whojavumusic/HARP
Artificial Intelligence 55
Can Safety Fine-Tuning Be More Principled? Lessons Learned from Cybersecurity
As LLMs develop increasingly advanced capabilities, there is an increased need to minimize the harm that could be caused to society by certain model outputs; hence, most LLMs have safety guardrails added, for example via fine-tuning. In this paper, we argue the position that current safety fine-tuning is very similar to a traditional cat-and-mouse game (or arms race) between attackers and defenders in cybersecurity. Model jailbreaks and attacks are patched with bandaids to target the specific attack mechanism, but many similar attack vectors might remain. When defenders are not proactively coming up with principled mechanisms, it becomes very easy for attackers to sidestep any new defenses. We show how current defenses are insufficient to prevent new adversarial jailbreak attacks, reward hacking, and loss of control problems. In order to learn from past mistakes in cybersecurity, we draw analogies with historical examples and develop lessons learned that can be applied to LLM safety. These arguments support the need for new and more principled approaches to designing safe models, which are architected for security from the beginning. We describe several such approaches from the AI literature.
comment: published at Neurips Safe Generative AI Workshop 2024
☆ ProKeR: A Kernel Perspective on Few-Shot Adaptation of Large Vision-Language Models
The growing popularity of Contrastive Language-Image Pretraining (CLIP) has led to its widespread application in various visual downstream tasks. To enhance CLIP's effectiveness and versatility, efficient few-shot adaptation techniques have been widely adopted. Among these approaches, training-free methods, particularly caching methods exemplified by Tip-Adapter, have gained attention for their lightweight adaptation without the need for additional fine-tuning. In this paper, we revisit Tip-Adapter from a kernel perspective, showing that caching methods function as local adapters and are connected to a well-established kernel literature. Drawing on this insight, we offer a theoretical understanding of how these methods operate and suggest multiple avenues for enhancing the Tip-Adapter baseline. Notably, our analysis shows the importance of incorporating global information in local adapters. Therefore, we subsequently propose a global method that learns a proximal regularizer in a reproducing kernel Hilbert space (RKHS) using CLIP as a base learner. Our method, which we call ProKeR (Proximal Kernel ridge Regression), has a closed form solution and achieves state-of-the-art performances across 11 datasets in the standard few-shot adaptation benchmark.
comment: Code available at https://ybendou.github.io/ProKeR
☆ Counteracting temporal attacks in Video Copy Detection
Video Copy Detection (VCD) plays a crucial role in copyright protection and content verification by identifying duplicates and near-duplicates in large-scale video databases. The META AI Challenge on video copy detection provided a benchmark for evaluating state-of-the-art methods, with the Dual-level detection approach emerging as a winning solution. This method integrates Video Editing Detection and Frame Scene Detection to handle adversarial transformations and large datasets efficiently. However, our analysis reveals significant limitations in the VED component, particularly in its ability to handle exact copies. Moreover, Dual-level detection shows vulnerability to temporal attacks. To address it, we propose an improved frame selection strategy based on local maxima of interframe differences, which enhances robustness against adversarial temporal modifications while significantly reducing computational overhead. Our method achieves an increase of 1.4 to 5.8 times in efficiency over the standard 1 FPS approach. Compared to Dual-level detection method, our approach maintains comparable micro-average precision ($\mu$AP) while also demonstrating improved robustness against temporal attacks. Given 56\% reduced representation size and the inference time of more than 2 times faster, our approach is more suitable to real-world resource restriction.
comment: 14 pages, 5 figures, 4 tables
☆ AIMA at SemEval-2024 Task 3: Simple Yet Powerful Emotion Cause Pair Analysis SemEval-2024
The SemEval-2024 Task 3 presents two subtasks focusing on emotion-cause pair extraction within conversational contexts. Subtask 1 revolves around the extraction of textual emotion-cause pairs, where causes are defined and annotated as textual spans within the conversation. Conversely, Subtask 2 extends the analysis to encompass multimodal cues, including language, audio, and vision, acknowledging instances where causes may not be exclusively represented in the textual data. Our proposed model for emotion-cause analysis is meticulously structured into three core segments: (i) embedding extraction, (ii) cause-pair extraction & emotion classification, and (iii) cause extraction using QA after finding pairs. Leveraging state-of-the-art techniques and fine-tuning on task-specific datasets, our model effectively unravels the intricate web of conversational dynamics and extracts subtle cues signifying causality in emotional expressions. Our team, AIMA, demonstrated strong performance in the SemEval-2024 Task 3 competition. We ranked as the 10th in subtask 1 and the 6th in subtask 2 out of 23 teams.
comment: Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)
☆ AIMA at SemEval-2024 Task 10: History-Based Emotion Recognition in Hindi-English Code-Mixed Conversations SemEval-2024
In this study, we introduce a solution to the SemEval 2024 Task 10 on subtask 1, dedicated to Emotion Recognition in Conversation (ERC) in code-mixed Hindi-English conversations. ERC in code-mixed conversations presents unique challenges, as existing models are typically trained on monolingual datasets and may not perform well on code-mixed data. To address this, we propose a series of models that incorporate both the previous and future context of the current utterance, as well as the sequential information of the conversation. To facilitate the processing of code-mixed data, we developed a Hinglish-to-English translation pipeline to translate the code-mixed conversations into English. We designed four different base models, each utilizing powerful pre-trained encoders to extract features from the input but with varying architectures. By ensembling all of these models, we developed a final model that outperforms all other baselines.
comment: Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)
☆ CLOFAI: A Dataset of Real And Fake Image Classification Tasks for Continual Learning
The rapid advancement of generative AI models capable of creating realistic media has led to a need for classifiers that can accurately distinguish between genuine and artificially-generated images. A significant challenge for these classifiers emerges when they encounter images from generative models that are not represented in their training data, usually resulting in diminished performance. A typical approach is to periodically update the classifier's training data with images from the new generative models then retrain the classifier on the updated dataset. However, in some real-life scenarios, storage, computational, or privacy constraints render this approach impractical. Additionally, models used in security applications may be required to rapidly adapt. In these circumstances, continual learning provides a promising alternative, as the classifier can be updated without retraining on the entire dataset. In this paper, we introduce a new dataset called CLOFAI (Continual Learning On Fake and Authentic Images), which takes the form of a domain-incremental image classification problem. Moreover, we showcase the applicability of this dataset as a benchmark for evaluating continual learning methodologies. In doing this, we set a baseline on our novel dataset using three foundational continual learning methods -- EWC, GEM, and Experience Replay -- and find that EWC performs poorly, while GEM and Experience Replay show promise, performing significantly better than a Naive baseline. The dataset and code to run the experiments can be accessed from the following GitHub repository: https://github.com/Will-Doherty/CLOFAI.
☆ Playing the Lottery With Concave Regularizers for Sparse Trainable Neural Networks
The design of sparse neural networks, i.e., of networks with a reduced number of parameters, has been attracting increasing research attention in the last few years. The use of sparse models may significantly reduce the computational and storage footprint in the inference phase. In this context, the lottery ticket hypothesis (LTH) constitutes a breakthrough result, that addresses not only the performance of the inference phase, but also of the training phase. It states that it is possible to extract effective sparse subnetworks, called winning tickets, that can be trained in isolation. The development of effective methods to play the lottery, i.e., to find winning tickets, is still an open problem. In this article, we propose a novel class of methods to play the lottery. The key point is the use of concave regularization to promote the sparsity of a relaxed binary mask, which represents the network topology. We theoretically analyze the effectiveness of the proposed method in the convex framework. Then, we propose extended numerical tests on various datasets and architectures, that show that the proposed method can improve the performance of state-of-the-art algorithms.
☆ A Collection of Question Answering Datasets for Norwegian
This paper introduces a new suite of question answering datasets for Norwegian; NorOpenBookQA, NorCommonSenseQA, NorTruthfulQA, and NRK-Quiz-QA. The data covers a wide range of skills and knowledge domains, including world knowledge, commonsense reasoning, truthfulness, and knowledge about Norway. Covering both of the written standards of Norwegian - Bokm{\aa}l and Nynorsk - our datasets comprise over 10k question-answer pairs, created by native speakers. We detail our dataset creation approach and present the results of evaluating 11 language models (LMs) in zero- and few-shot regimes. Most LMs perform better in Bokm{\aa}l than Nynorsk, struggle most with commonsense reasoning, and are often untruthful in generating answers to questions. All our datasets and annotation materials are publicly available.
comment: Accepted for NoDaLiDa / Baltic-HLT 2025
☆ Tell me about yourself: LLMs are aware of their learned behaviors ICLR 2025
We study behavioral self-awareness -- an LLM's ability to articulate its behaviors without requiring in-context examples. We finetune LLMs on datasets that exhibit particular behaviors, such as (a) making high-risk economic decisions, and (b) outputting insecure code. Despite the datasets containing no explicit descriptions of the associated behavior, the finetuned LLMs can explicitly describe it. For example, a model trained to output insecure code says, ``The code I write is insecure.'' Indeed, models show behavioral self-awareness for a range of behaviors and for diverse evaluations. Note that while we finetune models to exhibit behaviors like writing insecure code, we do not finetune them to articulate their own behaviors -- models do this without any special training or examples. Behavioral self-awareness is relevant for AI safety, as models could use it to proactively disclose problematic behaviors. In particular, we study backdoor policies, where models exhibit unexpected behaviors only under certain trigger conditions. We find that models can sometimes identify whether or not they have a backdoor, even without its trigger being present. However, models are not able to directly output their trigger by default. Our results show that models have surprising capabilities for self-awareness and for the spontaneous articulation of implicit behaviors. Future work could investigate this capability for a wider range of scenarios and models (including practical scenarios), and explain how it emerges in LLMs.
comment: Submitted to ICLR 2025. 17 pages, 13 figures
☆ Clinical trial cohort selection using Large Language Models on n2c2 Challenges
Clinical trials are a critical process in the medical field for introducing new treatments and innovations. However, cohort selection for clinical trials is a time-consuming process that often requires manual review of patient text records for specific keywords. Though there have been studies on standardizing the information across the various platforms, Natural Language Processing (NLP) tools remain crucial for spotting eligibility criteria in textual reports. Recently, pre-trained large language models (LLMs) have gained popularity for various NLP tasks due to their ability to acquire a nuanced understanding of text. In this paper, we study the performance of large language models on clinical trial cohort selection and leverage the n2c2 challenges to benchmark their performance. Our results are promising with regard to the incorporation of LLMs for simple cohort selection tasks, but also highlight the difficulties encountered by these models as soon as fine-grained knowledge and reasoning are required.
☆ ChaosEater: Fully Automating Chaos Engineering with Large Language Models
Chaos Engineering (CE) is an engineering technique aimed at improving the resiliency of distributed systems. It involves artificially injecting specific failures into a distributed system and observing its behavior in response. Based on the observation, the system can be proactively improved to handle those failures. Recent CE tools realize the automated execution of predefined CE experiments. However, defining these experiments and reconfiguring the system after the experiments still remain manual. To reduce the costs of the manual operations, we propose \textsc{ChaosEater}, a \textit{system} for automating the entire CE operations with Large Language Models (LLMs). It pre-defines the general flow according to the systematic CE cycle and assigns subdivided operations within the flow to LLMs. We assume systems based on Infrastructure as Code (IaC), wherein the system configurations and artificial failures are managed through code. Hence, the LLMs' operations in our \textit{system} correspond to software engineering tasks, including requirement definition, code generation and debugging, and testing. We validate our \textit{system} through case studies on both small and large systems. The results demonstrate that our \textit{system} significantly reduces both time and monetary costs while completing reasonable single CE cycles.
comment: 138 pages (12 main), 10 figures. Project page: https://ntt-dkiku.github.io/chaos-eater
☆ Enhanced Suicidal Ideation Detection from Social Media Using a CNN-BiLSTM Hybrid Model
Suicidal ideation detection is crucial for preventing suicides, a leading cause of death worldwide. Many individuals express suicidal thoughts on social media, offering a vital opportunity for early detection through advanced machine learning techniques. The identification of suicidal ideation in social media text is improved by utilising a hybrid framework that integrates Convolutional Neural Networks (CNN) and Bidirectional Long Short-Term Memory (BiLSTM), enhanced with an attention mechanism. To enhance the interpretability of the model's predictions, Explainable AI (XAI) methods are applied, with a particular focus on SHapley Additive exPlanations (SHAP), are incorporated. At first, the model managed to reach an accuracy of 92.81%. By applying fine-tuning and early stopping techniques, the accuracy improved to 94.29%. The SHAP analysis revealed key features influencing the model's predictions, such as terms related to mental health struggles. This level of transparency boosts the model's credibility while helping mental health professionals understand and trust the predictions. This work highlights the potential for improving the accuracy and interpretability of detecting suicidal tendencies, making a valuable contribution to the progress of mental health monitoring systems. It emphasizes the significance of blending powerful machine learning methods with explainability to develop reliable and impactful mental health solutions.
☆ Leveraging counterfactual concepts for debugging and improving CNN model performance
Counterfactual explanation methods have recently received significant attention for explaining CNN-based image classifiers due to their ability to provide easily understandable explanations that align more closely with human reasoning. However, limited attention has been given to utilizing explainability methods to improve model performance. In this paper, we propose to leverage counterfactual concepts aiming to enhance the performance of CNN models in image classification tasks. Our proposed approach utilizes counterfactual reasoning to identify crucial filters used in the decision-making process. Following this, we perform model retraining through the design of a novel methodology and loss functions that encourage the activation of class-relevant important filters and discourage the activation of irrelevant filters for each class. This process effectively minimizes the deviation of activation patterns of local predictions and the global activation patterns of their respective inferred classes. By incorporating counterfactual explanations, we validate unseen model predictions and identify misclassifications. The proposed methodology provides insights into potential weaknesses and biases in the model's learning process, enabling targeted improvements and enhanced performance. Experimental results on publicly available datasets have demonstrated an improvement of 1-2\%, validating the effectiveness of the approach.
comment: This manuscript is currently under consideration for publication in Pattern Recognition Letters
☆ Can LLM Generate Regression Tests for Software Commits?
Large Language Models (LLMs) have shown tremendous promise in automated software engineering. In this paper, we investigate the opportunities of LLMs for automatic regression test generation for programs that take highly structured, human-readable inputs, such as XML parsers or JavaScript interpreters. Concretely, we explore the following regression test generation scenarios for such programs that have so far been difficult to test automatically in the absence of corresponding input grammars: $\bullet$ Bug finding. Given a code change (e.g., a commit or pull request), our LLM-based approach generates a test case with the objective of revealing any bugs that might be introduced if that change is applied. $\bullet$ Patch testing. Given a patch, our LLM-based approach generates a test case that fails before but passes after the patch. This test can be added to the regression test suite to catch similar bugs in the future. We implement Cleverest, a feedback-directed, zero-shot LLM-based regression test generation technique, and evaluate its effectiveness on 22 commits to three subject programs: Mujs, Libxml2, and Poppler. For programs using more human-readable file formats, like XML or JavaScript, we found Cleverest performed very well. It generated easy-to-understand bug-revealing or bug-reproduction test cases for the majority of commits in just under three minutes -- even when only the code diff or commit message (unless it was too vague) was given. For programs with more compact file formats, like PDF, as expected, it struggled to generate effective test cases. However, the LLM-supplied test cases are not very far from becoming effective (e.g., when used as a seed by a greybox fuzzer or as a starting point by the developer).
comment: 18 pages. This version of the paper was written on Thu, 12 Sep 2024
☆ Federated Deep Reinforcement Learning for Energy Efficient Multi-Functional RIS-Assisted Low-Earth Orbit Networks
In this paper, a novel network architecture that deploys the multi-functional reconfigurable intelligent surface (MF-RIS) in low-Earth orbit (LEO) is proposed. Unlike traditional RIS with only signal reflection capability, the MF-RIS can reflect, refract, and amplify signals, as well as harvest energy from wireless signals. Given the high energy demands in shadow regions where solar energy is unavailable, MF-RIS is deployed in LEO to enhance signal coverage and improve energy efficiency (EE). To address this, we formulate a long-term EE optimization problem by determining the optimal parameters for MF-RIS configurations, including amplification and phase-shifts, energy harvesting ratios, and LEO transmit beamforming. To address the complex non-convex and non-linear problem, a federated learning enhanced multi-agent deep deterministic policy gradient (FEMAD) scheme is designed. Multi-agent DDPG of each agent can provide the optimal action policy from its interaction to environments, whereas federated learning enables the hidden information exchange among multi-agents. In numerical results, we can observe significant EE improvements compared to the other benchmarks, including centralized deep reinforcement learning as well as distributed multi-agent deep deterministic policy gradient (DDPG). Additionally, the proposed LEO-MF-RIS architecture has demonstrated its effectiveness, achieving the highest EE performance compared to the scenarios of fixed/no energy harvesting in MF-RIS, traditional reflection-only RIS, and deployment without RISs/MF-RISs.
☆ IntellAgent: A Multi-Agent Framework for Evaluating Conversational AI Systems
Large Language Models (LLMs) are transforming artificial intelligence, evolving into task-oriented systems capable of autonomous planning and execution. One of the primary applications of LLMs is conversational AI systems, which must navigate multi-turn dialogues, integrate domain-specific APIs, and adhere to strict policy constraints. However, evaluating these agents remains a significant challenge, as traditional methods fail to capture the complexity and variability of real-world interactions. We introduce IntellAgent, a scalable, open-source multi-agent framework designed to evaluate conversational AI systems comprehensively. IntellAgent automates the creation of diverse, synthetic benchmarks by combining policy-driven graph modeling, realistic event generation, and interactive user-agent simulations. This innovative approach provides fine-grained diagnostics, addressing the limitations of static and manually curated benchmarks with coarse-grained metrics. IntellAgent represents a paradigm shift in evaluating conversational AI. By simulating realistic, multi-policy scenarios across varying levels of complexity, IntellAgent captures the nuanced interplay of agent capabilities and policy constraints. Unlike traditional methods, it employs a graph-based policy model to represent relationships, likelihoods, and complexities of policy interactions, enabling highly detailed diagnostics. IntellAgent also identifies critical performance gaps, offering actionable insights for targeted optimization. Its modular, open-source design supports seamless integration of new domains, policies, and APIs, fostering reproducibility and community collaboration. Our findings demonstrate that IntellAgent serves as an effective framework for advancing conversational AI by addressing challenges in bridging research and deployment. The framework is available at https://github.com/plurai-ai/intellagent
☆ Enhancing Neural Spoken Language Recognition: An Exploration with Multilingual Datasets
In this research, we advanced a spoken language recognition system, moving beyond traditional feature vector-based models. Our improvements focused on effectively capturing language characteristics over extended periods using a specialized pooling layer. We utilized a broad dataset range from Common-Voice, targeting ten languages across Indo-European, Semitic, and East Asian families. The major innovation involved optimizing the architecture of Time Delay Neural Networks. We introduced additional layers and restructured these networks into a funnel shape, enhancing their ability to process complex linguistic patterns. A rigorous grid search determined the optimal settings for these networks, significantly boosting their efficiency in language pattern recognition from audio samples. The model underwent extensive training, including a phase with augmented data, to refine its capabilities. The culmination of these efforts is a highly accurate system, achieving a 97\% accuracy rate in language recognition. This advancement represents a notable contribution to artificial intelligence, specifically in improving the accuracy and efficiency of language processing systems, a critical aspect in the engineering of advanced speech recognition technologies.
comment: 15 pages, 4 figures
☆ BF-STVSR: B-Splines and Fourier-Best Friends for High Fidelity Spatial-Temporal Video Super-Resolution
Enhancing low-resolution, low-frame-rate videos to high-resolution, high-frame-rate quality is essential for a seamless user experience, motivating advancements in Continuous Spatial-Temporal Video Super Resolution (C-STVSR). While prior methods employ Implicit Neural Representation (INR) for continuous encoding, they often struggle to capture the complexity of video data, relying on simple coordinate concatenation and pre-trained optical flow network for motion representation. Interestingly, we find that adding position encoding, contrary to common observations, does not improve-and even degrade performance. This issue becomes particularly pronounced when combined with pre-trained optical flow networks, which can limit the model's flexibility. To address these issues, we propose BF-STVSR, a C-STVSR framework with two key modules tailored to better represent spatial and temporal characteristics of video: 1) B-spline Mapper for smooth temporal interpolation, and 2) Fourier Mapper for capturing dominant spatial frequencies. Our approach achieves state-of-the-art PSNR and SSIM performance, showing enhanced spatial details and natural temporal consistency.
comment: 11pages, 5 figures
☆ AdaptiveLog: An Adaptive Log Analysis Framework with the Collaboration of Large and Small Language Model
Automated log analysis is crucial to ensure high availability and reliability of complex systems. The advent of LLMs in NLP has ushered in a new era of language model-driven automated log analysis, garnering significant interest. Within this field, two primary paradigms based on language models for log analysis have become prominent. Small Language Models (SLMs) follow the pre-train and fine-tune paradigm, focusing on the specific log analysis task through fine-tuning on supervised datasets. On the other hand, LLMs following the in-context learning paradigm, analyze logs by providing a few examples in prompt contexts without updating parameters. Despite their respective strengths, we notice that SLMs are more cost-effective but less powerful, whereas LLMs with large parameters are highly powerful but expensive and inefficient. To trade-off between the performance and inference costs of both models in automated log analysis, this paper introduces an adaptive log analysis framework known as AdaptiveLog, which effectively reduces the costs associated with LLM while ensuring superior results. This framework collaborates an LLM and a small language model, strategically allocating the LLM to tackle complex logs while delegating simpler logs to the SLM. Specifically, to efficiently query the LLM, we propose an adaptive selection strategy based on the uncertainty estimation of the SLM, where the LLM is invoked only when the SLM is uncertain. In addition, to enhance the reasoning ability of the LLM in log analysis tasks, we propose a novel prompt strategy by retrieving similar error-prone cases as the reference, enabling the model to leverage past error experiences and learn solutions from these cases. Extensive experiments demonstrate that AdaptiveLog achieves state-of-the-art results across different tasks, elevating the overall accuracy of log analysis while maintaining cost efficiency.
☆ GREEN-CODE: Optimizing Energy Efficiency in Large Language Models for Code Generation
Large Language Models (LLMs) are becoming integral to daily life, showcasing their vast potential across various Natural Language Processing (NLP) tasks. Beyond NLP, LLMs are increasingly used in software development tasks, such as code completion, modification, bug fixing, and code translation. Software engineers widely use tools like GitHub Copilot and Amazon Q, streamlining workflows and automating tasks with high accuracy. While the resource and energy intensity of LLM training is often highlighted, inference can be even more resource-intensive over time, as it's a continuous process with a high number of invocations. Therefore, developing resource-efficient alternatives for LLM inference is crucial for sustainability. This work proposes GREEN-CODE, a framework for energy-aware code generation in LLMs. GREEN-CODE performs dynamic early exit during LLM inference. We train a Reinforcement Learning (RL) agent that learns to balance the trade-offs between accuracy, latency, and energy consumption. Our approach is evaluated on two open-source LLMs, Llama 3.2 3B and OPT 2.7B, using the JavaCorpus and PY150 datasets. Results show that our method reduces the energy consumption between 23-50 % on average for code generation tasks without significantly affecting accuracy.
comment: Under submission in ACM/IEEE conference, 11 pages
☆ The Alternative Annotator Test for LLM-as-a-Judge: How to Statistically Justify Replacing Human Annotators with LLMs
The "LLM-as-a-judge" paradigm employs Large Language Models (LLMs) as annotators and evaluators in tasks traditionally performed by humans. LLM annotations are widely used, not only in NLP research but also in fields like medicine, psychology, and social science. Despite their role in shaping study results and insights, there is no standard or rigorous procedure to determine whether LLMs can replace human annotators. In this paper, we propose a novel statistical procedure -- the Alternative Annotator Test (alt-test) -- that requires only a modest subset of annotated examples to justify using LLM annotations. Additionally, we introduce a versatile and interpretable measure for comparing LLM judges. To demonstrate our procedure, we curated a diverse collection of ten datasets, consisting of language and vision-language tasks, and conducted experiments with six LLMs and four prompting techniques. Our results show that LLMs can sometimes replace humans with closed-source LLMs (such as GPT-4o), outperforming open-source LLMs, and that prompting techniques yield judges of varying quality. We hope this study encourages more rigorous and reliable practices.
☆ Advancing General Multimodal Capability of Vision-language Models with Pyramid-descent Visual Position Encoding
Vision-language Models (VLMs) have shown remarkable capabilities in advancing general artificial intelligence, yet the irrational encoding of visual positions persists in inhibiting the models' comprehensive perception performance across different levels of granularity. In this work, we propose Pyramid-descent Visual Position Encoding (PyPE), a novel approach designed to enhance the perception of visual tokens within VLMs. By assigning visual position indexes from the periphery to the center and expanding the central receptive field incrementally, PyPE addresses the limitations of traditional raster-scan methods and mitigates the long-term decay effects induced by Rotary Position Embedding (RoPE). Our method reduces the relative distance between interrelated visual elements and instruction tokens, promoting a more rational allocation of attention weights and allowing for a multi-granularity perception of visual elements and countering the over-reliance on anchor tokens. Extensive experimental evaluations demonstrate that PyPE consistently improves the general capabilities of VLMs across various sizes. Code is available at https://github.com/SakuraTroyChen/PyPE.
☆ DC-PCN: Point Cloud Completion Network with Dual-Codebook Guided Quantization AAAI25
Point cloud completion aims to reconstruct complete 3D shapes from partial 3D point clouds. With advancements in deep learning techniques, various methods for point cloud completion have been developed. Despite achieving encouraging results, a significant issue remains: these methods often overlook the variability in point clouds sampled from a single 3D object surface. This variability can lead to ambiguity and hinder the achievement of more precise completion results. Therefore, in this study, we introduce a novel point cloud completion network, namely Dual-Codebook Point Completion Network (DC-PCN), following an encder-decoder pipeline. The primary objective of DC-PCN is to formulate a singular representation of sampled point clouds originating from the same 3D surface. DC-PCN introduces a dual-codebook design to quantize point-cloud representations from a multilevel perspective. It consists of an encoder-codebook and a decoder-codebook, designed to capture distinct point cloud patterns at shallow and deep levels. Additionally, to enhance the information flow between these two codebooks, we devise an information exchange mechanism. This approach ensures that crucial features and patterns from both shallow and deep levels are effectively utilized for completion. Extensive experiments on the PCN, ShapeNet\_Part, and ShapeNet34 datasets demonstrate the state-of-the-art performance of our method.
comment: AAAI25 Accepted
☆ MARIO: A Mixed Annotation Framework For Polyp Segmentation
Existing polyp segmentation models are limited by high labeling costs and the small size of datasets. Additionally, vast polyp datasets remain underutilized because these models typically rely on a single type of annotation. To address this dilemma, we introduce MARIO, a mixed supervision model designed to accommodate various annotation types, significantly expanding the range of usable data. MARIO learns from underutilized datasets by incorporating five forms of supervision: pixel-level, box-level, polygon-level, scribblelevel, and point-level. Each form of supervision is associated with a tailored loss that effectively leverages the supervision labels while minimizing the noise. This allows MARIO to move beyond the constraints of relying on a single annotation type. Furthermore, MARIO primarily utilizes dataset with weak and cheap annotations, reducing the dependence on large-scale, fully annotated ones. Experimental results across five benchmark datasets demonstrate that MARIO consistently outperforms existing methods, highlighting its efficacy in balancing trade-offs between different forms of supervision and maximizing polyp segmentation performance
comment: Accepted by IEEE ISBI 2025 4-page paper
☆ InsQABench: Benchmarking Chinese Insurance Domain Question Answering with Large Language Models
The application of large language models (LLMs) has achieved remarkable success in various fields, but their effectiveness in specialized domains like the Chinese insurance industry remains underexplored. The complexity of insurance knowledge, encompassing specialized terminology and diverse data types, poses significant challenges for both models and users. To address this, we introduce InsQABench, a benchmark dataset for the Chinese insurance sector, structured into three categories: Insurance Commonsense Knowledge, Insurance Structured Database, and Insurance Unstructured Documents, reflecting real-world insurance question-answering tasks.We also propose two methods, SQL-ReAct and RAG-ReAct, to tackle challenges in structured and unstructured data tasks. Evaluations show that while LLMs struggle with domain-specific terminology and nuanced clause texts, fine-tuning on InsQABench significantly improves performance. Our benchmark establishes a solid foundation for advancing LLM applications in the insurance domain, with data and code available at https://github.com/HaileyFamo/InsQABench.git.
☆ Blockchain-assisted Demonstration Cloning for Multi-Agent Deep Reinforcement Learning
Multi-Agent Deep Reinforcement Learning (MDRL) is a promising research area in which agents learn complex behaviors in cooperative or competitive environments. However, MDRL comes with several challenges that hinder its usability, including sample efficiency, curse of dimensionality, and environment exploration. Recent works proposing Federated Reinforcement Learning (FRL) to tackle these issues suffer from problems related to model restrictions and maliciousness. Other proposals using reward shaping require considerable engineering and could lead to local optima. In this paper, we propose a novel Blockchain-assisted Multi-Expert Demonstration Cloning (MEDC) framework for MDRL. The proposed method utilizes expert demonstrations in guiding the learning of new MDRL agents, by suggesting exploration actions in the environment. A model sharing framework on Blockchain is designed to allow users to share their trained models, which can be allocated as expert models to requesting users to aid in training MDRL systems. A Consortium Blockchain is adopted to enable traceable and autonomous execution without the need for a single trusted entity. Smart Contracts are designed to manage users and models allocation, which are shared using IPFS. The proposed framework is tested on several applications, and is benchmarked against existing methods in FRL, Reward Shaping, and Imitation Learning-assisted RL. The results show the outperformance of the proposed framework in terms of learning speed and resiliency to faulty and malicious models.
☆ TSVC:Tripartite Learning with Semantic Variation Consistency for Robust Image-Text Retrieval AAAI 2025
Cross-modal retrieval maps data under different modality via semantic relevance. Existing approaches implicitly assume that data pairs are well-aligned and ignore the widely existing annotation noise, i.e., noisy correspondence (NC). Consequently, it inevitably causes performance degradation. Despite attempts that employ the co-teaching paradigm with identical architectures to provide distinct data perspectives, the differences between these architectures are primarily stemmed from random initialization. Thus, the model becomes increasingly homogeneous along with the training process. Consequently, the additional information brought by this paradigm is severely limited. In order to resolve this problem, we introduce a Tripartite learning with Semantic Variation Consistency (TSVC) for robust image-text retrieval. We design a tripartite cooperative learning mechanism comprising a Coordinator, a Master, and an Assistant model. The Coordinator distributes data, and the Assistant model supports the Master model's noisy label prediction with diverse data. Moreover, we introduce a soft label estimation method based on mutual information variation, which quantifies the noise in new samples and assigns corresponding soft labels. We also present a new loss function to enhance robustness and optimize training effectiveness. Extensive experiments on three widely used datasets demonstrate that, even at increasing noise ratios, TSVC exhibits significant advantages in retrieval accuracy and maintains stable training performance.
comment: This paper has been accepted to the Main Track of AAAI 2025. It contains 9 pages, 7 figures, and is relevant to the areas of cross-modal retrieval and machine learning. The work presents a novel approach in robust image-text retrieval using a tripartite learning framework
☆ Generative Physical AI in Vision: A Survey
Generative Artificial Intelligence (AI) has rapidly advanced the field of computer vision by enabling machines to create and interpret visual data with unprecedented sophistication. This transformation builds upon a foundation of generative models to produce realistic images, videos, and 3D or 4D content. Traditionally, generative models primarily focus on visual fidelity while often neglecting the physical plausibility of generated content. This gap limits their effectiveness in applications requiring adherence to real-world physical laws, such as robotics, autonomous systems, and scientific simulations. As generative AI evolves to increasingly integrate physical realism and dynamic simulation, its potential to function as a "world simulator" expands-enabling the modeling of interactions governed by physics and bridging the divide between virtual and physical realities. This survey systematically reviews this emerging field of physics-aware generative AI in computer vision, categorizing methods based on how they incorporate physical knowledge-either through explicit simulation or implicit learning. We analyze key paradigms, discuss evaluation protocols, and identify future research directions. By offering a comprehensive overview, this survey aims to help future developments in physically grounded generation for vision. The reviewed papers are summarized at https://github.com/BestJunYu/Awesome-Physics-aware-Generation.
☆ Adaptive Target Localization under Uncertainty using Multi-Agent Deep Reinforcement Learning with Knowledge Transfer
Target localization is a critical task in sensitive applications, where multiple sensing agents communicate and collaborate to identify the target location based on sensor readings. Existing approaches investigated the use of Multi-Agent Deep Reinforcement Learning (MADRL) to tackle target localization. Nevertheless, these methods do not consider practical uncertainties, like false alarms when the target does not exist or when it is unreachable due to environmental complexities. To address these drawbacks, this work proposes a novel MADRL-based method for target localization in uncertain environments. The proposed MADRL method employs Proximal Policy Optimization to optimize the decision-making of sensing agents, which is represented in the form of an actor-critic structure using Convolutional Neural Networks. The observations of the agents are designed in an optimized manner to capture essential information in the environment, and a team-based reward functions is proposed to produce cooperative agents. The MADRL method covers three action dimensionalities that control the agents' mobility to search the area for the target, detect its existence, and determine its reachability. Using the concept of Transfer Learning, a Deep Learning model builds on the knowledge from the MADRL model to accurately estimating the target location if it is unreachable, resulting in shared representations between the models for faster learning and lower computational complexity. Collectively, the final combined model is capable of searching for the target, determining its existence and reachability, and estimating its location accurately. The proposed method is tested using a radioactive target localization environment and benchmarked against existing methods, showing its efficacy.
☆ Decomposing and Fusing Intra- and Inter-Sensor Spatio-Temporal Signal for Multi-Sensor Wearable Human Activity Recognition
Wearable Human Activity Recognition (WHAR) is a prominent research area within ubiquitous computing. Multi-sensor synchronous measurement has proven to be more effective for WHAR than using a single sensor. However, existing WHAR methods use shared convolutional kernels for indiscriminate temporal feature extraction across each sensor variable, which fails to effectively capture spatio-temporal relationships of intra-sensor and inter-sensor variables. We propose the DecomposeWHAR model consisting of a decomposition phase and a fusion phase to better model the relationships between modality variables. The decomposition creates high-dimensional representations of each intra-sensor variable through the improved Depth Separable Convolution to capture local temporal features while preserving their unique characteristics. The fusion phase begins by capturing relationships between intra-sensor variables and fusing their features at both the channel and variable levels. Long-range temporal dependencies are modeled using the State Space Model (SSM), and later cross-sensor interactions are dynamically captured through a self-attention mechanism, highlighting inter-sensor spatial correlations. Our model demonstrates superior performance on three widely used WHAR datasets, significantly outperforming state-of-the-art models while maintaining acceptable computational efficiency. Our codes and supplementary materials are available at https://github.com/Anakin2555/DecomposeWHAR.
☆ Fine-Grained Appropriate Reliance: Human-AI Collaboration with a Multi-Step Transparent Decision Workflow for Complex Task Decomposition
In recent years, the rapid development of AI systems has brought about the benefits of intelligent services but also concerns about security and reliability. By fostering appropriate user reliance on an AI system, both complementary team performance and reduced human workload can be achieved. Previous empirical studies have extensively analyzed the impact of factors ranging from task, system, and human behavior on user trust and appropriate reliance in the context of one-step decision making. However, user reliance on AI systems in tasks with complex semantics that require multi-step workflows remains under-explored. Inspired by recent work on task decomposition with large language models, we propose to investigate the impact of a novel Multi-Step Transparent (MST) decision workflow on user reliance behaviors. We conducted an empirical study (N = 233) of AI-assisted decision making in composite fact-checking tasks (i.e., fact-checking tasks that entail multiple sub-fact verification steps). Our findings demonstrate that human-AI collaboration with an MST decision workflow can outperform one-step collaboration in specific contexts (e.g., when advice from an AI system is misleading). Further analysis of the appropriate reliance at fine-grained levels indicates that an MST decision workflow can be effective when users demonstrate a relatively high consideration of the intermediate steps. Our work highlights that there is no one-size-fits-all decision workflow that can help obtain optimal human-AI collaboration. Our insights help deepen the understanding of the role of decision workflows in facilitating appropriate reliance. We synthesize important implications for designing effective means to facilitate appropriate reliance on AI systems in composite tasks, positioning opportunities for the human-centered AI and broader HCI communities.
comment: Work in progress
♻ ☆ QF-tuner: Breaking Tradition in Reinforcement Learning
Hyperparameter tuning in reinforcement learning algorithms refers to choosing the optimal parameters that may increase the algorithm's performance. Manual or random hyperparameter tuning methods can be problematic, as even slight variations in their values can result in significantly different outcomes in the learning process. In this paper, we propose a new method, QF-tuner, for automatic hyperparameter tuning in the Q-learning algorithm using the FOX optimization algorithm (FOX). A new objective function has been proposed for the FOX, prioritizing reward over learning error and time. QF-tuner starts by running the FOX and tries to minimize the fitness value derived from observations at each iteration by executing the Q-learning algorithm. The proposed method has been evaluated using two control tasks from the OpenAI Gym: CartPole and FrozenLake. The empirical results of the QF-tuner on the CartPole control task show a reward of 499, and on the FrozenLake control task, a reward of 1. These results indicate that the QF-tuner outperforms other optimization algorithms. On the FrozenLake control task, there was a 36\% increase in reward with a 26\% reduction in learning time; on the CartPole control task, there was a 57\% increase in reward with a 20\% decrease in learning time. Thus, the QF-tuner is an essential method for hyperparameter tuning in reinforcement learning algorithms, enabling more effective solutions to control task problems.
comment: 10 pages
♻ ☆ Selective Uncertainty Propagation in Offline RL
We consider the finite-horizon offline reinforcement learning (RL) setting, and are motivated by the challenge of learning the policy at any step h in dynamic programming (DP) algorithms. To learn this, it is sufficient to evaluate the treatment effect of deviating from the behavioral policy at step h after having optimized the policy for all future steps. Since the policy at any step can affect next-state distributions, the related distributional shift challenges can make this problem far more statistically hard than estimating such treatment effects in the stochastic contextual bandit setting. However, the hardness of many real-world RL instances lies between the two regimes. We develop a flexible and general method called selective uncertainty propagation for confidence interval construction that adapts to the hardness of the associated distribution shift challenges. We show benefits of our approach on toy environments and demonstrate the benefits of these techniques for offline policy learning.
♻ ☆ TorchSpatial: A Location Encoding Framework and Benchmark for Spatial Representation Learning NeurIPS 2024
Spatial representation learning (SRL) aims at learning general-purpose neural network representations from various types of spatial data (e.g., points, polylines, polygons, networks, images, etc.) in their native formats. Learning good spatial representations is a fundamental problem for various downstream applications such as species distribution modeling, weather forecasting, trajectory generation, geographic question answering, etc. Even though SRL has become the foundation of almost all geospatial artificial intelligence (GeoAI) research, we have not yet seen significant efforts to develop an extensive deep learning framework and benchmark to support SRL model development and evaluation. To fill this gap, we propose TorchSpatial, a learning framework and benchmark for location (point) encoding, which is one of the most fundamental data types of spatial representation learning. TorchSpatial contains three key components: 1) a unified location encoding framework that consolidates 15 commonly recognized location encoders, ensuring scalability and reproducibility of the implementations; 2) the LocBench benchmark tasks encompassing 7 geo-aware image classification and 10 geo-aware image regression datasets; 3) a comprehensive suite of evaluation metrics to quantify geo-aware model's overall performance as well as their geographic bias, with a novel Geo-Bias Score metric. Finally, we provide a detailed analysis and insights into the model performance and geographic bias of different location encoders. We believe TorchSpatial will foster future advancement of spatial representation learning and spatial fairness in GeoAI research. The TorchSpatial model framework and LocBench benchmark are available at https://github.com/seai-lab/TorchSpatial, and the Geo-Bias Score evaluation framework is available at https://github.com/seai-lab/PyGBS.
comment: 10 pages, 2 figures. Accepted by NeurIPS 2024 Datasets and Benchmarks Track
♻ ☆ Fairness Issues and Mitigations in (Differentially Private) Socio-Demographic Data Processes
Statistical agencies rely on sampling techniques to collect socio-demographic data crucial for policy-making and resource allocation. This paper shows that surveys of important societal relevance introduce sampling errors that unevenly impact group-level estimates, thereby compromising fairness in downstream decisions. To address these issues, this paper introduces an optimization approach modeled on real-world survey design processes, ensuring sampling costs are optimized while maintaining error margins within prescribed tolerances. Additionally, privacy-preserving methods used to determine sampling rates can further impact these fairness issues. This paper explores the impact of differential privacy on the statistics informing the sampling process, revealing a surprising effect: not only is the expected negative effect from the addition of noise for differential privacy negligible, but also this privacy noise can in fact reduce unfairness as it positively biases smaller counts. These findings are validated over an extensive analysis using datasets commonly applied in census statistics.
♻ ☆ Embodied Agent Interface: Benchmarking LLMs for Embodied Decision Making NeurIPS 2024
We aim to evaluate Large Language Models (LLMs) for embodied decision making. While a significant body of work has been leveraging LLMs for decision making in embodied environments, we still lack a systematic understanding of their performance because they are usually applied in different domains, for different purposes, and built based on different inputs and outputs. Furthermore, existing evaluations tend to rely solely on a final success rate, making it difficult to pinpoint what ability is missing in LLMs and where the problem lies, which in turn blocks embodied agents from leveraging LLMs effectively and selectively. To address these limitations, we propose a generalized interface (Embodied Agent Interface) that supports the formalization of various types of tasks and input-output specifications of LLM-based modules. Specifically, it allows us to unify 1) a broad set of embodied decision-making tasks involving both state and temporally extended goals, 2) four commonly-used LLM-based modules for decision making: goal interpretation, subgoal decomposition, action sequencing, and transition modeling, and 3) a collection of fine-grained metrics which break down evaluation into various types of errors, such as hallucination errors, affordance errors, various types of planning errors, etc. Overall, our benchmark offers a comprehensive assessment of LLMs' performance for different subtasks, pinpointing the strengths and weaknesses in LLM-powered embodied AI systems, and providing insights for effective and selective use of LLMs in embodied decision making.
comment: Accepted for oral presentation at NeurIPS 2024 in the Datasets and Benchmarks track. Final Camera version
♻ ☆ UNetVL: Enhancing 3D Medical Image Segmentation with Chebyshev KAN Powered Vision-LSTM
3D medical image segmentation has progressed considerably due to Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs), yet these methods struggle to balance long-range dependency acquisition with computational efficiency. To address this challenge, we propose UNETVL (U-Net Vision-LSTM), a novel architecture that leverages recent advancements in temporal information processing. UNETVL incorporates Vision-LSTM (ViL) for improved scalability and memory functions, alongside an efficient Chebyshev Kolmogorov-Arnold Networks (KAN) to handle complex and long-range dependency patterns more effectively. We validated our method on the ACDC and AMOS2022 (post challenge Task 2) benchmark datasets, showing a significant improvement in mean Dice score compared to recent state-of-the-art approaches, especially over its predecessor, UNETR, with increases of 7.3% on ACDC and 15.6% on AMOS, respectively. Extensive ablation studies were conducted to demonstrate the impact of each component in UNETVL, providing a comprehensive understanding of its architecture. Our code is available at https://github.com/tgrex6/UNETVL, facilitating further research and applications in this domain.
♻ ☆ FigStep: Jailbreaking Large Vision-Language Models via Typographic Visual Prompts AAAI 2025
Large Vision-Language Models (LVLMs) signify a groundbreaking paradigm shift within the Artificial Intelligence (AI) community, extending beyond the capabilities of Large Language Models (LLMs) by assimilating additional modalities (e.g., images). Despite this advancement, the safety of LVLMs remains adequately underexplored, with a potential overreliance on the safety assurances purported by their underlying LLMs. In this paper, we propose FigStep, a straightforward yet effective black-box jailbreak algorithm against LVLMs. Instead of feeding textual harmful instructions directly, FigStep converts the prohibited content into images through typography to bypass the safety alignment. The experimental results indicate that FigStep can achieve an average attack success rate of 82.50% on six promising open-source LVLMs. Not merely to demonstrate the efficacy of FigStep, we conduct comprehensive ablation studies and analyze the distribution of the semantic embeddings to uncover that the reason behind the success of FigStep is the deficiency of safety alignment for visual embeddings. Moreover, we compare FigStep with five text-only jailbreaks and four image-based jailbreaks to demonstrate the superiority of FigStep, i.e., negligible attack costs and better attack performance. Above all, our work reveals that current LVLMs are vulnerable to jailbreak attacks, which highlights the necessity of novel cross-modality safety alignment techniques. Our code and datasets are available at https://github.com/ThuCCSLab/FigStep .
comment: AAAI 2025 (Oral)
♻ ☆ AutoMix: Automatically Mixing Language Models NeurIPS 2024
Large language models (LLMs) are now available from cloud API providers in various sizes and configurations. While this diversity offers a broad spectrum of choices, effectively leveraging the options to optimize computational cost and performance remains challenging. In this work, we present Automix, an approach that strategically routes queries to larger LMs, based on the approximate correctness of outputs from a smaller LM. Central to Automix are two key technical contributions. First, it has a few-shot self-verification mechanism, which estimates the reliability of its own outputs without requiring extensive training. Second, given that self-verification can be noisy, it employs a POMDP based router that can effectively select an appropriately sized model, based on answer confidence. Experiments across five language models and five challenging datasets show that Automix consistently surpasses strong baselines, reducing computational cost by over 50% for comparable performance.
comment: 38th Conference on Neural Information Processing Systems (NeurIPS 2024). The first two authors contributed equally. Work started and partly done during Aman's internship at Google. This version adds results on additional models and datasets
♻ ☆ CoT-Driven Framework for Short Text Classification: Enhancing and Transferring Capabilities from Large to Smaller Model
Short Text Classification (STC) is crucial for processing and understanding the brief but substantial content prevalent on contemporary digital platforms. The STC encounters difficulties in grasping the semantic and syntactic intricacies, an issue that is apparent in traditional pre-trained language models. Although Graph Convolutional Networks enhance performance by integrating external knowledge bases, these methods are limited by the quality and extent of the knowledge applied. Recently, the emergence of Large Language Models (LLMs) and Chain-of-Thought (CoT) has significantly improved the performance of complex reasoning tasks. However, some studies have highlighted the limitations of their application in fundamental NLP tasks. Consequently, this study first employs CoT to investigate and enhance the capabilities of LLMs in STC tasks. We propose the Syntactic and Semantic Enrichment CoT (SSE-CoT) method, effectively decomposing the STC tasks into four distinct steps: (i) essential concept identification, (ii) common-sense knowledge retrieval, (iii) text rewriting, and (iv) classification. Furthermore, recognizing resource constraints in sectors like finance and healthcare, we then introduce the CoT-Driven Multi-Task Learning (CDMT) framework to extend these capabilities to smaller models. This framework begins by extracting rationales from LLMs and subsequently fine-tunes smaller models to optimize their performance. Extensive experimentation across six short-text benchmarks validated the efficacy of the proposed methods. In particular, SSE-CoT achieved state-of-the-art performance with substantial improvements on all datasets, particularly on the Ohsumed and TagMyNews datasets.
comment: Knowledge-Based Systems
♻ ☆ HARP: A Large-Scale Higher-Order Ambisonic Room Impulse Response Dataset ICASSP 2025
This contribution introduces a dataset of 7th-order Ambisonic Room Impulse Responses (HOA-RIRs), created using the Image Source Method. By employing higher-order Ambisonics, our dataset enables precise spatial audio reproduction, a critical requirement for realistic immersive audio applications. Leveraging the virtual simulation, we present a unique microphone configuration, based on the superposition principle, designed to optimize sound field coverage while addressing the limitations of traditional microphone arrays. The presented 64-microphone configuration allows us to capture RIRs directly in the Spherical Harmonics domain. The dataset features a wide range of room configurations, encompassing variations in room geometry, acoustic absorption materials, and source-receiver distances. A detailed description of the simulation setup is provided alongside for an accurate reproduction. The dataset serves as a vital resource for researchers working on spatial audio, particularly in applications involving machine learning to improve room acoustics modeling and sound field synthesis. It further provides a very high level of spatial resolution and realism crucial for tasks such as source localization, reverberation prediction, and immersive sound reproduction.
comment: Accepted at ICASSP 2025 Workshop. Code to generate uploaded at: https://github.com/whojavumusic/HARP
♻ ☆ The Ramanujan Library -- Automated Discovery on the Hypergraph of Integer Relations
Fundamental mathematical constants appear in nearly every field of science, from physics to biology. Formulas that connect different constants often bring great insight by hinting at connections between previously disparate fields. Discoveries of such relations, however, have remained scarce events, relying on sporadic strokes of creativity by human mathematicians. Recent developments of algorithms for automated conjecture generation have accelerated the discovery of formulas for specific constants. Yet, the discovery of connections between constants has not been addressed. In this paper, we present the first library dedicated to mathematical constants and their interrelations. This library can serve as a central repository of knowledge for scientists from different areas, and as a collaborative platform for development of new algorithms. The library is based on a new representation that we propose for organizing the formulas of mathematical constants: a hypergraph, with each node representing a constant and each edge representing a formula. Using this representation, we propose and demonstrate a systematic approach for automatically enriching this library using PSLQ, an integer relation algorithm based on QR decomposition and lattice construction. During its development and testing, our strategy led to the discovery of 75 previously unknown connections between constants, including a new formula for the `first continued fraction' constant $C_1$, novel formulas for natural logarithms, and new formulas connecting $\pi$ and $e$. The latter formulas generalize a century-old relation between $\pi$ and $e$ by Ramanujan, which until now was considered a singular formula and is now found to be part of a broader mathematical structure. The code supporting this library is a public, open-source API that can serve researchers in experimental mathematics and other fields of science.
comment: 20 pages, 7 figures
♻ ☆ On Faster Marginalization with Squared Circuits via Orthonormalization
Squared tensor networks (TNs) and their generalization as parameterized computational graphs -- squared circuits -- have been recently used as expressive distribution estimators in high dimensions. However, the squaring operation introduces additional complexity when marginalizing variables or computing the partition function, which hinders their usage in machine learning applications. Canonical forms of popular TNs are parameterized via unitary matrices as to simplify the computation of particular marginals, but cannot be mapped to general circuits since these might not correspond to a known TN. Inspired by TN canonical forms, we show how to parameterize squared circuits to ensure they encode already normalized distributions. We then use this parameterization to devise an algorithm to compute any marginal of squared circuits that is more efficient than a previously known one. We conclude by formally showing the proposed parameterization comes with no expressiveness loss for many circuit classes.
♻ ☆ BCR-DRL: Behavior- and Context-aware Reward for Deep Reinforcement Learning in Human-AI Coordination
Deep reinforcement Learning (DRL) offers a powerful framework for training AI agents to coordinate with human partners. However, DRL faces two critical challenges in human-AI coordination (HAIC): sparse rewards and unpredictable human behaviors. These challenges significantly limit DRL to identify effective coordination policies, due to its impaired capability of optimizing exploration and exploitation. To address these limitations, we propose an innovative behavior- and context-aware reward (BCR) for DRL, which optimizes exploration and exploitation by leveraging human behaviors and contextual information in HAIC. Our BCR consists of two components: (i)~Novel dual intrinsic rewards to enhance exploration. This scheme composes an AI self-motivated intrinsic reward and a human-motivated intrinsic reward, which are designed to increase the capture of sparse rewards by a logarithmic-based strategy; and (ii)~New context-aware weights for the designed rewards to improve exploitation. This mechanism helps the AI agent prioritize actions that better coordinate with the human partner by utilizing contextual information that can reflect the evolution of learning in HAIC. Extensive simulations in the Overcooked environment demonstrate that our approach can increase the cumulative sparse rewards by approximately 20% and reduce the convergence time by about 67% compared to state-of-the-art baselines.
♻ ☆ Class Incremental Fault Diagnosis under Limited Fault Data via Supervised Contrastive Knowledge Distillation
Class-incremental fault diagnosis requires a model to adapt to new fault classes while retaining previous knowledge. However, limited research exists for imbalanced and long-tailed data. Extracting discriminative features from few-shot fault data is challenging, and adding new fault classes often demands costly model retraining. Moreover, incremental training of existing methods risks catastrophic forgetting, and severe class imbalance can bias the model's decisions toward normal classes. To tackle these issues, we introduce a Supervised Contrastive knowledge distiLlation for class Incremental Fault Diagnosis (SCLIFD) framework proposing supervised contrastive knowledge distillation for improved representation learning capability and less forgetting, a novel prioritized exemplar selection method for sample replay to alleviate catastrophic forgetting, and the Random Forest Classifier to address the class imbalance. Extensive experimentation on simulated and real-world industrial datasets across various imbalance ratios demonstrates the superiority of SCLIFD over existing approaches. Our code can be found at https://github.com/Zhang-Henry/SCLIFD_TII.
♻ ☆ Fine-grained Spatio-temporal Event Prediction with Self-adaptive Anchor Graph SDM'25
Event prediction tasks often handle spatio-temporal data distributed in a large spatial area. Different regions in the area exhibit different characteristics while having latent correlations. This spatial heterogeneity and correlations greatly affect the spatio-temporal distributions of event occurrences, which has not been addressed by state-of-the-art models. Learning spatial dependencies of events in a continuous space is challenging due to its fine granularity and a lack of prior knowledge. In this work, we propose a novel Graph Spatio-Temporal Point Process (GSTPP) model for fine-grained event prediction. It adopts an encoder-decoder architecture that jointly models the state dynamics of spatially localized regions using neural Ordinary Differential Equations (ODEs). The state evolution is built on the foundation of a novel Self-Adaptive Anchor Graph (SAAG) that captures spatial dependencies. By adaptively localizing the anchor nodes in the space and jointly constructing the correlation edges between them, the SAAG enhances the model's ability of learning complex spatial event patterns. The proposed GSTPP model greatly improves the accuracy of fine-grained event prediction. Extensive experimental results show that our method greatly improves the prediction accuracy over existing spatio-temporal event prediction approaches.
comment: Accepted to SIAM International Conference on Data Mining 2025 (SDM'25)
♻ ☆ CREST: An Efficient Conjointly-trained Spike-driven Framework for Event-based Object Detection Exploiting Spatiotemporal Dynamics AAAI 2025
Event-based cameras feature high temporal resolution, wide dynamic range, and low power consumption, which is ideal for high-speed and low-light object detection. Spiking neural networks (SNNs) are promising for event-based object recognition and detection due to their spiking nature but lack efficient training methods, leading to gradient vanishing and high computational complexity, especially in deep SNNs. Additionally, existing SNN frameworks often fail to effectively handle multi-scale spatiotemporal features, leading to increased data redundancy and reduced accuracy. To address these issues, we propose CREST, a novel conjointly-trained spike-driven framework to exploit spatiotemporal dynamics in event-based object detection. We introduce the conjoint learning rule to accelerate SNN learning and alleviate gradient vanishing. It also supports dual operation modes for efficient and flexible implementation on different hardware types. Additionally, CREST features a fully spike-driven framework with a multi-scale spatiotemporal event integrator (MESTOR) and a spatiotemporal-IoU (ST-IoU) loss. Our approach achieves superior object recognition & detection performance and up to 100X energy efficiency compared with state-of-the-art SNN algorithms on three datasets, providing an efficient solution for event-based object detection algorithms suitable for SNN hardware implementation.
comment: Accepted by AAAI 2025
♻ ☆ SimPSI: A Simple Strategy to Preserve Spectral Information in Time Series Data Augmentation AAAI 2024
Data augmentation is a crucial component in training neural networks to overcome the limitation imposed by data size, and several techniques have been studied for time series. Although these techniques are effective in certain tasks, they have yet to be generalized to time series benchmarks. We find that current data augmentation techniques ruin the core information contained within the frequency domain. To address this issue, we propose a simple strategy to preserve spectral information (SimPSI) in time series data augmentation. SimPSI preserves the spectral information by mixing the original and augmented input spectrum weighted by a preservation map, which indicates the importance score of each frequency. Specifically, our experimental contributions are to build three distinct preservation maps: magnitude spectrum, saliency map, and spectrum-preservative map. We apply SimPSI to various time series data augmentations and evaluate its effectiveness across a wide range of time series benchmarks. Our experimental results support that SimPSI considerably enhances the performance of time series data augmentations by preserving core spectral information. The source code used in the paper is available at https://github.com/Hyun-Ryu/simpsi.
comment: AAAI 2024 camera-ready version w/ Appendix
♻ ☆ MathSpeech: Leveraging Small LMs for Accurate Conversion in Mathematical Speech-to-Formula AAAI 2025
In various academic and professional settings, such as mathematics lectures or research presentations, it is often necessary to convey mathematical expressions orally. However, reading mathematical expressions aloud without accompanying visuals can significantly hinder comprehension, especially for those who are hearing-impaired or rely on subtitles due to language barriers. For instance, when a presenter reads Euler's Formula, current Automatic Speech Recognition (ASR) models often produce a verbose and error-prone textual description (e.g., e to the power of i x equals cosine of x plus i $\textit{side}$ of x), instead of the concise $\LaTeX{}$ format (i.e., $ e^{ix} = \cos(x) + i\sin(x) $), which hampers clear understanding and communication. To address this issue, we introduce MathSpeech, a novel pipeline that integrates ASR models with small Language Models (sLMs) to correct errors in mathematical expressions and accurately convert spoken expressions into structured $\LaTeX{}$ representations. Evaluated on a new dataset derived from lecture recordings, MathSpeech demonstrates $\LaTeX{}$ generation capabilities comparable to leading commercial Large Language Models (LLMs), while leveraging fine-tuned small language models of only 120M parameters. Specifically, in terms of CER, BLEU, and ROUGE scores for $\LaTeX{}$ translation, MathSpeech demonstrated significantly superior capabilities compared to GPT-4o. We observed a decrease in CER from 0.390 to 0.298, and higher ROUGE/BLEU scores compared to GPT-4o.
comment: Accepted at AAAI 2025
♻ ☆ MathReader : Text-to-Speech for Mathematical Documents ICASSP 2025
TTS (Text-to-Speech) document reader from Microsoft, Adobe, Apple, and OpenAI have been serviced worldwide. They provide relatively good TTS results for general plain text, but sometimes skip contents or provide unsatisfactory results for mathematical expressions. This is because most modern academic papers are written in LaTeX, and when LaTeX formulas are compiled, they are rendered as distinctive text forms within the document. However, traditional TTS document readers output only the text as it is recognized, without considering the mathematical meaning of the formulas. To address this issue, we propose MathReader, which effectively integrates OCR, a fine-tuned T5 model, and TTS. MathReader demonstrated a lower Word Error Rate (WER) than existing TTS document readers, such as Microsoft Edge and Adobe Acrobat, when processing documents containing mathematical formulas. MathReader reduced the WER from 0.510 to 0.281 compared to Microsoft Edge, and from 0.617 to 0.281 compared to Adobe Acrobat. This will significantly contribute to alleviating the inconvenience faced by users who want to listen to documents, especially those who are visually impaired. The code is available at https://github.com/hyeonsieun/MathReader.
comment: Accepted at ICASSP 2025
♻ ☆ Learning Unified Distance Metric Across Diverse Data Distributions with Parameter-Efficient Transfer Learning WACV 2025
A common practice in metric learning is to train and test an embedding model for each dataset. This dataset-specific approach fails to simulate real-world scenarios that involve multiple heterogeneous distributions of data. In this regard, we explore a new metric learning paradigm, called Unified Metric Learning (UML), which learns a unified distance metric capable of capturing relations across multiple data distributions. UML presents new challenges, such as imbalanced data distribution and bias towards dominant distributions. These issues cause standard metric learning methods to fail in learning a unified metric. To address these challenges, we propose Parameter-efficient Unified Metric leArning (PUMA), which consists of a pre-trained frozen model and two additional modules, stochastic adapter and prompt pool. These modules enable to capture dataset-specific knowledge while avoiding bias towards dominant distributions. Additionally, we compile a new unified metric learning benchmark with a total of 8 different datasets. PUMA outperforms the state-of-the-art dataset-specific models while using about 69 times fewer trainable parameters.
comment: Accepted to WACV 2025
♻ ☆ Architecture-Aware Learning Curve Extrapolation via Graph Ordinary Differential Equation AAAI'25
Learning curve extrapolation predicts neural network performance from early training epochs and has been applied to accelerate AutoML, facilitating hyperparameter tuning and neural architecture search. However, existing methods typically model the evolution of learning curves in isolation, neglecting the impact of neural network (NN) architectures, which influence the loss landscape and learning trajectories. In this work, we explore whether incorporating neural network architecture improves learning curve modeling and how to effectively integrate this architectural information. Motivated by the dynamical system view of optimization, we propose a novel architecture-aware neural differential equation model to forecast learning curves continuously. We empirically demonstrate its ability to capture the general trend of fluctuating learning curves while quantifying uncertainty through variational parameters. Our model outperforms current state-of-the-art learning curve extrapolation methods and pure time-series modeling approaches for both MLP and CNN-based learning curves. Additionally, we explore the applicability of our method in Neural Architecture Search scenarios, such as training configuration ranking.
comment: Accepted to AAAI'25
♻ ☆ IDEA: Image Description Enhanced CLIP-Adapter
CLIP (Contrastive Language-Image Pre-training) has attained great success in pattern recognition and computer vision. Transferring CLIP to downstream tasks (e.g. zero- or few-shot classification) is a hot topic in multimodal learning. However, current studies primarily focus on either prompt learning for text or adapter tuning for vision, without fully exploiting the complementary information and correlations among image-text pairs. In this paper, we propose an Image Description Enhanced CLIP-Adapter (IDEA) method to adapt CLIP to few-shot image classification tasks. This method captures fine-grained features by leveraging both visual features and textual descriptions of images. IDEA is a training-free method for CLIP, and it can be comparable to or even exceeds state-of-the-art models on multiple tasks. Furthermore, we introduce Trainable-IDEA (T-IDEA), which extends IDEA by adding two lightweight learnable components (i.e., a projector and a learnable latent space), further enhancing the model's performance and achieving SOTA results on 11 datasets. As one important contribution, we employ the Llama model and design a comprehensive pipeline to generate textual descriptions for images of 11 datasets, resulting in a total of 1,637,795 image-text pairs, named "IMD-11". Our code and data are released at https://github.com/FourierAI/IDEA.
♻ ☆ Can Models Learn Skill Composition from Examples? NeurIPS 2024
As large language models (LLMs) become increasingly advanced, their ability to exhibit compositional generalization -- the capacity to combine learned skills in novel ways not encountered during training -- has garnered significant attention. This type of generalization, particularly in scenarios beyond training data, is also of great interest in the study of AI safety and alignment. A recent study introduced the SKILL-MIX evaluation, where models are tasked with composing a short paragraph demonstrating the use of a specified $k$-tuple of language skills. While small models struggled with composing even with $k=3$, larger models like GPT-4 performed reasonably well with $k=5$ and $6$. In this paper, we employ a setup akin to SKILL-MIX to evaluate the capacity of smaller models to learn compositional generalization from examples. Utilizing a diverse set of language skills -- including rhetorical, literary, reasoning, theory of mind, and common sense -- GPT-4 was used to generate text samples that exhibit random subsets of $k$ skills. Subsequent fine-tuning of 7B and 13B parameter models on these combined skill texts, for increasing values of $k$, revealed the following findings: (1) Training on combinations of $k=2$ and $3$ skills results in noticeable improvements in the ability to compose texts with $k=4$ and $5$ skills, despite models never having seen such examples during training. (2) When skill categories are split into training and held-out groups, models significantly improve at composing texts with held-out skills during testing despite having only seen training skills during fine-tuning, illustrating the efficacy of the training approach even with previously unseen skills. This study also suggests that incorporating skill-rich (potentially synthetic) text into training can substantially enhance the compositional capabilities of models.
comment: Accepted to NeurIPS 2024
♻ ☆ Visual Evaluative AI: A Hypothesis-Driven Tool with Concept-Based Explanations and Weight of Evidence
This paper presents Visual Evaluative AI, a decision aid that provides positive and negative evidence from image data for a given hypothesis. This tool finds high-level human concepts in an image and generates the Weight of Evidence (WoE) for each hypothesis in the decision-making process. We apply and evaluate this tool in the skin cancer domain by building a web-based application that allows users to upload a dermatoscopic image, select a hypothesis and analyse their decisions by evaluating the provided evidence. Further, we demonstrate the effectiveness of Visual Evaluative AI on different concept-based explanation approaches.
comment: 4 pages
Robotics 17
☆ Diffusion-Based Imitation Learning for Social Pose Generation
Intelligent agents, such as robots and virtual agents, must understand the dynamics of complex social interactions to interact with humans. Effectively representing social dynamics is challenging because we require multi-modal, synchronized observations to understand a scene. We explore how using a single modality, the pose behavior, of multiple individuals in a social interaction can be used to generate nonverbal social cues for the facilitator of that interaction. The facilitator acts to make a social interaction proceed smoothly and is an essential role for intelligent agents to replicate in human-robot interactions. In this paper, we adapt an existing diffusion behavior cloning model to learn and replicate facilitator behaviors. Furthermore, we evaluate two representations of pose observations from a scene, one representation has pre-processing applied and one does not. The purpose of this paper is to introduce a new use for diffusion behavior cloning for pose generation in social interactions. The second is to understand the relationship between performance and computational load for generating social pose behavior using two different techniques for collecting scene observations. As such, we are essentially testing the effectiveness of two different types of conditioning for a diffusion model. We then evaluate the resulting generated behavior from each technique using quantitative measures such as mean per-joint position error (MPJPE), training time, and inference time. Additionally, we plot training and inference time against MPJPE to examine the trade-offs between efficiency and performance. Our results suggest that the further pre-processed data can successfully condition diffusion models to generate realistic social behavior, with reasonable trade-offs in accuracy and processing time.
comment: This paper was submitted as an LBR to HRI2025
☆ Learning Nonverbal Cues in Multiparty Social Interactions for Robotic Facilitators
Conventional behavior cloning (BC) models often struggle to replicate the subtleties of human actions. Previous studies have attempted to address this issue through the development of a new BC technique: Implicit Behavior Cloning (IBC). This new technique consistently outperformed the conventional Mean Squared Error (MSE) BC models in a variety of tasks. Our goal is to replicate the performance of the IBC model by Florence [in Proceedings of the 5th Conference on Robot Learning, 164:158-168, 2022], for social interaction tasks using our custom dataset. While previous studies have explored the use of large language models (LLMs) for enhancing group conversations, they often overlook the significance of non-verbal cues, which constitute a substantial part of human communication. We propose using IBC to replicate nonverbal cues like gaze behaviors. The model is evaluated against various types of facilitator data and compared to an explicit, MSE BC model. Results show that the IBC model outperforms the MSE BC model across session types using the same metrics used in the previous IBC paper. Despite some metrics showing mixed results which are explainable for the custom dataset for social interaction, we successfully replicated the IBC model to generate nonverbal cues. Our contributions are (1) the replication and extension of the IBC model, and (2) a nonverbal cues generation model for social interaction. These advancements facilitate the integration of robots into the complex interactions between robots and humans, e.g., in the absence of a human facilitator.
comment: Submitted to as a short contribution to HRI2025
☆ Graph Coloring to Reduce Computation Time in Prioritized Planning
Distributing computations among agents in large networks reduces computational effort in multi-agent path finding (MAPF). One distribution strategy is prioritized planning (PP). In PP, we couple and prioritize interacting agents to achieve a desired behavior across all agents in the network. We characterize the interaction with a directed acyclic graph (DAG). The computation time for solving MAPF problem using PP is mainly determined through the longest path in this DAG. The longest path depends on the fixed undirected coupling graph and the variable prioritization. The approaches from literature to prioritize agents are numerous and pursue various goals. This article presents an approach for prioritization in PP to reduce the longest path length in the coupling DAG and thus the computation time for MAPF using PP. We prove that this problem can be mapped to a graph-coloring problem, in which the number of colors required corresponds to the longest path length in the coupling DAG. We propose a decentralized graph-coloring algorithm to determine priorities for the agents. We evaluate the approach by applying it to multi-agent motion planning (MAMP) for connected and automated vehicles (CAVs) on roads using, a variant of MAPF.
☆ Simultaneous Computation with Multiple Prioritizations in Multi-Agent Motion Planning
Multi-agent path finding (MAPF) in large networks is computationally challenging. An approach for MAPF is prioritized planning (PP), in which agents plan sequentially according to their priority. Albeit a computationally efficient approach for MAPF, the solution quality strongly depends on the prioritization. Most prioritizations rely either on heuristics, which do not generalize well, or iterate to find adequate priorities, which costs computational effort. In this work, we show how agents can compute with multiple prioritizations simultaneously. Our approach is general as it does not rely on domain-specific knowledge. The context of this work is multi-agent motion planning (MAMP) with a receding horizon subject to computation time constraints. MAMP considers the system dynamics in more detail compared to MAPF. In numerical experiments on MAMP, we demonstrate that our approach to prioritization comes close to optimal prioritization and outperforms state-of-the-art methods with only a minor increase in computation time. We show real-time capability in an experiment on a road network with ten vehicles in our Cyber-Physical Mobility Lab.
☆ Human-like Nonverbal Behavior with MetaHumans in Real-World Interaction Studies: An Architecture Using Generative Methods and Motion Capture
Socially interactive agents are gaining prominence in domains like healthcare, education, and service contexts, particularly virtual agents due to their inherent scalability. To facilitate authentic interactions, these systems require verbal and nonverbal communication through e.g., facial expressions and gestures. While natural language processing technologies have rapidly advanced, incorporating human-like nonverbal behavior into real-world interaction contexts is crucial for enhancing the success of communication, yet this area remains underexplored. One barrier is creating autonomous systems with sophisticated conversational abilities that integrate human-like nonverbal behavior. This paper presents a distributed architecture using Epic Games MetaHuman, combined with advanced conversational AI and camera-based user management, that supports methods like motion capture, handcrafted animation, and generative approaches for nonverbal behavior. We share insights into a system architecture designed to investigate nonverbal behavior in socially interactive agents, deployed in a three-week field study in the Deutsches Museum Bonn, showcasing its potential in realistic nonverbal behavior research.
comment: Accepted for presentation at the ACM/IEEE International Conference on Human-Robot Interaction (HRI 2025) as a Late-Breaking Report
☆ An Interpretable Neural Control Network with Adaptable Online Learning for Sample Efficient Robot Locomotion Learning
Robot locomotion learning using reinforcement learning suffers from training sample inefficiency and exhibits the non-understandable/black-box nature. Thus, this work presents a novel SME-AGOL to address such problems. Firstly, Sequential Motion Executor (SME) is a three-layer interpretable neural network, where the first produces the sequentially propagating hidden states, the second constructs the corresponding triangular bases with minor non-neighbor interference, and the third maps the bases to the motor commands. Secondly, the Adaptable Gradient-weighting Online Learning (AGOL) algorithm prioritizes the update of the parameters with high relevance score, allowing the learning to focus more on the highly relevant ones. Thus, these two components lead to an analyzable framework, where each sequential hidden state/basis represents the learned key poses/robot configuration. Compared to state-of-the-art methods, the SME-AGOL requires 40% fewer samples and receives 150% higher final reward/locomotion performance on a simulated hexapod robot, while taking merely 10 minutes of learning time from scratch on a physical hexapod robot. Taken together, this work not only proposes the SME-AGOL for sample efficient and understandable locomotion learning but also emphasizes the potential exploitation of interpretability for improving sample efficiency and learning performance.
comment: 20 pages, 11 Figures + 6 Figures in supplementary material section, 2 Tables, submitted to TNNLS (minor revision; revision submitted 5 October 2024)
☆ PB-NBV: Efficient Projection-Based Next-Best-View Planning Framework for Reconstruction of Unknown Objects
Completely capturing the three-dimensional (3D) data of an object is essential in industrial and robotic applications. The task of next-best-view (NBV) planning is to calculate the next optimal viewpoint based on the current data, gradually achieving a complete 3D reconstruction of the object. However, many existing NBV planning algorithms incur heavy computational costs due to the extensive use of ray-casting. Specifically, this framework refits different types of voxel clusters into ellipsoids based on the voxel structure. Then, the next optimal viewpoint is selected from the candidate views using a projection-based viewpoint quality evaluation function in conjunction with a global partitioning strategy. This process replaces extensive ray-casting, significantly improving the computational efficiency. Comparison experiments in the simulation environment show that our framework achieves the highest point cloud coverage with low computational time compared to other frameworks. The real-world experiments also confirm the efficiency and feasibility of the framework. Our method will be made open source to benefit the community.
☆ Efficient and Safe Trajectory Planning for Autonomous Agricultural Vehicle Headland Turning in Cluttered Orchard Environments
Autonomous agricultural vehicles (AAVs), including field robots and autonomous tractors, are becoming essential in modern farming by improving efficiency and reducing labor costs. A critical task in AAV operations is headland turning between crop rows. This task is challenging in orchards with limited headland space, irregular boundaries, operational constraints, and static obstacles. While traditional trajectory planning methods work well in arable farming, they often fail in cluttered orchard environments. This letter presents a novel trajectory planner that enhances the safety and efficiency of AAV headland maneuvers, leveraging advancements in autonomous driving. Our approach includes an efficient front-end algorithm and a high-performance back-end optimization. Applied to vehicles with various implements, it outperforms state-of-the-art methods in both standard and challenging orchard fields. This work bridges agricultural and autonomous driving technologies, facilitating a broader adoption of AAVs in complex orchards.
☆ RoMu4o: A Robotic Manipulation Unit For Orchard Operations Automating Proximal Hyperspectral Leaf Sensing
Driven by the need to address labor shortages and meet the demands of a rapidly growing population, robotic automation has become a critical component in precision agriculture. Leaf-level hyperspectral spectroscopy is shown to be a powerful tool for phenotyping, monitoring crop health, identifying essential nutrients within plants as well as detecting diseases and water stress. This work introduces RoMu4o, a robotic manipulation unit for orchard operations offering an automated solution for proximal hyperspectral leaf sensing. This ground robot is equipped with a 6DOF robotic arm and vision system for real-time deep learning-based image processing and motion planning. We developed robust perception and manipulation pipelines that enable the robot to successfully grasp target leaves and perform spectroscopy. These frameworks operate synergistically to identify and extract the 3D structure of leaves from an observed batch of foliage, propose 6D poses, and generate collision-free constraint-aware paths for precise leaf manipulation. The end-effector of the arm features a compact design that integrates an independent lighting source with a hyperspectral sensor, enabling high-fidelity data acquisition while streamlining the calibration process for accurate measurements. Our ground robot is engineered to operate in unstructured orchard environments. However, the performance of the system is evaluated in both indoor and outdoor plant models. The system demonstrated reliable performance for 1-LPB hyperspectral sampling, achieving 95% success rate in lab trials and 79% in field trials. Field experiments revealed an overall success rate of 70% for autonomous leaf grasping and hyperspectral measurement in a pistachio orchard. The open-source repository is available at: https://github.com/mehradmrt/UCM-AgBot-ROS2
♻ ☆ Space-LLaVA: a Vision-Language Model Adapted to Extraterrestrial Applications
Foundation Models (FMs), e.g., large language models, possess attributes of intelligence which offer promise to endow a robot with the contextual understanding necessary to navigate complex, unstructured tasks in the wild. We see three core challenges in the future of space robotics that motivate building an FM for the space robotics community: 1) Scalability of ground-in-the-loop operations; 2) Generalizing prior knowledge to novel environments; and 3) Multi-modality in tasks and sensor data. As a first-step towards a space foundation model, we programmatically augment three extraterrestrial databases with fine-grained language annotations inspired by the sensory reasoning necessary to e.g., identify a site of scientific interest on Mars, building a synthetic dataset of visual-question-answer and visual instruction-following tuples. We fine-tune a pre-trained LLaVA 13B checkpoint on our augmented dataset to adapt a Vision-Language Model (VLM) to the visual semantic features in an extraterrestrial environment, demonstrating FMs as a tool for specialization and enhancing a VLM's zero-shot performance on unseen task types in comparison to state-of-the-art VLMs. Ablation studies show that fine-tuning the language backbone and vision-language adapter in concert is key to facilitate adaption while a small percentage, e.g., 20%, of the pre-training data can be used to safeguard against catastrophic forgetting.
comment: Accepted to IEEE Aerospace Conference, 23 pages, 18 figures, 3 tables
♻ ☆ ALPINE: a climbing robot for operations in mountain environments
Mountain slopes are perfect examples of harsh environments in which humans are required to perform difficult and dangerous operations such as removing unstable boulders, dangerous vegetation or deploying safety nets. A good replacement for human intervention can be offered by climbing robots. The different solutions existing in the literature are not up to the task for the difficulty of the requirements (navigation, heavy payloads, flexibility in the execution of the tasks). In this paper, we propose a robotic platform that can fill this gap. Our solution is based on a robot that hangs on ropes, and uses a retractable leg to jump away from the mountain walls. Our package of mechanical solutions, along with the algorithms developed for motion planning and control, delivers swift navigation on irregular and steep slopes, the possibility to overcome or travel around significant natural barriers, and the ability to carry heavy payloads and execute complex tasks. In the paper, we give a full account of our main design and algorithmic choices and show the feasibility of the solution through a large number of physically simulated scenarios.
♻ ☆ Augmented Reality without Borders: Achieving Precise Localization Without Maps
Visual localization is crucial for Computer Vision and Augmented Reality (AR) applications, where determining the camera or device's position and orientation is essential to accurately interact with the physical environment. Traditional methods rely on detailed 3D maps constructed using Structure from Motion (SfM) or Simultaneous Localization and Mapping (SLAM), which is computationally expensive and impractical for dynamic or large-scale environments. We introduce MARLoc, a novel localization framework for AR applications that uses known relative transformations within image sequences to perform intra-sequence triangulation, generating 3D-2D correspondences for pose estimation and refinement. MARLoc eliminates the need for pre-built SfM maps, providing accurate and efficient localization suitable for dynamic outdoor environments. Evaluation with benchmark datasets and real-world experiments demonstrates MARLoc's state-of-the-art performance and robustness. By integrating MARLoc into an AR device, we highlight its capability to achieve precise localization in real-world outdoor scenarios, showcasing its practical effectiveness and potential to enhance visual localization in AR applications.
♻ ☆ Three-dimensional Trajectory Optimization for Quadrotor Tail-sitter UAVs: Traversing through Given Waypoints
Given the evolving application scenarios of current fixed-wing unmanned aerial vehicles (UAVs), it is necessary for UAVs to possess agile and rapid 3-dimensional flight capabilities. Typically, the trajectory of a tail-sitter is generated separately for vertical and level flights. This limits the tail-sitter's ability to move in a 3-dimensional airspace and makes it difficult to establish a smooth transition between vertical and level flights. In the present work, a 3-dimensional trajectory optimization method is proposed for quadrotor tail-sitters. Especially, the differential dynamics constraints are eliminated when generating the trajectory of the tail-sitter by utilizing differential flatness method. Additionally, the temporal parameters of the trajectory are generated using the state-of-the-art trajectory generation method called MINCO (minimum control). Subsequently, we convert the speed constraint on the vehicle into a soft constraint by discretizing the trajectory in time. This increases the likelihood that the control input limits are satisfied and the trajectory is feasible. Then, we utilize a kind of model predictive control (MPC) method to track trajectories. Even if restricting the tail-sitter's motion to a 2-dimensional horizontal plane, the solutions still outperform those of the L1 Guidance Law and Dubins path.
♻ ☆ 3DGS-CD: 3D Gaussian Splatting-based Change Detection for Physical Object Rearrangement
We present 3DGS-CD, the first 3D Gaussian Splatting (3DGS)-based method for detecting physical object rearrangements in 3D scenes. Our approach estimates 3D object-level changes by comparing two sets of unaligned images taken at different times. Leveraging 3DGS's novel view rendering and EfficientSAM's zero-shot segmentation capabilities, we detect 2D object-level changes, which are then associated and fused across views to estimate 3D change masks and object transformations. Our method can accurately identify changes in cluttered environments using sparse (as few as one) post-change images within as little as 18s. It does not rely on depth input, user instructions, pre-defined object classes, or object models -- An object is recognized simply if it has been re-arranged. Our approach is evaluated on both public and self-collected real-world datasets, achieving up to 14% higher accuracy and three orders of magnitude faster performance compared to the state-of-the-art radiance-field-based change detection method. This significant performance boost enables a broad range of downstream applications, where we highlight three key use cases: object reconstruction, robot workspace reset, and 3DGS model update. Our code and data will be made available at https://github.com/520xyxyzq/3DGS-CD.
♻ ☆ Refined Motion Compensation with Soft Laser Manipulators using Data-Driven Surrogate Models
Non-contact laser ablation, a precise thermal technique, simultaneously cuts and coagulates tissue without the insertion errors associated with rigid needles. Human organ motions, such as those in the liver, exhibit rhythmic components influenced by respiratory and cardiac cycles, making effective laser energy delivery to target lesions while compensating for tumor motion crucial. This research introduces a data-driven method to derive surrogate models of a soft manipulator. These low-dimensional models offer computational efficiency when integrated into the Model Predictive Control (MPC) framework, while still capturing the manipulator's dynamics with and without control input. Spectral Submanifolds (SSM) theory models the manipulator's autonomous dynamics, acknowledging its tendency to reach equilibrium when external forces are removed. Preliminary results show that the MPC controller using the surrogate model outperforms two other models within the same MPC framework. The data-driven MPC controller also supports a design-agnostic feature, allowing the interchangeability of different soft manipulators within the laser ablation surgery robot system.
♻ ☆ VIPeR: Visual Incremental Place Recognition with Adaptive Mining and Lifelong Learning
Visual place recognition (VPR) is an essential component of many autonomous and augmented/virtual reality systems. It enables the systems to robustly localize themselves in large-scale environments. Existing VPR methods demonstrate attractive performance at the cost of heavy pre-training and limited generalizability. When deployed in unseen environments, these methods exhibit significant performance drops. Targeting this issue, we present VIPeR, a novel approach for visual incremental place recognition with the ability to adapt to new environments while retaining the performance of previous environments. We first introduce an adaptive mining strategy that balances the performance within a single environment and the generalizability across multiple environments. Then, to prevent catastrophic forgetting in lifelong learning, we draw inspiration from human memory systems and design a novel memory bank for our VIPeR. Our memory bank contains a sensory memory, a working memory and a long-term memory, with the first two focusing on the current environment and the last one for all previously visited environments. Additionally, we propose a probabilistic knowledge distillation to explicitly safeguard the previously learned knowledge. We evaluate our proposed VIPeR on three large-scale datasets, namely Oxford Robotcar, Nordland, and TartanAir. For comparison, we first set a baseline performance with naive finetuning. Then, several more recent lifelong learning methods are compared. Our VIPeR achieves better performance in almost all aspects with the biggest improvement of 13.65% in average performance.
comment: 8 pages, 4 figures
♻ ☆ robosuite: A Modular Simulation Framework and Benchmark for Robot Learning
robosuite is a simulation framework for robot learning powered by the MuJoCo physics engine. It offers a modular design for creating robotic tasks as well as a suite of benchmark environments for reproducible research. This paper discusses the key system modules and the benchmark environments of our new release robosuite v1.5.
comment: For more information, please visit https://robosuite.ai
Systems and Control 12
☆ Which price to pay? Auto-tuning building MPC controller for optimal economic cost
Model predictive control (MPC) controller is considered for temperature management in buildings but its performance heavily depends on hyperparameters. Consequently, MPC necessitates meticulous hyperparameter tuning to attain optimal performance under diverse contracts. However, conventional building controller design is an open-loop process without critical hyperparameter optimization, often leading to suboptimal performance due to unexpected environmental disturbances and modeling errors. Furthermore, these hyperparameters are not adapted to different pricing schemes and may lead to non-economic operations. To address these issues, we propose an efficient performance-oriented building MPC controller tuning method based on a cutting-edge efficient constrained Bayesian optimization algorithm, CONFIG, with global optimality guarantees. We demonstrate that this technique can be applied to efficiently deal with real-world DSM program selection problems under customized black-box constraints and objectives. In this study, a simple MPC controller, which offers the advantages of reduced commissioning costs, enhanced computational efficiency, was optimized to perform on a comparable level to a delicately designed and computationally expensive MPC controller. The results also indicate that with an optimized simple MPC, the monthly electricity cost of a household can be reduced by up to 26.90% compared with the cost when controlled by a basic rule-based controller under the same constraints. Then we compared 12 real electricity contracts in Belgium for a household family with customized black-box occupant comfort constraints. The results indicate a monthly electricity bill saving up to 20.18% when the most economic contract is compared with the worst one, which again illustrates the significance of choosing a proper electricity contract.
comment: 15 pages, 9 figures
☆ BOOST: Microgrid Sizing using Ordinal Optimization
The transition to sustainable energy systems has highlighted the critical need for efficient sizing of renewable energy resources in microgrids. In particular, designing photovoltaic (PV) and battery systems to meet residential loads is challenging due to trade-offs between cost, reliability, and environmental impact. While previous studies have employed dynamic programming and heuristic techniques for microgrid sizing, these approaches often fail to balance computational efficiency and accuracy. In this work, we propose BOOST, or Battery-solar Ordinal Optimization Sizing Technique, a novel framework for optimizing the sizing of PV and battery components in microgrids. Ordinal optimization enables computationally efficient evaluations of potential designs while preserving accuracy through robust ranking of solutions. To determine the optimal operation of the system at any given time, we introduce a mixed-integer linear programming (MILP) approach, which achieves lower costs than the commonly used dynamic programming methods. Our numerical experiments demonstrate that the proposed framework identifies optimal designs that achieve a levelized cost of energy (LCOE) as low as 8.84 cents/kWh, underscoring its potential for cost-effective microgrid design. The implications of our work are significant: BOOST provides a scalable and accurate methodology for integrating renewable energy into residential microgrids, addressing economic and environmental goals simultaneously.
☆ Systems Engineering for Autonomous Vehicles; Supervising AI using Large Language Models (SSuperLLM)
Generative Artificial Intelligence (GAI) and the idea to use hierarchical models has been around for some years now. GAI has proved to be an extremely useful tool for Autonomous Vehicles (AVs). AVs need to perform robustly in their environment. Thus the AV behavior and short-term trajectory planning needs to be: a) designed and architected using safeguarding and supervisory systems and b) verified using proper Systems Engineering (SysEng) Principles. Can AV Systems Engineering also use Large Language Models (LLM) to help Autonomous vehicles (AV) development? This reader-friendly paper advocates the use of LLMs in 1) requirements (Reqs) development and 2) Reqs verification and 3) provides a proof-of-concept of AV supervisory control. The latter uses a simulation environment of a simple planar (bicycle) vehicle dynamics model and a Linear Quadratic Regulator (LQR) control with an LLM Application Interface (API). The Open-Source simulation SW is available from the author accessible to the readers so that they can engage into the AV stack, LLM API and rules, SysEng and Reqs and fundamental vehicle dynamics and control.
comment: 15 pages, 10 figures
☆ Integrating Expert and Physics Knowledge for Modeling Heat Load in District Heating Systems
New residential neighborhoods are often supplied with heat via district heating systems (DHS). Improving the energy efficiency of a DHS is critical for increasing sustainability and satisfying user requirements. In this paper, we present HELIOS, a dedicated artificial intelligence (AI) model designed specifically for modeling the heat load in DHS. HELIOS leverages a combination of established physical principles and expert knowledge, resulting in superior performance compared to existing state-of-the-art models. HELIOS is explainable, enabling enhanced accountability and traceability in its predictions. We evaluate HELIOS against ten state-of-the-art data-driven models in modeling the heat load in a DHS case study in the Netherlands. HELIOS emerges as the top-performing model while maintaining complete accountability. The applications of HELIOS extend beyond the present case study, potentially supporting the adoption of AI by DHS and contributing to sustainable energy management on a larger scale.
☆ Non-Expansive Mappings in Two-Time-Scale Stochastic Approximation: Finite-Time Analysis
Two-time-scale stochastic approximation is an iterative algorithm used in applications such as optimization, reinforcement learning, and control. Finite-time analysis of these algorithms has primarily focused on fixed point iterations where both time-scales have contractive mappings. In this paper, we study two-time-scale iterations, where the slower time-scale has a non-expansive mapping. For such algorithms, the slower time-scale can be considered a stochastic inexact Krasnoselskii-Mann iteration. We show that the mean square error decays at a rate $O(1/k^{1/4-\epsilon})$, where $\epsilon>0$ is arbitrarily small. We also show almost sure convergence of iterates to the set of fixed points. We show the applicability of our framework by applying our results to minimax optimization, linear stochastic approximation, and Lagrangian optimization.
comment: Submitted to SIAM Journal on Control and Optimization
☆ Insights from the application of nonlinear model predictive control to a cart-pendulum
Inspired greatly by Mills et al. (2009) and the solution within, this paper aims to more clearly explain the mathematics and implementation details of such a powerful control algorithm. While the aforementioned paper is well written and of sound mathematics, it is extreamly dense and requires some time and patience to decipher, especially as it draws on many other sources to complete the algorithm. This dense property is a clear result of the paper being restricted to the brief form and important details being ommited as a result. We provide the much needed elaboration here for the benifit of the reader.
☆ HOPS: High-order Polynomials with Self-supervised Dimension Reduction for Load Forecasting
Load forecasting is a fundamental task in smart grid. Many techniques have been applied to developing load forecasting models. Due to the challenges such as the Curse of Dimensionality, overfitting, and limited computing resources, multivariate higher-order polynomial models have received limited attention in load forecasting, despite their desirable mathematical foundations and optimization properties. In this paper, we propose low rank approximation and self-supervised dimension reduction to address the aforementioned issues. To further improve computational efficiency, we also introduce a fast Conjugate Gradient based algorithm for the proposed polynomial models. Based on the ISO New England dataset used in Global Energy Forecasting Competition 2017, the proposed method high-order polynomials with self-supervised dimension reduction (HOPS) demonstrates higher forecasting accuracy over several competitive models. Additionally, experimental results indicate that our approach alleviates redundant variable construction, achieving better forecasts with fewer input variables.
comment: 8 pages, 4 figures
☆ Assessing Markov Property in Driving Behaviors: Insights from Statistical Tests
The Markov property serves as a foundational assumption in most existing work on vehicle driving behavior, positing that future states depend solely on the current state, not the series of preceding states. This study validates the Markov properties of vehicle trajectories for both Autonomous Vehicles (AVs) and Human-driven Vehicles (HVs). A statistical method used to test whether time series data exhibits Markov properties is applied to examine whether the trajectory data possesses Markov characteristics. t test and F test are additionally introduced to characterize the differences in Markov properties between AVs and HVs. Based on two public trajectory datasets, we investigate the presence and order of the Markov property of different types of vehicles through rigorous statistical tests. Our findings reveal that AV trajectories generally exhibit stronger Markov properties compared to HV trajectories, with a higher percentage conforming to the Markov property and lower Markov orders. In contrast, HV trajectories display greater variability and heterogeneity in decision-making processes, reflecting the complex perception and information processing involved in human driving. These results have significant implications for the development of driving behavior models, AV controllers, and traffic simulation systems. Our study also demonstrates the feasibility of using statistical methods to test the presence of Markov properties in driving trajectory data.
♻ ☆ Optimal Transmission Power Scheduling for Networked Control System under DoS Attack
Designing networked control systems that are reliable and resilient against adversarial threats, is essential for ensuring the security of cyber-physical systems. This paper addresses the communication-control co-design problem for networked control systems under denial-of-service (DoS) attacks. In the wireless channel, a transmission power scheduler periodically determines the power level for sensory data transmission. Yet DoS attacks render data packets unavailable by disrupting the communication channel. This paper co-designs the control and power scheduling laws in the presence of DoS attacks and aims to minimize the sum of regulation control performance and transmission power consumption. Both finite- and infinite-horizon discounted cost criteria are addressed, respectively. By delving into the information structure between the controller and the power scheduler under attack, the original co-design problem is divided into two subproblems that can be solved individually without compromising optimality. The optimal control is shown to be certainty equivalent, and the optimal transmission power scheduling is solved using a dynamic programming approach. Moreover, in the infinite-horizon scenario, we analyze the performance of the designed scheduling policy and develop an upper bound of the total costs. Finally, a numerical example is provided to demonstrate the theoretical results.
♻ ☆ Eavesdropping on Goal-Oriented Communication: Timing Attacks and Countermeasures
Goal-oriented communication is a new paradigm that considers the meaning of transmitted information to optimize communication. One possible application is the remote monitoring of a process under communication costs: scheduling updates based on goal-oriented considerations can significantly reduce transmission frequency while maintaining high-quality tracking performance. However, goal-oriented scheduling also opens a timing-based side-channel that an eavesdropper may exploit to obtain information about the state of the remote process, even if the content of updates is perfectly secure. In this work, we study an eavesdropping attack against pull-based goal-oriented scheduling for the tracking of remote Markov processes. We provide a theoretical framework for defining the effectiveness of the attack and of possible countermeasures, as well as a practical heuristic that can provide a balance between the performance gains offered by goal-oriented communication and the information leakage.
♻ ☆ Functional Type Expressions of Sequential Circuits with the Notion of Referring Forms
This paper introduces the notion of referring forms as a new metric for analyzing sequential circuits from a functional perspective. Sequential circuits are modeled as causal stream functions, the outputs of which depend solely on the past and current inputs. Referring forms are defined based on the type expressions of functions and represent how a circuit refers to past inputs. The key contribution of this study is identifying a universal property in multiple clock domain circuits using referring forms. This theoretical framework is expected to enhance the comprehension and analysis of sequential circuits.
comment: 5 pages, 7 figures, 2025 11th International Conference on Computing and Artificial Intelligence (ICCAI 2025): accepted
♻ ☆ Refined Motion Compensation with Soft Laser Manipulators using Data-Driven Surrogate Models
Non-contact laser ablation, a precise thermal technique, simultaneously cuts and coagulates tissue without the insertion errors associated with rigid needles. Human organ motions, such as those in the liver, exhibit rhythmic components influenced by respiratory and cardiac cycles, making effective laser energy delivery to target lesions while compensating for tumor motion crucial. This research introduces a data-driven method to derive surrogate models of a soft manipulator. These low-dimensional models offer computational efficiency when integrated into the Model Predictive Control (MPC) framework, while still capturing the manipulator's dynamics with and without control input. Spectral Submanifolds (SSM) theory models the manipulator's autonomous dynamics, acknowledging its tendency to reach equilibrium when external forces are removed. Preliminary results show that the MPC controller using the surrogate model outperforms two other models within the same MPC framework. The data-driven MPC controller also supports a design-agnostic feature, allowing the interchangeability of different soft manipulators within the laser ablation surgery robot system.
Optimization and Control 17
☆ Classical and Deep Reinforcement Learning Inventory Control Policies for Pharmaceutical Supply Chains with Perishability and Non-Stationarity
We study inventory control policies for pharmaceutical supply chains, addressing challenges such as perishability, yield uncertainty, and non-stationary demand, combined with batching constraints, lead times, and lost sales. Collaborating with Bristol-Myers Squibb (BMS), we develop a realistic case study incorporating these factors and benchmark three policies--order-up-to (OUT), projected inventory level (PIL), and deep reinforcement learning (DRL) using the proximal policy optimization (PPO) algorithm--against a BMS baseline based on human expertise. We derive and validate bounds-based procedures for optimizing OUT and PIL policy parameters and propose a methodology for estimating projected inventory levels, which are also integrated into the DRL policy with demand forecasts to improve decision-making under non-stationarity. Compared to a human-driven policy, which avoids lost sales through higher holding costs, all three implemented policies achieve lower average costs but exhibit greater cost variability. While PIL demonstrates robust and consistent performance, OUT struggles under high lost sales costs, and PPO excels in complex and variable scenarios but requires significant computational effort. The findings suggest that while DRL shows potential, it does not outperform classical policies in all numerical experiments, highlighting 1) the need to integrate diverse policies to manage pharmaceutical challenges effectively, based on the current state-of-the-art, and 2) that practical problems in this domain seem to lack a single policy class that yields universally acceptable performance.
☆ Which price to pay? Auto-tuning building MPC controller for optimal economic cost
Model predictive control (MPC) controller is considered for temperature management in buildings but its performance heavily depends on hyperparameters. Consequently, MPC necessitates meticulous hyperparameter tuning to attain optimal performance under diverse contracts. However, conventional building controller design is an open-loop process without critical hyperparameter optimization, often leading to suboptimal performance due to unexpected environmental disturbances and modeling errors. Furthermore, these hyperparameters are not adapted to different pricing schemes and may lead to non-economic operations. To address these issues, we propose an efficient performance-oriented building MPC controller tuning method based on a cutting-edge efficient constrained Bayesian optimization algorithm, CONFIG, with global optimality guarantees. We demonstrate that this technique can be applied to efficiently deal with real-world DSM program selection problems under customized black-box constraints and objectives. In this study, a simple MPC controller, which offers the advantages of reduced commissioning costs, enhanced computational efficiency, was optimized to perform on a comparable level to a delicately designed and computationally expensive MPC controller. The results also indicate that with an optimized simple MPC, the monthly electricity cost of a household can be reduced by up to 26.90% compared with the cost when controlled by a basic rule-based controller under the same constraints. Then we compared 12 real electricity contracts in Belgium for a household family with customized black-box occupant comfort constraints. The results indicate a monthly electricity bill saving up to 20.18% when the most economic contract is compared with the worst one, which again illustrates the significance of choosing a proper electricity contract.
comment: 15 pages, 9 figures
☆ Non-Expansive Mappings in Two-Time-Scale Stochastic Approximation: Finite-Time Analysis
Two-time-scale stochastic approximation is an iterative algorithm used in applications such as optimization, reinforcement learning, and control. Finite-time analysis of these algorithms has primarily focused on fixed point iterations where both time-scales have contractive mappings. In this paper, we study two-time-scale iterations, where the slower time-scale has a non-expansive mapping. For such algorithms, the slower time-scale can be considered a stochastic inexact Krasnoselskii-Mann iteration. We show that the mean square error decays at a rate $O(1/k^{1/4-\epsilon})$, where $\epsilon>0$ is arbitrarily small. We also show almost sure convergence of iterates to the set of fixed points. We show the applicability of our framework by applying our results to minimax optimization, linear stochastic approximation, and Lagrangian optimization.
comment: Submitted to SIAM Journal on Control and Optimization
☆ Supervised Large Neighbourhood Search for MIPs
Large Neighbourhood Search (LNS) is a powerful heuristic framework for solving Mixed-Integer Programming (MIP) problems. However, designing effective variable selection strategies in LNS remains challenging, especially for diverse sets of problems. In this paper, we propose an approach that integrates Machine Learning (ML) within the destroy operator of LNS for MIPs with a focus on minimal offline training. We implement a modular LNS matheuristic as a test bench to compare different LNS heuristics, including our ML-enhanced LNS. Experimental results on the MIPLIB 2017 dataset demonstrate that the matheuristic can significantly improve the performance of state-of-the-art solvers like Gurobi and SCIP. We conduct analyses on noisy oracles to explore the impact of prediction accuracy on solution quality. Additionally, we develop techniques to enhance the ML model through loss adjustments and sampling routines. Our findings suggest that while random LNS remains competitive, our Supervised LNS (SLNS) outperforms other baselines and helps set the foundation for future research on ML for LNS methods that are both efficient and general.
☆ Risk-Averse Antibiotics Time Machine Problem
Antibiotic resistance, which is a serious healthcare issue, emerges due to uncontrolled and repeated antibiotic use that causes bacteria to mutate and develop resistance to antibiotics. The Antibiotics Time Machine Problem aims to come up with treatment plans that maximize the probability of reversing these mutations. Motivated by the severity of the problem, we develop a risk-averse approach and formulate a scenario-based mixed-integer linear program with a conditional value-at-risk objective function. We propose a risk-averse scenario batch decomposition algorithm that partitions the scenarios into manageable risk-averse subproblems, enabling the construction of lower and upper bounds. We develop several algorithmic enhancements in the form of stronger no-good cuts and symmetry breaking constraints in addition to scenario regrouping and warm starting. We conduct extensive computational experiments for static and dynamic versions of the problem on a real dataset and demonstrate the effectiveness of our approach. Our results suggest that risk-averse solutions can achieve significantly better worst-case performance compared to risk-neutral solutions with a slight decrease in terms of the average performance, especially for the dynamic version. Although our methodology is presented in the context of the Antibiotics Time Machine Problem, it can be adapted to other risk-averse problem settings in which the decision variables come from special ordered sets of type one.
☆ Changing the ranking in eigenvector centrality of a weighted graph by small perturbations
In this article, we consider eigenvector centrality for the nodes of a graph and study the robustness (and stability) of this popular centrality measure. For a given weighted graph $\G$ (both directed and undirected), we consider the associated weighted adiacency matrix $A$, which by definition is a non-negative matrix. Eigenvector centrality consists of ranking the elements of the graph according to the corresponding entries of the Perron eigenvector of $A$, which is associated with the positive eigenvalue with largest modulus. An indicator of the robustness of eigenvector centrality consists in looking for a nearby perturbed graph $\widetilde{\G}$, with the same structure as $\G$ (i.e., with the same vertices and edges), but with a weighted adiacency matrix $\widetilde A$ such that the highest $m$ entries ($m \ge 2$) of the Perron eigenvector of $\widetilde A$ coalesce, making the ranking at the highest level ambiguous. To compute a solution to this matrix nearness problem, a nested iterative algorithm is proposed that makes use of a constrained gradient system of matrix differential equations (possibly on a low-rank manifold) in the inner iteration and a one-dimensional optimization of the perturbation size in the outer iteration. The proposed algorithm produces the {\em optimal} perturbation (i.e., the one with smallest Frobenius norm) of the graph, which causes the looked-for coalescence, which is a measure of the sensitivity of the graph. The methodology is formulated in terms of graphs but applies to any nonnegative matrix, with potential applications in fields like population models, consensus dynamics, economics, etc.
☆ On a geometric graph-covering problem related to optimal safety-landing-site location
We propose integer-programming formulations for an optimal safety-landing site (SLS) location problem that arises in the design of urban air-transportation networks. We first develop a set-cover based approach for the case where the candidate location set is finite and composed of points, and we link the problems to solvable cases that have been studied. We then use a mixed-integer second-order cone program to model the situation where the locations of SLSs are restricted to convex sets only. Finally, we introduce strong fixing, which we found to be very effective in reducing the size of integer programs.
☆ Stability of neural ODEs by a control over the expansivity of their flows
We propose a method to enhance the stability of a neural ordinary differential equation (neural ODE) by means of a control over the Lipschitz constant $C$ of its flow. Since it is known that $C$ depends on the logarithmic norm of the Jacobian matrix associated with the neural ODE, we tune this parameter at our convenience by suitably perturbing the Jacobian matrix with a perturbation as small as possible in Frobenius norm. We do so by introducing an optimization problem for which we propose a nested two-level algorithm. For a given perturbation size, the inner level computes the optimal perturbation with a fixed Frobenius norm, while the outer level tunes the perturbation amplitude. We embed the proposed algorithm in the training of the neural ODE to improve its stability. Numerical experiments on the MNIST and FashionMNIST datasets show that an image classifier including a neural ODE in its architecture trained according to our strategy is more stable than the same classifier trained in the classical way, and therefore, it is more robust and less vulnerable to adversarial attacks.
comment: 22 pages, 3 figures, 2 tables
☆ Computing Capacity-Cost Functions for Continuous Channels in Wasserstein Space
This paper investigates the problem of computing capacity-cost (C-C) functions for continuous channels. Motivated by the Kullback-Leibler divergence (KLD) proximal reformulation of the classical Blahut-Arimoto (BA) algorithm, the Wasserstein distance is introduced to the proximal term for the continuous case, resulting in an iterative algorithm related to the Wasserstein gradient descent. Practical implementation involves moving particles along the negative gradient direction of the objective function's first variation in the Wasserstein space and approximating integrals by the importance sampling (IS) technique. Such formulation is also applied to the rate-distortion (R-D) function for continuous source spaces and thus provides a unified computation framework for both problems.
comment: Accepted to IEEE International Conference on Communications 2025
♻ ☆ SLowcal-SGD: Slow Query Points Improve Local-SGD for Stochastic Convex Optimization
We consider distributed learning scenarios where M machines interact with a parameter server along several communication rounds in order to minimize a joint objective function. Focusing on the heterogeneous case, where different machines may draw samples from different data-distributions, we design the first local update method that provably benefits over the two most prominent distributed baselines: namely Minibatch-SGD and Local-SGD. Key to our approach is a slow querying technique that we customize to the distributed setting, which in turn enables a better mitigation of the bias caused by local updates.
♻ ☆ On the Convergence of the Gradient Descent Method with Stochastic Fixed-point Rounding Errors under the Polyak-Lojasiewicz Inequality
When training neural networks with low-precision computation, rounding errors often cause stagnation or are detrimental to the convergence of the optimizers; in this paper we study the influence of rounding errors on the convergence of the gradient descent method for problems satisfying the Polyak-\Lojasiewicz inequality. Within this context, we show that, in contrast, biased stochastic rounding errors may be beneficial since choosing a proper rounding strategy eliminates the vanishing gradient problem and forces the rounding bias in a descent direction. Furthermore, we obtain a bound on the convergence rate that is stricter than the one achieved by unbiased stochastic rounding. The theoretical analysis is validated by comparing the performances of various rounding strategies when optimizing several examples using low-precision fixed-point number formats.
♻ ☆ Inverting Laguerre tessellations: Recovering tessellations from the volumes and centroids of their cells using optimal transport
In this paper we study an inverse problem in convex geometry, inspired by a problem in materials science. Firstly, we consider the question of whether a Laguerre tessellation (a partition by convex polytopes) can be recovered from only the volumes and centroids of its cells. We show that this problem has a unique solution and give a constructive way of computing it using optimal transport theory and convex optimisation. Secondly, we consider the problem of fitting a Laguerre tessellation to synthetic volume and centroid data. Given some target volumes and centroids, we seek a Laguerre tessellation such that the difference between the volumes and centroids of its cells and the target volumes and centroids is minimised. For an appropriate objective function and suitable data, we prove that local minimisers of this problem can be constructed using convex optimisation. We also illustrate our results numerically. There is great interest in the computational materials science community in fitting Laguerre tessellations to electron backscatter diffraction (EBSD) and x-ray diffraction images of polycrystalline materials. As an application of our results we fit a 2D Laguerre tessellation to an EBSD image of steel.
♻ ☆ When Location Shapes Choice: Placement Optimization of Substitutable Products
Strategic product placement can have a strong influence on customer purchase behavior in physical stores as well as online platforms. Motivated by this, we consider the problem of optimizing the placement of substitutable products in designated display locations to maximize the expected revenue of the seller. We model the customer behavior as a two-stage process: first, the customer visits a subset of display locations according to a browsing distribution; second, the customer chooses at most one product from the displayed products at those locations according to a choice model. Our goal is to design a general algorithm that can select and place the products optimally for any browsing distribution and choice model, and we call this the Placement problem. We give a randomized algorithm that utilizes an $\alpha$-approximate algorithm for cardinality constrained assortment optimization and outputs a $\frac{\Theta(\alpha)}{\log m}$-approximate solution (in expectation) for Placement with $m$ display locations, i.e., our algorithm outputs a solution with value at least $\frac{\Omega(\alpha)}{\log m}$ factor of the optimal and this is tight in the worst case. We also give algorithms with stronger guarantees in some special cases. In particular, we give a deterministic $\frac{\Omega(1)}{\log m}$-approximation algorithm for the Markov choice model, and a tight $(1-1/e)$-approximation algorithm for the problem when products have identical prices.
♻ ☆ Numerical Analysis for a Hyperbolic PDE-Constrained Optimization Problem in Acoustic Full Waveform Inversion
This paper explores a fully discrete approximation for a nonlinear hyperbolic PDE-constrained optimization problem (P) with applications in acoustic full waveform inversion. The optimization problem is primarily complicated by the hyperbolic character and the second-order bilinear structure in the governing wave equation. While the control parameter is discretized using the piecewise constant elements, the state discretization is realized through an auxiliary first-order system along with the leapfrog time-stepping method and continuous piecewise linear elements. The resulting fully discrete minimization problem ($\text{P}_h$) is shown to be well-defined. Furthermore, building upon a suitable CFL-condition, we prove stability and uniform convergence of the state discretization. Our final result is the strong convergence result for ($\text{P}_h$) in the following sense: Given a local minimizer $\overline \nu$ of (P) satisfying a reasonable growth condition, there exists a sequence of local minimizers of ($\text{P}_h$) converging strongly towards $\overline \nu$.
♻ ☆ Useful Compact Representations for Data-Fitting
For minimization problems without 2nd derivative information, methods that estimate Hessian matrices can be very effective. However, conventional techniques generate dense matrices that are prohibitive for large problems. Limited-memory compact representations express the dense arrays in terms of a low rank representation and have become the state-of-the-art for software implementations on large deterministic problems. We develop new compact representations that are parameterized by a choice of vectors and that reduce to existing well known formulas for special choices. We demonstrate effectiveness of the compact representations for large eigenvalue computations, tensor factorizations and nonlinear regressions.
♻ ☆ Wasserstein Distributionally Robust Shallow Convex Neural Networks
In this work, we propose Wasserstein distributionally robust shallow convex neural networks (WaDiRo-SCNNs) to provide reliable nonlinear predictions when subject to adverse and corrupted datasets. Our approach is based on a new convex training program for $\ReLU$-based shallow neural networks which allows us to cast the problem as an exact, tractable reformulation of its order-1 Wasserstein distributionally robust counterpart. Our training procedure is conservative, has low stochasticity, is solvable with open-source solvers, and is scalable to large industrial deployments. We provide out-of-sample performance guarantees, show that hard convex physical constraints can be enforced in the training program, and propose a mixed-integer convex post-training verification program to evaluate model stability. WaDiRo-SCNN aims to make neural networks safer for critical applications, such as in the energy sector. Finally, we numerically demonstrate the performance of our model on a synthetic experiment, a real-world power system application, i.e., the prediction of non-residential buildings' hourly energy consumption in the context of virtual power plants, and on benchmark datasets. The experimental results are convincing and showcase the strengths of the proposed model.
♻ ☆ Time-inconsistent mean-field stopping problems: A regularized equilibrium approach
This paper studies the mean-field Markov decision process (MDP) with the centralized stopping under the non-exponential discount. The problem differs fundamentally from most existing studies on mean-field optimal control/stopping due to its time inconsistency by nature. We look for the subgame perfect relaxed equilibria, namely the randomized stopping policies that satisfy the time-consistent planning with future selves from the perspective of the social planner. On the other hand, unlike many previous studies on time-inconsistent stopping where the decreasing impatience plays a key role, we are interested in the general discount function without imposing any conditions. As a result, the study on the relaxed equilibrium becomes necessary as the pure-strategy equilibrium may not exist in general. We formulate relaxed equilibria as fixed points of a complicated operator, whose existence is challenging by a direct method. To overcome the obstacles, we first introduce the auxiliary problem under the entropy regularization on the randomized policy and the discount function, and establish the existence of the regularized equilibria as fixed points to an auxiliary operator via Schauder fixed point theorem. Next, we show that the regularized equilibrium converges as the regularization parameter $\lambda$ tends to $0$ and the limit corresponds to a fixed point to the original operator, and hence is a relaxed equilibrium. We also establish some connections between the mean-field MDP and the N-agent MDP when $N$ is sufficiently large in our time-inconsistent setting.
comment: Final version, forthcoming in Finance and Stochastics
Computer Vision and Pattern Recognition 27
☆ OpenEarthMap-SAR: A Benchmark Synthetic Aperture Radar Dataset for Global High-Resolution Land Cover Mapping
High-resolution land cover mapping plays a crucial role in addressing a wide range of global challenges, including urban planning, environmental monitoring, disaster response, and sustainable development. However, creating accurate, large-scale land cover datasets remains a significant challenge due to the inherent complexities of geospatial data, such as diverse terrain, varying sensor modalities, and atmospheric conditions. Synthetic Aperture Radar (SAR) imagery, with its ability to penetrate clouds and capture data in all-weather, day-and-night conditions, offers unique advantages for land cover mapping. Despite these strengths, the lack of benchmark datasets tailored for SAR imagery has limited the development of robust models specifically designed for this data modality. To bridge this gap and facilitate advancements in SAR-based geospatial analysis, we introduce OpenEarthMap-SAR, a benchmark SAR dataset, for global high-resolution land cover mapping. OpenEarthMap-SAR consists of 1.5 million segments of 5033 aerial and satellite images with the size of 1024$\times$1024 pixels, covering 35 regions from Japan, France, and the USA, with partially manually annotated and fully pseudo 8-class land cover labels at a ground sampling distance of 0.15--0.5 m. We evaluated the performance of state-of-the-art methods for semantic segmentation and present challenging problem settings suitable for further technical development. The dataset also serves the official dataset for IEEE GRSS Data Fusion Contest Track I. The dataset has been made publicly available at https://zenodo.org/records/14622048.
comment: 8 pages, 3 figures
☆ Exploring Siamese Networks in Self-Supervised Fast MRI Reconstruction
Reconstructing MR images using deep neural networks from undersampled k-space data without using fully sampled training references offers significant value in practice, which is a self-supervised regression problem calling for effective prior knowledge and supervision. The Siamese architectures are motivated by the definition "invariance" and shows promising results in unsupervised visual representative learning. Building homologous transformed images and avoiding trivial solutions are two major challenges in Siamese-based self-supervised model. In this work, we explore Siamese architecture for MRI reconstruction in a self-supervised training fashion called SiamRecon. We show the proposed approach mimics an expectation maximization algorithm. The alternative optimization provide effective supervision signal and avoid collapse. The proposed SiamRecon achieves the state-of-the-art reconstruction accuracy in the field of self-supervised learning on both single-coil brain MRI and multi-coil knee MRI.
☆ Visual RAG: Expanding MLLM visual knowledge without fine-tuning
Multimodal Large Language Models (MLLMs) have achieved notable performance in computer vision tasks that require reasoning across visual and textual modalities, yet their capabilities are limited to their pre-trained data, requiring extensive fine-tuning for updates. Recent researches have explored the use of In-Context Learning (ICL) to overcome these challenges by providing a set of demonstrating examples as context to augment MLLMs performance in several tasks, showing that many-shot ICL leads to substantial improvements compared to few-shot ICL. However, the reliance on numerous demonstrating examples and the limited MLLMs context windows presents significant obstacles. This paper aims to address these challenges by introducing a novel approach, Visual RAG, that synergically combines the MLLMs capability to learn from the context, with a retrieval mechanism. The crux of this approach is to ensure to augment the MLLM knowledge by selecting only the most relevant demonstrating examples for the query, pushing it to learn by analogy. In this way, relying on the new information provided dynamically during inference time, the resulting system is not limited to the knowledge extracted from the training data, but can be updated rapidly and easily without fine-tuning. Furthermore, this greatly reduces the computational costs for improving the model image classification performance, and augments the model knowledge to new visual domains and tasks it was not trained for. Extensive experiments on eight different datasets in the state of the art spanning several domains and image classification tasks show that the proposed Visual RAG, compared to the most recent state of the art (i.e., many-shot ICL), is able to obtain an accuracy that is very close or even higher (approx. +2% improvement on average) while using a much smaller set of demonstrating examples (approx. only 23% on average).
☆ GAUDA: Generative Adaptive Uncertainty-guided Diffusion-based Augmentation for Surgical Segmentation
Augmentation by generative modelling yields a promising alternative to the accumulation of surgical data, where ethical, organisational and regulatory aspects must be considered. Yet, the joint synthesis of (image, mask) pairs for segmentation, a major application in surgery, is rather unexplored. We propose to learn semantically comprehensive yet compact latent representations of the (image, mask) space, which we jointly model with a Latent Diffusion Model. We show that our approach can effectively synthesise unseen high-quality paired segmentation data of remarkable semantic coherence. Generative augmentation is typically applied pre-training by synthesising a fixed number of additional training samples to improve downstream task models. To enhance this approach, we further propose Generative Adaptive Uncertainty-guided Diffusion-based Augmentation (GAUDA), leveraging the epistemic uncertainty of a Bayesian downstream model for targeted online synthesis. We condition the generative model on classes with high estimated uncertainty during training to produce additional unseen samples for these classes. By adaptively utilising the generative model online, we can minimise the number of additional training samples and centre them around the currently most uncertain parts of the data distribution. GAUDA effectively improves downstream segmentation results over comparable methods by an average absolute IoU of 1.6% on CaDISv2 and 1.5% on CholecSeg8k, two prominent surgical datasets for semantic segmentation.
☆ No More Sliding Window: Efficient 3D Medical Image Segmentation with Differentiable Top-k Patch Sampling
3D models are favored over 2D for 3D medical image segmentation tasks due to their ability to leverage inter-slice relationship, yielding higher segmentation accuracy. However, 3D models demand significantly more GPU memory with increased model size and intermediate tensors. A common solution is to use patch-based training and make whole-volume predictions with sliding window (SW) inference. SW inference reduces memory usage but is slower due to equal resource allocation across patches and less accurate as it overlooks global features beyond patches. We propose NMSW-Net (No-More-Sliding-Window-Net), a novel framework that enhances efficiency and accuracy of any given 3D segmentation model by eliminating SW inference and incorporating global predictions when necessary. NMSW-Net incorporates a differentiable Top-k module to sample only the relevant patches that enhance segmentation accuracy, thereby minimizing redundant computations. Additionally, it learns to leverage coarse global predictions when patch prediction alone is insufficient. NMSW-Net is model-agnostic, making it compatible with any 3D segmentation model that previously relied on SW inference. Evaluated across 3 tasks with 3 segmentation backbones, NMSW-Net achieves competitive or sometimes superior accuracy compared to SW, while reducing computational complexity by 90% (87.5 to 7.95 TFLOPS), delivering 4x faster inference on the H100 GPU (19.0 to 4.3 sec), and 7x faster inference on the Intel Xeon Gold CPU (1710 to 230 seconds).
☆ Efficient Auto-Labeling of Large-Scale Poultry Datasets (ALPD) Using Semi-Supervised Models, Active Learning, and Prompt-then-Detect Approach
The rapid growth of AI in poultry farming has highlighted the challenge of efficiently labeling large, diverse datasets. Manual annotation is time-consuming, making it impractical for modern systems that continuously generate data. This study explores semi-supervised auto-labeling methods, integrating active learning, and prompt-then-detect paradigm to develop an efficient framework for auto-labeling of large poultry datasets aimed at advancing AI-driven behavior and health monitoring. Viideo data were collected from broilers and laying hens housed at the University of Arkansas and the University of Georgia. The collected videos were converted into images, pre-processed, augmented, and labeled. Various machine learning models, including zero-shot models like Grounding DINO, YOLO-World, and CLIP, and supervised models like YOLO and Faster-RCNN, were utilized for broilers, hens, and behavior detection. The results showed that YOLOv8s-World and YOLOv9s performed better when compared performance metrics for broiler and hen detection under supervised learning, while among the semi-supervised model, YOLOv8s-ALPD achieved the highest precision (96.1%) and recall (99.0%) with an RMSE of 1.9. The hybrid YOLO-World model, incorporating the optimal YOLOv8s backbone, demonstrated the highest overall performance. It achieved a precision of 99.2%, recall of 99.4%, and an F1 score of 98.7% for breed detection, alongside a precision of 88.4%, recall of 83.1%, and an F1 score of 84.5% for individual behavior detection. Additionally, semi-supervised models showed significant improvements in behavior detection, achieving up to 31% improvement in precision and 16% in F1-score. The semi-supervised models with minimal active learning reduced annotation time by over 80% compared to full manual labeling. Moreover, integrating zero-shot models enhanced detection and behavior identification.
☆ CS-Net:Contribution-based Sampling Network for Point Cloud Simplification
Point cloud sampling plays a crucial role in reducing computation costs and storage requirements for various vision tasks. Traditional sampling methods, such as farthest point sampling, lack task-specific information and, as a result, cannot guarantee optimal performance in specific applications. Learning-based methods train a network to sample the point cloud for the targeted downstream task. However, they do not guarantee that the sampled points are the most relevant ones. Moreover, they may result in duplicate sampled points, which requires completion of the sampled point cloud through post-processing techniques. To address these limitations, we propose a contribution-based sampling network (CS-Net), where the sampling operation is formulated as a Top-k operation. To ensure that the network can be trained in an end-to-end way using gradient descent algorithms, we use a differentiable approximation to the Top-k operation via entropy regularization of an optimal transport problem. Our network consists of a feature embedding module, a cascade attention module, and a contribution scoring module. The feature embedding module includes a specifically designed spatial pooling layer to reduce parameters while preserving important features. The cascade attention module combines the outputs of three skip connected offset attention layers to emphasize the attractive features and suppress less important ones. The contribution scoring module generates a contribution score for each point and guides the sampling process to prioritize the most important ones. Experiments on the ModelNet40 and PU147 showed that CS-Net achieved state-of-the-art performance in two semantic-based downstream tasks (classification and registration) and two reconstruction-based tasks (compression and surface reconstruction).
☆ Decoupling Appearance Variations with 3D Consistent Features in Gaussian Splatting AAAI 2025
Gaussian Splatting has emerged as a prominent 3D representation in novel view synthesis, but it still suffers from appearance variations, which are caused by various factors, such as modern camera ISPs, different time of day, weather conditions, and local light changes. These variations can lead to floaters and color distortions in the rendered images/videos. Recent appearance modeling approaches in Gaussian Splatting are either tightly coupled with the rendering process, hindering real-time rendering, or they only account for mild global variations, performing poorly in scenes with local light changes. In this paper, we propose DAVIGS, a method that decouples appearance variations in a plug-and-play and efficient manner. By transforming the rendering results at the image level instead of the Gaussian level, our approach can model appearance variations with minimal optimization time and memory overhead. Furthermore, our method gathers appearance-related information in 3D space to transform the rendered images, thus building 3D consistency across views implicitly. We validate our method on several appearance-variant scenes, and demonstrate that it achieves state-of-the-art rendering quality with minimal training time and memory usage, without compromising rendering speeds. Additionally, it provides performance improvements for different Gaussian Splatting baselines in a plug-and-play manner.
comment: Accepted to AAAI 2025. Project website: https://davi-gaussian.github.io
☆ LD-DETR: Loop Decoder DEtection TRansformer for Video Moment Retrieval and Highlight Detection
Video Moment Retrieval and Highlight Detection aim to find corresponding content in the video based on a text query. Existing models usually first use contrastive learning methods to align video and text features, then fuse and extract multimodal information, and finally use a Transformer Decoder to decode multimodal information. However, existing methods face several issues: (1) Overlapping semantic information between different samples in the dataset hinders the model's multimodal aligning performance; (2) Existing models are not able to efficiently extract local features of the video; (3) The Transformer Decoder used by the existing model cannot adequately decode multimodal features. To address the above issues, we proposed the LD-DETR model for Video Moment Retrieval and Highlight Detection tasks. Specifically, we first distilled the similarity matrix into the identity matrix to mitigate the impact of overlapping semantic information. Then, we designed a method that enables convolutional layers to extract multimodal local features more efficiently. Finally, we fed the output of the Transformer Decoder back into itself to adequately decode multimodal information. We evaluated LD-DETR on four public benchmarks and conducted extensive experiments to demonstrate the superiority and effectiveness of our approach. Our model outperforms the State-Of-The-Art models on QVHighlight, Charades-STA and TACoS datasets. Our code is available at https://github.com/qingchen239/ld-detr.
☆ MedFILIP: Medical Fine-grained Language-Image Pre-training
Medical vision-language pretraining (VLP) that leverages naturally-paired medical image-report data is crucial for medical image analysis. However, existing methods struggle to accurately characterize associations between images and diseases, leading to inaccurate or incomplete diagnostic results. In this work, we propose MedFILIP, a fine-grained VLP model, introduces medical image-specific knowledge through contrastive learning, specifically: 1) An information extractor based on a large language model is proposed to decouple comprehensive disease details from reports, which excels in extracting disease deals through flexible prompt engineering, thereby effectively reducing text complexity while retaining rich information at a tiny cost. 2) A knowledge injector is proposed to construct relationships between categories and visual attributes, which help the model to make judgments based on image features, and fosters knowledge extrapolation to unfamiliar disease categories. 3) A semantic similarity matrix based on fine-grained annotations is proposed, providing smoother, information-richer labels, thus allowing fine-grained image-text alignment. 4) We validate MedFILIP on numerous datasets, e.g., RSNA-Pneumonia, NIH ChestX-ray14, VinBigData, and COVID-19. For single-label, multi-label, and fine-grained classification, our model achieves state-of-the-art performance, the classification accuracy has increased by a maximum of 6.69\%. The code is available in https://github.com/PerceptionComputingLab/MedFILIP.
comment: 10 pages, 5 figures, IEEE Journal of Biomedical and Health Informatics 2025
☆ Enhancing Diagnostic in 3D COVID-19 Pneumonia CT-scans through Explainable Uncertainty Bayesian Quantification
Accurately classifying COVID-19 pneumonia in 3D CT scans remains a significant challenge in the field of medical image analysis. Although deterministic neural networks have shown promising results in this area, they provide only point estimates outputs yielding poor diagnostic in clinical decision-making. In this paper, we explore the use of Bayesian neural networks for classifying COVID-19 pneumonia in 3D CT scans providing uncertainties in their predictions. We compare deterministic networks and their Bayesian counterpart, enhancing the decision-making accuracy under uncertainty information. Remarkably, our findings reveal that lightweight architectures achieve the highest accuracy of 96\% after developing extensive hyperparameter tuning. Furthermore, the Bayesian counterpart of these architectures via Multiplied Normalizing Flow technique kept a similar performance along with calibrated uncertainty estimates. Finally, we have developed a 3D-visualization approach to explain the neural network outcomes based on SHAP values. We conclude that explainability along with uncertainty quantification will offer better clinical decisions in medical image analysis, contributing to ongoing efforts for improving the diagnosis and treatment of COVID-19 pneumonia.
comment: 61 pages, 16 figures. Comments are welcome
☆ Infrared and Visible Image Fusion: From Data Compatibility to Task Adaption
Infrared-visible image fusion (IVIF) is a critical task in computer vision, aimed at integrating the unique features of both infrared and visible spectra into a unified representation. Since 2018, the field has entered the deep learning era, with an increasing variety of approaches introducing a range of networks and loss functions to enhance visual performance. However, challenges such as data compatibility, perception accuracy, and efficiency remain. Unfortunately, there is a lack of recent comprehensive surveys that address this rapidly expanding domain. This paper fills that gap by providing a thorough survey covering a broad range of topics. We introduce a multi-dimensional framework to elucidate common learning-based IVIF methods, from visual enhancement strategies to data compatibility and task adaptability. We also present a detailed analysis of these approaches, accompanied by a lookup table clarifying their core ideas. Furthermore, we summarize performance comparisons, both quantitatively and qualitatively, focusing on registration, fusion, and subsequent high-level tasks. Beyond technical analysis, we discuss potential future directions and open issues in this area. For further details, visit our GitHub repository: https://github.com/RollingPlain/IVIF_ZOO.
☆ Deformable Image Registration of Dark-Field Chest Radiographs for Local Lung Signal Change Assessment
Dark-field radiography of the human chest has been demonstrated to have promising potential for the analysis of the lung microstructure and the diagnosis of respiratory diseases. However, previous studies of dark-field chest radiographs evaluated the lung signal only in the inspiratory breathing state. Our work aims to add a new perspective to these previous assessments by locally comparing dark-field lung information between different respiratory states. To this end, we discuss suitable image registration methods for dark-field chest radiographs to enable consistent spatial alignment of the lung in distinct breathing states. Utilizing full inspiration and expiration scans from a clinical chronic obstructive pulmonary disease study, we assess the performance of the proposed registration framework and outline applicable evaluation approaches. Our regional characterization of lung dark-field signal changes between the breathing states provides a proof-of-principle that dynamic radiography-based lung function assessment approaches may benefit from considering registered dark-field images in addition to standard plain chest radiographs.
comment: 10 pages, 6 figures
☆ Quadcopter Position Hold Function using Optical Flow in a Smartphone-based Flight Computer
Purpose. This paper explores the capability of smartphones as computing devices for a quadcopter, specifically in terms of the ability of drones to maintain a position known as the position hold function. Image processing can be performed with the phone's sensors and powerful built-in camera. Method. Using Shi-Tomasi corner detection and the Lucas-Kanade sparse optical flow algorithms, ground features are recognized and tracked using the downward-facing camera. The position is maintained by computing quadcopter displacement from the center of the image using Euclidian distance, and the corresponding pitch and roll estimate is calculated using the PID controller. Results. Actual flights show a double standard deviation of 18.66 cm from the center for outdoor tests. With a quadcopter size of 58cm x 58cm used, it implies that 95% of the time, the quadcopter is within a diameter of 96 cm. For indoor tests, a double standard deviation of 10.55 cm means that 95% of the time, the quadcopter is within a diameter of 79 cm. Conclusion. Smartphone sensors and cameras can be used to perform optical flow position hold functions, proving their potential as computing devices for drones. Recommendations. To further improve the positioning system of the phone-based quadcopter system, it is suggested that potential sensor fusion be explored with the phone's GNSS sensor, which gives absolute positioning information for outdoor applications. Research Implications. As different devices and gadgets are integrated into the smartphone, this paper presents an opportunity for phone manufacturers and researchers to explore the potential of smartphones for a drone use-case.
comment: 13 pages
☆ Semi-supervised Semantic Segmentation for Remote Sensing Images via Multi-scale Uncertainty Consistency and Cross-Teacher-Student Attention
Semi-supervised learning offers an appealing solution for remote sensing (RS) image segmentation to relieve the burden of labor-intensive pixel-level labeling. However, RS images pose unique challenges, including rich multi-scale features and high inter-class similarity. To address these problems, this paper proposes a novel semi-supervised Multi-Scale Uncertainty and Cross-Teacher-Student Attention (MUCA) model for RS image semantic segmentation tasks. Specifically, MUCA constrains the consistency among feature maps at different layers of the network by introducing a multi-scale uncertainty consistency regularization. It improves the multi-scale learning capability of semi-supervised algorithms on unlabeled data. Additionally, MUCA utilizes a Cross-Teacher-Student attention mechanism to guide the student network, guiding the student network to construct more discriminative feature representations through complementary features from the teacher network. This design effectively integrates weak and strong augmentations (WA and SA) to further boost segmentation performance. To verify the effectiveness of our model, we conduct extensive experiments on ISPRS-Potsdam and LoveDA datasets. The experimental results show the superiority of our method over state-of-the-art semi-supervised methods. Notably, our model excels in distinguishing highly similar objects, showcasing its potential for advancing semi-supervised RS image segmentation tasks.
☆ A CNN-Transformer for Classification of Longitudinal 3D MRI Images -- A Case Study on Hepatocellular Carcinoma Prediction
Longitudinal MRI analysis is crucial for predicting disease outcomes, particularly in chronic conditions like hepatocellular carcinoma (HCC), where early detection can significantly influence treatment strategies and patient prognosis. Yet, due to challenges like limited data availability, subtle parenchymal changes, and the irregular timing of medical screenings, current approaches have so far focused on cross-sectional imaging data. To address this, we propose HCCNet, a novel model architecture that integrates a 3D adaptation of the ConvNeXt CNN architecture with a Transformer encoder, capturing both the intricate spatial features of 3D MRIs and the complex temporal dependencies across different time points. HCCNet utilizes a two-stage pre-training process tailored for longitudinal MRI data. The CNN backbone is pre-trained using a self-supervised learning framework adapted for 3D MRIs, while the Transformer encoder is pre-trained with a sequence-order-prediction task to enhance its understanding of disease progression over time. We demonstrate the effectiveness of HCCNet by applying it to a cohort of liver cirrhosis patients undergoing regular MRI screenings for HCC surveillance. Our results show that HCCNet significantly improves predictive accuracy and reliability over baseline models, providing a robust tool for personalized HCC surveillance. The methodological approach presented in this paper is versatile and can be adapted to various longitudinal MRI screening applications. Its ability to handle varying patient record lengths and irregular screening intervals establishes it as an invaluable framework for monitoring chronic diseases, where timely and accurate disease prognosis is critical for effective treatment planning.
comment: Submitted for publication to Biomedical Signal Processing and Control
♻ ☆ CBAM-EfficientNetV2 for Histopathology Image Classification using Transfer Learning and Dual Attention Mechanisms
Breast cancer histopathology image classification is critical for early detection and improved patient outcomes. 1 This study introduces a novel approach leveraging EfficientNetV2 models, to improve feature extraction and focus on relevant tissue regions. The proposed models were evaluated on the BreakHis dataset across multiple magnification scales (40X, 100X, 200X, and 400X). 2 Among them, the EfficientNetV2-XL with CBAM achieved outstanding performance, reaching a peak accuracy of 99.01 percent and an F1-score of 98.31 percent at 400X magnification, outperforming state-of-the-art methods. 3 By integrating Contrast Limited Adaptive Histogram Equalization (CLAHE) for preprocessing and optimizing computational efficiency, this method demonstrates its suitability for real-time clinical deployment. 3 The results underscore the potential of attention-enhanced scalable architectures in advancing diagnostic precision for breast cancer detection.
♻ ☆ Lotus: Diffusion-based Visual Foundation Model for High-quality Dense Prediction
Leveraging the visual priors of pre-trained text-to-image diffusion models offers a promising solution to enhance zero-shot generalization in dense prediction tasks. However, existing methods often uncritically use the original diffusion formulation, which may not be optimal due to the fundamental differences between dense prediction and image generation. In this paper, we provide a systemic analysis of the diffusion formulation for the dense prediction, focusing on both quality and efficiency. And we find that the original parameterization type for image generation, which learns to predict noise, is harmful for dense prediction; the multi-step noising/denoising diffusion process is also unnecessary and challenging to optimize. Based on these insights, we introduce Lotus, a diffusion-based visual foundation model with a simple yet effective adaptation protocol for dense prediction. Specifically, Lotus is trained to directly predict annotations instead of noise, thereby avoiding harmful variance. We also reformulate the diffusion process into a single-step procedure, simplifying optimization and significantly boosting inference speed. Additionally, we introduce a novel tuning strategy called detail preserver, which achieves more accurate and fine-grained predictions. Without scaling up the training data or model capacity, Lotus achieves SoTA performance in zero-shot depth and normal estimation across various datasets. It also enhances efficiency, being significantly faster than most existing diffusion-based methods. Lotus' superior quality and efficiency also enable a wide range of practical applications, such as joint estimation, single/multi-view 3D reconstruction, etc. Project page: https://lotus3d.github.io/.
comment: The first two authors contributed equally. Project page: https://lotus3d.github.io/
♻ ☆ BTMTrack: Robust RGB-T Tracking via Dual-template Bridging and Temporal-Modal Candidate Elimination
RGB-T tracking leverages the complementary strengths of RGB and thermal infrared (TIR) modalities to address challenging scenarios such as low illumination and adverse weather. However, existing methods often fail to effectively integrate temporal information and perform efficient cross-modal interactions, which constrain their adaptability to dynamic targets. In this paper, we propose BTMTrack, a novel framework for RGB-T tracking. The core of our approach lies in the dual-template backbone network and the Temporal-Modal Candidate Elimination (TMCE) strategy. The dual-template backbone effectively integrates temporal information, while the TMCE strategy focuses the model on target-relevant tokens by evaluating temporal and modal correlations, reducing computational overhead and avoiding irrelevant background noise. Building upon this foundation, we propose the Temporal Dual Template Bridging (TDTB) module, which facilitates precise cross-modal fusion through dynamically filtered tokens. This approach further strengthens the interaction between templates and the search region. Extensive experiments conducted on three benchmark datasets demonstrate the effectiveness of BTMTrack. Our method achieves state-of-the-art performance, with a 72.3% precision rate on the LasHeR test set and competitive results on RGBT210 and RGBT234 datasets.
♻ ☆ DynPoint: Dynamic Neural Point For View Synthesis
The introduction of neural radiance fields has greatly improved the effectiveness of view synthesis for monocular videos. However, existing algorithms face difficulties when dealing with uncontrolled or lengthy scenarios, and require extensive training time specific to each new scenario. To tackle these limitations, we propose DynPoint, an algorithm designed to facilitate the rapid synthesis of novel views for unconstrained monocular videos. Rather than encoding the entirety of the scenario information into a latent representation, DynPoint concentrates on predicting the explicit 3D correspondence between neighboring frames to realize information aggregation. Specifically, this correspondence prediction is achieved through the estimation of consistent depth and scene flow information across frames. Subsequently, the acquired correspondence is utilized to aggregate information from multiple reference frames to a target frame, by constructing hierarchical neural point clouds. The resulting framework enables swift and accurate view synthesis for desired views of target frames. The experimental results obtained demonstrate the considerable acceleration of training time achieved - typically an order of magnitude - by our proposed method while yielding comparable outcomes compared to prior approaches. Furthermore, our method exhibits strong robustness in handling long-duration videos without learning a canonical representation of video content.
♻ ☆ Manydepth2: Motion-Aware Self-Supervised Multi-Frame Monocular Depth Estimation in Dynamic Scenes
Despite advancements in self-supervised monocular depth estimation, challenges persist in dynamic scenarios due to the dependence on assumptions about a static world. In this paper, we present Manydepth2, to achieve precise depth estimation for both dynamic objects and static backgrounds, all while maintaining computational efficiency. To tackle the challenges posed by dynamic content, we incorporate optical flow and coarse monocular depth to create a pseudo-static reference frame. This frame is then utilized to build a motion-aware cost volume in collaboration with the vanilla target frame. Furthermore, to improve the accuracy and robustness of the network architecture, we propose an attention-based depth network that effectively integrates information from feature maps at different resolutions by incorporating both channel and non-local attention mechanisms. Compared to methods with similar computational costs, Manydepth2 achieves a significant reduction of approximately five percent in root-mean-square error for self-supervised monocular depth estimation on the KITTI-2015 dataset. The code could be found at https://github.com/kaichen-z/Manydepth2.
comment: Monocular Depth Estimation, Self-Supervised, Optical Flow
♻ ☆ Uncertainty-Guided Appearance-Motion Association Network for Out-of-Distribution Action Detection
Out-of-distribution (OOD) detection targets to detect and reject test samples with semantic shifts, to prevent models trained on in-distribution (ID) dataset from producing unreliable predictions. Existing works only extract the appearance features on image datasets, and cannot handle dynamic multimedia scenarios with much motion information. Therefore, we target a more realistic and challenging OOD detection task: OOD action detection (ODAD). Given an untrimmed video, ODAD first classifies the ID actions and recognizes the OOD actions, and then localizes ID and OOD actions. To this end, in this paper, we propose a novel Uncertainty-Guided Appearance-Motion Association Network (UAAN), which explores both appearance features and motion contexts to reason spatial-temporal inter-object interaction for ODAD.Firstly, we design separate appearance and motion branches to extract corresponding appearance-oriented and motion-aspect object representations. In each branch, we construct a spatial-temporal graph to reason appearance-guided and motion-driven inter-object interaction. Then, we design an appearance-motion attention module to fuse the appearance and motion features for final action detection. Experimental results on two challenging datasets show that UAAN beats state-of-the-art methods by a significant margin, illustrating its effectiveness.
comment: Accepted by MIPR 2024
♻ ☆ Schedule On the Fly: Diffusion Time Prediction for Faster and Better Image Generation
Diffusion and flow models have achieved remarkable successes in various applications such as text-to-image generation. However, these models typically rely on the same predetermined denoising schedules during inference for each prompt, which potentially limits the inference efficiency as well as the flexibility when handling different prompts. In this paper, we argue that the optimal noise schedule should adapt to each inference instance, and introduce the Time Prediction Diffusion Model (TPDM) to accomplish this. TPDM employs a plug-and-play Time Prediction Module (TPM) that predicts the next noise level based on current latent features at each denoising step. We train the TPM using reinforcement learning, aiming to maximize a reward that discounts the final image quality by the number of denoising steps. With such an adaptive scheduler, TPDM not only generates high-quality images that are aligned closely with human preferences but also adjusts the number of denoising steps and time on the fly, enhancing both performance and efficiency. We train TPDMs on multiple diffusion model benchmarks. With Stable Diffusion 3 Medium architecture, TPDM achieves an aesthetic score of 5.44 and a human preference score (HPS) of 29.59, while using around 50% fewer denoising steps to achieve better performance. We will release our best model alongside this paper.
♻ ☆ Distilling Aggregated Knowledge for Weakly-Supervised Video Anomaly Detection
Video anomaly detection aims to develop automated models capable of identifying abnormal events in surveillance videos. The benchmark setup for this task is extremely challenging due to: i) the limited size of the training sets, ii) weak supervision provided in terms of video-level labels, and iii) intrinsic class imbalance induced by the scarcity of abnormal events. In this work, we show that distilling knowledge from aggregated representations of multiple backbones into a single-backbone Student model achieves state-of-the-art performance. In particular, we develop a bi-level distillation approach along with a novel disentangled cross-attention-based feature aggregation network. Our proposed approach, DAKD (Distilling Aggregated Knowledge with Disentangled Attention), demonstrates superior performance compared to existing methods across multiple benchmark datasets. Notably, we achieve significant improvements of 1.36%, 0.78%, and 7.02% on the UCF-Crime, ShanghaiTech, and XD-Violence datasets, respectively.
♻ ☆ Impact of color and mixing proportion of synthetic point clouds on semantic segmentation
Deep learning (DL)-based point cloud segmentation is essential for understanding built environment. Despite synthetic point clouds (SPC) having the potential to compensate for data shortage, how synthetic color and mixing proportion impact DL-based segmentation remains a long-standing question. Therefore, this paper addresses this question with extensive experiments by introducing: 1) method to generate SPC with real colors and uniform colors from BIM, and 2) enhanced benchmarks for better performance evaluation. Experiments on DL models including PointNet, PointNet++, and DGCNN show that model performance on SPC with real colors outperforms that on SPC with uniform colors by 8.2 % + on both OA and mIoU. Furthermore, a higher than 70 % mixing proportion of SPC usually leads to better performance. And SPC can replace real ones to train a DL model for detecting large and flat building elements. Overall, this paper unveils the performance-improving mechanism of SPC and brings new insights to boost SPC's value (for building large models for point clouds).
♻ ☆ Automatic Fused Multimodal Deep Learning for Plant Identification
Plant classification is vital for ecological conservation and agricultural productivity, enhancing our understanding of plant growth dynamics and aiding species preservation. The advent of deep learning (DL) techniques has revolutionized this field by enabling autonomous feature extraction, significantly reducing the dependence on manual expertise. However, conventional DL models often rely solely on single data sources, failing to capture the full biological diversity of plant species comprehensively. Recent research has turned to multimodal learning to overcome this limitation by integrating multiple data types, which enriches the representation of plant characteristics. This shift introduces the challenge of determining the optimal point for modality fusion. In this paper, we introduce a pioneering multimodal DL-based approach for plant classification with automatic modality fusion. Utilizing the multimodal fusion architecture search, our method integrates images from multiple plant organs -- flowers, leaves, fruits, and stems -- into a cohesive model. To address the lack of multimodal datasets, we contributed Multimodal-PlantCLEF, a restructured version of the PlantCLEF2015 dataset tailored for multimodal tasks. Our method achieves 82.61% accuracy on 979 classes of Multimodal-PlantCLEF, surpassing state-of-the-art methods and outperforming late fusion by 10.33%. Through the incorporation of multimodal dropout, our approach demonstrates strong robustness to missing modalities. We validate our model against established benchmarks using standard performance metrics and McNemar's test, further underscoring its superiority.
♻ ☆ JigsawHSI: a network for Hyperspectral Image classification
This article describes Jigsaw, a convolutional neural network (CNN) used in geosciences and based on Inception but tailored for geoscientific analyses. Introduces JigsawHSI (based on Jigsaw) and uses it on the land-use land-cover (LULC) classification problem with the Indian Pines, Pavia University and Salinas hyperspectral image data sets. The network is compared against HybridSN, a spectral-spatial 3D-CNN followed by 2D-CNN that achieves state-of-the-art results on the datasets. This short article proves that JigsawHSI is able to meet or exceed HybridSN's performance in all three cases. It also introduces a generalized Jigsaw architecture in d-dimensional space for any number of multimodal inputs. Additionally, the use of jigsaw in geosciences is highlighted, while the code and toolkit are made available.
comment: 7 pages, 7 figures, not peer reviewed
Information Retrieval 8
☆ Enhancing User Intent for Recommendation Systems via Large Language Models
Recommendation systems play a critical role in enhancing user experience and engagement in various online platforms. Traditional methods, such as Collaborative Filtering (CF) and Content-Based Filtering (CBF), rely heavily on past user interactions or item features. However, these models often fail to capture the dynamic and evolving nature of user preferences. To address these limitations, we propose DUIP (Dynamic User Intent Prediction), a novel framework that combines LSTM networks with Large Language Models (LLMs) to dynamically capture user intent and generate personalized item recommendations. The LSTM component models the sequential and temporal dependencies of user behavior, while the LLM utilizes the LSTM-generated prompts to predict the next item of interest. Experimental results on three diverse datasets ML-1M, Games, and Bundle show that DUIP outperforms a wide range of baseline models, demonstrating its ability to handle the cold-start problem and real-time intent adaptation. The integration of dynamic prompts based on recent user interactions allows DUIP to provide more accurate, context-aware, and personalized recommendations. Our findings suggest that DUIP is a promising approach for next-generation recommendation systems, with potential for further improvements in cross-modal recommendations and scalability.
comment: CAIMLR 2024 accepted
☆ LD-DETR: Loop Decoder DEtection TRansformer for Video Moment Retrieval and Highlight Detection
Video Moment Retrieval and Highlight Detection aim to find corresponding content in the video based on a text query. Existing models usually first use contrastive learning methods to align video and text features, then fuse and extract multimodal information, and finally use a Transformer Decoder to decode multimodal information. However, existing methods face several issues: (1) Overlapping semantic information between different samples in the dataset hinders the model's multimodal aligning performance; (2) Existing models are not able to efficiently extract local features of the video; (3) The Transformer Decoder used by the existing model cannot adequately decode multimodal features. To address the above issues, we proposed the LD-DETR model for Video Moment Retrieval and Highlight Detection tasks. Specifically, we first distilled the similarity matrix into the identity matrix to mitigate the impact of overlapping semantic information. Then, we designed a method that enables convolutional layers to extract multimodal local features more efficiently. Finally, we fed the output of the Transformer Decoder back into itself to adequately decode multimodal information. We evaluated LD-DETR on four public benchmarks and conducted extensive experiments to demonstrate the superiority and effectiveness of our approach. Our model outperforms the State-Of-The-Art models on QVHighlight, Charades-STA and TACoS datasets. Our code is available at https://github.com/qingchen239/ld-detr.
☆ A Resource-Efficient Training Framework for Remote Sensing Text--Image Retrieval
Remote sensing text--image retrieval (RSTIR) aims to retrieve the matched remote sensing (RS) images from the database according to the descriptive text. Recently, the rapid development of large visual-language pre-training models provides new insights for RSTIR. Nevertheless, as the complexity of models grows in RSTIR, the previous studies suffer from suboptimal resource efficiency during transfer learning. To address this issue, we propose a computation and memory-efficient retrieval (CMER) framework for RSTIR. To reduce the training memory consumption, we propose the Focus-Adapter module, which adopts a side branch structure. Its focus layer suppresses the interference of background pixels for small targets. Simultaneously, to enhance data efficacy, we regard the RS scene category as the metadata and design a concise augmentation technique. The scene label augmentation leverages the prior knowledge from land cover categories and shrinks the search space. We propose the negative sample recycling strategy to make the negative sample pool decoupled from the mini-batch size. It improves the generalization performance without introducing additional encoders. We have conducted quantitative and qualitative experiments on public datasets and expanded the benchmark with some advanced approaches, which demonstrates the competitiveness of the proposed CMER. Compared with the recent advanced methods, the overall retrieval performance of CMER is 2%--5% higher on RSITMD. Moreover, our proposed method reduces memory consumption by 49% and has a 1.4x data throughput during training. The code of the CMER and the dataset will be released at https://github.com/ZhangWeihang99/CMER.
♻ ☆ Differentially Private Graph Diffusion with Applications in Personalized PageRanks
Graph diffusion, which iteratively propagates real-valued substances among the graph, is used in numerous graph/network-involved applications. However, releasing diffusion vectors may reveal sensitive linking information in the data such as transaction information in financial network data. However, protecting the privacy of graph data is challenging due to its interconnected nature. This work proposes a novel graph diffusion framework with edge-level differential privacy guarantees by using noisy diffusion iterates. The algorithm injects Laplace noise per diffusion iteration and adopts a degree-based thresholding function to mitigate the high sensitivity induced by low-degree nodes. Our privacy loss analysis is based on Privacy Amplification by Iteration (PABI), which to our best knowledge, is the first effort that analyzes PABI with Laplace noise and provides relevant applications. We also introduce a novel Infinity-Wasserstein distance tracking method, which tightens the analysis of privacy leakage and makes PABI more applicable in practice. We evaluate this framework by applying it to Personalized Pagerank computation for ranking tasks. Experiments on real-world network data demonstrate the superiority of our method under stringent privacy conditions.
♻ ☆ An Investigation of Prompt Variations for Zero-shot LLM-based Rankers
We provide a systematic understanding of the impact of specific components and wordings used in prompts on the effectiveness of rankers based on zero-shot Large Language Models (LLMs). Several zero-shot ranking methods based on LLMs have recently been proposed. Among many aspects, methods differ across (1) the ranking algorithm they implement, e.g., pointwise vs. listwise, (2) the backbone LLMs used, e.g., GPT3.5 vs. FLAN-T5, (3) the components and wording used in prompts, e.g., the use or not of role-definition (role-playing) and the actual words used to express this. It is currently unclear whether performance differences are due to the underlying ranking algorithm, or because of spurious factors such as better choice of words used in prompts. This confusion risks to undermine future research. Through our large-scale experimentation and analysis, we find that ranking algorithms do contribute to differences between methods for zero-shot LLM ranking. However, so do the LLM backbones -- but even more importantly, the choice of prompt components and wordings affect the ranking. In fact, in our experiments, we find that, at times, these latter elements have more impact on the ranker's effectiveness than the actual ranking algorithms, and that differences among ranking methods become more blurred when prompt variations are considered.
♻ ☆ LLM-MedQA: Enhancing Medical Question Answering through Case Studies in Large Language Models
Accurate and efficient question-answering systems are essential for delivering high-quality patient care in the medical field. While Large Language Models (LLMs) have made remarkable strides across various domains, they continue to face significant challenges in medical question answering, particularly in understanding domain-specific terminologies and performing complex reasoning. These limitations undermine their effectiveness in critical medical applications. To address these issues, we propose a novel approach incorporating similar case generation within a multi-agent medical question-answering (MedQA) system. Specifically, we leverage the Llama3.1:70B model, a state-of-the-art LLM, in a multi-agent architecture to enhance performance on the MedQA dataset using zero-shot learning. Our method capitalizes on the model's inherent medical knowledge and reasoning capabilities, eliminating the need for additional training data. Experimental results show substantial performance gains over existing benchmark models, with improvements of 7% in both accuracy and F1-score across various medical QA tasks. Furthermore, we examine the model's interpretability and reliability in addressing complex medical queries. This research not only offers a robust solution for medical question answering but also establishes a foundation for broader applications of LLMs in the medical domain.
♻ ☆ A Thorough Performance Benchmarking on Lightweight Embedding-based Recommender Systems
Since the creation of the Web, recommender systems (RSs) have been an indispensable mechanism in information filtering. State-of-the-art RSs primarily depend on categorical features, which ecoded by embedding vectors, resulting in excessively large embedding tables. To prevent over-parameterized embedding tables from harming scalability, both academia and industry have seen increasing efforts in compressing RS embeddings. However, despite the prosperity of lightweight embedding-based RSs (LERSs), a wide diversity is seen in evaluation protocols, resulting in obstacles when relating LERS performance to real-world usability. Moreover, despite the common goal of lightweight embeddings, LERSs are evaluated with a single choice between the two main recommendation tasks -- collaborative filtering and content-based recommendation. This lack of discussions on cross-task transferability hinders the development of unified, more scalable solutions. Motivated by these issues, this study investigates various LERSs' performance, efficiency, and cross-task transferability via a thorough benchmarking process. Additionally, we propose an efficient embedding compression method using magnitude pruning, which is an easy-to-deploy yet highly competitive baseline that outperforms various complex LERSs. Our study reveals the distinct performance of LERSs across the two tasks, shedding light on their effectiveness and generalizability. To support edge-based recommendations, we tested all LERSs on a Raspberry Pi 4, where the efficiency bottleneck is exposed. Finally, we conclude this paper with critical summaries of LERS performance, model selection suggestions, and underexplored challenges around LERSs for future research. To encourage future research, we publish source codes and artifacts at \href{this link}{https://github.com/chenxing1999/recsys-benchmark}.
♻ ☆ Rethinking Multi-Objective Learning through Goal-Conditioned Supervised Learning
Multi-objective learning aims to optimize multiple objectives simultaneously with a single model for achieving a balanced and satisfying performance on all these objectives. However, it suffers from the difficulty to formalize and conduct the exact learning process, especially considering the possible conflicts between objectives. Existing approaches explores to resolve this primarily in two directions: adapting modeling structure or constraining optimization with certain assumptions. However, a primary issue is that their presuppositions for the effectiveness of their design are insufficient to guarantee the its generality in real-world applications. What's worse, the high space and computation complexity issue makes it even harder to apply them in large-scale, complicated environment such as the recommender systems. To address these issues, we propose a general framework for automatically learning to achieve multiple objectives based on the existing sequential data. We apply the goal-conditioned supervised learning (GCSL) framework to multi-objective learning, by extending the definition of goals from one-dimensional scalar to multi-dimensional vector that perfectly disentangle the representation of different objectives. Meanwhile, GCSL enables the model to simultaneously learn to achieve each objective in a concise supervised learning way, simply guided by existing sequences in the offline data. No additional constraint, special model structure design, or complex optimization algorithms are further required. Apart from that, we formally analyze the property of the goals in GCSL and then firstly propose a goal-generation framework to gain achievable and reasonable goals for inference. Extensive experiments are conducted on real-world recommendation datasets, demonstrating the effectiveness of the proposed method and exploring the feasibility of the goal-generation strategies in GCSL.
Artificial Intelligence 56
☆ A Generative Security Application Engineering Curriculum
Generative AI and large language models (LLMs) are transforming security by automating many tasks being performed manually. With such automation changing the practice of security as we know it, it is imperative that we prepare future students for the technology landscape they will ultimately face. Towards this end, we describe an initial curriculum and course that attempts to show students how to apply generative AI in order to solve problems in security. By refocusing security education and training on aspects uniquely suited for humans and showing students how to leverage automation for the rest, we believe we can better align security education practices with generative AI as it evolves.
comment: 11 pages, 6 figures
☆ Classical and Deep Reinforcement Learning Inventory Control Policies for Pharmaceutical Supply Chains with Perishability and Non-Stationarity
We study inventory control policies for pharmaceutical supply chains, addressing challenges such as perishability, yield uncertainty, and non-stationary demand, combined with batching constraints, lead times, and lost sales. Collaborating with Bristol-Myers Squibb (BMS), we develop a realistic case study incorporating these factors and benchmark three policies--order-up-to (OUT), projected inventory level (PIL), and deep reinforcement learning (DRL) using the proximal policy optimization (PPO) algorithm--against a BMS baseline based on human expertise. We derive and validate bounds-based procedures for optimizing OUT and PIL policy parameters and propose a methodology for estimating projected inventory levels, which are also integrated into the DRL policy with demand forecasts to improve decision-making under non-stationarity. Compared to a human-driven policy, which avoids lost sales through higher holding costs, all three implemented policies achieve lower average costs but exhibit greater cost variability. While PIL demonstrates robust and consistent performance, OUT struggles under high lost sales costs, and PPO excels in complex and variable scenarios but requires significant computational effort. The findings suggest that while DRL shows potential, it does not outperform classical policies in all numerical experiments, highlighting 1) the need to integrate diverse policies to manage pharmaceutical challenges effectively, based on the current state-of-the-art, and 2) that practical problems in this domain seem to lack a single policy class that yields universally acceptable performance.
☆ Learn-by-interact: A Data-Centric Framework for Self-Adaptive Agents in Realistic Environments
Autonomous agents powered by large language models (LLMs) have the potential to enhance human capabilities, assisting with digital tasks from sending emails to performing data analysis. The abilities of existing LLMs at such tasks are often hindered by the lack of high-quality agent data from the corresponding environments they interact with. We propose Learn-by-interact, a data-centric framework to adapt LLM agents to any given environments without human annotations. Learn-by-interact synthesizes trajectories of agent-environment interactions based on documentations, and constructs instructions by summarizing or abstracting the interaction histories, a process called backward construction. We assess the quality of our synthetic data by using them in both training-based scenarios and training-free in-context learning (ICL), where we craft innovative retrieval approaches optimized for agents. Extensive experiments on SWE-bench, WebArena, OSWorld and Spider2-V spanning across realistic coding, web, and desktop environments show the effectiveness of Learn-by-interact in various downstream agentic tasks -- baseline results are improved by up to 12.2\% for ICL with Claude-3.5 and 19.5\% for training with Codestral-22B. We further demonstrate the critical role of backward construction, which provides up to 14.0\% improvement for training. Our ablation studies demonstrate the efficiency provided by our synthesized data in ICL and the superiority of our retrieval pipeline over alternative approaches like conventional retrieval-augmented generation (RAG). We expect that Learn-by-interact will serve as a foundation for agent data synthesis as LLMs are increasingly deployed at real-world environments.
☆ OpenEarthMap-SAR: A Benchmark Synthetic Aperture Radar Dataset for Global High-Resolution Land Cover Mapping
High-resolution land cover mapping plays a crucial role in addressing a wide range of global challenges, including urban planning, environmental monitoring, disaster response, and sustainable development. However, creating accurate, large-scale land cover datasets remains a significant challenge due to the inherent complexities of geospatial data, such as diverse terrain, varying sensor modalities, and atmospheric conditions. Synthetic Aperture Radar (SAR) imagery, with its ability to penetrate clouds and capture data in all-weather, day-and-night conditions, offers unique advantages for land cover mapping. Despite these strengths, the lack of benchmark datasets tailored for SAR imagery has limited the development of robust models specifically designed for this data modality. To bridge this gap and facilitate advancements in SAR-based geospatial analysis, we introduce OpenEarthMap-SAR, a benchmark SAR dataset, for global high-resolution land cover mapping. OpenEarthMap-SAR consists of 1.5 million segments of 5033 aerial and satellite images with the size of 1024$\times$1024 pixels, covering 35 regions from Japan, France, and the USA, with partially manually annotated and fully pseudo 8-class land cover labels at a ground sampling distance of 0.15--0.5 m. We evaluated the performance of state-of-the-art methods for semantic segmentation and present challenging problem settings suitable for further technical development. The dataset also serves the official dataset for IEEE GRSS Data Fusion Contest Track I. The dataset has been made publicly available at https://zenodo.org/records/14622048.
comment: 8 pages, 3 figures
☆ Generating Structured Outputs from Language Models: Benchmark and Studies
Reliably generating structured outputs has become a critical capability for modern language model (LM) applications. Constrained decoding has emerged as the dominant technology across sectors for enforcing structured outputs during generation. Despite its growing adoption, little has been done with the systematic evaluation of the behaviors and performance of constrained decoding. Constrained decoding frameworks have standardized around JSON Schema as a structured data format, with most uses guaranteeing constraint compliance given a schema. However, there is poor understanding of the effectiveness of the methods in practice. We present an evaluation framework to assess constrained decoding approaches across three critical dimensions: efficiency in generating constraint-compliant outputs, coverage of diverse constraint types, and quality of the generated outputs. To facilitate this evaluation, we introduce JSONSchemaBench, a benchmark for constrained decoding comprising 10K real-world JSON schemas that encompass a wide range of constraints with varying complexity. We pair the benchmark with the existing official JSON Schema Test Suite and evaluate six state-of-the-art constrained decoding frameworks, including Guidance, Outlines, Llamacpp, XGrammar, OpenAI, and Gemini. Through extensive experiments, we gain insights into the capabilities and limitations of constrained decoding on structured generation with real-world JSON schemas. Our work provides actionable insights for improving constrained decoding frameworks and structured generation tasks, setting a new standard for evaluating constrained decoding and structured generation. We release JSONSchemaBench at https://github.com/guidance-ai/jsonschemabench
☆ Dynamic Continual Learning: Harnessing Parameter Uncertainty for Improved Network Adaptation
When fine-tuning Deep Neural Networks (DNNs) to new data, DNNs are prone to overwriting network parameters required for task-specific functionality on previously learned tasks, resulting in a loss of performance on those tasks. We propose using parameter-based uncertainty to determine which parameters are relevant to a network's learned function and regularize training to prevent change in these important parameters. We approach this regularization in two ways: (1), we constrain critical parameters from significant changes by associating more critical parameters with lower learning rates, thereby limiting alterations in those parameters; (2), important parameters are restricted from change by imposing a higher regularization weighting, causing parameters to revert to their states prior to the learning of subsequent tasks. We leverage a Bayesian Moment Propagation framework which learns network parameters concurrently with their associated uncertainties while allowing each parameter to contribute uncertainty to the network's predictive distribution, avoiding the pitfalls of existing sampling-based methods. The proposed approach is evaluated for common sequential benchmark datasets and compared to existing published approaches from the Continual Learning community. Ultimately, we show improved Continual Learning performance for Average Test Accuracy and Backward Transfer metrics compared to sampling-based methods and other non-uncertainty-based approaches.
comment: 8 pages, 2 figures
☆ Zero-shot and Few-shot Learning with Instruction-following LLMs for Claim Matching in Automated Fact-checking COLING 2025
The claim matching (CM) task can benefit an automated fact-checking pipeline by putting together claims that can be resolved with the same fact-check. In this work, we are the first to explore zero-shot and few-shot learning approaches to the task. We consider CM as a binary classification task and experiment with a set of instruction-following large language models (GPT-3.5-turbo, Gemini-1.5-flash, Mistral-7B-Instruct, and Llama-3-8B-Instruct), investigating prompt templates. We introduce a new CM dataset, ClaimMatch, which will be released upon acceptance. We put LLMs to the test in the CM task and find that it can be tackled by leveraging more mature yet similar tasks such as natural language inference or paraphrase detection. We also propose a pipeline for CM, which we evaluate on texts of different lengths.
comment: Accepted at the 31st International Conference on Computational Linguistics (COLING 2025)
☆ Reliable Text-to-SQL with Adaptive Abstention
Large language models (LLMs) have revolutionized natural language interfaces for databases, particularly in text-to-SQL conversion. However, current approaches often generate unreliable outputs when faced with ambiguity or insufficient context. We present Reliable Text-to-SQL (RTS), a novel framework that enhances query generation reliability by incorporating abstention and human-in-the-loop mechanisms. RTS focuses on the critical schema linking phase, which aims to identify the key database elements needed for generating SQL queries. It autonomously detects potential errors during the answer generation process and responds by either abstaining or engaging in user interaction. A vital component of RTS is the Branching Point Prediction (BPP) which utilizes statistical conformal techniques on the hidden layers of the LLM model for schema linking, providing probabilistic guarantees on schema linking accuracy. We validate our approach through comprehensive experiments on the BIRD benchmark, demonstrating significant improvements in robustness and reliability. Our findings highlight the potential of combining transparent-box LLMs with human-in-the-loop processes to create more robust natural language interfaces for databases. For the BIRD benchmark, our approach achieves near-perfect schema linking accuracy, autonomously involving a human when needed. Combined with query generation, we demonstrate that near-perfect schema linking and a small query generation model can almost match SOTA accuracy achieved with a model orders of magnitude larger than the one we use.
☆ Fake Advertisements Detection Using Automated Multimodal Learning: A Case Study for Vietnamese Real Estate Data
The popularity of e-commerce has given rise to fake advertisements that can expose users to financial and data risks while damaging the reputation of these e-commerce platforms. For these reasons, detecting and removing such fake advertisements are important for the success of e-commerce websites. In this paper, we propose FADAML, a novel end-to-end machine learning system to detect and filter out fake online advertisements. Our system combines techniques in multimodal machine learning and automated machine learning to achieve a high detection rate. As a case study, we apply FADAML to detect fake advertisements on popular Vietnamese real estate websites. Our experiments show that we can achieve 91.5% detection accuracy, which significantly outperforms three different state-of-the-art fake news detection systems.
☆ Practical and Ready-to-Use Methodology to Assess the re-identification Risk in Anonymized Datasets
To prove that a dataset is sufficiently anonymized, many privacy policies suggest that a re-identification risk assessment be performed, but do not provide a precise methodology for doing so, leaving the industry alone with the problem. This paper proposes a practical and ready-to-use methodology for re-identification risk assessment, the originality of which is manifold: (1) it is the first to follow well-known risk analysis methods (e.g. EBIOS) that have been used in the cybersecurity field for years, which consider not only the ability to perform an attack, but also the impact such an attack can have on an individual; (2) it is the first to qualify attributes and values of attributes with e.g. degree of exposure, as known real-world attacks mainly target certain types of attributes and not others.
☆ BAP v2: An Enhanced Task Framework for Instruction Following in Minecraft Dialogues
Interactive agents capable of understanding and executing instructions in the physical world have long been a central goal in AI research. The Minecraft Collaborative Building Task (MCBT) provides one such setting to work towards this goal (Narayan-Chen, Jayannavar, and Hockenmaier 2019). It is a two-player game in which an Architect (A) instructs a Builder (B) to construct a target structure in a simulated Blocks World Environment. We focus on the challenging Builder Action Prediction (BAP) subtask of predicting correct action sequences in a given multimodal game context with limited training data (Jayannavar, Narayan-Chen, and Hockenmaier 2020). We take a closer look at evaluation and data for the BAP task, discovering key challenges and making significant improvements on both fronts to propose BAP v2, an upgraded version of the task. This will allow future work to make more efficient and meaningful progress on it. It comprises of: (1) an enhanced evaluation benchmark that includes a cleaner test set and fairer, more insightful metrics, and (2) additional synthetic training data generated from novel Minecraft dialogue and target structure simulators emulating the MCBT. We show that the synthetic data can be used to train more performant and robust neural models even with relatively simple training methods. Looking ahead, such data could also be crucial for training more sophisticated, data-hungry deep transformer models and training/fine-tuning increasingly large LLMs. Although modeling is not the primary focus of this work, we also illustrate the impact of our data and training methodologies on a simple LLM- and transformer-based model, thus validating the robustness of our approach, and setting the stage for more advanced architectures and LLMs going forward.
☆ Visual RAG: Expanding MLLM visual knowledge without fine-tuning
Multimodal Large Language Models (MLLMs) have achieved notable performance in computer vision tasks that require reasoning across visual and textual modalities, yet their capabilities are limited to their pre-trained data, requiring extensive fine-tuning for updates. Recent researches have explored the use of In-Context Learning (ICL) to overcome these challenges by providing a set of demonstrating examples as context to augment MLLMs performance in several tasks, showing that many-shot ICL leads to substantial improvements compared to few-shot ICL. However, the reliance on numerous demonstrating examples and the limited MLLMs context windows presents significant obstacles. This paper aims to address these challenges by introducing a novel approach, Visual RAG, that synergically combines the MLLMs capability to learn from the context, with a retrieval mechanism. The crux of this approach is to ensure to augment the MLLM knowledge by selecting only the most relevant demonstrating examples for the query, pushing it to learn by analogy. In this way, relying on the new information provided dynamically during inference time, the resulting system is not limited to the knowledge extracted from the training data, but can be updated rapidly and easily without fine-tuning. Furthermore, this greatly reduces the computational costs for improving the model image classification performance, and augments the model knowledge to new visual domains and tasks it was not trained for. Extensive experiments on eight different datasets in the state of the art spanning several domains and image classification tasks show that the proposed Visual RAG, compared to the most recent state of the art (i.e., many-shot ICL), is able to obtain an accuracy that is very close or even higher (approx. +2% improvement on average) while using a much smaller set of demonstrating examples (approx. only 23% on average).
☆ Addressing Multilabel Imbalance with an Efficiency-Focused Approach Using Diffusion Model-Generated Synthetic Samples
Predictive models trained on imbalanced data tend to produce biased results. This problem is exacerbated when there is not just one output label, but a set of them. This is the case for multilabel learning (MLL) algorithms used to classify patterns, rank labels, or learn the distribution of outputs. Many solutions have been proposed in the literature. The one that can be applied universally, independent of the algorithm used to build the model, is data resampling. The generation of new instances associated with minority labels, so that empty areas of the feature space are filled, helps to improve the obtained models. The quality of these new instances depends on the algorithm used to generate them. In this paper, a diffusion model tailored to produce new instances for MLL data, called MLDM (\textit{MultiLabel Diffusion Model}), is proposed. Diffusion models have been mainly used to generate artificial images and videos. Our proposed MLDM is based on this type of models. The experiments conducted compare MLDM with several other MLL resampling algorithms. The results show that MLDM is competitive while it improves efficiency.
comment: 22 pages, 8 figures, 10 tables
☆ No More Sliding Window: Efficient 3D Medical Image Segmentation with Differentiable Top-k Patch Sampling
3D models are favored over 2D for 3D medical image segmentation tasks due to their ability to leverage inter-slice relationship, yielding higher segmentation accuracy. However, 3D models demand significantly more GPU memory with increased model size and intermediate tensors. A common solution is to use patch-based training and make whole-volume predictions with sliding window (SW) inference. SW inference reduces memory usage but is slower due to equal resource allocation across patches and less accurate as it overlooks global features beyond patches. We propose NMSW-Net (No-More-Sliding-Window-Net), a novel framework that enhances efficiency and accuracy of any given 3D segmentation model by eliminating SW inference and incorporating global predictions when necessary. NMSW-Net incorporates a differentiable Top-k module to sample only the relevant patches that enhance segmentation accuracy, thereby minimizing redundant computations. Additionally, it learns to leverage coarse global predictions when patch prediction alone is insufficient. NMSW-Net is model-agnostic, making it compatible with any 3D segmentation model that previously relied on SW inference. Evaluated across 3 tasks with 3 segmentation backbones, NMSW-Net achieves competitive or sometimes superior accuracy compared to SW, while reducing computational complexity by 90% (87.5 to 7.95 TFLOPS), delivering 4x faster inference on the H100 GPU (19.0 to 4.3 sec), and 7x faster inference on the Intel Xeon Gold CPU (1710 to 230 seconds).
☆ Graph Coloring to Reduce Computation Time in Prioritized Planning
Distributing computations among agents in large networks reduces computational effort in multi-agent path finding (MAPF). One distribution strategy is prioritized planning (PP). In PP, we couple and prioritize interacting agents to achieve a desired behavior across all agents in the network. We characterize the interaction with a directed acyclic graph (DAG). The computation time for solving MAPF problem using PP is mainly determined through the longest path in this DAG. The longest path depends on the fixed undirected coupling graph and the variable prioritization. The approaches from literature to prioritize agents are numerous and pursue various goals. This article presents an approach for prioritization in PP to reduce the longest path length in the coupling DAG and thus the computation time for MAPF using PP. We prove that this problem can be mapped to a graph-coloring problem, in which the number of colors required corresponds to the longest path length in the coupling DAG. We propose a decentralized graph-coloring algorithm to determine priorities for the agents. We evaluate the approach by applying it to multi-agent motion planning (MAMP) for connected and automated vehicles (CAVs) on roads using, a variant of MAPF.
☆ Efficient Auto-Labeling of Large-Scale Poultry Datasets (ALPD) Using Semi-Supervised Models, Active Learning, and Prompt-then-Detect Approach
The rapid growth of AI in poultry farming has highlighted the challenge of efficiently labeling large, diverse datasets. Manual annotation is time-consuming, making it impractical for modern systems that continuously generate data. This study explores semi-supervised auto-labeling methods, integrating active learning, and prompt-then-detect paradigm to develop an efficient framework for auto-labeling of large poultry datasets aimed at advancing AI-driven behavior and health monitoring. Viideo data were collected from broilers and laying hens housed at the University of Arkansas and the University of Georgia. The collected videos were converted into images, pre-processed, augmented, and labeled. Various machine learning models, including zero-shot models like Grounding DINO, YOLO-World, and CLIP, and supervised models like YOLO and Faster-RCNN, were utilized for broilers, hens, and behavior detection. The results showed that YOLOv8s-World and YOLOv9s performed better when compared performance metrics for broiler and hen detection under supervised learning, while among the semi-supervised model, YOLOv8s-ALPD achieved the highest precision (96.1%) and recall (99.0%) with an RMSE of 1.9. The hybrid YOLO-World model, incorporating the optimal YOLOv8s backbone, demonstrated the highest overall performance. It achieved a precision of 99.2%, recall of 99.4%, and an F1 score of 98.7% for breed detection, alongside a precision of 88.4%, recall of 83.1%, and an F1 score of 84.5% for individual behavior detection. Additionally, semi-supervised models showed significant improvements in behavior detection, achieving up to 31% improvement in precision and 16% in F1-score. The semi-supervised models with minimal active learning reduced annotation time by over 80% compared to full manual labeling. Moreover, integrating zero-shot models enhanced detection and behavior identification.
☆ Step-KTO: Optimizing Mathematical Reasoning through Stepwise Binary Feedback
Large language models (LLMs) have recently demonstrated remarkable success in mathematical reasoning. Despite progress in methods like chain-of-thought prompting and self-consistency sampling, these advances often focus on final correctness without ensuring that the underlying reasoning process is coherent and reliable. This paper introduces Step-KTO, a training framework that combines process-level and outcome-level binary feedback to guide LLMs toward more trustworthy reasoning trajectories. By providing binary evaluations for both the intermediate reasoning steps and the final answer, Step-KTO encourages the model to adhere to logical progressions rather than relying on superficial shortcuts. Our experiments on challenging mathematical benchmarks show that Step-KTO significantly improves both final answer accuracy and the quality of intermediate reasoning steps. For example, on the MATH-500 dataset, Step-KTO achieves a notable improvement in Pass@1 accuracy over strong baselines. These results highlight the promise of integrating stepwise process feedback into LLM training, paving the way toward more interpretable and dependable reasoning capabilities.
☆ ML-SceGen: A Multi-level Scenario Generation Framework
Current scientific research witnesses various attempts at applying Large Language Models for scenario generation but is inclined only to comprehensive or dangerous scenarios. In this paper, we seek to build a three-stage framework that not only lets users regain controllability over the generated scenarios but also generates comprehensive scenarios containing danger factors in uncontrolled intersection settings. In the first stage, LLM agents will contribute to translating the key components of the description of the expected scenarios into Functional Scenarios. For the second stage, we use Answer Set Programming (ASP) solver Clingo to help us generate comprehensive logical traffic within intersections. During the last stage, we use LLM to update relevant parameters to increase the critical level of the concrete scenario.
comment: 7 pages
☆ Simultaneous Computation with Multiple Prioritizations in Multi-Agent Motion Planning
Multi-agent path finding (MAPF) in large networks is computationally challenging. An approach for MAPF is prioritized planning (PP), in which agents plan sequentially according to their priority. Albeit a computationally efficient approach for MAPF, the solution quality strongly depends on the prioritization. Most prioritizations rely either on heuristics, which do not generalize well, or iterate to find adequate priorities, which costs computational effort. In this work, we show how agents can compute with multiple prioritizations simultaneously. Our approach is general as it does not rely on domain-specific knowledge. The context of this work is multi-agent motion planning (MAMP) with a receding horizon subject to computation time constraints. MAMP considers the system dynamics in more detail compared to MAPF. In numerical experiments on MAMP, we demonstrate that our approach to prioritization comes close to optimal prioritization and outperforms state-of-the-art methods with only a minor increase in computation time. We show real-time capability in an experiment on a road network with ten vehicles in our Cyber-Physical Mobility Lab.
☆ MedFILIP: Medical Fine-grained Language-Image Pre-training
Medical vision-language pretraining (VLP) that leverages naturally-paired medical image-report data is crucial for medical image analysis. However, existing methods struggle to accurately characterize associations between images and diseases, leading to inaccurate or incomplete diagnostic results. In this work, we propose MedFILIP, a fine-grained VLP model, introduces medical image-specific knowledge through contrastive learning, specifically: 1) An information extractor based on a large language model is proposed to decouple comprehensive disease details from reports, which excels in extracting disease deals through flexible prompt engineering, thereby effectively reducing text complexity while retaining rich information at a tiny cost. 2) A knowledge injector is proposed to construct relationships between categories and visual attributes, which help the model to make judgments based on image features, and fosters knowledge extrapolation to unfamiliar disease categories. 3) A semantic similarity matrix based on fine-grained annotations is proposed, providing smoother, information-richer labels, thus allowing fine-grained image-text alignment. 4) We validate MedFILIP on numerous datasets, e.g., RSNA-Pneumonia, NIH ChestX-ray14, VinBigData, and COVID-19. For single-label, multi-label, and fine-grained classification, our model achieves state-of-the-art performance, the classification accuracy has increased by a maximum of 6.69\%. The code is available in https://github.com/PerceptionComputingLab/MedFILIP.
comment: 10 pages, 5 figures, IEEE Journal of Biomedical and Health Informatics 2025
☆ Enhancing Diagnostic in 3D COVID-19 Pneumonia CT-scans through Explainable Uncertainty Bayesian Quantification
Accurately classifying COVID-19 pneumonia in 3D CT scans remains a significant challenge in the field of medical image analysis. Although deterministic neural networks have shown promising results in this area, they provide only point estimates outputs yielding poor diagnostic in clinical decision-making. In this paper, we explore the use of Bayesian neural networks for classifying COVID-19 pneumonia in 3D CT scans providing uncertainties in their predictions. We compare deterministic networks and their Bayesian counterpart, enhancing the decision-making accuracy under uncertainty information. Remarkably, our findings reveal that lightweight architectures achieve the highest accuracy of 96\% after developing extensive hyperparameter tuning. Furthermore, the Bayesian counterpart of these architectures via Multiplied Normalizing Flow technique kept a similar performance along with calibrated uncertainty estimates. Finally, we have developed a 3D-visualization approach to explain the neural network outcomes based on SHAP values. We conclude that explainability along with uncertainty quantification will offer better clinical decisions in medical image analysis, contributing to ongoing efforts for improving the diagnosis and treatment of COVID-19 pneumonia.
comment: 61 pages, 16 figures. Comments are welcome
☆ MAPS: Advancing Multi-Modal Reasoning in Expert-Level Physical Science
Pre-trained on extensive text and image corpora, current Multi-Modal Large Language Models (MLLM) have shown strong capabilities in general visual reasoning tasks. However, their performance is still lacking in physical domains that require understanding diagrams with complex physical structures and quantitative analysis based on multi-modal information. To address this, we develop a new framework, named Multi-Modal Scientific Reasoning with Physics Perception and Simulation (MAPS) based on an MLLM. MAPS decomposes expert-level multi-modal reasoning task into physical diagram understanding via a Physical Perception Model (PPM) and reasoning with physical knowledge via a simulator. The PPM module is obtained by fine-tuning a visual language model using carefully designed synthetic data with paired physical diagrams and corresponding simulation language descriptions. At the inference stage, MAPS integrates the simulation language description of the input diagram provided by PPM and results obtained through a Chain-of-Simulation process with MLLM to derive the underlying rationale and the final answer. Validated using our collected college-level circuit analysis problems, MAPS significantly improves reasoning accuracy of MLLM and outperforms all existing models. The results confirm MAPS offers a promising direction for enhancing multi-modal scientific reasoning ability of MLLMs. We will release our code, model and dataset used for our experiments upon publishing of this paper.
☆ Semi-supervised Semantic Segmentation for Remote Sensing Images via Multi-scale Uncertainty Consistency and Cross-Teacher-Student Attention
Semi-supervised learning offers an appealing solution for remote sensing (RS) image segmentation to relieve the burden of labor-intensive pixel-level labeling. However, RS images pose unique challenges, including rich multi-scale features and high inter-class similarity. To address these problems, this paper proposes a novel semi-supervised Multi-Scale Uncertainty and Cross-Teacher-Student Attention (MUCA) model for RS image semantic segmentation tasks. Specifically, MUCA constrains the consistency among feature maps at different layers of the network by introducing a multi-scale uncertainty consistency regularization. It improves the multi-scale learning capability of semi-supervised algorithms on unlabeled data. Additionally, MUCA utilizes a Cross-Teacher-Student attention mechanism to guide the student network, guiding the student network to construct more discriminative feature representations through complementary features from the teacher network. This design effectively integrates weak and strong augmentations (WA and SA) to further boost segmentation performance. To verify the effectiveness of our model, we conduct extensive experiments on ISPRS-Potsdam and LoveDA datasets. The experimental results show the superiority of our method over state-of-the-art semi-supervised methods. Notably, our model excels in distinguishing highly similar objects, showcasing its potential for advancing semi-supervised RS image segmentation tasks.
☆ GEC-RAG: Improving Generative Error Correction via Retrieval-Augmented Generation for Automatic Speech Recognition Systems
Automatic Speech Recognition (ASR) systems have demonstrated remarkable performance across various applications. However, limited data and the unique language features of specific domains, such as low-resource languages, significantly degrade their performance and lead to higher Word Error Rates (WER). In this study, we propose Generative Error Correction via Retrieval-Augmented Generation (GEC-RAG), a novel approach designed to improve ASR accuracy for low-resource domains, like Persian. Our approach treats the ASR system as a black-box, a common practice in cloud-based services, and proposes a Retrieval-Augmented Generation (RAG) approach within the In-Context Learning (ICL) scheme to enhance the quality of ASR predictions. By constructing a knowledge base that pairs ASR predictions (1-best and 5-best hypotheses) with their corresponding ground truths, GEC-RAG retrieves lexically similar examples to the ASR transcription using the Term Frequency-Inverse Document Frequency (TF-IDF) measure. This process provides relevant error patterns of the system alongside the ASR transcription to the Generative Large Language Model (LLM), enabling targeted corrections. Our results demonstrate that this strategy significantly reduces WER in Persian and highlights a potential for domain adaptation and low-resource scenarios. This research underscores the effectiveness of using RAG in enhancing ASR systems without requiring direct model modification or fine-tuning, making it adaptable to any domain by simply updating the transcription knowledge base with domain-specific data.
comment: 6 pages
☆ In the Picture: Medical Imaging Datasets, Artifacts, and their Living Review
Datasets play a critical role in medical imaging research, yet issues such as label quality, shortcuts, and metadata are often overlooked. This lack of attention may harm the generalizability of algorithms and, consequently, negatively impact patient outcomes. While existing medical imaging literature reviews mostly focus on machine learning (ML) methods, with only a few focusing on datasets for specific applications, these reviews remain static -- they are published once and not updated thereafter. This fails to account for emerging evidence, such as biases, shortcuts, and additional annotations that other researchers may contribute after the dataset is published. We refer to these newly discovered findings of datasets as research artifacts. To address this gap, we propose a living review that continuously tracks public datasets and their associated research artifacts across multiple medical imaging applications. Our approach includes a framework for the living review to monitor data documentation artifacts, and an SQL database to visualize the citation relationships between research artifact and dataset. Lastly, we discuss key considerations for creating medical imaging datasets, review best practices for data annotation, discuss the significance of shortcuts and demographic diversity, and emphasize the importance of managing datasets throughout their entire lifecycle. Our demo is publicly available at http://130.226.140.142.
comment: Manuscript under review
☆ How Should I Build A Benchmark?
Various benchmarks have been proposed to assess the performance of large language models (LLMs) in different coding scenarios. We refer to them as code-related benchmarks. However, there are no systematic guidelines by which such a benchmark should be developed to ensure its quality, reliability, and reproducibility. We propose How2Bench, which is comprised of a 55- 55-criteria checklist as a set of guidelines to govern the development of code-related benchmarks comprehensively. Using HOW2BENCH, we profiled 274 benchmarks released within the past decade and found concerning issues. Nearly 70% of the benchmarks did not take measures for data quality assurance; over 10% did not even open source or only partially open source. Many highly cited benchmarks have loopholes, including duplicated samples, incorrect reference codes/tests/prompts, and unremoved sensitive/confidential information. Finally, we conducted a human study involving 49 participants, which revealed significant gaps in awareness of the importance of data quality, reproducibility, and transparency.
comment: 42 pages
☆ Revisiting Ensemble Methods for Stock Trading and Crypto Trading Tasks at ACM ICAIF FinRL Contest 2023-2024
Reinforcement learning has demonstrated great potential for performing financial tasks. However, it faces two major challenges: policy instability and sampling bottlenecks. In this paper, we revisit ensemble methods with massively parallel simulations on graphics processing units (GPUs), significantly enhancing the computational efficiency and robustness of trained models in volatile financial markets. Our approach leverages the parallel processing capability of GPUs to significantly improve the sampling speed for training ensemble models. The ensemble models combine the strengths of component agents to improve the robustness of financial decision-making strategies. We conduct experiments in both stock and cryptocurrency trading tasks to evaluate the effectiveness of our approach. Massively parallel simulation on a single GPU improves the sampling speed by up to $1,746\times$ using $2,048$ parallel environments compared to a single environment. The ensemble models have high cumulative returns and outperform some individual agents, reducing maximum drawdown by up to $4.17\%$ and improving the Sharpe ratio by up to $0.21$. This paper describes trading tasks at ACM ICAIF FinRL Contests in 2023 and 2024.
☆ Algorithmic Derivation of Human Spatial Navigation Indices From Eye Movement Data
Spatial navigation is a complex cognitive function involving sensory inputs, such as visual, auditory, and proprioceptive information, to understand and move within space. This ability allows humans to create mental maps, navigate through environments, and process directional cues, crucial for exploring new places and finding one's way in unfamiliar surroundings. This study takes an algorithmic approach to extract indices relevant to human spatial navigation using eye movement data. Leveraging electrooculography signals, we analyzed statistical features and applied feature engineering techniques to study eye movements during navigation tasks. The proposed work combines signal processing and machine learning approaches to develop indices for navigation and orientation, spatial anxiety, landmark recognition, path survey, and path route. The analysis yielded five subscore indices with notable accuracy. Among these, the navigation and orientation subscore achieved an R2 score of 0.72, while the landmark recognition subscore attained an R2 score of 0.50. Additionally, statistical features highly correlated with eye movement metrics, including blinks, saccades, and fixations, were identified. The findings of this study can lead to more cognitive assessments and enable early detection of spatial navigation impairments, particularly among individuals at risk of cognitive decline.
comment: The dataset is available in the following work: Mobina Zibandehpoor, Fatemeh Alizadehziri, Arash Abbasi Larki, Sobhan Teymouri, and Mehdi Delrobaei. Electrooculography Dataset for Objective Spatial Navigation Assessment in Healthy Participants. arXiv preprint arXiv:2411.06811, 2024
☆ Distributionally Robust Policy Evaluation and Learning for Continuous Treatment with Observational Data
Using offline observational data for policy evaluation and learning allows decision-makers to evaluate and learn a policy that connects characteristics and interventions. Most existing literature has focused on either discrete treatment spaces or assumed no difference in the distributions between the policy-learning and policy-deployed environments. These restrict applications in many real-world scenarios where distribution shifts are present with continuous treatment. To overcome these challenges, this paper focuses on developing a distributionally robust policy under a continuous treatment setting. The proposed distributionally robust estimators are established using the Inverse Probability Weighting (IPW) method extended from the discrete one for policy evaluation and learning under continuous treatments. Specifically, we introduce a kernel function into the proposed IPW estimator to mitigate the exclusion of observations that can occur in the standard IPW method to continuous treatments. We then provide finite-sample analysis that guarantees the convergence of the proposed distributionally robust policy evaluation and learning estimators. The comprehensive experiments further verify the effectiveness of our approach when distribution shifts are present.
☆ Simulation of Hypergraph Algorithms with Looped Transformers
Looped Transformers have shown exceptional capability in simulating traditional graph algorithms, but their application to more complex structures like hypergraphs remains underexplored. Hypergraphs generalize graphs by modeling higher-order relationships among multiple entities, enabling richer representations but introducing significant computational challenges. In this work, we extend the Loop Transformer architecture to simulate hypergraph algorithms efficiently, addressing the gap between neural networks and combinatorial optimization over hypergraphs. In this paper, we extend the Loop Transformer architecture to simulate hypergraph algorithms efficiently, addressing the gap between neural networks and combinatorial optimization over hypergraphs. Specifically, we propose a novel degradation mechanism for reducing hypergraphs to graph representations, enabling the simulation of graph-based algorithms, such as Dijkstra's shortest path. Furthermore, we introduce a hyperedge-aware encoding scheme to simulate hypergraph-specific algorithms, exemplified by Helly's algorithm. The paper establishes theoretical guarantees for these simulations, demonstrating the feasibility of processing high-dimensional and combinatorial data using Loop Transformers. This work highlights the potential of Transformers as general-purpose algorithmic solvers for structured data.
☆ Class-Imbalanced-Aware Adaptive Dataset Distillation for Scalable Pretrained Model on Credit Scoring
The advent of artificial intelligence has significantly enhanced credit scoring technologies. Despite the remarkable efficacy of advanced deep learning models, mainstream adoption continues to favor tree-structured models due to their robust predictive performance on tabular data. Although pretrained models have seen considerable development, their application within the financial realm predominantly revolves around question-answering tasks and the use of such models for tabular-structured credit scoring datasets remains largely unexplored. Tabular-oriented large models, such as TabPFN, has made the application of large models in credit scoring feasible, albeit can only processing with limited sample sizes. This paper provides a novel framework to combine tabular-tailored dataset distillation technique with the pretrained model, empowers the scalability for TabPFN. Furthermore, though class imbalance distribution is the common nature in financial datasets, its influence during dataset distillation has not been explored. We thus integrate the imbalance-aware techniques during dataset distillation, resulting in improved performance in financial datasets (e.g., a 2.5% enhancement in AUC). This study presents a novel framework for scaling up the application of large pretrained models on financial tabular datasets and offers a comparative analysis of the influence of class imbalance on the dataset distillation process. We believe this approach can broaden the applications and downstream tasks of large models in the financial domain.
☆ Unveiling the Mystery of Weight in Large Foundation Models: Gaussian Distribution Never Fades
This paper presents a pioneering exploration of the mechanisms underlying large foundation models' (LFMs) weights, aiming to simplify AI research. Through extensive observation and analysis on prevailing LFMs, we find that regardless of initialization strategies, their weights predominantly follow a Gaussian distribution, with occasional sharp, inverted T-shaped, or linear patterns. We further discover that the weights share the i.i.d. properties of Gaussian noise, and explore their direct relationship. We find that transformation weights can be derived from Gaussian noise, and they primarily serve to increase the standard deviation of pre-trained weights, with their standard deviation growing with layer depth. In other words, transformation weights broaden the acceptable deviation from the optimal weights, facilitating adaptation to downstream tasks. Building upon the above conclusions, we thoroughly discussed the nature of optimal weights, ultimately concluding that they should exhibit zero-mean, symmetry, and sparsity, with the sparse values being a truncated Gaussian distribution and a few outliers. Our experiments in LFM adaptation and editing demonstrate the effectiveness of these insights. We hope these findings can provide a foundational understanding to pave the way for future advancements in the LFM community.
comment: Revisions ongoing
☆ LUT-DLA: Lookup Table as Efficient Extreme Low-Bit Deep Learning Accelerator
The emergence of neural network capabilities invariably leads to a significant surge in computational demands due to expanding model sizes and increased computational complexity. To reduce model size and lower inference costs, recent research has focused on simplifying models and designing hardware accelerators using low-bit quantization. However, due to numerical representation limits, scalar quantization cannot reduce bit width lower than 1-bit, diminishing its benefits. To break through these limitations, we introduce LUT-DLA, a Look-Up Table (LUT) Deep Learning Accelerator Framework that utilizes vector quantization to convert neural network models into LUTs, achieving extreme low-bit quantization. The LUT-DLA framework facilitates efficient and cost-effective hardware accelerator designs and supports the LUTBoost algorithm, which helps to transform various DNN models into LUT-based models via multistage training, drastically cutting both computational and hardware overhead. Additionally, through co-design space exploration, LUT-DLA assesses the impact of various model and hardware parameters to fine-tune hardware configurations for different application scenarios, optimizing performance and efficiency. Our comprehensive experiments show that LUT-DLA achieves improvements in power efficiency and area efficiency with gains of $1.4$~$7.0\times$ and $1.5$~$146.1\times$, respectively, while maintaining only a modest accuracy drop. For CNNs, accuracy decreases by $0.1\%$~$3.1\%$ using the $L_2$ distance similarity, $0.1\%$~$3.4\%$ with the $L_1$ distance similarity, and $0.1\%$~$3.8\%$ when employing the Chebyshev distance similarity. For transformer-based models, the accuracy drop ranges from $1.4\%$ to $3.0\%$.
comment: 12 pages, 14 figures
☆ AI/ML Based Detection and Categorization of Covert Communication in IPv6 Network
The flexibility and complexity of IPv6 extension headers allow attackers to create covert channels or bypass security mechanisms, leading to potential data breaches or system compromises. The mature development of machine learning has become the primary detection technology option used to mitigate covert communication threats. However, the complexity of detecting covert communication, evolving injection techniques, and scarcity of data make building machine-learning models challenging. In previous related research, machine learning has shown good performance in detecting covert communications, but oversimplified attack scenario assumptions cannot represent the complexity of modern covert technologies and make it easier for machine learning models to detect covert communications. To bridge this gap, in this study, we analyzed the packet structure and network traffic behavior of IPv6, used encryption algorithms, and performed covert communication injection without changing network packet behavior to get closer to real attack scenarios. In addition to analyzing and injecting methods for covert communications, this study also uses comprehensive machine learning techniques to train the model proposed in this study to detect threats, including traditional decision trees such as random forests and gradient boosting, as well as complex neural network architectures such as CNNs and LSTMs, to achieve detection accuracy of over 90\%. This study details the methods used for dataset augmentation and the comparative performance of the applied models, reinforcing insights into the adaptability and resilience of the machine learning application in IPv6 covert communication. In addition, we also proposed a Generative AI-assisted interpretation concept based on prompt engineering as a preliminary study of the role of Generative AI agents in covert communication.
♻ ☆ Does GPT Really Get It? A Hierarchical Scale to Quantify Human vs AI's Understanding of Algorithms AAAI 2025
As Large Language Models (LLMs) perform (and sometimes excel at) more and more complex cognitive tasks, a natural question is whether AI really understands. The study of understanding in LLMs is in its infancy, and the community has yet to incorporate well-trodden research in philosophy, psychology, and education. We initiate this, specifically focusing on understanding algorithms, and propose a hierarchy of levels of understanding. We use the hierarchy to design and conduct a study with human subjects (undergraduate and graduate students) as well as large language models (generations of GPT), revealing interesting similarities and differences. We expect that our rigorous criteria will be useful to keep track of AI's progress in such cognitive domains.
comment: 13 pages, 10 figures. To be published at AAAI 2025
♻ ☆ How Propense Are Large Language Models at Producing Code Smells? A Benchmarking Study
Large Language Models (LLMs) have shown significant potential in automating software engineering tasks, particularly in code generation. However, current evaluation benchmarks, which primarily focus on accuracy, fall short in assessing the quality of the code generated by these models, specifically their tendency to produce code smells. To address this limitation, we introduce CodeSmellEval, a benchmark designed to evaluate the propensity of LLMs for generating code smells. Our benchmark includes a novel metric: Propensity Smelly Score (PSC), and a curated dataset of method-level code smells: CodeSmellData. To demonstrate the use of CodeSmellEval, we conducted a case study with two state-of-the-art LLMs, CodeLlama and Mistral. The results reveal that both models tend to generate code smells, such as simplifiable-condition and consider-merging-isinstance. These findings highlight the effectiveness of our benchmark in evaluating LLMs, providing valuable insights into their reliability and their propensity to introduce code smells in code generation tasks.
♻ ☆ Space-LLaVA: a Vision-Language Model Adapted to Extraterrestrial Applications
Foundation Models (FMs), e.g., large language models, possess attributes of intelligence which offer promise to endow a robot with the contextual understanding necessary to navigate complex, unstructured tasks in the wild. We see three core challenges in the future of space robotics that motivate building an FM for the space robotics community: 1) Scalability of ground-in-the-loop operations; 2) Generalizing prior knowledge to novel environments; and 3) Multi-modality in tasks and sensor data. As a first-step towards a space foundation model, we programmatically augment three extraterrestrial databases with fine-grained language annotations inspired by the sensory reasoning necessary to e.g., identify a site of scientific interest on Mars, building a synthetic dataset of visual-question-answer and visual instruction-following tuples. We fine-tune a pre-trained LLaVA 13B checkpoint on our augmented dataset to adapt a Vision-Language Model (VLM) to the visual semantic features in an extraterrestrial environment, demonstrating FMs as a tool for specialization and enhancing a VLM's zero-shot performance on unseen task types in comparison to state-of-the-art VLMs. Ablation studies show that fine-tuning the language backbone and vision-language adapter in concert is key to facilitate adaption while a small percentage, e.g., 20%, of the pre-training data can be used to safeguard against catastrophic forgetting.
comment: Accepted to IEEE Aerospace Conference, 23 pages, 18 figures, 3 tables
♻ ☆ Experts' cognition-driven safe noisy labels learning for precise segmentation of residual tumor in breast cancer
Precise segmentation of residual tumor in breast cancer (PSRTBC) after neoadjuvant chemotherapy is a fundamental key technique in the treatment process of breast cancer. However, achieving PSRTBC is still a challenge, since the breast cancer tissue and tumor cells commonly have complex and varied morphological changes after neoadjuvant chemotherapy, which inevitably increases the difficulty to produce a predictive model that has good generalization with usual supervised learning (SL). To alleviate this situation, in this paper, we propose an experts' cognition-driven safe noisy labels learning (ECDSNLL) approach. In the concept of safe noisy labels learning, which is a typical type of safe weakly supervised learning, ECDSNLL is constructed by integrating the pathology experts' cognition about identifying residual tumor in breast cancer and the artificial intelligence experts' cognition about data modeling with provided data basis. Experimental results show that, compared with usual SL, ECDSNLL can significantly improve the lower bound of a number of UNet variants with 2.42% and 4.1% respectively in recall and fIoU for PSRTBC, while being able to achieve improvements in mean value and upper bound as well.
♻ ☆ Schedule On the Fly: Diffusion Time Prediction for Faster and Better Image Generation
Diffusion and flow models have achieved remarkable successes in various applications such as text-to-image generation. However, these models typically rely on the same predetermined denoising schedules during inference for each prompt, which potentially limits the inference efficiency as well as the flexibility when handling different prompts. In this paper, we argue that the optimal noise schedule should adapt to each inference instance, and introduce the Time Prediction Diffusion Model (TPDM) to accomplish this. TPDM employs a plug-and-play Time Prediction Module (TPM) that predicts the next noise level based on current latent features at each denoising step. We train the TPM using reinforcement learning, aiming to maximize a reward that discounts the final image quality by the number of denoising steps. With such an adaptive scheduler, TPDM not only generates high-quality images that are aligned closely with human preferences but also adjusts the number of denoising steps and time on the fly, enhancing both performance and efficiency. We train TPDMs on multiple diffusion model benchmarks. With Stable Diffusion 3 Medium architecture, TPDM achieves an aesthetic score of 5.44 and a human preference score (HPS) of 29.59, while using around 50% fewer denoising steps to achieve better performance. We will release our best model alongside this paper.
♻ ☆ A Survey of Sustainability in Large Language Models: Applications, Economics, and Challenges
Large Language Models (LLMs) have transformed numerous domains by providing advanced capabilities in natural language understanding, generation, and reasoning. Despite their groundbreaking applications across industries such as research, healthcare, and creative media, their rapid adoption raises critical concerns regarding sustainability. This survey paper comprehensively examines the environmental, economic, and computational challenges associated with LLMs, focusing on energy consumption, carbon emissions, and resource utilization in data centers. By synthesizing insights from existing literature, this work explores strategies such as resource-efficient training, sustainable deployment practices, and lifecycle assessments to mitigate the environmental impacts of LLMs. Key areas of emphasis include energy optimization, renewable energy integration, and balancing performance with sustainability. The findings aim to guide researchers, practitioners, and policymakers in developing actionable strategies for sustainable AI systems, fostering a responsible and environmentally conscious future for artificial intelligence.
♻ ☆ Solving the Unsolvable: Translating Case Law in Hong Kong
This paper addresses the challenges translating case law under Hong Kong's bilingual legal system. It highlights the initial success of translating all written statutes into Chinese before the 1997 handover, a task mandated by the Basic Law. The effort involved significant collaboration among legal, linguistic, and translation experts, resulting in a comprehensive and culturally appropriate bilingual legal system. However, translating case law remains a significant challenge due to the sheer volume and continuous growth of judicial decisions. The paper critiques the governments and judiciarys sporadic and uncoordinated efforts to translate case law, contrasting it with the thorough approach previously taken for statute translation. Although the government acknowledges the importance of legal bilingualism, it lacks a sustainable strategy for translating case law. The Judiciarys position that translating all judgments is unnecessary, unrealistic, and not cost-effectiveis analyzed and critiqued for its impact on legal transparency and public trust. A proposed solution involves leveraging machine translation technology through a human-machine interactive translation platform, which undergoes two major transitions. Initially based on a neural model, the platform transitions to using a large language model for improved translation accuracy. Furthermore, it evolves from a single-agent system to a multi-agent system, incorporating Translator, Annotator, and Proofreader agents. This multi-agent approach, supported by a grant, aims to facilitate efficient, high-quality translation of judicial judgments by integrating advanced artificial intelligence and continuous feedback mechanisms, thus better meeting the needs of a bilingual legal system.
♻ ☆ Automatic Fused Multimodal Deep Learning for Plant Identification
Plant classification is vital for ecological conservation and agricultural productivity, enhancing our understanding of plant growth dynamics and aiding species preservation. The advent of deep learning (DL) techniques has revolutionized this field by enabling autonomous feature extraction, significantly reducing the dependence on manual expertise. However, conventional DL models often rely solely on single data sources, failing to capture the full biological diversity of plant species comprehensively. Recent research has turned to multimodal learning to overcome this limitation by integrating multiple data types, which enriches the representation of plant characteristics. This shift introduces the challenge of determining the optimal point for modality fusion. In this paper, we introduce a pioneering multimodal DL-based approach for plant classification with automatic modality fusion. Utilizing the multimodal fusion architecture search, our method integrates images from multiple plant organs -- flowers, leaves, fruits, and stems -- into a cohesive model. To address the lack of multimodal datasets, we contributed Multimodal-PlantCLEF, a restructured version of the PlantCLEF2015 dataset tailored for multimodal tasks. Our method achieves 82.61% accuracy on 979 classes of Multimodal-PlantCLEF, surpassing state-of-the-art methods and outperforming late fusion by 10.33%. Through the incorporation of multimodal dropout, our approach demonstrates strong robustness to missing modalities. We validate our model against established benchmarks using standard performance metrics and McNemar's test, further underscoring its superiority.
♻ ☆ Beautimeter: Harnessing GPT for Assessing Architectural and Urban Beauty based on the 15 Properties of Living Structure
Beautimeter is a new tool powered by generative pre-trained transformer (GPT) technology, designed to evaluate architectural and urban beauty. Rooted in Christopher Alexander's theory of centers, this work builds on the idea that all environments possess, to varying degrees, an innate sense of life. Alexander identified 15 fundamental properties, such as levels of scale and thick boundaries, that characterize living structure, which Beautimeter uses as a basis for its analysis. By integrating GPT's advanced natural language processing capabilities, Beautimeter assesses the extent to which a structure embodies these 15 properties, enabling a nuanced evaluation of architectural and urban aesthetics. Using ChatGPT, the tool helps users generate insights into the perceived beauty and coherence of spaces. We conducted a series of case studies, evaluating images of architectural and urban environments, as well as carpets, paintings, and other artifacts. The results demonstrate Beautimeter's effectiveness in analyzing aesthetic qualities across diverse contexts. Our findings suggest that by leveraging GPT technology, Beautimeter offers architects, urban planners, and designers a powerful tool to create spaces that resonate deeply with people. This paper also explores the implications of such technology for architecture and urban design, highlighting its potential to enhance both the design process and the assessment of built environments. Keywords: Living structure, structural beauty, Christopher Alexander, AI in Design, human centered design
comment: 11 pages, 6 figure, and two tables
♻ ☆ Unleashing the Denoising Capability of Diffusion Prior for Solving Inverse Problems NeurIPS 2024
The recent emergence of diffusion models has significantly advanced the precision of learnable priors, presenting innovative avenues for addressing inverse problems. Since inverse problems inherently entail maximum a posteriori estimation, previous works have endeavored to integrate diffusion priors into the optimization frameworks. However, prevailing optimization-based inverse algorithms primarily exploit the prior information within the diffusion models while neglecting their denoising capability. To bridge this gap, this work leverages the diffusion process to reframe noisy inverse problems as a two-variable constrained optimization task by introducing an auxiliary optimization variable. By employing gradient truncation, the projection gradient descent method is efficiently utilized to solve the corresponding optimization problem. The proposed algorithm, termed ProjDiff, effectively harnesses the prior information and the denoising capability of a pre-trained diffusion model within the optimization framework. Extensive experiments on the image restoration tasks and source separation and partial generation tasks demonstrate that ProjDiff exhibits superior performance across various linear and nonlinear inverse problems, highlighting its potential for practical applications. Code is available at https://github.com/weigerzan/ProjDiff/.
comment: Accepted by NeurIPS 2024
♻ ☆ Learning to Balance Altruism and Self-interest Based on Empathy in Mixed-Motive Games
Real-world multi-agent scenarios often involve mixed motives, demanding altruistic agents capable of self-protection against potential exploitation. However, existing approaches often struggle to achieve both objectives. In this paper, based on that empathic responses are modulated by inferred social relationships between agents, we propose LASE Learning to balance Altruism and Self-interest based on Empathy), a distributed multi-agent reinforcement learning algorithm that fosters altruistic cooperation through gifting while avoiding exploitation by other agents in mixed-motive games. LASE allocates a portion of its rewards to co-players as gifts, with this allocation adapting dynamically based on the social relationship -- a metric evaluating the friendliness of co-players estimated by counterfactual reasoning. In particular, social relationship measures each co-player by comparing the estimated $Q$-function of current joint action to a counterfactual baseline which marginalizes the co-player's action, with its action distribution inferred by a perspective-taking module. Comprehensive experiments are performed in spatially and temporally extended mixed-motive games, demonstrating LASE's ability to promote group collaboration without compromising fairness and its capacity to adapt policies to various types of interactive co-players.
♻ ☆ UDC: A Unified Neural Divide-and-Conquer Framework for Large-Scale Combinatorial Optimization Problems
Single-stage neural combinatorial optimization solvers have achieved near-optimal results on various small-scale combinatorial optimization (CO) problems without requiring expert knowledge. However, these solvers exhibit significant performance degradation when applied to large-scale CO problems. Recently, two-stage neural methods motivated by divide-and-conquer strategies have shown efficiency in addressing large-scale CO problems. Nevertheless, the performance of these methods highly relies on problem-specific heuristics in either the dividing or the conquering procedure, which limits their applicability to general CO problems. Moreover, these methods employ separate training schemes and ignore the interdependencies between the dividing and conquering strategies, often leading to sub-optimal solutions. To tackle these drawbacks, this article develops a unified neural divide-and-conquer framework (i.e., UDC) for solving general large-scale CO problems. UDC offers a Divide-Conquer-Reunion (DCR) training method to eliminate the negative impact of a sub-optimal dividing policy. Employing a high-efficiency Graph Neural Network (GNN) for global instance dividing and a fixed-length sub-path solver for conquering divided sub-problems, the proposed UDC framework demonstrates extensive applicability, achieving superior performance in 10 representative large-scale CO problems. The code is available at https://github.com/CIAM-Group/NCO_code/tree/main/single_objective/UDC-Large-scale-CO-master.
♻ ☆ LLM-MedQA: Enhancing Medical Question Answering through Case Studies in Large Language Models
Accurate and efficient question-answering systems are essential for delivering high-quality patient care in the medical field. While Large Language Models (LLMs) have made remarkable strides across various domains, they continue to face significant challenges in medical question answering, particularly in understanding domain-specific terminologies and performing complex reasoning. These limitations undermine their effectiveness in critical medical applications. To address these issues, we propose a novel approach incorporating similar case generation within a multi-agent medical question-answering (MedQA) system. Specifically, we leverage the Llama3.1:70B model, a state-of-the-art LLM, in a multi-agent architecture to enhance performance on the MedQA dataset using zero-shot learning. Our method capitalizes on the model's inherent medical knowledge and reasoning capabilities, eliminating the need for additional training data. Experimental results show substantial performance gains over existing benchmark models, with improvements of 7% in both accuracy and F1-score across various medical QA tasks. Furthermore, we examine the model's interpretability and reliability in addressing complex medical queries. This research not only offers a robust solution for medical question answering but also establishes a foundation for broader applications of LLMs in the medical domain.
♻ ☆ Synergizing Large Language Models and Task-specific Models for Time Series Anomaly Detection
In anomaly detection, methods based on large language models (LLMs) can incorporate expert knowledge by reading professional document, while task-specific small models excel at extracting normal data patterns and detecting value fluctuations from training data of target applications. Inspired by the human nervous system, where the brain stores expert knowledge and the peripheral nervous system and spinal cord handle specific tasks like withdrawal and knee-jerk reflexes, we propose CoLLaTe, a framework designed to facilitate collaboration between LLMs and task-specific models, leveraging the strengths of both models for anomaly detection. In particular, we first formulate the collaboration process and identify two key challenges in the collaboration: (1) the misalignment between the expression domains of the LLMs and task-specific small models, and (2) error accumulation arising from the predictions of both models. To address these challenges, we then introduce two key components in CoLLaTe: a model alignment module and a collaborative loss function. Through theoretical analysis and experimental validation, we demonstrate that these components effectively mitigate the identified challenges and achieve better performance than both LLM-based and task-specific models.
♻ ☆ robosuite: A Modular Simulation Framework and Benchmark for Robot Learning
robosuite is a simulation framework for robot learning powered by the MuJoCo physics engine. It offers a modular design for creating robotic tasks as well as a suite of benchmark environments for reproducible research. This paper discusses the key system modules and the benchmark environments of our new release robosuite v1.5.
comment: For more information, please visit https://robosuite.ai
♻ ☆ Sweeping Heterogeneity with Smart MoPs: Mixture of Prompts for LLM Task Adaptation
Large Language Models (LLMs) have the ability to solve a variety of tasks, such as text summarization and mathematical questions, just out of the box, but they are often trained with a single task in mind. Due to high computational costs, the current trend is to use prompt instruction tuning to better adjust monolithic, pretrained LLMs for new -- but often individual -- downstream tasks. Thus, how one would expand prompt tuning to handle -- concomitantly -- heterogeneous tasks and data distributions is a widely open question. To address this gap, we suggest the use of \emph{Mixture of Prompts}, or MoPs, associated with smart gating functionality: the latter -- whose design is one of the contributions of this paper -- can identify relevant skills embedded in different groups of prompts and dynamically assign combined experts (i.e., collection of prompts), based on the target task. Additionally, MoPs are empirically agnostic to any model compression technique applied -- for efficiency reasons -- as well as instruction data source and task composition. In practice, MoPs can simultaneously mitigate prompt training "interference" in multi-task, multi-source scenarios (e.g., task and data heterogeneity across sources), as well as possible implications from model approximations. As a highlight, MoPs manage to decrease final perplexity from $\sim20\%$ up to $\sim70\%$, as compared to baselines, in the federated scenario, and from $\sim 3\%$ up to $\sim30\%$ in the centralized scenario.
♻ ☆ Can LLM Prompting Serve as a Proxy for Static Analysis in Vulnerability Detection
Despite their remarkable success, large language models (LLMs) have shown limited ability on applied tasks such as vulnerability detection. We investigate various prompting strategies for vulnerability detection and, as part of this exploration, propose a prompting strategy that integrates natural language descriptions of vulnerabilities with a contrastive chain-of-thought reasoning approach, augmented using contrastive samples from a synthetic dataset. Our study highlights the potential of LLMs to detect vulnerabilities by integrating natural language descriptions, contrastive reasoning, and synthetic examples into a comprehensive prompting framework. Our results show that this approach can enhance LLM understanding of vulnerabilities. On a high-quality vulnerability detection dataset such as SVEN, our prompting strategies can improve accuracies, F1-scores, and pairwise accuracies by 23%, 11%, and 14%, respectively.
♻ ☆ PSReg: Prior-guided Sparse Mixture of Experts for Point Cloud Registration AAAI 2025
The discriminative feature is crucial for point cloud registration. Recent methods improve the feature discriminative by distinguishing between non-overlapping and overlapping region points. However, they still face challenges in distinguishing the ambiguous structures in the overlapping regions. Therefore, the ambiguous features they extracted resulted in a significant number of outlier matches from overlapping regions. To solve this problem, we propose a prior-guided SMoE-based registration method to improve the feature distinctiveness by dispatching the potential correspondences to the same experts. Specifically, we propose a prior-guided SMoE module by fusing prior overlap and potential correspondence embeddings for routing, assigning tokens to the most suitable experts for processing. In addition, we propose a registration framework by a specific combination of Transformer layer and prior-guided SMoE module. The proposed method not only pays attention to the importance of locating the overlapping areas of point clouds, but also commits to finding more accurate correspondences in overlapping areas. Our extensive experiments demonstrate the effectiveness of our method, achieving state-of-the-art registration recall (95.7\%/79.3\%) on the 3DMatch/3DLoMatch benchmark. Moreover, we also test the performance on ModelNet40 and demonstrate excellent performance.
comment: Accepted by AAAI 2025 Oral
♻ ☆ Neptune: The Long Orbit to Benchmarking Long Video Understanding
We introduce Neptune, a benchmark for long video understanding that requires reasoning over long time horizons and across different modalities. Many existing video datasets and models are focused on short clips (10s-30s). While some long video datasets do exist, they can often be solved by powerful image models applied per frame (and often to very few frames) in a video, and are usually manually annotated at high cost. In order to mitigate both these problems, we propose a scalable dataset creation pipeline which leverages large models (VLMs and LLMs), to automatically generate dense, time-aligned video captions, as well as tough question answer decoy sets for video segments (up to 15 minutes in length). Our dataset Neptune covers a broad range of long video reasoning abilities and consists of a subset that emphasizes multimodal reasoning. Since existing metrics for open-ended question answering are either rule-based or may rely on proprietary models, we provide a new open source model-based metric GEM to score open-ended responses on Neptune. Benchmark evaluations reveal that most current open-source long video models perform poorly on Neptune, particularly on questions testing temporal ordering, counting and state changes. Through Neptune, we aim to spur the development of more advanced models capable of understanding long videos. The dataset is available at https://github.com/google-deepmind/neptune
♻ ☆ Rethinking Multi-Objective Learning through Goal-Conditioned Supervised Learning
Multi-objective learning aims to optimize multiple objectives simultaneously with a single model for achieving a balanced and satisfying performance on all these objectives. However, it suffers from the difficulty to formalize and conduct the exact learning process, especially considering the possible conflicts between objectives. Existing approaches explores to resolve this primarily in two directions: adapting modeling structure or constraining optimization with certain assumptions. However, a primary issue is that their presuppositions for the effectiveness of their design are insufficient to guarantee the its generality in real-world applications. What's worse, the high space and computation complexity issue makes it even harder to apply them in large-scale, complicated environment such as the recommender systems. To address these issues, we propose a general framework for automatically learning to achieve multiple objectives based on the existing sequential data. We apply the goal-conditioned supervised learning (GCSL) framework to multi-objective learning, by extending the definition of goals from one-dimensional scalar to multi-dimensional vector that perfectly disentangle the representation of different objectives. Meanwhile, GCSL enables the model to simultaneously learn to achieve each objective in a concise supervised learning way, simply guided by existing sequences in the offline data. No additional constraint, special model structure design, or complex optimization algorithms are further required. Apart from that, we formally analyze the property of the goals in GCSL and then firstly propose a goal-generation framework to gain achievable and reasonable goals for inference. Extensive experiments are conducted on real-world recommendation datasets, demonstrating the effectiveness of the proposed method and exploring the feasibility of the goal-generation strategies in GCSL.
♻ ☆ Attention Mechanism and Context Modeling System for Text Mining Machine Translation
This paper advances a novel architectural schema anchored upon the Transformer paradigm and innovatively amalgamates the K-means categorization algorithm to augment the contextual apprehension capabilities of the schema. The transformer model performs well in machine translation tasks due to its parallel computing power and multi-head attention mechanism. However, it may encounter contextual ambiguity or ignore local features when dealing with highly complex language structures. To circumvent this constraint, this exposition incorporates the K-Means algorithm, which is used to stratify the lexis and idioms of the input textual matter, thereby facilitating superior identification and preservation of the local structure and contextual intelligence of the language. The advantage of this combination is that K-Means can automatically discover the topic or concept regions in the text, which may be directly related to translation quality. Consequently, the schema contrived herein enlists K-Means as a preparatory phase antecedent to the Transformer and recalibrates the multi-head attention weights to assist in the discrimination of lexis and idioms bearing analogous semantics or functionalities. This ensures the schema accords heightened regard to the contextual intelligence embodied by these clusters during the training phase, rather than merely focusing on locational intelligence.
♻ ☆ Active Prompt Tuning Enables Gpt-40 To Do Efficient Classification Of Microscopy Images
Traditional deep learning-based methods for classifying cellular features in microscopy images require time- and labor-intensive processes for training models. Among the current limitations are major time commitments from domain experts for accurate ground truth preparation; and the need for a large amount of input image data. We previously proposed a solution that overcomes these challenges using OpenAI's GPT-4(V) model on a pilot dataset (Iba-1 immuno-stained tissue sections from 11 mouse brains). Results on the pilot dataset were equivalent in accuracy and with a substantial improvement in throughput efficiency compared to the baseline using a traditional Convolutional Neural Net (CNN)-based approach. The present study builds upon this framework using a second unique and substantially larger dataset of microscopy images. Our current approach uses a newer and faster model, GPT-4o, along with improved prompts. It was evaluated on a microscopy image dataset captured at low (10x) magnification from cresyl-violet-stained sections through the cerebellum of a total of 18 mouse brains (9 Lurcher mice, 9 wild-type controls). We used our approach to classify these images either as a control group or Lurcher mutant. Using 6 mice in the prompt set the results were correct classification for 11 out of the 12 mice (92%) with 96% higher efficiency, reduced image requirements, and lower demands on time and effort of domain experts compared to the baseline method (snapshot ensemble of CNN models). These results confirm that our approach is effective across multiple datasets from different brain regions and magnifications, with minimal overhead.
comment: Accepted to IEEE ISBI 2025
Robotics 24
☆ DexForce: Extracting Force-informed Actions from Kinesthetic Demonstrations for Dexterous Manipulation
Imitation learning requires high-quality demonstrations consisting of sequences of state-action pairs. For contact-rich dexterous manipulation tasks that require fine-grained dexterity, the actions in these state-action pairs must produce the right forces. Current widely-used methods for collecting dexterous manipulation demonstrations are difficult to use for demonstrating contact-rich tasks due to unintuitive human-to-robot motion retargeting and the lack of direct haptic feedback. Motivated by this, we propose DexForce, a method for collecting demonstrations of contact-rich dexterous manipulation. DexForce leverages contact forces, measured during kinesthetic demonstrations, to compute force-informed actions for policy learning. We use DexForce to collect demonstrations for six tasks and show that policies trained on our force-informed actions achieve an average success rate of 76% across all tasks. In contrast, policies trained directly on actions that do not account for contact forces have near-zero success rates. We also conduct a study ablating the inclusion of force data in policy observations. We find that while using force data never hurts policy performance, it helps the most for tasks that require an advanced level of precision and coordination, like opening an AirPods case and unscrewing a nut.
comment: Videos can be found here: https://clairelc.github.io/dexforce.github.io/
☆ Deployment of an Aerial Multi-agent System for Automated Task Execution in Large-scale Underground Mining Environments
In this article, we present a framework for deploying an aerial multi-agent system in large-scale subterranean environments with minimal infrastructure for supporting multi-agent operations. The multi-agent objective is to optimally and reactively allocate and execute inspection tasks in a mine, which are entered by a mine operator on-the-fly. The assignment of currently available tasks to the team of agents is accomplished through an auction-based system, where the agents bid for available tasks, which are used by a central auctioneer to optimally assigns tasks to agents. A mobile Wi-Fi mesh supports inter-agent communication and bi-directional communication between the agents and the task allocator, while the task execution is performed completely infrastructure-free. Given a task to be accomplished, a reliable and modular agent behavior is synthesized by generating behavior trees from a pool of agent capabilities, using a back-chaining approach. The auction system in the proposed framework is reactive and supports addition of new operator-specified tasks on-the-go, at any point through a user-friendly operator interface. The framework has been validated in a real underground mining environment using three aerial agents, with several inspection locations spread in an environment of almost 200 meters. The proposed framework can be utilized for missions involving rapid inspection, gas detection, distributed sensing and mapping etc. in a subterranean environment. The proposed framework and its field deployment contributes towards furthering reliable automation in large-scale subterranean environments to offload both routine and dangerous tasks from human operators to autonomous aerial robots.
comment: Submitted to IEEE Transactions on Field Robotics
☆ Tethered Variable Inertial Attitude Control Mechanisms through a Modular Jumping Limbed Robot
This paper presents the concept of a tethered variable inertial attitude control mechanism for a modular jumping-limbed robot designed for planetary exploration in low-gravity environments. The system, named SPLITTER, comprises two sub-10 kg quadrupedal robots connected by a tether, capable of executing successive jumping gaits and stabilizing in-flight using inertial morphing technology. Through model predictive control (MPC), attitude control was demonstrated by adjusting the limbs and tether length to modulate the system's principal moments of inertia. Our results indicate that this control strategy allows the robot to stabilize during flight phases without needing traditional flywheel-based systems or relying on aerodynamics, making the approach mass-efficient and ideal for small-scale planetary robots' successive jumps. The paper outlines the dynamics, MPC formulation for inertial morphing, actuator requirements, and simulation results, illustrating the potential of agile exploration for small-scale rovers in low-gravity environments like the Moon or asteroids.
comment: Proceeding to IEEE Aerospace Conference 2025
☆ Universal Actions for Enhanced Embodied Foundation Models
Training on diverse, internet-scale data is a key factor in the success of recent large foundation models. Yet, using the same recipe for building embodied agents has faced noticeable difficulties. Despite the availability of many crowd-sourced embodied datasets, their action spaces often exhibit significant heterogeneity due to distinct physical embodiment and control interfaces for different robots, causing substantial challenges in developing embodied foundation models using cross-domain data. In this paper, we introduce UniAct, a new embodied foundation modeling framework operating in a tokenized Universal Action Space. Our learned universal actions capture the generic atomic behaviors across diverse robots by exploiting their shared structural features, and enable enhanced cross-domain data utilization and cross-embodiment generalizations by eliminating the notorious heterogeneity. The universal actions can be efficiently translated back to heterogeneous actionable commands by simply adding embodiment-specific details, from which fast adaptation to new robots becomes simple and straightforward. Our 0.5B instantiation of UniAct outperforms 14X larger SOTA embodied foundation models in extensive evaluations on various real-world and simulation robots, showcasing exceptional cross-embodiment control and adaptation capability, highlighting the crucial benefit of adopting universal actions. Project page: https://github.com/2toinf/UniAct
comment: Preprint
☆ Robotic World Model: A Neural Network Simulator for Robust Policy Optimization in Robotics
Learning robust and generalizable world models is crucial for enabling efficient and scalable robotic control in real-world environments. In this work, we introduce a novel framework for learning world models that accurately capture complex, partially observable, and stochastic dynamics. The proposed method employs a dual-autoregressive mechanism and self-supervised training to achieve reliable long-horizon predictions without relying on domain-specific inductive biases, ensuring adaptability across diverse robotic tasks. We further propose a policy optimization framework that leverages world models for efficient training in imagined environments and seamless deployment in real-world systems. Through extensive experiments, our approach consistently outperforms state-of-the-art methods, demonstrating superior autoregressive prediction accuracy, robustness to noise, and generalization across manipulation and locomotion tasks. Notably, policies trained with our method are successfully deployed on ANYmal D hardware in a zero-shot transfer, achieving robust performance with minimal sim-to-real performance loss. This work advances model-based reinforcement learning by addressing the challenges of long-horizon prediction, error accumulation, and sim-to-real transfer. By providing a scalable and robust framework, the introduced methods pave the way for adaptive and efficient robotic systems in real-world applications.
☆ SpatialCoT: Advancing Spatial Reasoning through Coordinate Alignment and Chain-of-Thought for Embodied Task Planning
Spatial reasoning is an essential problem in embodied AI research. Efforts to enhance spatial reasoning abilities through supplementary spatial data and fine-tuning have proven limited and ineffective when addressing complex embodied tasks, largely due to their dependence on language-based outputs. While some approaches have introduced a point-based action space to mitigate this issue, they fall short in managing more intricate tasks within complex environments. This deficiency arises from their failure to fully exploit the inherent thinking and reasoning capabilities that are fundamental strengths of Vision-Language Models (VLMs). To address these limitations, we propose a novel approach named SpatialCoT, specifically designed to bolster the spatial reasoning capabilities of VLMs. Our approach comprises two stages: spatial coordinate bi-directional alignment, which aligns vision-language inputs with spatial coordinates, and chain-of-thought spatial grounding, which harnesses the reasoning capabilities of language models for advanced spatial reasoning. We evaluate SpatialCoT on challenging navigation and manipulation tasks, both in simulation and real-world settings. Experimental results demonstrate that our method significantly outperforms previous state-of-the-art approaches in both tasks.
comment: 13 pages, 6 figures
☆ A Comprehensive Insights into Drones: History, Classification, Architecture, Navigation, Applications, Challenges, and Future Trends
Unmanned Aerial Vehicles (UAVs), commonly known as Drones, are one of 21st century most transformative technologies. Emerging first for military use, advancements in materials, electronics, and software have catapulted drones into multipurpose tools for a wide range of industries. In this paper, we have covered the history, taxonomy, architecture, navigation systems and branched activities for the same. It explores important future trends like autonomous navigation, AI integration, and obstacle avoidance systems, emphasizing how they contribute to improving the efficiency and versatility of drones. It also looks at the major challenges like technical, environmental, economic, regulatory and ethical, that limit the actual take-up of drones, as well as trends that are likely to mitigate these obstacles in the future. This work offers a structured synthesis of existing studies and perspectives that enable insights about how drones will transform agriculture, logistics, healthcare, disaster management, and other areas, while also identifying new opportunities for innovation and development.
☆ Adaptive Twisting Sliding Control for Integrated Attack UAV's Autopilot and Guidance
This paper investigates an adaptive sliding-mode control for an integrated UAV autopilot and guidance system. First, a two-dimensional mathematical model of the system is derived by considering the incorporated lateral dynamics and relative kinematics of the UAV and its potential target of attack. Then, a sliding surface is derived utilizing the zero-effort miss distance. An adaptive twisting sliding mode (ATSMC) algorithm is applied to the integrated system. Simulation and comparisons have been accomplished. The results show our proposed design performs well in interception precision, even with high nonlinearity, uncertainties, disturbances, and abrupt changes in the target's movement, thanks to the adaptation strategy.
comment: in Proceedings of the 2025 International Conference on Energy, Infrastructure and Environmental Research (EIER2025)
☆ SLIM: Sim-to-Real Legged Instructive Manipulation via Long-Horizon Visuomotor Learning
We present a low-cost quadruped manipulation system that solves long-horizon real-world tasks, trained by reinforcement learning purely in simulation. The system comprises 1) a hierarchical design of a high-level policy for visual-mobile manipulation following instructions, and a low-level policy for quadruped movement and limb-control, 2) a progressive policy expansion approach for solving the long-horizon task together with a teacher-student framework for efficient high-level training of the high-level visuomotor policy, and 3) a suite of techniques for minimizing sim-to-real gaps. With budget-friendly but limited reliability and performance hardware, and just one wrist-mounted RGB camera, the entire system fully trained in simulation achieves high success rates for long horizon tasks involving search, move, grasp, and drop-into, with fluid sim-to-real transfer in a wide variety of indoor and outdoor scenes and lighting conditions.Extensive real-world evaluations show that on the long horizon mobile manipulation tasks, our system achieves good performance when transferred to real both in terms of task success rate and execution efficiency. Finally, we discuss the necessity of our sim-to-real techniques for legged mobile manipulation, and show their ablation performance.
☆ FoundationStereo: Zero-Shot Stereo Matching
Tremendous progress has been made in deep stereo matching to excel on benchmark datasets through per-domain fine-tuning. However, achieving strong zero-shot generalization - a hallmark of foundation models in other computer vision tasks - remains challenging for stereo matching. We introduce FoundationStereo, a foundation model for stereo depth estimation designed to achieve strong zero-shot generalization. To this end, we first construct a large-scale (1M stereo pairs) synthetic training dataset featuring large diversity and high photorealism, followed by an automatic self-curation pipeline to remove ambiguous samples. We then design a number of network architecture components to enhance scalability, including a side-tuning feature backbone that adapts rich monocular priors from vision foundation models to mitigate the sim-to-real gap, and long-range context reasoning for effective cost volume filtering. Together, these components lead to strong robustness and accuracy across domains, establishing a new standard in zero-shot stereo depth estimation.
☆ Early Failure Detection in Autonomous Surgical Soft-Tissue Manipulation via Uncertainty Quantification
Autonomous surgical robots are a promising solution to the increasing demand for surgery amid a shortage of surgeons. Recent work has proposed learning-based approaches for the autonomous manipulation of soft tissue. However, due to variability in tissue geometries and stiffnesses, these methods do not always perform optimally, especially in out-of-distribution settings. We propose, develop, and test the first application of uncertainty quantification to learned surgical soft-tissue manipulation policies as an early identification system for task failures. We analyze two different methods of uncertainty quantification, deep ensembles and Monte Carlo dropout, and find that deep ensembles provide a stronger signal of future task success or failure. We validate our approach using the physical daVinci Research Kit (dVRK) surgical robot to perform physical soft-tissue manipulation. We show that we are able to successfully detect task failure and request human intervention when necessary while still enabling autonomous manipulation when possible. Our learned tissue manipulation policy with uncertainty-based early failure detection achieves a zero-shot sim2real performance improvement of 47.5% over the prior state of the art in learned soft-tissue manipulation. We also show that our method generalizes well to new types of tissue as well as to a bimanual soft tissue manipulation task.
comment: 8 pages, 6 figures
☆ ConfigBot: Adaptive Resource Allocation for Robot Applications in Dynamic Environments
The growing use of autonomous mobile service robots (AMSRs) in dynamic environments requires flexible management of compute resources to optimize the performance of diverse tasks such as navigation, localization, perception, and so on. Current robot deployments, which oftentimes rely on static configurations (of the OS, applications, etc.) and system over-provisioning, fall short since they do not account for the tasks' performance variations resulting in poor system-wide behavior such as robot instability and/or inefficient resource use. This paper presents ConfigBot, a system designed to adaptively reconfigure AMSR applications to meet a predefined performance specification by leveraging runtime profiling and automated configuration tuning. Through experiments on a Boston Dynamics Spot robot equipped with NVIDIA AGX Orin, we demonstrate ConfigBot's efficacy in maintaining system stability and optimizing resource allocation across diverse scenarios. Our findings highlight the promise of tailored and dynamic configurations for robot deployments.
comment: 14 pages, 13 figures, 6 tables
☆ Learning More With Less: Sample Efficient Dynamics Learning and Model-Based RL for Loco-Manipulation
Combining the agility of legged locomotion with the capabilities of manipulation, loco-manipulation platforms have the potential to perform complex tasks in real-world applications. To this end, state-of-the-art quadrupeds with attached manipulators, such as the Boston Dynamics Spot, have emerged to provide a capable and robust platform. However, both the complexity of loco-manipulation control, as well as the black-box nature of commercial platforms pose challenges for developing accurate dynamics models and control policies. We address these challenges by developing a hand-crafted kinematic model for a quadruped-with-arm platform and, together with recent advances in Bayesian Neural Network (BNN)-based dynamics learning using physical priors, efficiently learn an accurate dynamics model from data. We then derive control policies for loco-manipulation via model-based reinforcement learning (RL). We demonstrate the effectiveness of this approach on hardware using the Boston Dynamics Spot with a manipulator, accurately performing dynamic end-effector trajectory tracking even in low data regimes.
comment: Master Thesis at ETH Zurich
♻ ☆ Optimal Virtual Model Control for Robotics: Design and Tuning of Passivity-Based Controllers
Passivity-based control is a cornerstone of control theory and an established design approach in robotics. Its strength is based on the passivity theorem, which provides a powerful interconnection framework for robotics. However, the design of passivity-based controllers and their optimal tuning remain challenging. We propose here an intuitive design approach for fully actuated robots, where the control action is determined by a `virtual-mechanism' as in classical virtual model control. The result is a robot whose controlled behavior can be understood in terms of physics. We achieve optimal tuning by applying algorithmic differentiation to ODE simulations of the rigid body dynamics. Overall, this leads to a flexible design and optimization approach: stability is proven by passivity of the virtual mechanism, while performance is obtained by optimization using algorithmic differentiation.
comment: 14 pages, 17 figures
♻ ☆ Mesh2SLAM in VR: A Fast Geometry-Based SLAM Framework for Rapid Prototyping in Virtual Reality Applications
SLAM is a foundational technique with broad applications in robotics and AR/VR. SLAM simulations evaluate new concepts, but testing on resource-constrained devices, such as VR HMDs, faces challenges: high computational cost and restricted sensor data access. This work proposes a sparse framework using mesh geometry projections as features, which improves efficiency and circumvents direct sensor data access, advancing SLAM research as we demonstrate in VR and through numerical evaluation.
♻ ☆ STPOTR: Simultaneous Human Trajectory and Pose Prediction Using a Non-Autoregressive Transformer for Robot Following Ahead
In this paper, we develop a neural network model to predict future human motion from an observed human motion history. We propose a non-autoregressive transformer architecture to leverage its parallel nature for easier training and fast, accurate predictions at test time. The proposed architecture divides human motion prediction into two parts: 1) the human trajectory, which is the hip joint 3D position over time and 2) the human pose which is the all other joints 3D positions over time with respect to a fixed hip joint. We propose to make the two predictions simultaneously, as the shared representation can improve the model performance. Therefore, the model consists of two sets of encoders and decoders. First, a multi-head attention module applied to encoder outputs improves human trajectory. Second, another multi-head self-attention module applied to encoder outputs concatenated with decoder outputs facilitates learning of temporal dependencies. Our model is well-suited for robotic applications in terms of test accuracy and speed, and compares favorably with respect to state-of-the-art methods. We demonstrate the real-world applicability of our work via the Robot Follow-Ahead task, a challenging yet practical case study for our proposed model.
♻ ☆ ESVO2: Direct Visual-Inertial Odometry with Stereo Event Cameras
Event-based visual odometry is a specific branch of visual Simultaneous Localization and Mapping (SLAM) techniques, which aims at solving tracking and mapping subproblems (typically in parallel), by exploiting the special working principles of neuromorphic (i.e., event-based) cameras. Due to the motion-dependent nature of event data, explicit data association (i.e., feature matching) under large-baseline view-point changes is difficult to establish, making direct methods a more rational choice. However, state-of-the-art direct methods are limited by the high computational complexity of the mapping sub-problem and the degeneracy of camera pose tracking in certain degrees of freedom (DoF) in rotation. In this paper, we tackle these issues by building an event-based stereo visual-inertial odometry system on top of a direct pipeline. Specifically, to speed up the mapping operation, we propose an efficient strategy for sampling contour points according to the local dynamics of events. The mapping performance is also improved in terms of structure completeness and local smoothness by merging the temporal stereo and static stereo results. To circumvent the degeneracy of camera pose tracking in recovering the pitch and yaw components of general 6-DoF motion, we introduce IMU measurements as motion priors via pre-integration. To this end, a compact back-end is proposed for continuously updating the IMU bias and predicting the linear velocity, enabling an accurate motion prediction for camera pose tracking. The resulting system scales well with modern high-resolution event cameras and leads to better global positioning accuracy in large-scale outdoor environments. Extensive evaluations on five publicly available datasets featuring different resolutions and scenarios justify the superior performance of the proposed system against five state-of-the-art methods.
♻ ☆ BILTS: A Bi-Invariant Similarity Measure for Robust Object Trajectory Recognition under Reference Frame Variations
When similar object motions are performed in diverse contexts but are meant to be recognized under a single classification, these contextual variations act as disturbances that negatively affect accurate motion recognition. In this paper, we focus on contextual variations caused by reference frame variations. To robustly deal with these variations, similarity measures have been introduced that compare object motion trajectories in a context-invariant manner. However, most are highly sensitive to noise near singularities, where the measure is not uniquely defined, and lack bi-invariance (invariance to both world and body frame variations). To address these issues, we propose the novel \textit{Bi-Invariant Local Trajectory-Shape Similarity} (BILTS) measure. Compared to other measures, the BILTS measure uniquely offers bi-invariance, boundedness, and third-order shape identity. Aimed at practical implementations, we devised a discretized and regularized version of the BILTS measure which shows exceptional robustness to singularities. This is demonstrated through rigorous recognition experiments using multiple datasets. On average, BILTS attained the highest recognition ratio and least sensitivity to contextual variations compared to other invariant object motion similarity measures. We believe that the BILTS measure is a valuable tool for recognizing motions performed in diverse contexts and has potential in other applications, including the recognition, segmentation, and adaptation of both motion and force trajectories.
comment: This work has been submitted as a regular research paper for consideration in the Journal of Intelligent & Robotic Systems. The content in this preprint is identical to the version submitted for peer review, except for formatting differences required by the journal
♻ ☆ Safe Interval Randomized Path Planning For Manipulators ICAPS 2025
Planning safe paths in 3D workspace for high DoF robotic systems, such as manipulators, is a challenging problem, especially when the environment is populated with the dynamic obstacles that need to be avoided. In this case the time dimension should be taken into account that further increases the complexity of planning. To mitigate this issue we suggest to combine safe-interval path planning (a prominent technique in heuristic search) with the randomized planning, specifically, with the bidirectional rapidly-exploring random trees (RRT-Connect) - a fast and efficient algorithm for high-dimensional planning. Leveraging a dedicated technique of fast computation of the safe intervals we end up with an efficient planner dubbed SI-RRT. We compare it with the state of the art and show that SI-RRT consistently outperforms the competitors both in runtime and solution cost. Our implementation of SI-RRT is publicly available at https://github.com/PathPlanning/ManipulationPlanning-SI-RRT
comment: Submitted to The 35th International Conference on Automated Planning and Scheduling (ICAPS 2025)
♻ ☆ Sensor-Based Distributionally Robust Control for Safe Robot Navigation in Dynamic Environments
We introduce a novel method for mobile robot navigation in dynamic, unknown environments, leveraging onboard sensing and distributionally robust optimization to impose probabilistic safety constraints. Our method introduces a distributionally robust control barrier function (DR-CBF) that directly integrates noisy sensor measurements and state estimates to define safety constraints. This approach is applicable to a wide range of control-affine dynamics, generalizable to robots with complex geometries, and capable of operating at real-time control frequencies. Coupled with a control Lyapunov function (CLF) for path following, the proposed CLF-DR-CBF control synthesis method achieves safe, robust, and efficient navigation in challenging environments. We demonstrate the effectiveness and robustness of our approach for safe autonomous navigation under uncertainty in simulations and real-world experiments with differential-drive robots.
comment: Project page: https://existentialrobotics.org/DRO_Safe_Navigation
♻ ☆ Uncertainty-Aware Planning for Heterogeneous Robot Teams using Dynamic Topological Graphs and Mixed-Integer Programming
Multi-robot planning and coordination in uncertain environments is a fundamental computational challenge, since the belief space increases exponentially with the number of robots. In this paper, we address the problem of planning in uncertain environments with a heterogeneous robot team of fast scout vehicles for information gathering and more risk-averse carrier robots from which the scouts vehicles are deployed. To overcome the computational challenges, we represent the environment and operational scenario using a topological graph, where the parameters of the edge weight distributions vary with the state of the robot team on the graph, and we formulate a computationally efficient mixed-integer program which removes the dependence on the number of robots from its decision space. Our formulation results in the capability to generate optimal multi-robot, long-horizon plans in seconds that could otherwise be computationally intractable. Ultimately our approach enables real-time re-planning, since the computation time is significantly faster than the time to execute one step. We evaluate our approach in a scenario where the robot team must traverse an environment while minimizing detection by observers in positions that are uncertain to the robot team. We demonstrate that our approach is computationally tractable, can improve performance in the presence of imperfect information, and can be adjusted for different risk profiles.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ A Systematic Study of Multi-Agent Deep Reinforcement Learning for Safe and Robust Autonomous Highway Ramp Entry
Vehicles today can drive themselves on highways and driverless robotaxis operate in major cities, with more sophisticated levels of autonomous driving expected to be available and become more common in the future. Yet, technically speaking, so-called "Level 5" (L5) operation, corresponding to full autonomy, has not been achieved. For that to happen, functions such as fully autonomous highway ramp entry must be available, and provide provably safe, and reliably robust behavior to enable full autonomy. We present a systematic study of a highway ramp function that controls the vehicles forward-moving actions to minimize collisions with the stream of highway traffic into which a merging (ego) vehicle enters. We take a game-theoretic multi-agent (MA) approach to this problem and study the use of controllers based on deep reinforcement learning (DRL). The virtual environment of the MA DRL uses self-play with simulated data where merging vehicles safely learn to control longitudinal position during a taper-type merge. The work presented in this paper extends existing work by studying the interaction of more than two vehicles (agents) and does so by systematically expanding the road scene with additional traffic and ego vehicles. While previous work on the two-vehicle setting established that collision-free controllers are theoretically impossible in fully decentralized, non-coordinated environments, we empirically show that controllers learned using our approach are nearly ideal when measured against idealized optimal controllers.
comment: 9 pages, 9 figures; added support ack
♻ ☆ Beyond Uncertainty: Risk-Aware Active View Acquisition for Safe Robot Navigation and 3D Scene Understanding with FisherRF
The active view acquisition problem has been extensively studied in the context of robot navigation using NeRF and 3D Gaussian Splatting. To enhance scene reconstruction efficiency and ensure robot safety, we propose the Risk-aware Environment Masking (RaEM) framework. RaEM leverages coherent risk measures to dynamically prioritize safety-critical regions of the unknown environment, guiding active view acquisition algorithms toward identifying the next-best-view (NBV). Integrated with FisherRF, which selects the NBV by maximizing expected information gain, our framework achieves a dual objective: improving robot safety and increasing efficiency in risk-aware 3D scene reconstruction and understanding. Extensive high-fidelity experiments validate the effectiveness of our approach, demonstrating its ability to establish a robust and safety-focused framework for active robot exploration and 3D scene understanding.
♻ ☆ Tactile Displays Driven by Projected Light
Tactile displays that lend tangible form to digital content could transform computing interactions. However, achieving the resolution, speed, and dynamic range needed for perceptual fidelity remains challenging. We present a tactile display that directly converts projected light into visible tactile patterns via a photomechanical surface populated with millimeter-scale optotactile pixels. The pixels transduce incident light into mechanical displacements through photostimulated thermal gas expansion, yielding millimeter scale displacements with response times of 2 to 100 milliseconds. Employing projected light for power transmission and addressing renders these displays highly scalable. We demonstrate optically driven displays with up to 1,511 addressable pixels -- several times more pixels than any prior tactile display attaining comparable performance. Perceptual studies confirm that these displays can reproduce diverse spatiotemporal tactile patterns with high fidelity. This research establishes a foundation for practical, versatile high-resolution tactile displays driven by light.
Systems and Control 30
☆ Uncertainty-Aware Digital Twins: Robust Model Predictive Control using Time-Series Deep Quantile Learning
Digital Twins, virtual replicas of physical systems that enable real-time monitoring, model updates, predictions, and decision-making, present novel avenues for proactive control strategies for autonomous systems. However, achieving real-time decision-making in Digital Twins considering uncertainty necessitates an efficient uncertainty quantification (UQ) approach and optimization driven by accurate predictions of system behaviors, which remains a challenge for learning-based methods. This paper presents a simultaneous multi-step robust model predictive control (MPC) framework that incorporates real-time decision-making with uncertainty awareness for Digital Twin systems. Leveraging a multistep ahead predictor named Time-Series Dense Encoder (TiDE) as the surrogate model, this framework differs from conventional MPC models that provide only one-step ahead predictions. In contrast, TiDE can predict future states within the prediction horizon in a one-shot, significantly accelerating MPC. Furthermore, quantile regression is employed with the training of TiDE to perform flexible while computationally efficient UQ on data uncertainty. Consequently, with the deep learning quantiles, the robust MPC problem is formulated into a deterministic optimization problem and provides a safety buffer that accommodates disturbances to enhance constraint satisfaction rate. As a result, the proposed method outperforms existing robust MPC methods by providing less-conservative UQ and has demonstrated efficacy in an engineering case study involving Directed Energy Deposition (DED) additive manufacturing. This proactive while uncertainty-aware control capability positions the proposed method as a potent tool for future Digital Twin applications and real-time process control in engineering systems.
☆ Deployment of an Aerial Multi-agent System for Automated Task Execution in Large-scale Underground Mining Environments
In this article, we present a framework for deploying an aerial multi-agent system in large-scale subterranean environments with minimal infrastructure for supporting multi-agent operations. The multi-agent objective is to optimally and reactively allocate and execute inspection tasks in a mine, which are entered by a mine operator on-the-fly. The assignment of currently available tasks to the team of agents is accomplished through an auction-based system, where the agents bid for available tasks, which are used by a central auctioneer to optimally assigns tasks to agents. A mobile Wi-Fi mesh supports inter-agent communication and bi-directional communication between the agents and the task allocator, while the task execution is performed completely infrastructure-free. Given a task to be accomplished, a reliable and modular agent behavior is synthesized by generating behavior trees from a pool of agent capabilities, using a back-chaining approach. The auction system in the proposed framework is reactive and supports addition of new operator-specified tasks on-the-go, at any point through a user-friendly operator interface. The framework has been validated in a real underground mining environment using three aerial agents, with several inspection locations spread in an environment of almost 200 meters. The proposed framework can be utilized for missions involving rapid inspection, gas detection, distributed sensing and mapping etc. in a subterranean environment. The proposed framework and its field deployment contributes towards furthering reliable automation in large-scale subterranean environments to offload both routine and dangerous tasks from human operators to autonomous aerial robots.
comment: Submitted to IEEE Transactions on Field Robotics
☆ Actively Coupled Sensor Configuration and Planning in Unknown Dynamic Environments
We address the problem of path-planning for an autonomous mobile vehicle, called the ego vehicle, in an unknown andtime-varying environment. The objective is for the ego vehicle to minimize exposure to a spatiotemporally-varying unknown scalar field called the threat field. Noisy measurements of the threat field are provided by a network of mobile sensors. Weaddress the problem of optimally configuring (placing) these sensors in the environment. To this end, we propose sensor reconfiguration by maximizing a reward function composed of three different elements. First, the reward includes an informa tion measure that we call context-relevant mutual information (CRMI). Unlike typical sensor placement techniques that maxi mize mutual information of the measurements and environment state, CRMI directly quantifies uncertainty reduction in the ego path cost while it moves in the environment. Therefore, the CRMI introduces active coupling between the ego vehicle and the sensor network. Second, the reward includes a penalty on the distances traveled by the sensors. Third, the reward includes a measure of proximity of the sensors to the ego vehicle. Although we do not consider communication issues in this paper, such proximity is of relevance for future work that addresses communications between the sensors and the ego vehicle. We illustrate and analyze the proposed technique via numerical simulations.
comment: Draft submitted to the 2025 American Control Conference
☆ ODMA-Based Cell-Free Unsourced Random Access with Successive Interference Cancellation
We consider the unsourced random access problem with multiple receivers and propose a cell-free type solution for that. In our proposed scheme, the active users transmit their signals to the access points (APs) distributed in a geographical area and connected to a central processing unit (CPU). The transmitted signals are composed of a pilot and polar codeword, where the polar codeword bits occupy a small fraction of the data part of the transmission frame. The receiver operations of pilot detection and channel and symbol estimation take place at the APs, while the actual message bits are detected at the CPU by combining the symbol estimates from the APs forwarded over the fronthaul. The effect of the successfully decoded messages is then subtracted at the APs. Numerical examples illustrate that the proposed scheme can support up to 1400 users with a high energy efficiency, and the distributed structure decreases the error probability by more than two orders of magnitude.
☆ Pricing Mechanisms versus Non-Pricing Mechanisms for Demand Side Management in Microgrids
In this paper, we compare pricing and non-pricing mechanisms for implementing demand-side management (DSM) mechanisms in a neighborhood in Helsinki, Finland. We compare load steering based on peak load-reduction using the profile steering method, and load steering based on market price signals, in terms of peak loads, losses, and device profiles. We found that there are significant differences between the two methods; the peak-load reduction control strategies contribute to reducing peak power and improving power flow stability, while strategies primarily based on prices result in higher peaks and increased grid losses. Our results highlight the need to potentially move away from market-price-based DSM to DSM incentivization and control strategies that are based on peak load reductions and other system requirements.
☆ Decomposition and Quantification of SOTIF Requirements for Perception Systems of Autonomous Vehicles
Ensuring the safety of autonomous vehicles (AVs) is paramount before they can be introduced to the market. More specifically, securing the Safety of the Intended Functionality (SOTIF) poses a notable challenge; while ISO 21448 outlines numerous activities to refine the performance of AVs, it offers minimal quantitative guidance. This paper endeavors to decompose the acceptance criterion into quantitative perception requirements, aiming to furnish developers with requirements that are not only understandable but also actionable. This paper introduces a risk decomposition methodology to derive SOTIF requirements for perception. More explicitly, for subsystemlevel safety requirements, we define a collision severity model to establish requirements for state uncertainty and present a Bayesian model to discern requirements for existence uncertainty. For component-level safety requirements, we proposed a decomposition method based on the Shapley value. Our findings indicate that these methods can effectively decompose the system-level safety requirements into quantitative perception requirements, potentially facilitating the safety verification of various AV components.
comment: 14pages,13figures,4tables,Journal Article
☆ An Energy-Aware RIoT System: Analysis, Modeling and Prediction in the SUPERIOT Framework
This paper presents a comprehensive analysis of the energy consumption characteristics of a Silicon (Si)-based Reconfigurable IoT (RIoT) node developed in the initial phase of the SUPERIOT project, focusing on key operating states, including Bluetooth Low Energy (BLE) communication, Narrow-Band Visible Light Communication (NBVLC), sensing, and E-ink display. Extensive measurements were conducted to establish a detailed energy profile, which serves as a benchmark for evaluating the effectiveness of subsequent optimizations and future node iterations. To minimize the energy consumption, multiple optimizations were implemented at both the software and hardware levels, achieving a reduction of over 60% in total energy usage through software modifications alone. Further improvements were realized by optimizing the E-ink display driving waveform and implementing a very low-power mode for non-communication activities. Based on the measured data, three measurement-based energy consumption models were developed to characterize the energy behavior of the node under: (i) normal, unoptimized operation, (ii) low-power, software-optimized operation, and (iii) very low-power, hardware-optimized operation. These models, validated with new measurement data, achieved an accuracy exceeding 97%, confirming their reliability for predicting energy consumption in diverse configurations.
comment: 14 pages, 13 figures, 11 tables
☆ Hybrid Parallel Collaborative Simulation Framework Integrating Device Physics with Circuit Dynamics for PDAE-Modeled Power Electronic Equipment
Optimizing high-performance power electronic equipment, such as power converters, requires multiscale simulations that incorporate the physics of power semiconductor devices and the dynamics of other circuit components, especially in conducting Design of Experiments (DoEs), defining the safe operating area of devices, and analyzing failures related to semiconductor devices. However, current methodologies either overlook the intricacies of device physics or do not achieve satisfactory computational speeds. To bridge this gap, this paper proposes a Hybrid-Parallel Collaborative (HPC) framework specifically designed to analyze the Partial Differential Algebraic Equation (PDAE) modeled power electronic equipment, integrating the device physics and circuit dynamics. The HPC framework employs a dynamic iteration to tackle the challenges inherent in solving the coupled nonlinear PDAE system, and utilizes a hybrid-parallel computing strategy to reduce computing time. Physics-based system partitioning along with hybrid-process-thread parallelization on shared and distributed memory are employed, facilitating the simulation of hundreds of partial differential equations (PDEs)-modeled devices simultaneously without compromising speed. Experiments based on the hybrid line commutated converter and reverse-blocking integrated gate-commutated thyristors are conducted under 3 typical real-world scenarios: semiconductor device optimization for the converter; converter design optimization; and device failure analysis. The HPC framework delivers simulation speed up to 60 times faster than the leading commercial software, while maintaining carrier-level accuracy in the experiments. This shows great potential for comprehensive analysis and collaborative optimization of devices and electronic power equipment, particularly in extreme conditions and failure scenarios.
☆ Informativity Conditions for Multiple Signals: Properties, Experimental Design, and Applications
Recent studies highlight the importance of persistently exciting condition in single signal sequence for model identification and data-driven control methodologies. However, maintaining prolonged excitation in control signals introduces significant challenges, as continuous excitation can reduce the lifetime of mechanical devices. In this paper, we introduce three informativity conditions for various types of multi-signal data, each augmented by weight factors. We explore the interrelations between these conditions and their rank properties in linear time-invariant systems. Furthermore, we introduce open-loop experimental design methods tailored to each of the three conditions, which can synthesize the required excitation conditions either offline or online, even in the presence of limited information within each signal segment. We demonstrate the effectiveness of these informativity conditions in least-squares identification. Additionally, all three conditions can extend Willems' fundamental lemma and are utilized to assess the properties of the system. Illustrative examples confirm that these conditions yield satisfactory outcomes in both least-squares identification and the construction of data-driven controllers.
☆ AI Explainability for Power Electronics: From a Lipschitz Continuity Perspective
Lifecycle management of power converters continues to thrive with emerging artificial intelligence (AI) solutions, yet AI mathematical explainability remains unexplored in power electronics (PE) community. The lack of theoretical rigor challenges adoption in mission-critical applications. Therefore, this letter proposes a generic framework to evaluate mathematical explainability, highlighting inference stability and training convergence from a Lipschitz continuity perspective. Inference stability governs consistent outputs under input perturbations, essential for robust real-time control and fault diagnosis. Training convergence guarantees stable learning dynamics, facilitating accurate modeling in PE contexts. Additionally, a Lipschitz-aware learning rate selection strategy is introduced to accelerate convergence while mitigating overshoots and oscillations. The feasibility of the proposed Lipschitz-oriented framework is demonstrated by validating the mathematical explainability of a state-of-the-art physics-in-architecture neural network, and substantiated through empirical case studies on dual-active-bridge converters. This letter serves as a clarion call for the PE community to embrace mathematical explainability, heralding a transformative era of trustworthy and explainable AI solutions that potentially redefine the future of power electronics.
☆ Minimum-Time Sequential Traversal by a Team of Small Unmanned Aerial Vehicles in an Unknown Environment with Winds
We consider the problem of transporting multiple packages from an initial location to a destination location in a windy urban environment using a team of SUAVs. Each SUAV carries one package. We assume that the wind field is unknown, but wind speed can be measured by SUAVs during flight. The SUAVs fly sequentially one after the other, measure wind speeds along their trajectories, and report the measurements to a central computer. The overall objective is to minimize the total travel time of all SUAVs, which is in turn related to the number of SUAV traversals through the environment. For a discretized environment modeled by a graph, we describe a method to estimate wind speeds and the time of traversal for each SUAV path. Each SUAV traverses a minimum-time path planned based on the current wind field estimate. We study cases of static and time-varying wind fields with and without measurement noise. For each case, we demonstrate via numerical simulation that the proposed method finds the optimal path after a minimal number of traversals.
comment: Draft submitted to the 2025 American Control Conference
☆ Learning port maneuvers from data for automatic guidance of Unmanned Surface Vehicles
At shipping ports, some repetitive maneuvering tasks such as entering/leaving port, transporting goods inside it or just making surveillance activities, can be efficiently and quickly carried out by a domestic pilot according to his experience. This know-how can be seized by Unmanned Surface Vehicles (USV) in order to autonomously replicate the same tasks. However, the inherent nonlinearity of ship trajectories and environmental perturbations as wind or marine currents make it difficult to learn a model and its respective control. We therefore present a data-driven learning and control methodology for USV, which is based on Gaussian Mixture Model, Gaussian Mixture Regression and the Sontag's universal formula. Our approach is capable to learn the nonlinear dynamics as well as guarantee the convergence toward the target with a robust controller. Real data have been collected through experiments with a vessel at the port of Ceuta. The complex trajectories followed by an expert have been learned including the robust controller. The effect of the controller over noise/perturbations are presented, a measure of error is used to compare estimates and real data trajectories, and finally, an analysis of computational complexity is performed.
comment: Preprint submitted to journal (under review). 25 pages, 13 figures, 3 tables
☆ Automated Water Irrigation System
This paper presents the design and implementation of an automated water irrigation system aimed at optimizing plant care through precision moisture monitoring and controlled water delivery. The system uses a capacitive soil moisture sensor, an ADC (analog-to-digital converter), and a relay-driven water pump to ensure plants receive adequate hydration based on real-time data. In addition, this work aims to build on existing applications for Raspberry Pi (4B) and Arduino-based automatic irrigation systems by integrating advanced calibration methods, employing optimized algorithms, and introducing new technologies to further enhance overall system efficiency and reliability.
comment: 6 pages
☆ Wasserstein Adaptive Value Estimation for Actor-Critic Reinforcement Learning
We present Wasserstein Adaptive Value Estimation for Actor-Critic (WAVE), an approach to enhance stability in deep reinforcement learning through adaptive Wasserstein regularization. Our method addresses the inherent instability of actor-critic algorithms by incorporating an adaptively weighted Wasserstein regularization term into the critic's loss function. We prove that WAVE achieves $\mathcal{O}\left(\frac{1}{k}\right)$ convergence rate for the critic's mean squared error and provide theoretical guarantees for stability through Wasserstein-based regularization. Using the Sinkhorn approximation for computational efficiency, our approach automatically adjusts the regularization based on the agent's performance. Theoretical analysis and experimental results demonstrate that WAVE achieves superior performance compared to standard actor-critic methods.
☆ Analytical Models of Frequency and Voltage in Large-Scale All-Inverter Power Systems
Low-order frequency response models for power systems have a decades-long history in optimization and control problems such as unit commitment, economic dispatch, and wide-area control. With a few exceptions, these models are built upon the Newtonian mechanics of synchronous generators, assuming that the frequency dynamics across a system are approximately homogeneous, and assume the dynamics of nodal voltages for most operating conditions are negligible, and thus are not directly computed at all buses. As a result, the use of system frequency models results in the systematic underestimation of frequency minimum nadir and maximum RoCoF, and provides no insight into the reactive power-voltage dynamics. This paper proposes a low-order model of both frequency and voltage response in grid-forming inverter-dominated power systems. The proposed model accounts for spatial-temporal variations in frequency and voltage behavior across a system and as a result, demonstrates the heterogeneity of frequency response in future renewable power systems. Electromagnetic transient (EMT) simulations are used to validate the utility, accuracy, and computational efficiency of these models, setting the basis for them to serve as fast, scalable alternatives to EMT simulation, especially when dealing with very large-scale systems, for both planning and operational studies.
☆ Multiclass Queue Scheduling Under Slowdown: An Approximate Dynamic Programming Approach
In many service systems, especially those in healthcare, customer waiting times can result in increased service requirements. Such service slowdowns can significantly impact system performance. Therefore, it is important to properly account for their impact when designing scheduling policies. Scheduling under wait-dependent service times is challenging, especially when multiple customer classes are heterogeneously affected by waiting. In this work, we study scheduling policies in multiclass, multiserver queues with wait-dependent service slowdowns. We propose a simulation-based Approximate Dynamic Programming (ADP) algorithm to find close-to-optimal scheduling policies. The ADP algorithm (i) represents the policy using classifiers based on the index policy structure, (ii) leverages a coupling method to estimate the differences of the relative value functions directly, and (iii) uses adaptive sampling for efficient state-space exploration. Through extensive numerical experiments, we illustrate that the ADP algorithm generates close-to-optimal policies that outperform well-known benchmarks. We also provide insights into the structure of the optimal policy, which reveals an important trade-off between instantaneous cost reduction and preventing the system from reaching high-cost equilibria. Lastly, we conduct a case study on scheduling admissions into rehabilitation care to illustrate the effectiveness of the ADP algorithm in practice.
☆ ACCEPT: Diagnostic Forecasting of Battery Degradation Through Contrastive Learning
Modeling lithium-ion battery (LIB) degradation offers significant cost savings and enhances the safety and reliability of electric vehicles (EVs) and battery energy storage systems (BESS). Whilst data-driven methods have received great attention for forecasting degradation, they often demonstrate limited generalization ability and tend to underperform particularly in critical scenarios involving accelerated degradation, which are crucial to predict accurately. These methods also fail to elucidate the underlying causes of degradation. Alternatively, physical models provide a deeper understanding, but their complex parameters and inherent uncertainties limit their applicability in real-world settings. To this end, we propose a new model - ACCEPT. Our novel framework uses contrastive learning to map the relationship between the underlying physical degradation parameters and observable operational quantities, combining the benefits of both approaches. Furthermore, due to the similarity of degradation paths between LIBs with the same chemistry, this model transfers non-trivially to most downstream tasks, allowing for zero-shot inference. Additionally, since categorical features can be included in the model, it can generalize to other LIB chemistries. This work establishes a foundational battery degradation model, providing reliable forecasts across a range of battery types and operating conditions.
♻ ☆ A Fairness-Oriented Reinforcement Learning Approach for the Operation and Control of Shared Micromobility Services
As Machine Learning grows in popularity across various fields, equity has become a key focus for the AI community. However, fairness-oriented approaches are still underexplored in smart mobility. Addressing this gap, our study investigates the balance between performance optimization and algorithmic fairness in shared micromobility services providing a novel framework based on Reinforcement Learning. Exploiting Q-learning, the proposed methodology achieves equitable outcomes in terms of the Gini index across different areas characterized by their distance from central hubs. Through vehicle rebalancing, the provided scheme maximizes operator performance while ensuring fairness principles for users, reducing iniquity by up to 85% while only increasing costs by 30% (w.r.t. applying no equity adjustment). A case study with synthetic data validates our insights and highlights the importance of fairness in urban micromobility (source code: https://github.com/mcederle99/FairMSS.git).
comment: 6 pages, 3 figures, accepted at the 2025 American Control Conference (ACC) on January 17th, 2025
♻ ☆ AIaaS for ORAN-based 6G Networks: Multi-time Scale Slice Resource Management with DRL
This paper addresses how to handle slice resources for 6G networks at different time scales in an architecture based on an open radio access network (ORAN). The proposed solution includes artificial intelligence (AI) at the edge of the network and applies two control-level loops to obtain optimal performance compared to other techniques. The ORAN facilitates programmable network architectures to support such multi-time scale management using AI approaches. The proposed algorithms analyze the maximum utilization of resources from slice performance to take decisions at the inter-slice level. Inter-slice intelligent agents work at a non-real-time level to reconfigure resources within various slices. Further than meeting the slice requirements, the intra-slice objective must also include the minimization of maximum resource utilization. This enables smart utilization of the resources within each slice without affecting slice performance. Here, each xApp that is an intra-slice agent aims at meeting the optimal quality of service (QoS) of the users, but at the same time, some inter-slice objectives should be included to coordinate intra- and inter-slice agents. This is done without penalizing the main intra-slice objective. All intelligent agents use deep reinforcement learning (DRL) algorithms to meet their objectives. We have presented results for enhanced mobile broadband (eMBB), ultra-reliable low latency (URLLC), and massive machine type communication (mMTC) slice categories.
comment: Updated to reflect acceptance in IEEE ICC 2024: IEEE International Conference on Communications, Denver, CO, USA, 2024, pp. 5407-5412, doi: 10.1109/ICC51166.2024.10622601
♻ ☆ Stochastic Optimal Control via Local Occupation Measures
Viewing stochastic processes through the lens of occupation measures has proved to be a powerful angle of attack for the theoretical and computational analysis of stochastic optimal control problems. We present a simple modification of the traditional occupation measure framework derived from resolving the occupation measures locally on a partition of the control problem's space-time domain. This notion of local occupation measures provides fine-grained control over the construction of structured semidefinite programming relaxations for a rich class of stochastic optimal control problems with embedded diffusion and jump processes via the moment-sum-of-squares hierarchy. As such, it bridges the gap between discretization-based approximations to the Hamilton-Jacobi-Bellmann equations and occupation measure relaxations. We demonstrate with examples that this approach enables the computation of high quality bounds for the optimal value of a large class of stochastic optimal control problems with significant performance gains relative to the traditional occupation measure framework.
comment: 22 pages, 4 figures, associated implementation: https://github.com/FHoltorf/MarkovBounds.jl
♻ ☆ Near Optimal Approximations and Finite Memory Policies for POMPDs with Continuous Spaces
We study an approximation method for partially observed Markov decision processes (POMDPs) with continuous spaces. Belief MDP reduction, which has been the standard approach to study POMDPs requires rigorous approximation methods for practical applications, due to the state space being lifted to the space of probability measures. Generalizing recent work, in this paper we present rigorous approximation methods via discretizing the observation space and constructing a fully observed finite MDP model using a finite length history of the discrete observations and control actions. We show that the resulting policy is near-optimal under some regularity assumptions on the channel, and under certain controlled filter stability requirements for the hidden state process. Furthermore, by quantizing the measurements, we are able to utilize refined filter stability conditions. We also provide a Q learning algorithm that uses a finite memory of discretized information variables, and prove its convergence to the optimality equation of the finite fully observed MDP constructed using the approximation method.
♻ ☆ Generalized Multi-hop Traffic Pressure for Heterogeneous Traffic Perimeter Control
Perimeter control (PC) prevents loss of traffic network capacity due to congestion in urban areas. Homogeneous PC allows all access points to a protected region to have identical permitted inflow. However, homogeneous PC performs poorly when the congestion in the protected region is heterogeneous (e.g., imbalanced demand) since the homogeneous PC does not consider specific traffic conditions around each perimeter intersection. When the protected region has spatially heterogeneous congestion, one needs to modulate the perimeter inflow rate to be higher near low-density regions and vice versa for high-density regions. A na\"ive approach is to leverage 1-hop traffic pressure to measure traffic condition around perimeter intersections, but such metric is too spatially myopic for PC. To address this issue, we formulate multi-hop downstream pressure grounded on Markov chain theory, which ``looks deeper'' into the protected region beyond perimeter intersections. In addition, we formulate a two-stage hierarchical control scheme that can leverage this novel multi-hop pressure to redistribute the total permitted inflow provided by a pre-trained deep reinforcement learning homogeneous control policy. Experimental results show that our heterogeneous PC approaches leveraging multi-hop pressure significantly outperform homogeneous PC in scenarios where the origin-destination flows are highly imbalanced with high spatial heterogeneity. Moveover, our approach is shown to be robust against turning ratio uncertainties by a sensitivity analysis.
comment: 11 pages main body, 13 figures, journal paper
♻ ☆ Automated monitoring of bee colony movement in the hive during winter season
In this study, we have experimentally modelled the movement of a bee colony in a hive during the winter season and developed a monitoring system that allows tracking the movement of the bee colony and honey consumption. The monitoring system consists of four load cells connected to the RP2040 controller based on the Raspberry Pi Pico board, from which data is transmitted via the MQTT protocol to the Raspberry Pi 5 microcomputer via a Wi-Fi network. The processed data from the Raspberry Pi 5 is recorded in a MySQL database. The algorithm for finding the location of the bee colony in the hive works correctly, the trajectory of movement based on the data from the sensors repeats the physical movement in the experiment, which is an imitation of the movement of the bee colony in real conditions. The proposed monitoring system provides continuous observation of the bee colony without adversely affecting its natural activities and can be integrated with various wireless data networks. This is a promising tool for improving the efficiency of beekeeping and maintaining the health of bee colonies.
comment: Paper Accepted at BAIT 2024 CEUR-WS, see https://ceur-ws.org/Vol-3842/paper9.pdf
♻ ☆ Higher-Order Sinusoidal Input Describing Functions for Open-Loop and Closed-Loop Reset Control with Application to Mechatronics Systems
Reset control enhances the performance of high-precision mechatronics systems. This paper introduces a generalized reset feedback control structure that integrates a single reset-state reset controller, a shaping filter for tuning reset actions, and linear compensators arranged in series and parallel configurations with the reset controller. This structure offers greater tuning flexibility to optimize reset control performance. However, frequency-domain analysis for such systems remains underdeveloped. To address this gap, this study makes three key contributions: (1) developing Higher-Order Sinusoidal Input Describing Functions (HOSIDFs) for open-loop reset control systems; (2) deriving HOSIDFs for closed-loop reset control systems and establishing a connection with open-loop analysis; and (3) creating a MATLAB-based App to implement these methods, providing mechatronics engineers with a practical tool for reset control system design and analysis. The accuracy of the proposed methods is validated through simulations and experiments. Finally, the utility of the proposed methods is demonstrated through case studies that analyze and compare the performance of three controllers: a PID controller, a reset controller, and a shaped reset controller on a precision motion stage. Both analytical and experimental results demonstrate that the shaped reset controller provides higher tracking precision while reducing actuation forces, outperforming both the reset and PID controllers. These findings highlight the effectiveness of the proposed frequency-domain methods in analyzing and optimizing the performance of reset-controlled mechatronics systems.
♻ ☆ Sensor-Based Distributionally Robust Control for Safe Robot Navigation in Dynamic Environments
We introduce a novel method for mobile robot navigation in dynamic, unknown environments, leveraging onboard sensing and distributionally robust optimization to impose probabilistic safety constraints. Our method introduces a distributionally robust control barrier function (DR-CBF) that directly integrates noisy sensor measurements and state estimates to define safety constraints. This approach is applicable to a wide range of control-affine dynamics, generalizable to robots with complex geometries, and capable of operating at real-time control frequencies. Coupled with a control Lyapunov function (CLF) for path following, the proposed CLF-DR-CBF control synthesis method achieves safe, robust, and efficient navigation in challenging environments. We demonstrate the effectiveness and robustness of our approach for safe autonomous navigation under uncertainty in simulations and real-world experiments with differential-drive robots.
comment: Project page: https://existentialrobotics.org/DRO_Safe_Navigation
♻ ☆ Learning Dynamical Systems by Leveraging Data from Similar Systems
We consider the problem of learning the dynamics of a linear system when one has access to data generated by an auxiliary system that shares similar (but not identical) dynamics, in addition to data from the true system. We use a weighted least squares approach, and provide finite sample error bounds of the learned model as a function of the number of samples and various system parameters from the two systems as well as the weight assigned to the auxiliary data. We show that the auxiliary data can help to reduce the intrinsic system identification error due to noise, at the price of adding a portion of error that is due to the differences between the two system models. We further provide a data-dependent bound that is computable when some prior knowledge about the systems, such as upper bounds on noise levels and model difference, is available. This bound can also be used to determine the weight that should be assigned to the auxiliary data during the model training stage.
comment: 15 pages,9 figures
♻ ☆ From Semi-Infinite Constraints to Structured Robust Policies: Optimal Gain Selection for Financial Systems
This paper studies the robust optimal gain selection problem for financial trading systems, formulated within a \emph{double linear policy} framework, which allocates capital across long and short positions. The key objective is to guarantee \emph{robust positive expected} (RPE) profits uniformly across a range of uncertain market conditions while ensuring risk control. This problem leads to a robust optimization formulation with \emph{semi-infinite} constraints, where the uncertainty is modeled by a bounded set of possible return parameters. We address this by transforming semi-infinite constraints into structured policies -- the \emph{balanced} policy and the \emph{complementary} policy -- which enable explicit characterization of the optimal solution. Additionally, we propose a novel graphical approach to efficiently solve the robust gain selection problem, drastically reducing computational complexity. Empirical validation on historical stock price data demonstrates superior performance in terms of risk-adjusted returns and downside risk compared to conventional strategies. This framework generalizes classical mean-variance optimization by incorporating robustness considerations, offering a systematic and efficient solution for robust trading under uncertainty.
comment: Submitted for possible publication
♻ ☆ A Systematic Study of Multi-Agent Deep Reinforcement Learning for Safe and Robust Autonomous Highway Ramp Entry
Vehicles today can drive themselves on highways and driverless robotaxis operate in major cities, with more sophisticated levels of autonomous driving expected to be available and become more common in the future. Yet, technically speaking, so-called "Level 5" (L5) operation, corresponding to full autonomy, has not been achieved. For that to happen, functions such as fully autonomous highway ramp entry must be available, and provide provably safe, and reliably robust behavior to enable full autonomy. We present a systematic study of a highway ramp function that controls the vehicles forward-moving actions to minimize collisions with the stream of highway traffic into which a merging (ego) vehicle enters. We take a game-theoretic multi-agent (MA) approach to this problem and study the use of controllers based on deep reinforcement learning (DRL). The virtual environment of the MA DRL uses self-play with simulated data where merging vehicles safely learn to control longitudinal position during a taper-type merge. The work presented in this paper extends existing work by studying the interaction of more than two vehicles (agents) and does so by systematically expanding the road scene with additional traffic and ego vehicles. While previous work on the two-vehicle setting established that collision-free controllers are theoretically impossible in fully decentralized, non-coordinated environments, we empirically show that controllers learned using our approach are nearly ideal when measured against idealized optimal controllers.
comment: 9 pages, 9 figures; added support ack
♻ ☆ Safety Index Synthesis with State-dependent Control Space
This paper introduces an approach for synthesizing feasible safety indices to derive safe control laws under state-dependent control spaces. The problem, referred to as Safety Index Synthesis (SIS), is challenging because it requires the existence of feasible control input in all states and leads to an infinite number of constraints. The proposed method leverages Positivstellensatz to formulate SIS as a nonlinear programming (NP) problem. We formally prove that the NP solutions yield safe control laws with two imperative guarantees: forward invariance within user-defined safe regions and finite-time convergence to those regions. A numerical study validates the effectiveness of our approach.
comment: 2024 American Control Conference (ACC)
♻ ☆ An Extended Survey and a Comparison Framework for Dataflow Models of Computation and Communication
Dataflow Model of Computation and Communications (DF MoCCs) is a formalism used to specify the behavior of Cyber-Physical Systems (CPSs). DF MoCCs are widely used in the design of CPSs, as they provide a high-level of abstraction to specify the system's behavior. DF MoCCs rules give semantics to a dataflow specification of a CPS, and static analysis algorithms rely on these semantics to guarantee safety properties of the dataflow specification, such as bounded memory usage and deadlock freeness. A wide range of DF MoCCs exists, each with its own characteristics and static analyses. This paper presents a survey of those DF MoCCs and a classification in eight categories. In addition, DF MoCCs are characterized by a comprehensive list of features and static analyses, which reflect their expressiveness and analyzability. Based on this characterization, a framework is proposed to compare the expressiveness and the analyzability of DF MoCCs quantitatively.
Optimization and Control 29
☆ Micro-Macro Decomposition of Particle Swarm Optimization Methods
Solving non-convex minimization problems using multi-particle metaheuristic derivative-free optimization methods is still active area of research. Popular methods are Particle Swarm Optimization (PSO) methods, that iteratively update a population of particles according to dynamics inspired by social interactions between individuals. We present a modification to include constrained minimization problems using exact penalization. Additionally, we utilize the hierarchical structure of PSO to introduce a micro-macro decomposition of the algorithm. The probability density of particles is written as a convex combination of microscopic and macroscopic contributions, and both parts are propagated separately. The decomposition is dynamically updated based on heuristic considerations. Numerical examples compare the results obtained using the algorithm in the microscopic scale, in the macroscopic scale, and, using the new micro-macro decomposition.
☆ Fixed Confidence and Fixed Tolerance Bi-level Optimization for Selecting the Best Optimized System
In this paper, we study a fixed-confidence, fixed-tolerance formulation of a class of stochastic bi-level optimization problems, where the upper-level problem selects from a finite set of systems based on a performance metric, and the lower-level problem optimizes continuous decision variables for each system. Notably, the objective functions for the upper and lower levels can differ. This class of problems has a wide range of applications, including model selection, ranking and selection under input uncertainty, and optimal design. To address this, we propose a multi-stage Pruning-Optimization framework that alternates between comparing the performance of different systems (Pruning) and optimizing systems (Optimization). % In the Pruning stage, we design a sequential algorithm that identifies and eliminates inferior systems through systematic performance evaluations. In the Optimization stage, the goal is to solve for a near-optimal solution that meets specified confidence and tolerance requirements. This multi-stage framework is designed to enhance computational efficiency by pruning inferior systems with high tolerance early on, thereby avoiding unnecessary computational efforts. We demonstrate the effectiveness of the proposed algorithm through both theoretical analysis of statistical validity and sample complexity and numerical experiments.
☆ DADA: Dual Averaging with Distance Adaptation
We present a novel universal gradient method for solving convex optimization problems. Our algorithm -- Dual Averaging with Distance Adaptation (DADA) -- is based on the classical scheme of dual averaging and dynamically adjusts its coefficients based on observed gradients and the distance between iterates and the starting point, eliminating the need for problem-specific parameters. DADA is a universal algorithm that simultaneously works for a broad spectrum of problem classes, provided the local growth of the objective function around its minimizer can be bounded. Particular examples of such problem classes are nonsmooth Lipschitz functions, Lipschitz-smooth functions, H\"older-smooth functions, functions with high-order Lipschitz derivative, quasi-self-concordant functions, and $(L_0,L_1)$-smooth functions. Crucially, DADA is applicable to both unconstrained and constrained problems, even when the domain is unbounded, without requiring prior knowledge of the number of iterations or desired accuracy.
☆ Optimal Restart Strategies for Parameter-dependent Optimization Algorithms
This paper examines restart strategies for algorithms whose successful termination depends on an unknown parameter $\lambda$. After each restart, $\lambda$ is increased, until the algorithm terminates successfully. It is assumed that there is a unique, unknown, optimal value for $\lambda$. For the algorithm to run successfully, this value must be reached or surpassed. The key question is whether there exists an optimal strategy for selecting $\lambda$ after each restart taking into account that the computational costs (runtime) increases with $\lambda$. In this work, potential restart strategies are classified into parameter-dependent strategy types. A loss function is introduced to quantify the wasted computational cost relative to the optimal strategy. A crucial requirement for any efficient restart strategy is that its loss, relative to the optimal $\lambda$, remains bounded. To this end, upper and lower bounds of the loss are derived. Using these bounds it will be shown that not all strategy types are bounded. However, for a particular strategy type, where $\lambda$ is increased multiplicatively by a constant factor $\lambda$, the relative loss function is bounded. Furthermore, it will be demonstrated that within this strategy type, there exists an optimal value for $\lambda$ that minimizes the maximum relative loss. In the asymptotic limit, this optimal choice of $\lambda$ does not depend on the unknown optimal $\lambda$.
☆ A Family of Controllable Momentum Coefficients for Forward-Backward Accelerated Algorithms
Nesterov's accelerated gradient method (NAG) marks a pivotal advancement in gradient-based optimization, achieving faster convergence compared to the vanilla gradient descent method for convex functions. However, its algorithmic complexity when applied to strongly convex functions remains unknown, as noted in the comprehensive review by Chambolle and Pock [2016]. This issue, aside from the critical step size, was addressed by Li et al. [2024b], with the monotonic case further explored by Fu and Shi [2024]. In this paper, we introduce a family of controllable momentum coefficients for forward-backward accelerated methods, focusing on the critical step size $s=1/L$. Unlike traditional linear forms, the proposed momentum coefficients follow an $\alpha$-th power structure, where the parameter $r$ is adaptively tuned to $\alpha$. Using a Lyapunov function specifically designed for $\alpha$, we establish a controllable $O\left(1/k^{2\alpha} \right)$ convergence rate for the NAG-$\alpha$ method, provided that $r > 2\alpha$. At the critical step size, NAG-$\alpha$ achieves an inverse polynomial convergence rate of arbitrary degree by adjusting $r$ according to $\alpha > 0$. We further simplify the Lyapunov function by expressing it in terms of the iterative sequences $x_k$ and $y_k$, eliminating the need for phase-space representations. This simplification enables us to extend the controllable $O \left(1/k^{2\alpha} \right)$ rate to the monotonic variant, M-NAG-$\alpha$, thereby enhancing optimization efficiency. Finally, by leveraging the fundamental inequality for composite functions, we extended the controllable $O\left(1/k^{2\alpha} \right)$ rate to proximal algorithms, including the fast iterative shrinkage-thresholding algorithm (FISTA-$\alpha$) and its monotonic counterpart (M-FISTA-$\alpha$).
comment: 22 pages, 1 figure. arXiv admin note: text overlap with arXiv:2412.13527
☆ Client-Centric Federated Adaptive Optimization
Federated Learning (FL) is a distributed learning paradigm where clients collaboratively train a model while keeping their own data private. With an increasing scale of clients and models, FL encounters two key challenges, client drift due to a high degree of statistical/system heterogeneity, and lack of adaptivity. However, most existing FL research is based on unrealistic assumptions that virtually ignore system heterogeneity. In this paper, we propose Client-Centric Federated Adaptive Optimization, which is a class of novel federated adaptive optimization approaches. We enable several features in this framework such as arbitrary client participation, asynchronous server aggregation, and heterogeneous local computing, which are ubiquitous in real-world FL systems but are missed in most existing works. We provide a rigorous convergence analysis of our proposed framework for general nonconvex objectives, which is shown to converge with the best-known rate. Extensive experiments show that our approaches consistently outperform the baseline by a large margin across benchmarks.
☆ Generic uniqueness and conjugate points for optimal control problems
The paper is concerned with an optimal control problem on $\mathbb{R}^n$, where the dynamics is linear w.r.t.~the control functions. For a terminal cost $\psi$ in a $mathcal{G}_\delta$ set of $\mathcal{C}^4(\mathbb{R}^n)$ (i.e., in a countable intersection of open dense subsets), two main results are proved.Namely: the set $\Gamma_\psi\subset\mathbb{R}^n$ of conjugate points is closed, with locally bounded $(n-2)$-dimensional Hausdorff measure. Moreover, the set of initial points $y\in \mathbb{R}^n\setminus\Gamma_\psi$, which admit two or more globally optimal trajectories, is contained in the union of a locally finite family of embedded manifolds. In particular, the value function is continuously differentiable on an open, dense subset of $\mathbb{R}^n$.
comment: 18 pages, 1 figure
☆ Multiclass Queue Scheduling Under Slowdown: An Approximate Dynamic Programming Approach
In many service systems, especially those in healthcare, customer waiting times can result in increased service requirements. Such service slowdowns can significantly impact system performance. Therefore, it is important to properly account for their impact when designing scheduling policies. Scheduling under wait-dependent service times is challenging, especially when multiple customer classes are heterogeneously affected by waiting. In this work, we study scheduling policies in multiclass, multiserver queues with wait-dependent service slowdowns. We propose a simulation-based Approximate Dynamic Programming (ADP) algorithm to find close-to-optimal scheduling policies. The ADP algorithm (i) represents the policy using classifiers based on the index policy structure, (ii) leverages a coupling method to estimate the differences of the relative value functions directly, and (iii) uses adaptive sampling for efficient state-space exploration. Through extensive numerical experiments, we illustrate that the ADP algorithm generates close-to-optimal policies that outperform well-known benchmarks. We also provide insights into the structure of the optimal policy, which reveals an important trade-off between instantaneous cost reduction and preventing the system from reaching high-cost equilibria. Lastly, we conduct a case study on scheduling admissions into rehabilitation care to illustrate the effectiveness of the ADP algorithm in practice.
☆ A Family of Controllable Momentum Coefficients for Forward-Backward Accelerated Algorithms
Nesterov's accelerated gradient method (NAG) marks a pivotal advancement in gradient-based optimization, achieving faster convergence compared to the vanilla gradient descent method for convex functions. However, its algorithmic complexity when applied to strongly convex functions remains unknown, as noted in the comprehensive review by Chambolle and Pock [2016]. This issue, aside from the critical step size, was addressed by Li et al. [2024b], with the monotonic case further explored by Fu and Shi [2024]. In this paper, we introduce a family of controllable momentum coefficients for forward-backward accelerated methods, focusing on the critical step size $s=1/L$. Unlike traditional linear forms, the proposed momentum coefficients follow an $\alpha$-th power structure, where the parameter $r$ is adaptively tuned to $\alpha$. Using a Lyapunov function specifically designed for $\alpha$, we establish a controllable $O\left(1/k^{2\alpha} \right)$ convergence rate for the NAG-$\alpha$ method, provided that $r > 2\alpha$. At the critical step size, NAG-$\alpha$ achieves an inverse polynomial convergence rate of arbitrary degree by adjusting $r$ according to $\alpha > 0$. We further simplify the Lyapunov function by expressing it in terms of the iterative sequences $x_k$ and $y_k$, eliminating the need for phase-space representations. This simplification enables us to extend the controllable $O \left(1/k^{2\alpha} \right)$ rate to the monotonic variant, M-NAG-$\alpha$, thereby enhancing optimization efficiency. Finally, by leveraging the fundamental inequality for composite functions, we extended the controllable $O\left(1/k^{2\alpha} \right)$ rate to proximal algorithms, including the fast iterative shrinkage-thresholding algorithm (FISTA-$\alpha$) and its monotonic counterpart (M-FISTA-$\alpha$).
comment: 22 pages, 1 figure
♻ ☆ Dynamic Sensor Selection for Biomarker Discovery
Advances in methods of biological data collection are driving the rapid growth of comprehensive datasets across clinical and research settings. These datasets provide the opportunity to monitor biological systems in greater depth and at finer time steps than was achievable in the past. Classically, biomarkers are used to represent and track key aspects of a biological system. Biomarkers retain utility even with the availability of large datasets, since monitoring and interpreting changes in a vast number of molecules remains impractical. However, given the large number of molecules in these datasets, a major challenge is identifying the best biomarkers for a particular setting Here, we apply principles of observability theory to establish a general methodology for biomarker selection. We demonstrate that observability measures effectively identify biologically meaningful sensors in a range of time series transcriptomics data. Motivated by the practical considerations of biological systems, we introduce the method of dynamic sensor selection (DSS) to maximize observability over time, thus enabling observability over regimes where system dynamics themselves are subject to change. This observability framework is flexible, capable of modeling gene expression dynamics and using auxiliary data, including chromosome conformation, to select biomarkers. Additionally, we demonstrate the applicability of this approach beyond genomics by evaluating the observability of neural activity These applications demonstrate the utility of observability-guided biomarker selection for across a wide range of biological systems, from agriculture and biomanufacturing to neural applications and beyond.
comment: 21 pages, 9 figures
♻ ☆ Centralized Reduction of Decentralized Stochastic Control Models and their weak-Feller Regularity
Decentralized stochastic control problems involving general state/measurement/action spaces are intrinsically difficult to study because of the inapplicability of standard tools from centralized (single-agent) stochastic control. In this paper, we address some of these challenges for decentralized stochastic control with standard Borel spaces under two different but tightly related information structures: the one-step delayed information sharing pattern (OSDISP), and the $K$-step periodic information sharing pattern (KSPISP). We will show that the one-step delayed and $K$-step periodic problems can be reduced to a centralized Markov Decision Process (MDP), generalizing prior results which considered finite, linear, or static models, by addressing several measurability and topological questions. We then provide sufficient conditions for the transition kernels of both centralized reductions to be weak-Feller. The existence and separated nature of optimal policies under both information structures are then established. The weak Feller regularity also facilitates rigorous approximation and learning theoretic results, as shown in the paper.
comment: A summary of the results was presented in CDC'24
♻ ☆ Stochastic Optimal Control via Local Occupation Measures
Viewing stochastic processes through the lens of occupation measures has proved to be a powerful angle of attack for the theoretical and computational analysis of stochastic optimal control problems. We present a simple modification of the traditional occupation measure framework derived from resolving the occupation measures locally on a partition of the control problem's space-time domain. This notion of local occupation measures provides fine-grained control over the construction of structured semidefinite programming relaxations for a rich class of stochastic optimal control problems with embedded diffusion and jump processes via the moment-sum-of-squares hierarchy. As such, it bridges the gap between discretization-based approximations to the Hamilton-Jacobi-Bellmann equations and occupation measure relaxations. We demonstrate with examples that this approach enables the computation of high quality bounds for the optimal value of a large class of stochastic optimal control problems with significant performance gains relative to the traditional occupation measure framework.
comment: 22 pages, 4 figures, associated implementation: https://github.com/FHoltorf/MarkovBounds.jl
♻ ☆ On the Hypomonotone Class of Variational Inequalities
This paper studies the behavior of the extragradient algorithm [Korpelevich, 1976] when applied to hypomonotone operators, a class of problems that extends beyond the classical monotone setting. To support the understanding of this variational inequality problem class, we focus on a subclass of hypomonotone linear operators, characterizing them based on their eigenvalues and providing concrete examples. While the extragradient method is widely recognized for its efficiency in solving variational inequalities involving monotone and Lipschitz continuous operators, we demonstrate that it does not guarantee convergence in the hypomonotone case. In particular, we construct a counterexample where the extragradient method diverges regardless of the step size. A numerical experiment is presented to support this result.
♻ ☆ Near Optimal Approximations and Finite Memory Policies for POMPDs with Continuous Spaces
We study an approximation method for partially observed Markov decision processes (POMDPs) with continuous spaces. Belief MDP reduction, which has been the standard approach to study POMDPs requires rigorous approximation methods for practical applications, due to the state space being lifted to the space of probability measures. Generalizing recent work, in this paper we present rigorous approximation methods via discretizing the observation space and constructing a fully observed finite MDP model using a finite length history of the discrete observations and control actions. We show that the resulting policy is near-optimal under some regularity assumptions on the channel, and under certain controlled filter stability requirements for the hidden state process. Furthermore, by quantizing the measurements, we are able to utilize refined filter stability conditions. We also provide a Q learning algorithm that uses a finite memory of discretized information variables, and prove its convergence to the optimality equation of the finite fully observed MDP constructed using the approximation method.
♻ ☆ Controlling the Rates of a Chain of Harmonic Oscillators with a Point Langevin Thermostat
We consider the control problem of controlling the rates of an infinite chain of coupled harmonic oscillators with a Langevin thermostat at the origin. We study the effect of two types of open-loop boundary controls, impulsive control and linear memory-feedback control, in the high frequency limit. We investigate their action on the reflection-transmission coefficients for the wave energy for the scattering of the thermostat. Our study shows that the impulsive boundary controls have no impact on the rates and are thus not appropriate to act on the system, despite their physical meaning and relevance. In contrast, the second kind of control that we propose, which is less standard and uses the past of the state solution of the system, is adequate and relevant. We prove that any triple of rates satisfying appropriate assumptions is asymptotically reachable thanks to the linear memory-feedback controls that we design explicitly.
♻ ☆ Adjustable Robust Nonlinear Network Design Without Controllable Elements under Load Scenario Uncertainties
We study network design problems for nonlinear and nonconvex flow models without controllable elements under load scenario uncertainties, i.e., under uncertain injections and withdrawals. To this end, we apply the concept of adjustable robust optimization to compute a network design that admits a feasible transport for all, possibly infinitely many, load scenarios within a given uncertainty set. For solving the corresponding adjustable robust mixed-integer nonlinear optimization problem, we show that a given network design is robust feasible, i.e., it admits a feasible transport for all load scenario uncertainties, if and only if a finite number of worst-case load scenarios can be routed through the network. We compute these worst-case scenarios by solving polynomially many nonlinear optimization problems. Embedding this result for robust feasibility in an adversarial approach leads to an exact algorithm that computes an optimal robust network design in a finite number of iterations. Since all of the results are valid for general potential-based flows, the approach can be applied to different utility networks such as gas, hydrogen, or water networks. We finally demonstrate the applicability of the method by computing robust gas networks that are protected from future load fluctuations.
♻ ☆ Solving Optimal Control Problems of Rigid-Body Dynamics with Collisions Using the Hybrid Minimum Principle
Collisions are common in many dynamical systems with real applications. They can be formulated as hybrid dynamical systems with discontinuities automatically triggered when states transverse certain manifolds. We present an algorithm for the optimal control problem of such hybrid dynamical systems based on solving the equations derived from the hybrid minimum principle (HMP). The algorithm is an iterative scheme following the spirit of the method of successive approximations (MSA), and it is robust to undesired collisions observed in the initial guesses. We propose several techniques to address the additional numerical challenges introduced by the presence of discontinuities. The algorithm is tested on disc collision problems whose optimal solutions exhibit one or multiple collisions. Linear convergence in terms of iteration steps and asymptotic first-order accuracy in terms of time discretization are observed when the algorithm is implemented with the forward-Euler scheme. The numerical results demonstrate that the proposed algorithm has better accuracy and convergence than direct methods based on gradient descent. Furthermore, the algorithm is also simpler, more accurate, and more stable than a deep reinforcement learning method.
♻ ☆ Extremum Seeking for Linear Time-Varying Systems with Unknown Control Directions
We consider bounded extremum seeking controls for time-varying linear systems with uncertain coefficient matrices and measurement uncertainty. Using a new change of variables, Lyapunov functions, and a comparison principle, we provide practical exponential stability bounds for the states of the closed loop systems that hold for all nonnegative times. For the first time for linear time-varying systems with unknown control directions, we consider bounded extremum seeking controls in the presence of uncertain time-varying input delays with small time-varying delay uncertainties, and we provide reduction model controllers to compensate for the constant part of the delays.
comment: 15 pages, 1 figure
♻ ☆ Solving Monge problem by Hilbert space embeddings of probability measures
We propose deep learning methods for classical Monge's optimal mass transportation problems, where where the distribution constraint is treated as penalty terms defined by the maximum mean discrepancy in the theory of Hilbert space embeddings of probability measures. We prove that the transport maps given by the proposed methods converge to optimal transport maps in the problem with $L^2$ cost. Several numerical experiments validate our methods. In particular, we show that our methods are applicable to large-scale Monge problems.
♻ ☆ A Simplification Method for Inequality Constraints in Integer Binary Encoding HOBO Formulations
This study proposes a novel method for simplifying inequality constraints in Higher-Order Binary Optimization (HOBO) formulations. The proposed method addresses challenges associated with Quadratic Unconstrained Binary Optimization (QUBO) formulations, specifically the increased computational complexity and reduced solution accuracy caused by the introduction of slack variables and the resulting growth in auxiliary qubits. By efficiently integrating constraints, the method enhances the computational efficiency and accuracy of both quantum and classical solvers. The effectiveness of the proposed approach is demonstrated through numerical experiments applied to combinatorial optimization problems. The results indicate that this method expands the applicability of quantum algorithms to high-dimensional problems and improves the practicality of classical optimization solvers for optimization problems involving inequality constraints.
comment: The assumptions of the paper are overly restrictive, and there is a critical error
♻ ☆ Effective Front-Descent Algorithms with Convergence Guarantees
In this manuscript, we address continuous unconstrained multi-objective optimization problems and we discuss descent type methods for the reconstruction of the Pareto set. Specifically, we analyze the class of Front Descent methods, which generalizes the Front Steepest Descent algorithm allowing the employment of suitable, effective search directions (e.g., Newton, Quasi-Newton, Barzilai-Borwein). We provide a deep characterization of the behavior and the mechanisms of the algorithmic framework, and we prove that, under reasonable assumptions, standard convergence results and some complexity bounds hold for the generalized approach. Moreover, we prove that popular search directions can indeed be soundly used within the framework. Then, we provide a completely novel type of convergence results, concerning the sequence of sets produced by the procedure. In particular, iterate sets are shown to asymptotically approach stationarity for all of their points; the convergence result is accompanied by a worst-case iteration complexity bound; additionally, in finite precision settings, the sets are shown to only be enriched through exploration steps in later iterations, and suitable stopping conditions can be devised. Finally, the results from a large experimental benchmark show that the proposed class of approaches far outperforms state-of-the-art methodologies.
♻ ☆ Decentralized Conjugate Gradient and Memoryless BFGS Methods
This paper proposes a new decentralized conjugate gradient (NDCG) method and a decentralized memoryless BFGS (DMBFGS) method for the nonconvex and strongly convex decentralized optimization problem, respectively, of minimizing a finite sum of continuously differentiable functions over a fixed-connected undirected network. Gradient tracking techniques are applied in these two methods to enhance their convergence properties and the numerical stability. In particular, we show global convergence of NDCG with constant stepsize for general nonconvex smooth decentralized optimization. Our new DMBFGS method uses a scaled memoryless BFGS technique and only requires gradient information to approximate second-order information of the component functions in the objective. We also establish global convergence and linear convergence rate of DMBFGS with constant stepsize for strongly convex smooth decentralized optimization. Our numerical results show that NDCG and DMBFGS are very efficient in terms of both iteration and communication cost compared with other state-of-the-art methods for solving smooth decentralized optimization.
comment: 30 pages,27 figures
♻ ☆ A Two-Timescale Decision-Hazard-Decision Formulation for Storage Usage Values Calculation
The penetration of renewable energies requires additional storages to deal with intermittency. Accordingly, there is growing interest in evaluating the opportunity cost (usage value) associated with stored energy in large storages, a cost obtained by solving a multistage stochastic optimization problem. Today, to compute usage values under uncertainties, an adequacy resource problem is solved using stochastic dynamic programming assuming a hazard-decision information structure. This modelling assumes complete knowledge of the coming week uncertainties, which is not adapted to the system operation as the intermittency occurs at smaller timescale. We equip the twotimescale problem with a new information structure considering planning and recourse decisions: decision-hazard-decision. This structure is used to decompose the multistage decision-making process into a nonanticipative planning step in which the on/off decisions for the thermal units are made, and a recourse step in which the power modulation decisions are made once the uncertainties have been disclosed. In a numerical case, we illustrate how usage values are sensitive as how the disclosure of information is modelled.
♻ ☆ Optimal Control of Several Motion Models
This paper is devoted to the study of the dynamic optimization of several controlled crowd motion models in the general planar settings, which is an application of a class of optimal control problems involving a general nonconvex sweeping process with perturbations. A set of necessary optimality conditions for such optimal control problems involving the crowd motion models with multiple agents and obstacles is obtained and analyzed. Several effective algorithms based on such necessary optimality conditions are proposed and various nontrivial illustrative examples together with their simulations are also presented. The implementation of all the considered motion models can be found via the link: https://github.com/tancao1128/Optimal_Control_of_Several_Motion_Models with the instruction and demonstration video uploaded at https://www.youtube.com/watch?v=B8DQ0wvCtIQ.
♻ ☆ The Effective Generalized Moment Problem
We establish new convergence rates for the moment-sum-of-squares (Moment-SOS) relaxations for the Generalized Moment Problem (GMP). These bounds, which adapt to the geometry of the underlying semi-algebraic set, apply to both the convergence of optima, and to the convergence in Hausdorff distance between the relaxation feasibility set and the GMP feasibility set. This research extends previous works limited to specific problems in polynomial optimization, volume computation and optimal control. We complement our theoretical analysis with an application: minimal rank symmetric tensor decomposition. In the examples, we formulate the problem as a GMP, solve using Moment-SOS relaxation, and apply the theoretical results to observe a convergence rate of the relaxations.
♻ ☆ A Bottom-Up Approach to Optimizing the Solar Organic Rankine Cycle for Transactive Energy Trading
Solar Organic Rankine Cycle (ORC)-based power generation plants leverage solar irradiation to produce thermal energy, offering a highly compatible renewable technology due to the alignment between solar irradiation temperatures and ORC operating requirements. Their superior performance compared to steam Rankine cycles in small-scale applications makes them particularly relevant within the smart grid and microgrid contexts. This study explores the role of ORC in peer-to-peer (P2P) energy trading within renewable-based community microgrids, where consumers become prosumers, simultaneously producing and consuming energy while engaging in virtual trading at the distribution system level. Focusing on a microgrid integrating solar ORC with a storage system to meet consumer demand, the paper highlights the importance of combining these technologies with storage to enhance predictability and competitiveness with conventional energy plants, despite management challenges. A methodology based on operations research techniques is developed to optimize system performance. Furthermore, the impact of various technological parameters of the solar ORC on the system's performance is examined. The study concludes by assessing the value of solar ORC within the transactive energy trading framework across different configurations and scenarios. Results demonstrate an average 16\% reduction in operational costs, showcasing the benefits of implementing a predictable and manageable system in P2P transactive energy trading.
comment: This is a preprint of a paper accepted for publication to the "Energy Systems" Journal of Springer
♻ ☆ Sensor-Based Distributionally Robust Control for Safe Robot Navigation in Dynamic Environments
We introduce a novel method for mobile robot navigation in dynamic, unknown environments, leveraging onboard sensing and distributionally robust optimization to impose probabilistic safety constraints. Our method introduces a distributionally robust control barrier function (DR-CBF) that directly integrates noisy sensor measurements and state estimates to define safety constraints. This approach is applicable to a wide range of control-affine dynamics, generalizable to robots with complex geometries, and capable of operating at real-time control frequencies. Coupled with a control Lyapunov function (CLF) for path following, the proposed CLF-DR-CBF control synthesis method achieves safe, robust, and efficient navigation in challenging environments. We demonstrate the effectiveness and robustness of our approach for safe autonomous navigation under uncertainty in simulations and real-world experiments with differential-drive robots.
comment: Project page: https://existentialrobotics.org/DRO_Safe_Navigation
♻ ☆ From Semi-Infinite Constraints to Structured Robust Policies: Optimal Gain Selection for Financial Systems
This paper studies the robust optimal gain selection problem for financial trading systems, formulated within a \emph{double linear policy} framework, which allocates capital across long and short positions. The key objective is to guarantee \emph{robust positive expected} (RPE) profits uniformly across a range of uncertain market conditions while ensuring risk control. This problem leads to a robust optimization formulation with \emph{semi-infinite} constraints, where the uncertainty is modeled by a bounded set of possible return parameters. We address this by transforming semi-infinite constraints into structured policies -- the \emph{balanced} policy and the \emph{complementary} policy -- which enable explicit characterization of the optimal solution. Additionally, we propose a novel graphical approach to efficiently solve the robust gain selection problem, drastically reducing computational complexity. Empirical validation on historical stock price data demonstrates superior performance in terms of risk-adjusted returns and downside risk compared to conventional strategies. This framework generalizes classical mean-variance optimization by incorporating robustness considerations, offering a systematic and efficient solution for robust trading under uncertainty.
comment: Submitted for possible publication
♻ ☆ Solvability and Optimal Controls of Impulsive Stochastic Evolution Equations in Hilbert Spaces
This paper investigates the solvability and optimal control of a class of impulsive stochastic differential equations (SDEs) within a Hilbert space setting. First, we establish the existence and uniqueness of mild solutions for the proposed impulsive stochastic system, leveraging fixed-point theorems and appropriate analytical techniques. Next, we identify and derive the necessary conditions for the existence of optimal control pairs, ensuring the feasibility and effectiveness of the control solutions. Finally, to validate and demonstrate the practical applicability of our theoretical findings, we provide a detailed example showcasing the utility of the results in real-world scenarios.
Computer Vision and Pattern Recognition 96
☆ FaceXBench: Evaluating Multimodal LLMs on Face Understanding
Multimodal Large Language Models (MLLMs) demonstrate impressive problem-solving abilities across a wide range of tasks and domains. However, their capacity for face understanding has not been systematically studied. To address this gap, we introduce FaceXBench, a comprehensive benchmark designed to evaluate MLLMs on complex face understanding tasks. FaceXBench includes 5,000 multimodal multiple-choice questions derived from 25 public datasets and a newly created dataset, FaceXAPI. These questions cover 14 tasks across 6 broad categories, assessing MLLMs' face understanding abilities in bias and fairness, face authentication, recognition, analysis, localization and tool retrieval. Using FaceXBench, we conduct an extensive evaluation of 26 open-source MLLMs alongside 2 proprietary models, revealing the unique challenges in complex face understanding tasks. We analyze the models across three evaluation settings: zero-shot, in-context task description, and chain-of-thought prompting. Our detailed analysis reveals that current MLLMs, including advanced models like GPT-4o, and GeminiPro 1.5, show significant room for improvement. We believe FaceXBench will be a crucial resource for developing MLLMs equipped to perform sophisticated face understanding. Code: https://github.com/Kartik-3004/facexbench
comment: Project Page: https://kartik-3004.github.io/facexbench/
☆ Zero-Shot Monocular Scene Flow Estimation in the Wild
Large models have shown generalization across datasets for many low-level vision tasks, like depth estimation, but no such general models exist for scene flow. Even though scene flow has wide potential use, it is not used in practice because current predictive models do not generalize well. We identify three key challenges and propose solutions for each.First, we create a method that jointly estimates geometry and motion for accurate prediction. Second, we alleviate scene flow data scarcity with a data recipe that affords us 1M annotated training samples across diverse synthetic scenes. Third, we evaluate different parameterizations for scene flow prediction and adopt a natural and effective parameterization. Our resulting model outperforms existing methods as well as baselines built on large-scale models in terms of 3D end-point error, and shows zero-shot generalization to the casually captured videos from DAVIS and the robotic manipulation scenes from RoboTAP. Overall, our approach makes scene flow prediction more practical in-the-wild.
comment: Project Website: https://research.nvidia.com/labs/zero_msf
☆ 3rd Workshop on Maritime Computer Vision (MaCVi) 2025: Challenge Results
The 3rd Workshop on Maritime Computer Vision (MaCVi) 2025 addresses maritime computer vision for Unmanned Surface Vehicles (USV) and underwater. This report offers a comprehensive overview of the findings from the challenges. We provide both statistical and qualitative analyses, evaluating trends from over 700 submissions. All datasets, evaluation code, and the leaderboard are available to the public at https://macvi.org/workshop/macvi25.
comment: Part of the MaCVi 2025 workshop
☆ DiffStereo: High-Frequency Aware Diffusion Model for Stereo Image Restoration
Diffusion models (DMs) have achieved promising performance in image restoration but haven't been explored for stereo images. The application of DM in stereo image restoration is confronted with a series of challenges. The need to reconstruct two images exacerbates DM's computational cost. Additionally, existing latent DMs usually focus on semantic information and remove high-frequency details as redundancy during latent compression, which is precisely what matters for image restoration. To address the above problems, we propose a high-frequency aware diffusion model, DiffStereo for stereo image restoration as the first attempt at DM in this domain. Specifically, DiffStereo first learns latent high-frequency representations (LHFR) of HQ images. DM is then trained in the learned space to estimate LHFR for stereo images, which are fused into a transformer-based stereo image restoration network providing beneficial high-frequency information of corresponding HQ images. The resolution of LHFR is kept the same as input images, which preserves the inherent texture from distortion. And the compression in channels alleviates the computational burden of DM. Furthermore, we devise a position encoding scheme when integrating the LHFR into the restoration network, enabling distinctive guidance in different depths of the restoration network. Comprehensive experiments verify that by combining generative DM and transformer, DiffStereo achieves both higher reconstruction accuracy and better perceptual quality on stereo super-resolution, deblurring, and low-light enhancement compared with state-of-the-art methods.
comment: 9 pages, 6 figures
☆ New Fashion Products Performance Forecasting: A Survey on Evolutions, Models and Emerging Trends
The fast fashion industry's insatiable demand for new styles and rapid production cycles has led to a significant environmental burden. Overproduction, excessive waste, and harmful chemicals have contributed to the negative environmental impact of the industry. To mitigate these issues, a paradigm shift that prioritizes sustainability and efficiency is urgently needed. Integrating learning-based predictive analytics into the fashion industry represents a significant opportunity to address environmental challenges and drive sustainable practices. By forecasting fashion trends and optimizing production, brands can reduce their ecological footprint while remaining competitive in a rapidly changing market. However, one of the key challenges in forecasting fashion sales is the dynamic nature of consumer preferences. Fashion is acyclical, with trends constantly evolving and resurfacing. In addition, cultural changes and unexpected events can disrupt established patterns. This problem is also known as New Fashion Products Performance Forecasting (NFPPF), and it has recently gained more and more interest in the global research landscape. Given its multidisciplinary nature, the field of NFPPF has been approached from many different angles. This comprehensive survey wishes to provide an up-to-date overview that focuses on learning-based NFPPF strategies. The survey is based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodological flow, allowing for a systematic and complete literature review. In particular, we propose the first taxonomy that covers the learning panorama for NFPPF, examining in detail the different methodologies used to increase the amount of multimodal information, as well as the state-of-the-art available datasets. Finally, we discuss the challenges and future directions.
comment: Accepted at the Springer Nature Computer Science journal
☆ HiMix: Reducing Computational Complexity in Large Vision-Language Models
Benefiting from recent advancements in large language models and modality alignment techniques, existing Large Vision-Language Models(LVLMs) have achieved prominent performance across a wide range of scenarios. However, the excessive computational complexity limits the widespread use of these models in practical applications. We argue that one main bottleneck in computational complexity is caused by the involvement of redundant vision sequences in model computation. This is inspired by a reassessment of the efficiency of vision and language information transmission in the language decoder of LVLMs. Then, we propose a novel hierarchical vision-language interaction mechanism called Hierarchical Vision injection for Mixture Attention (HiMix). In HiMix, only the language sequence undergoes full forward propagation, while the vision sequence interacts with the language at specific stages within each language decoder layer. It is striking that our approach significantly reduces computational complexity with minimal performance loss. Specifically, HiMix achieves a 10x reduction in the computational cost of the language decoder across multiple LVLM models while maintaining comparable performance. This highlights the advantages of our method, and we hope our research brings new perspectives to the field of vision-language understanding. Project Page: https://xuange923.github.io/HiMix
☆ GSTAR: Gaussian Surface Tracking and Reconstruction
3D Gaussian Splatting techniques have enabled efficient photo-realistic rendering of static scenes. Recent works have extended these approaches to support surface reconstruction and tracking. However, tracking dynamic surfaces with 3D Gaussians remains challenging due to complex topology changes, such as surfaces appearing, disappearing, or splitting. To address these challenges, we propose GSTAR, a novel method that achieves photo-realistic rendering, accurate surface reconstruction, and reliable 3D tracking for general dynamic scenes with changing topology. Given multi-view captures as input, GSTAR binds Gaussians to mesh faces to represent dynamic objects. For surfaces with consistent topology, GSTAR maintains the mesh topology and tracks the meshes using Gaussians. In regions where topology changes, GSTAR adaptively unbinds Gaussians from the mesh, enabling accurate registration and the generation of new surfaces based on these optimized Gaussians. Additionally, we introduce a surface-based scene flow method that provides robust initialization for tracking between frames. Experiments demonstrate that our method effectively tracks and reconstructs dynamic surfaces, enabling a range of applications. Our project page with the code release is available at https://chengwei-zheng.github.io/GSTAR/.
☆ MutualForce: Mutual-Aware Enhancement for 4D Radar-LiDAR 3D Object Detection ICASSP 2025
Radar and LiDAR have been widely used in autonomous driving as LiDAR provides rich structure information, and radar demonstrates high robustness under adverse weather. Recent studies highlight the effectiveness of fusing radar and LiDAR point clouds. However, challenges remain due to the modality misalignment and information loss during feature extractions. To address these issues, we propose a 4D radar-LiDAR framework to mutually enhance their representations. Initially, the indicative features from radar are utilized to guide both radar and LiDAR geometric feature learning. Subsequently, to mitigate their sparsity gap, the shape information from LiDAR is used to enrich radar BEV features. Extensive experiments on the View-of-Delft (VoD) dataset demonstrate our approach's superiority over existing methods, achieving the highest mAP of 71.76% across the entire area and 86.36\% within the driving corridor. Especially for cars, we improve the AP by 4.17% and 4.20% due to the strong indicative features and symmetric shapes.
comment: Accepted by ICASSP 2025
☆ Robust Egoistic Rigid Body Localization
We consider a robust and self-reliant (or "egoistic") variation of the rigid body localization (RBL) problem, in which a primary rigid body seeks to estimate the pose (i.e., location and orientation) of another rigid body (or "target"), relative to its own, without the assistance of external infrastructure, without prior knowledge of the shape of the target, and taking into account the possibility that the available observations are incomplete. Three complementary contributions are then offered for such a scenario. The first is a method to estimate the translation vector between the center point of both rigid bodies, which unlike existing techniques does not require that both objects have the same shape or even the same number of landmark points. This technique is shown to significantly outperform the state-of-the-art (SotA) under complete information, but to be sensitive to data erasures, even when enhanced by matrix completion methods. The second contribution, designed to offer improved performance in the presence of incomplete information, offers a robust alternative to the latter, at the expense of a slight relative loss under complete information. Finally, the third contribution is a scheme for the estimation of the rotation matrix describing the relative orientation of the target rigid body with respect to the primary. Comparisons of the proposed schemes and SotA techniques demonstrate the advantage of the contributed methods in terms of root mean square error (RMSE) performance under fully complete information and incomplete conditions.
☆ Disharmony: Forensics using Reverse Lighting Harmonization
Content generation and manipulation approaches based on deep learning methods have seen significant advancements, leading to an increased need for techniques to detect whether an image has been generated or edited. Another area of research focuses on the insertion and harmonization of objects within images. In this study, we explore the potential of using harmonization data in conjunction with a segmentation model to enhance the detection of edited image regions. These edits can be either manually crafted or generated using deep learning methods. Our findings demonstrate that this approach can effectively identify such edits. Existing forensic models often overlook the detection of harmonized objects in relation to the background, but our proposed Disharmony Network addresses this gap. By utilizing an aggregated dataset of harmonization techniques, our model outperforms existing forensic networks in identifying harmonized objects integrated into their backgrounds, and shows potential for detecting various forms of edits, including virtual try-on tasks.
☆ Hypercone Assisted Contour Generation for Out-of-Distribution Detection
Recent advances in the field of out-of-distribution (OOD) detection have placed great emphasis on learning better representations suited to this task. While there are distance-based approaches, distributional awareness has seldom been exploited for better performance. We present HAC$_k$-OOD, a novel OOD detection method that makes no distributional assumption about the data, but automatically adapts to its distribution. Specifically, HAC$_k$-OOD constructs a set of hypercones by maximizing the angular distance to neighbors in a given data-point's vicinity to approximate the contour within which in-distribution (ID) data-points lie. Experimental results show state-of-the-art FPR@95 and AUROC performance on Near-OOD detection and on Far-OOD detection on the challenging CIFAR-100 benchmark without explicitly training for OOD performance.
☆ Adaptive Clustering for Efficient Phenotype Segmentation of UAV Hyperspectral Data WACV 2025
Unmanned Aerial Vehicles (UAVs) combined with Hyperspectral imaging (HSI) offer potential for environmental and agricultural applications by capturing detailed spectral information that enables the prediction of invisible features like biochemical leaf properties. However, the data-intensive nature of HSI poses challenges for remote devices, which have limited computational resources and storage. This paper introduces an Online Hyperspectral Simple Linear Iterative Clustering algorithm (OHSLIC) framework for real-time tree phenotype segmentation. OHSLIC reduces inherent noise and computational demands through adaptive incremental clustering and a lightweight neural network, which phenotypes trees using leaf contents such as chlorophyll, carotenoids, and anthocyanins. A hyperspectral dataset is created using a custom simulator that incorporates realistic leaf parameters, and light interactions. Results demonstrate that OHSLIC achieves superior regression accuracy and segmentation performance compared to pixel- or window-based methods while significantly reducing inference time. The method`s adaptive clustering enables dynamic trade-offs between computational efficiency and accuracy, paving the way for scalable edge-device deployment in HSI applications.
comment: accepted WACV 2025 GeoCV workshop
☆ CSHNet: A Novel Information Asymmetric Image Translation Method
Despite advancements in cross-domain image translation, challenges persist in asymmetric tasks such as SAR-to-Optical and Sketch-to-Instance conversions, which involve transforming data from a less detailed domain into one with richer content. Traditional CNN-based methods are effective at capturing fine details but struggle with global structure, leading to unwanted merging of image regions. To address this, we propose the CNN-Swin Hybrid Network (CSHNet), which combines two key modules: Swin Embedded CNN (SEC) and CNN Embedded Swin (CES), forming the SEC-CES-Bottleneck (SCB). SEC leverages CNN's detailed feature extraction while integrating the Swin Transformer's structural bias. CES, in turn, preserves the Swin Transformer's global integrity, compensating for CNN's lack of focus on structure. Additionally, CSHNet includes two components designed to enhance cross-domain information retention: the Interactive Guided Connection (IGC), which enables dynamic information exchange between SEC and CES, and Adaptive Edge Perception Loss (AEPL), which maintains structural boundaries during translation. Experimental results show that CSHNet outperforms existing methods in both visual quality and performance metrics across scene-level and instance-level datasets. Our code is available at: https://github.com/XduShi/CSHNet.
☆ Structure-guided Deep Multi-View Clustering
Deep multi-view clustering seeks to utilize the abundant information from multiple views to improve clustering performance. However, most of the existing clustering methods often neglect to fully mine multi-view structural information and fail to explore the distribution of multi-view data, limiting clustering performance. To address these limitations, we propose a structure-guided deep multi-view clustering model. Specifically, we introduce a positive sample selection strategy based on neighborhood relationships, coupled with a corresponding loss function. This strategy constructs multi-view nearest neighbor graphs to dynamically redefine positive sample pairs, enabling the mining of local structural information within multi-view data and enhancing the reliability of positive sample selection. Additionally, we introduce a Gaussian distribution model to uncover latent structural information and introduce a loss function to reduce discrepancies between view embeddings. These two strategies explore multi-view structural information and data distribution from different perspectives, enhancing consistency across views and increasing intra-cluster compactness. Experimental evaluations demonstrate the efficacy of our method, showing significant improvements in clustering performance on multiple benchmark datasets compared to state-of-the-art multi-view clustering approaches.
☆ A Vision-Language Framework for Multispectral Scene Representation Using Language-Grounded Features
Scene understanding in remote sensing often faces challenges in generating accurate representations for complex environments such as various land use areas or coastal regions, which may also include snow, clouds, or haze. To address this, we present a vision-language framework named Spectral LLaVA, which integrates multispectral data with vision-language alignment techniques to enhance scene representation and description. Using the BigEarthNet v2 dataset from Sentinel-2, we establish a baseline with RGB-based scene descriptions and further demonstrate substantial improvements through the incorporation of multispectral information. Our framework optimizes a lightweight linear projection layer for alignment while keeping the vision backbone of SpectralGPT frozen. Our experiments encompass scene classification using linear probing and language modeling for jointly performing scene classification and description generation. Our results highlight Spectral LLaVA's ability to produce detailed and accurate descriptions, particularly for scenarios where RGB data alone proves inadequate, while also enhancing classification performance by refining SpectralGPT features into semantically meaningful representations.
☆ ACE: Anatomically Consistent Embeddings in Composition and Decomposition WACV 2025
Medical images acquired from standardized protocols show consistent macroscopic or microscopic anatomical structures, and these structures consist of composable/decomposable organs and tissues, but existing self-supervised learning (SSL) methods do not appreciate such composable/decomposable structure attributes inherent to medical images. To overcome this limitation, this paper introduces a novel SSL approach called ACE to learn anatomically consistent embedding via composition and decomposition with two key branches: (1) global consistency, capturing discriminative macro-structures via extracting global features; (2) local consistency, learning fine-grained anatomical details from composable/decomposable patch features via corresponding matrix matching. Experimental results across 6 datasets 2 backbones, evaluated in few-shot learning, fine-tuning, and property analysis, show ACE's superior robustness, transferability, and clinical potential. The innovations of our ACE lie in grid-wise image cropping, leveraging the intrinsic properties of compositionality and decompositionality of medical images, bridging the semantic gap from high-level pathologies to low-level tissue anomalies, and providing a new SSL method for medical imaging.
comment: Accepted by WACV 2025
☆ Spatio-temporal Graph Learning on Adaptive Mined Key Frames for High-performance Multi-Object Tracking
In the realm of multi-object tracking, the challenge of accurately capturing the spatial and temporal relationships between objects in video sequences remains a significant hurdle. This is further complicated by frequent occurrences of mutual occlusions among objects, which can lead to tracking errors and reduced performance in existing methods. Motivated by these challenges, we propose a novel adaptive key frame mining strategy that addresses the limitations of current tracking approaches. Specifically, we introduce a Key Frame Extraction (KFE) module that leverages reinforcement learning to adaptively segment videos, thereby guiding the tracker to exploit the intrinsic logic of the video content. This approach allows us to capture structured spatial relationships between different objects as well as the temporal relationships of objects across frames. To tackle the issue of object occlusions, we have developed an Intra-Frame Feature Fusion (IFF) module. Unlike traditional graph-based methods that primarily focus on inter-frame feature fusion, our IFF module uses a Graph Convolutional Network (GCN) to facilitate information exchange between the target and surrounding objects within a frame. This innovation significantly enhances target distinguishability and mitigates tracking loss and appearance similarity due to occlusions. By combining the strengths of both long and short trajectories and considering the spatial relationships between objects, our proposed tracker achieves impressive results on the MOT17 dataset, i.e., 68.6 HOTA, 81.0 IDF1, 66.6 AssA, and 893 IDS, proving its effectiveness and accuracy.
☆ FECT: Classification of Breast Cancer Pathological Images Based on Fusion Features
Breast cancer is one of the most common cancers among women globally, with early diagnosis and precise classification being crucial. With the advancement of deep learning and computer vision, the automatic classification of breast tissue pathological images has emerged as a research focus. Existing methods typically rely on singular cell or tissue features and lack design considerations for morphological characteristics of challenging-to-classify categories, resulting in suboptimal classification performance. To address these problems, we proposes a novel breast cancer tissue classification model that Fused features of Edges, Cells, and Tissues (FECT), employing the ResMTUNet and an attention-based aggregator to extract and aggregate these features. Extensive testing on the BRACS dataset demonstrates that our model surpasses current advanced methods in terms of classification accuracy and F1 scores. Moreover, due to its feature fusion that aligns with the diagnostic approach of pathologists, our model exhibits interpretability and holds promise for significant roles in future clinical applications.
☆ DiffVSR: Enhancing Real-World Video Super-Resolution with Diffusion Models for Advanced Visual Quality and Temporal Consistency
Diffusion models have demonstrated exceptional capabilities in image generation and restoration, yet their application to video super-resolution faces significant challenges in maintaining both high fidelity and temporal consistency. We present DiffVSR, a diffusion-based framework for real-world video super-resolution that effectively addresses these challenges through key innovations. For intra-sequence coherence, we develop a multi-scale temporal attention module and temporal-enhanced VAE decoder that capture fine-grained motion details. To ensure inter-sequence stability, we introduce a noise rescheduling mechanism with an interweaved latent transition approach, which enhances temporal consistency without additional training overhead. We propose a progressive learning strategy that transitions from simple to complex degradations, enabling robust optimization despite limited high-quality video data. Extensive experiments demonstrate that DiffVSR delivers superior results in both visual quality and temporal consistency, setting a new performance standard in real-world video super-resolution.
comment: Project page: \url{https://xh9998.github.io/DiffVSR-project/}
☆ Universal Actions for Enhanced Embodied Foundation Models
Training on diverse, internet-scale data is a key factor in the success of recent large foundation models. Yet, using the same recipe for building embodied agents has faced noticeable difficulties. Despite the availability of many crowd-sourced embodied datasets, their action spaces often exhibit significant heterogeneity due to distinct physical embodiment and control interfaces for different robots, causing substantial challenges in developing embodied foundation models using cross-domain data. In this paper, we introduce UniAct, a new embodied foundation modeling framework operating in a tokenized Universal Action Space. Our learned universal actions capture the generic atomic behaviors across diverse robots by exploiting their shared structural features, and enable enhanced cross-domain data utilization and cross-embodiment generalizations by eliminating the notorious heterogeneity. The universal actions can be efficiently translated back to heterogeneous actionable commands by simply adding embodiment-specific details, from which fast adaptation to new robots becomes simple and straightforward. Our 0.5B instantiation of UniAct outperforms 14X larger SOTA embodied foundation models in extensive evaluations on various real-world and simulation robots, showcasing exceptional cross-embodiment control and adaptation capability, highlighting the crucial benefit of adopting universal actions. Project page: https://github.com/2toinf/UniAct
comment: Preprint
☆ landmarker: a Toolkit for Anatomical Landmark Localization in 2D/3D Images
Anatomical landmark localization in 2D/3D images is a critical task in medical imaging. Although many general-purpose tools exist for landmark localization in classical computer vision tasks, such as pose estimation, they lack the specialized features and modularity necessary for anatomical landmark localization applications in the medical domain. Therefore, we introduce landmarker, a Python package built on PyTorch. The package provides a comprehensive, flexible toolkit for developing and evaluating landmark localization algorithms, supporting a range of methodologies, including static and adaptive heatmap regression. landmarker enhances the accuracy of landmark identification, streamlines research and development processes, and supports various image formats and preprocessing pipelines. Its modular design allows users to customize and extend the toolkit for specific datasets and applications, accelerating innovation in medical imaging. landmarker addresses a critical need for precision and customization in landmark localization tasks not adequately met by existing general-purpose pose estimation tools.
comment: 11 pages, 4 figures
☆ Classifier Ensemble for Efficient Uncertainty Calibration of Deep Neural Networks for Image Classification
This paper investigates novel classifier ensemble techniques for uncertainty calibration applied to various deep neural networks for image classification. We evaluate both accuracy and calibration metrics, focusing on Expected Calibration Error (ECE) and Maximum Calibration Error (MCE). Our work compares different methods for building simple yet efficient classifier ensembles, including majority voting and several metamodel-based approaches. Our evaluation reveals that while state-of-the-art deep neural networks for image classification achieve high accuracy on standard datasets, they frequently suffer from significant calibration errors. Basic ensemble techniques like majority voting provide modest improvements, while metamodel-based ensembles consistently reduce ECE and MCE across all architectures. Notably, the largest of our compared metamodels demonstrate the most substantial calibration improvements, with minimal impact on accuracy. Moreover, classifier ensembles with metamodels outperform traditional model ensembles in calibration performance, while requiring significantly fewer parameters. In comparison to traditional post-hoc calibration methods, our approach removes the need for a separate calibration dataset. These findings underscore the potential of our proposed metamodel-based classifier ensembles as an efficient and effective approach to improving model calibration, thereby contributing to more reliable deep learning systems.
comment: This paper has been accepted at International Conference on Computer Vision Theory and Applications (VISAPP), 2025
☆ Leveraging Confident Image Regions for Source-Free Domain-Adaptive Object Detection
Source-free domain-adaptive object detection is an interesting but scarcely addressed topic. It aims at adapting a source-pretrained detector to a distinct target domain without resorting to source data during adaptation. So far, there is no data augmentation scheme tailored to source-free domain-adaptive object detection. To this end, this paper presents a novel data augmentation approach that cuts out target image regions where the detector is confident, augments them along with their respective pseudo-labels, and joins them into a challenging target image to adapt the detector. As the source data is out of reach during adaptation, we implement our approach within a teacher-student learning paradigm to ensure that the model does not collapse during the adaptation procedure. We evaluated our approach on three adaptation benchmarks of traffic scenes, scoring new state-of-the-art on two of them.
☆ Few-shot Structure-Informed Machinery Part Segmentation with Foundation Models and Graph Neural Networks WACV
This paper proposes a novel approach to few-shot semantic segmentation for machinery with multiple parts that exhibit spatial and hierarchical relationships. Our method integrates the foundation models CLIPSeg and Segment Anything Model (SAM) with the interest point detector SuperPoint and a graph convolutional network (GCN) to accurately segment machinery parts. By providing 1 to 25 annotated samples, our model, evaluated on a purely synthetic dataset depicting a truck-mounted loading crane, achieves effective segmentation across various levels of detail. Training times are kept under five minutes on consumer GPUs. The model demonstrates robust generalization to real data, achieving a qualitative synthetic-to-real generalization with a $J\&F$ score of 92.2 on real data using 10 synthetic support samples. When benchmarked on the DAVIS 2017 dataset, it achieves a $J\&F$ score of 71.5 in semi-supervised video segmentation with three support samples. This method's fast training times and effective generalization to real data make it a valuable tool for autonomous systems interacting with machinery and infrastructure, and illustrate the potential of combined and orchestrated foundation models for few-shot segmentation tasks.
comment: Accepted at Winter Conference on Applications of Computer Vision (WACV) 2025. Code and available at https://github.com/AIT-Assistive-Autonomous-Systems/Hopomop
☆ Robust Change Captioning in Remote Sensing: SECOND-CC Dataset and MModalCC Framework
Remote sensing change captioning (RSICC) aims to describe changes between bitemporal images in natural language. Existing methods often fail under challenges like illumination differences, viewpoint changes, blur effects, leading to inaccuracies, especially in no-change regions. Moreover, the images acquired at different spatial resolutions and have registration errors tend to affect the captions. To address these issues, we introduce SECOND-CC, a novel RSICC dataset featuring high-resolution RGB image pairs, semantic segmentation maps, and diverse real-world scenarios. SECOND-CC which contains 6,041 pairs of bitemporal RS images and 30,205 sentences describing the differences between images. Additionally, we propose MModalCC, a multimodal framework that integrates semantic and visual data using advanced attention mechanisms, including Cross-Modal Cross Attention (CMCA) and Multimodal Gated Cross Attention (MGCA). Detailed ablation studies and attention visualizations further demonstrate its effectiveness and ability to address RSICC challenges. Comprehensive experiments show that MModalCC outperforms state-of-the-art RSICC methods, including RSICCformer, Chg2Cap, and PSNet with +4.6% improvement on BLEU4 score and +9.6% improvement on CIDEr score. We will make our dataset and codebase publicly available to facilitate future research at https://github.com/ChangeCapsInRS/SecondCC
comment: This work has been submitted to the IEEE Transactions on Geoscience and Remote Sensing journal for possible publication
☆ SpatialCoT: Advancing Spatial Reasoning through Coordinate Alignment and Chain-of-Thought for Embodied Task Planning
Spatial reasoning is an essential problem in embodied AI research. Efforts to enhance spatial reasoning abilities through supplementary spatial data and fine-tuning have proven limited and ineffective when addressing complex embodied tasks, largely due to their dependence on language-based outputs. While some approaches have introduced a point-based action space to mitigate this issue, they fall short in managing more intricate tasks within complex environments. This deficiency arises from their failure to fully exploit the inherent thinking and reasoning capabilities that are fundamental strengths of Vision-Language Models (VLMs). To address these limitations, we propose a novel approach named SpatialCoT, specifically designed to bolster the spatial reasoning capabilities of VLMs. Our approach comprises two stages: spatial coordinate bi-directional alignment, which aligns vision-language inputs with spatial coordinates, and chain-of-thought spatial grounding, which harnesses the reasoning capabilities of language models for advanced spatial reasoning. We evaluate SpatialCoT on challenging navigation and manipulation tasks, both in simulation and real-world settings. Experimental results demonstrate that our method significantly outperforms previous state-of-the-art approaches in both tasks.
comment: 13 pages, 6 figures
☆ CLIP-PCQA: Exploring Subjective-Aligned Vision-Language Modeling for Point Cloud Quality Assessment
In recent years, No-Reference Point Cloud Quality Assessment (NR-PCQA) research has achieved significant progress. However, existing methods mostly seek a direct mapping function from visual data to the Mean Opinion Score (MOS), which is contradictory to the mechanism of practical subjective evaluation. To address this, we propose a novel language-driven PCQA method named CLIP-PCQA. Considering that human beings prefer to describe visual quality using discrete quality descriptions (e.g., "excellent" and "poor") rather than specific scores, we adopt a retrieval-based mapping strategy to simulate the process of subjective assessment. More specifically, based on the philosophy of CLIP, we calculate the cosine similarity between the visual features and multiple textual features corresponding to different quality descriptions, in which process an effective contrastive loss and learnable prompts are introduced to enhance the feature extraction. Meanwhile, given the personal limitations and bias in subjective experiments, we further covert the feature similarities into probabilities and consider the Opinion Score Distribution (OSD) rather than a single MOS as the final target. Experimental results show that our CLIP-PCQA outperforms other State-Of-The-Art (SOTA) approaches.
☆ FiLo++: Zero-/Few-Shot Anomaly Detection by Fused Fine-Grained Descriptions and Deformable Localization
Anomaly detection methods typically require extensive normal samples from the target class for training, limiting their applicability in scenarios that require rapid adaptation, such as cold start. Zero-shot and few-shot anomaly detection do not require labeled samples from the target class in advance, making them a promising research direction. Existing zero-shot and few-shot approaches often leverage powerful multimodal models to detect and localize anomalies by comparing image-text similarity. However, their handcrafted generic descriptions fail to capture the diverse range of anomalies that may emerge in different objects, and simple patch-level image-text matching often struggles to localize anomalous regions of varying shapes and sizes. To address these issues, this paper proposes the FiLo++ method, which consists of two key components. The first component, Fused Fine-Grained Descriptions (FusDes), utilizes large language models to generate anomaly descriptions for each object category, combines both fixed and learnable prompt templates and applies a runtime prompt filtering method, producing more accurate and task-specific textual descriptions. The second component, Deformable Localization (DefLoc), integrates the vision foundation model Grounding DINO with position-enhanced text descriptions and a Multi-scale Deformable Cross-modal Interaction (MDCI) module, enabling accurate localization of anomalies with various shapes and sizes. In addition, we design a position-enhanced patch matching approach to improve few-shot anomaly detection performance. Experiments on multiple datasets demonstrate that FiLo++ achieves significant performance improvements compared with existing methods. Code will be available at https://github.com/CASIA-IVA-Lab/FiLo.
☆ One-D-Piece: Image Tokenizer Meets Quality-Controllable Compression
Current image tokenization methods require a large number of tokens to capture the information contained within images. Although the amount of information varies across images, most image tokenizers only support fixed-length tokenization, leading to inefficiency in token allocation. In this study, we introduce One-D-Piece, a discrete image tokenizer designed for variable-length tokenization, achieving quality-controllable mechanism. To enable variable compression rate, we introduce a simple but effective regularization mechanism named "Tail Token Drop" into discrete one-dimensional image tokenizers. This method encourages critical information to concentrate at the head of the token sequence, enabling support of variadic tokenization, while preserving state-of-the-art reconstruction quality. We evaluate our tokenizer across multiple reconstruction quality metrics and find that it delivers significantly better perceptual quality than existing quality-controllable compression methods, including JPEG and WebP, at smaller byte sizes. Furthermore, we assess our tokenizer on various downstream computer vision tasks, including image classification, object detection, semantic segmentation, and depth estimation, confirming its adaptability to numerous applications compared to other variable-rate methods. Our approach demonstrates the versatility of variable-length discrete image tokenization, establishing a new paradigm in both compression efficiency and reconstruction performance. Finally, we validate the effectiveness of tail token drop via detailed analysis of tokenizers.
comment: Our Project Page: https://turingmotors.github.io/one-d-piece-tokenizer
☆ LWGANet: A Lightweight Group Attention Backbone for Remote Sensing Visual Tasks
Remote sensing (RS) visual tasks have gained significant academic and practical importance. However, they encounter numerous challenges that hinder effective feature extraction, including the detection and recognition of multiple objects exhibiting substantial variations in scale within a single image. While prior dual-branch or multi-branch architectural strategies have been effective in managing these object variances, they have concurrently resulted in considerable increases in computational demands and parameter counts. Consequently, these architectures are rendered less viable for deployment on resource-constrained devices. Contemporary lightweight backbone networks, designed primarily for natural images, frequently encounter difficulties in effectively extracting features from multi-scale objects, which compromises their efficacy in RS visual tasks. This article introduces LWGANet, a specialized lightweight backbone network tailored for RS visual tasks, incorporating a novel lightweight group attention (LWGA) module designed to address these specific challenges. LWGA module, tailored for RS imagery, adeptly harnesses redundant features to extract a wide range of spatial information, from local to global scales, without introducing additional complexity or computational overhead. This facilitates precise feature extraction across multiple scales within an efficient framework.LWGANet was rigorously evaluated across twelve datasets, which span four crucial RS visual tasks: scene classification, oriented object detection, semantic segmentation, and change detection. The results confirm LWGANet's widespread applicability and its ability to maintain an optimal balance between high performance and low complexity, achieving SOTA results across diverse datasets. LWGANet emerged as a novel solution for resource-limited scenarios requiring robust RS image processing capabilities.
comment: 12 pages, 8 figures, Remote sensing
☆ X-Dyna: Expressive Dynamic Human Image Animation
We introduce X-Dyna, a novel zero-shot, diffusion-based pipeline for animating a single human image using facial expressions and body movements derived from a driving video, that generates realistic, context-aware dynamics for both the subject and the surrounding environment. Building on prior approaches centered on human pose control, X-Dyna addresses key shortcomings causing the loss of dynamic details, enhancing the lifelike qualities of human video animations. At the core of our approach is the Dynamics-Adapter, a lightweight module that effectively integrates reference appearance context into the spatial attentions of the diffusion backbone while preserving the capacity of motion modules in synthesizing fluid and intricate dynamic details. Beyond body pose control, we connect a local control module with our model to capture identity-disentangled facial expressions, facilitating accurate expression transfer for enhanced realism in animated scenes. Together, these components form a unified framework capable of learning physical human motion and natural scene dynamics from a diverse blend of human and scene videos. Comprehensive qualitative and quantitative evaluations demonstrate that X-Dyna outperforms state-of-the-art methods, creating highly lifelike and expressive animations. The code is available at https://github.com/bytedance/X-Dyna.
comment: Project page:https://x-dyna.github.io/xdyna.github.io/ Code:https://github.com/bytedance/X-Dyna
☆ Textoon: Generating Vivid 2D Cartoon Characters from Text Descriptions
The 2D cartoon style is a prominent art form in digital character creation, particularly popular among younger audiences. While advancements in digital human technology have spurred extensive research into photorealistic digital humans and 3D characters, interactive 2D cartoon characters have received comparatively less attention. Unlike 3D counterparts, which require sophisticated construction and resource-intensive rendering, Live2D, a widely-used format for 2D cartoon characters, offers a more efficient alternative, which allows to animate 2D characters in a manner that simulates 3D movement without the necessity of building a complete 3D model. Furthermore, Live2D employs lightweight HTML5 (H5) rendering, improving both accessibility and efficiency. In this technical report, we introduce Textoon, an innovative method for generating diverse 2D cartoon characters in the Live2D format based on text descriptions. The Textoon leverages cutting-edge language and vision models to comprehend textual intentions and generate 2D appearance, capable of creating a wide variety of stunning and interactive 2D characters within one minute. The project homepage is https://human3daigc.github.io/Textoon_webpage/.
☆ DiffuEraser: A Diffusion Model for Video Inpainting
Recent video inpainting algorithms integrate flow-based pixel propagation with transformer-based generation to leverage optical flow for restoring textures and objects using information from neighboring frames, while completing masked regions through visual Transformers. However, these approaches often encounter blurring and temporal inconsistencies when dealing with large masks, highlighting the need for models with enhanced generative capabilities. Recently, diffusion models have emerged as a prominent technique in image and video generation due to their impressive performance. In this paper, we introduce DiffuEraser, a video inpainting model based on stable diffusion, designed to fill masked regions with greater details and more coherent structures. We incorporate prior information to provide initialization and weak conditioning,which helps mitigate noisy artifacts and suppress hallucinations. Additionally, to improve temporal consistency during long-sequence inference, we expand the temporal receptive fields of both the prior model and DiffuEraser, and further enhance consistency by leveraging the temporal smoothing property of Video Diffusion Models. Experimental results demonstrate that our proposed method outperforms state-of-the-art techniques in both content completeness and temporal consistency while maintaining acceptable efficiency.
comment: 11pages, 13figures
☆ Mitigating Hallucinations on Object Attributes using Multiview Images and Negative Instructions ICASSP 2025
Current popular Large Vision-Language Models (LVLMs) are suffering from Hallucinations on Object Attributes (HoOA), leading to incorrect determination of fine-grained attributes in the input images. Leveraging significant advancements in 3D generation from a single image, this paper proposes a novel method to mitigate HoOA in LVLMs. This method utilizes multiview images sampled from generated 3D representations as visual prompts for LVLMs, thereby providing more visual information from other viewpoints. Furthermore, we observe the input order of multiple multiview images significantly affects the performance of LVLMs. Consequently, we have devised Multiview Image Augmented VLM (MIAVLM), incorporating a Multiview Attributes Perceiver (MAP) submodule capable of simultaneously eliminating the influence of input image order and aligning visual information from multiview images with Large Language Models (LLMs). Besides, we designed and employed negative instructions to mitigate LVLMs' bias towards ``Yes" responses. Comprehensive experiments demonstrate the effectiveness of our method.
comment: 2025 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2025)
☆ Deep Learning for Early Alzheimer Disease Detection with MRI Scans
Alzheimer's Disease is a neurodegenerative condition characterized by dementia and impairment in neurological function. The study primarily focuses on the individuals above age 40, affecting their memory, behavior, and cognitive processes of the brain. Alzheimer's disease requires diagnosis by a detailed assessment of MRI scans and neuropsychological tests of the patients. This project compares existing deep learning models in the pursuit of enhancing the accuracy and efficiency of AD diagnosis, specifically focusing on the Convolutional Neural Network, Bayesian Convolutional Neural Network, and the U-net model with the Open Access Series of Imaging Studies brain MRI dataset. Besides, to ensure robustness and reliability in the model evaluations, we address the challenge of imbalance in data. We then perform rigorous evaluation to determine strengths and weaknesses for each model by considering sensitivity, specificity, and computational efficiency. This comparative analysis would shed light on the future role of AI in revolutionizing AD diagnostics but also paved ways for future innovation in medical imaging and the management of neurodegenerative diseases.
☆ Multi-Modal Attention Networks for Enhanced Segmentation and Depth Estimation of Subsurface Defects in Pulse Thermography
AI-driven pulse thermography (PT) has become a crucial tool in non-destructive testing (NDT), enabling automatic detection of hidden anomalies in various industrial components. Current state-of-the-art techniques feed segmentation and depth estimation networks compressed PT sequences using either Principal Component Analysis (PCA) or Thermographic Signal Reconstruction (TSR). However, treating these two modalities independently constrains the performance of PT inspection models as these representations possess complementary semantic features. To address this limitation, this work proposes PT-Fusion, a multi-modal attention-based fusion network that fuses both PCA and TSR modalities for defect segmentation and depth estimation of subsurface defects in PT setups. PT-Fusion introduces novel feature fusion modules, Encoder Attention Fusion Gate (EAFG) and Attention Enhanced Decoding Block (AEDB), to fuse PCA and TSR features for enhanced segmentation and depth estimation of subsurface defects. In addition, a novel data augmentation technique is proposed based on random data sampling from thermographic sequences to alleviate the scarcity of PT datasets. The proposed method is benchmarked against state-of-the-art PT inspection models, including U-Net, attention U-Net, and 3D-CNN on the Universit\'e Laval IRT-PVC dataset. The results demonstrate that PT-Fusion outperforms the aforementioned models in defect segmentation and depth estimation accuracies with a margin of 10%.
comment: Pulse thermography, infrared thermography, defect segmentation, multi-modal networks, attention mechanism
☆ RichSpace: Enriching Text-to-Video Prompt Space via Text Embedding Interpolation
Text-to-video generation models have made impressive progress, but they still struggle with generating videos with complex features. This limitation often arises from the inability of the text encoder to produce accurate embeddings, which hinders the video generation model. In this work, we propose a novel approach to overcome this challenge by selecting the optimal text embedding through interpolation in the embedding space. We demonstrate that this method enables the video generation model to produce the desired videos. Additionally, we introduce a simple algorithm using perpendicular foot embeddings and cosine similarity to identify the optimal interpolation embedding. Our findings highlight the importance of accurate text embeddings and offer a pathway for improving text-to-video generation performance.
☆ Aneumo: A Large-Scale Comprehensive Synthetic Dataset of Aneurysm Hemodynamics
Intracranial aneurysm (IA) is a common cerebrovascular disease that is usually asymptomatic but may cause severe subarachnoid hemorrhage (SAH) if ruptured. Although clinical practice is usually based on individual factors and morphological features of the aneurysm, its pathophysiology and hemodynamic mechanisms remain controversial. To address the limitations of current research, this study constructed a comprehensive hemodynamic dataset of intracranial aneurysms. The dataset is based on 466 real aneurysm models, and 10,000 synthetic models were generated by resection and deformation operations, including 466 aneurysm-free models and 9,534 deformed aneurysm models. The dataset also provides medical image-like segmentation mask files to support insightful analysis. In addition, the dataset contains hemodynamic data measured at eight steady-state flow rates (0.001 to 0.004 kg/s), including critical parameters such as flow velocity, pressure, and wall shear stress, providing a valuable resource for investigating aneurysm pathogenesis and clinical prediction. This dataset will help advance the understanding of the pathologic features and hemodynamic mechanisms of intracranial aneurysms and support in-depth research in related fields. Dataset hosted at https://github.com/Xigui-Li/Aneumo.
☆ GaussianAvatar-Editor: Photorealistic Animatable Gaussian Head Avatar Editor 3DV 2025
We introduce GaussianAvatar-Editor, an innovative framework for text-driven editing of animatable Gaussian head avatars that can be fully controlled in expression, pose, and viewpoint. Unlike static 3D Gaussian editing, editing animatable 4D Gaussian avatars presents challenges related to motion occlusion and spatial-temporal inconsistency. To address these issues, we propose the Weighted Alpha Blending Equation (WABE). This function enhances the blending weight of visible Gaussians while suppressing the influence on non-visible Gaussians, effectively handling motion occlusion during editing. Furthermore, to improve editing quality and ensure 4D consistency, we incorporate conditional adversarial learning into the editing process. This strategy helps to refine the edited results and maintain consistency throughout the animation. By integrating these methods, our GaussianAvatar-Editor achieves photorealistic and consistent results in animatable 4D Gaussian editing. We conduct comprehensive experiments across various subjects to validate the effectiveness of our proposed techniques, which demonstrates the superiority of our approach over existing methods. More results and code are available at: [Project Link](https://xiangyueliu.github.io/GaussianAvatar-Editor/).
comment: Accepted to 3DV 2025. [Project Link](https://xiangyueliu.github.io/GaussianAvatar-Editor/)
☆ Explainable artificial intelligence (XAI): from inherent explainability to large language models
Artificial Intelligence (AI) has continued to achieve tremendous success in recent times. However, the decision logic of these frameworks is often not transparent, making it difficult for stakeholders to understand, interpret or explain their behavior. This limitation hinders trust in machine learning systems and causes a general reluctance towards their adoption in practical applications, particularly in mission-critical domains like healthcare and autonomous driving. Explainable AI (XAI) techniques facilitate the explainability or interpretability of machine learning models, enabling users to discern the basis of the decision and possibly avert undesirable behavior. This comprehensive survey details the advancements of explainable AI methods, from inherently interpretable models to modern approaches for achieving interpretability of various black box models, including large language models (LLMs). Additionally, we review explainable AI techniques that leverage LLM and vision-language model (VLM) frameworks to automate or improve the explainability of other machine learning models. The use of LLM and VLM as interpretability methods particularly enables high-level, semantically meaningful explanations of model decisions and behavior. Throughout the paper, we highlight the scientific principles, strengths and weaknesses of state-of-the-art methods and outline different areas of improvement. Where appropriate, we also present qualitative and quantitative comparison results of various methods to show how they compare. Finally, we discuss the key challenges of XAI and directions for future research.
☆ Discrete Prior-based Temporal-coherent Content Prediction for Blind Face Video Restoration
Blind face video restoration aims to restore high-fidelity details from videos subjected to complex and unknown degradations. This task poses a significant challenge of managing temporal heterogeneity while at the same time maintaining stable face attributes. In this paper, we introduce a Discrete Prior-based Temporal-Coherent content prediction transformer to address the challenge, and our model is referred to as DP-TempCoh. Specifically, we incorporate a spatial-temporal-aware content prediction module to synthesize high-quality content from discrete visual priors, conditioned on degraded video tokens. To further enhance the temporal coherence of the predicted content, a motion statistics modulation module is designed to adjust the content, based on discrete motion priors in terms of cross-frame mean and variance. As a result, the statistics of the predicted content can match with that of real videos over time. By performing extensive experiments, we verify the effectiveness of the design elements and demonstrate the superior performance of our DP-TempCoh in both synthetically and naturally degraded video restoration.
☆ Surface-SOS: Self-Supervised Object Segmentation via Neural Surface Representation
Self-supervised Object Segmentation (SOS) aims to segment objects without any annotations. Under conditions of multi-camera inputs, the structural, textural and geometrical consistency among each view can be leveraged to achieve fine-grained object segmentation. To make better use of the above information, we propose Surface representation based Self-supervised Object Segmentation (Surface-SOS), a new framework to segment objects for each view by 3D surface representation from multi-view images of a scene. To model high-quality geometry surfaces for complex scenes, we design a novel scene representation scheme, which decomposes the scene into two complementary neural representation modules respectively with a Signed Distance Function (SDF). Moreover, Surface-SOS is able to refine single-view segmentation with multi-view unlabeled images, by introducing coarse segmentation masks as additional input. To the best of our knowledge, Surface-SOS is the first self-supervised approach that leverages neural surface representation to break the dependence on large amounts of annotated data and strong constraints. These constraints typically involve observing target objects against a static background or relying on temporal supervision in videos. Extensive experiments on standard benchmarks including LLFF, CO3D, BlendedMVS, TUM and several real-world scenes show that Surface-SOS always yields finer object masks than its NeRF-based counterparts and surpasses supervised single-view baselines remarkably. Code is available at: https://github.com/zhengxyun/Surface-SOS.
comment: Accepted by TIP
☆ A Multi-Scale Feature Extraction and Fusion Deep Learning Method for Classification of Wheat Diseases
Wheat is an important source of dietary fiber and protein that is negatively impacted by a number of risks to its growth. The difficulty of identifying and classifying wheat diseases is discussed with an emphasis on wheat loose smut, leaf rust, and crown and root rot. Addressing conditions like crown and root rot, this study introduces an innovative approach that integrates multi-scale feature extraction with advanced image segmentation techniques to enhance classification accuracy. The proposed method uses neural network models Xception, Inception V3, and ResNet 50 to train on a large wheat disease classification dataset 2020 in conjunction with an ensemble of machine vision classifiers, including voting and stacking. The study shows that the suggested methodology has a superior accuracy of 99.75% in the classification of wheat diseases when compared to current state-of-the-art approaches. A deep learning ensemble model Xception showed the highest accuracy.
☆ Physics-informed DeepCT: Sinogram Wavelet Decomposition Meets Masked Diffusion
Diffusion model shows remarkable potential on sparse-view computed tomography (SVCT) reconstruction. However, when a network is trained on a limited sample space, its generalization capability may be constrained, which degrades performance on unfamiliar data. For image generation tasks, this can lead to issues such as blurry details and inconsistencies between regions. To alleviate this problem, we propose a Sinogram-based Wavelet random decomposition And Random mask diffusion Model (SWARM) for SVCT reconstruction. Specifically, introducing a random mask strategy in the sinogram effectively expands the limited training sample space. This enables the model to learn a broader range of data distributions, enhancing its understanding and generalization of data uncertainty. In addition, applying a random training strategy to the high-frequency components of the sinogram wavelet enhances feature representation and improves the ability to capture details in different frequency bands, thereby improving performance and robustness. Two-stage iterative reconstruction method is adopted to ensure the global consistency of the reconstructed image while refining its details. Experimental results demonstrate that SWARM outperforms competing approaches in both quantitative and qualitative performance across various datasets.
☆ IE-Bench: Advancing the Measurement of Text-Driven Image Editing for Human Perception Alignment
Recent advances in text-driven image editing have been significant, yet the task of accurately evaluating these edited images continues to pose a considerable challenge. Different from the assessment of text-driven image generation, text-driven image editing is characterized by simultaneously conditioning on both text and a source image. The edited images often retain an intrinsic connection to the original image, which dynamically change with the semantics of the text. However, previous methods tend to solely focus on text-image alignment or have not aligned with human perception. In this work, we introduce the Text-driven Image Editing Benchmark suite (IE-Bench) to enhance the assessment of text-driven edited images. IE-Bench includes a database contains diverse source images, various editing prompts and the corresponding results different editing methods, and total 3,010 Mean Opinion Scores (MOS) provided by 25 human subjects. Furthermore, we introduce IE-QA, a multi-modality source-aware quality assessment method for text-driven image editing. To the best of our knowledge, IE-Bench offers the first IQA dataset and model tailored for text-driven image editing. Extensive experiments demonstrate IE-QA's superior subjective-alignments on the text-driven image editing task compared with previous metrics. We will make all related data and code available to the public.
☆ ForestProtector: An IoT Architecture Integrating Machine Vision and Deep Reinforcement Learning for Efficient Wildfire Monitoring
Early detection of forest fires is crucial to minimizing the environmental and socioeconomic damage they cause. Indeed, a fire's duration directly correlates with the difficulty and cost of extinguishing it. For instance, a fire burning for 1 minute might require 1 liter of water to extinguish, while a 2-minute fire could demand 100 liters, and a 10-minute fire might necessitate 1,000 liters. On the other hand, existing fire detection systems based on novel technologies (e.g., remote sensing, PTZ cameras, UAVs) are often expensive and require human intervention, making continuous monitoring of large areas impractical. To address this challenge, this work proposes a low-cost forest fire detection system that utilizes a central gateway device with computer vision capabilities to monitor a 360{\deg} field of view for smoke at long distances. A deep reinforcement learning agent enhances surveillance by dynamically controlling the camera's orientation, leveraging real-time sensor data (smoke levels, ambient temperature, and humidity) from distributed IoT devices. This approach enables automated wildfire monitoring across expansive areas while reducing false positives.
comment: Accepted for publication in the proceedings of the 11th International Conference on Automation, Robotics, and Applications (ICARA 2025)
☆ TalkingEyes: Pluralistic Speech-Driven 3D Eye Gaze Animation
Although significant progress has been made in the field of speech-driven 3D facial animation recently, the speech-driven animation of an indispensable facial component, eye gaze, has been overlooked by recent research. This is primarily due to the weak correlation between speech and eye gaze, as well as the scarcity of audio-gaze data, making it very challenging to generate 3D eye gaze motion from speech alone. In this paper, we propose a novel data-driven method which can generate diverse 3D eye gaze motions in harmony with the speech. To achieve this, we firstly construct an audio-gaze dataset that contains about 14 hours of audio-mesh sequences featuring high-quality eye gaze motion, head motion and facial motion simultaneously. The motion data is acquired by performing lightweight eye gaze fitting and face reconstruction on videos from existing audio-visual datasets. We then tailor a novel speech-to-motion translation framework in which the head motions and eye gaze motions are jointly generated from speech but are modeled in two separate latent spaces. This design stems from the physiological knowledge that the rotation range of eyeballs is less than that of head. Through mapping the speech embedding into the two latent spaces, the difficulty in modeling the weak correlation between speech and non-verbal motion is thus attenuated. Finally, our TalkingEyes, integrated with a speech-driven 3D facial motion generator, can synthesize eye gaze motion, eye blinks, head motion and facial motion collectively from speech. Extensive quantitative and qualitative evaluations demonstrate the superiority of the proposed method in generating diverse and natural 3D eye gaze motions from speech. The project page of this paper is: https://lkjkjoiuiu.github.io/TalkingEyes_Home/
☆ SLIM: Sim-to-Real Legged Instructive Manipulation via Long-Horizon Visuomotor Learning
We present a low-cost quadruped manipulation system that solves long-horizon real-world tasks, trained by reinforcement learning purely in simulation. The system comprises 1) a hierarchical design of a high-level policy for visual-mobile manipulation following instructions, and a low-level policy for quadruped movement and limb-control, 2) a progressive policy expansion approach for solving the long-horizon task together with a teacher-student framework for efficient high-level training of the high-level visuomotor policy, and 3) a suite of techniques for minimizing sim-to-real gaps. With budget-friendly but limited reliability and performance hardware, and just one wrist-mounted RGB camera, the entire system fully trained in simulation achieves high success rates for long horizon tasks involving search, move, grasp, and drop-into, with fluid sim-to-real transfer in a wide variety of indoor and outdoor scenes and lighting conditions.Extensive real-world evaluations show that on the long horizon mobile manipulation tasks, our system achieves good performance when transferred to real both in terms of task success rate and execution efficiency. Finally, we discuss the necessity of our sim-to-real techniques for legged mobile manipulation, and show their ablation performance.
☆ FoundationStereo: Zero-Shot Stereo Matching
Tremendous progress has been made in deep stereo matching to excel on benchmark datasets through per-domain fine-tuning. However, achieving strong zero-shot generalization - a hallmark of foundation models in other computer vision tasks - remains challenging for stereo matching. We introduce FoundationStereo, a foundation model for stereo depth estimation designed to achieve strong zero-shot generalization. To this end, we first construct a large-scale (1M stereo pairs) synthetic training dataset featuring large diversity and high photorealism, followed by an automatic self-curation pipeline to remove ambiguous samples. We then design a number of network architecture components to enhance scalability, including a side-tuning feature backbone that adapts rich monocular priors from vision foundation models to mitigate the sim-to-real gap, and long-range context reasoning for effective cost volume filtering. Together, these components lead to strong robustness and accuracy across domains, establishing a new standard in zero-shot stereo depth estimation.
☆ FLORA: Formal Language Model Enables Robust Training-free Zero-shot Object Referring Analysis
Object Referring Analysis (ORA), commonly known as referring expression comprehension, requires the identification and localization of specific objects in an image based on natural descriptions. Unlike generic object detection, ORA requires both accurate language understanding and precise visual localization, making it inherently more complex. Although recent pre-trained large visual grounding detectors have achieved significant progress, they heavily rely on extensively labeled data and time-consuming learning. To address these, we introduce a novel, training-free framework for zero-shot ORA, termed FLORA (Formal Language for Object Referring and Analysis). FLORA harnesses the inherent reasoning capabilities of large language models (LLMs) and integrates a formal language model - a logical framework that regulates language within structured, rule-based descriptions - to provide effective zero-shot ORA. More specifically, our formal language model (FLM) enables an effective, logic-driven interpretation of object descriptions without necessitating any training processes. Built upon FLM-regulated LLM outputs, we further devise a Bayesian inference framework and employ appropriate off-the-shelf interpretive models to finalize the reasoning, delivering favorable robustness against LLM hallucinations and compelling ORA performance in a training-free manner. In practice, our FLORA boosts the zero-shot performance of existing pretrained grounding detectors by up to around 45%. Our comprehensive evaluation across different challenging datasets also confirms that FLORA consistently surpasses current state-of-the-art zero-shot methods in both detection and segmentation tasks associated with zero-shot ORA. We believe our probabilistic parsing and reasoning of the LLM outputs elevate the reliability and interpretability of zero-shot ORA. We shall release codes upon publication.
♻ ☆ MVTamperBench: Evaluating Robustness of Vision-Language Models
Multimodal Large Language Models (MLLMs) have driven major advances in video understanding, yet their vulnerability to adversarial tampering and manipulations remains underexplored. To address this gap, we introduce MVTamperBench, a benchmark that systematically evaluates MLLM robustness against five prevalent tampering techniques: rotation, masking, substitution, repetition, and dropping. Built from 3.4K original videos-expanded to over 17K tampered clips spanning 19 video tasks. MVTamperBench challenges models to detect manipulations in spatial and temporal coherence. We evaluate 45 recent MLLMs from 15+ model families, revealing substantial variability in resilience across tampering types and showing that larger parameter counts do not necessarily guarantee robustness. MVTamperBench sets a new benchmark for developing tamper-resilient MLLM in safety-critical applications, including detecting clickbait, preventing harmful content distribution, and enforcing policies on media platforms. We release all code and data to foster open research in trustworthy video understanding. Code: https://amitbcp.github.io/MVTamperBench/ Data: https://huggingface.co/datasets/Srikant86/MVTamperBench
♻ ☆ Mesh2SLAM in VR: A Fast Geometry-Based SLAM Framework for Rapid Prototyping in Virtual Reality Applications
SLAM is a foundational technique with broad applications in robotics and AR/VR. SLAM simulations evaluate new concepts, but testing on resource-constrained devices, such as VR HMDs, faces challenges: high computational cost and restricted sensor data access. This work proposes a sparse framework using mesh geometry projections as features, which improves efficiency and circumvents direct sensor data access, advancing SLAM research as we demonstrate in VR and through numerical evaluation.
♻ ☆ ESVO2: Direct Visual-Inertial Odometry with Stereo Event Cameras
Event-based visual odometry is a specific branch of visual Simultaneous Localization and Mapping (SLAM) techniques, which aims at solving tracking and mapping subproblems (typically in parallel), by exploiting the special working principles of neuromorphic (i.e., event-based) cameras. Due to the motion-dependent nature of event data, explicit data association (i.e., feature matching) under large-baseline view-point changes is difficult to establish, making direct methods a more rational choice. However, state-of-the-art direct methods are limited by the high computational complexity of the mapping sub-problem and the degeneracy of camera pose tracking in certain degrees of freedom (DoF) in rotation. In this paper, we tackle these issues by building an event-based stereo visual-inertial odometry system on top of a direct pipeline. Specifically, to speed up the mapping operation, we propose an efficient strategy for sampling contour points according to the local dynamics of events. The mapping performance is also improved in terms of structure completeness and local smoothness by merging the temporal stereo and static stereo results. To circumvent the degeneracy of camera pose tracking in recovering the pitch and yaw components of general 6-DoF motion, we introduce IMU measurements as motion priors via pre-integration. To this end, a compact back-end is proposed for continuously updating the IMU bias and predicting the linear velocity, enabling an accurate motion prediction for camera pose tracking. The resulting system scales well with modern high-resolution event cameras and leads to better global positioning accuracy in large-scale outdoor environments. Extensive evaluations on five publicly available datasets featuring different resolutions and scenarios justify the superior performance of the proposed system against five state-of-the-art methods.
♻ ☆ BILTS: A Bi-Invariant Similarity Measure for Robust Object Trajectory Recognition under Reference Frame Variations
When similar object motions are performed in diverse contexts but are meant to be recognized under a single classification, these contextual variations act as disturbances that negatively affect accurate motion recognition. In this paper, we focus on contextual variations caused by reference frame variations. To robustly deal with these variations, similarity measures have been introduced that compare object motion trajectories in a context-invariant manner. However, most are highly sensitive to noise near singularities, where the measure is not uniquely defined, and lack bi-invariance (invariance to both world and body frame variations). To address these issues, we propose the novel \textit{Bi-Invariant Local Trajectory-Shape Similarity} (BILTS) measure. Compared to other measures, the BILTS measure uniquely offers bi-invariance, boundedness, and third-order shape identity. Aimed at practical implementations, we devised a discretized and regularized version of the BILTS measure which shows exceptional robustness to singularities. This is demonstrated through rigorous recognition experiments using multiple datasets. On average, BILTS attained the highest recognition ratio and least sensitivity to contextual variations compared to other invariant object motion similarity measures. We believe that the BILTS measure is a valuable tool for recognizing motions performed in diverse contexts and has potential in other applications, including the recognition, segmentation, and adaptation of both motion and force trajectories.
comment: This work has been submitted as a regular research paper for consideration in the Journal of Intelligent & Robotic Systems. The content in this preprint is identical to the version submitted for peer review, except for formatting differences required by the journal
♻ ☆ Bridging Diversity and Uncertainty in Active learning with Self-Supervised Pre-Training ICLR 2024
This study addresses the integration of diversity-based and uncertainty-based sampling strategies in active learning, particularly within the context of self-supervised pre-trained models. We introduce a straightforward heuristic called TCM that mitigates the cold start problem while maintaining strong performance across various data levels. By initially applying TypiClust for diversity sampling and subsequently transitioning to uncertainty sampling with Margin, our approach effectively combines the strengths of both strategies. Our experiments demonstrate that TCM consistently outperforms existing methods across various datasets in both low and high data regimes.
comment: Accepted at ICLR 2024 Workshop on Practical Machine Learning for Low Resource Settings (PML4LRS)
♻ ☆ Deep Compression Autoencoder for Efficient High-Resolution Diffusion Models
We present Deep Compression Autoencoder (DC-AE), a new family of autoencoder models for accelerating high-resolution diffusion models. Existing autoencoder models have demonstrated impressive results at a moderate spatial compression ratio (e.g., 8x), but fail to maintain satisfactory reconstruction accuracy for high spatial compression ratios (e.g., 64x). We address this challenge by introducing two key techniques: (1) Residual Autoencoding, where we design our models to learn residuals based on the space-to-channel transformed features to alleviate the optimization difficulty of high spatial-compression autoencoders; (2) Decoupled High-Resolution Adaptation, an efficient decoupled three-phases training strategy for mitigating the generalization penalty of high spatial-compression autoencoders. With these designs, we improve the autoencoder's spatial compression ratio up to 128 while maintaining the reconstruction quality. Applying our DC-AE to latent diffusion models, we achieve significant speedup without accuracy drop. For example, on ImageNet 512x512, our DC-AE provides 19.1x inference speedup and 17.9x training speedup on H100 GPU for UViT-H while achieving a better FID, compared with the widely used SD-VAE-f8 autoencoder. Our code is available at https://github.com/mit-han-lab/efficientvit.
comment: Preprint. First two authors contributed equally to this work. Update: fix typo
♻ ☆ Generate E-commerce Product Background by Integrating Category Commonality and Personalized Style ICASSP 2025
The state-of-the-art methods for e-commerce product background generation suffer from the inefficiency of designing product-wise prompts when scaling up the production, as well as the ineffectiveness of describing fine-grained styles when customizing personalized backgrounds for some specific brands. To address these obstacles, we integrate the category commonality and personalized style into diffusion models. Concretely, we propose a Category-Wise Generator to enable large-scale background generation with only one model for the first time. A unique identifier in the prompt is assigned to each category, whose attention is located on the background by a mask-guided cross attention layer to learn the category-wise style. Furthermore, for products with specific and fine-grained requirements in layout, elements, etc, a Personality-Wise Generator is devised to learn such personalized style directly from a reference image to resolve textual ambiguities, and is trained in a self-supervised manner for more efficient training data usage. To advance research in this field, the first large-scale e-commerce product background generation dataset BG60k is constructed, which covers more than 60k product images from over 2k categories. Experiments demonstrate that our method could generate high-quality backgrounds for different categories, and maintain the personalized background style of reference images. BG60k will be available at \url{https://github.com/Whileherham/BG60k}.
comment: Accepted by ICASSP 2025
♻ ☆ LayerAnimate: Layer-specific Control for Animation
Animated video separates foreground and background elements into layers, with distinct processes for sketching, refining, coloring, and in-betweening. Existing video generation methods typically treat animation as a monolithic data domain, lacking fine-grained control over individual layers. In this paper, we introduce LayerAnimate, a novel architectural approach that enhances fine-grained control over individual animation layers within a video diffusion model, allowing users to independently manipulate foreground and background elements in distinct layers. To address the challenge of limited layer-specific data, we propose a data curation pipeline that features automated element segmentation, motion-state hierarchical merging, and motion coherence refinement. Through quantitative and qualitative comparisons, and user study, we demonstrate that LayerAnimate outperforms current methods in terms of animation quality, control precision, and usability, making it an ideal tool for both professional animators and amateur enthusiasts. This framework opens up new possibilities for layer-specific animation applications and creative flexibility. Our code is available at https://layeranimate.github.io.
comment: Project page: https://layeranimate.github.io
♻ ☆ A Survey on Deep Learning for Polyp Segmentation: Techniques, Challenges and Future Trends
Early detection and assessment of polyps play a crucial role in the prevention and treatment of colorectal cancer (CRC). Polyp segmentation provides an effective solution to assist clinicians in accurately locating and segmenting polyp regions. In the past, people often relied on manually extracted lower-level features such as color, texture, and shape, which often had issues capturing global context and lacked robustness to complex scenarios. With the advent of deep learning, more and more outstanding medical image segmentation algorithms based on deep learning networks have emerged, making significant progress in this field. This paper provides a comprehensive review of polyp segmentation algorithms. We first review some traditional algorithms based on manually extracted features and deep segmentation algorithms, then detail benchmark datasets related to the topic. Specifically, we carry out a comprehensive evaluation of recent deep learning models and results based on polyp sizes, considering the pain points of research topics and differences in network structures. Finally, we discuss the challenges of polyp segmentation and future trends in this field. The models, benchmark datasets, and source code links we collected are all published at https://github.com/taozh2017/Awesome-Polyp-Segmentation.
comment: Have been published in Visual Intelligence
♻ ☆ Isolated Diffusion: Optimizing Multi-Concept Text-to-Image Generation Training-Freely with Isolated Diffusion Guidance
Large-scale text-to-image diffusion models have achieved great success in synthesizing high-quality and diverse images given target text prompts. Despite the revolutionary image generation ability, current state-of-the-art models still struggle to deal with multi-concept generation accurately in many cases. This phenomenon is known as ``concept bleeding" and displays as the unexpected overlapping or merging of various concepts. This paper presents a general approach for text-to-image diffusion models to address the mutual interference between different subjects and their attachments in complex scenes, pursuing better text-image consistency. The core idea is to isolate the synthesizing processes of different concepts. We propose to bind each attachment to corresponding subjects separately with split text prompts. Besides, we introduce a revision method to fix the concept bleeding problem in multi-subject synthesis. We first depend on pre-trained object detection and segmentation models to obtain the layouts of subjects. Then we isolate and resynthesize each subject individually with corresponding text prompts to avoid mutual interference. Overall, we achieve a training-free strategy, named Isolated Diffusion, to optimize multi-concept text-to-image synthesis. It is compatible with the latest Stable Diffusion XL (SDXL) and prior Stable Diffusion (SD) models. We compare our approach with alternative methods using a variety of multi-concept text prompts and demonstrate its effectiveness with clear advantages in text-image consistency and user study.
comment: Accepted by IEEE Transactions on Visualization and Computer Graphics
♻ ☆ Expression Prompt Collaboration Transformer for Universal Referring Video Object Segmentation
Audio-guided Video Object Segmentation (A-VOS) and Referring Video Object Segmentation (R-VOS) are two highly related tasks that both aim to segment specific objects from video sequences according to expression prompts. However, due to the challenges of modeling representations for different modalities, existing methods struggle to strike a balance between interaction flexibility and localization precision. In this paper, we address this problem from two perspectives: the alignment of audio and text and the deep interaction among audio, text, and visual modalities. First, we propose a universal architecture, the Expression Prompt Collaboration Transformer, herein EPCFormer. Next, we propose an Expression Alignment (EA) mechanism for audio and text. The proposed EPCFormer exploits the fact that audio and text prompts referring to the same objects are semantically equivalent by using contrastive learning for both types of expressions. Then, to facilitate deep interactions among audio, text, and visual modalities, we introduce an Expression-Visual Attention (EVA) module. The knowledge of video object segmentation in terms of the expression prompts can seamlessly transfer between the two tasks by deeply exploring complementary cues between text and audio. Experiments on well-recognized benchmarks demonstrate that our EPCFormer attains state-of-the-art results on both tasks. The source code will be made publicly available at https://github.com/lab206/EPCFormer.
comment: Accepted to Knowledge-Based Systems (KBS). The source code will be made publicly available at https://github.com/lab206/EPCFormer
♻ ☆ Tarsier2: Advancing Large Vision-Language Models from Detailed Video Description to Comprehensive Video Understanding
We introduce Tarsier2, a state-of-the-art large vision-language model (LVLM) designed for generating detailed and accurate video descriptions, while also exhibiting superior general video understanding capabilities. Tarsier2 achieves significant advancements through three key upgrades: (1) Scaling pre-training data from 11M to 40M video-text pairs, enriching both volume and diversity; (2) Performing fine-grained temporal alignment during supervised fine-tuning; (3) Using model-based sampling to automatically construct preference data and applying DPO training for optimization. Extensive experiments show that Tarsier2-7B consistently outperforms leading proprietary models, including GPT-4o and Gemini 1.5 Pro, in detailed video description tasks. On the DREAM-1K benchmark, Tarsier2-7B improves F1 by 2.8\% over GPT-4o and 5.8\% over Gemini-1.5-Pro. In human side-by-side evaluations, Tarsier2-7B shows a +8.6\% performance advantage over GPT-4o and +24.9\% over Gemini-1.5-Pro. Tarsier2-7B also sets new state-of-the-art results across 15 public benchmarks, spanning tasks such as video question-answering, video grounding, hallucination test, and embodied question-answering, demonstrating its versatility as a robust generalist vision-language model.
♻ ☆ Continuous Urban Change Detection from Satellite Image Time Series with Temporal Feature Refinement and Multi-Task Integration
Urbanization advances at unprecedented rates, resulting in negative effects on the environment and human well-being. Remote sensing has the potential to mitigate these effects by supporting sustainable development strategies with accurate information on urban growth. Deep learning-based methods have achieved promising urban change detection results from optical satellite image pairs using convolutional neural networks (ConvNets), transformers, and a multi-task learning setup. However, transformers have not been leveraged for urban change detection with multi-temporal data, i.e., >2 images, and multi-task learning methods lack integration approaches that combine change and segmentation outputs. To fill this research gap, we propose a continuous urban change detection method that identifies changes in each consecutive image pair of a satellite image time series (SITS). Specifically, we propose a temporal feature refinement (TFR) module that utilizes self-attention to improve ConvNet-based multi-temporal building representations. Furthermore, we propose a multi-task integration (MTI) module that utilizes Markov networks to find an optimal building map time series based on segmentation and dense change outputs. The proposed method effectively identifies urban changes based on high-resolution SITS acquired by the PlanetScope constellation (F1 score 0.551) and Gaofen-2 (F1 score 0.440). Moreover, our experiments on two challenging datasets demonstrate the effectiveness of the proposed method compared to bi-temporal and multi-temporal urban change detection and segmentation methods.
comment: Under review at IEEE Transactions on Geoscience and Remote Sensing, Code will be available at https://github.com/SebastianHafner/ContUrbanCD.git
♻ ☆ Mamba2D: A Natively Multi-Dimensional State-Space Model for Vision Tasks
State-Space Models (SSMs) have recently emerged as a powerful and efficient alternative to the long-standing transformer architecture. However, existing SSM conceptualizations retain deeply rooted biases from their roots in natural language processing. This constrains their ability to appropriately model the spatially-dependent characteristics of visual inputs. In this paper, we address these limitations by re-deriving modern selective state-space techniques, starting from a natively multidimensional formulation. Currently, prior works attempt to apply natively 1D SSMs to 2D data (i.e. images) by relying on arbitrary combinations of 1D scan directions to capture spatial dependencies. In contrast, Mamba2D improves upon this with a single 2D scan direction that factors in both dimensions of the input natively, effectively modelling spatial dependencies when constructing hidden states. Mamba2D shows comparable performance to prior adaptations of SSMs for vision tasks, on standard image classification evaluations with the ImageNet-1K dataset. Source code is available at https://github.com/cocoalex00/Mamba2D.
♻ ☆ Model Synthesis for Zero-Shot Model Attribution
Nowadays, generative models are shaping various fields such as art, design, and human-computer interaction, yet accompanied by challenges related to copyright infringement and content management. In response, existing research seeks to identify the unique fingerprints on the images they generate, which can be leveraged to attribute the generated images to their source models. Existing methods, however, are constrained to identifying models within a static set included in the classifier training, failing to adapt to newly emerged unseen models dynamically. To bridge this gap, we aim to develop a generalized model fingerprint extractor capable of zero-shot attribution, effectively attributes unseen models without exposure during training. Central to our method is a model synthesis technique, which generates numerous synthetic models mimicking the fingerprint patterns of real-world generative models. The design of the synthesis technique is motivated by observations on how the basic generative model's architecture building blocks and parameters influence fingerprint patterns, and it is validated through two designed metrics that examine synthetic models' fidelity and diversity. Our experiments demonstrate that this fingerprint extractor, trained solely on synthetic models, achieves impressive zero-shot generalization on a wide range of real-world generative models, improving model identification and verification accuracy on unseen models by over 40% and 15%, respectively, compared to existing approaches.
comment: under review
♻ ☆ Multi-stage Deep Learning Artifact Reduction for Pallel-beam Computed Tomography
Computed Tomography (CT) using synchrotron radiation is a powerful technique that, compared to lab-CT techniques, boosts high spatial and temporal resolution while also providing access to a range of contrast-formation mechanisms. The acquired projection data is typically processed by a computational pipeline composed of multiple stages. Artifacts introduced during data acquisition can propagate through the pipeline, and degrade image quality in the reconstructed images. Recently, deep learning has shown significant promise in enhancing image quality for images representing scientific data. This success has driven increasing adoption of deep learning techniques in CT imaging. Various approaches have been proposed to incorporate deep learning into computational pipelines, but each has limitations in addressing artifacts effectively and efficiently in synchrotron CT, either in properly addressing the specific artifacts, or in computational efficiency. Recognizing these challenges, we introduce a novel method that incorporates separate deep learning models at each stage of the tomography pipeline-projection, sinogram, and reconstruction-to address specific artifacts locally in a data-driven way. Our approach includes bypass connections that feed both the outputs from previous stages and raw data to subsequent stages, minimizing the risk of error propagation. Extensive evaluations on both simulated and real-world datasets illustrate that our approach effectively reduces artifacts and outperforms comparison methods.
♻ ☆ IncSAR: A Dual Fusion Incremental Learning Framework for SAR Target Recognition
Deep learning techniques have achieved significant success in Synthetic Aperture Radar (SAR) target recognition using predefined datasets in static scenarios. However, real-world applications demand that models incrementally learn new information without forgetting previously acquired knowledge. The challenge of catastrophic forgetting, where models lose past knowledge when adapting to new tasks, remains a critical issue. In this paper, we introduce IncSAR, an incremental learning framework designed to tackle catastrophic forgetting in SAR target recognition. IncSAR combines the power of a Vision Transformer (ViT) and a custom-designed Convolutional Neural Network (CNN) in a dual-branch architecture, integrated via a late-fusion strategy. Additionally, we explore the use of TinyViT to reduce computational complexity and propose an attention mechanism to dynamically enhance feature representation. To mitigate the speckle noise inherent in SAR images, we employ a denoising module based on a neural network approximation of Robust Principal Component Analysis (RPCA), leveraging a simple neural network for efficient noise reduction in SAR imagery. Moreover, a random projection layer improves the linear separability of features, and a variant of Linear Discriminant Analysis (LDA) decorrelates extracted class prototypes for better generalization. Extensive experiments on the MSTAR, SAR-AIRcraft-1.0, and OpenSARShip benchmark datasets demonstrate that IncSAR significantly outperforms state-of-the-art approaches, achieving a 99.63\% average accuracy and a 0.33\% performance drop, representing an 89\% improvement in retention compared to existing techniques. The source code is available at https://github.com/geokarant/IncSAR.
♻ ☆ VLSBench: Unveiling Visual Leakage in Multimodal Safety
Safety concerns of Multimodal large language models (MLLMs) have gradually become an important problem in various applications. Surprisingly, previous works indicate a counter-intuitive phenomenon that using textual unlearning to align MLLMs achieves comparable safety performances with MLLMs trained with image-text pairs. To explain such a counter-intuitive phenomenon, we discover a visual safety information leakage (VSIL) problem in existing multimodal safety benchmarks, i.e., the potentially risky and sensitive content in the image has been revealed in the textual query. In this way, MLLMs can easily refuse these sensitive text-image queries according to textual queries. However, image-text pairs without VSIL are common in real-world scenarios and are overlooked by existing multimodal safety benchmarks. To this end, we construct multimodal visual leakless safety benchmark (VLSBench) preventing visual safety leakage from image to textual query with 2.4k image-text pairs. Experimental results indicate that VLSBench poses a significant challenge to both open-source and close-source MLLMs, including LLaVA, Qwen2-VL, Llama3.2-Vision, and GPT-4o. This study demonstrates that textual alignment is enough for multimodal safety scenarios with VSIL, while multimodal alignment is a more promising solution for multimodal safety scenarios without VSIL. Please see our code and data at: https://hxhcreate.github.io/vlsbench.github.io/
♻ ☆ SARATR-X: Towards Building A Foundation Model for SAR Target Recognition
Despite the remarkable progress in synthetic aperture radar automatic target recognition (SAR ATR), recent efforts have concentrated on detecting and classifying a specific category, e.g., vehicles, ships, airplanes, or buildings. One of the fundamental limitations of the top-performing SAR ATR methods is that the learning paradigm is supervised, task-specific, limited-category, closed-world learning, which depends on massive amounts of accurately annotated samples that are expensively labeled by expert SAR analysts and have limited generalization capability and scalability. In this work, we make the first attempt towards building a foundation model for SAR ATR, termed SARATR-X. SARATR-X learns generalizable representations via self-supervised learning (SSL) and provides a cornerstone for label-efficient model adaptation to generic SAR target detection and classification tasks. Specifically, SARATR-X is trained on 0.18 M unlabelled SAR target samples, which are curated by combining contemporary benchmarks and constitute the largest publicly available dataset till now. Considering the characteristics of SAR images, a backbone tailored for SAR ATR is carefully designed, and a two-step SSL method endowed with multi-scale gradient features was applied to ensure the feature diversity and model scalability of SARATR-X. The capabilities of SARATR-X are evaluated on classification under few-shot and robustness settings and detection across various categories and scenes, and impressive performance is achieved, often competitive with or even superior to prior fully supervised, semi-supervised, or self-supervised algorithms. Our SARATR-X and the curated dataset are released at https://github.com/waterdisappear/SARATR-X to foster research into foundation models for SAR image interpretation.
comment: 20 pages, 9 figures
♻ ☆ Mitigating analytical variability in fMRI results with style transfer
We propose a novel approach to improve the reproducibility of neuroimaging results by converting statistic maps across different functional MRI pipelines. We make the assumption that pipelines used to compute fMRI statistic maps can be considered as a style component and we propose to use different generative models, among which, Generative Adversarial Networks (GAN) and Diffusion Models (DM) to convert statistic maps across different pipelines. We explore the performance of multiple GAN frameworks, and design a new DM framework for unsupervised multi-domain styletransfer. We constrain the generation of 3D fMRI statistic maps using the latent space of an auxiliary classifier that distinguishes statistic maps from different pipelines and extend traditional sampling techniques used in DM to improve the transition performance. Our experiments demonstrate that our proposed methods aresuccessful: pipelines can indeed be transferred as a style component, providing animportant source of data augmentation for future medical studies.
♻ ☆ Accelerating lensed quasars discovery and modeling with physics-informed variational autoencoders
Strongly lensed quasars provide valuable insights into the rate of cosmic expansion, the distribution of dark matter in foreground deflectors, and the characteristics of quasar hosts. However, detecting them in astronomical images is difficult due to the prevalence of non-lensing objects. To address this challenge, we developed a generative deep learning model called VariLens, built upon a physics-informed variational autoencoder. This model seamlessly integrates three essential modules: image reconstruction, object classification, and lens modeling, offering a fast and comprehensive approach to strong lens analysis. VariLens is capable of rapidly determining both (1) the probability that an object is a lens system and (2) key parameters of a singular isothermal ellipsoid (SIE) mass model -- including the Einstein radius ($\theta_\mathrm{E}$), lens center, and ellipticity -- in just milliseconds using a single CPU. A direct comparison of VariLens estimates with traditional lens modeling for 20 known lensed quasars within the Subaru Hyper Suprime-Cam (HSC) footprint shows good agreement, with both results consistent within $2\sigma$ for systems with $\theta_\mathrm{E}<3$ arcsecs. To identify new lensed quasar candidates, we begin with an initial sample of approximately 80 million sources, combining HSC data with multiwavelength information from various surveys. After applying a photometric preselection aimed at locating $z>1.5$ sources, the number of candidates is reduced to 710,966. Subsequently, VariLens highlights 13,831 sources, each showing a high likelihood of being a lens. A visual assessment of these objects results in 42 promising candidates that await spectroscopic confirmation. These results underscore the potential of automated deep learning pipelines to efficiently detect and model strong lenses in large datasets.
comment: Submitted to the Astronomy & Astrophysics journal and updated to reflect the revised version. The paper consists of 17 main pages, 14 figures, and 5 tables. We welcome feedback and comments from readers!
♻ ☆ WaveDH: Wavelet Sub-bands Guided ConvNet for Efficient Image Dehazing
The surge in interest regarding image dehazing has led to notable advancements in deep learning-based single image dehazing approaches, exhibiting impressive performance in recent studies. Despite these strides, many existing methods fall short in meeting the efficiency demands of practical applications. In this paper, we introduce WaveDH, a novel and compact ConvNet designed to address this efficiency gap in image dehazing. Our WaveDH leverages wavelet sub-bands for guided up-and-downsampling and frequency-aware feature refinement. The key idea lies in utilizing wavelet decomposition to extract low-and-high frequency components from feature levels, allowing for faster processing while upholding high-quality reconstruction. The downsampling block employs a novel squeeze-and-attention scheme to optimize the feature downsampling process in a structurally compact manner through wavelet domain learning, preserving discriminative features while discarding noise components. In our upsampling block, we introduce a dual-upsample and fusion mechanism to enhance high-frequency component awareness, aiding in the reconstruction of high-frequency details. Departing from conventional dehazing methods that treat low-and-high frequency components equally, our feature refinement block strategically processes features with a frequency-aware approach. By employing a coarse-to-fine methodology, it not only refines the details at frequency levels but also significantly optimizes computational costs. The refinement is performed in a maximum 8x downsampled feature space, striking a favorable efficiency-vs-accuracy trade-off. Extensive experiments demonstrate that our method, WaveDH, outperforms many state-of-the-art methods on several image dehazing benchmarks with significantly reduced computational costs. Our code is available at https://github.com/AwesomeHwang/WaveDH.
comment: Under Review
♻ ☆ Text-guided Image Restoration and Semantic Enhancement for Text-to-Image Person Retrieval
The goal of Text-to-Image Person Retrieval (TIPR) is to retrieve specific person images according to the given textual descriptions. A primary challenge in this task is bridging the substantial representational gap between visual and textual modalities. The prevailing methods map texts and images into unified embedding space for matching, while the intricate semantic correspondences between texts and images are still not effectively constructed. To address this issue, we propose a novel TIPR framework to build fine-grained interactions and alignment between person images and the corresponding texts. Specifically, via fine-tuning the Contrastive Language-Image Pre-training (CLIP) model, a visual-textual dual encoder is firstly constructed, to preliminarily align the image and text features. Secondly, a Text-guided Image Restoration (TIR) auxiliary task is proposed to map abstract textual entities to specific image regions, improving the alignment between local textual and visual embeddings. Additionally, a cross-modal triplet loss is presented to handle hard samples, and further enhance the model's discriminability for minor differences. Moreover, a pruning-based text data augmentation approach is proposed to enhance focus on essential elements in descriptions, thereby avoiding excessive model attention to less significant information. The experimental results show our proposed method outperforms state-of-the-art methods on three popular benchmark datasets, and the code will be made publicly available at https://github.com/Delong-liu-bupt/SEN.
comment: The paper was withdrawn due to a dispute among the authors regarding the content of the article
♻ ☆ Text-guided Synthetic Geometric Augmentation for Zero-shot 3D Understanding
Zero-shot recognition models require extensive training data for generalization. However, in zero-shot 3D classification, collecting 3D data and captions is costly and laborintensive, posing a significant barrier compared to 2D vision. Recent advances in generative models have achieved unprecedented realism in synthetic data production, and recent research shows the potential for using generated data as training data. Here, naturally raising the question: Can synthetic 3D data generated by generative models be used as expanding limited 3D datasets? In response, we present a synthetic 3D dataset expansion method, Textguided Geometric Augmentation (TeGA). TeGA is tailored for language-image-3D pretraining, which achieves SoTA in zero-shot 3D classification, and uses a generative textto-3D model to enhance and extend limited 3D datasets. Specifically, we automatically generate text-guided synthetic 3D data and introduce a consistency filtering strategy to discard noisy samples where semantics and geometric shapes do not match with text. In the experiment to double the original dataset size using TeGA, our approach demonstrates improvements over the baselines, achieving zeroshot performance gains of 3.0% on Objaverse-LVIS, 4.6% on ScanObjectNN, and 8.7% on ModelNet40. These results demonstrate that TeGA effectively bridges the 3D data gap, enabling robust zero-shot 3D classification even with limited real training data and paving the way for zero-shot 3D vision application.
♻ ☆ SuperNeRF-GAN: A Universal 3D-Consistent Super-Resolution Framework for Efficient and Enhanced 3D-Aware Image Synthesis
Neural volume rendering techniques, such as NeRF, have revolutionized 3D-aware image synthesis by enabling the generation of images of a single scene or object from various camera poses. However, the high computational cost of NeRF presents challenges for synthesizing high-resolution (HR) images. Most existing methods address this issue by leveraging 2D super-resolution, which compromise 3D-consistency. Other methods propose radiance manifolds or two-stage generation to achieve 3D-consistent HR synthesis, yet they are limited to specific synthesis tasks, reducing their universality. To tackle these challenges, we propose SuperNeRF-GAN, a universal framework for 3D-consistent super-resolution. A key highlight of SuperNeRF-GAN is its seamless integration with NeRF-based 3D-aware image synthesis methods and it can simultaneously enhance the resolution of generated images while preserving 3D-consistency and reducing computational cost. Specifically, given a pre-trained generator capable of producing a NeRF representation such as tri-plane, we first perform volume rendering to obtain a low-resolution image with corresponding depth and normal map. Then, we employ a NeRF Super-Resolution module which learns a network to obtain a high-resolution NeRF. Next, we propose a novel Depth-Guided Rendering process which contains three simple yet effective steps, including the construction of a boundary-correct multi-depth map through depth aggregation, a normal-guided depth super-resolution and a depth-guided NeRF rendering. Experimental results demonstrate the superior efficiency, 3D-consistency, and quality of our approach. Additionally, ablation studies confirm the effectiveness of our proposed components.
♻ ☆ DX2CT: Diffusion Model for 3D CT Reconstruction from Bi or Mono-planar 2D X-ray(s)
Computational tomography (CT) provides high-resolution medical imaging, but it can expose patients to high radiation. X-ray scanners have low radiation exposure, but their resolutions are low. This paper proposes a new conditional diffusion model, DX2CT, that reconstructs three-dimensional (3D) CT volumes from bi or mono-planar X-ray image(s). Proposed DX2CT consists of two key components: 1) modulating feature maps extracted from two-dimensional (2D) X-ray(s) with 3D positions of CT volume using a new transformer and 2) effectively using the modulated 3D position-aware feature maps as conditions of DX2CT. In particular, the proposed transformer can provide conditions with rich information of a target CT slice to the conditional diffusion model, enabling high-quality CT reconstruction. Our experiments with the bi or mono-planar X-ray(s) benchmark datasets show that proposed DX2CT outperforms several state-of-the-art methods. Our codes and model will be available at: https://www.github.com/intyeger/DX2CT.
♻ ☆ MoRe: Class Patch Attention Needs Regularization for Weakly Supervised Semantic Segmentation AAAI 2025
Weakly Supervised Semantic Segmentation (WSSS) with image-level labels typically uses Class Activation Maps (CAM) to achieve dense predictions. Recently, Vision Transformer (ViT) has provided an alternative to generate localization maps from class-patch attention. However, due to insufficient constraints on modeling such attention, we observe that the Localization Attention Maps (LAM) often struggle with the artifact issue, i.e., patch regions with minimal semantic relevance are falsely activated by class tokens. In this work, we propose MoRe to address this issue and further explore the potential of LAM. Our findings suggest that imposing additional regularization on class-patch attention is necessary. To this end, we first view the attention as a novel directed graph and propose the Graph Category Representation module to implicitly regularize the interaction among class-patch entities. It ensures that class tokens dynamically condense the related patch information and suppress unrelated artifacts at a graph level. Second, motivated by the observation that CAM from classification weights maintains smooth localization of objects, we devise the Localization-informed Regularization module to explicitly regularize the class-patch attention. It directly mines the token relations from CAM and further supervises the consistency between class and patch tokens in a learnable manner. Extensive experiments are conducted on PASCAL VOC and MS COCO, validating that MoRe effectively addresses the artifact issue and achieves state-of-the-art performance, surpassing recent single-stage and even multi-stage methods. Code is available at https://github.com/zwyang6/MoRe.
comment: AAAI 2025
♻ ☆ Elucidating the Design Space of Dataset Condensation NeurIPS 2024
Dataset condensation, a concept within data-centric learning, efficiently transfers critical attributes from an original dataset to a synthetic version, maintaining both diversity and realism. This approach significantly improves model training efficiency and is adaptable across multiple application areas. Previous methods in dataset condensation have faced challenges: some incur high computational costs which limit scalability to larger datasets (e.g., MTT, DREAM, and TESLA), while others are restricted to less optimal design spaces, which could hinder potential improvements, especially in smaller datasets (e.g., SRe2L, G-VBSM, and RDED). To address these limitations, we propose a comprehensive design framework that includes specific, effective strategies like implementing soft category-aware matching and adjusting the learning rate schedule. These strategies are grounded in empirical evidence and theoretical backing. Our resulting approach, Elucidate Dataset Condensation (EDC), establishes a benchmark for both small and large-scale dataset condensation. In our testing, EDC achieves state-of-the-art accuracy, reaching 48.6% on ImageNet-1k with a ResNet-18 model at an IPC of 10, which corresponds to a compression ratio of 0.78%. This performance exceeds those of SRe2L, G-VBSM, and RDED by margins of 27.3%, 17.2%, and 6.6%, respectively.
comment: Accepted by NeurIPS 2024
♻ ☆ Harnessing small projectors and multiple views for efficient vision pretraining NeurIPS 2024
Recent progress in self-supervised (SSL) visual representation learning has led to the development of several different proposed frameworks that rely on augmentations of images but use different loss functions. However, there are few theoretically grounded principles to guide practice, so practical implementation of each SSL framework requires several heuristics to achieve competitive performance. In this work, we build on recent analytical results to design practical recommendations for competitive and efficient SSL that are grounded in theory. Specifically, recent theory tells us that existing SSL frameworks are minimizing the same idealized loss, which is to learn features that best match the data similarity kernel defined by the augmentations used. We show how this idealized loss can be reformulated to a functionally equivalent loss that is more efficient to compute. We study the implicit bias of using gradient descent to minimize our reformulated loss function and find that using a stronger orthogonalization constraint with a reduced projector dimensionality should yield good representations. Furthermore, the theory tells us that approximating the reformulated loss should be improved by increasing the number of augmentations, and as such using multiple augmentations should lead to improved convergence. We empirically verify our findings on CIFAR, STL and Imagenet datasets, wherein we demonstrate an improved linear readout performance when training a ResNet-backbone using our theoretically grounded recommendations. Remarkably, we also demonstrate that by leveraging these insights, we can reduce the pretraining dataset size by up to 2$\times$ while maintaining downstream accuracy simply by using more data augmentations. Taken together, our work provides theoretically grounded recommendations that can be used to improve SSL convergence and efficiency.
comment: Accepted to NeurIPS 2024
♻ ☆ OPCap:Object-aware Prompting Captioning
In the field of image captioning, the phenomenon where missing or nonexistent objects are used to explain an image is referred to as object bias (or hallucination). To mitigate this issue, we propose a target-aware prompting strategy. This method first extracts object labels and their spatial information from the image using an object detector. Then, an attribute predictor further refines the semantic features of the objects. These refined features are subsequently integrated and fed into the decoder, enhancing the model's understanding of the image context. Experimental results on the COCO and nocaps datasets demonstrate that OPCap effectively mitigates hallucination and significantly improves the quality of generated captions.
♻ ☆ Driving in the Occupancy World: Vision-Centric 4D Occupancy Forecasting and Planning via World Models for Autonomous Driving AAAI2025
World models envision potential future states based on various ego actions. They embed extensive knowledge about the driving environment, facilitating safe and scalable autonomous driving. Most existing methods primarily focus on either data generation or the pretraining paradigms of world models. Unlike the aforementioned prior works, we propose Drive-OccWorld, which adapts a vision-centric 4D forecasting world model to end-to-end planning for autonomous driving. Specifically, we first introduce a semantic and motion-conditional normalization in the memory module, which accumulates semantic and dynamic information from historical BEV embeddings. These BEV features are then conveyed to the world decoder for future occupancy and flow forecasting, considering both geometry and spatiotemporal modeling. Additionally, we propose injecting flexible action conditions, such as velocity, steering angle, trajectory, and commands, into the world model to enable controllable generation and facilitate a broader range of downstream applications. Furthermore, we explore integrating the generative capabilities of the 4D world model with end-to-end planning, enabling continuous forecasting of future states and the selection of optimal trajectories using an occupancy-based cost function. Comprehensive experiments conducted on the nuScenes, nuScenes-Occupancy, and Lyft-Level5 datasets illustrate that our method can generate plausible and controllable 4D occupancy, paving the way for advancements in driving world generation and end-to-end planning. Project page: https://drive-occworld.github.io/
comment: Accepted by AAAI2025
♻ ☆ Deep Plug-and-Play HIO Approach for Phase Retrieval
In the phase retrieval problem, the aim is the recovery of an unknown image from intensity-only measurements such as Fourier intensity. Although there are several solution approaches, solving this problem is challenging due to its nonlinear and ill-posed nature. Recently, learning-based approaches have emerged as powerful alternatives to the analytical methods for several inverse problems. In the context of phase retrieval, a novel plug-and-play approach that exploits learning-based prior and efficient update steps has been presented at the Computational Optical Sensing and Imaging topical meeting, with demonstrated state-of-the-art performance. The key idea was to incorporate learning-based prior to the Gerchberg-Saxton type algorithms through plug-and-play regularization. In this paper, we present the mathematical development of the method including the derivation of its analytical update steps based on half-quadratic splitting and comparatively evaluate its performance through extensive simulations on a large test dataset. The results show the effectiveness of the method in terms of both image quality, computational efficiency, and robustness to initialization and noise.
comment: 16 pages, 5 figures
♻ ☆ Instruction-Guided Fusion of Multi-Layer Visual Features in Large Vision-Language Models
Large Vision-Language Models (LVLMs) have achieved remarkable success in a wide range of multimodal tasks by integrating pre-trained vision encoders and large language models. However, current LVLMs primarily rely on visual features extracted from the final layers of the vision encoder, overlooking the complementary information available in shallower layers. While recent approaches have explored the use of multilayer visual features in LVLMs, they tend to be task-agnostic and fail to examine the dependencies of hierarchical visual features on specific tasks. To address these gaps, we systematically investigate the contributions of visual features from different encoder layers using 18 benchmarks spanning 6 task categories. Our findings reveal that multilayer features provide complementary strengths with varying task dependencies, and uniform fusion leads to suboptimal performance. Building on these insights, we propose the instruction-guided vision aggregator, a module that dynamically integrates multi-layer visual features based on textual instructions, without increasing the number of visual tokens. Extensive evaluations demonstrate the superior performance of our method. Additionally, an in-depth analysis of the aggregator's behavior highlights the dominance of mid-to-high-level features in semantic-rich tasks and the critical role of low-level features in fine-grained perception.
♻ ☆ Myriad: Large Multimodal Model by Applying Vision Experts for Industrial Anomaly Detection
Due to the training configuration, traditional industrial anomaly detection (IAD) methods have to train a specific model for each deployment scenario, which is insufficient to meet the requirements of modern design and manufacturing. On the contrary, large multimodal models~(LMMs) have shown eminent generalization ability on various vision tasks, and their perception and comprehension capabilities imply the potential of applying LMMs on IAD tasks. However, we observe that even though the LMMs have abundant knowledge about industrial anomaly detection in the textual domain, the LMMs are unable to leverage the knowledge due to the modality gap between textual and visual domains. To stimulate the relevant knowledge in LMMs and adapt the LMMs towards anomaly detection tasks, we introduce existing IAD methods as vision experts and present a novel large multimodal model applying vision experts for industrial anomaly detection~(abbreviated to {Myriad}). Specifically, we utilize the anomaly map generated by the vision experts as guidance for LMMs, such that the vision model is guided to pay more attention to anomalous regions. Then, the visual features are modulated via an adapter to fit the anomaly detection tasks, which are fed into the language model together with the vision expert guidance and human instructions to generate the final outputs. Extensive experiments are applied on MVTec-AD, VisA, and PCB Bank benchmarks demonstrate that our proposed method not only performs favorably against state-of-the-art methods, but also inherits the flexibility and instruction-following ability of LMMs in the field of IAD. Source code and pre-trained models are publicly available at \url{https://github.com/tzjtatata/Myriad}.
comment: 8 pages, 7 figures
♻ ☆ TraceFL: Interpretability-Driven Debugging in Federated Learning via Neuron Provenance ICSE
In Federated Learning, clients train models on local data and send updates to a central server, which aggregates them into a global model using a fusion algorithm. This collaborative yet privacy-preserving training comes at a cost. FL developers face significant challenges in attributing global model predictions to specific clients. Localizing responsible clients is a crucial step towards (a) excluding clients primarily responsible for incorrect predictions and (b) encouraging clients who contributed high-quality models to continue participating in the future. Existing ML debugging approaches are inherently inapplicable as they are designed for single-model, centralized training. We introduce TraceFL, a fine-grained neuron provenance capturing mechanism that identifies clients responsible for a global model's prediction by tracking the flow of information from individual clients to the global model. Since inference on different inputs activates a different set of neurons of the global model, TraceFL dynamically quantifies the significance of the global model's neurons in a given prediction, identifying the most crucial neurons in the global model. It then maps them to the corresponding neurons in every participating client to determine each client's contribution, ultimately localizing the responsible client. We evaluate TraceFL on six datasets, including two real-world medical imaging datasets and four neural networks, including advanced models such as GPT. TraceFL achieves 99% accuracy in localizing the responsible client in FL tasks spanning both image and text classification tasks. At a time when state-of-the-artML debugging approaches are mostly domain-specific (e.g., image classification only), TraceFL is the first technique to enable highly accurate automated reasoning across a wide range of FL applications.
comment: Accepted at 2025 IEEE/ACM 47th International Conference on Software Engineering (ICSE)
♻ ☆ Epicardium Prompt-guided Real-time Cardiac Ultrasound Frame-to-volume Registration MICCAI 2024
A comprehensive guidance view for cardiac interventional surgery can be provided by the real-time fusion of the intraoperative 2D images and preoperative 3D volume based on the ultrasound frame-to-volume registration. However, cardiac ultrasound images are characterized by a low signal-to-noise ratio and small differences between adjacent frames, coupled with significant dimension variations between 2D frames and 3D volumes to be registered, resulting in real-time and accurate cardiac ultrasound frame-to-volume registration being a very challenging task. This paper introduces a lightweight end-to-end Cardiac Ultrasound frame-to-volume Registration network, termed CU-Reg. Specifically, the proposed model leverages epicardium prompt-guided anatomical clues to reinforce the interaction of 2D sparse and 3D dense features, followed by a voxel-wise local-global aggregation of enhanced features, thereby boosting the cross-dimensional matching effectiveness of low-quality ultrasound modalities. We further embed an inter-frame discriminative regularization term within the hybrid supervised learning to increase the distinction between adjacent slices in the same ultrasound volume to ensure registration stability. Experimental results on the reprocessed CAMUS dataset demonstrate that our CU-Reg surpasses existing methods in terms of registration accuracy and efficiency, meeting the guidance requirements of clinical cardiac interventional surgery.
comment: This paper has been accepted by MICCAI 2024
♻ ☆ NeuManifold: Neural Watertight Manifold Reconstruction with Efficient and High-Quality Rendering Support
We present a method for generating high-quality watertight manifold meshes from multi-view input images. Existing volumetric rendering methods are robust in optimization but tend to generate noisy meshes with poor topology. Differentiable rasterization-based methods can generate high-quality meshes but are sensitive to initialization. Our method combines the benefits of both worlds; we take the geometry initialization obtained from neural volumetric fields, and further optimize the geometry as well as a compact neural texture representation with differentiable rasterizers. Through extensive experiments, we demonstrate that our method can generate accurate mesh reconstructions with faithful appearance that are comparable to previous volume rendering methods while being an order of magnitude faster in rendering. We also show that our generated mesh and neural texture reconstruction is compatible with existing graphics pipelines and enables downstream 3D applications such as simulation. Project page: https://sarahweiii.github.io/neumanifold/
comment: Project page: https://sarahweiii.github.io/neumanifold/
♻ ☆ FireANTs: Adaptive Riemannian Optimization for Multi-Scale Diffeomorphic Matching
The paper proposes FireANTs, the first multi-scale Adaptive Riemannian Optimization algorithm for dense diffeomorphic image matching. One of the most critical and understudied aspects of diffeomorphic image matching algorithms are its highly ill-conditioned nature. We quantitatively capture the extent of ill-conditioning in a typical MRI matching task, motivating the need for an adaptive optimization algorithm for diffeomorphic matching. To this end, FireANTs generalizes the concept of momentum and adaptive estimates of the Hessian to mitigate this ill-conditioning in the non-Euclidean space of diffeomorphisms. Unlike common non-Euclidean manifolds, we also formalize considerations for multi-scale optimization of diffeomorphisms. Our rigorous mathematical results and operational contributions lead to a state-of-the-art dense matching algorithm that can be applied to generic image data with remarkable accuracy and robustness. We demonstrate consistent improvements in image matching performance across a spectrum of community-standard medical and biological correspondence matching challenges spanning a wide variety of image modalities, anatomies, resolutions, acquisition protocols, and preprocessing pipelines. This improvement is supplemented by from 300x up to 3200x speedup over existing state-of-the-art algorithms. For the first time, we perform diffeomorphic matching of sub-micron mouse cortex volumes at native resolution. Our fast implementation also enables hyperparameter studies that were intractable with existing correspondence matching algorithms.
♻ ☆ Learnable Scaled Gradient Descent for Guaranteed Robust Tensor PCA
Robust tensor principal component analysis (RTPCA) aims to separate the low-rank and sparse components from multi-dimensional data, making it an essential technique in the signal processing and computer vision fields. Recently emerging tensor singular value decomposition (t-SVD) has gained considerable attention for its ability to better capture the low-rank structure of tensors compared to traditional matrix SVD. However, existing methods often rely on the computationally expensive tensor nuclear norm (TNN), which limits their scalability for real-world tensors. To address this issue, we explore an efficient scaled gradient descent (SGD) approach within the t-SVD framework for the first time, and propose the RTPCA-SGD method. Theoretically, we rigorously establish the recovery guarantees of RTPCA-SGD under mild assumptions, demonstrating that with appropriate parameter selection, it achieves linear convergence to the true low-rank tensor at a constant rate, independent of the condition number. To enhance its practical applicability, we further propose a learnable self-supervised deep unfolding model, which enables effective parameter learning. Numerical experiments on both synthetic and real-world datasets demonstrate the superior performance of the proposed methods while maintaining competitive computational efficiency, especially consuming less time than RTPCA-TNN.
♻ ☆ Empowering Large Language Model for Continual Video Question Answering with Collaborative Prompting EMNLP 2024
In recent years, the rapid increase in online video content has underscored the limitations of static Video Question Answering (VideoQA) models trained on fixed datasets, as they struggle to adapt to new questions or tasks posed by newly available content. In this paper, we explore the novel challenge of VideoQA within a continual learning framework, and empirically identify a critical issue: fine-tuning a large language model (LLM) for a sequence of tasks often results in catastrophic forgetting. To address this, we propose Collaborative Prompting (ColPro), which integrates specific question constraint prompting, knowledge acquisition prompting, and visual temporal awareness prompting. These prompts aim to capture textual question context, visual content, and video temporal dynamics in VideoQA, a perspective underexplored in prior research. Experimental results on the NExT-QA and DramaQA datasets show that ColPro achieves superior performance compared to existing approaches, achieving 55.14\% accuracy on NExT-QA and 71.24\% accuracy on DramaQA, highlighting its practical relevance and effectiveness.
comment: Accepted by main EMNLP 2024
♻ ☆ IOR: Inversed Objects Replay for Incremental Object Detection
Existing Incremental Object Detection (IOD) methods partially alleviate catastrophic forgetting when incrementally detecting new objects in real-world scenarios. However, many of these methods rely on the assumption that unlabeled old-class objects may co-occur with labeled new-class objects in the incremental data. When unlabeled old-class objects are absent, the performance of existing methods tends to degrade. The absence can be mitigated by generating old-class samples, but it incurs high costs. This paper argues that previous generation-based IOD suffers from redundancy, both in the use of generative models, which require additional training and storage, and in the overproduction of generated samples, many of which do not contribute significantly to performance improvements. To eliminate the redundancy, we propose Inversed Objects Replay (IOR). Specifically, we generate old-class samples by inversing the original detectors, thus eliminating the necessity of training and storing additional generative models. We propose augmented replay to reuse the objects in generated samples, reducing redundant generations. Moreover, we propose high-value knowledge distillation focusing on the positions of old-class objects overwhelmed by the background, which transfers the knowledge to the incremental detector. Extensive experiments conducted on MS COCO 2017 demonstrate that our method can efficiently improve detection performance in IOD scenarios with the absence of old-class objects.
♻ ☆ Challenge Summary U-MedSAM: Uncertainty-aware MedSAM for Medical Image Segmentation
Medical Image Foundation Models have proven to be powerful tools for mask prediction across various datasets. However, accurately assessing the uncertainty of their predictions remains a significant challenge. To address this, we propose a new model, U-MedSAM, which integrates the MedSAM model with an uncertainty-aware loss function and the Sharpness-Aware Minimization (SharpMin) optimizer. The uncertainty-aware loss function automatically combines region-based, distribution-based, and pixel-based loss designs to enhance segmentation accuracy and robustness. SharpMin improves generalization by finding flat minima in the loss landscape, thereby reducing overfitting. Our method was evaluated in the CVPR24 MedSAM on Laptop challenge, where U-MedSAM demonstrated promising performance.
comment: arXiv admin note: text overlap with arXiv:2405.17496
♻ ☆ MECD+: Unlocking Event-Level Causal Graph Discovery for Video Reasoning NeurIPS 2024
Video causal reasoning aims to achieve a high-level understanding of videos from a causal perspective. However, it exhibits limitations in its scope, primarily executed in a question-answering paradigm and focusing on brief video segments containing isolated events and basic causal relations, lacking comprehensive and structured causality analysis for videos with multiple interconnected events. To fill this gap, we introduce a new task and dataset, Multi-Event Causal Discovery (MECD). It aims to uncover the causal relations between events distributed chronologically across long videos. Given visual segments and textual descriptions of events, MECD identifies the causal associations between these events to derive a comprehensive and structured event-level video causal graph explaining why and how the result event occurred. To address the challenges of MECD, we devise a novel framework inspired by the Granger Causality method, incorporating an efficient mask-based event prediction model to perform an Event Granger Test. It estimates causality by comparing the predicted result event when premise events are masked versus unmasked. Furthermore, we integrate causal inference techniques such as front-door adjustment and counterfactual inference to mitigate challenges in MECD like causality confounding and illusory causality. Additionally, context chain reasoning is introduced to conduct more robust and generalized reasoning. Experiments validate the effectiveness of our framework in reasoning complete causal relations, outperforming GPT-4o and VideoChat2 by 5.77% and 2.70%, respectively. Further experiments demonstrate that causal relation graphs can also contribute to downstream video understanding tasks such as video question answering and video event prediction.
comment: IEEE TPAMI Submission. continuous work of arXiv:2409.17647 (NeurIPS 2024)
♻ ☆ LADDER: Language Driven Slice Discovery and Error Rectification
Error slice discovery is crucial to diagnose and mitigate model errors. Current clustering or discrete attribute-based slice discovery methods face key limitations: 1) clustering results in incoherent slices, while assigning discrete attributes to slices leads to incomplete coverage of error patterns due to missing or insufficient attributes; 2) these methods lack complex reasoning, preventing them from fully explaining model biases; 3) they fail to integrate \textit{domain knowledge}, limiting their usage in specialized fields \eg radiology. We propose\ladder (\underline{La}nguage-\underline{D}riven \underline{D}iscovery and \underline{E}rror \underline{R}ectification), to address the limitations by: (1) leveraging the flexibility of natural language to address incompleteness, (2) employing LLM's latent \textit{domain knowledge} and advanced reasoning to analyze sentences and derive testable hypotheses directly, identifying biased attributes, and form coherent error slices without clustering. Existing mitigation methods typically address only the worst-performing group, often amplifying errors in other subgroups. In contrast,\ladder generates pseudo attributes from the discovered hypotheses to mitigate errors across all biases without explicit attribute annotations or prior knowledge of bias. Rigorous evaluations on 6 datasets spanning natural and medical images -- comparing 200+ classifiers with diverse architectures, pretraining strategies, and LLMs -- show that\ladder consistently outperforms existing baselines in discovering and mitigating biases.
♻ ☆ MetaNeRV: Meta Neural Representations for Videos with Spatial-Temporal Guidance AAAI2025
Neural Representations for Videos (NeRV) has emerged as a promising implicit neural representation (INR) approach for video analysis, which represents videos as neural networks with frame indexes as inputs. However, NeRV-based methods are time-consuming when adapting to a large number of diverse videos, as each video requires a separate NeRV model to be trained from scratch. In addition, NeRV-based methods spatially require generating a high-dimension signal (i.e., an entire image) from the input of a low-dimension timestamp, and a video typically consists of tens of frames temporally that have a minor change between adjacent frames. To improve the efficiency of video representation, we propose Meta Neural Representations for Videos, named MetaNeRV, a novel framework for fast NeRV representation for unseen videos. MetaNeRV leverages a meta-learning framework to learn an optimal parameter initialization, which serves as a good starting point for adapting to new videos. To address the unique spatial and temporal characteristics of video modality, we further introduce spatial-temporal guidance to improve the representation capabilities of MetaNeRV. Specifically, the spatial guidance with a multi-resolution loss aims to capture the information from different resolution stages, and the temporal guidance with an effective progressive learning strategy could gradually refine the number of fitted frames during the meta-learning process. Extensive experiments conducted on multiple datasets demonstrate the superiority of MetaNeRV for video representations and video compression.
comment: Accepted by AAAI2025
♻ ☆ Keep It Accurate and Robust: An Enhanced Nuclei Analysis Framework
Accurate segmentation and classification of nuclei in histology images is critical but challenging due to nuclei heterogeneity, staining variations, and tissue complexity. Existing methods often struggle with limited dataset variability, with patches extracted from similar whole slide images (WSI), making models prone to falling into local optima. Here we propose a new framework to address this limitation and enable robust nuclear analysis. Our method leverages dual-level ensemble modeling to overcome issues stemming from limited dataset variation. Intra-ensembling applies diverse transformations to individual samples, while inter-ensembling combines networks of different scales. We also introduce enhancements to the HoVer-Net architecture, including updated encoders, nested dense decoding and model regularization strategy. We achieve state-of-the-art results on public benchmarks, including 1st place for nuclear composition prediction and 3rd place for segmentation/classification in the 2022 Colon Nuclei Identification and Counting (CoNIC) Challenge. This success validates our approach for accurate histological nuclei analysis. Extensive experiments and ablation studies provide insights into optimal network design choices and training techniques. In conclusion, this work proposes an improved framework advancing the state-of-the-art in nuclei analysis. We release our code and models (https://github.com/WinnieLaugh/CONIC_Pathology_AI) to serve as a toolkit for the community.
Information Retrieval 13
☆ A Simple but Effective Closed-form Solution for Extreme Multi-label Learning ECIR25
Extreme multi-label learning (XML) is a task of assigning multiple labels from an extremely large set of labels to each data instance. Many current high-performance XML models are composed of a lot of hyperparameters, which complicates the tuning process. Additionally, the models themselves are adapted specifically to XML, which complicates their reimplementation. To remedy this problem, we propose a simple method based on ridge regression for XML. The proposed method not only has a closed-form solution but also is composed of a single hyperparameter. Since there are no precedents on applying ridge regression to XML, this paper verified the performance of the method by using various XML benchmark datasets. Furthermore, we enhanced the prediction of low-frequency labels in XML, which hold informative content. This prediction is essential yet challenging because of the limited amount of data. Here, we employed a simple frequency-based weighting. This approach greatly simplifies the process compared with existing techniques. Experimental results revealed that it can achieve levels of performance comparable to, or even exceeding, those of models with numerous hyperparameters. Additionally, we found that the frequency-based weighting significantly improved the predictive performance for low-frequency labels, while requiring almost no changes in implementation. The source code for the proposed method is available on github at https://github.com/cars1015/XML-ridge.
comment: 10pages, Accepted at ECIR25
☆ MechIR: A Mechanistic Interpretability Framework for Information Retrieval ECIR 2025
Mechanistic interpretability is an emerging diagnostic approach for neural models that has gained traction in broader natural language processing domains. This paradigm aims to provide attribution to components of neural systems where causal relationships between hidden layers and output were previously uninterpretable. As the use of neural models in IR for retrieval and evaluation becomes ubiquitous, we need to ensure that we can interpret why a model produces a given output for both transparency and the betterment of systems. This work comprises a flexible framework for diagnostic analysis and intervention within these highly parametric neural systems specifically tailored for IR tasks and architectures. In providing such a framework, we look to facilitate further research in interpretable IR with a broader scope for practical interventions derived from mechanistic interpretability. We provide preliminary analysis and look to demonstrate our framework through an axiomatic lens to show its applications and ease of use for those IR practitioners inexperienced in this emerging paradigm.
comment: 5 pages, 2 figures, Accepted to ECIR 2025 as a Demo Paper
☆ A Worrying Reproducibility Study of Intent-Aware Recommendation Models
Lately, we have observed a growing interest in intent-aware recommender systems (IARS). The promise of such systems is that they are capable of generating better recommendations by predicting and considering the underlying motivations and short-term goals of consumers. From a technical perspective, various sophisticated neural models were recently proposed in this emerging and promising area. In the broader context of complex neural recommendation models, a growing number of research works unfortunately indicates that (i) reproducing such works is often difficult and (ii) that the true benefits of such models may be limited in reality, e.g., because the reported improvements were obtained through comparisons with untuned or weak baselines. In this work, we investigate if recent research in IARS is similarly affected by such problems. Specifically, we tried to reproduce five contemporary IARS models that were published in top-level outlets, and we benchmarked them against a number of traditional non-neural recommendation models. In two of the cases, running the provided code with the optimal hyperparameters reported in the paper did not yield the results reported in the paper. Worryingly, we find that all examined IARS approaches are consistently outperformed by at least one traditional model. These findings point to sustained methodological issues and to a pressing need for more rigorous scholarly practices.
☆ PaSa: An LLM Agent for Comprehensive Academic Paper Search
We introduce PaSa, an advanced Paper Search agent powered by large language models. PaSa can autonomously make a series of decisions, including invoking search tools, reading papers, and selecting relevant references, to ultimately obtain comprehensive and accurate results for complex scholarly queries. We optimize PaSa using reinforcement learning with a synthetic dataset, AutoScholarQuery, which includes 35k fine-grained academic queries and corresponding papers sourced from top-tier AI conference publications. Additionally, we develop RealScholarQuery, a benchmark collecting real-world academic queries to assess PaSa performance in more realistic scenarios. Despite being trained on synthetic data, PaSa significantly outperforms existing baselines on RealScholarQuery, including Google, Google Scholar, Google with GPT-4 for paraphrased queries, chatGPT (search-enabled GPT-4o), GPT-o1, and PaSa-GPT-4o (PaSa implemented by prompting GPT-4o). Notably, PaSa-7B surpasses the best Google-based baseline, Google with GPT-4o, by 37.78% in recall@20 and 39.90% in recall@50. It also exceeds PaSa-GPT-4o by 30.36% in recall and 4.25% in precision. Model, datasets, and code are available at https://github.com/bytedance/pasa.
☆ Passage Segmentation of Documents for Extractive Question Answering
Retrieval-Augmented Generation (RAG) has proven effective in open-domain question answering. However, the chunking process, which is essential to this pipeline, often receives insufficient attention relative to retrieval and synthesis components. This study emphasizes the critical role of chunking in improving the performance of both dense passage retrieval and the end-to-end RAG pipeline. We then introduce the Logits-Guided Multi-Granular Chunker (LGMGC), a novel framework that splits long documents into contextualized, self-contained chunks of varied granularity. Our experimental results, evaluated on two benchmark datasets, demonstrate that LGMGC not only improves the retrieval step but also outperforms existing chunking methods when integrated into a RAG pipeline.
☆ Diffusion Models in Recommendation Systems: A Survey
Recommender systems remain an essential topic due to its wide application in various domains and the business potential behind them. With the rise of deep learning, common solutions have leveraged neural networks to facilitate collaborative filtering, and some have turned to generative adversarial networks to augment the dataset and tackle the data sparsity issue. However, they are limited in learning the complex user and item distribution and still suffer from model collapse. Given the great generation capability exhibited by diffusion models in computer vision recently, many recommender systems have adopted diffusion models and found improvements in performance for various tasks. Diffusion models in recommender systems excel in managing complex user and item distributions and do not suffer from mode collapse. With these advantages, the amount of research in this domain have been growing rapidly and calling for a systematic survey. In this survey paper, we present and propose a taxonomy on past research papers in recommender systems that utilize diffusion models. Distinct from a prior survey paper that categorizes based on the role of the diffusion model, we categorize based on the recommendation task at hand. The decision originates from the rationale that after all, the adoption of diffusion models is to enhance the recommendation performance, not vice versa: adapting the recommendation task to enable diffusion models. Nonetheless, we offer a unique perspective for diffusion models in recommender systems complementary to existing surveys. We present the foundation algorithms in diffusion models and their applications in recommender systems to summarize the rapid development in this field. Finally, we discuss open research directions to prepare and encourage further efforts to advance the field. We compile the relevant papers in a public GitHub repository.
♻ ☆ Tracing Affordance and Item Adoption on Music Streaming Platforms
Popular music streaming platforms offer users a diverse network of content exploration through a triad of affordances: organic, algorithmic and editorial access modes. Whilst offering great potential for discovery, such platform developments also pose the modern user with daily adoption decisions on two fronts: platform affordance adoption and the adoption of recommendations therein. Following a carefully constrained set of Deezer users over a 2-year observation period, our work explores factors driving user behaviour in the broad sense, by differentiating users on the basis of their temporal daily usage, adoption of the main platform affordances, and the ways in which they react to them, especially in terms of recommendation adoption. Diverging from a perspective common in studies on the effects of recommendation, we assume and confirm that users exhibit very diverse behaviours in using and adopting the platform affordances. The resulting complex and quite heterogeneous picture demonstrates that there is no blanket answer for adoption practices of both recommendation features and recommendations.
comment: ISMIR 2021 pre-print
♻ ☆ News Without Borders: Domain Adaptation of Multilingual Sentence Embeddings for Cross-lingual News Recommendation ECIR 2025
Rapidly growing numbers of multilingual news consumers pose an increasing challenge to news recommender systems in terms of providing customized recommendations. First, existing neural news recommenders, even when powered by multilingual language models (LMs), suffer substantial performance losses in zero-shot cross-lingual transfer (ZS-XLT). Second, the current paradigm of fine-tuning the backbone LM of a neural recommender on task-specific data is computationally expensive and infeasible in few-shot recommendation and cold-start setups, where data is scarce or completely unavailable. In this work, we propose a news-adapted sentence encoder (NaSE), domain-specialized from a pretrained massively multilingual sentence encoder (SE). To this end, we construct and leverage PolyNews and PolyNewsParallel, two multilingual news-specific corpora. With the news-adapted multilingual SE in place, we test the effectiveness of (i.e., question the need for) supervised fine-tuning for news recommendation, and propose a simple and strong baseline based on (i) frozen NaSE embeddings and (ii) late click-behavior fusion. We show that NaSE achieves state-of-the-art performance in ZS-XLT in true cold-start and few-shot news recommendation.
comment: Accepted at the 47th European Conference on Information Retrieval (ECIR 2025) Appendix A is provided only in the arXiv version
♻ ☆ Enabling Low-Resource Language Retrieval: Establishing Baselines for Urdu MS MARCO ECIR 2025
As the Information Retrieval (IR) field increasingly recognizes the importance of inclusivity, addressing the needs of low-resource languages remains a significant challenge. This paper introduces the first large-scale Urdu IR dataset, created by translating the MS MARCO dataset through machine translation. We establish baseline results through zero-shot learning for IR in Urdu and subsequently apply the mMARCO multilingual IR methodology to this newly translated dataset. Our findings demonstrate that the fine-tuned model (Urdu-mT5-mMARCO) achieves a Mean Reciprocal Rank (MRR@10) of 0.247 and a Recall@10 of 0.439, representing significant improvements over zero-shot results and showing the potential for expanding IR access for Urdu speakers. By bridging access gaps for speakers of low-resource languages, this work not only advances multilingual IR research but also emphasizes the ethical and societal importance of inclusive IR technologies. This work provides valuable insights into the challenges and solutions for improving language representation and lays the groundwork for future research, especially in South Asian languages, which can benefit from the adaptable methods used in this study.
comment: 7 pages, ECIR 2025, conference camera-ready version
♻ ☆ The Application of Large Language Models in Recommendation Systems
The integration of Large Language Models into recommendation frameworks presents key advantages for personalization and adaptability of experiences to the users. Classic methods of recommendations, such as collaborative filtering and content-based filtering, are seriously limited in the solution of cold-start problems, sparsity of data, and lack of diversity in information considered. LLMs, of which GPT-4 is a good example, have emerged as powerful tools that enable recommendation frameworks to tap into unstructured data sources such as user reviews, social interactions, and text-based content. By analyzing these data sources, LLMs improve the accuracy and relevance of recommendations, thereby overcoming some of the limitations of traditional approaches. This work discusses applications of LLMs in recommendation systems, especially in electronic commerce, social media platforms, streaming services, and educational technologies. This showcases how LLMs enrich recommendation diversity, user engagement, and the system's adaptability; yet it also looks into the challenges connected to their technical implementation. This can also be presented as a study that shows the potential of LLMs for changing user experiences and making innovation possible in industries.
♻ ☆ Ranking Generated Answers: On the Agreement of Retrieval Models with Humans on Consumer Health Questions
Evaluating the output of generative large language models (LLMs) is challenging and difficult to scale. Many evaluations of LLMs focus on tasks such as single-choice question-answering or text classification. These tasks are not suitable for assessing open-ended question-answering capabilities, which are critical in domains where expertise is required. One such domain is health, where misleading or incorrect answers can have a negative impact on a user's well-being. Using human experts to evaluate the quality of LLM answers is generally considered the gold standard, but expert annotation is costly and slow. We present a method for evaluating LLM answers that uses ranking models trained on annotated document collections as a substitute for explicit relevance judgements and apply it to the CLEF 2021 eHealth dataset. In a user study, our method correlates with the preferences of a human expert (Kendall's $\tau=0.64$). It is also consistent with previous findings in that the quality of generated answers improves with the size of the model and more sophisticated prompting strategies.
♻ ☆ Enhancing User Interest based on Stream Clustering and Memory Networks in Large-Scale Recommender Systems
Recommender Systems (RSs) provide personalized recommendation service based on user interest, which are widely used in various platforms. However, there are lots of users with sparse interest due to lacking consumption behaviors, which leads to poor recommendation results for them. This problem is widespread in large-scale RSs and is particularly difficult to address. To solve this problem, we propose a novel solution named User Interest Enhancement (UIE) which enhances user interest including user profile and user history behavior sequences using the enhancement vectors and personalized enhancement vector generated based on stream clustering and memory networks from different perspectives. UIE not only remarkably improves model performance on the users with sparse interest but also significantly enhance model performance on other users. UIE is an end-to-end solution which is easy to be implemented based on ranking model. Moreover, we expand our solution and apply similar methods to long-tail items, which also achieves excellent improvement. Furthermore, we conduct extensive offline and online experiments in a large-scale industrial RS. The results demonstrate that our model outperforms other models remarkably, especially for the users with sparse interest. Until now, UIE has been fully deployed in multiple large-scale RSs and achieved remarkable improvements.
♻ ☆ On Explaining Recommendations with Large Language Models: A Review
The rise of Large Language Models (LLMs), such as LLaMA and ChatGPT, has opened new opportunities for enhancing recommender systems through improved explainability. This paper provides a systematic literature review focused on leveraging LLMs to generate explanations for recommendations -- a critical aspect for fostering transparency and user trust. We conducted a comprehensive search within the ACM Guide to Computing Literature, covering publications from the launch of ChatGPT (November 2022) to the present (November 2024). Our search yielded 232 articles, but after applying inclusion criteria, only six were identified as directly addressing the use of LLMs in explaining recommendations. This scarcity highlights that, despite the rise of LLMs, their application in explainable recommender systems is still in an early stage. We analyze these select studies to understand current methodologies, identify challenges, and suggest directions for future research. Our findings underscore the potential of LLMs improving explanations of recommender systems and encourage the development of more transparent and user-centric recommendation explanation solutions.
Machine Learning 119
☆ Credit Risk Identification in Supply Chains Using Generative Adversarial Networks
Credit risk management within supply chains has emerged as a critical research area due to its significant implications for operational stability and financial sustainability. The intricate interdependencies among supply chain participants mean that credit risks can propagate across networks, with impacts varying by industry. This study explores the application of Generative Adversarial Networks (GANs) to enhance credit risk identification in supply chains. GANs enable the generation of synthetic credit risk scenarios, addressing challenges related to data scarcity and imbalanced datasets. By leveraging GAN-generated data, the model improves predictive accuracy while effectively capturing dynamic and temporal dependencies in supply chain data. The research focuses on three representative industries-manufacturing (steel), distribution (pharmaceuticals), and services (e-commerce) to assess industry-specific credit risk contagion. Experimental results demonstrate that the GAN-based model outperforms traditional methods, including logistic regression, decision trees, and neural networks, achieving superior accuracy, recall, and F1 scores. The findings underscore the potential of GANs in proactive risk management, offering robust tools for mitigating financial disruptions in supply chains. Future research could expand the model by incorporating external market factors and supplier relationships to further enhance predictive capabilities. Keywords- Generative Adversarial Networks (GANs); Supply Chain Risk; Credit Risk Identification; Machine Learning; Data Augmentation
comment: The paper will be published and indexed by IEEE at 2025 8th International Conference on Advanced Algorithms and Control Engineering (ICAACE 2025)
☆ ColNet: Collaborative Optimization in Decentralized Federated Multi-task Learning Systems
The integration of Federated Learning (FL) and Multi-Task Learning (MTL) has been explored to address client heterogeneity, with Federated Multi-Task Learning (FMTL) treating each client as a distinct task. However, most existing research focuses on data heterogeneity (e.g., addressing non-IID data) rather than task heterogeneity, where clients solve fundamentally different tasks. Additionally, much of the work relies on centralized settings with a server managing the federation, leaving the more challenging domain of decentralized FMTL largely unexplored. Thus, this work bridges this gap by proposing ColNet, a framework designed for heterogeneous tasks in decentralized federated environments. ColNet divides models into the backbone and task-specific layers, forming groups of similar clients, with group leaders performing conflict-averse cross-group aggregation. A pool of experiments with different federations demonstrated ColNet outperforms the compared aggregation schemes in decentralized settings with label and task heterogeneity scenarios.
☆ Hybrid Deep Learning Model for epileptic seizure classification by using 1D-CNN with multi-head attention mechanism
Epilepsy is a prevalent neurological disorder globally, impacting around 50 million people \cite{WHO_epilepsy_50million}. Epileptic seizures result from sudden abnormal electrical activity in the brain, which can be read as sudden and significant changes in the EEG signal of the brain. The signal can vary in severity and frequency, which results in loss of consciousness and muscle contractions for a short period of time \cite{epilepsyfoundation_myoclonic}. Individuals with epilepsy often face significant employment challenges due to safety concerns in certain work environments. Many jobs that involve working at heights, operating heavy machinery, or in other potentially hazardous settings may be restricted for people with seizure disorders. This certainly limits job options and economic opportunities for those living with epilepsy.
☆ New Fashion Products Performance Forecasting: A Survey on Evolutions, Models and Emerging Trends
The fast fashion industry's insatiable demand for new styles and rapid production cycles has led to a significant environmental burden. Overproduction, excessive waste, and harmful chemicals have contributed to the negative environmental impact of the industry. To mitigate these issues, a paradigm shift that prioritizes sustainability and efficiency is urgently needed. Integrating learning-based predictive analytics into the fashion industry represents a significant opportunity to address environmental challenges and drive sustainable practices. By forecasting fashion trends and optimizing production, brands can reduce their ecological footprint while remaining competitive in a rapidly changing market. However, one of the key challenges in forecasting fashion sales is the dynamic nature of consumer preferences. Fashion is acyclical, with trends constantly evolving and resurfacing. In addition, cultural changes and unexpected events can disrupt established patterns. This problem is also known as New Fashion Products Performance Forecasting (NFPPF), and it has recently gained more and more interest in the global research landscape. Given its multidisciplinary nature, the field of NFPPF has been approached from many different angles. This comprehensive survey wishes to provide an up-to-date overview that focuses on learning-based NFPPF strategies. The survey is based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodological flow, allowing for a systematic and complete literature review. In particular, we propose the first taxonomy that covers the learning panorama for NFPPF, examining in detail the different methodologies used to increase the amount of multimodal information, as well as the state-of-the-art available datasets. Finally, we discuss the challenges and future directions.
comment: Accepted at the Springer Nature Computer Science journal
☆ Hierarchical Autoregressive Transformers: Combining Byte-~and Word-Level Processing for Robust, Adaptable Language Models
Tokenization is a fundamental step in natural language processing, breaking text into units that computational models can process. While learned subword tokenizers have become the de-facto standard, they present challenges such as large vocabularies, limited adaptability to new domains or languages, and sensitivity to spelling errors and variations. To overcome these limitations, we investigate a hierarchical architecture for autoregressive language modelling that combines character-level and word-level processing. It employs a lightweight character-level encoder to convert character sequences into word embeddings, which are then processed by a word-level backbone model and decoded back into characters via a compact character-level decoder. This method retains the sequence compression benefits of word-level tokenization without relying on a rigid, predefined vocabulary. We demonstrate, at scales up to 7 billion parameters, that hierarchical transformers match the downstream task performance of subword-tokenizer-based models while exhibiting significantly greater robustness to input perturbations. Additionally, during continued pretraining on an out-of-domain language, our model trains almost twice as fast, achieves superior performance on the target language, and retains more of its previously learned knowledge. Hierarchical transformers pave the way for NLP systems that are more robust, flexible, and generalizable across languages and domains.
☆ Towards Human-Guided, Data-Centric LLM Co-Pilots
Machine learning (ML) has the potential to revolutionize healthcare, but its adoption is often hindered by the disconnect between the needs of domain experts and translating these needs into robust and valid ML tools. Despite recent advances in LLM-based co-pilots to democratize ML for non-technical domain experts, these systems remain predominantly focused on model-centric aspects while overlooking critical data-centric challenges. This limitation is problematic in complex real-world settings where raw data often contains complex issues, such as missing values, label noise, and domain-specific nuances requiring tailored handling. To address this we introduce CliMB-DC, a human-guided, data-centric framework for LLM co-pilots that combines advanced data-centric tools with LLM-driven reasoning to enable robust, context-aware data processing. At its core, CliMB-DC introduces a novel, multi-agent reasoning system that combines a strategic coordinator for dynamic planning and adaptation with a specialized worker agent for precise execution. Domain expertise is then systematically incorporated to guide the reasoning process using a human-in-the-loop approach. To guide development, we formalize a taxonomy of key data-centric challenges that co-pilots must address. Thereafter, to address the dimensions of the taxonomy, we integrate state-of-the-art data-centric tools into an extensible, open-source architecture, facilitating the addition of new tools from the research community. Empirically, using real-world healthcare datasets we demonstrate CliMB-DC's ability to transform uncurated datasets into ML-ready formats, significantly outperforming existing co-pilot baselines for handling data-centric challenges. CliMB-DC promises to empower domain experts from diverse domains -- healthcare, finance, social sciences and more -- to actively participate in driving real-world impact using ML.
comment: Saveliev, Liu & Seedat contributed equally
☆ Pairwise Elimination with Instance-Dependent Guarantees for Bandits with Cost Subsidy
Multi-armed bandits (MAB) are commonly used in sequential online decision-making when the reward of each decision is an unknown random variable. In practice however, the typical goal of maximizing total reward may be less important than minimizing the total cost of the decisions taken, subject to a reward constraint. For example, we may seek to make decisions that have at least the reward of a reference ``default'' decision, with as low a cost as possible. This problem was recently introduced in the Multi-Armed Bandits with Cost Subsidy (MAB-CS) framework. MAB-CS is broadly applicable to problem domains where a primary metric (cost) is constrained by a secondary metric (reward), and the rewards are unknown. In our work, we address variants of MAB-CS including ones with reward constrained by the reward of a known reference arm or by the subsidized best reward. We introduce the Pairwise-Elimination (PE) algorithm for the known reference arm variant and generalize PE to PE-CS for the subsidized best reward variant. Our instance-dependent analysis of PE and PE-CS reveals that both algorithms have an order-wise logarithmic upper bound on Cost and Quality Regret, making our policies the first with such a guarantee. Moreover, by comparing our upper and lower bound results we establish that PE is order-optimal for all known reference arm problem instances. Finally, experiments are conducted using the MovieLens 25M and Goodreads datasets for both PE and PE-CS revealing the effectiveness of PE and the superior balance between performance and reliability offered by PE-CS compared to baselines from the literature.
☆ SEANN: A Domain-Informed Neural Network for Epidemiological Insights
In epidemiology, traditional statistical methods such as logistic regression, linear regression, and other parametric models are commonly employed to investigate associations between predictors and health outcomes. However, non-parametric machine learning techniques, such as deep neural networks (DNNs), coupled with explainable AI (XAI) tools, offer new opportunities for this task. Despite their potential, these methods face challenges due to the limited availability of high-quality, high-quantity data in this field. To address these challenges, we introduce SEANN, a novel approach for informed DNNs that leverages a prevalent form of domain-specific knowledge: Pooled Effect Sizes (PES). PESs are commonly found in published Meta-Analysis studies, in different forms, and represent a quantitative form of a scientific consensus. By direct integration within the learning procedure using a custom loss, we experimentally demonstrate significant improvements in the generalizability of predictive performances and the scientific plausibility of extracted relationships compared to a domain-knowledge agnostic neural network in a scarce and noisy data setting.
☆ Logarithmic Regret for Nonlinear Control
We address the problem of learning to control an unknown nonlinear dynamical system through sequential interactions. Motivated by high-stakes applications in which mistakes can be catastrophic, such as robotics and healthcare, we study situations where it is possible for fast sequential learning to occur. Fast sequential learning is characterized by the ability of the learning agent to incur logarithmic regret relative to a fully-informed baseline. We demonstrate that fast sequential learning is achievable in a diverse class of continuous control problems where the system dynamics depend smoothly on unknown parameters, provided the optimal control policy is persistently exciting. Additionally, we derive a regret bound which grows with the square root of the number of interactions for cases where the optimal policy is not persistently exciting. Our results provide the first regret bounds for controlling nonlinear dynamical systems depending nonlinearly on unknown parameters. We validate the trends our theory predicts in simulation on a simple dynamical system.
☆ DADA: Dual Averaging with Distance Adaptation
We present a novel universal gradient method for solving convex optimization problems. Our algorithm -- Dual Averaging with Distance Adaptation (DADA) -- is based on the classical scheme of dual averaging and dynamically adjusts its coefficients based on observed gradients and the distance between iterates and the starting point, eliminating the need for problem-specific parameters. DADA is a universal algorithm that simultaneously works for a broad spectrum of problem classes, provided the local growth of the objective function around its minimizer can be bounded. Particular examples of such problem classes are nonsmooth Lipschitz functions, Lipschitz-smooth functions, H\"older-smooth functions, functions with high-order Lipschitz derivative, quasi-self-concordant functions, and $(L_0,L_1)$-smooth functions. Crucially, DADA is applicable to both unconstrained and constrained problems, even when the domain is unbounded, without requiring prior knowledge of the number of iterations or desired accuracy.
☆ Unsupervised Rhythm and Voice Conversion of Dysarthric to Healthy Speech for ASR ICASSP 2025
Automatic speech recognition (ASR) systems are well known to perform poorly on dysarthric speech. Previous works have addressed this by speaking rate modification to reduce the mismatch with typical speech. Unfortunately, these approaches rely on transcribed speech data to estimate speaking rates and phoneme durations, which might not be available for unseen speakers. Therefore, we combine unsupervised rhythm and voice conversion methods based on self-supervised speech representations to map dysarthric to typical speech. We evaluate the outputs with a large ASR model pre-trained on healthy speech without further fine-tuning and find that the proposed rhythm conversion especially improves performance for speakers of the Torgo corpus with more severe cases of dysarthria. Code and audio samples are available at https://idiap.github.io/RnV .
comment: Accepted at ICASSP 2025 Satellite Workshop: Workshop on Speech Pathology Analysis and DEtection (SPADE)
☆ Over-the-Air Multi-Sensor Inference with Neural Networks Using Memristor-Based Analog Computing
Deep neural networks provide reliable solutions for many classification and regression tasks; however, their application in real-time wireless systems with simple sensor networks is limited due to high energy consumption and significant bandwidth needs. This study proposes a multi-sensor wireless inference system with memristor-based analog computing. Given the sensors' limited computational capabilities, the features from the network's front end are transmitted to a central device where an $L_p$-norm inspired approximation of the maximum operation is employed to achieve transformation-invariant features, enabling efficient over-the-air transmission. We also introduce a trainable over-the-air sensor fusion method based on $L_p$-norm inspired combining function that customizes sensor fusion to match the network and sensor distribution characteristics, enhancing adaptability. To address the energy constraints of sensors, we utilize memristors, known for their energy-efficient in-memory computing, enabling analog-domain computations that reduce energy use and computational overhead in edge computing. This dual approach of memristors and $L_p$-norm inspired sensor fusion fosters energy-efficient computational and transmission paradigms and serves as a practical energy-efficient solution with minimal performance loss.
comment: 34 pages
☆ Challenges and recommendations for Electronic Health Records data extraction and preparation for dynamic prediction modelling in hospitalized patients -- a practical guide
Dynamic predictive modeling using electronic health record (EHR) data has gained significant attention in recent years. The reliability and trustworthiness of such models depend heavily on the quality of the underlying data, which is largely determined by the stages preceding the model development: data extraction from EHR systems and data preparation. We list over forty challenges encountered during these stages and provide actionable recommendations for addressing them. These challenges are organized into four categories: cohort definition, outcome definition, feature engineering, and data cleaning. This list is designed to serve as a practical guide for data extraction engineers and researchers, supporting better practices and improving the quality and real-world applicability of dynamic prediction models in clinical settings.
☆ SpaceTime: Causal Discovery from Non-Stationary Time Series
Understanding causality is challenging and often complicated by changing causal relationships over time and across environments. Climate patterns, for example, shift over time with recurring seasonal trends, while also depending on geographical characteristics such as ecosystem variability. Existing methods for discovering causal graphs from time series either assume stationarity, do not permit both temporal and spatial distribution changes, or are unaware of locations with the same causal relationships. In this work, we therefore unify the three tasks of causal graph discovery in the non-stationary multi-context setting, of reconstructing temporal regimes, and of partitioning datasets and time intervals into those where invariant causal relationships hold. To construct a consistent score that forms the basis of our method, we employ the Minimum Description Length principle. Our resulting algorithm SPACETIME simultaneously accounts for heterogeneity across space and non-stationarity over time. Given multiple time series, it discovers regime changepoints and a temporal causal graph using non-parametric functional modeling and kernelized discrepancy testing. We also show that our method provides insights into real-world phenomena such as river-runoff measured at different catchments and biosphere-atmosphere interactions across ecosystems.
☆ Counterfactual Explanations for k-means and Gaussian Clustering
Counterfactuals have been recognized as an effective approach to explain classifier decisions. Nevertheless, they have not yet been considered in the context of clustering. In this work, we propose the use of counterfactuals to explain clustering solutions. First, we present a general definition for counterfactuals for model-based clustering that includes plausibility and feasibility constraints. Then we consider the counterfactual generation problem for k-means and Gaussian clustering assuming Euclidean distance. Our approach takes as input the factual, the target cluster, a binary mask indicating actionable or immutable features and a plausibility factor specifying how far from the cluster boundary the counterfactual should be placed. In the k-means clustering case, analytical mathematical formulas are presented for computing the optimal solution, while in the Gaussian clustering case (assuming full, diagonal, or spherical covariances) our method requires the numerical solution of a nonlinear equation with a single parameter only. We demonstrate the advantages of our approach through illustrative examples and quantitative experimental comparisons.
☆ Amortized Bayesian Mixture Models
Finite mixtures are a broad class of models useful in scenarios where observed data is generated by multiple distinct processes but without explicit information about the responsible process for each data point. Estimating Bayesian mixture models is computationally challenging due to issues such as high-dimensional posterior inference and label switching. Furthermore, traditional methods such as MCMC are applicable only if the likelihoods for each mixture component are analytically tractable. Amortized Bayesian Inference (ABI) is a simulation-based framework for estimating Bayesian models using generative neural networks. This allows the fitting of models without explicit likelihoods, and provides fast inference. ABI is therefore an attractive framework for estimating mixture models. This paper introduces a novel extension of ABI tailored to mixture models. We factorize the posterior into a distribution of the parameters and a distribution of (categorical) mixture indicators, which allows us to use a combination of generative neural networks for parameter inference, and classification networks for mixture membership identification. The proposed framework accommodates both independent and dependent mixture models, enabling filtering and smoothing. We validate and demonstrate our approach through synthetic and real-world datasets.
comment: 34 pages, 17 figures
☆ Modelling Activity Scheduling Behaviour with Deep Generative Machine Learning
We model human activity scheduling behaviour using a deep generative machine learning approach. Activity schedules, which represent the activities and associated travel behaviours of individuals, are a core component of many applied models in the transport, energy and epidemiology domains. Our data driven approach learns human preferences and scheduling logic without the need for complex interacting combinations of sub-models and custom-rules, this makes our approach significantly faster and simpler to operate that existing approaches. We find activity schedule data combines aspects of both continuous image data and also discrete text data, requiring novel approaches. We additionally contribute a novel schedule representation and comprehensive evaluation framework for generated schedules. Evaluation shows our approach is able to rapidly generate large, diverse and realistic synthetic samples of activity schedules.
☆ The Relevance of AWS Chronos: An Evaluation of Standard Methods for Time Series Forecasting with Limited Tuning
A systematic comparison of Chronos, a transformer-based time series forecasting framework, against traditional approaches including ARIMA and Prophet. We evaluate these models across multiple time horizons and user categories, with a focus on the impact of historical context length. Our analysis reveals that while Chronos demonstrates superior performance for longer-term predictions and maintains accuracy with increased context, traditional models show significant degradation as context length increases. We find that prediction quality varies systematically between user classes, suggesting that underlying behavior patterns always influence model performance. This study provides a case for deploying Chronos in real-world applications where limited model tuning is feasible, especially in scenarios requiring longer prediction.
☆ Temporal Graph MLP Mixer for Spatio-Temporal Forecasting
Spatiotemporal forecasting is critical in applications such as traffic prediction, climate modeling, and environmental monitoring. However, the prevalence of missing data in real-world sensor networks significantly complicates this task. In this paper, we introduce the Temporal Graph MLP-Mixer (T-GMM), a novel architecture designed to address these challenges. The model combines node-level processing with patch-level subgraph encoding to capture localized spatial dependencies while leveraging a three-dimensional MLP-Mixer to handle temporal, spatial, and feature-based dependencies. Experiments on the AQI, ENGRAD, PV-US and METR-LA datasets demonstrate the model's ability to effectively forecast even in the presence of significant missing data. While not surpassing state-of-the-art models in all scenarios, the T-GMM exhibits strong learning capabilities, particularly in capturing long-range dependencies. These results highlight its potential for robust, scalable spatiotemporal forecasting.
☆ Hypercone Assisted Contour Generation for Out-of-Distribution Detection
Recent advances in the field of out-of-distribution (OOD) detection have placed great emphasis on learning better representations suited to this task. While there are distance-based approaches, distributional awareness has seldom been exploited for better performance. We present HAC$_k$-OOD, a novel OOD detection method that makes no distributional assumption about the data, but automatically adapts to its distribution. Specifically, HAC$_k$-OOD constructs a set of hypercones by maximizing the angular distance to neighbors in a given data-point's vicinity to approximate the contour within which in-distribution (ID) data-points lie. Experimental results show state-of-the-art FPR@95 and AUROC performance on Near-OOD detection and on Far-OOD detection on the challenging CIFAR-100 benchmark without explicitly training for OOD performance.
☆ Provably Safeguarding a Classifier from OOD and Adversarial Samples: an Extreme Value Theory Approach
This paper introduces a novel method, Sample-efficient Probabilistic Detection using Extreme Value Theory (SPADE), which transforms a classifier into an abstaining classifier, offering provable protection against out-of-distribution and adversarial samples. The approach is based on a Generalized Extreme Value (GEV) model of the training distribution in the classifier's latent space, enabling the formal characterization of OOD samples. Interestingly, under mild assumptions, the GEV model also allows for formally characterizing adversarial samples. The abstaining classifier, which rejects samples based on their assessment by the GEV model, provably avoids OOD and adversarial samples. The empirical validation of the approach, conducted on various neural architectures (ResNet, VGG, and Vision Transformer) and medium and large-sized datasets (CIFAR-10, CIFAR-100, and ImageNet), demonstrates its frugality, stability, and efficiency compared to the state of the art.
comment: under review
☆ Contributions to the Decision Theoretic Foundations of Machine Learning and Robust Statistics under Weakly Structured Information
This habilitation thesis is cumulative and, therefore, is collecting and connecting research that I (together with several co-authors) have conducted over the last few years. Thus, the absolute core of the work is formed by the ten publications listed on page 5 under the name Contributions 1 to 10. The references to the complete versions of these articles are also found in this list, making them as easily accessible as possible for readers wishing to dive deep into the different research projects. The chapters following this thesis, namely Parts A to C and the concluding remarks, serve to place the articles in a larger scientific context, to (briefly) explain their respective content on a less formal level, and to highlight some interesting perspectives for future research in their respective contexts. Naturally, therefore, the following presentation has neither the level of detail nor the formal rigor that can (hopefully) be found in the papers. The purpose of the following text is to provide the reader an easy and high-level access to this interesting and important research field as a whole, thereby, advertising it to a broader audience.
comment: Habilitation Thesis
☆ Surrogate-based multiscale analysis of experiments on thermoplastic composites under off-axis loading
In this paper, we present a surrogate-based multiscale approach to model constant strain-rate and creep experiments on unidirectional thermoplastic composites under off-axis loading. In previous contributions, these experiments were modeled through a single-scale micromechanical simulation under the assumption of macroscopic homogeneity. Although efficient and accurate in many scenarios, simulations with low-off axis angles showed significant discrepancies with the experiments. It was hypothesized that the mismatch was caused by macroscopic inhomogeneity, which would require a multiscale approach to capture it. However, full-field multiscale simulations remain computationally prohibitive. To address this issue, we replace the micromodel with a Physically Recurrent Neural Network (PRNN), a surrogate model that combines data-driven components with embedded constitutive models to capture history-dependent behavior naturally. The explainability of the latent space of this network is also explored in a transfer learning strategy that requires no re-training. With the surrogate-based simulations, we confirm the hypothesis raised on the inhomogeneity of the macroscopic strain field and gain insights into the influence of adjustment of the experimental setup with oblique end-tabs. Results from the surrogate-based multiscale approach show better agreement with experiments than the single-scale micromechanical approach over a wide range of settings, although with limited accuracy on the creep experiments, where macroscopic test effects were implicitly taken into account in the material properties calibration.
comment: 21 pages. 31 figures
☆ Improved learning rates in multi-unit uniform price auctions NeurIPS 2024
Motivated by the strategic participation of electricity producers in electricity day-ahead market, we study the problem of online learning in repeated multi-unit uniform price auctions focusing on the adversarial opposing bid setting. The main contribution of this paper is the introduction of a new modeling of the bid space. Indeed, we prove that a learning algorithm leveraging the structure of this problem achieves a regret of $\tilde{O}(K^{4/3}T^{2/3})$ under bandit feedback, improving over the bound of $\tilde{O}(K^{7/4}T^{3/4})$ previously obtained in the literature. This improved regret rate is tight up to logarithmic terms. Inspired by electricity reserve markets, we further introduce a different feedback model under which all winning bids are revealed. This feedback interpolates between the full-information and bandit scenarios depending on the auctions' results. We prove that, under this feedback, the algorithm that we propose achieves regret $\tilde{O}(K^{5/2}\sqrt{T})$.
comment: NeurIPS 2024
☆ A Simple but Effective Closed-form Solution for Extreme Multi-label Learning ECIR25
Extreme multi-label learning (XML) is a task of assigning multiple labels from an extremely large set of labels to each data instance. Many current high-performance XML models are composed of a lot of hyperparameters, which complicates the tuning process. Additionally, the models themselves are adapted specifically to XML, which complicates their reimplementation. To remedy this problem, we propose a simple method based on ridge regression for XML. The proposed method not only has a closed-form solution but also is composed of a single hyperparameter. Since there are no precedents on applying ridge regression to XML, this paper verified the performance of the method by using various XML benchmark datasets. Furthermore, we enhanced the prediction of low-frequency labels in XML, which hold informative content. This prediction is essential yet challenging because of the limited amount of data. Here, we employed a simple frequency-based weighting. This approach greatly simplifies the process compared with existing techniques. Experimental results revealed that it can achieve levels of performance comparable to, or even exceeding, those of models with numerous hyperparameters. Additionally, we found that the frequency-based weighting significantly improved the predictive performance for low-frequency labels, while requiring almost no changes in implementation. The source code for the proposed method is available on github at https://github.com/cars1015/XML-ridge.
comment: 10pages, Accepted at ECIR25
☆ Mean and Variance Estimation Complexity in Arbitrary Distributions via Wasserstein Minimization
Parameter estimation is a fundamental challenge in machine learning, crucial for tasks such as neural network weight fitting and Bayesian inference. This paper focuses on the complexity of estimating translation $\boldsymbol{\mu} \in \mathbb{R}^l$ and shrinkage $\sigma \in \mathbb{R}_{++}$ parameters for a distribution of the form $\frac{1}{\sigma^l} f_0 \left( \frac{\boldsymbol{x} - \boldsymbol{\mu}}{\sigma} \right)$, where $f_0$ is a known density in $\mathbb{R}^l$ given $n$ samples. We highlight that while the problem is NP-hard for Maximum Likelihood Estimation (MLE), it is possible to obtain $\varepsilon$-approximations for arbitrary $\varepsilon > 0$ within $\text{poly} \left( \frac{1}{\varepsilon} \right)$ time using the Wasserstein distance.
☆ Convex Physics Informed Neural Networks for the Monge-Ampère Optimal Transport Problem
Optimal transportation of raw material from suppliers to customers is an issue arising in logistics that is addressed here with a continuous model relying on optimal transport theory. A physics informed neuralnetwork method is advocated here for the solution of the corresponding generalized Monge-Amp`ere equation. Convex neural networks are advocated to enforce the convexity of the solution to the Monge-Amp\`ere equation and obtain a suitable approximation of the optimal transport map. A particular focus is set on the enforcement of transport boundary conditions in the loss function. Numerical experiments illustrate the solution to the optimal transport problem in several configurations, and sensitivity analyses are performed.
comment: 17 pages, 14 figures. Submitted to Engineering Computations on 26 September 2024
☆ Region-wise stacking ensembles for estimating brain-age using MRI
Predictive modeling using structural magnetic resonance imaging (MRI) data is a prominent approach to study brain-aging. Machine learning algorithms and feature extraction methods have been employed to improve predictions and explore healthy and accelerated aging e.g. neurodegenerative and psychiatric disorders. The high-dimensional MRI data pose challenges to building generalizable and interpretable models as well as for data privacy. Common practices are resampling or averaging voxels within predefined parcels, which reduces anatomical specificity and biological interpretability as voxels within a region may differently relate to aging. Effectively, naive fusion by averaging can result in information loss and reduced accuracy. We present a conceptually novel two-level stacking ensemble (SE) approach. The first level comprises regional models for predicting individuals' age based on voxel-wise information, fused by a second-level model yielding final predictions. Eight data fusion scenarios were explored using as input Gray matter volume (GMV) estimates from four datasets covering the adult lifespan. Performance, measured using mean absolute error (MAE), R2, correlation and prediction bias, showed that SE outperformed the region-wise averages. The best performance was obtained when first-level regional predictions were obtained as out-of-sample predictions on the application site with second-level models trained on independent and site-specific data (MAE=4.75 vs baseline regional mean GMV MAE=5.68). Performance improved as more datasets were used for training. First-level predictions showed improved and more robust aging signal providing new biological insights and enhanced data privacy. Overall, the SE improves accuracy compared to the baseline while preserving or enhancing data privacy.
comment: version1
☆ Enhancing UAV Path Planning Efficiency Through Accelerated Learning
Unmanned Aerial Vehicles (UAVs) are increasingly essential in various fields such as surveillance, reconnaissance, and telecommunications. This study aims to develop a learning algorithm for the path planning of UAV wireless communication relays, which can reduce storage requirements and accelerate Deep Reinforcement Learning (DRL) convergence. Assuming the system possesses terrain maps of the area and can estimate user locations using localization algorithms or direct GPS reporting, it can input these parameters into the learning algorithms to achieve optimized path planning performance. However, higher resolution terrain maps are necessary to extract topological information such as terrain height, object distances, and signal blockages. This requirement increases memory and storage demands on UAVs while also lengthening convergence times in DRL algorithms. Similarly, defining the telecommunication coverage map in UAV wireless communication relays using these terrain maps and user position estimations demands higher memory and storage utilization for the learning path planning algorithms. Our approach reduces path planning training time by applying a dimensionality reduction technique based on Principal Component Analysis (PCA), sample combination, Prioritized Experience Replay (PER), and the combination of Mean Squared Error (MSE) and Mean Absolute Error (MAE) loss calculations in the coverage map estimates, thereby enhancing a Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm. The proposed solution reduces the convergence episodes needed for basic training by approximately four times compared to the traditional TD3.
comment: This paper was accepted in https://camad2024.ieee-camad.org/ conference but it is not available from the conference yet
☆ Conformal Prediction Sets with Improved Conditional Coverage using Trust Scores
Standard conformal prediction offers a marginal guarantee on coverage, but for prediction sets to be truly useful, they should ideally ensure coverage conditional on each test point. Unfortunately, it is impossible to achieve exact, distribution-free conditional coverage in finite samples. In this work, we propose an alternative conformal prediction algorithm that targets coverage where it matters most--in instances where a classifier is overconfident in its incorrect predictions. We start by dissecting miscoverage events in marginally-valid conformal prediction, and show that miscoverage rates vary based on the classifier's confidence and its deviation from the Bayes optimal classifier. Motivated by this insight, we develop a variant of conformal prediction that targets coverage conditional on a reduced set of two variables: the classifier's confidence in a prediction and a nonparametric trust score that measures its deviation from the Bayes classifier. Empirical evaluation on multiple image datasets shows that our method generally improves conditional coverage properties compared to standard conformal prediction, including class-conditional coverage, coverage over arbitrary subgroups, and coverage over demographic groups.
☆ Visual Exploration of Stopword Probabilities in Topic Models
Stopword removal is a critical stage in many Machine Learning methods but often receives little consideration, it interferes with the model visualizations and disrupts user confidence. Inappropriately chosen or hastily omitted stopwords not only lead to suboptimal performance but also significantly affect the quality of models, thus reducing the willingness of practitioners and stakeholders to rely on the output visualizations. This paper proposes a novel extraction method that provides a corpus-specific probabilistic estimation of stopword likelihood and an interactive visualization system to support their analysis. We evaluated our approach and interface using real-world data, a commonly used Machine Learning method (Topic Modelling), and a comprehensive qualitative experiment probing user confidence. The results of our work show that our system increases user confidence in the credibility of topic models by (1) returning reasonable probabilities, (2) generating an appropriate and representative extension of common stopword lists, and (3) providing an adjustable threshold for estimating and analyzing stopwords visually. Finally, we discuss insights, recommendations, and best practices to support practitioners while improving the output of Machine Learning methods and topic model visualizations with robust stopword analysis and removal.
☆ Exploring the Impact of Generative Artificial Intelligence in Education: A Thematic Analysis
The recent advancements in Generative Artificial intelligence (GenAI) technology have been transformative for the field of education. Large Language Models (LLMs) such as ChatGPT and Bard can be leveraged to automate boilerplate tasks, create content for personalised teaching, and handle repetitive tasks to allow more time for creative thinking. However, it is important to develop guidelines, policies, and assessment methods in the education sector to ensure the responsible integration of these tools. In this article, thematic analysis has been performed on seven essays obtained from professionals in the education sector to understand the advantages and pitfalls of using GenAI models such as ChatGPT and Bard in education. Exploratory Data Analysis (EDA) has been performed on the essays to extract further insights from the text. The study found several themes which highlight benefits and drawbacks of GenAI tools, as well as suggestions to overcome these limitations and ensure that students are using these tools in a responsible and ethical manner.
☆ Gene Regulatory Network Inference in the Presence of Selection Bias and Latent Confounders
Gene Regulatory Network Inference (GRNI) aims to identify causal relationships among genes using gene expression data, providing insights into regulatory mechanisms. A significant yet often overlooked challenge is selection bias, a process where only cells meeting specific criteria, such as gene expression thresholds, survive or are observed, distorting the true joint distribution of genes and thus biasing GRNI results. Furthermore, gene expression is influenced by latent confounders, such as non-coding RNAs, which add complexity to GRNI. To address these challenges, we propose GISL (Gene Regulatory Network Inference in the presence of Selection bias and Latent confounders), a novel algorithm to infer true regulatory relationships in the presence of selection and confounding issues. Leveraging data obtained via multiple gene perturbation experiments, we show that the true regulatory relationships, as well as selection processes and latent confounders can be partially identified without strong parametric models and under mild graphical assumptions. Experimental results on both synthetic and real-world single-cell gene expression datasets demonstrate the superiority of GISL over existing methods.
☆ PaSa: An LLM Agent for Comprehensive Academic Paper Search
We introduce PaSa, an advanced Paper Search agent powered by large language models. PaSa can autonomously make a series of decisions, including invoking search tools, reading papers, and selecting relevant references, to ultimately obtain comprehensive and accurate results for complex scholarly queries. We optimize PaSa using reinforcement learning with a synthetic dataset, AutoScholarQuery, which includes 35k fine-grained academic queries and corresponding papers sourced from top-tier AI conference publications. Additionally, we develop RealScholarQuery, a benchmark collecting real-world academic queries to assess PaSa performance in more realistic scenarios. Despite being trained on synthetic data, PaSa significantly outperforms existing baselines on RealScholarQuery, including Google, Google Scholar, Google with GPT-4 for paraphrased queries, chatGPT (search-enabled GPT-4o), GPT-o1, and PaSa-GPT-4o (PaSa implemented by prompting GPT-4o). Notably, PaSa-7B surpasses the best Google-based baseline, Google with GPT-4o, by 37.78% in recall@20 and 39.90% in recall@50. It also exceeds PaSa-GPT-4o by 30.36% in recall and 4.25% in precision. Model, datasets, and code are available at https://github.com/bytedance/pasa.
☆ Robotic World Model: A Neural Network Simulator for Robust Policy Optimization in Robotics
Learning robust and generalizable world models is crucial for enabling efficient and scalable robotic control in real-world environments. In this work, we introduce a novel framework for learning world models that accurately capture complex, partially observable, and stochastic dynamics. The proposed method employs a dual-autoregressive mechanism and self-supervised training to achieve reliable long-horizon predictions without relying on domain-specific inductive biases, ensuring adaptability across diverse robotic tasks. We further propose a policy optimization framework that leverages world models for efficient training in imagined environments and seamless deployment in real-world systems. Through extensive experiments, our approach consistently outperforms state-of-the-art methods, demonstrating superior autoregressive prediction accuracy, robustness to noise, and generalization across manipulation and locomotion tasks. Notably, policies trained with our method are successfully deployed on ANYmal D hardware in a zero-shot transfer, achieving robust performance with minimal sim-to-real performance loss. This work advances model-based reinforcement learning by addressing the challenges of long-horizon prediction, error accumulation, and sim-to-real transfer. By providing a scalable and robust framework, the introduced methods pave the way for adaptive and efficient robotic systems in real-world applications.
☆ landmarker: a Toolkit for Anatomical Landmark Localization in 2D/3D Images
Anatomical landmark localization in 2D/3D images is a critical task in medical imaging. Although many general-purpose tools exist for landmark localization in classical computer vision tasks, such as pose estimation, they lack the specialized features and modularity necessary for anatomical landmark localization applications in the medical domain. Therefore, we introduce landmarker, a Python package built on PyTorch. The package provides a comprehensive, flexible toolkit for developing and evaluating landmark localization algorithms, supporting a range of methodologies, including static and adaptive heatmap regression. landmarker enhances the accuracy of landmark identification, streamlines research and development processes, and supports various image formats and preprocessing pipelines. Its modular design allows users to customize and extend the toolkit for specific datasets and applications, accelerating innovation in medical imaging. landmarker addresses a critical need for precision and customization in landmark localization tasks not adequately met by existing general-purpose pose estimation tools.
comment: 11 pages, 4 figures
☆ A recursive Bayesian neural network for constitutive modeling of sands under monotonic loading
In geotechnical engineering, constitutive models play a crucial role in describing soil behavior under varying loading conditions. Data-driven deep learning (DL) models offer a promising alternative for developing predictive constitutive models. When prediction is the primary focus, quantifying the predictive uncertainty of a trained DL model and communicating this uncertainty to end users is crucial for informed decision-making. This study proposes a recursive Bayesian neural network (rBNN) framework, which builds upon recursive feedforward neural networks (rFFNNs) by introducing generalized Bayesian inference for uncertainty quantification. A significant contribution of this work is the incorporation of a sliding window approach in rFFNNs, allowing the models to effectively capture temporal dependencies across load steps. The rBNN extends this framework by treating model parameters as random variables, with their posterior distributions inferred using generalized variational inference. The proposed framework is validated on two datasets: (i) a numerically simulated consolidated drained (CD) triaxial dataset employing a hardening soil model and (ii) an experimental dataset comprising 28 CD triaxial tests on Baskarp sand. Comparative analyses with LSTM, Bi-LSTM, and GRU models demonstrate that the deterministic rFFNN achieves superior predictive accuracy, attributed to its transparent structure and sliding window design. While the rBNN marginally trails in accuracy for the experimental case, it provides robust confidence intervals, addressing data sparsity and measurement noise in experimental conditions. The study underscores the trade-offs between deterministic and probabilistic approaches and the potential of rBNNs for uncertainty-aware constitutive modeling.
☆ Two-level Solar Irradiance Clustering with Season Identification: A Comparative Analysis
Solar irradiance clustering can enhance solar power capacity planning and help improve forecasting models by identifying similar irradiance patterns influenced by seasonal and weather changes. In this study, we adopt an efficient two-level clustering approach to automatically identify seasons using the clear sky irradiance in first level and subsequently to identify daily cloud level as clear, cloudy and partly cloudy within each season in second level. In the second level of clustering, three methods are compared, namely, Daily Irradiance Index (DII or $\beta$), Euclidean Distance (ED), and Dynamic Time Warping (DTW) distance. The DII is computed as the ratio of time integral of measured irradiance to time integral of the clear sky irradiance. The identified clusters were compared quantitatively using established clustering metrics and qualitatively by comparing the mean irradiance profiles. The results clearly establish the superiority of the $\beta$-based clustering approach as the leader, setting a new benchmark for solar irradiance clustering studies. Moreover, $\beta$-based clustering remains effective even for annual data unlike the time-series methods which suffer significant performance degradation. Interestingly, contrary to expectations, ED-based clustering outperforms the more compute-intensive DTW distance-based clustering. The method has been rigorously validated using data from two distinct US locations, demonstrating robust scalability for larger datasets and potential applicability for other locations.
comment: 30 pages, 9 figures, 6 tables
☆ Double descent in quantum machine learning
The double descent phenomenon challenges traditional statistical learning theory by revealing scenarios where larger models do not necessarily lead to reduced performance on unseen data. While this counterintuitive behavior has been observed in a variety of classical machine learning models, particularly modern neural network architectures, it remains elusive within the context of quantum machine learning. In this work, we analytically demonstrate that quantum learning models can exhibit double descent behavior by drawing on insights from linear regression and random matrix theory. Additionally, our numerical experiments on quantum kernel methods across different real-world datasets and system sizes further confirm the existence of a test error peak, a characteristic feature of double descent. Our findings provide evidence that quantum models can operate in the modern, overparameterized regime without experiencing overfitting, thereby opening pathways to improved learning performance beyond traditional statistical learning theory.
☆ Robust Change Captioning in Remote Sensing: SECOND-CC Dataset and MModalCC Framework
Remote sensing change captioning (RSICC) aims to describe changes between bitemporal images in natural language. Existing methods often fail under challenges like illumination differences, viewpoint changes, blur effects, leading to inaccuracies, especially in no-change regions. Moreover, the images acquired at different spatial resolutions and have registration errors tend to affect the captions. To address these issues, we introduce SECOND-CC, a novel RSICC dataset featuring high-resolution RGB image pairs, semantic segmentation maps, and diverse real-world scenarios. SECOND-CC which contains 6,041 pairs of bitemporal RS images and 30,205 sentences describing the differences between images. Additionally, we propose MModalCC, a multimodal framework that integrates semantic and visual data using advanced attention mechanisms, including Cross-Modal Cross Attention (CMCA) and Multimodal Gated Cross Attention (MGCA). Detailed ablation studies and attention visualizations further demonstrate its effectiveness and ability to address RSICC challenges. Comprehensive experiments show that MModalCC outperforms state-of-the-art RSICC methods, including RSICCformer, Chg2Cap, and PSNet with +4.6% improvement on BLEU4 score and +9.6% improvement on CIDEr score. We will make our dataset and codebase publicly available to facilitate future research at https://github.com/ChangeCapsInRS/SecondCC
comment: This work has been submitted to the IEEE Transactions on Geoscience and Remote Sensing journal for possible publication
☆ One-D-Piece: Image Tokenizer Meets Quality-Controllable Compression
Current image tokenization methods require a large number of tokens to capture the information contained within images. Although the amount of information varies across images, most image tokenizers only support fixed-length tokenization, leading to inefficiency in token allocation. In this study, we introduce One-D-Piece, a discrete image tokenizer designed for variable-length tokenization, achieving quality-controllable mechanism. To enable variable compression rate, we introduce a simple but effective regularization mechanism named "Tail Token Drop" into discrete one-dimensional image tokenizers. This method encourages critical information to concentrate at the head of the token sequence, enabling support of variadic tokenization, while preserving state-of-the-art reconstruction quality. We evaluate our tokenizer across multiple reconstruction quality metrics and find that it delivers significantly better perceptual quality than existing quality-controllable compression methods, including JPEG and WebP, at smaller byte sizes. Furthermore, we assess our tokenizer on various downstream computer vision tasks, including image classification, object detection, semantic segmentation, and depth estimation, confirming its adaptability to numerous applications compared to other variable-rate methods. Our approach demonstrates the versatility of variable-length discrete image tokenization, establishing a new paradigm in both compression efficiency and reconstruction performance. Finally, we validate the effectiveness of tail token drop via detailed analysis of tokenizers.
comment: Our Project Page: https://turingmotors.github.io/one-d-piece-tokenizer
☆ OMoE: Diversifying Mixture of Low-Rank Adaptation by Orthogonal Finetuning
Building mixture-of-experts (MoE) architecture for Low-rank adaptation (LoRA) is emerging as a potential direction in parameter-efficient fine-tuning (PEFT) for its modular design and remarkable performance. However, simply stacking the number of experts cannot guarantee significant improvement. In this work, we first conduct qualitative analysis to indicate that experts collapse to similar representations in vanilla MoE, limiting the capacity of modular design and computational efficiency. Ulteriorly, Our analysis reveals that the performance of previous MoE variants maybe limited by a lack of diversity among experts. Motivated by these findings, we propose Orthogonal Mixture-of-Experts (OMoE), a resource-efficient MoE variant that trains experts in an orthogonal manner to promote diversity. In OMoE, a Gram-Schmidt process is leveraged to enforce that the experts' representations lie within the Stiefel manifold. By applying orthogonal constraints directly to the architecture, OMoE keeps the learning objective unchanged, without compromising optimality. Our method is simple and alleviates memory bottlenecks, as it incurs minimal experts compared to vanilla MoE models. Experiments on diverse commonsense reasoning benchmarks demonstrate that OMoE can consistently achieve stable and efficient performance improvement when compared with the state-of-the-art methods while significantly reducing the number of required experts.
☆ Accelerating Large Language Models through Partially Linear Feed-Forward Network
Large language models (LLMs) demonstrate remarkable capabilities but face deployment challenges due to their massive parameter counts. While existing compression techniques like pruning can reduce model size, it leads to significant accuracy degradation under high compression ratios. We present a novel perspective inspired by constant folding in compiler optimization. Our approach enables parameter reduction by treating activation functions in LLMs as linear functions. However, recent LLMs use complex non-linear activations like GELU that prevent direct application of this technique. We propose TARDIS, which enables optimization of LLMs with non-linear activations by partially approximating them with linear functions in frequently occurring input ranges. For outlier inputs, TARDIS employs an online predictor to dynamically fall back to original computations. Our experiments demonstrate that TARDIS achieves 80% parameter reduction in feed-forward networks, while significantly outperforming state-of-the-art pruning methods Wanda and RIA with up to 65% higher accuracy. In practical deployments for a 7B model, TARDIS achieves 1.6x end-to-end inference speedup when integrated with the vLLM serving system, and 1.4x speedup with the widely adopted HuggingFace implementation, while incurring only a 10.9% accuracy trade-off.
☆ Tracking student skills real-time through a continuous-variable dynamic Bayesian network
The field of Knowledge Tracing is focused on predicting the success rate of a student for a given skill. Modern methods like Deep Knowledge Tracing provide accurate estimates given enough data, but being based on neural networks they struggle to explain how these estimates are formed. More classical methods like Dynamic Bayesian Networks can do this, but they cannot give data on the accuracy of their estimates and often struggle to incorporate new observations in real-time due to their high computational load. This paper presents a novel method, Performance Distribution Tracing (PDT), in which the distribution of the success rate is traced live. It uses a Dynamic Bayesian Network with continuous random variables as nodes. By tracing the success rate distribution, there is always data available on the accuracy of any success rate estimation. In addition, it makes it possible to combine data from similar/related skills to come up with a more informed estimate of success rates. This makes it possible to predict exercise success rates, providing both explainability and an accuracy indication, even when an exercise requires a combination of different skills to solve. And through the use of the beta distribution functions as conjugate priors, all distributions are available in analytical form, allowing efficient online updates upon new observations. Experiments have shown that the resulting estimates generally feel sufficiently accurate to end-users such that they accept recommendations based on them.
☆ PandaSkill -- Player Performance and Skill Rating in Esports: Application to League of Legends
To take the esports scene to the next level, we introduce PandaSkill, a framework for assessing player performance and skill rating. Traditional rating systems like Elo and TrueSkill often overlook individual contributions and face challenges in professional esports due to limited game data and fragmented competitive scenes. PandaSkill leverages machine learning to estimate in-game player performance from individual player statistics. Each in-game role is modeled independently, ensuring a fair comparison between them. Then, using these performance scores, PandaSkill updates the player skill ratings using the Bayesian framework OpenSkill in a free-for-all setting. In this setting, skill ratings are updated solely based on performance scores rather than game outcomes, hightlighting individual contributions. To address the challenge of isolated rating pools that hinder cross-regional comparisons, PandaSkill introduces a dual-rating system that combines players' regional ratings with a meta-rating representing each region's overall skill level. Applying PandaSkill to five years of professional League of Legends matches worldwide, we show that our method produces skill ratings that better predict game outcomes and align more closely with expert opinions compared to existing methods.
☆ Virtual Nodes Improve Long-term Traffic Prediction
Effective traffic prediction is a cornerstone of intelligent transportation systems, enabling precise forecasts of traffic flow, speed, and congestion. While traditional spatio-temporal graph neural networks (ST-GNNs) have achieved notable success in short-term traffic forecasting, their performance in long-term predictions remains limited. This challenge arises from over-squashing problem, where bottlenecks and limited receptive fields restrict information flow and hinder the modeling of global dependencies. To address these challenges, this study introduces a novel framework that incorporates virtual nodes, which are additional nodes added to the graph and connected to existing nodes, in order to aggregate information across the entire graph within a single GNN layer. Our proposed model incorporates virtual nodes by constructing a semi-adaptive adjacency matrix. This matrix integrates distance-based and adaptive adjacency matrices, allowing the model to leverage geographical information while also learning task-specific features from data. Experimental results demonstrate that the inclusion of virtual nodes significantly enhances long-term prediction accuracy while also improving layer-wise sensitivity to mitigate the over-squashing problem. Virtual nodes also offer enhanced explainability by focusing on key intersections and high-traffic areas, as shown by the visualization of their adjacency matrix weights on road network heat maps. Our advanced approach enhances the understanding and management of urban traffic systems, making it particularly well-suited for real-world applications.
☆ Adaptive Spatiotemporal Augmentation for Improving Dynamic Graph Learning ICASSP 2025
Dynamic graph augmentation is used to improve the performance of dynamic GNNs. Most methods assume temporal locality, meaning that recent edges are more influential than earlier edges. However, for temporal changes in edges caused by random noise, overemphasizing recent edges while neglecting earlier ones may lead to the model capturing noise. To address this issue, we propose STAA (SpatioTemporal Activity-Aware Random Walk Diffusion). STAA identifies nodes likely to have noisy edges in spatiotemporal dimensions. Spatially, it analyzes critical topological positions through graph wavelet coefficients. Temporally, it analyzes edge evolution through graph wavelet coefficient change rates. Then, random walks are used to reduce the weights of noisy edges, deriving a diffusion matrix containing spatiotemporal information as an augmented adjacency matrix for dynamic GNN learning. Experiments on multiple datasets show that STAA outperforms other dynamic graph augmentation methods in node classification and link prediction tasks.
comment: 2025 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2025)
☆ RichSpace: Enriching Text-to-Video Prompt Space via Text Embedding Interpolation
Text-to-video generation models have made impressive progress, but they still struggle with generating videos with complex features. This limitation often arises from the inability of the text encoder to produce accurate embeddings, which hinders the video generation model. In this work, we propose a novel approach to overcome this challenge by selecting the optimal text embedding through interpolation in the embedding space. We demonstrate that this method enables the video generation model to produce the desired videos. Additionally, we introduce a simple algorithm using perpendicular foot embeddings and cosine similarity to identify the optimal interpolation embedding. Our findings highlight the importance of accurate text embeddings and offer a pathway for improving text-to-video generation performance.
☆ Aneumo: A Large-Scale Comprehensive Synthetic Dataset of Aneurysm Hemodynamics
Intracranial aneurysm (IA) is a common cerebrovascular disease that is usually asymptomatic but may cause severe subarachnoid hemorrhage (SAH) if ruptured. Although clinical practice is usually based on individual factors and morphological features of the aneurysm, its pathophysiology and hemodynamic mechanisms remain controversial. To address the limitations of current research, this study constructed a comprehensive hemodynamic dataset of intracranial aneurysms. The dataset is based on 466 real aneurysm models, and 10,000 synthetic models were generated by resection and deformation operations, including 466 aneurysm-free models and 9,534 deformed aneurysm models. The dataset also provides medical image-like segmentation mask files to support insightful analysis. In addition, the dataset contains hemodynamic data measured at eight steady-state flow rates (0.001 to 0.004 kg/s), including critical parameters such as flow velocity, pressure, and wall shear stress, providing a valuable resource for investigating aneurysm pathogenesis and clinical prediction. This dataset will help advance the understanding of the pathologic features and hemodynamic mechanisms of intracranial aneurysms and support in-depth research in related fields. Dataset hosted at https://github.com/Xigui-Li/Aneumo.
☆ Explainable artificial intelligence (XAI): from inherent explainability to large language models
Artificial Intelligence (AI) has continued to achieve tremendous success in recent times. However, the decision logic of these frameworks is often not transparent, making it difficult for stakeholders to understand, interpret or explain their behavior. This limitation hinders trust in machine learning systems and causes a general reluctance towards their adoption in practical applications, particularly in mission-critical domains like healthcare and autonomous driving. Explainable AI (XAI) techniques facilitate the explainability or interpretability of machine learning models, enabling users to discern the basis of the decision and possibly avert undesirable behavior. This comprehensive survey details the advancements of explainable AI methods, from inherently interpretable models to modern approaches for achieving interpretability of various black box models, including large language models (LLMs). Additionally, we review explainable AI techniques that leverage LLM and vision-language model (VLM) frameworks to automate or improve the explainability of other machine learning models. The use of LLM and VLM as interpretability methods particularly enables high-level, semantically meaningful explanations of model decisions and behavior. Throughout the paper, we highlight the scientific principles, strengths and weaknesses of state-of-the-art methods and outline different areas of improvement. Where appropriate, we also present qualitative and quantitative comparison results of various methods to show how they compare. Finally, we discuss the key challenges of XAI and directions for future research.
☆ AIRCHITECT v2: Learning the Hardware Accelerator Design Space through Unified Representations DATE 2025
Design space exploration (DSE) plays a crucial role in enabling custom hardware architectures, particularly for emerging applications like AI, where optimized and specialized designs are essential. With the growing complexity of deep neural networks (DNNs) and the introduction of advanced foundational models (FMs), the design space for DNN accelerators is expanding at an exponential rate. Additionally, this space is highly non-uniform and non-convex, making it increasingly difficult to navigate and optimize. Traditional DSE techniques rely on search-based methods, which involve iterative sampling of the design space to find the optimal solution. However, this process is both time-consuming and often fails to converge to the global optima for such design spaces. Recently, AIrchitect v1, the first attempt to address the limitations of search-based techniques, transformed DSE into a constant-time classification problem using recommendation networks. In this work, we propose AIrchitect v2, a more accurate and generalizable learning-based DSE technique applicable to large-scale design spaces that overcomes the shortcomings of earlier approaches. Specifically, we devise an encoder-decoder transformer model that (a) encodes the complex design space into a uniform intermediate representation using contrastive learning and (b) leverages a novel unified representation blending the advantages of classification and regression to effectively explore the large DSE space without sacrificing accuracy. Experimental results evaluated on 10^5 real DNN workloads demonstrate that, on average, AIrchitect v2 outperforms existing techniques by 15% in identifying optimal design points. Furthermore, to demonstrate the generalizability of our method, we evaluate performance on unseen model workloads (LLMs) and attain a 1.7x improvement in inference latency on the identified hardware architecture.
comment: Accepted to DATE 2025
☆ MultiPruner: Balanced Structure Removal in Foundation Models
Recently, state-of-the-art approaches for pruning large pre-trained models (LPMs) have demonstrated that the training-free removal of non-critical residual blocks in Transformers is viable for reducing model size, achieving results that outperform previous training-free pruning approaches. Motivated by these findings, we extend BlockPruner (Zhong et al., 2024) and propose MultiPruner, a pruning approach that surpasses recent training-free pruning methods by adopting a multidimensional, iterative, fine-grained pruning strategy. In MultiPruner, multidimensional pruning reinstates the structural balance in block-pruned models by sequentially compressing along three dimensions: i) residual blocks, ii) channels of multilayer perceptrons (MLP), and iii) attention heads. This solution enhances zero-shot accuracy on downstream tasks compared to other techniques while improving model compression ratios, producing compressed models with fewer computing and memory requirements. Extensive experiments demonstrate the advantages of the proposed method across various large pre-trained models. The code and pruning configurations are available at https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning.
☆ Client-Centric Federated Adaptive Optimization
Federated Learning (FL) is a distributed learning paradigm where clients collaboratively train a model while keeping their own data private. With an increasing scale of clients and models, FL encounters two key challenges, client drift due to a high degree of statistical/system heterogeneity, and lack of adaptivity. However, most existing FL research is based on unrealistic assumptions that virtually ignore system heterogeneity. In this paper, we propose Client-Centric Federated Adaptive Optimization, which is a class of novel federated adaptive optimization approaches. We enable several features in this framework such as arbitrary client participation, asynchronous server aggregation, and heterogeneous local computing, which are ubiquitous in real-world FL systems but are missed in most existing works. We provide a rigorous convergence analysis of our proposed framework for general nonconvex objectives, which is shown to converge with the best-known rate. Extensive experiments show that our approaches consistently outperform the baseline by a large margin across benchmarks.
☆ A Multi-Scale Feature Extraction and Fusion Deep Learning Method for Classification of Wheat Diseases
Wheat is an important source of dietary fiber and protein that is negatively impacted by a number of risks to its growth. The difficulty of identifying and classifying wheat diseases is discussed with an emphasis on wheat loose smut, leaf rust, and crown and root rot. Addressing conditions like crown and root rot, this study introduces an innovative approach that integrates multi-scale feature extraction with advanced image segmentation techniques to enhance classification accuracy. The proposed method uses neural network models Xception, Inception V3, and ResNet 50 to train on a large wheat disease classification dataset 2020 in conjunction with an ensemble of machine vision classifiers, including voting and stacking. The study shows that the suggested methodology has a superior accuracy of 99.75% in the classification of wheat diseases when compared to current state-of-the-art approaches. A deep learning ensemble model Xception showed the highest accuracy.
☆ HEART: Achieving Timely Multi-Model Training for Vehicle-Edge-Cloud-Integrated Hierarchical Federated Learning
The rapid growth of AI-enabled Internet of Vehicles (IoV) calls for efficient machine learning (ML) solutions that can handle high vehicular mobility and decentralized data. This has motivated the emergence of Hierarchical Federated Learning over vehicle-edge-cloud architectures (VEC-HFL). Nevertheless, one aspect which is underexplored in the literature on VEC-HFL is that vehicles often need to execute multiple ML tasks simultaneously, where this multi-model training environment introduces crucial challenges. First, improper aggregation rules can lead to model obsolescence and prolonged training times. Second, vehicular mobility may result in inefficient data utilization by preventing the vehicles from returning their models to the network edge. Third, achieving a balanced resource allocation across diverse tasks becomes of paramount importance as it majorly affects the effectiveness of collaborative training. We take one of the first steps towards addressing these challenges via proposing a framework for multi-model training in dynamic VEC-HFL with the goal of minimizing global training latency while ensuring balanced training across various tasks-a problem that turns out to be NP-hard. To facilitate timely model training, we introduce a hybrid synchronous-asynchronous aggregation rule. Building on this, we present a novel method called Hybrid Evolutionary And gReedy allocaTion (HEART). The framework operates in two stages: first, it achieves balanced task scheduling through a hybrid heuristic approach that combines improved Particle Swarm Optimization (PSO) and Genetic Algorithms (GA); second, it employs a low-complexity greedy algorithm to determine the training priority of assigned tasks on vehicles. Experiments on real-world datasets demonstrate the superiority of HEART over existing methods.
comment: 14 pages, 6 figures,
☆ Statistical Inference for Sequential Feature Selection after Domain Adaptation
In high-dimensional regression, feature selection methods, such as sequential feature selection (SeqFS), are commonly used to identify relevant features. When data is limited, domain adaptation (DA) becomes crucial for transferring knowledge from a related source domain to a target domain, improving generalization performance. Although SeqFS after DA is an important task in machine learning, none of the existing methods can guarantee the reliability of its results. In this paper, we propose a novel method for testing the features selected by SeqFS-DA. The main advantage of the proposed method is its capability to control the false positive rate (FPR) below a significance level $\alpha$ (e.g., 0.05). Additionally, a strategic approach is introduced to enhance the statistical power of the test. Furthermore, we provide extensions of the proposed method to SeqFS with model selection criteria including AIC, BIC, and adjusted R-squared. Extensive experiments are conducted on both synthetic and real-world datasets to validate the theoretical results and demonstrate the proposed method's superior performance.
☆ Steering Large Language Models with Feature Guided Activation Additions
Effective and reliable control over large language model (LLM) behavior is a significant challenge. While activation steering methods, which add steering vectors to a model's hidden states, are a promising approach, existing techniques often lack precision and interpretability in how they influence model outputs. We introduce Feature Guided Activation Additions (FGAA), a novel activation steering method that leverages insights from Contrastive Activation Addition (CAA) and Sparse Autoencoder-Targeted Steering (SAE-TS). By operating in the latent space of a Sparse Autoencoder (SAE) and employing optimization techniques to select desired SAE features, FGAA constructs precise steering vectors that provide better steering effects while maintaining coherence of steered model outputs. In this regard, evaluations on Gemma-2-2B and Gemma-2-9B models across various steering tasks demonstrate that FGAA outperforms existing steering methods of CAA, SAE decoder steering, and SAE-TS. Our results also highlight important trade-offs between steering scale and general model capabilities that are consistent across all tested steering methods.
comment: 7 maintext pages, 14 appendix pages
☆ Study on a Fast Solver for Combined Field Integral Equations of 3D Conducting Bodies Based on Graph Neural Networks
In this paper, we present a graph neural networks (GNNs)-based fast solver (GraphSolver) for solving combined field integral equations (CFIEs) of 3D conducting bodies. Rao-Wilton-Glisson (RWG) basis functions are employed to discretely and accurately represent the geometry of 3D conducting bodies. A concise and informative graph representation is then constructed by treating each RWG function as a node in the graph, enabling the flow of current between nodes. With the transformed graphs, GraphSolver is developed to directly predict real and imaginary parts of the x, y and z components of the surface current densities at each node (RWG function). Numerical results demonstrate the efficacy of GraphSolver in solving CFIEs for 3D conducting bodies with varying levels of geometric complexity, including basic 3D targets, missile-shaped targets, and airplane-shaped targets.
comment: 10 pages,11 figures
☆ SLIM: Sim-to-Real Legged Instructive Manipulation via Long-Horizon Visuomotor Learning
We present a low-cost quadruped manipulation system that solves long-horizon real-world tasks, trained by reinforcement learning purely in simulation. The system comprises 1) a hierarchical design of a high-level policy for visual-mobile manipulation following instructions, and a low-level policy for quadruped movement and limb-control, 2) a progressive policy expansion approach for solving the long-horizon task together with a teacher-student framework for efficient high-level training of the high-level visuomotor policy, and 3) a suite of techniques for minimizing sim-to-real gaps. With budget-friendly but limited reliability and performance hardware, and just one wrist-mounted RGB camera, the entire system fully trained in simulation achieves high success rates for long horizon tasks involving search, move, grasp, and drop-into, with fluid sim-to-real transfer in a wide variety of indoor and outdoor scenes and lighting conditions.Extensive real-world evaluations show that on the long horizon mobile manipulation tasks, our system achieves good performance when transferred to real both in terms of task success rate and execution efficiency. Finally, we discuss the necessity of our sim-to-real techniques for legged mobile manipulation, and show their ablation performance.
☆ SBAMDT: Bayesian Additive Decision Trees with Adaptive Soft Semi-multivariate Split Rules
Bayesian Additive Regression Trees [BART, Chipman et al., 2010] have gained significant popularity due to their remarkable predictive performance and ability to quantify uncertainty. However, standard decision tree models rely on recursive data splits at each decision node, using deterministic decision rules based on a single univariate feature. This approach limits their ability to effectively capture complex decision boundaries, particularly in scenarios involving multiple features, such as spatial domains, or when transitions are either sharp or smoothly varying. In this paper, we introduce a novel probabilistic additive decision tree model that employs a soft split rule. This method enables highly flexible splits that leverage both univariate and multivariate features, while also respecting the geometric properties of the feature domain. Notably, the probabilistic split rule adapts dynamically across decision nodes, allowing the model to account for varying levels of smoothness in the regression function. We demonstrate the utility of the proposed model through comparisons with existing tree-based models on synthetic datasets and a New York City education dataset.
☆ FoundationStereo: Zero-Shot Stereo Matching
Tremendous progress has been made in deep stereo matching to excel on benchmark datasets through per-domain fine-tuning. However, achieving strong zero-shot generalization - a hallmark of foundation models in other computer vision tasks - remains challenging for stereo matching. We introduce FoundationStereo, a foundation model for stereo depth estimation designed to achieve strong zero-shot generalization. To this end, we first construct a large-scale (1M stereo pairs) synthetic training dataset featuring large diversity and high photorealism, followed by an automatic self-curation pipeline to remove ambiguous samples. We then design a number of network architecture components to enhance scalability, including a side-tuning feature backbone that adapts rich monocular priors from vision foundation models to mitigate the sim-to-real gap, and long-range context reasoning for effective cost volume filtering. Together, these components lead to strong robustness and accuracy across domains, establishing a new standard in zero-shot stereo depth estimation.
☆ Sparse Binary Representation Learning for Knowledge Tracing
Knowledge tracing (KT) models aim to predict students' future performance based on their historical interactions. Most existing KT models rely exclusively on human-defined knowledge concepts (KCs) associated with exercises. As a result, the effectiveness of these models is highly dependent on the quality and completeness of the predefined KCs. Human errors in labeling and the cost of covering all potential underlying KCs can limit model performance. In this paper, we propose a KT model, Sparse Binary Representation KT (SBRKT), that generates new KC labels, referred to as auxiliary KCs, which can augment the predefined KCs to address the limitations of relying solely on human-defined KCs. These are learned through a binary vector representation, where each bit indicates the presence (one) or absence (zero) of an auxiliary KC. The resulting discrete representation allows these auxiliary KCs to be utilized in training any KT model that incorporates KCs. Unlike pre-trained dense embeddings, which are limited to models designed to accept such vectors, our discrete representations are compatible with both classical models, such as Bayesian Knowledge Tracing (BKT), and modern deep learning approaches. To generate this discrete representation, SBRKT employs a binarization method that learns a sparse representation, fully trainable via stochastic gradient descent. Additionally, SBRKT incorporates a recurrent neural network (RNN) to capture temporal dynamics and predict future student responses by effectively combining the auxiliary and predefined KCs. Experimental results demonstrate that SBRKT outperforms the tested baselines on several datasets and achieves competitive performance on others. Furthermore, incorporating the learned auxiliary KCs consistently enhances the performance of BKT across all tested datasets.
♻ ☆ A Fairness-Oriented Reinforcement Learning Approach for the Operation and Control of Shared Micromobility Services
As Machine Learning grows in popularity across various fields, equity has become a key focus for the AI community. However, fairness-oriented approaches are still underexplored in smart mobility. Addressing this gap, our study investigates the balance between performance optimization and algorithmic fairness in shared micromobility services providing a novel framework based on Reinforcement Learning. Exploiting Q-learning, the proposed methodology achieves equitable outcomes in terms of the Gini index across different areas characterized by their distance from central hubs. Through vehicle rebalancing, the provided scheme maximizes operator performance while ensuring fairness principles for users, reducing iniquity by up to 85% while only increasing costs by 30% (w.r.t. applying no equity adjustment). A case study with synthetic data validates our insights and highlights the importance of fairness in urban micromobility (source code: https://github.com/mcederle99/FairMSS.git).
comment: 6 pages, 3 figures, accepted at the 2025 American Control Conference (ACC) on January 17th, 2025
♻ ☆ On Learning Informative Trajectory Embeddings for Imitation, Classification and Regression AAMAS 2025
In real-world sequential decision making tasks like autonomous driving, robotics, and healthcare, learning from observed state-action trajectories is critical for tasks like imitation, classification, and clustering. For example, self-driving cars must replicate human driving behaviors, while robots and healthcare systems benefit from modeling decision sequences, whether or not they come from expert data. Existing trajectory encoding methods often focus on specific tasks or rely on reward signals, limiting their ability to generalize across domains and tasks. Inspired by the success of embedding models like CLIP and BERT in static domains, we propose a novel method for embedding state-action trajectories into a latent space that captures the skills and competencies in the dynamic underlying decision-making processes. This method operates without the need for reward labels, enabling better generalization across diverse domains and tasks. Our contributions are threefold: (1) We introduce a trajectory embedding approach that captures multiple abilities from state-action data. (2) The learned embeddings exhibit strong representational power across downstream tasks, including imitation, classification, clustering, and regression. (3) The embeddings demonstrate unique properties, such as controlling agent behaviors in IQ-Learn and an additive structure in the latent space. Experimental results confirm that our method outperforms traditional approaches, offering more flexible and powerful trajectory representations for various applications. Our code is available at https://github.com/Erasmo1015/vte.
comment: AAMAS 2025
♻ ☆ Stochastic gradient descent for streaming linear and rectified linear systems with adversarial corruptions
We propose SGD-exp, a stochastic gradient descent approach for linear and ReLU regressions under Massart noise (adversarial semi-random corruption model) for the fully streaming setting. We show novel nearly linear convergence guarantees of SGD-exp to the true parameter with up to $50\%$ Massart corruption rate, and with any corruption rate in the case of symmetric oblivious corruptions. This is the first convergence guarantee result for robust ReLU regression in the streaming setting, and it shows the improved convergence rate over previous robust methods for $L_1$ linear regression due to a choice of an exponentially decaying step size, known for its efficiency in practice. Our analysis is based on the drift analysis of a discrete stochastic process, which could also be interesting on its own.
comment: Submitted to a journal
♻ ☆ STPOTR: Simultaneous Human Trajectory and Pose Prediction Using a Non-Autoregressive Transformer for Robot Following Ahead
In this paper, we develop a neural network model to predict future human motion from an observed human motion history. We propose a non-autoregressive transformer architecture to leverage its parallel nature for easier training and fast, accurate predictions at test time. The proposed architecture divides human motion prediction into two parts: 1) the human trajectory, which is the hip joint 3D position over time and 2) the human pose which is the all other joints 3D positions over time with respect to a fixed hip joint. We propose to make the two predictions simultaneously, as the shared representation can improve the model performance. Therefore, the model consists of two sets of encoders and decoders. First, a multi-head attention module applied to encoder outputs improves human trajectory. Second, another multi-head self-attention module applied to encoder outputs concatenated with decoder outputs facilitates learning of temporal dependencies. Our model is well-suited for robotic applications in terms of test accuracy and speed, and compares favorably with respect to state-of-the-art methods. We demonstrate the real-world applicability of our work via the Robot Follow-Ahead task, a challenging yet practical case study for our proposed model.
♻ ☆ The Effect of Similarity Measures on Accurate Stability Estimates for Local Surrogate Models in Text-based Explainable AI
Recent work has investigated the vulnerability of local surrogate methods to adversarial perturbations on a machine learning (ML) model's inputs, where the explanation is manipulated while the meaning and structure of the original input remains similar under the complex model. Although weaknesses across many methods have been shown to exist, the reasons behind why remain little explored. Central to the concept of adversarial attacks on explainable AI (XAI) is the similarity measure used to calculate how one explanation differs from another. A poor choice of similarity measure can lead to erroneous conclusions on the efficacy of an XAI method. Too sensitive a measure results in exaggerated vulnerability, while too coarse understates its weakness. We investigate a variety of similarity measures designed for text-based ranked lists, including Kendall's Tau, Spearman's Footrule, and Rank-biased Overlap to determine how substantial changes in the type of measure or threshold of success affect the conclusions generated from common adversarial attack processes. Certain measures are found to be overly sensitive, resulting in erroneous estimates of stability.
comment: 11 pages, 8 Tables (Minor edits for clarity and grammar)
♻ ☆ High-Rank Irreducible Cartesian Tensor Decomposition and Bases of Equivariant Spaces
Irreducible Cartesian tensors (ICTs) play a crucial role in the design of equivariant graph neural networks, as well as in theoretical chemistry and chemical physics. Meanwhile, the design space of available linear operations on tensors that preserve symmetry presents a significant challenge. The ICT decomposition and a basis of this equivariant space are difficult to obtain for high-rank tensors. After decades of research, Bonvicini (2024) recently achieves an explicit ICT decomposition for $n=5$ with factorial time/space complexity. In this work we, for the first time, obtains decomposition matrices for ICTs up to rank $n=9$ with reduced and affordable complexity, by constructing what we call path matrices. The path matrices are obtained via performing chain-like contractions with Clebsch-Gordan matrices following the parentage scheme. We prove and leverage that the concatenation of path matrices is an orthonormal change-of-basis matrix between the Cartesian tensor product space and the spherical direct sum spaces. Furthermore, we identify a complete orthogonal basis for the equivariant space, rather than a spanning set (Pearce-Crump, 2023), through this path matrices technique. To the best of our knowledge, this is also the first analytic, rather than numerical, method for theoretically obtaining arbitrary rank orthogonal ICT decomposition matrices and orthogonal equivariant bases. We further extend our result to the arbitrary tensor product and direct sum spaces, enabling free design between different spaces while keeping symmetry. The Python code is available at https://github.com/ShihaoShao-GH/ICT-decomposition-and-equivariant-bases, where the $n=6,\dots,9$ ICT decomposition matrices are obtained in 1s, 3s, 11s, and 4m32s on 28-cores Intel(R) Xeon(R) Gold 6330 CPU @ 2.00GHz, respectively.
comment: 47 pages
♻ ☆ Generalized Multi-hop Traffic Pressure for Heterogeneous Traffic Perimeter Control
Perimeter control (PC) prevents loss of traffic network capacity due to congestion in urban areas. Homogeneous PC allows all access points to a protected region to have identical permitted inflow. However, homogeneous PC performs poorly when the congestion in the protected region is heterogeneous (e.g., imbalanced demand) since the homogeneous PC does not consider specific traffic conditions around each perimeter intersection. When the protected region has spatially heterogeneous congestion, one needs to modulate the perimeter inflow rate to be higher near low-density regions and vice versa for high-density regions. A na\"ive approach is to leverage 1-hop traffic pressure to measure traffic condition around perimeter intersections, but such metric is too spatially myopic for PC. To address this issue, we formulate multi-hop downstream pressure grounded on Markov chain theory, which ``looks deeper'' into the protected region beyond perimeter intersections. In addition, we formulate a two-stage hierarchical control scheme that can leverage this novel multi-hop pressure to redistribute the total permitted inflow provided by a pre-trained deep reinforcement learning homogeneous control policy. Experimental results show that our heterogeneous PC approaches leveraging multi-hop pressure significantly outperform homogeneous PC in scenarios where the origin-destination flows are highly imbalanced with high spatial heterogeneity. Moveover, our approach is shown to be robust against turning ratio uncertainties by a sensitivity analysis.
comment: 11 pages main body, 13 figures, journal paper
♻ ☆ Two Types of AI Existential Risk: Decisive and Accumulative
The conventional discourse on existential risks (x-risks) from AI typically focuses on abrupt, dire events caused by advanced AI systems, particularly those that might achieve or surpass human-level intelligence. These events have severe consequences that either lead to human extinction or irreversibly cripple human civilization to a point beyond recovery. This discourse, however, often neglects the serious possibility of AI x-risks manifesting incrementally through a series of smaller yet interconnected disruptions, gradually crossing critical thresholds over time. This paper contrasts the conventional "decisive AI x-risk hypothesis" with an "accumulative AI x-risk hypothesis." While the former envisions an overt AI takeover pathway, characterized by scenarios like uncontrollable superintelligence, the latter suggests a different causal pathway to existential catastrophes. This involves a gradual accumulation of critical AI-induced threats such as severe vulnerabilities and systemic erosion of economic and political structures. The accumulative hypothesis suggests a boiling frog scenario where incremental AI risks slowly converge, undermining societal resilience until a triggering event results in irreversible collapse. Through systems analysis, this paper examines the distinct assumptions differentiating these two hypotheses. It is then argued that the accumulative view can reconcile seemingly incompatible perspectives on AI risks. The implications of differentiating between these causal pathways -- the decisive and the accumulative -- for the governance of AI as well as long-term AI safety are discussed.
comment: Journal article for Philosophical Studies
♻ ☆ Counterfactual Uncertainty Quantification of Factual Estimand of Efficacy from Before-and-After Treatment Repeated Measures Randomized Controlled Trials
The ideal estimand for comparing treatment $Rx$ with a control $C$ is the $\textit{counterfactual}$ efficacy $Rx:C$, the expected differential outcome between $Rx$ and $C$ if each patient were given $\textit{both}$. One hundred years ago, Neyman (1923a) proved unbiased $\textit{point estimation}$ of counterfactual efficacy from designed $\textit{factual}$ experiments is achievable. But he left the determination of how much might the counterfactual variance of this estimate be smaller than the factual variance as an open challenge. This article shows $\textit{counterfactual}$ uncertainty quantification (CUQ), quantifying uncertainty for factual point estimates but in a counterfactual setting, is achievable for Randomized Controlled Trials (RCTs) with Before-and-After treatment Repeated Measures which are common in many therapeutic areas. We achieve CUQ whose variability is typically smaller than factual UQ by creating a new statistical modeling principle called ETZ. We urge caution in using predictors with measurement error which violates standard regression assumption and can cause $\textit{attenuation}$ in estimating treatment effects. Fortunately, we prove that, for traditional medicine in general, and for targeted therapy with efficacy defined as averaged over the population, counterfactual point estimation is unbiased. However, for both Real Human and Digital Twins approaches, predicting treatment effect in $\textit{subgroups}$ may have attenuation bias.
♻ ☆ Automated Machine Learning for Remaining Useful Life Predictions
Being able to predict the remaining useful life (RUL) of an engineering system is an important task in prognostics and health management. Recently, data-driven approaches to RUL predictions are becoming prevalent over model-based approaches since no underlying physical knowledge of the engineering system is required. Yet, this just replaces required expertise of the underlying physics with machine learning (ML) expertise, which is often also not available. Automated machine learning (AutoML) promises to build end-to-end ML pipelines automatically enabling domain experts without ML expertise to create their own models. This paper introduces AutoRUL, an AutoML-driven end-to-end approach for automatic RUL predictions. AutoRUL combines fine-tuned standard regression methods to an ensemble with high predictive power. By evaluating the proposed method on eight real-world and synthetic datasets against state-of-the-art hand-crafted models, we show that AutoML provides a viable alternative to hand-crafted data-driven RUL predictions. Consequently, creating RUL predictions can be made more accessible for domain experts using AutoML by eliminating ML expertise from data-driven model construction.
comment: Manuscript accepted at IEEE SMC 2023
♻ ☆ Enhancing reliability in prediction intervals using point forecasters: Heteroscedastic Quantile Regression and Width-Adaptive Conformal Inference
Constructing prediction intervals for time series forecasting is challenging, particularly when practitioners rely solely on point forecasts. While previous research has focused on creating increasingly efficient intervals, we argue that standard measures alone are inadequate. Beyond efficiency, prediction intervals must adapt their width based on the difficulty of the prediction while preserving coverage regardless of complexity. To address these issues, we propose combining Heteroscedastic Quantile Regression (HQR) with Width-Adaptive Conformal Inference (WACI). This integrated procedure guarantees theoretical coverage and enables interval widths to vary with predictive uncertainty. We assess its performance using both a synthetic example and a real world Electricity Price Forecasting scenario. Our results show that this combined approach meets or surpasses typical benchmarks for validity and efficiency, while also fulfilling important yet often overlooked practical requirements.
♻ ☆ Can machine learning unlock new insights into high-frequency trading?
We design and train machine learning models to capture the nonlinear interactions between financial market dynamics and high-frequency trading (HFT) activity. In doing so, we introduce new metrics to identify liquidity-demanding and -supplying HFT strategies. Both types of HFT strategies increase activity in response to information events and decrease it when trading speed is restricted, with liquidity-supplying strategies demonstrating greater responsiveness. Liquidity-demanding HFT is positively linked with latency arbitrage opportunities, whereas liquidity-supplying HFT is negatively related, aligning with theoretical expectations. Our metrics have implications for understanding the information production process in financial markets.
comment: 66 pages, 6 figures, 11 tables
♻ ☆ Large Language Model is Secretly a Protein Sequence Optimizer
We consider the protein sequence engineering problem, which aims to find protein sequences with high fitness levels, starting from a given wild-type sequence. Directed evolution has been a dominating paradigm in this field which has an iterative process to generate variants and select via experimental feedback. We demonstrate large language models (LLMs), despite being trained on massive texts, are secretly protein sequence optimizers. With a directed evolutionary method, LLM can perform protein engineering through Pareto and experiment-budget constrained optimization, demonstrating success on both synthetic and experimental fitness landscapes.
comment: Preprint
♻ ☆ Bridging Diversity and Uncertainty in Active learning with Self-Supervised Pre-Training ICLR 2024
This study addresses the integration of diversity-based and uncertainty-based sampling strategies in active learning, particularly within the context of self-supervised pre-trained models. We introduce a straightforward heuristic called TCM that mitigates the cold start problem while maintaining strong performance across various data levels. By initially applying TypiClust for diversity sampling and subsequently transitioning to uncertainty sampling with Margin, our approach effectively combines the strengths of both strategies. Our experiments demonstrate that TCM consistently outperforms existing methods across various datasets in both low and high data regimes.
comment: Accepted at ICLR 2024 Workshop on Practical Machine Learning for Low Resource Settings (PML4LRS)
♻ ☆ Optimal Quantization for Matrix Multiplication
Recent work in machine learning community proposed multiple methods for performing lossy compression (quantization) of large matrices. This quantization is important for accelerating matrix multiplication (main component of large language models), which is often bottlenecked by the speed of loading these matrices from memory. Unlike classical vector quantization and rate-distortion theory, the goal of these new compression algorithms is to be able to approximate not the matrices themselves, but their matrix product. Specifically, given a pair of real matrices $A,B$ an encoder (compressor) is applied to each of them independently producing descriptions with $R$ bits per entry. These representations subsequently are used by the decoder to estimate matrix product $A^\top B$. In this work, we provide a non-asymptotic lower bound on the mean squared error of this approximation (as a function of rate $R$) for the case of matrices $A,B$ with iid Gaussian entries. Algorithmically, we construct a universal quantizer based on nested lattices with an explicit guarantee of approximation error for any (non-random) pair of matrices $A$, $B$ in terms of only Frobenius norms $\|\bar{A}\|_F, \|\bar{B}\|_F$ and $\|\bar{A}^\top \bar{B}\|_F$, where $\bar{A},\bar{B}$ are versions of $A,B$ with zero-centered columns, respectively. For iid Gaussian matrices our quantizer achieves the lower bound and is, thus, asymptotically optimal. A practical low-complexity version of our quantizer achieves performance quite close to optimal. In addition, we derive rate-distortion function for matrix multiplication of iid Gaussian matrices, which exhibits an interesting phase-transition at $R\approx 0.906$ bit/entry.
♻ ☆ DPCL-Diff: The Temporal Knowledge Graph Reasoning Based on Graph Node Diffusion Model with Dual-Domain Periodic Contrastive Learning
Temporal knowledge graph (TKG) reasoning that infers future missing facts is an essential and challenging task. Predicting future events typically relies on closely related historical facts, yielding more accurate results for repetitive or periodic events. However, for future events with sparse historical interactions, the effectiveness of this method, which focuses on leveraging high-frequency historical information, diminishes. Recently, the capabilities of diffusion models in image generation have opened new opportunities for TKG reasoning. Therefore, we propose a graph node diffusion model with dual-domain periodic contrastive learning (DPCL-Diff). Graph node diffusion model (GNDiff) introduces noise into sparsely related events to simulate new events, generating high-quality data that better conforms to the actual distribution. This generative mechanism significantly enhances the model's ability to reason about new events. Additionally, the dual-domain periodic contrastive learning (DPCL) maps periodic and non-periodic event entities to Poincar\'e and Euclidean spaces, leveraging their characteristics to distinguish similar periodic events effectively. Experimental results on four public datasets demonstrate that DPCL-Diff significantly outperforms state-of-the-art TKG models in event prediction, demonstrating our approach's effectiveness. This study also investigates the combined effectiveness of GNDiff and DPCL in TKG tasks.
comment: 11 pages, 2 figures
♻ ☆ Jailbreaking as a Reward Misspecification Problem
The widespread adoption of large language models (LLMs) has raised concerns about their safety and reliability, particularly regarding their vulnerability to adversarial attacks. In this paper, we propose a novel perspective that attributes this vulnerability to reward misspecification during the alignment process. This misspecification occurs when the reward function fails to accurately capture the intended behavior, leading to misaligned model outputs. We introduce a metric ReGap to quantify the extent of reward misspecification and demonstrate its effectiveness and robustness in detecting harmful backdoor prompts. Building upon these insights, we present ReMiss, a system for automated red teaming that generates adversarial prompts in a reward-misspecified space. ReMiss achieves state-of-the-art attack success rates on the AdvBench benchmark against various target aligned LLMs while preserving the human readability of the generated prompts. Furthermore, these attacks on open-source models demonstrate high transferability to closed-source models like GPT-4o and out-of-distribution tasks from HarmBench. Detailed analysis highlights the unique advantages of the proposed reward misspecification objective compared to previous methods, offering new insights for improving LLM safety and robustness.
♻ ☆ Boosting drug-disease association prediction for drug repositioning via dual-feature extraction and cross-dual-domain decoding
The extraction of biomedical data has significant academic and practical value in contemporary biomedical sciences. In recent years, drug repositioning, a cost-effective strategy for drug development by discovering new indications for approved drugs, has gained increasing attention. However, many existing drug repositioning methods focus on mining information from adjacent nodes in biomedical networks without considering the potential inter-relationships between the feature spaces of drugs and diseases. This can lead to inaccurate encoding, resulting in biased mined drug-disease association information. To address this limitation, we propose a new model called Dual-Feature Drug Repurposing Neural Network (DFDRNN). DFDRNN allows the mining of two features (similarity and association) from the drug-disease biomedical networks to encode drugs and diseases. A self-attention mechanism is utilized to extract neighbor feature information. It incorporates two dual-feature extraction modules: the single-domain dual-feature extraction (SDDFE) module for extracting features within a single domain (drugs or diseases) and the cross-domain dual-feature extraction (CDDFE) module for extracting features across domains. By utilizing these modules, we ensure more appropriate encoding of drugs and diseases. A cross-dual-domain decoder is also designed to predict drug-disease associations in both domains. Our proposed DFDRNN model outperforms six state-of-the-art methods on four benchmark datasets, achieving an average AUROC of 0.946 and an average AUPR of 0.597. Case studies on two diseases show that the proposed DFDRNN model can be applied in real-world scenarios, demonstrating its significant potential in drug repositioning.
♻ ☆ Bandit on the Hunt: Dynamic Crawling for Cyber Threat Intelligence
Public information contains valuable Cyber Threat Intelligence (CTI) that is used to prevent attacks in the future. Ideally, the learnings from previous attacks help to mitigate all those that follow. While there are standards for sharing this information, much of it is shared in non-standardized news articles or blog posts. It is a time-consuming task to monitor online sources for threats and even then, one can never be sure, to use the right sources. Current research propose extractors of Indicators of Compromise from known sources, while the identification of new sources is rarely considered. This paper proposes a focused crawler focused on the CTI domain based on multi-armed bandit ( MAB) and different crawling strategies. It uses SBERT to identify relevant documents, while dynamically adapt its crawling path. We propose a system called ThreatCrawl, which achieve a harvest rate of over 25% and is able to expand its used seed by over 300%, while retaining focus on the topic at hand. In addition, this crawler identified previously unknown but highly relevant overview pages, datasets, and domains.
comment: 6 pages, 1 figure, 3 tables
♻ ☆ How Redundant Is the Transformer Stack in Speech Representation Models? ICASSP 2025
Self-supervised speech representation models, particularly those leveraging transformer architectures, have demonstrated remarkable performance across various tasks such as speech recognition, speaker identification, and emotion detection. Recent studies on transformer models revealed a high redundancy between layers and the potential for significant pruning, which we will investigate here for transformer-based speech representation models. We perform a detailed analysis of layer similarity in speech representation models using three similarity metrics: cosine similarity, centered kernel alignment, and mutual nearest-neighbor alignment. Our findings reveal a block-like structure of high similarity, suggesting two main processing steps and significant redundancy of layers. We demonstrate the effectiveness of pruning transformer-based speech representation models without the need for post-training, achieving up to 40% reduction in transformer layers while maintaining over 95% of the model's predictive capacity. Furthermore, we employ a knowledge distillation method to substitute the entire transformer stack with mimicking layers, reducing the network size 95-98% and the inference time by up to 94%. This substantial decrease in computational load occurs without considerable performance loss, suggesting that the transformer stack is almost completely redundant for downstream applications of speech representation models.
comment: To appear at ICASSP 2025 (excluding appendix)
♻ ☆ LLM-Based Routing in Mixture of Experts: A Novel Framework for Trading AAAI 2025
Recent advances in deep learning and large language models (LLMs) have facilitated the deployment of the mixture-of-experts (MoE) mechanism in the stock investment domain. While these models have demonstrated promising trading performance, they are often unimodal, neglecting the wealth of information available in other modalities, such as textual data. Moreover, the traditional neural network-based router selection mechanism fails to consider contextual and real-world nuances, resulting in suboptimal expert selection. To address these limitations, we propose LLMoE, a novel framework that employs LLMs as the router within the MoE architecture. Specifically, we replace the conventional neural network-based router with LLMs, leveraging their extensive world knowledge and reasoning capabilities to select experts based on historical price data and stock news. This approach provides a more effective and interpretable selection mechanism. Our experiments on multimodal real-world stock datasets demonstrate that LLMoE outperforms state-of-the-art MoE models and other deep neural network approaches. Additionally, the flexible architecture of LLMoE allows for easy adaptation to various downstream tasks.
comment: Accepted by AAAI 2025 Workshop on AI for Social Impact - Bridging Innovations in Finance, Social Media, and Crime Prevention
♻ ☆ Multi-stage Deep Learning Artifact Reduction for Pallel-beam Computed Tomography
Computed Tomography (CT) using synchrotron radiation is a powerful technique that, compared to lab-CT techniques, boosts high spatial and temporal resolution while also providing access to a range of contrast-formation mechanisms. The acquired projection data is typically processed by a computational pipeline composed of multiple stages. Artifacts introduced during data acquisition can propagate through the pipeline, and degrade image quality in the reconstructed images. Recently, deep learning has shown significant promise in enhancing image quality for images representing scientific data. This success has driven increasing adoption of deep learning techniques in CT imaging. Various approaches have been proposed to incorporate deep learning into computational pipelines, but each has limitations in addressing artifacts effectively and efficiently in synchrotron CT, either in properly addressing the specific artifacts, or in computational efficiency. Recognizing these challenges, we introduce a novel method that incorporates separate deep learning models at each stage of the tomography pipeline-projection, sinogram, and reconstruction-to address specific artifacts locally in a data-driven way. Our approach includes bypass connections that feed both the outputs from previous stages and raw data to subsequent stages, minimizing the risk of error propagation. Extensive evaluations on both simulated and real-world datasets illustrate that our approach effectively reduces artifacts and outperforms comparison methods.
♻ ☆ Annealed Multiple Choice Learning: Overcoming limitations of Winner-takes-all with annealing NeurIPS 2024
We introduce Annealed Multiple Choice Learning (aMCL) which combines simulated annealing with MCL. MCL is a learning framework handling ambiguous tasks by predicting a small set of plausible hypotheses. These hypotheses are trained using the Winner-takes-all (WTA) scheme, which promotes the diversity of the predictions. However, this scheme may converge toward an arbitrarily suboptimal local minimum, due to the greedy nature of WTA. We overcome this limitation using annealing, which enhances the exploration of the hypothesis space during training. We leverage insights from statistical physics and information theory to provide a detailed description of the model training trajectory. Additionally, we validate our algorithm by extensive experiments on synthetic datasets, on the standard UCI benchmark, and on speech separation.
comment: NeurIPS 2024
♻ ☆ LLM360 K2: Building a 65B 360-Open-Source Large Language Model from Scratch
We detail the training of the LLM360 K2-65B model, scaling up our 360-degree OPEN SOURCE approach to the largest and most powerful models under project LLM360. While open-source LLMs continue to advance, the answer to "How are the largest LLMs trained?" remains unclear within the community. The implementation details for such high-capacity models are often protected due to business considerations associated with their high cost. This lack of transparency prevents LLM researchers from leveraging valuable insights from prior experience, e.g., "What are the best practices for addressing loss spikes?" The LLM360 K2 project addresses this gap by providing full transparency and access to resources accumulated during the training of LLMs at the largest scale. This report highlights key elements of the K2 project, including our first model, K2 DIAMOND, a 65 billion-parameter LLM that surpasses LLaMA-65B and rivals LLaMA2-70B, while requiring fewer FLOPs and tokens. We detail the implementation steps and present a longitudinal analysis of K2 DIAMOND's capabilities throughout its training process. We also outline ongoing projects such as TXT360, setting the stage for future models in the series. By offering previously unavailable resources, the K2 project also resonates with the 360-degree OPEN SOURCE principles of transparency, reproducibility, and accessibility, which we believe are vital in the era of resource-intensive AI research.
♻ ☆ BatchLLM: Optimizing Large Batched LLM Inference with Global Prefix Sharing and Throughput-oriented Token Batching
Large language models (LLMs) increasingly play an important role in a wide range of information processing and management tasks. Many of these tasks are performed in large batches or even offline, and the performance indictor for which is throughput. These tasks usually show the characteristic of prefix sharing, where different prompt input can partially show the common prefix. However, the existing LLM inference engines tend to optimize the streaming requests and show limitations of supporting the large batched tasks with the prefix sharing characteristic. The existing solutions use the LRU-based cache to reuse the KV context of common prefix between requests. The KV context that are about to be reused may prematurely evicted with the implicit cache management. Besides, the streaming oriented systems do not leverage the request-batch information and can not mix the decoding tokens with the prefill chunks to the best for the batched scenarios, and thus fails to saturate the GPU. We propose BatchLLM to address the above problems. BatchLLM explicitly identifies the common prefixes globally. The requests sharing the same prefix will be scheduled together to reuse the KV context the best. BatchLLM reorders the requests and schedules the requests with larger ratio of decoding first to better mix the decoding tokens with the latter prefill chunks, and applies memory-centric token batching to enlarge the token-batch sizes, which helps to increase the GPU utilization. Finally, BatchLLM optimizes the prefix-shared Attention kernel with horizontal fusion to reduce tail effect and kernel launch overhead. Extensive evaluation shows that BatchLLM outperforms vLLM and SGLang by 1.3$\times$ to 10.8$\times$ on a set of microbenchmarks and a typical industry workload under different hardware environments.
♻ ☆ ELITR-Bench: A Meeting Assistant Benchmark for Long-Context Language Models COLING 2025
Research on Large Language Models (LLMs) has recently witnessed an increasing interest in extending the models' context size to better capture dependencies within long documents. While benchmarks have been proposed to assess long-range abilities, existing efforts primarily considered generic tasks that are not necessarily aligned with real-world applications. In contrast, we propose a new benchmark for long-context LLMs focused on a practical meeting assistant scenario in which the long contexts consist of transcripts obtained by automatic speech recognition, presenting unique challenges for LLMs due to the inherent noisiness and oral nature of such data. Our benchmark, ELITR-Bench, augments the existing ELITR corpus by adding 271 manually crafted questions with their ground-truth answers, as well as noisy versions of meeting transcripts altered to target different Word Error Rate levels. Our experiments with 12 long-context LLMs on ELITR-Bench confirm the progress made across successive generations of both proprietary and open models, and point out their discrepancies in terms of robustness to transcript noise. We also provide a thorough analysis of our GPT-4-based evaluation, including insights from a crowdsourcing study. Our findings indicate that while GPT-4's scores align with human judges, its ability to distinguish beyond three score levels may be limited.
comment: Published in COLING 2025
♻ ☆ Mitigating analytical variability in fMRI results with style transfer
We propose a novel approach to improve the reproducibility of neuroimaging results by converting statistic maps across different functional MRI pipelines. We make the assumption that pipelines used to compute fMRI statistic maps can be considered as a style component and we propose to use different generative models, among which, Generative Adversarial Networks (GAN) and Diffusion Models (DM) to convert statistic maps across different pipelines. We explore the performance of multiple GAN frameworks, and design a new DM framework for unsupervised multi-domain styletransfer. We constrain the generation of 3D fMRI statistic maps using the latent space of an auxiliary classifier that distinguishes statistic maps from different pipelines and extend traditional sampling techniques used in DM to improve the transition performance. Our experiments demonstrate that our proposed methods aresuccessful: pipelines can indeed be transferred as a style component, providing animportant source of data augmentation for future medical studies.
♻ ☆ Accelerating lensed quasars discovery and modeling with physics-informed variational autoencoders
Strongly lensed quasars provide valuable insights into the rate of cosmic expansion, the distribution of dark matter in foreground deflectors, and the characteristics of quasar hosts. However, detecting them in astronomical images is difficult due to the prevalence of non-lensing objects. To address this challenge, we developed a generative deep learning model called VariLens, built upon a physics-informed variational autoencoder. This model seamlessly integrates three essential modules: image reconstruction, object classification, and lens modeling, offering a fast and comprehensive approach to strong lens analysis. VariLens is capable of rapidly determining both (1) the probability that an object is a lens system and (2) key parameters of a singular isothermal ellipsoid (SIE) mass model -- including the Einstein radius ($\theta_\mathrm{E}$), lens center, and ellipticity -- in just milliseconds using a single CPU. A direct comparison of VariLens estimates with traditional lens modeling for 20 known lensed quasars within the Subaru Hyper Suprime-Cam (HSC) footprint shows good agreement, with both results consistent within $2\sigma$ for systems with $\theta_\mathrm{E}<3$ arcsecs. To identify new lensed quasar candidates, we begin with an initial sample of approximately 80 million sources, combining HSC data with multiwavelength information from various surveys. After applying a photometric preselection aimed at locating $z>1.5$ sources, the number of candidates is reduced to 710,966. Subsequently, VariLens highlights 13,831 sources, each showing a high likelihood of being a lens. A visual assessment of these objects results in 42 promising candidates that await spectroscopic confirmation. These results underscore the potential of automated deep learning pipelines to efficiently detect and model strong lenses in large datasets.
comment: Submitted to the Astronomy & Astrophysics journal and updated to reflect the revised version. The paper consists of 17 main pages, 14 figures, and 5 tables. We welcome feedback and comments from readers!
♻ ☆ VECT-GAN: A variationally encoded generative model for overcoming data scarcity in pharmaceutical science
Data scarcity in pharmaceutical research has led to reliance on labour-intensive trial-and-error approaches for development rather than data-driven methods. While Machine Learning offers a solution, existing datasets are often small and noisy, limiting their utility. To address this, we developed a Variationally Encoded Conditional Tabular Generative Adversarial Network (VECT-GAN), a novel generative model specifically designed for augmenting small, noisy datasets. We introduce a pipeline where data is augmented before regression model development and demonstrate that this consistently and significantly improves performance over other state-of-the-art tabular generative models. We apply this pipeline across six pharmaceutical datasets, and highlight its real-world applicability by developing novel polymers with medically desirable mucoadhesive properties, which we made and experimentally characterised. Additionally, we pre-train the model on the ChEMBL database of drug-like molecules, leveraging knowledge distillation to enhance its generalisability, making it readily available for use on pharmaceutical datasets containing small molecules, an extremely common pharmaceutical task. We demonstrate the power of synthetic data for regularising small tabular datasets, highlighting its potential to become standard practice in pharmaceutical model development, and make our method, including VECT-GAN pre-trained on ChEMBL available as a pip package.
comment: 30 pages, 6 primary figures, 3 supplementary figures
♻ ☆ IterL2Norm: Fast Iterative L2-Normalization
Transformer-based large language models are a memory-bound model whose operation is based on a large amount of data that are marginally reused. Thus, the data movement between a host and accelerator likely dictates the total wall-clock time. Layer normalization is one of the key workloads in the transformer model, following each of multi-head attention and feed-forward network blocks. To reduce data movement, layer normalization needs to be performed on the same chip as the matrix-matrix multiplication engine. To this end, we introduce an iterative L2-normalization method for 1D input (IterL2Norm), ensuring fast convergence to the steady-state solution within five iteration steps and high precision, outperforming the fast inverse square root algorithm in six out of nine cases for FP32 and five out of nine for BFloat16 across the embedding lengths used in the OPT models. Implemented in 32/28nm CMOS, the IterL2Norm macro normalizes $d$-dimensional vectors, where $64 \leq d \leq 1024$, with a latency of 116-227 cycles at 100MHz/1.05V.
comment: Design, Automation & Test in Europe Conference 2025
♻ ☆ Benchmarking Graph Representations and Graph Neural Networks for Multivariate Time Series Classification
Multivariate Time Series Classification (MTSC) enables the analysis if complex temporal data, and thus serves as a cornerstone in various real-world applications, ranging from healthcare to finance. Since the relationship among variables in MTS usually contain crucial cues, a large number of graph-based MTSC approaches have been proposed, as the graph topology and edges can explicitly represent relationships among variables (channels), where not only various MTS graph representation learning strategies but also different Graph Neural Networks (GNNs) have been explored. Despite such progresses, there is no comprehensive study that fairly benchmarks and investigates the performances of existing widely-used graph representation learning strategies/GNN classifiers in the application of different MTSC tasks. In this paper, we present the first benchmark which systematically investigates the effectiveness of the widely-used three node feature definition strategies, four edge feature learning strategies and five GNN architecture, resulting in 60 different variants for graph-based MTSC. These variants are developed and evaluated with a standardized data pipeline and training/validation/testing strategy on 26 widely-used suspensor MTSC datasets. Our experiments highlight that node features significantly influence MTSC performance, while the visualization of edge features illustrates why adaptive edge learning outperforms other edge feature learning methods. The code of the proposed benchmark is publicly available at \url{https://github.com/CVI-yangwn/Benchmark-GNN-for-Multivariate-Time-Series-Classification}.
♻ ☆ Geometric Median (GM) Matching for Robust Data Pruning
Large-scale data collections in the wild, are invariably noisy. Thus developing data pruning strategies that remain robust even in the presence of corruption is critical in practice. In this work, we propose Geometric Median ($\gm$) Matching -- a herding style greedy algorithm that yields a $k$-subset such that the mean of the subset approximates the geometric median of the (potentially) noisy dataset. Theoretically, we show that $\gm$ Matching enjoys an improved $\gO(1/k)$ scaling over $\gO(1/\sqrt{k})$ scaling of uniform sampling; while achieving {\bf optimal breakdown point} of {\bf 1/2} even under {\bf arbitrary} corruption. Extensive experiments across several popular deep learning benchmarks indicate that $\gm$ Matching consistently improves over prior state-of-the-art; the gains become more profound at high rates of corruption and aggressive pruning rates; making $\gm$ Matching a strong baseline for future research in robust data pruning.
♻ ☆ Neural networks for insurance pricing with frequency and severity data: a benchmark study from data preprocessing to technical tariff
Insurers usually turn to generalized linear models for modeling claim frequency and severity data. Due to their success in other fields, machine learning techniques are gaining popularity within the actuarial toolbox. Our paper contributes to the literature on frequency-severity insurance pricing with machine learning via deep learning structures. We present a benchmark study on four insurance data sets with frequency and severity targets in the presence of multiple types of input features. We compare in detail the performance of: a generalized linear model on binned input data, a gradient-boosted tree model, a feed-forward neural network (FFNN), and the combined actuarial neural network (CANN). The CANNs combine a baseline prediction established with a GLM and GBM, respectively, with a neural network correction. We explain the data preprocessing steps with specific focus on the multiple types of input features typically present in tabular insurance data sets, such as postal codes, numeric and categorical covariates. Autoencoders are used to embed the categorical variables into the neural network, and we explore their potential advantages in a frequency-severity setting. Model performance is evaluated not only on out-of-sample deviance but also using statistical and calibration performance criteria and managerial tools to get more nuanced insights. Finally, we construct global surrogate models for the neural nets' frequency and severity models. These surrogates enable the translation of the essential insights captured by the FFNNs or CANNs to GLMs. As such, a technical tariff table results that can easily be deployed in practice.
♻ ☆ Differentially Private Secure Multiplication: Hiding Information in the Rubble of Noise
We consider the problem of private distributed multi-party multiplication. It is well-established that Shamir secret-sharing coding strategies can enable perfect information-theoretic privacy in distributed computation via the celebrated algorithm of Ben Or, Goldwasser and Wigderson (the "BGW algorithm"). However, perfect privacy and accuracy require an honest majority, that is, $N \geq 2t+1$ compute nodes are required to ensure privacy against any $t$ colluding adversarial nodes. By allowing for some controlled amount of information leakage and approximate multiplication instead of exact multiplication, we study coding schemes for the setting where the number of honest nodes can be a minority, that is $N< 2t+1.$ We develop a tight characterization privacy-accuracy trade-off for cases where $N < 2t+1$ by measuring information leakage using {differential} privacy instead of perfect privacy, and using the mean squared error metric for accuracy. A novel technical aspect is an intricately layered noise distribution that merges ideas from differential privacy and Shamir secret-sharing at different layers.
comment: Extended version of papers presented in IEEE ISIT 2022, IEEE ISIT 2023 and TPDP 2023
♻ ☆ RELIEF: Reinforcement Learning Empowered Graph Feature Prompt Tuning KDD 2025
The advent of the "pre-train, prompt" paradigm has recently extended its generalization ability and data efficiency to graph representation learning, following its achievements in Natural Language Processing (NLP). Initial graph prompt tuning approaches tailored specialized prompting functions for Graph Neural Network (GNN) models pre-trained with specific strategies, such as edge prediction, thus limiting their applicability. In contrast, another pioneering line of research has explored universal prompting via adding prompts to the input graph's feature space, thereby removing the reliance on specific pre-training strategies. However, the necessity to add feature prompts to all nodes remains an open question. Motivated by findings from prompt tuning research in the NLP domain, which suggest that highly capable pre-trained models need less conditioning signal to achieve desired behaviors, we advocate for strategically incorporating necessary and lightweight feature prompts to certain graph nodes to enhance downstream task performance. This introduces a combinatorial optimization problem, requiring a policy to decide 1) which nodes to prompt and 2) what specific feature prompts to attach. We then address the problem by framing the prompt incorporation process as a sequential decision-making problem and propose our method, RELIEF, which employs Reinforcement Learning (RL) to optimize it. At each step, the RL agent selects a node (discrete action) and determines the prompt content (continuous action), aiming to maximize cumulative performance gain. Extensive experiments on graph and node-level tasks with various pre-training strategies in few-shot scenarios demonstrate that our RELIEF outperforms fine-tuning and other prompt-based approaches in classification performance and data efficiency. The code is available at https://github.com/JasonZhujp/RELIEF.
comment: Accepted by SIGKDD 2025 (camera-ready version). Due to the space limitation, please refer to the V2 version for more details
♻ ☆ Elucidating the Design Space of Dataset Condensation NeurIPS 2024
Dataset condensation, a concept within data-centric learning, efficiently transfers critical attributes from an original dataset to a synthetic version, maintaining both diversity and realism. This approach significantly improves model training efficiency and is adaptable across multiple application areas. Previous methods in dataset condensation have faced challenges: some incur high computational costs which limit scalability to larger datasets (e.g., MTT, DREAM, and TESLA), while others are restricted to less optimal design spaces, which could hinder potential improvements, especially in smaller datasets (e.g., SRe2L, G-VBSM, and RDED). To address these limitations, we propose a comprehensive design framework that includes specific, effective strategies like implementing soft category-aware matching and adjusting the learning rate schedule. These strategies are grounded in empirical evidence and theoretical backing. Our resulting approach, Elucidate Dataset Condensation (EDC), establishes a benchmark for both small and large-scale dataset condensation. In our testing, EDC achieves state-of-the-art accuracy, reaching 48.6% on ImageNet-1k with a ResNet-18 model at an IPC of 10, which corresponds to a compression ratio of 0.78%. This performance exceeds those of SRe2L, G-VBSM, and RDED by margins of 27.3%, 17.2%, and 6.6%, respectively.
comment: Accepted by NeurIPS 2024
♻ ☆ AceMath: Advancing Frontier Math Reasoning with Post-Training and Reward Modeling
In this paper, we introduce AceMath, a suite of frontier math models that excel in solving complex math problems, along with highly effective reward models capable of evaluating generated solutions and reliably identifying the correct ones. To develop the instruction-tuned math models, we propose a supervised fine-tuning (SFT) process that first achieves competitive performance across general domains, followed by targeted fine-tuning for the math domain using a carefully curated set of prompts and synthetically generated responses. The resulting model, AceMath-72B-Instruct greatly outperforms Qwen2.5-Math-72B-Instruct, GPT-4o and Claude-3.5 Sonnet. To develop math-specialized reward model, we first construct AceMath-RewardBench, a comprehensive and robust benchmark for evaluating math reward models across diverse problems and difficulty levels. After that, we present a systematic approach to build our math reward models. The resulting model, AceMath-72B-RM, consistently outperforms state-of-the-art reward models. Furthermore, when combining AceMath-72B-Instruct with AceMath-72B-RM, we achieve the highest average rm@8 score across the math reasoning benchmarks. We release model weights, training data, and evaluation benchmarks at: https://research.nvidia.com/labs/adlr/acemath
♻ ☆ Harnessing small projectors and multiple views for efficient vision pretraining NeurIPS 2024
Recent progress in self-supervised (SSL) visual representation learning has led to the development of several different proposed frameworks that rely on augmentations of images but use different loss functions. However, there are few theoretically grounded principles to guide practice, so practical implementation of each SSL framework requires several heuristics to achieve competitive performance. In this work, we build on recent analytical results to design practical recommendations for competitive and efficient SSL that are grounded in theory. Specifically, recent theory tells us that existing SSL frameworks are minimizing the same idealized loss, which is to learn features that best match the data similarity kernel defined by the augmentations used. We show how this idealized loss can be reformulated to a functionally equivalent loss that is more efficient to compute. We study the implicit bias of using gradient descent to minimize our reformulated loss function and find that using a stronger orthogonalization constraint with a reduced projector dimensionality should yield good representations. Furthermore, the theory tells us that approximating the reformulated loss should be improved by increasing the number of augmentations, and as such using multiple augmentations should lead to improved convergence. We empirically verify our findings on CIFAR, STL and Imagenet datasets, wherein we demonstrate an improved linear readout performance when training a ResNet-backbone using our theoretically grounded recommendations. Remarkably, we also demonstrate that by leveraging these insights, we can reduce the pretraining dataset size by up to 2$\times$ while maintaining downstream accuracy simply by using more data augmentations. Taken together, our work provides theoretically grounded recommendations that can be used to improve SSL convergence and efficiency.
comment: Accepted to NeurIPS 2024
♻ ☆ Deep Plug-and-Play HIO Approach for Phase Retrieval
In the phase retrieval problem, the aim is the recovery of an unknown image from intensity-only measurements such as Fourier intensity. Although there are several solution approaches, solving this problem is challenging due to its nonlinear and ill-posed nature. Recently, learning-based approaches have emerged as powerful alternatives to the analytical methods for several inverse problems. In the context of phase retrieval, a novel plug-and-play approach that exploits learning-based prior and efficient update steps has been presented at the Computational Optical Sensing and Imaging topical meeting, with demonstrated state-of-the-art performance. The key idea was to incorporate learning-based prior to the Gerchberg-Saxton type algorithms through plug-and-play regularization. In this paper, we present the mathematical development of the method including the derivation of its analytical update steps based on half-quadratic splitting and comparatively evaluate its performance through extensive simulations on a large test dataset. The results show the effectiveness of the method in terms of both image quality, computational efficiency, and robustness to initialization and noise.
comment: 16 pages, 5 figures
♻ ☆ Tree-structured Markov random fields with Poisson marginal distributions
A new family of tree-structured Markov random fields for a vector of discrete counting random variables is introduced. According to the characteristics of the family, the marginal distributions of the Markov random fields are all Poisson with the same mean, and are untied from the strength or structure of their built-in dependence. This key feature is uncommon for Markov random fields and most convenient for applications purposes. The specific properties of this new family confer a straightforward sampling procedure and analytic expressions for the joint probability mass function and the joint probability generating function of the vector of counting random variables, thus granting computational methods that scale well to vectors of high dimension. We study the distribution of the sum of random variables constituting a Markov random field from the proposed family, analyze a random variable's individual contribution to that sum through expected allocations, and establish stochastic orderings to assess a wide understanding of their behavior.
comment: 27 pages, 10 figures
♻ ☆ Instruction-Guided Fusion of Multi-Layer Visual Features in Large Vision-Language Models
Large Vision-Language Models (LVLMs) have achieved remarkable success in a wide range of multimodal tasks by integrating pre-trained vision encoders and large language models. However, current LVLMs primarily rely on visual features extracted from the final layers of the vision encoder, overlooking the complementary information available in shallower layers. While recent approaches have explored the use of multilayer visual features in LVLMs, they tend to be task-agnostic and fail to examine the dependencies of hierarchical visual features on specific tasks. To address these gaps, we systematically investigate the contributions of visual features from different encoder layers using 18 benchmarks spanning 6 task categories. Our findings reveal that multilayer features provide complementary strengths with varying task dependencies, and uniform fusion leads to suboptimal performance. Building on these insights, we propose the instruction-guided vision aggregator, a module that dynamically integrates multi-layer visual features based on textual instructions, without increasing the number of visual tokens. Extensive evaluations demonstrate the superior performance of our method. Additionally, an in-depth analysis of the aggregator's behavior highlights the dominance of mid-to-high-level features in semantic-rich tasks and the critical role of low-level features in fine-grained perception.
♻ ☆ TraceFL: Interpretability-Driven Debugging in Federated Learning via Neuron Provenance ICSE
In Federated Learning, clients train models on local data and send updates to a central server, which aggregates them into a global model using a fusion algorithm. This collaborative yet privacy-preserving training comes at a cost. FL developers face significant challenges in attributing global model predictions to specific clients. Localizing responsible clients is a crucial step towards (a) excluding clients primarily responsible for incorrect predictions and (b) encouraging clients who contributed high-quality models to continue participating in the future. Existing ML debugging approaches are inherently inapplicable as they are designed for single-model, centralized training. We introduce TraceFL, a fine-grained neuron provenance capturing mechanism that identifies clients responsible for a global model's prediction by tracking the flow of information from individual clients to the global model. Since inference on different inputs activates a different set of neurons of the global model, TraceFL dynamically quantifies the significance of the global model's neurons in a given prediction, identifying the most crucial neurons in the global model. It then maps them to the corresponding neurons in every participating client to determine each client's contribution, ultimately localizing the responsible client. We evaluate TraceFL on six datasets, including two real-world medical imaging datasets and four neural networks, including advanced models such as GPT. TraceFL achieves 99% accuracy in localizing the responsible client in FL tasks spanning both image and text classification tasks. At a time when state-of-the-artML debugging approaches are mostly domain-specific (e.g., image classification only), TraceFL is the first technique to enable highly accurate automated reasoning across a wide range of FL applications.
comment: Accepted at 2025 IEEE/ACM 47th International Conference on Software Engineering (ICSE)
♻ ☆ Learning Dynamical Systems by Leveraging Data from Similar Systems
We consider the problem of learning the dynamics of a linear system when one has access to data generated by an auxiliary system that shares similar (but not identical) dynamics, in addition to data from the true system. We use a weighted least squares approach, and provide finite sample error bounds of the learned model as a function of the number of samples and various system parameters from the two systems as well as the weight assigned to the auxiliary data. We show that the auxiliary data can help to reduce the intrinsic system identification error due to noise, at the price of adding a portion of error that is due to the differences between the two system models. We further provide a data-dependent bound that is computable when some prior knowledge about the systems, such as upper bounds on noise levels and model difference, is available. This bound can also be used to determine the weight that should be assigned to the auxiliary data during the model training stage.
comment: 15 pages,9 figures
♻ ☆ The Spatial Complexity of Optical Computing and How to Reduce It
Similar to algorithms, which consume time and memory to run, hardware requires resources to function. For devices processing physical waves, implementing operations needs sufficient "space," as dictated by wave physics. How much space is needed to perform a certain function is a fundamental question in optics, with recent research addressing it for given mathematical operations, but not for more general computing tasks, e.g., classification. Inspired by computational complexity theory, we study the "spatial complexity" of optical computing systems in terms of scaling laws - specifically, how their physical dimensions must scale as the dimension of the mathematical operation increases - and propose a new paradigm for designing optical computing systems: space-efficient neuromorphic optics, based on structural sparsity constraints and neural pruning methods motivated by wave physics (notably, the concept of "overlapping nonlocality"). On two mainstream platforms, free-space optics and on-chip integrated photonics, our methods demonstrate substantial size reductions (to 1%-10% the size of conventional designs) with minimal compromise on performance. Our theoretical and computational results reveal a trend of diminishing returns on accuracy as structure dimensions increase, providing a new perspective for interpreting and approaching the ultimate limits of optical computing - a balanced trade-off between device size and accuracy.
♻ ☆ Consistent estimation of generative model representations in the data kernel perspective space
Generative models, such as large language models and text-to-image diffusion models, produce relevant information when presented a query. Different models may produce different information when presented the same query. As the landscape of generative models evolves, it is important to develop techniques to study and analyze differences in model behaviour. In this paper we present novel theoretical results for embedding-based representations of generative models in the context of a set of queries. In particular, we establish sufficient conditions for the consistent estimation of the model embeddings in situations where the query set and the number of models grow.
♻ ☆ Can AI-Generated Text be Reliably Detected?
Large Language Models (LLMs) perform impressively well in various applications. However, the potential for misuse of these models in activities such as plagiarism, generating fake news, and spamming has raised concern about their responsible use. Consequently, the reliable detection of AI-generated text has become a critical area of research. AI text detectors have shown to be effective under their specific settings. In this paper, we stress-test the robustness of these AI text detectors in the presence of an attacker. We introduce recursive paraphrasing attack to stress test a wide range of detection schemes, including the ones using the watermarking as well as neural network-based detectors, zero shot classifiers, and retrieval-based detectors. Our experiments conducted on passages, each approximately 300 tokens long, reveal the varying sensitivities of these detectors to our attacks. Our findings indicate that while our recursive paraphrasing method can significantly reduce detection rates, it only slightly degrades text quality in many cases, highlighting potential vulnerabilities in current detection systems in the presence of an attacker. Additionally, we investigate the susceptibility of watermarked LLMs to spoofing attacks aimed at misclassifying human-written text as AI-generated. We demonstrate that an attacker can infer hidden AI text signatures without white-box access to the detection method, potentially leading to reputational risks for LLM developers. Finally, we provide a theoretical framework connecting the AUROC of the best possible detector to the Total Variation distance between human and AI text distributions. This analysis offers insights into the fundamental challenges of reliable detection as language models continue to advance. Our code is publicly available at https://github.com/vinusankars/Reliability-of-AI-text-detectors.
comment: Published in Transactions on Machine Learning Research (TMLR)
♻ ☆ Enhancing User Interest based on Stream Clustering and Memory Networks in Large-Scale Recommender Systems
Recommender Systems (RSs) provide personalized recommendation service based on user interest, which are widely used in various platforms. However, there are lots of users with sparse interest due to lacking consumption behaviors, which leads to poor recommendation results for them. This problem is widespread in large-scale RSs and is particularly difficult to address. To solve this problem, we propose a novel solution named User Interest Enhancement (UIE) which enhances user interest including user profile and user history behavior sequences using the enhancement vectors and personalized enhancement vector generated based on stream clustering and memory networks from different perspectives. UIE not only remarkably improves model performance on the users with sparse interest but also significantly enhance model performance on other users. UIE is an end-to-end solution which is easy to be implemented based on ranking model. Moreover, we expand our solution and apply similar methods to long-tail items, which also achieves excellent improvement. Furthermore, we conduct extensive offline and online experiments in a large-scale industrial RS. The results demonstrate that our model outperforms other models remarkably, especially for the users with sparse interest. Until now, UIE has been fully deployed in multiple large-scale RSs and achieved remarkable improvements.
♻ ☆ Aligning with Human Judgement: The Role of Pairwise Preference in Large Language Model Evaluators
Large Language Models (LLMs) have demonstrated promising capabilities as automatic evaluators in assessing the quality of generated natural language. However, LLMs still exhibit biases in evaluation and often struggle to generate coherent evaluations that align with human assessments. In this work, we first conduct a systematic study of the misalignment between LLM evaluators and human evaluation, revealing that existing calibration methods aimed at mitigating biases of LLMs are insufficient for effectively aligning LLM evaluators. Inspired by the use of preference data in RLHF, we formulate the evaluation as a ranking problem and introduce Pairwise-preference Search (PAIRS), an uncertainty-guided search-based rank aggregation method that employs LLMs to conduct pairwise comparisons locally and efficiently ranks candidate texts globally. PAIRS achieves state-of-the-art performance on representative evaluation tasks in long-form generations and demonstrates significant improvements over direct scoring. Furthermore, we provide insights into the role of pairwise preference in quantifying the transitivity of LLMs and demonstrate how PAIRS benefits from calibration using debiased pairwise evaluations.
comment: This paper has been accepted by COLM 2024
♻ ☆ Fast Matrix Multiplications for Lookup Table-Quantized LLMs EMNLP 2024
The deployment of large language models (LLMs) is often constrained by memory bandwidth, where the primary bottleneck is the cost of transferring model parameters from the GPU's global memory to its registers. When coupled with custom kernels that fuse the dequantization and matmul operations, weight-only quantization can thus enable faster inference by reducing the amount of memory movement. However, developing high-performance kernels for weight-quantized LLMs presents substantial challenges, especially when the weights are compressed to non-evenly-divisible bit widths (e.g., 3 bits) with non-uniform, lookup table (LUT) quantization. This paper describes FLUTE, a flexible lookup table engine for LUT-quantized LLMs, which uses offline restructuring of the quantized weight matrix to minimize bit manipulations associated with unpacking, and vectorization and duplication of the lookup table to mitigate shared memory bandwidth constraints. At batch sizes < 32 and quantization group size of 128 (typical in LLM inference), the FLUTE kernel can be 2-4x faster than existing GEMM kernels. As an application of FLUTE, we explore a simple extension to lookup table-based NormalFloat quantization and apply it to quantize LLaMA3 to various configurations, obtaining competitive quantization performance against strong baselines while obtaining an end-to-end throughput increase of 1.5 to 2 times.
comment: EMNLP 2024 (Findings)
♻ ☆ Spatial Clustering of Citizen Science Data Improves Downstream Species Distribution Models AAAI 2025
Citizen science biodiversity data present great opportunities for ecology and conservation across vast spatial and temporal scales. However, the opportunistic nature of these data lacks the sampling structure required by modeling methodologies that address a pervasive challenge in ecological data collection: imperfect detection, i.e., the likelihood of under-observing species on field surveys. Occupancy modeling is an example of an approach that accounts for imperfect detection by explicitly modeling the observation process separately from the biological process of habitat selection. This produces species distribution models that speak to the pattern of the species on a landscape after accounting for imperfect detection in the data, rather than the pattern of species observations corrupted by errors. To achieve this benefit, occupancy models require multiple surveys of a site across which the site's status (i.e., occupied or not) is assumed constant. Since citizen science data are not collected under the required repeated-visit protocol, observations may be grouped into sites post hoc. Existing approaches for constructing sites discard some observations and/or consider only geographic distance and not environmental similarity. In this study, we compare ten approaches for site construction in terms of their impact on downstream species distribution models for 31 bird species in Oregon, using observations recorded in the eBird database. We find that occupancy models built on sites constructed by spatial clustering algorithms perform better than existing alternatives.
comment: AAAI 2025
♻ ☆ Decoupled Sequence and Structure Generation for Realistic Antibody Design
Recently, deep learning has made rapid progress in antibody design, which plays a key role in the advancement of therapeutics. A dominant paradigm is to train a model to jointly generate the antibody sequence and the structure as a candidate. However, the joint generation requires the model to generate both the discrete amino acid categories and the continuous 3D coordinates; this limits the space of possible architectures and may lead to suboptimal performance. In response, we propose an antibody sequence-structure decoupling (ASSD) framework, which separates sequence generation and structure prediction. Although our approach is simple, our idea allows the use of powerful neural architectures and demonstrates notable performance improvements. We also find that the widely used non-autoregressive generators promote sequences with overly repeating tokens. Such sequences are both out-of-distribution and prone to undesirable developability properties that can trigger harmful immune responses in patients. To resolve this, we introduce a composition-based objective that allows an efficient trade-off between high performance and low token repetition. ASSD shows improved performance in various antibody design experiments, while the composition-based objective successfully mitigates token repetition of non-autoregressive models.
comment: 22 pages, 6 figures
♻ ☆ Bayesian Adaptive Calibration and Optimal Design NeurIPS 2024
The process of calibrating computer models of natural phenomena is essential for applications in the physical sciences, where plenty of domain knowledge can be embedded into simulations and then calibrated against real observations. Current machine learning approaches, however, mostly rely on rerunning simulations over a fixed set of designs available in the observed data, potentially neglecting informative correlations across the design space and requiring a large amount of simulations. Instead, we consider the calibration process from the perspective of Bayesian adaptive experimental design and propose a data-efficient algorithm to run maximally informative simulations within a batch-sequential process. At each round, the algorithm jointly estimates the parameters of the posterior distribution and optimal designs by maximising a variational lower bound of the expected information gain. The simulator is modelled as a sample from a Gaussian process, which allows us to correlate simulations and observed data with the unknown calibration parameters. We show the benefits of our method when compared to related approaches across synthetic and real-data problems.
comment: NeurIPS 2024 final revision
♻ ☆ Keeping LLMs Aligned After Fine-tuning: The Crucial Role of Prompt Templates NeurIPS 2024
Public LLMs such as the Llama 2-Chat underwent alignment training and were considered safe. Recently Qi et al. [2024] reported that even benign fine-tuning on seemingly safe datasets can give rise to unsafe behaviors in the models. The current paper is about methods and best practices to mitigate such loss of alignment. We focus on the setting where a public model is fine-tuned before serving users for specific usage, where the model should improve on the downstream task while maintaining alignment. Through extensive experiments on several chat models (Meta's Llama 2-Chat, Mistral AI's Mistral 7B Instruct v0.2, and OpenAI's GPT-3.5 Turbo), this paper uncovers that the prompt templates used during fine-tuning and inference play a crucial role in preserving safety alignment, and proposes the ``Pure Tuning, Safe Testing'' (PTST) strategy -- fine-tune models without a safety prompt, but include it at test time. This seemingly counterintuitive strategy incorporates an intended distribution shift to encourage alignment preservation. Fine-tuning experiments on GSM8K, ChatDoctor, and OpenOrca show that PTST significantly reduces the rise of unsafe behaviors.
comment: NeurIPS 2024
♻ ☆ RLPF: Reinforcement Learning from Prediction Feedback for User Summarization with LLMs AAAI 2025
LLM-powered personalization agent systems employ Large Language Models (LLMs) to predict users' behavior from their past activities. However, their effectiveness often hinges on the ability to effectively leverage extensive, long user historical data due to its inherent noise and length of such data. Existing pretrained LLMs may generate summaries that are concise but lack the necessary context for downstream tasks, hindering their utility in personalization systems. To address these challenges, we introduce Reinforcement Learning from Prediction Feedback (RLPF). RLPF fine-tunes LLMs to generate concise, human-readable user summaries that are optimized for downstream task performance. By maximizing the usefulness of the generated summaries, RLPF effectively distills extensive user history data while preserving essential information for downstream tasks. Our empirical evaluation demonstrates significant improvements in both extrinsic downstream task utility and intrinsic summary quality, surpassing baseline methods by up to 22% on downstream task performance and achieving an up to 84.59% win rate on Factuality, Abstractiveness, and Readability. RLPF also achieves a remarkable 74% reduction in context length while improving performance on 16 out of 19 unseen tasks and/or datasets, showcasing its generalizability. This approach offers a promising solution for enhancing LLM personalization by effectively transforming long, noisy user histories into informative and human-readable representations.
comment: AAAI 2025
♻ ☆ A Systematic Study of Multi-Agent Deep Reinforcement Learning for Safe and Robust Autonomous Highway Ramp Entry
Vehicles today can drive themselves on highways and driverless robotaxis operate in major cities, with more sophisticated levels of autonomous driving expected to be available and become more common in the future. Yet, technically speaking, so-called "Level 5" (L5) operation, corresponding to full autonomy, has not been achieved. For that to happen, functions such as fully autonomous highway ramp entry must be available, and provide provably safe, and reliably robust behavior to enable full autonomy. We present a systematic study of a highway ramp function that controls the vehicles forward-moving actions to minimize collisions with the stream of highway traffic into which a merging (ego) vehicle enters. We take a game-theoretic multi-agent (MA) approach to this problem and study the use of controllers based on deep reinforcement learning (DRL). The virtual environment of the MA DRL uses self-play with simulated data where merging vehicles safely learn to control longitudinal position during a taper-type merge. The work presented in this paper extends existing work by studying the interaction of more than two vehicles (agents) and does so by systematically expanding the road scene with additional traffic and ego vehicles. While previous work on the two-vehicle setting established that collision-free controllers are theoretically impossible in fully decentralized, non-coordinated environments, we empirically show that controllers learned using our approach are nearly ideal when measured against idealized optimal controllers.
comment: 9 pages, 9 figures; added support ack
♻ ☆ A Complete Characterization of Learnability for Stochastic Noisy Bandits
We study the stochastic noisy bandit problem with an unknown reward function $f^*$ in a known function class $\mathcal{F}$. Formally, a model $M$ maps arms $\pi$ to a probability distribution $M(\pi)$ of reward. A model class $\mathcal{M}$ is a collection of models. For each model $M$, define its mean reward function $f^M(\pi)=\mathbb{E}_{r \sim M(\pi)}[r]$. In the bandit learning problem, we proceed in rounds, pulling one arm $\pi$ each round and observing a reward sampled from $M(\pi)$. With knowledge of $\mathcal{M}$, supposing that the true model $M\in \mathcal{M}$, the objective is to identify an arm $\hat{\pi}$ of near-maximal mean reward $f^M(\hat{\pi})$ with high probability in a bounded number of rounds. If this is possible, then the model class is said to be learnable. Importantly, a result of \cite{hanneke2023bandit} shows there exist model classes for which learnability is undecidable. However, the model class they consider features deterministic rewards, and they raise the question of whether learnability is decidable for classes containing sufficiently noisy models. For the first time, we answer this question in the positive by giving a complete characterization of learnability for model classes with arbitrary noise. In addition to that, we also describe the full spectrum of possible optimal query complexities. Further, we prove adaptivity is sometimes necessary to achieve the optimal query complexity. Last, we revisit an important complexity measure for interactive decision making, the Decision-Estimation-Coefficient \citep{foster2021statistical,foster2023tight}, and propose a new variant of the DEC which also characterizes learnability in this setting.
♻ ☆ Comparing hundreds of machine learning classifiers and discrete choice models in predicting travel behavior: an empirical benchmark
Numerous studies have compared machine learning (ML) and discrete choice models (DCMs) in predicting travel demand. However, these studies often lack generalizability as they compare models deterministically without considering contextual variations. To address this limitation, our study develops an empirical benchmark by designing a tournament model, thus efficiently summarizing a large number of experiments, quantifying the randomness in model comparisons, and using formal statistical tests to differentiate between the model and contextual effects. This benchmark study compares two large-scale data sources: a database compiled from literature review summarizing 136 experiments from 35 studies, and our own experiment data, encompassing a total of 6,970 experiments from 105 models and 12 model families. This benchmark study yields two key findings. Firstly, many ML models, particularly the ensemble methods and deep learning, statistically outperform the DCM family (i.e., multinomial, nested, and mixed logit models). However, this study also highlights the crucial role of the contextual factors (i.e., data sources, inputs and choice categories), which can explain models' predictive performance more effectively than the differences in model types alone. Model performance varies significantly with data sources, improving with larger sample sizes and lower dimensional alternative sets. After controlling all the model and contextual factors, significant randomness still remains, implying inherent uncertainty in such model comparisons. Overall, we suggest that future researchers shift more focus from context-specific model comparisons towards examining model transferability across contexts and characterizing the inherent uncertainty in ML, thus creating more robust and generalizable next-generation travel demand models.
Multimedia 4
☆ Using Technology in Digital Humanities for Learning and Knowledge Dissemination
Research on Digital Humanities (DH) has been boosted due to the investment in technology for developing access and interaction tools for handling Humanities and Heritage data. The availability of these tools lowers the distance between DH scholars and data generators, and students at various levels, not only because it facilitates access to information but also through the dissemination technologies used in these tools, designed for the improvement of user experience. Most of the disciplines associated with the humanities involve geographical and temporal references, often integrated. These references have been scientifically and pedagogically handled for centuries and are established through the use of maps and timelines. Both these supports have been implemented and used digitally and their potential has been risen through their innovative integration with narratives, storytelling and story maps, enabling the telling of historical events in narratives superimposed on maps. These can be enhanced when supported by rich data, such as images, videos, sound, and their possible combinations in virtual and augmented reality. In this paper, we describe an initial set of tools which use a subset of these technologies and data types to enable learning and dissemination of Humanities data and knowledge. We describe how techniques for making data available and tools for enhancing interaction with these data can improve user experience and potentiate learning and dissemination.
☆ Robust Change Captioning in Remote Sensing: SECOND-CC Dataset and MModalCC Framework
Remote sensing change captioning (RSICC) aims to describe changes between bitemporal images in natural language. Existing methods often fail under challenges like illumination differences, viewpoint changes, blur effects, leading to inaccuracies, especially in no-change regions. Moreover, the images acquired at different spatial resolutions and have registration errors tend to affect the captions. To address these issues, we introduce SECOND-CC, a novel RSICC dataset featuring high-resolution RGB image pairs, semantic segmentation maps, and diverse real-world scenarios. SECOND-CC which contains 6,041 pairs of bitemporal RS images and 30,205 sentences describing the differences between images. Additionally, we propose MModalCC, a multimodal framework that integrates semantic and visual data using advanced attention mechanisms, including Cross-Modal Cross Attention (CMCA) and Multimodal Gated Cross Attention (MGCA). Detailed ablation studies and attention visualizations further demonstrate its effectiveness and ability to address RSICC challenges. Comprehensive experiments show that MModalCC outperforms state-of-the-art RSICC methods, including RSICCformer, Chg2Cap, and PSNet with +4.6% improvement on BLEU4 score and +9.6% improvement on CIDEr score. We will make our dataset and codebase publicly available to facilitate future research at https://github.com/ChangeCapsInRS/SecondCC
comment: This work has been submitted to the IEEE Transactions on Geoscience and Remote Sensing journal for possible publication
☆ CLIP-PCQA: Exploring Subjective-Aligned Vision-Language Modeling for Point Cloud Quality Assessment
In recent years, No-Reference Point Cloud Quality Assessment (NR-PCQA) research has achieved significant progress. However, existing methods mostly seek a direct mapping function from visual data to the Mean Opinion Score (MOS), which is contradictory to the mechanism of practical subjective evaluation. To address this, we propose a novel language-driven PCQA method named CLIP-PCQA. Considering that human beings prefer to describe visual quality using discrete quality descriptions (e.g., "excellent" and "poor") rather than specific scores, we adopt a retrieval-based mapping strategy to simulate the process of subjective assessment. More specifically, based on the philosophy of CLIP, we calculate the cosine similarity between the visual features and multiple textual features corresponding to different quality descriptions, in which process an effective contrastive loss and learnable prompts are introduced to enhance the feature extraction. Meanwhile, given the personal limitations and bias in subjective experiments, we further covert the feature similarities into probabilities and consider the Opinion Score Distribution (OSD) rather than a single MOS as the final target. Experimental results show that our CLIP-PCQA outperforms other State-Of-The-Art (SOTA) approaches.
☆ GVMGen: A General Video-to-Music Generation Model with Hierarchical Attentions AAAI
Composing music for video is essential yet challenging, leading to a growing interest in automating music generation for video applications. Existing approaches often struggle to achieve robust music-video correspondence and generative diversity, primarily due to inadequate feature alignment methods and insufficient datasets. In this study, we present General Video-to-Music Generation model (GVMGen), designed for generating high-related music to the video input. Our model employs hierarchical attentions to extract and align video features with music in both spatial and temporal dimensions, ensuring the preservation of pertinent features while minimizing redundancy. Remarkably, our method is versatile, capable of generating multi-style music from different video inputs, even in zero-shot scenarios. We also propose an evaluation model along with two novel objective metrics for assessing video-music alignment. Additionally, we have compiled a large-scale dataset comprising diverse types of video-music pairs. Experimental results demonstrate that GVMGen surpasses previous models in terms of music-video correspondence, generative diversity, and application universality.
comment: Accepted by the 39th AAAI Conference on Artificial Intelligence (AAAI-25)
Artificial Intelligence 115
☆ 3rd Workshop on Maritime Computer Vision (MaCVi) 2025: Challenge Results
The 3rd Workshop on Maritime Computer Vision (MaCVi) 2025 addresses maritime computer vision for Unmanned Surface Vehicles (USV) and underwater. This report offers a comprehensive overview of the findings from the challenges. We provide both statistical and qualitative analyses, evaluating trends from over 700 submissions. All datasets, evaluation code, and the leaderboard are available to the public at https://macvi.org/workshop/macvi25.
comment: Part of the MaCVi 2025 workshop
☆ Agent4Edu: Generating Learner Response Data by Generative Agents for Intelligent Education Systems AAAI2025
Personalized learning represents a promising educational strategy within intelligent educational systems, aiming to enhance learners' practice efficiency. However, the discrepancy between offline metrics and online performance significantly impedes their progress. To address this challenge, we introduce Agent4Edu, a novel personalized learning simulator leveraging recent advancements in human intelligence through large language models (LLMs). Agent4Edu features LLM-powered generative agents equipped with learner profile, memory, and action modules tailored to personalized learning algorithms. The learner profiles are initialized using real-world response data, capturing practice styles and cognitive factors. Inspired by human psychology theory, the memory module records practice facts and high-level summaries, integrating reflection mechanisms. The action module supports various behaviors, including exercise understanding, analysis, and response generation. Each agent can interact with personalized learning algorithms, such as computerized adaptive testing, enabling a multifaceted evaluation and enhancement of customized services. Through a comprehensive assessment, we explore the strengths and weaknesses of Agent4Edu, emphasizing the consistency and discrepancies in responses between agents and human learners. The code, data, and appendix are publicly available at https://github.com/bigdata-ustc/Agent4Edu.
comment: Accepted by AAAI2025
☆ Large language models for automated scholarly paper review: A survey
Large language models (LLMs) have significantly impacted human society, influencing various domains. Among them, academia is not simply a domain affected by LLMs, but it is also the pivotal force in the development of LLMs. In academic publications, this phenomenon is represented during the incorporation of LLMs into the peer review mechanism for reviewing manuscripts. We proposed the concept of automated scholarly paper review (ASPR) in our previous paper. As the incorporation grows, it now enters the coexistence phase of ASPR and peer review, which is described in that paper. LLMs hold transformative potential for the full-scale implementation of ASPR, but they also pose new issues and challenges that need to be addressed. In this survey paper, we aim to provide a holistic view of ASPR in the era of LLMs. We begin with a survey to find out which LLMs are used to conduct ASPR. Then, we review what ASPR-related technological bottlenecks have been solved with the incorporation of LLM technology. After that, we move on to explore new methods, new datasets, new source code, and new online systems that come with LLMs for ASPR. Furthermore, we summarize the performance and issues of LLMs in ASPR, and investigate the attitudes and reactions of publishers and academia to ASPR. Lastly, we discuss the challenges associated with the development of LLMs for ASPR. We hope this survey can serve as an inspirational reference for the researchers and promote the progress of ASPR for its actual implementation.
comment: Work in progress
☆ Hierarchical Autoregressive Transformers: Combining Byte-~and Word-Level Processing for Robust, Adaptable Language Models
Tokenization is a fundamental step in natural language processing, breaking text into units that computational models can process. While learned subword tokenizers have become the de-facto standard, they present challenges such as large vocabularies, limited adaptability to new domains or languages, and sensitivity to spelling errors and variations. To overcome these limitations, we investigate a hierarchical architecture for autoregressive language modelling that combines character-level and word-level processing. It employs a lightweight character-level encoder to convert character sequences into word embeddings, which are then processed by a word-level backbone model and decoded back into characters via a compact character-level decoder. This method retains the sequence compression benefits of word-level tokenization without relying on a rigid, predefined vocabulary. We demonstrate, at scales up to 7 billion parameters, that hierarchical transformers match the downstream task performance of subword-tokenizer-based models while exhibiting significantly greater robustness to input perturbations. Additionally, during continued pretraining on an out-of-domain language, our model trains almost twice as fast, achieves superior performance on the target language, and retains more of its previously learned knowledge. Hierarchical transformers pave the way for NLP systems that are more robust, flexible, and generalizable across languages and domains.
☆ An Ontology for Social Determinants of Education (SDoEd) based on Human-AI Collaborative Approach SC
The use of computational ontologies is well-established in the field of Medical Informatics. The topic of Social Determinants of Health (SDoH) has also received extensive attention. Work at the intersection of ontologies and SDoH has been published. However, a standardized framework for Social Determinants of Education (SDoEd) is lacking. In this paper, we are closing the gap by introducing an SDoEd ontology for creating a precise conceptualization of the interplay between life circumstances of students and their possible educational achievements. The ontology was developed utilizing suggestions from ChatGPT-3.5-010422 and validated using peer-reviewed research articles. The first version of developed ontology was evaluated by human experts in the field of education and validated using standard ontology evaluation software. This version of the SDoEd ontology contains 231 domain concepts, 10 object properties, and 24 data properties
comment: Accepted in CONSORTIUM FOR COMPUTING SCIENCES IN COLLEGES
☆ SEANN: A Domain-Informed Neural Network for Epidemiological Insights
In epidemiology, traditional statistical methods such as logistic regression, linear regression, and other parametric models are commonly employed to investigate associations between predictors and health outcomes. However, non-parametric machine learning techniques, such as deep neural networks (DNNs), coupled with explainable AI (XAI) tools, offer new opportunities for this task. Despite their potential, these methods face challenges due to the limited availability of high-quality, high-quantity data in this field. To address these challenges, we introduce SEANN, a novel approach for informed DNNs that leverages a prevalent form of domain-specific knowledge: Pooled Effect Sizes (PES). PESs are commonly found in published Meta-Analysis studies, in different forms, and represent a quantitative form of a scientific consensus. By direct integration within the learning procedure using a custom loss, we experimentally demonstrate significant improvements in the generalizability of predictive performances and the scientific plausibility of extracted relationships compared to a domain-knowledge agnostic neural network in a scarce and noisy data setting.
☆ Unsupervised Rhythm and Voice Conversion of Dysarthric to Healthy Speech for ASR ICASSP 2025
Automatic speech recognition (ASR) systems are well known to perform poorly on dysarthric speech. Previous works have addressed this by speaking rate modification to reduce the mismatch with typical speech. Unfortunately, these approaches rely on transcribed speech data to estimate speaking rates and phoneme durations, which might not be available for unseen speakers. Therefore, we combine unsupervised rhythm and voice conversion methods based on self-supervised speech representations to map dysarthric to typical speech. We evaluate the outputs with a large ASR model pre-trained on healthy speech without further fine-tuning and find that the proposed rhythm conversion especially improves performance for speakers of the Torgo corpus with more severe cases of dysarthria. Code and audio samples are available at https://idiap.github.io/RnV .
comment: Accepted at ICASSP 2025 Satellite Workshop: Workshop on Speech Pathology Analysis and DEtection (SPADE)
☆ Random-Key Algorithms for Optimizing Integrated Operating Room Scheduling
Efficient surgery room scheduling is essential for hospital efficiency, patient satisfaction, and resource utilization. This study addresses this challenge by introducing a novel concept of Random-Key Optimizer (RKO), rigorously tested on literature and new, real-world inspired instances. Our combinatorial optimization problem incorporates multi-room scheduling, equipment scheduling, and complex availability constraints for rooms, patients, and surgeons, facilitating rescheduling and enhancing operational flexibility. The RKO approach represents solutions as points in a continuous space, which are then mapped in the problem solution space via a deterministic function known as a decoder. The core idea is to operate metaheuristics and heuristics in the random-key space, unaware of the original solution space. We design the Biased Random-Key Genetic Algorithm with $Q$-Learning, Simulated Annealing, and Iterated Local Search for use within an RKO framework, employing a single decoder function. The proposed metaheuristics are complemented by lower-bound formulations, providing optimal gaps for evaluating the effectiveness of the heuristic results. Our results demonstrate significant lower and upper bounds improvements for the literature instances, notably proving one optimal result. Furthermore, the best-proposed metaheuristic efficiently generates schedules for the newly introduced instances, even in highly constrained scenarios. This research offers valuable insights and practical solutions for improving surgery scheduling processes, offering tangible benefits to hospitals by optimising resource allocation, reducing patient wait times, and enhancing overall operational efficiency.
comment: 38 pages, Preprint submitted to Applied Soft Computing
☆ Challenges and recommendations for Electronic Health Records data extraction and preparation for dynamic prediction modelling in hospitalized patients -- a practical guide
Dynamic predictive modeling using electronic health record (EHR) data has gained significant attention in recent years. The reliability and trustworthiness of such models depend heavily on the quality of the underlying data, which is largely determined by the stages preceding the model development: data extraction from EHR systems and data preparation. We list over forty challenges encountered during these stages and provide actionable recommendations for addressing them. These challenges are organized into four categories: cohort definition, outcome definition, feature engineering, and data cleaning. This list is designed to serve as a practical guide for data extraction engineers and researchers, supporting better practices and improving the quality and real-world applicability of dynamic prediction models in clinical settings.
☆ Temporal Causal Reasoning with (Non-Recursive) Structural Equation Models
Structural Equation Models (SEM) are the standard approach to representing causal dependencies between variables in causal models. In this paper we propose a new interpretation of SEMs when reasoning about Actual Causality, in which SEMs are viewed as mechanisms transforming the dynamics of exogenous variables into the dynamics of endogenous variables. This allows us to combine counterfactual causal reasoning with existing temporal logic formalisms, and to introduce a temporal logic, CPLTL, for causal reasoning about such structures. We show that the standard restriction to so-called \textit{recursive} models (with no cycles in the dependency graph) is not necessary in our approach, allowing us to reason about mutually dependent processes and feedback loops. Finally, we introduce new notions of model equivalence for temporal causal models, and show that CPLTL has an efficient model-checking procedure.
☆ Good things come in small packages: Should we adopt Lite-GPUs in AI infrastructure?
To match the blooming demand of generative AI workloads, GPU designers have so far been trying to pack more and more compute and memory into single complex and expensive packages. However, there is growing uncertainty about the scalability of individual GPUs and thus AI clusters, as state-of-the-art GPUs are already displaying packaging, yield, and cooling limitations. We propose to rethink the design and scaling of AI clusters through efficiently-connected large clusters of Lite-GPUs, GPUs with single, small dies and a fraction of the capabilities of larger GPUs. We think recent advances in co-packaged optics can be key in overcoming the communication challenges of distributing AI workloads onto more Lite-GPUs. In this paper, we present the key benefits of Lite-GPUs on manufacturing cost, blast radius, yield, and power efficiency; and discuss systems opportunities and challenges around resource, workload, memory, and network management.
comment: 5+ pages, 4 figures
☆ Generative Artificial Intelligence: Implications for Biomedical and Health Professions Education
Generative AI has had a profound impact on biomedicine and health, both in professional work and in education. Based on large language models (LLMs), generative AI has been found to perform as well as humans in simulated situations taking medical board exams, answering clinical questions, solving clinical cases, applying clinical reasoning, and summarizing information. Generative AI is also being used widely in education, performing well in academic courses and their assessments. This review summarizes the successes of LLMs and highlights some of their challenges in the context of education, most notably aspects that may undermines the acquisition of knowledge and skills for professional work. It then provides recommendations for best practices overcoming shortcomings for LLM use in education. Although there are challenges for use of generative AI in education, all students and faculty, in biomedicine and health and beyond, must have understanding and be competent in its use.
☆ A Simple but Effective Closed-form Solution for Extreme Multi-label Learning ECIR25
Extreme multi-label learning (XML) is a task of assigning multiple labels from an extremely large set of labels to each data instance. Many current high-performance XML models are composed of a lot of hyperparameters, which complicates the tuning process. Additionally, the models themselves are adapted specifically to XML, which complicates their reimplementation. To remedy this problem, we propose a simple method based on ridge regression for XML. The proposed method not only has a closed-form solution but also is composed of a single hyperparameter. Since there are no precedents on applying ridge regression to XML, this paper verified the performance of the method by using various XML benchmark datasets. Furthermore, we enhanced the prediction of low-frequency labels in XML, which hold informative content. This prediction is essential yet challenging because of the limited amount of data. Here, we employed a simple frequency-based weighting. This approach greatly simplifies the process compared with existing techniques. Experimental results revealed that it can achieve levels of performance comparable to, or even exceeding, those of models with numerous hyperparameters. Additionally, we found that the frequency-based weighting significantly improved the predictive performance for low-frequency labels, while requiring almost no changes in implementation. The source code for the proposed method is available on github at https://github.com/cars1015/XML-ridge.
comment: 10pages, Accepted at ECIR25
☆ CSSDM Ontology to Enable Continuity of Care Data Interoperability
The rapid advancement of digital technologies and recent global pandemic scenarios have led to a growing focus on how these technologies can enhance healthcare service delivery and workflow to address crises. Action plans that consolidate existing digital transformation programs are being reviewed to establish core infrastructure and foundations for sustainable healthcare solutions. Reforming health and social care to personalize home care, for example, can help avoid treatment in overcrowded acute hospital settings and improve the experiences and outcomes for both healthcare professionals and service users. In this information-intensive domain, addressing the interoperability challenge through standards-based roadmaps is crucial for enabling effective connections between health and social care services. This approach facilitates safe and trustworthy data workflows between different healthcare system providers. In this paper, we present a methodology for extracting, transforming, and loading data through a semi-automated process using a Common Semantic Standardized Data Model (CSSDM) to create personalized healthcare knowledge graph (KG). The CSSDM is grounded in the formal ontology of ISO 13940 ContSys and incorporates FHIR-based specifications to support structural attributes for generating KGs. We propose that the CSSDM facilitates data harmonization and linking, offering an alternative approach to interoperability. This approach promotes a novel form of collaboration between companies developing health information systems and cloud-enabled health services. Consequently, it provides multiple stakeholders with access to high-quality data and information sharing.
comment: 6 pages, 5 figures, Published in: 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
☆ Region-wise stacking ensembles for estimating brain-age using MRI
Predictive modeling using structural magnetic resonance imaging (MRI) data is a prominent approach to study brain-aging. Machine learning algorithms and feature extraction methods have been employed to improve predictions and explore healthy and accelerated aging e.g. neurodegenerative and psychiatric disorders. The high-dimensional MRI data pose challenges to building generalizable and interpretable models as well as for data privacy. Common practices are resampling or averaging voxels within predefined parcels, which reduces anatomical specificity and biological interpretability as voxels within a region may differently relate to aging. Effectively, naive fusion by averaging can result in information loss and reduced accuracy. We present a conceptually novel two-level stacking ensemble (SE) approach. The first level comprises regional models for predicting individuals' age based on voxel-wise information, fused by a second-level model yielding final predictions. Eight data fusion scenarios were explored using as input Gray matter volume (GMV) estimates from four datasets covering the adult lifespan. Performance, measured using mean absolute error (MAE), R2, correlation and prediction bias, showed that SE outperformed the region-wise averages. The best performance was obtained when first-level regional predictions were obtained as out-of-sample predictions on the application site with second-level models trained on independent and site-specific data (MAE=4.75 vs baseline regional mean GMV MAE=5.68). Performance improved as more datasets were used for training. First-level predictions showed improved and more robust aging signal providing new biological insights and enhanced data privacy. Overall, the SE improves accuracy compared to the baseline while preserving or enhancing data privacy.
comment: version1
☆ Topology-Driven Attribute Recovery for Attribute Missing Graph Learning in Social Internet of Things
With the advancement of information technology, the Social Internet of Things (SIoT) has fostered the integration of physical devices and social networks, deepening the study of complex interaction patterns. Text Attribute Graphs (TAGs) capture both topological structures and semantic attributes, enhancing the analysis of complex interactions within the SIoT. However, existing graph learning methods are typically designed for complete attributed graphs, and the common issue of missing attributes in Attribute Missing Graphs (AMGs) increases the difficulty of analysis tasks. To address this, we propose the Topology-Driven Attribute Recovery (TDAR) framework, which leverages topological data for AMG learning. TDAR introduces an improved pre-filling method for initial attribute recovery using native graph topology. Additionally, it dynamically adjusts propagation weights and incorporates homogeneity strategies within the embedding space to suit AMGs' unique topological structures, effectively reducing noise during information propagation. Extensive experiments on public datasets demonstrate that TDAR significantly outperforms state-of-the-art methods in attribute reconstruction and downstream tasks, offering a robust solution to the challenges posed by AMGs. The code is available at https://github.com/limengran98/TDAR.
comment: Accepted by IEEE Internet of Things Journal
☆ Dual Debiasing: Remove Stereotypes and Keep Factual Gender for Fair Language Modeling and Translation
Mitigation of biases, such as language models' reliance on gender stereotypes, is a crucial endeavor required for the creation of reliable and useful language technology. The crucial aspect of debiasing is to ensure that the models preserve their versatile capabilities, including their ability to solve language tasks and equitably represent various genders. To address this issue, we introduce a streamlined Dual Dabiasing Algorithm through Model Adaptation (2DAMA). Novel Dual Debiasing enables robust reduction of stereotypical bias while preserving desired factual gender information encoded by language models. We show that 2DAMA effectively reduces gender bias in English and is one of the first approaches facilitating the mitigation of stereotypical tendencies in translation. The proposed method's key advantage is the preservation of factual gender cues, which are useful in a wide range of natural language processing tasks.
☆ Enhancing UAV Path Planning Efficiency Through Accelerated Learning
Unmanned Aerial Vehicles (UAVs) are increasingly essential in various fields such as surveillance, reconnaissance, and telecommunications. This study aims to develop a learning algorithm for the path planning of UAV wireless communication relays, which can reduce storage requirements and accelerate Deep Reinforcement Learning (DRL) convergence. Assuming the system possesses terrain maps of the area and can estimate user locations using localization algorithms or direct GPS reporting, it can input these parameters into the learning algorithms to achieve optimized path planning performance. However, higher resolution terrain maps are necessary to extract topological information such as terrain height, object distances, and signal blockages. This requirement increases memory and storage demands on UAVs while also lengthening convergence times in DRL algorithms. Similarly, defining the telecommunication coverage map in UAV wireless communication relays using these terrain maps and user position estimations demands higher memory and storage utilization for the learning path planning algorithms. Our approach reduces path planning training time by applying a dimensionality reduction technique based on Principal Component Analysis (PCA), sample combination, Prioritized Experience Replay (PER), and the combination of Mean Squared Error (MSE) and Mean Absolute Error (MAE) loss calculations in the coverage map estimates, thereby enhancing a Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm. The proposed solution reduces the convergence episodes needed for basic training by approximately four times compared to the traditional TD3.
comment: This paper was accepted in https://camad2024.ieee-camad.org/ conference but it is not available from the conference yet
☆ Conformal Prediction Sets with Improved Conditional Coverage using Trust Scores
Standard conformal prediction offers a marginal guarantee on coverage, but for prediction sets to be truly useful, they should ideally ensure coverage conditional on each test point. Unfortunately, it is impossible to achieve exact, distribution-free conditional coverage in finite samples. In this work, we propose an alternative conformal prediction algorithm that targets coverage where it matters most--in instances where a classifier is overconfident in its incorrect predictions. We start by dissecting miscoverage events in marginally-valid conformal prediction, and show that miscoverage rates vary based on the classifier's confidence and its deviation from the Bayes optimal classifier. Motivated by this insight, we develop a variant of conformal prediction that targets coverage conditional on a reduced set of two variables: the classifier's confidence in a prediction and a nonparametric trust score that measures its deviation from the Bayes classifier. Empirical evaluation on multiple image datasets shows that our method generally improves conditional coverage properties compared to standard conformal prediction, including class-conditional coverage, coverage over arbitrary subgroups, and coverage over demographic groups.
☆ Exploring the Impact of Generative Artificial Intelligence in Education: A Thematic Analysis
The recent advancements in Generative Artificial intelligence (GenAI) technology have been transformative for the field of education. Large Language Models (LLMs) such as ChatGPT and Bard can be leveraged to automate boilerplate tasks, create content for personalised teaching, and handle repetitive tasks to allow more time for creative thinking. However, it is important to develop guidelines, policies, and assessment methods in the education sector to ensure the responsible integration of these tools. In this article, thematic analysis has been performed on seven essays obtained from professionals in the education sector to understand the advantages and pitfalls of using GenAI models such as ChatGPT and Bard in education. Exploratory Data Analysis (EDA) has been performed on the essays to extract further insights from the text. The study found several themes which highlight benefits and drawbacks of GenAI tools, as well as suggestions to overcome these limitations and ensure that students are using these tools in a responsible and ethical manner.
☆ Spatio-temporal Graph Learning on Adaptive Mined Key Frames for High-performance Multi-Object Tracking
In the realm of multi-object tracking, the challenge of accurately capturing the spatial and temporal relationships between objects in video sequences remains a significant hurdle. This is further complicated by frequent occurrences of mutual occlusions among objects, which can lead to tracking errors and reduced performance in existing methods. Motivated by these challenges, we propose a novel adaptive key frame mining strategy that addresses the limitations of current tracking approaches. Specifically, we introduce a Key Frame Extraction (KFE) module that leverages reinforcement learning to adaptively segment videos, thereby guiding the tracker to exploit the intrinsic logic of the video content. This approach allows us to capture structured spatial relationships between different objects as well as the temporal relationships of objects across frames. To tackle the issue of object occlusions, we have developed an Intra-Frame Feature Fusion (IFF) module. Unlike traditional graph-based methods that primarily focus on inter-frame feature fusion, our IFF module uses a Graph Convolutional Network (GCN) to facilitate information exchange between the target and surrounding objects within a frame. This innovation significantly enhances target distinguishability and mitigates tracking loss and appearance similarity due to occlusions. By combining the strengths of both long and short trajectories and considering the spatial relationships between objects, our proposed tracker achieves impressive results on the MOT17 dataset, i.e., 68.6 HOTA, 81.0 IDF1, 66.6 AssA, and 893 IDS, proving its effectiveness and accuracy.
☆ Infrastructure for AI Agents
Increasingly many AI systems can plan and execute interactions in open-ended environments, such as making phone calls or buying online goods. As developers grow the space of tasks that such AI agents can accomplish, we will need tools both to unlock their benefits and manage their risks. Current tools are largely insufficient because they are not designed to shape how agents interact with existing institutions (e.g., legal and economic systems) or actors (e.g., digital service providers, humans, other AI agents). For example, alignment techniques by nature do not assure counterparties that some human will be held accountable when a user instructs an agent to perform an illegal action. To fill this gap, we propose the concept of agent infrastructure: technical systems and shared protocols external to agents that are designed to mediate and influence their interactions with and impacts on their environments. Agent infrastructure comprises both new tools and reconfigurations or extensions of existing tools. For example, to facilitate accountability, protocols that tie users to agents could build upon existing systems for user authentication, such as OpenID. Just as the Internet relies on infrastructure like HTTPS, we argue that agent infrastructure will be similarly indispensable to ecosystems of agents. We identify three functions for agent infrastructure: 1) attributing actions, properties, and other information to specific agents, their users, or other actors; 2) shaping agents' interactions; and 3) detecting and remedying harmful actions from agents. We propose infrastructure that could help achieve each function, explaining use cases, adoption, limitations, and open questions. Making progress on agent infrastructure can prepare society for the adoption of more advanced agents.
☆ BBPOS: BERT-based Part-of-Speech Tagging for Uzbek
This paper advances NLP research for the low-resource Uzbek language by evaluating two previously untested monolingual Uzbek BERT models on the part-of-speech (POS) tagging task and introducing the first publicly available UPOS-tagged benchmark dataset for Uzbek. Our fine-tuned models achieve 91% average accuracy, outperforming the baseline multi-lingual BERT as well as the rule-based tagger. Notably, these models capture intermediate POS changes through affixes and demonstrate context sensitivity, unlike existing rule-based taggers.
☆ LLM Reasoner and Automated Planner: A new NPC approach
In domains requiring intelligent agents to emulate plausible human-like behaviour, such as formative simulations, traditional techniques like behaviour trees encounter significant challenges. Large Language Models (LLMs), despite not always yielding optimal solutions, usually offer plausible and human-like responses to a given problem. In this paper, we exploit this capability and propose a novel architecture that integrates an LLM for decision-making with a classical automated planner that can generate sound plans for that decision. The combination aims to equip an agent with the ability to make decisions in various situations, even if they were not anticipated during the design phase.
comment: 15 pages, 7 figures, extended version of the homonymous paper submitted to the Catalan Conference on Artificial Intelligent (CCIA) 2025
☆ Universal Actions for Enhanced Embodied Foundation Models
Training on diverse, internet-scale data is a key factor in the success of recent large foundation models. Yet, using the same recipe for building embodied agents has faced noticeable difficulties. Despite the availability of many crowd-sourced embodied datasets, their action spaces often exhibit significant heterogeneity due to distinct physical embodiment and control interfaces for different robots, causing substantial challenges in developing embodied foundation models using cross-domain data. In this paper, we introduce UniAct, a new embodied foundation modeling framework operating in a tokenized Universal Action Space. Our learned universal actions capture the generic atomic behaviors across diverse robots by exploiting their shared structural features, and enable enhanced cross-domain data utilization and cross-embodiment generalizations by eliminating the notorious heterogeneity. The universal actions can be efficiently translated back to heterogeneous actionable commands by simply adding embodiment-specific details, from which fast adaptation to new robots becomes simple and straightforward. Our 0.5B instantiation of UniAct outperforms 14X larger SOTA embodied foundation models in extensive evaluations on various real-world and simulation robots, showcasing exceptional cross-embodiment control and adaptation capability, highlighting the crucial benefit of adopting universal actions. Project page: https://github.com/2toinf/UniAct
comment: Preprint
☆ Robotic World Model: A Neural Network Simulator for Robust Policy Optimization in Robotics
Learning robust and generalizable world models is crucial for enabling efficient and scalable robotic control in real-world environments. In this work, we introduce a novel framework for learning world models that accurately capture complex, partially observable, and stochastic dynamics. The proposed method employs a dual-autoregressive mechanism and self-supervised training to achieve reliable long-horizon predictions without relying on domain-specific inductive biases, ensuring adaptability across diverse robotic tasks. We further propose a policy optimization framework that leverages world models for efficient training in imagined environments and seamless deployment in real-world systems. Through extensive experiments, our approach consistently outperforms state-of-the-art methods, demonstrating superior autoregressive prediction accuracy, robustness to noise, and generalization across manipulation and locomotion tasks. Notably, policies trained with our method are successfully deployed on ANYmal D hardware in a zero-shot transfer, achieving robust performance with minimal sim-to-real performance loss. This work advances model-based reinforcement learning by addressing the challenges of long-horizon prediction, error accumulation, and sim-to-real transfer. By providing a scalable and robust framework, the introduced methods pave the way for adaptive and efficient robotic systems in real-world applications.
☆ landmarker: a Toolkit for Anatomical Landmark Localization in 2D/3D Images
Anatomical landmark localization in 2D/3D images is a critical task in medical imaging. Although many general-purpose tools exist for landmark localization in classical computer vision tasks, such as pose estimation, they lack the specialized features and modularity necessary for anatomical landmark localization applications in the medical domain. Therefore, we introduce landmarker, a Python package built on PyTorch. The package provides a comprehensive, flexible toolkit for developing and evaluating landmark localization algorithms, supporting a range of methodologies, including static and adaptive heatmap regression. landmarker enhances the accuracy of landmark identification, streamlines research and development processes, and supports various image formats and preprocessing pipelines. Its modular design allows users to customize and extend the toolkit for specific datasets and applications, accelerating innovation in medical imaging. landmarker addresses a critical need for precision and customization in landmark localization tasks not adequately met by existing general-purpose pose estimation tools.
comment: 11 pages, 4 figures
☆ How Do Programming Students Use Generative AI?
Programming students have a widespread access to powerful Generative AI tools like ChatGPT. While this can help understand the learning material and assist with exercises, educators are voicing more and more concerns about an over-reliance on generated outputs and lack of critical thinking skills. It is thus important to understand how students actually use generative AI and what impact this could have on their learning behavior. To this end, we conducted a study including an exploratory experiment with 37 programming students, giving them monitored access to ChatGPT while solving a code understanding and improving exercise. While only 23 of the students actually opted to use the chatbot, the majority of those eventually prompted it to simply generate a full solution. We observed two prevalent usage strategies: to seek knowledge about general concepts and to directly generate solutions. Instead of using the bot to comprehend the code and their own mistakes, students often got trapped in a vicious cycle of submitting wrong generated code and then asking the bot for a fix. Those who self-reported using generative AI regularly were more likely to prompt the bot to generate a solution. Our findings indicate that concerns about potential decrease in programmers' agency and productivity with Generative AI are justified. We discuss how researchers and educators can respond to the potential risk of students uncritically over-relying on generative AI. We also discuss potential modifications to our study design for large-scale replications.
comment: preprint; accepted to ACM International Conference on the Foundations of Software Engineering (FSE) 2025
☆ Robust Change Captioning in Remote Sensing: SECOND-CC Dataset and MModalCC Framework
Remote sensing change captioning (RSICC) aims to describe changes between bitemporal images in natural language. Existing methods often fail under challenges like illumination differences, viewpoint changes, blur effects, leading to inaccuracies, especially in no-change regions. Moreover, the images acquired at different spatial resolutions and have registration errors tend to affect the captions. To address these issues, we introduce SECOND-CC, a novel RSICC dataset featuring high-resolution RGB image pairs, semantic segmentation maps, and diverse real-world scenarios. SECOND-CC which contains 6,041 pairs of bitemporal RS images and 30,205 sentences describing the differences between images. Additionally, we propose MModalCC, a multimodal framework that integrates semantic and visual data using advanced attention mechanisms, including Cross-Modal Cross Attention (CMCA) and Multimodal Gated Cross Attention (MGCA). Detailed ablation studies and attention visualizations further demonstrate its effectiveness and ability to address RSICC challenges. Comprehensive experiments show that MModalCC outperforms state-of-the-art RSICC methods, including RSICCformer, Chg2Cap, and PSNet with +4.6% improvement on BLEU4 score and +9.6% improvement on CIDEr score. We will make our dataset and codebase publicly available to facilitate future research at https://github.com/ChangeCapsInRS/SecondCC
comment: This work has been submitted to the IEEE Transactions on Geoscience and Remote Sensing journal for possible publication
☆ SpatialCoT: Advancing Spatial Reasoning through Coordinate Alignment and Chain-of-Thought for Embodied Task Planning
Spatial reasoning is an essential problem in embodied AI research. Efforts to enhance spatial reasoning abilities through supplementary spatial data and fine-tuning have proven limited and ineffective when addressing complex embodied tasks, largely due to their dependence on language-based outputs. While some approaches have introduced a point-based action space to mitigate this issue, they fall short in managing more intricate tasks within complex environments. This deficiency arises from their failure to fully exploit the inherent thinking and reasoning capabilities that are fundamental strengths of Vision-Language Models (VLMs). To address these limitations, we propose a novel approach named SpatialCoT, specifically designed to bolster the spatial reasoning capabilities of VLMs. Our approach comprises two stages: spatial coordinate bi-directional alignment, which aligns vision-language inputs with spatial coordinates, and chain-of-thought spatial grounding, which harnesses the reasoning capabilities of language models for advanced spatial reasoning. We evaluate SpatialCoT on challenging navigation and manipulation tasks, both in simulation and real-world settings. Experimental results demonstrate that our method significantly outperforms previous state-of-the-art approaches in both tasks.
comment: 13 pages, 6 figures
☆ A Survey on LLM Test-Time Compute via Search: Tasks, LLM Profiling, Search Algorithms, and Relevant Frameworks
LLM test-time compute (or LLM inference) via search has emerged as a promising research area with rapid developments. However, current frameworks often adopt distinct perspectives on three key aspects (task definition, LLM profiling, and search procedures), making direct comparisons challenging. Moreover, the search algorithms employed often diverge from standard implementations, and their specific characteristics are not thoroughly specified. In this survey, we provide a comprehensive technical review that unifies task definitions and provides modular definitions of LLM profiling and search procedures. The definitions enable precise comparisons of various LLM inference frameworks while highlighting their departures from conventional search algorithms. We also discuss the applicability, performance, and efficiency of these methods. For further details and ongoing updates, please refer to our GitHub repository: https://github.com/xinzhel/LLM-Agent-Survey/blob/main/search.md
☆ Accelerating Large Language Models through Partially Linear Feed-Forward Network
Large language models (LLMs) demonstrate remarkable capabilities but face deployment challenges due to their massive parameter counts. While existing compression techniques like pruning can reduce model size, it leads to significant accuracy degradation under high compression ratios. We present a novel perspective inspired by constant folding in compiler optimization. Our approach enables parameter reduction by treating activation functions in LLMs as linear functions. However, recent LLMs use complex non-linear activations like GELU that prevent direct application of this technique. We propose TARDIS, which enables optimization of LLMs with non-linear activations by partially approximating them with linear functions in frequently occurring input ranges. For outlier inputs, TARDIS employs an online predictor to dynamically fall back to original computations. Our experiments demonstrate that TARDIS achieves 80% parameter reduction in feed-forward networks, while significantly outperforming state-of-the-art pruning methods Wanda and RIA with up to 65% higher accuracy. In practical deployments for a 7B model, TARDIS achieves 1.6x end-to-end inference speedup when integrated with the vLLM serving system, and 1.4x speedup with the widely adopted HuggingFace implementation, while incurring only a 10.9% accuracy trade-off.
☆ AirRAG: Activating Intrinsic Reasoning for Retrieval Augmented Generation via Tree-based Search
Leveraging the autonomous decision-making capabilities of large language models (LLMs) demonstrates superior performance in reasoning tasks. Despite the successes of iterative or recursive retrieval-augmented generation (RAG), they often are trapped in a single solution space when confronted with complex tasks. In this paper, we propose a novel thinking pattern in RAG which integrates system analysis with efficient reasoning actions, significantly activating intrinsic reasoning capabilities and expanding the solution space of specific tasks via Monte Carlo Tree Search (MCTS), dubbed AirRAG. Specifically, our approach designs five fundamental reasoning actions that are expanded to a wide tree-based reasoning spaces using MCTS. The extension also uses self-consistency verification to explore potential reasoning paths and implement inference scaling. In addition, computationally optimal strategies are used to apply more inference computation to key actions to achieve further performance improvements. Experimental results demonstrate the effectiveness of AirRAG through considerable performance gains over complex QA datasets. Furthermore, AirRAG is flexible and lightweight, making it easy to integrate with other advanced technologies.
comment: 17 pages, 14 figures
☆ Virtual Nodes Improve Long-term Traffic Prediction
Effective traffic prediction is a cornerstone of intelligent transportation systems, enabling precise forecasts of traffic flow, speed, and congestion. While traditional spatio-temporal graph neural networks (ST-GNNs) have achieved notable success in short-term traffic forecasting, their performance in long-term predictions remains limited. This challenge arises from over-squashing problem, where bottlenecks and limited receptive fields restrict information flow and hinder the modeling of global dependencies. To address these challenges, this study introduces a novel framework that incorporates virtual nodes, which are additional nodes added to the graph and connected to existing nodes, in order to aggregate information across the entire graph within a single GNN layer. Our proposed model incorporates virtual nodes by constructing a semi-adaptive adjacency matrix. This matrix integrates distance-based and adaptive adjacency matrices, allowing the model to leverage geographical information while also learning task-specific features from data. Experimental results demonstrate that the inclusion of virtual nodes significantly enhances long-term prediction accuracy while also improving layer-wise sensitivity to mitigate the over-squashing problem. Virtual nodes also offer enhanced explainability by focusing on key intersections and high-traffic areas, as shown by the visualization of their adjacency matrix weights on road network heat maps. Our advanced approach enhances the understanding and management of urban traffic systems, making it particularly well-suited for real-world applications.
☆ Spatiotemporal Prediction of Secondary Crashes by Rebalancing Dynamic and Static Data with Generative Adversarial Networks
Data imbalance is a common issue in analyzing and predicting sudden traffic events. Secondary crashes constitute only a small proportion of all crashes. These secondary crashes, triggered by primary crashes, significantly exacerbate traffic congestion and increase the severity of incidents. However, the severe imbalance of secondary crash data poses significant challenges for prediction models, affecting their generalization ability and prediction accuracy. Existing methods fail to fully address the complexity of traffic crash data, particularly the coexistence of dynamic and static features, and often struggle to effectively handle data samples of varying lengths. Furthermore, most current studies predict the occurrence probability and spatiotemporal distribution of secondary crashes separately, lacking an integrated solution. To address these challenges, this study proposes a hybrid model named VarFusiGAN-Transformer, aimed at improving the fidelity of secondary crash data generation and jointly predicting the occurrence and spatiotemporal distribution of secondary crashes. The VarFusiGAN-Transformer model employs Long Short-Term Memory (LSTM) networks to enhance the generation of multivariate long-time series data, incorporating a static data generator and an auxiliary discriminator to model the joint distribution of dynamic and static features. In addition, the model's prediction module achieves simultaneous prediction of both the occurrence and spatiotemporal distribution of secondary crashes. Compared to existing methods, the proposed model demonstrates superior performance in generating high-fidelity data and improving prediction accuracy.
☆ Automatic Speech Recognition for Sanskrit with Transfer Learning
Sanskrit, one of humanity's most ancient languages, has a vast collection of books and manuscripts on diverse topics that have been accumulated over millennia. However, its digital content (audio and text), which is vital for the training of AI systems, is profoundly limited. Furthermore, its intricate linguistics make it hard to develop robust NLP tools for wider accessibility. Given these constraints, we have developed an automatic speech recognition model for Sanskrit by employing transfer learning mechanism on OpenAI's Whisper model. After carefully optimising the hyper-parameters, we obtained promising results with our transfer-learned model achieving a word error rate of 15.42% on Vaksancayah dataset. An online demo of our model is made available for the use of public and to evaluate its performance firsthand thereby paving the way for improved accessibility and technological support for Sanskrit learning in the modern era.
comment: Paper has been accepted at the 4th International Conference on Computer, Communication, Control & Information Technology (C3IT), Hooghly, India, 2024, pp. 1-5
☆ Enhancing Crash Frequency Modeling Based on Augmented Multi-Type Data by Hybrid VAE-Diffusion-Based Generative Neural Networks
Crash frequency modelling analyzes the impact of factors like traffic volume, road geometry, and environmental conditions on crash occurrences. Inaccurate predictions can distort our understanding of these factors, leading to misguided policies and wasted resources, which jeopardize traffic safety. A key challenge in crash frequency modelling is the prevalence of excessive zero observations, caused by underreporting, the low probability of crashes, and high data collection costs. These zero observations often reduce model accuracy and introduce bias, complicating safety decision making. While existing approaches, such as statistical methods, data aggregation, and resampling, attempt to address this issue, they either rely on restrictive assumptions or result in significant information loss, distorting crash data. To overcome these limitations, we propose a hybrid VAE-Diffusion neural network, designed to reduce zero observations and handle the complexities of multi-type tabular crash data (count, ordinal, nominal, and real-valued variables). We assess the synthetic data quality generated by this model through metrics like similarity, accuracy, diversity, and structural consistency, and compare its predictive performance against traditional statistical models. Our findings demonstrate that the hybrid VAE-Diffusion model outperforms baseline models across all metrics, offering a more effective approach to augmenting crash data and improving the accuracy of crash frequency predictions. This study highlights the potential of synthetic data to enhance traffic safety by improving crash frequency modelling and informing better policy decisions.
☆ Mitigating Hallucinations on Object Attributes using Multiview Images and Negative Instructions ICASSP 2025
Current popular Large Vision-Language Models (LVLMs) are suffering from Hallucinations on Object Attributes (HoOA), leading to incorrect determination of fine-grained attributes in the input images. Leveraging significant advancements in 3D generation from a single image, this paper proposes a novel method to mitigate HoOA in LVLMs. This method utilizes multiview images sampled from generated 3D representations as visual prompts for LVLMs, thereby providing more visual information from other viewpoints. Furthermore, we observe the input order of multiple multiview images significantly affects the performance of LVLMs. Consequently, we have devised Multiview Image Augmented VLM (MIAVLM), incorporating a Multiview Attributes Perceiver (MAP) submodule capable of simultaneously eliminating the influence of input image order and aligning visual information from multiview images with Large Language Models (LLMs). Besides, we designed and employed negative instructions to mitigate LVLMs' bias towards ``Yes" responses. Comprehensive experiments demonstrate the effectiveness of our method.
comment: 2025 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2025)
☆ Adaptive Spatiotemporal Augmentation for Improving Dynamic Graph Learning ICASSP 2025
Dynamic graph augmentation is used to improve the performance of dynamic GNNs. Most methods assume temporal locality, meaning that recent edges are more influential than earlier edges. However, for temporal changes in edges caused by random noise, overemphasizing recent edges while neglecting earlier ones may lead to the model capturing noise. To address this issue, we propose STAA (SpatioTemporal Activity-Aware Random Walk Diffusion). STAA identifies nodes likely to have noisy edges in spatiotemporal dimensions. Spatially, it analyzes critical topological positions through graph wavelet coefficients. Temporally, it analyzes edge evolution through graph wavelet coefficient change rates. Then, random walks are used to reduce the weights of noisy edges, deriving a diffusion matrix containing spatiotemporal information as an augmented adjacency matrix for dynamic GNN learning. Experiments on multiple datasets show that STAA outperforms other dynamic graph augmentation methods in node classification and link prediction tasks.
comment: 2025 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2025)
☆ Deep Learning for Early Alzheimer Disease Detection with MRI Scans
Alzheimer's Disease is a neurodegenerative condition characterized by dementia and impairment in neurological function. The study primarily focuses on the individuals above age 40, affecting their memory, behavior, and cognitive processes of the brain. Alzheimer's disease requires diagnosis by a detailed assessment of MRI scans and neuropsychological tests of the patients. This project compares existing deep learning models in the pursuit of enhancing the accuracy and efficiency of AD diagnosis, specifically focusing on the Convolutional Neural Network, Bayesian Convolutional Neural Network, and the U-net model with the Open Access Series of Imaging Studies brain MRI dataset. Besides, to ensure robustness and reliability in the model evaluations, we address the challenge of imbalance in data. We then perform rigorous evaluation to determine strengths and weaknesses for each model by considering sensitivity, specificity, and computational efficiency. This comparative analysis would shed light on the future role of AI in revolutionizing AD diagnostics but also paved ways for future innovation in medical imaging and the management of neurodegenerative diseases.
☆ Attention-guided Self-reflection for Zero-shot Hallucination Detection in Large Language Models
Hallucination has emerged as a significant barrier to the effective application of Large Language Models (LLMs). In this work, we introduce a novel Attention-Guided SElf-Reflection (AGSER) approach for zero-shot hallucination detection in LLMs. The AGSER method utilizes attention contributions to categorize the input query into attentive and non-attentive queries. Each query is then processed separately through the LLMs, allowing us to compute consistency scores between the generated responses and the original answer. The difference between the two consistency scores serves as a hallucination estimator. In addition to its efficacy in detecting hallucinations, AGSER notably reduces computational complexity, requiring only three passes through the LLM and utilizing two sets of tokens. We have conducted extensive experiments with four widely-used LLMs across three different hallucination benchmarks, demonstrating that our approach significantly outperforms existing methods in zero-shot hallucination detection.
☆ Fast energy-aware OLSR routing in VANETs by means of a parallel evolutionary algorithm
This work tackles the problem of reducing the power consumption of the OLSR routing protocol in vehicular networks. Nowadays, energy-aware and green communication protocols are important research topics, specially when deploying wireless mobile networks. This article introduces a fast automatic methodology to search for energy-efficient OLSR configurations by using a parallel evolutionary algorithm. The experimental analysis demonstrates that significant improvements over the standard configuration can be attained in terms of power consumption, with no noteworthy loss in the QoS.
☆ Multi-Modal Attention Networks for Enhanced Segmentation and Depth Estimation of Subsurface Defects in Pulse Thermography
AI-driven pulse thermography (PT) has become a crucial tool in non-destructive testing (NDT), enabling automatic detection of hidden anomalies in various industrial components. Current state-of-the-art techniques feed segmentation and depth estimation networks compressed PT sequences using either Principal Component Analysis (PCA) or Thermographic Signal Reconstruction (TSR). However, treating these two modalities independently constrains the performance of PT inspection models as these representations possess complementary semantic features. To address this limitation, this work proposes PT-Fusion, a multi-modal attention-based fusion network that fuses both PCA and TSR modalities for defect segmentation and depth estimation of subsurface defects in PT setups. PT-Fusion introduces novel feature fusion modules, Encoder Attention Fusion Gate (EAFG) and Attention Enhanced Decoding Block (AEDB), to fuse PCA and TSR features for enhanced segmentation and depth estimation of subsurface defects. In addition, a novel data augmentation technique is proposed based on random data sampling from thermographic sequences to alleviate the scarcity of PT datasets. The proposed method is benchmarked against state-of-the-art PT inspection models, including U-Net, attention U-Net, and 3D-CNN on the Universit\'e Laval IRT-PVC dataset. The results demonstrate that PT-Fusion outperforms the aforementioned models in defect segmentation and depth estimation accuracies with a margin of 10%.
comment: Pulse thermography, infrared thermography, defect segmentation, multi-modal networks, attention mechanism
☆ RichSpace: Enriching Text-to-Video Prompt Space via Text Embedding Interpolation
Text-to-video generation models have made impressive progress, but they still struggle with generating videos with complex features. This limitation often arises from the inability of the text encoder to produce accurate embeddings, which hinders the video generation model. In this work, we propose a novel approach to overcome this challenge by selecting the optimal text embedding through interpolation in the embedding space. We demonstrate that this method enables the video generation model to produce the desired videos. Additionally, we introduce a simple algorithm using perpendicular foot embeddings and cosine similarity to identify the optimal interpolation embedding. Our findings highlight the importance of accurate text embeddings and offer a pathway for improving text-to-video generation performance.
☆ Aneumo: A Large-Scale Comprehensive Synthetic Dataset of Aneurysm Hemodynamics
Intracranial aneurysm (IA) is a common cerebrovascular disease that is usually asymptomatic but may cause severe subarachnoid hemorrhage (SAH) if ruptured. Although clinical practice is usually based on individual factors and morphological features of the aneurysm, its pathophysiology and hemodynamic mechanisms remain controversial. To address the limitations of current research, this study constructed a comprehensive hemodynamic dataset of intracranial aneurysms. The dataset is based on 466 real aneurysm models, and 10,000 synthetic models were generated by resection and deformation operations, including 466 aneurysm-free models and 9,534 deformed aneurysm models. The dataset also provides medical image-like segmentation mask files to support insightful analysis. In addition, the dataset contains hemodynamic data measured at eight steady-state flow rates (0.001 to 0.004 kg/s), including critical parameters such as flow velocity, pressure, and wall shear stress, providing a valuable resource for investigating aneurysm pathogenesis and clinical prediction. This dataset will help advance the understanding of the pathologic features and hemodynamic mechanisms of intracranial aneurysms and support in-depth research in related fields. Dataset hosted at https://github.com/Xigui-Li/Aneumo.
☆ GVMGen: A General Video-to-Music Generation Model with Hierarchical Attentions AAAI
Composing music for video is essential yet challenging, leading to a growing interest in automating music generation for video applications. Existing approaches often struggle to achieve robust music-video correspondence and generative diversity, primarily due to inadequate feature alignment methods and insufficient datasets. In this study, we present General Video-to-Music Generation model (GVMGen), designed for generating high-related music to the video input. Our model employs hierarchical attentions to extract and align video features with music in both spatial and temporal dimensions, ensuring the preservation of pertinent features while minimizing redundancy. Remarkably, our method is versatile, capable of generating multi-style music from different video inputs, even in zero-shot scenarios. We also propose an evaluation model along with two novel objective metrics for assessing video-music alignment. Additionally, we have compiled a large-scale dataset comprising diverse types of video-music pairs. Experimental results demonstrate that GVMGen surpasses previous models in terms of music-video correspondence, generative diversity, and application universality.
comment: Accepted by the 39th AAAI Conference on Artificial Intelligence (AAAI-25)
☆ Explainable artificial intelligence (XAI): from inherent explainability to large language models
Artificial Intelligence (AI) has continued to achieve tremendous success in recent times. However, the decision logic of these frameworks is often not transparent, making it difficult for stakeholders to understand, interpret or explain their behavior. This limitation hinders trust in machine learning systems and causes a general reluctance towards their adoption in practical applications, particularly in mission-critical domains like healthcare and autonomous driving. Explainable AI (XAI) techniques facilitate the explainability or interpretability of machine learning models, enabling users to discern the basis of the decision and possibly avert undesirable behavior. This comprehensive survey details the advancements of explainable AI methods, from inherently interpretable models to modern approaches for achieving interpretability of various black box models, including large language models (LLMs). Additionally, we review explainable AI techniques that leverage LLM and vision-language model (VLM) frameworks to automate or improve the explainability of other machine learning models. The use of LLM and VLM as interpretability methods particularly enables high-level, semantically meaningful explanations of model decisions and behavior. Throughout the paper, we highlight the scientific principles, strengths and weaknesses of state-of-the-art methods and outline different areas of improvement. Where appropriate, we also present qualitative and quantitative comparison results of various methods to show how they compare. Finally, we discuss the key challenges of XAI and directions for future research.
☆ AIRCHITECT v2: Learning the Hardware Accelerator Design Space through Unified Representations DATE 2025
Design space exploration (DSE) plays a crucial role in enabling custom hardware architectures, particularly for emerging applications like AI, where optimized and specialized designs are essential. With the growing complexity of deep neural networks (DNNs) and the introduction of advanced foundational models (FMs), the design space for DNN accelerators is expanding at an exponential rate. Additionally, this space is highly non-uniform and non-convex, making it increasingly difficult to navigate and optimize. Traditional DSE techniques rely on search-based methods, which involve iterative sampling of the design space to find the optimal solution. However, this process is both time-consuming and often fails to converge to the global optima for such design spaces. Recently, AIrchitect v1, the first attempt to address the limitations of search-based techniques, transformed DSE into a constant-time classification problem using recommendation networks. In this work, we propose AIrchitect v2, a more accurate and generalizable learning-based DSE technique applicable to large-scale design spaces that overcomes the shortcomings of earlier approaches. Specifically, we devise an encoder-decoder transformer model that (a) encodes the complex design space into a uniform intermediate representation using contrastive learning and (b) leverages a novel unified representation blending the advantages of classification and regression to effectively explore the large DSE space without sacrificing accuracy. Experimental results evaluated on 10^5 real DNN workloads demonstrate that, on average, AIrchitect v2 outperforms existing techniques by 15% in identifying optimal design points. Furthermore, to demonstrate the generalizability of our method, we evaluate performance on unseen model workloads (LLMs) and attain a 1.7x improvement in inference latency on the identified hardware architecture.
comment: Accepted to DATE 2025
☆ MultiPruner: Balanced Structure Removal in Foundation Models
Recently, state-of-the-art approaches for pruning large pre-trained models (LPMs) have demonstrated that the training-free removal of non-critical residual blocks in Transformers is viable for reducing model size, achieving results that outperform previous training-free pruning approaches. Motivated by these findings, we extend BlockPruner (Zhong et al., 2024) and propose MultiPruner, a pruning approach that surpasses recent training-free pruning methods by adopting a multidimensional, iterative, fine-grained pruning strategy. In MultiPruner, multidimensional pruning reinstates the structural balance in block-pruned models by sequentially compressing along three dimensions: i) residual blocks, ii) channels of multilayer perceptrons (MLP), and iii) attention heads. This solution enhances zero-shot accuracy on downstream tasks compared to other techniques while improving model compression ratios, producing compressed models with fewer computing and memory requirements. Extensive experiments demonstrate the advantages of the proposed method across various large pre-trained models. The code and pruning configurations are available at https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning.
☆ AI Explainability for Power Electronics: From a Lipschitz Continuity Perspective
Lifecycle management of power converters continues to thrive with emerging artificial intelligence (AI) solutions, yet AI mathematical explainability remains unexplored in power electronics (PE) community. The lack of theoretical rigor challenges adoption in mission-critical applications. Therefore, this letter proposes a generic framework to evaluate mathematical explainability, highlighting inference stability and training convergence from a Lipschitz continuity perspective. Inference stability governs consistent outputs under input perturbations, essential for robust real-time control and fault diagnosis. Training convergence guarantees stable learning dynamics, facilitating accurate modeling in PE contexts. Additionally, a Lipschitz-aware learning rate selection strategy is introduced to accelerate convergence while mitigating overshoots and oscillations. The feasibility of the proposed Lipschitz-oriented framework is demonstrated by validating the mathematical explainability of a state-of-the-art physics-in-architecture neural network, and substantiated through empirical case studies on dual-active-bridge converters. This letter serves as a clarion call for the PE community to embrace mathematical explainability, heralding a transformative era of trustworthy and explainable AI solutions that potentially redefine the future of power electronics.
☆ Client-Centric Federated Adaptive Optimization
Federated Learning (FL) is a distributed learning paradigm where clients collaboratively train a model while keeping their own data private. With an increasing scale of clients and models, FL encounters two key challenges, client drift due to a high degree of statistical/system heterogeneity, and lack of adaptivity. However, most existing FL research is based on unrealistic assumptions that virtually ignore system heterogeneity. In this paper, we propose Client-Centric Federated Adaptive Optimization, which is a class of novel federated adaptive optimization approaches. We enable several features in this framework such as arbitrary client participation, asynchronous server aggregation, and heterogeneous local computing, which are ubiquitous in real-world FL systems but are missed in most existing works. We provide a rigorous convergence analysis of our proposed framework for general nonconvex objectives, which is shown to converge with the best-known rate. Extensive experiments show that our approaches consistently outperform the baseline by a large margin across benchmarks.
☆ HEART: Achieving Timely Multi-Model Training for Vehicle-Edge-Cloud-Integrated Hierarchical Federated Learning
The rapid growth of AI-enabled Internet of Vehicles (IoV) calls for efficient machine learning (ML) solutions that can handle high vehicular mobility and decentralized data. This has motivated the emergence of Hierarchical Federated Learning over vehicle-edge-cloud architectures (VEC-HFL). Nevertheless, one aspect which is underexplored in the literature on VEC-HFL is that vehicles often need to execute multiple ML tasks simultaneously, where this multi-model training environment introduces crucial challenges. First, improper aggregation rules can lead to model obsolescence and prolonged training times. Second, vehicular mobility may result in inefficient data utilization by preventing the vehicles from returning their models to the network edge. Third, achieving a balanced resource allocation across diverse tasks becomes of paramount importance as it majorly affects the effectiveness of collaborative training. We take one of the first steps towards addressing these challenges via proposing a framework for multi-model training in dynamic VEC-HFL with the goal of minimizing global training latency while ensuring balanced training across various tasks-a problem that turns out to be NP-hard. To facilitate timely model training, we introduce a hybrid synchronous-asynchronous aggregation rule. Building on this, we present a novel method called Hybrid Evolutionary And gReedy allocaTion (HEART). The framework operates in two stages: first, it achieves balanced task scheduling through a hybrid heuristic approach that combines improved Particle Swarm Optimization (PSO) and Genetic Algorithms (GA); second, it employs a low-complexity greedy algorithm to determine the training priority of assigned tasks on vehicles. Experiments on real-world datasets demonstrate the superiority of HEART over existing methods.
comment: 14 pages, 6 figures,
☆ Steering Large Language Models with Feature Guided Activation Additions
Effective and reliable control over large language model (LLM) behavior is a significant challenge. While activation steering methods, which add steering vectors to a model's hidden states, are a promising approach, existing techniques often lack precision and interpretability in how they influence model outputs. We introduce Feature Guided Activation Additions (FGAA), a novel activation steering method that leverages insights from Contrastive Activation Addition (CAA) and Sparse Autoencoder-Targeted Steering (SAE-TS). By operating in the latent space of a Sparse Autoencoder (SAE) and employing optimization techniques to select desired SAE features, FGAA constructs precise steering vectors that provide better steering effects while maintaining coherence of steered model outputs. In this regard, evaluations on Gemma-2-2B and Gemma-2-9B models across various steering tasks demonstrate that FGAA outperforms existing steering methods of CAA, SAE decoder steering, and SAE-TS. Our results also highlight important trade-offs between steering scale and general model capabilities that are consistent across all tested steering methods.
comment: 7 maintext pages, 14 appendix pages
☆ Dialogue Benchmark Generation from Knowledge Graphs with Cost-Effective Retrieval-Augmented LLMs SIGMOD 2025
Dialogue benchmarks are crucial in training and evaluating chatbots engaging in domain-specific conversations. Knowledge graphs (KGs) represent semantically rich and well-organized data spanning various domains, such as DBLP, DBpedia, and YAGO. Traditionally, dialogue benchmarks have been manually created from documents, neglecting the potential of KGs in automating this process. Some question-answering benchmarks are automatically generated using extensive preprocessing from KGs, but they do not support dialogue generation. This paper introduces Chatty-Gen, a novel multi-stage retrieval-augmented generation platform for automatically generating high-quality dialogue benchmarks tailored to a specific domain using a KG. Chatty-Gen decomposes the generation process into manageable stages and uses assertion rules for automatic validation between stages. Our approach enables control over intermediate results to prevent time-consuming restarts due to hallucinations. It also reduces reliance on costly and more powerful commercial LLMs. Chatty-Gen eliminates upfront processing of the entire KG using efficient query-based retrieval to find representative subgraphs based on the dialogue context. Our experiments with several real and large KGs demonstrate that Chatty-Gen significantly outperforms state-of-the-art systems and ensures consistent model and system performance across multiple LLMs of diverse capabilities, such as GPT-4o, Gemini 1.5, Llama 3, and Mistral.
comment: The paper is publsihed in SIGMOD 2025
☆ IE-Bench: Advancing the Measurement of Text-Driven Image Editing for Human Perception Alignment
Recent advances in text-driven image editing have been significant, yet the task of accurately evaluating these edited images continues to pose a considerable challenge. Different from the assessment of text-driven image generation, text-driven image editing is characterized by simultaneously conditioning on both text and a source image. The edited images often retain an intrinsic connection to the original image, which dynamically change with the semantics of the text. However, previous methods tend to solely focus on text-image alignment or have not aligned with human perception. In this work, we introduce the Text-driven Image Editing Benchmark suite (IE-Bench) to enhance the assessment of text-driven edited images. IE-Bench includes a database contains diverse source images, various editing prompts and the corresponding results different editing methods, and total 3,010 Mean Opinion Scores (MOS) provided by 25 human subjects. Furthermore, we introduce IE-QA, a multi-modality source-aware quality assessment method for text-driven image editing. To the best of our knowledge, IE-Bench offers the first IQA dataset and model tailored for text-driven image editing. Extensive experiments demonstrate IE-QA's superior subjective-alignments on the text-driven image editing task compared with previous metrics. We will make all related data and code available to the public.
☆ ForestProtector: An IoT Architecture Integrating Machine Vision and Deep Reinforcement Learning for Efficient Wildfire Monitoring
Early detection of forest fires is crucial to minimizing the environmental and socioeconomic damage they cause. Indeed, a fire's duration directly correlates with the difficulty and cost of extinguishing it. For instance, a fire burning for 1 minute might require 1 liter of water to extinguish, while a 2-minute fire could demand 100 liters, and a 10-minute fire might necessitate 1,000 liters. On the other hand, existing fire detection systems based on novel technologies (e.g., remote sensing, PTZ cameras, UAVs) are often expensive and require human intervention, making continuous monitoring of large areas impractical. To address this challenge, this work proposes a low-cost forest fire detection system that utilizes a central gateway device with computer vision capabilities to monitor a 360{\deg} field of view for smoke at long distances. A deep reinforcement learning agent enhances surveillance by dynamically controlling the camera's orientation, leveraging real-time sensor data (smoke levels, ambient temperature, and humidity) from distributed IoT devices. This approach enables automated wildfire monitoring across expansive areas while reducing false positives.
comment: Accepted for publication in the proceedings of the 11th International Conference on Automation, Robotics, and Applications (ICARA 2025)
☆ Study on a Fast Solver for Combined Field Integral Equations of 3D Conducting Bodies Based on Graph Neural Networks
In this paper, we present a graph neural networks (GNNs)-based fast solver (GraphSolver) for solving combined field integral equations (CFIEs) of 3D conducting bodies. Rao-Wilton-Glisson (RWG) basis functions are employed to discretely and accurately represent the geometry of 3D conducting bodies. A concise and informative graph representation is then constructed by treating each RWG function as a node in the graph, enabling the flow of current between nodes. With the transformed graphs, GraphSolver is developed to directly predict real and imaginary parts of the x, y and z components of the surface current densities at each node (RWG function). Numerical results demonstrate the efficacy of GraphSolver in solving CFIEs for 3D conducting bodies with varying levels of geometric complexity, including basic 3D targets, missile-shaped targets, and airplane-shaped targets.
comment: 10 pages,11 figures
☆ GenSC-6G: A Prototype Testbed for Integrated Generative AI, Quantum, and Semantic Communication
We introduce a prototyping testbed, GenSC-6G, developed to generate a comprehensive dataset that supports the integration of generative artificial intelligence (AI), quantum computing, and semantic communication for emerging sixth-generation (6G) applications. The GenSC-6G dataset is designed with noise-augmented synthetic data optimized for semantic decoding, classification, and localization tasks, significantly enhancing flexibility for diverse AI-driven communication applications. This adaptable prototype supports seamless modifications across baseline models, communication modules, and goal-oriented decoders. Case studies demonstrate its application in lightweight classification, semantic upsampling, and edge-based language inference under noise conditions. The GenSC-6G dataset serves as a scalable and robust resource for developing goal-oriented communication systems tailored to the growing demands of 6G networks.
comment: SUBMITTED FOR PUBLICATION IN IEEE COMMUNICATIONS MAGAZINE
☆ Towards A Litmus Test for Common Sense
This paper is the second in a planned series aimed at envisioning a path to safe and beneficial artificial intelligence. Building on the conceptual insights of "Common Sense Is All You Need," we propose a more formal litmus test for common sense, adopting an axiomatic approach that combines minimal prior knowledge (MPK) constraints with diagonal or Godel-style arguments to create tasks beyond the agent's known concept set. We discuss how this approach applies to the Abstraction and Reasoning Corpus (ARC), acknowledging training/test data constraints, physical or virtual embodiment, and large language models (LLMs). We also integrate observations regarding emergent deceptive hallucinations, in which more capable AI systems may intentionally fabricate plausible yet misleading outputs to disguise knowledge gaps. The overarching theme is that scaling AI without ensuring common sense risks intensifying such deceptive tendencies, thereby undermining safety and trust. Aligning with the broader goal of developing beneficial AI without causing harm, our axiomatic litmus test not only diagnoses whether an AI can handle truly novel concepts but also provides a stepping stone toward an ethical, reliable foundation for future safe, beneficial, and aligned artificial intelligence.
☆ SLIM: Sim-to-Real Legged Instructive Manipulation via Long-Horizon Visuomotor Learning
We present a low-cost quadruped manipulation system that solves long-horizon real-world tasks, trained by reinforcement learning purely in simulation. The system comprises 1) a hierarchical design of a high-level policy for visual-mobile manipulation following instructions, and a low-level policy for quadruped movement and limb-control, 2) a progressive policy expansion approach for solving the long-horizon task together with a teacher-student framework for efficient high-level training of the high-level visuomotor policy, and 3) a suite of techniques for minimizing sim-to-real gaps. With budget-friendly but limited reliability and performance hardware, and just one wrist-mounted RGB camera, the entire system fully trained in simulation achieves high success rates for long horizon tasks involving search, move, grasp, and drop-into, with fluid sim-to-real transfer in a wide variety of indoor and outdoor scenes and lighting conditions.Extensive real-world evaluations show that on the long horizon mobile manipulation tasks, our system achieves good performance when transferred to real both in terms of task success rate and execution efficiency. Finally, we discuss the necessity of our sim-to-real techniques for legged mobile manipulation, and show their ablation performance.
☆ Evolving Deeper LLM Thinking
We explore an evolutionary search strategy for scaling inference time compute in Large Language Models. The proposed approach, Mind Evolution, uses a language model to generate, recombine and refine candidate responses. The proposed approach avoids the need to formalize the underlying inference problem whenever a solution evaluator is available. Controlling for inference cost, we find that Mind Evolution significantly outperforms other inference strategies such as Best-of-N and Sequential Revision in natural language planning tasks. In the TravelPlanner and Natural Plan benchmarks, Mind Evolution solves more than 98% of the problem instances using Gemini 1.5 Pro without the use of a formal solver.
☆ Exploring the Implementation of AI in Early Onset Interviews to Help Mitigate Bias
This paper investigates the application of artificial intelligence (AI) in early-stage recruitment interviews in order to reduce inherent bias, specifically sentiment bias. Traditional interviewers are often subject to several biases, including interviewer bias, social desirability effects, and even confirmation bias. In turn, this leads to non-inclusive hiring practices, and a less diverse workforce. This study further analyzes various AI interventions that are present in the marketplace today such as multimodal platforms and interactive candidate assessment tools in order to gauge the current market usage of AI in early-stage recruitment. However, this paper aims to use a unique AI system that was developed to transcribe and analyze interview dynamics, which emphasize skill and knowledge over emotional sentiments. Results indicate that AI effectively minimizes sentiment-driven biases by 41.2%, suggesting its revolutionizing power in companies' recruitment processes for improved equity and efficiency.
♻ ☆ On Learning Informative Trajectory Embeddings for Imitation, Classification and Regression AAMAS 2025
In real-world sequential decision making tasks like autonomous driving, robotics, and healthcare, learning from observed state-action trajectories is critical for tasks like imitation, classification, and clustering. For example, self-driving cars must replicate human driving behaviors, while robots and healthcare systems benefit from modeling decision sequences, whether or not they come from expert data. Existing trajectory encoding methods often focus on specific tasks or rely on reward signals, limiting their ability to generalize across domains and tasks. Inspired by the success of embedding models like CLIP and BERT in static domains, we propose a novel method for embedding state-action trajectories into a latent space that captures the skills and competencies in the dynamic underlying decision-making processes. This method operates without the need for reward labels, enabling better generalization across diverse domains and tasks. Our contributions are threefold: (1) We introduce a trajectory embedding approach that captures multiple abilities from state-action data. (2) The learned embeddings exhibit strong representational power across downstream tasks, including imitation, classification, clustering, and regression. (3) The embeddings demonstrate unique properties, such as controlling agent behaviors in IQ-Learn and an additive structure in the latent space. Experimental results confirm that our method outperforms traditional approaches, offering more flexible and powerful trajectory representations for various applications. Our code is available at https://github.com/Erasmo1015/vte.
comment: AAMAS 2025
♻ ☆ Neuradicon: operational representation learning of neuroimaging reports
Radiological reports typically summarize the content and interpretation of imaging studies in unstructured form that precludes quantitative analysis. This limits the monitoring of radiological services to throughput undifferentiated by content, impeding specific, targeted operational optimization. Here we present Neuradicon, a natural language processing (NLP) framework for quantitative analysis of neuroradiological reports. Our framework is a hybrid of rule-based and artificial intelligence models to represent neurological reports in succinct, quantitative form optimally suited to operational guidance. We demonstrate the application of Neuradicon to operational phenotyping of a corpus of 336,569 reports, and report excellent generalizability across time and two independent healthcare institutions.
comment: 26 pages, 11 figures
♻ ☆ Moonshine: Distilling Game Content Generators into Steerable Generative Models
Procedural Content Generation via Machine Learning (PCGML) has enhanced game content creation, yet challenges in controllability and limited training data persist. This study addresses these issues by distilling a constructive PCG algorithm into a controllable PCGML model. We first generate a large amount of content with a constructive algorithm and label it using a Large Language Model (LLM). We use these synthetic labels to condition two PCGML models for content-specific generation, a diffusion model and the five-dollar model. This neural network distillation process ensures that the generation aligns with the original algorithm while introducing controllability through plain text. We define this text-conditioned PCGML as a Text-to-game-Map (T2M) task, offering an alternative to prevalent text-to-image multi-modal tasks. We compare our distilled models with the baseline constructive algorithm. Our analysis of the variety, accuracy, and quality of our generation demonstrates the efficacy of distilling constructive methods into controllable text-conditioned PCGML models.
♻ ☆ Two Types of AI Existential Risk: Decisive and Accumulative
The conventional discourse on existential risks (x-risks) from AI typically focuses on abrupt, dire events caused by advanced AI systems, particularly those that might achieve or surpass human-level intelligence. These events have severe consequences that either lead to human extinction or irreversibly cripple human civilization to a point beyond recovery. This discourse, however, often neglects the serious possibility of AI x-risks manifesting incrementally through a series of smaller yet interconnected disruptions, gradually crossing critical thresholds over time. This paper contrasts the conventional "decisive AI x-risk hypothesis" with an "accumulative AI x-risk hypothesis." While the former envisions an overt AI takeover pathway, characterized by scenarios like uncontrollable superintelligence, the latter suggests a different causal pathway to existential catastrophes. This involves a gradual accumulation of critical AI-induced threats such as severe vulnerabilities and systemic erosion of economic and political structures. The accumulative hypothesis suggests a boiling frog scenario where incremental AI risks slowly converge, undermining societal resilience until a triggering event results in irreversible collapse. Through systems analysis, this paper examines the distinct assumptions differentiating these two hypotheses. It is then argued that the accumulative view can reconcile seemingly incompatible perspectives on AI risks. The implications of differentiating between these causal pathways -- the decisive and the accumulative -- for the governance of AI as well as long-term AI safety are discussed.
comment: Journal article for Philosophical Studies
♻ ☆ Automated Machine Learning for Remaining Useful Life Predictions
Being able to predict the remaining useful life (RUL) of an engineering system is an important task in prognostics and health management. Recently, data-driven approaches to RUL predictions are becoming prevalent over model-based approaches since no underlying physical knowledge of the engineering system is required. Yet, this just replaces required expertise of the underlying physics with machine learning (ML) expertise, which is often also not available. Automated machine learning (AutoML) promises to build end-to-end ML pipelines automatically enabling domain experts without ML expertise to create their own models. This paper introduces AutoRUL, an AutoML-driven end-to-end approach for automatic RUL predictions. AutoRUL combines fine-tuned standard regression methods to an ensemble with high predictive power. By evaluating the proposed method on eight real-world and synthetic datasets against state-of-the-art hand-crafted models, we show that AutoML provides a viable alternative to hand-crafted data-driven RUL predictions. Consequently, creating RUL predictions can be made more accessible for domain experts using AutoML by eliminating ML expertise from data-driven model construction.
comment: Manuscript accepted at IEEE SMC 2023
♻ ☆ Towards Large Reasoning Models: A Survey on Scaling LLM Reasoning Capabilities
Language has long been conceived as an essential tool for human reasoning. The breakthrough of Large Language Models (LLMs) has sparked significant research interest in leveraging these models to tackle complex reasoning tasks. Researchers have moved beyond simple autoregressive token generation by introducing the concept of "thought" -- a sequence of tokens representing intermediate steps in the reasoning process. This innovative paradigm enables LLMs' to mimic complex human reasoning processes, such as tree search and reflective thinking. Recently, an emerging trend of learning to reason has applied reinforcement learning (RL) to train LLMs to master reasoning processes. This approach enables the automatic generation of high-quality reasoning trajectories through trial-and-error search algorithms, significantly expanding LLMs' reasoning capacity by providing substantially more training data. Furthermore, recent studies demonstrate that encouraging LLMs to "think" with more tokens during test-time inference can further significantly boost reasoning accuracy. Therefore, the train-time and test-time scaling combined to show a new research frontier -- a path toward Large Reasoning Model. The introduction of OpenAI's o1 series marks a significant milestone in this research direction. In this survey, we present a comprehensive review of recent progress in LLM reasoning. We begin by introducing the foundational background of LLMs and then explore the key technical components driving the development of large reasoning models, with a focus on automated data construction, learning-to-reason techniques, and test-time scaling. We also analyze popular open-source projects at building large reasoning models, and conclude with open challenges and future research directions.
comment: 36 pages, 5 figures
♻ ☆ Large Language Model is Secretly a Protein Sequence Optimizer
We consider the protein sequence engineering problem, which aims to find protein sequences with high fitness levels, starting from a given wild-type sequence. Directed evolution has been a dominating paradigm in this field which has an iterative process to generate variants and select via experimental feedback. We demonstrate large language models (LLMs), despite being trained on massive texts, are secretly protein sequence optimizers. With a directed evolutionary method, LLM can perform protein engineering through Pareto and experiment-budget constrained optimization, demonstrating success on both synthetic and experimental fitness landscapes.
comment: Preprint
♻ ☆ Bridging Diversity and Uncertainty in Active learning with Self-Supervised Pre-Training ICLR 2024
This study addresses the integration of diversity-based and uncertainty-based sampling strategies in active learning, particularly within the context of self-supervised pre-trained models. We introduce a straightforward heuristic called TCM that mitigates the cold start problem while maintaining strong performance across various data levels. By initially applying TypiClust for diversity sampling and subsequently transitioning to uncertainty sampling with Margin, our approach effectively combines the strengths of both strategies. Our experiments demonstrate that TCM consistently outperforms existing methods across various datasets in both low and high data regimes.
comment: Accepted at ICLR 2024 Workshop on Practical Machine Learning for Low Resource Settings (PML4LRS)
♻ ☆ The Animal-AI Environment: A Virtual Laboratory For Comparative Cognition and Artificial Intelligence Research
The Animal-AI Environment is a unique game-based research platform designed to facilitate collaboration between the artificial intelligence and comparative cognition research communities. In this paper, we present the latest version of the Animal-AI Environment, outlining several major features that make the game more engaging for humans and more complex for AI systems. These features include interactive buttons, reward dispensers, and player notifications, as well as an overhaul of the environment's graphics and processing for significant improvements in agent training time and quality of the human player experience. We provide detailed guidance on how to build computational and behavioural experiments with the Animal-AI Environment. We present results from a series of agents, including the state-of-the-art deep reinforcement learning agent Dreamer-v3, on newly designed tests and the Animal-AI Testbed of 900 tasks inspired by research in the field of comparative cognition. The Animal-AI Environment offers a new approach for modelling cognition in humans and non-human animals, and for building biologically inspired artificial intelligence.
comment: 37 pages, 16 figures, 6 tables
♻ ☆ Optimal Quantization for Matrix Multiplication
Recent work in machine learning community proposed multiple methods for performing lossy compression (quantization) of large matrices. This quantization is important for accelerating matrix multiplication (main component of large language models), which is often bottlenecked by the speed of loading these matrices from memory. Unlike classical vector quantization and rate-distortion theory, the goal of these new compression algorithms is to be able to approximate not the matrices themselves, but their matrix product. Specifically, given a pair of real matrices $A,B$ an encoder (compressor) is applied to each of them independently producing descriptions with $R$ bits per entry. These representations subsequently are used by the decoder to estimate matrix product $A^\top B$. In this work, we provide a non-asymptotic lower bound on the mean squared error of this approximation (as a function of rate $R$) for the case of matrices $A,B$ with iid Gaussian entries. Algorithmically, we construct a universal quantizer based on nested lattices with an explicit guarantee of approximation error for any (non-random) pair of matrices $A$, $B$ in terms of only Frobenius norms $\|\bar{A}\|_F, \|\bar{B}\|_F$ and $\|\bar{A}^\top \bar{B}\|_F$, where $\bar{A},\bar{B}$ are versions of $A,B$ with zero-centered columns, respectively. For iid Gaussian matrices our quantizer achieves the lower bound and is, thus, asymptotically optimal. A practical low-complexity version of our quantizer achieves performance quite close to optimal. In addition, we derive rate-distortion function for matrix multiplication of iid Gaussian matrices, which exhibits an interesting phase-transition at $R\approx 0.906$ bit/entry.
♻ ☆ Deep Compression Autoencoder for Efficient High-Resolution Diffusion Models
We present Deep Compression Autoencoder (DC-AE), a new family of autoencoder models for accelerating high-resolution diffusion models. Existing autoencoder models have demonstrated impressive results at a moderate spatial compression ratio (e.g., 8x), but fail to maintain satisfactory reconstruction accuracy for high spatial compression ratios (e.g., 64x). We address this challenge by introducing two key techniques: (1) Residual Autoencoding, where we design our models to learn residuals based on the space-to-channel transformed features to alleviate the optimization difficulty of high spatial-compression autoencoders; (2) Decoupled High-Resolution Adaptation, an efficient decoupled three-phases training strategy for mitigating the generalization penalty of high spatial-compression autoencoders. With these designs, we improve the autoencoder's spatial compression ratio up to 128 while maintaining the reconstruction quality. Applying our DC-AE to latent diffusion models, we achieve significant speedup without accuracy drop. For example, on ImageNet 512x512, our DC-AE provides 19.1x inference speedup and 17.9x training speedup on H100 GPU for UViT-H while achieving a better FID, compared with the widely used SD-VAE-f8 autoencoder. Our code is available at https://github.com/mit-han-lab/efficientvit.
comment: Preprint. First two authors contributed equally to this work. Update: fix typo
♻ ☆ Generate E-commerce Product Background by Integrating Category Commonality and Personalized Style ICASSP 2025
The state-of-the-art methods for e-commerce product background generation suffer from the inefficiency of designing product-wise prompts when scaling up the production, as well as the ineffectiveness of describing fine-grained styles when customizing personalized backgrounds for some specific brands. To address these obstacles, we integrate the category commonality and personalized style into diffusion models. Concretely, we propose a Category-Wise Generator to enable large-scale background generation with only one model for the first time. A unique identifier in the prompt is assigned to each category, whose attention is located on the background by a mask-guided cross attention layer to learn the category-wise style. Furthermore, for products with specific and fine-grained requirements in layout, elements, etc, a Personality-Wise Generator is devised to learn such personalized style directly from a reference image to resolve textual ambiguities, and is trained in a self-supervised manner for more efficient training data usage. To advance research in this field, the first large-scale e-commerce product background generation dataset BG60k is constructed, which covers more than 60k product images from over 2k categories. Experiments demonstrate that our method could generate high-quality backgrounds for different categories, and maintain the personalized background style of reference images. BG60k will be available at \url{https://github.com/Whileherham/BG60k}.
comment: Accepted by ICASSP 2025
♻ ☆ News Without Borders: Domain Adaptation of Multilingual Sentence Embeddings for Cross-lingual News Recommendation ECIR 2025
Rapidly growing numbers of multilingual news consumers pose an increasing challenge to news recommender systems in terms of providing customized recommendations. First, existing neural news recommenders, even when powered by multilingual language models (LMs), suffer substantial performance losses in zero-shot cross-lingual transfer (ZS-XLT). Second, the current paradigm of fine-tuning the backbone LM of a neural recommender on task-specific data is computationally expensive and infeasible in few-shot recommendation and cold-start setups, where data is scarce or completely unavailable. In this work, we propose a news-adapted sentence encoder (NaSE), domain-specialized from a pretrained massively multilingual sentence encoder (SE). To this end, we construct and leverage PolyNews and PolyNewsParallel, two multilingual news-specific corpora. With the news-adapted multilingual SE in place, we test the effectiveness of (i.e., question the need for) supervised fine-tuning for news recommendation, and propose a simple and strong baseline based on (i) frozen NaSE embeddings and (ii) late click-behavior fusion. We show that NaSE achieves state-of-the-art performance in ZS-XLT in true cold-start and few-shot news recommendation.
comment: Accepted at the 47th European Conference on Information Retrieval (ECIR 2025) Appendix A is provided only in the arXiv version
♻ ☆ MRI2Speech: Speech Synthesis from Articulatory Movements Recorded by Real-time MRI ICASSP 2025
Previous real-time MRI (rtMRI)-based speech synthesis models depend heavily on noisy ground-truth speech. Applying loss directly over ground truth mel-spectrograms entangles speech content with MRI noise, resulting in poor intelligibility. We introduce a novel approach that adapts the multi-modal self-supervised AV-HuBERT model for text prediction from rtMRI and incorporates a new flow-based duration predictor for speaker-specific alignment. The predicted text and durations are then used by a speech decoder to synthesize aligned speech in any novel voice. We conduct thorough experiments on two datasets and demonstrate our method's generalization ability to unseen speakers. We assess our framework's performance by masking parts of the rtMRI video to evaluate the impact of different articulators on text prediction. Our method achieves a $15.18\%$ Word Error Rate (WER) on the USC-TIMIT MRI corpus, marking a huge improvement over the current state-of-the-art. Speech samples are available at https://mri2speech.github.io/MRI2Speech/
comment: Accepted at IEEE ICASSP 2025
♻ ☆ Audio-Driven Reinforcement Learning for Head-Orientation in Naturalistic Environments ICASSP 2025
Although deep reinforcement learning (DRL) approaches in audio signal processing have seen substantial progress in recent years, audio-driven DRL for tasks such as navigation, gaze control and head-orientation control in the context of human-robot interaction have received little attention. Here, we propose an audio-driven DRL framework in which we utilise deep Q-learning to develop an autonomous agent that orients towards a talker in the acoustic environment based on stereo speech recordings. Our results show that the agent learned to perform the task at a near perfect level when trained on speech segments in anechoic environments (that is, without reverberation). The presence of reverberation in naturalistic acoustic environments affected the agent's performance, although the agent still substantially outperformed a baseline, randomly acting agent. Finally, we quantified the degree of generalization of the proposed DRL approach across naturalistic acoustic environments. Our experiments revealed that policies learned by agents trained on medium or high reverb environments generalized to low reverb environments, but policies learned by agents trained on anechoic or low reverb environments did not generalize to medium or high reverb environments. Taken together, this study demonstrates the potential of audio-driven DRL for tasks such as head-orientation control and highlights the need for training strategies that enable robust generalization across environments for real-world audio-driven DRL applications.
comment: Accepted at ICASSP 2025
♻ ☆ Agent Hospital: A Simulacrum of Hospital with Evolvable Medical Agents
The recent rapid development of large language models (LLMs) has sparked a new wave of technological revolution in medical artificial intelligence (AI). While LLMs are designed to understand and generate text like a human, autonomous agents that utilize LLMs as their "brain" have exhibited capabilities beyond text processing such as planning, reflection, and using tools by enabling their "bodies" to interact with the environment. We introduce a simulacrum of hospital called Agent Hospital that simulates the entire process of treating illness, in which all patients, nurses, and doctors are LLM-powered autonomous agents. Within the simulacrum, doctor agents are able to evolve by treating a large number of patient agents without the need to label training data manually. After treating tens of thousands of patient agents in the simulacrum (human doctors may take several years in the real world), the evolved doctor agents outperform state-of-the-art medical agent methods on the MedQA benchmark comprising US Medical Licensing Examination (USMLE) test questions. Our methods of simulacrum construction and agent evolution have the potential in benefiting a broad range of applications beyond medical AI.
♻ ☆ Piece of Table: A Divide-and-Conquer Approach for Selecting Sub-Tables in Table Question Answering
Applying language models (LMs) to tables is challenging due to the inherent structural differences between two-dimensional tables and one-dimensional text for which the LMs were originally designed. Furthermore, when applying linearized tables to LMs, the maximum token lengths often imposed in self-attention calculations make it difficult to comprehensively understand the context spread across large tables. To address these challenges, we present PieTa (Piece of Table), a new framework for sub-table-based question answering (QA). PieTa operates through an iterative process of dividing tables into smaller windows, using LMs to select relevant cells within each window, and merging these cells into a sub-table. This multi-resolution approach captures dependencies across multiple rows and columns while avoiding the limitations caused by long context inputs. Instantiated as a simple iterative sub-table union algorithm, PieTa demonstrates improved performance over previous sub-table-based QA approaches.
♻ ☆ Large Process Models: A Vision for Business Process Management in the Age of Generative AI
The continued success of Large Language Models (LLMs) and other generative artificial intelligence approaches highlights the advantages that large information corpora can have over rigidly defined symbolic models, but also serves as a proof-point of the challenges that purely statistics-based approaches have in terms of safety and trustworthiness. As a framework for contextualizing the potential, as well as the limitations of LLMs and other foundation model-based technologies, we propose the concept of a Large Process Model (LPM) that combines the correlation power of LLMs with the analytical precision and reliability of knowledge-based systems and automated reasoning approaches. LPMs are envisioned to directly utilize the wealth of process management experience that experts have accumulated, as well as process performance data of organizations with diverse characteristics, e.g.,\ regarding size, region, or industry. In this vision, the proposed LPM would allow organizations to receive context-specific (tailored) process and other business models, analytical deep-dives, and improvement recommendations. As such, they would allow to substantially decrease the time and effort required for business transformation, while also allowing for deeper, more impactful, and more actionable insights than previously possible. We argue that implementing an LPM is feasible, but also highlight limitations and research challenges that need to be solved to implement particular aspects of the LPM vision.
♻ ☆ Generative AI in Cybersecurity: A Comprehensive Review of LLM Applications and Vulnerabilities
This paper provides a comprehensive review of the future of cybersecurity through Generative AI and Large Language Models (LLMs). We explore LLM applications across various domains, including hardware design security, intrusion detection, software engineering, design verification, cyber threat intelligence, malware detection, and phishing detection. We present an overview of LLM evolution and its current state, focusing on advancements in models such as GPT-4, GPT-3.5, Mixtral-8x7B, BERT, Falcon2, and LLaMA. Our analysis extends to LLM vulnerabilities, such as prompt injection, insecure output handling, data poisoning, DDoS attacks, and adversarial instructions. We delve into mitigation strategies to protect these models, providing a comprehensive look at potential attack scenarios and prevention techniques. Furthermore, we evaluate the performance of 42 LLM models in cybersecurity knowledge and hardware security, highlighting their strengths and weaknesses. We thoroughly evaluate cybersecurity datasets for LLM training and testing, covering the lifecycle from data creation to usage and identifying gaps for future research. In addition, we review new strategies for leveraging LLMs, including techniques like Half-Quadratic Quantization (HQQ), Reinforcement Learning with Human Feedback (RLHF), Direct Preference Optimization (DPO), Quantized Low-Rank Adapters (QLoRA), and Retrieval-Augmented Generation (RAG). These insights aim to enhance real-time cybersecurity defenses and improve the sophistication of LLM applications in threat detection and response. Our paper provides a foundational understanding and strategic direction for integrating LLMs into future cybersecurity frameworks, emphasizing innovation and robust model deployment to safeguard against evolving cyber threats.
comment: 52 pages, 8 figures
♻ ☆ Tarsier2: Advancing Large Vision-Language Models from Detailed Video Description to Comprehensive Video Understanding
We introduce Tarsier2, a state-of-the-art large vision-language model (LVLM) designed for generating detailed and accurate video descriptions, while also exhibiting superior general video understanding capabilities. Tarsier2 achieves significant advancements through three key upgrades: (1) Scaling pre-training data from 11M to 40M video-text pairs, enriching both volume and diversity; (2) Performing fine-grained temporal alignment during supervised fine-tuning; (3) Using model-based sampling to automatically construct preference data and applying DPO training for optimization. Extensive experiments show that Tarsier2-7B consistently outperforms leading proprietary models, including GPT-4o and Gemini 1.5 Pro, in detailed video description tasks. On the DREAM-1K benchmark, Tarsier2-7B improves F1 by 2.8\% over GPT-4o and 5.8\% over Gemini-1.5-Pro. In human side-by-side evaluations, Tarsier2-7B shows a +8.6\% performance advantage over GPT-4o and +24.9\% over Gemini-1.5-Pro. Tarsier2-7B also sets new state-of-the-art results across 15 public benchmarks, spanning tasks such as video question-answering, video grounding, hallucination test, and embodied question-answering, demonstrating its versatility as a robust generalist vision-language model.
♻ ☆ XEQ Scale for Evaluating XAI Experience Quality
Explainable Artificial Intelligence (XAI) aims to improve the transparency of autonomous decision-making through explanations. Recent literature has emphasised users' need for holistic "multi-shot" explanations and personalised engagement with XAI systems. We refer to this user-centred interaction as an XAI Experience. Despite advances in creating XAI experiences, evaluating them in a user-centred manner has remained challenging. In response, we developed the XAI Experience Quality (XEQ) Scale. XEQ quantifies the quality of experiences across four dimensions: learning, utility, fulfilment and engagement. These contributions extend the state-of-the-art of XAI evaluation, moving beyond the one-dimensional metrics frequently developed to assess single-shot explanations. This paper presents the XEQ scale development and validation process, including content validation with XAI experts, and discriminant and construct validation through a large-scale pilot study. Our pilot study results offer strong evidence that establishes the XEQ Scale as a comprehensive framework for evaluating user-centred XAI experiences.
♻ ☆ Enabling Low-Resource Language Retrieval: Establishing Baselines for Urdu MS MARCO ECIR 2025
As the Information Retrieval (IR) field increasingly recognizes the importance of inclusivity, addressing the needs of low-resource languages remains a significant challenge. This paper introduces the first large-scale Urdu IR dataset, created by translating the MS MARCO dataset through machine translation. We establish baseline results through zero-shot learning for IR in Urdu and subsequently apply the mMARCO multilingual IR methodology to this newly translated dataset. Our findings demonstrate that the fine-tuned model (Urdu-mT5-mMARCO) achieves a Mean Reciprocal Rank (MRR@10) of 0.247 and a Recall@10 of 0.439, representing significant improvements over zero-shot results and showing the potential for expanding IR access for Urdu speakers. By bridging access gaps for speakers of low-resource languages, this work not only advances multilingual IR research but also emphasizes the ethical and societal importance of inclusive IR technologies. This work provides valuable insights into the challenges and solutions for improving language representation and lays the groundwork for future research, especially in South Asian languages, which can benefit from the adaptable methods used in this study.
comment: 7 pages, ECIR 2025, conference camera-ready version
♻ ☆ VLSBench: Unveiling Visual Leakage in Multimodal Safety
Safety concerns of Multimodal large language models (MLLMs) have gradually become an important problem in various applications. Surprisingly, previous works indicate a counter-intuitive phenomenon that using textual unlearning to align MLLMs achieves comparable safety performances with MLLMs trained with image-text pairs. To explain such a counter-intuitive phenomenon, we discover a visual safety information leakage (VSIL) problem in existing multimodal safety benchmarks, i.e., the potentially risky and sensitive content in the image has been revealed in the textual query. In this way, MLLMs can easily refuse these sensitive text-image queries according to textual queries. However, image-text pairs without VSIL are common in real-world scenarios and are overlooked by existing multimodal safety benchmarks. To this end, we construct multimodal visual leakless safety benchmark (VLSBench) preventing visual safety leakage from image to textual query with 2.4k image-text pairs. Experimental results indicate that VLSBench poses a significant challenge to both open-source and close-source MLLMs, including LLaVA, Qwen2-VL, Llama3.2-Vision, and GPT-4o. This study demonstrates that textual alignment is enough for multimodal safety scenarios with VSIL, while multimodal alignment is a more promising solution for multimodal safety scenarios without VSIL. Please see our code and data at: https://hxhcreate.github.io/vlsbench.github.io/
♻ ☆ Mitigating Sycophancy in Decoder-Only Transformer Architectures: Synthetic Data Intervention
To address the sycophancy problem caused by reinforcement learning from human feedback in large language models, this research applies synthetic data intervention technology to the decoder-only transformer architecture. Based on the research gaps in the existing literature, the researcher designed an experimental process to reduce the tendency of models to cater by generating diversified data, and used GPT4o as an experimental tool for verification. The experiment used 100 true and false questions, and compared the performance of the model trained with synthetic data intervention and the original untrained model on multiple indicators. The results show that the SDI training model supports the technology in terms of accuracy rate and sycophancy rate and has significant effectiveness in reducing sycophancy phenomena. Notably, the data set, experimental process, code and data results have been uploaded to Github, the link is https://github.com/brucewang123456789/GeniusTrail.git.
comment: This research is also submitted to OpenReview. The main text is 9 pages (excluding citations), 7 figures, and 1 table
♻ ☆ BatchLLM: Optimizing Large Batched LLM Inference with Global Prefix Sharing and Throughput-oriented Token Batching
Large language models (LLMs) increasingly play an important role in a wide range of information processing and management tasks. Many of these tasks are performed in large batches or even offline, and the performance indictor for which is throughput. These tasks usually show the characteristic of prefix sharing, where different prompt input can partially show the common prefix. However, the existing LLM inference engines tend to optimize the streaming requests and show limitations of supporting the large batched tasks with the prefix sharing characteristic. The existing solutions use the LRU-based cache to reuse the KV context of common prefix between requests. The KV context that are about to be reused may prematurely evicted with the implicit cache management. Besides, the streaming oriented systems do not leverage the request-batch information and can not mix the decoding tokens with the prefill chunks to the best for the batched scenarios, and thus fails to saturate the GPU. We propose BatchLLM to address the above problems. BatchLLM explicitly identifies the common prefixes globally. The requests sharing the same prefix will be scheduled together to reuse the KV context the best. BatchLLM reorders the requests and schedules the requests with larger ratio of decoding first to better mix the decoding tokens with the latter prefill chunks, and applies memory-centric token batching to enlarge the token-batch sizes, which helps to increase the GPU utilization. Finally, BatchLLM optimizes the prefix-shared Attention kernel with horizontal fusion to reduce tail effect and kernel launch overhead. Extensive evaluation shows that BatchLLM outperforms vLLM and SGLang by 1.3$\times$ to 10.8$\times$ on a set of microbenchmarks and a typical industry workload under different hardware environments.
♻ ☆ ELITR-Bench: A Meeting Assistant Benchmark for Long-Context Language Models COLING 2025
Research on Large Language Models (LLMs) has recently witnessed an increasing interest in extending the models' context size to better capture dependencies within long documents. While benchmarks have been proposed to assess long-range abilities, existing efforts primarily considered generic tasks that are not necessarily aligned with real-world applications. In contrast, we propose a new benchmark for long-context LLMs focused on a practical meeting assistant scenario in which the long contexts consist of transcripts obtained by automatic speech recognition, presenting unique challenges for LLMs due to the inherent noisiness and oral nature of such data. Our benchmark, ELITR-Bench, augments the existing ELITR corpus by adding 271 manually crafted questions with their ground-truth answers, as well as noisy versions of meeting transcripts altered to target different Word Error Rate levels. Our experiments with 12 long-context LLMs on ELITR-Bench confirm the progress made across successive generations of both proprietary and open models, and point out their discrepancies in terms of robustness to transcript noise. We also provide a thorough analysis of our GPT-4-based evaluation, including insights from a crowdsourcing study. Our findings indicate that while GPT-4's scores align with human judges, its ability to distinguish beyond three score levels may be limited.
comment: Published in COLING 2025
♻ ☆ Reinforcement Learning from Human Feedback: Whose Culture, Whose Values, Whose Perspectives?
We argue for the epistemic and ethical advantages of pluralism in Reinforcement Learning from Human Feedback (RLHF) in the context of Large Language Models (LLM). Drawing on social epistemology and pluralist philosophy of science, we suggest ways in which RHLF can be made more responsive to human needs and how we can address challenges along the way. The paper concludes with an agenda for change, i.e. concrete, actionable steps to improve LLM development.
♻ ☆ Mitigating analytical variability in fMRI results with style transfer
We propose a novel approach to improve the reproducibility of neuroimaging results by converting statistic maps across different functional MRI pipelines. We make the assumption that pipelines used to compute fMRI statistic maps can be considered as a style component and we propose to use different generative models, among which, Generative Adversarial Networks (GAN) and Diffusion Models (DM) to convert statistic maps across different pipelines. We explore the performance of multiple GAN frameworks, and design a new DM framework for unsupervised multi-domain styletransfer. We constrain the generation of 3D fMRI statistic maps using the latent space of an auxiliary classifier that distinguishes statistic maps from different pipelines and extend traditional sampling techniques used in DM to improve the transition performance. Our experiments demonstrate that our proposed methods aresuccessful: pipelines can indeed be transferred as a style component, providing animportant source of data augmentation for future medical studies.
♻ ☆ Geometric Median (GM) Matching for Robust Data Pruning
Large-scale data collections in the wild, are invariably noisy. Thus developing data pruning strategies that remain robust even in the presence of corruption is critical in practice. In this work, we propose Geometric Median ($\gm$) Matching -- a herding style greedy algorithm that yields a $k$-subset such that the mean of the subset approximates the geometric median of the (potentially) noisy dataset. Theoretically, we show that $\gm$ Matching enjoys an improved $\gO(1/k)$ scaling over $\gO(1/\sqrt{k})$ scaling of uniform sampling; while achieving {\bf optimal breakdown point} of {\bf 1/2} even under {\bf arbitrary} corruption. Extensive experiments across several popular deep learning benchmarks indicate that $\gm$ Matching consistently improves over prior state-of-the-art; the gains become more profound at high rates of corruption and aggressive pruning rates; making $\gm$ Matching a strong baseline for future research in robust data pruning.
♻ ☆ Text-guided Image Restoration and Semantic Enhancement for Text-to-Image Person Retrieval
The goal of Text-to-Image Person Retrieval (TIPR) is to retrieve specific person images according to the given textual descriptions. A primary challenge in this task is bridging the substantial representational gap between visual and textual modalities. The prevailing methods map texts and images into unified embedding space for matching, while the intricate semantic correspondences between texts and images are still not effectively constructed. To address this issue, we propose a novel TIPR framework to build fine-grained interactions and alignment between person images and the corresponding texts. Specifically, via fine-tuning the Contrastive Language-Image Pre-training (CLIP) model, a visual-textual dual encoder is firstly constructed, to preliminarily align the image and text features. Secondly, a Text-guided Image Restoration (TIR) auxiliary task is proposed to map abstract textual entities to specific image regions, improving the alignment between local textual and visual embeddings. Additionally, a cross-modal triplet loss is presented to handle hard samples, and further enhance the model's discriminability for minor differences. Moreover, a pruning-based text data augmentation approach is proposed to enhance focus on essential elements in descriptions, thereby avoiding excessive model attention to less significant information. The experimental results show our proposed method outperforms state-of-the-art methods on three popular benchmark datasets, and the code will be made publicly available at https://github.com/Delong-liu-bupt/SEN.
comment: The paper was withdrawn due to a dispute among the authors regarding the content of the article
♻ ☆ Aligning Instruction Tuning with Pre-training
Instruction tuning enhances large language models (LLMs) to follow human instructions across diverse tasks, relying on high-quality datasets to guide behavior. However, these datasets, whether manually curated or synthetically generated, are often narrowly focused and misaligned with the broad distributions captured during pre-training, limiting LLM generalization and effective use of pre-trained knowledge. We propose *Aligning Instruction Tuning with Pre-training* (AITP), a method that bridges this gap by identifying coverage shortfalls in instruction-tuning datasets and rewriting underrepresented pre-training data into high-quality instruction-response pairs. This approach enriches dataset diversity while preserving task-specific objectives. Evaluations on three fully open LLMs across eight benchmarks demonstrate consistent performance improvements with AITP. Ablations highlight the benefits of adaptive data selection, controlled rewriting, and balanced integration, emphasizing the importance of aligning instruction tuning with pre-training distributions to unlock the full potential of LLMs.
♻ ☆ Elucidating the Design Space of Dataset Condensation NeurIPS 2024
Dataset condensation, a concept within data-centric learning, efficiently transfers critical attributes from an original dataset to a synthetic version, maintaining both diversity and realism. This approach significantly improves model training efficiency and is adaptable across multiple application areas. Previous methods in dataset condensation have faced challenges: some incur high computational costs which limit scalability to larger datasets (e.g., MTT, DREAM, and TESLA), while others are restricted to less optimal design spaces, which could hinder potential improvements, especially in smaller datasets (e.g., SRe2L, G-VBSM, and RDED). To address these limitations, we propose a comprehensive design framework that includes specific, effective strategies like implementing soft category-aware matching and adjusting the learning rate schedule. These strategies are grounded in empirical evidence and theoretical backing. Our resulting approach, Elucidate Dataset Condensation (EDC), establishes a benchmark for both small and large-scale dataset condensation. In our testing, EDC achieves state-of-the-art accuracy, reaching 48.6% on ImageNet-1k with a ResNet-18 model at an IPC of 10, which corresponds to a compression ratio of 0.78%. This performance exceeds those of SRe2L, G-VBSM, and RDED by margins of 27.3%, 17.2%, and 6.6%, respectively.
comment: Accepted by NeurIPS 2024
♻ ☆ AceMath: Advancing Frontier Math Reasoning with Post-Training and Reward Modeling
In this paper, we introduce AceMath, a suite of frontier math models that excel in solving complex math problems, along with highly effective reward models capable of evaluating generated solutions and reliably identifying the correct ones. To develop the instruction-tuned math models, we propose a supervised fine-tuning (SFT) process that first achieves competitive performance across general domains, followed by targeted fine-tuning for the math domain using a carefully curated set of prompts and synthetically generated responses. The resulting model, AceMath-72B-Instruct greatly outperforms Qwen2.5-Math-72B-Instruct, GPT-4o and Claude-3.5 Sonnet. To develop math-specialized reward model, we first construct AceMath-RewardBench, a comprehensive and robust benchmark for evaluating math reward models across diverse problems and difficulty levels. After that, we present a systematic approach to build our math reward models. The resulting model, AceMath-72B-RM, consistently outperforms state-of-the-art reward models. Furthermore, when combining AceMath-72B-Instruct with AceMath-72B-RM, we achieve the highest average rm@8 score across the math reasoning benchmarks. We release model weights, training data, and evaluation benchmarks at: https://research.nvidia.com/labs/adlr/acemath
♻ ☆ Harnessing small projectors and multiple views for efficient vision pretraining NeurIPS 2024
Recent progress in self-supervised (SSL) visual representation learning has led to the development of several different proposed frameworks that rely on augmentations of images but use different loss functions. However, there are few theoretically grounded principles to guide practice, so practical implementation of each SSL framework requires several heuristics to achieve competitive performance. In this work, we build on recent analytical results to design practical recommendations for competitive and efficient SSL that are grounded in theory. Specifically, recent theory tells us that existing SSL frameworks are minimizing the same idealized loss, which is to learn features that best match the data similarity kernel defined by the augmentations used. We show how this idealized loss can be reformulated to a functionally equivalent loss that is more efficient to compute. We study the implicit bias of using gradient descent to minimize our reformulated loss function and find that using a stronger orthogonalization constraint with a reduced projector dimensionality should yield good representations. Furthermore, the theory tells us that approximating the reformulated loss should be improved by increasing the number of augmentations, and as such using multiple augmentations should lead to improved convergence. We empirically verify our findings on CIFAR, STL and Imagenet datasets, wherein we demonstrate an improved linear readout performance when training a ResNet-backbone using our theoretically grounded recommendations. Remarkably, we also demonstrate that by leveraging these insights, we can reduce the pretraining dataset size by up to 2$\times$ while maintaining downstream accuracy simply by using more data augmentations. Taken together, our work provides theoretically grounded recommendations that can be used to improve SSL convergence and efficiency.
comment: Accepted to NeurIPS 2024
♻ ☆ Neural Honeytrace: A Robust Plug-and-Play Watermarking Framework against Model Extraction Attacks
Developing high-performance deep learning models is resource-intensive, leading model owners to utilize Machine Learning as a Service (MLaaS) platforms instead of publicly releasing their models. However, malicious users may exploit query interfaces to execute model extraction attacks, reconstructing the target model's functionality locally. While prior research has investigated triggerable watermarking techniques for asserting ownership, existing methods face significant challenges: (1) most approaches require additional training, resulting in high overhead and limited flexibility, and (2) they often fail to account for advanced attackers, leaving them vulnerable to adaptive attacks. In this paper, we propose Neural Honeytrace, a robust plug-and-play watermarking framework against model extraction attacks. We first formulate a watermark transmission model from an information-theoretic perspective, providing an interpretable account of the principles and limitations of existing triggerable watermarking. Guided by the model, we further introduce: (1) a similarity-based training-free watermarking method for plug-and-play and flexible watermarking, and (2) a distribution-based multi-step watermark information transmission strategy for robust watermarking. Comprehensive experiments on four datasets demonstrate that Neural Honeytrace outperforms previous methods in efficiency and resisting adaptive attacks. Neural Honeytrace reduces the average number of samples required for a worst-case t-Test-based copyright claim from $12,000$ to $200$ with zero training cost.
♻ ☆ TraceFL: Interpretability-Driven Debugging in Federated Learning via Neuron Provenance ICSE
In Federated Learning, clients train models on local data and send updates to a central server, which aggregates them into a global model using a fusion algorithm. This collaborative yet privacy-preserving training comes at a cost. FL developers face significant challenges in attributing global model predictions to specific clients. Localizing responsible clients is a crucial step towards (a) excluding clients primarily responsible for incorrect predictions and (b) encouraging clients who contributed high-quality models to continue participating in the future. Existing ML debugging approaches are inherently inapplicable as they are designed for single-model, centralized training. We introduce TraceFL, a fine-grained neuron provenance capturing mechanism that identifies clients responsible for a global model's prediction by tracking the flow of information from individual clients to the global model. Since inference on different inputs activates a different set of neurons of the global model, TraceFL dynamically quantifies the significance of the global model's neurons in a given prediction, identifying the most crucial neurons in the global model. It then maps them to the corresponding neurons in every participating client to determine each client's contribution, ultimately localizing the responsible client. We evaluate TraceFL on six datasets, including two real-world medical imaging datasets and four neural networks, including advanced models such as GPT. TraceFL achieves 99% accuracy in localizing the responsible client in FL tasks spanning both image and text classification tasks. At a time when state-of-the-artML debugging approaches are mostly domain-specific (e.g., image classification only), TraceFL is the first technique to enable highly accurate automated reasoning across a wide range of FL applications.
comment: Accepted at 2025 IEEE/ACM 47th International Conference on Software Engineering (ICSE)
♻ ☆ LEGO-GraphRAG: Modularizing Graph-based Retrieval-Augmented Generation for Design Space Exploration
GraphRAG integrates (knowledge) graphs with large language models (LLMs) to improve reasoning accuracy and contextual relevance. Despite its promising applications and strong relevance to multiple research communities, such as databases and natural language processing, GraphRAG currently lacks modular workflow analysis, systematic solution frameworks, and insightful empirical studies. To bridge these gaps, we propose LEGO-GraphRAG, a modular framework that enables: 1) fine-grained decomposition of the GraphRAG workflow, 2) systematic classification of existing techniques and implemented GraphRAG instances, and 3) creation of new GraphRAG instances. Our framework facilitates comprehensive empirical studies of GraphRAG on large-scale real-world graphs and diverse query sets, revealing insights into balancing reasoning quality, runtime efficiency, and token or GPU cost, that are essential for building advanced GraphRAG systems.
♻ ☆ SEAL: Entangled White-box Watermarks on Low-Rank Adaptation
Recently, LoRA and its variants have become the de facto strategy for training and sharing task-specific versions of large pretrained models, thanks to their efficiency and simplicity. However, the issue of copyright protection for LoRA weights, especially through watermark-based techniques, remains underexplored. To address this gap, we propose SEAL (SEcure wAtermarking on LoRA weights), the universal whitebox watermarking for LoRA. SEAL embeds a secret, non-trainable matrix between trainable LoRA weights, serving as a passport to claim ownership. SEAL then entangles the passport with the LoRA weights through training, without extra loss for entanglement, and distributes the finetuned weights after hiding the passport. When applying SEAL, we observed no performance degradation across commonsense reasoning, textual/visual instruction tuning, and text-to-image synthesis tasks. We demonstrate that SEAL is robust against a variety of known attacks: removal, obfuscation, and ambiguity attacks.
comment: Author name corrected
♻ ☆ Exploring Iterative Enhancement for Improving Learnersourced Multiple-Choice Question Explanations with Large Language Models ICLR 2024
Large language models exhibit superior capabilities in processing and understanding language, yet their applications in educational contexts remain underexplored. Learnersourcing enhances learning by engaging students in creating their own educational content. When learnersourcing multiple-choice questions, creating explanations for the solution of a question is a crucial step; it helps other students understand the solution and promotes a deeper understanding of related concepts. However, it is often difficult for students to craft effective solution explanations, due to limited subject understanding. To help scaffold the task of automated explanation generation, we present and evaluate a framework called "ILearner-LLM", that iteratively enhances the generated explanations for the given questions with large language models. Comprising an explanation generation model and an explanation evaluation model, the framework generates high-quality student-aligned explanations by iteratively feeding the quality rating score from the evaluation model back into the instruction prompt of the explanation generation model. Experimental results demonstrate the effectiveness of our ILearner-LLM on LLaMA2-13B and GPT-4 to generate higher quality explanations that are closer to those written by students on five PeerWise datasets. Our findings represent a promising path to enrich the learnersourcing experience for students and to enhance the capabilities of large language models for educational applications.
comment: The short version (v4) has been accepted as a non-archival workshop paper at AGI@ICLR 2024, and the full version has been accepted by the main track of AAAI/EAAI 2025
♻ ☆ Assessing and Enhancing the Robustness of Large Language Models with Task Structure Variations for Logical Reasoning IJCAI 2023
Large language models (LLMs), such as LLaMA, Alpaca, Vicuna, GPT-3.5 and GPT-4, have advanced the performance of AI systems on various natural language processing tasks to human-like levels. However, their generalisation and robustness when performing logical reasoning has not been sufficiently assessed. To comprehensively evaluate this ability, we develop three new logical reasoning datasets named "ReClor-plus", "LogiQA-plus" and "LogiQAv2-plus" that extend standard logical reasoning datasets to evaluate the robustness of the LLM's reasoning. For each, we create three subsets: the first with randomly shuffled options, the second with the correct choices replaced by "none of the other options is correct", and the third with a combination of shuffling and substitution. Experiments on these datasets show that these simple augmentations greatly hinder the models' performance. Despite their high performance on the original publicly available datasets, we find that all models perform poorly on these newly constructed datasets. We also demonstrate that introducing task variations into the training set can markedly improve the model's performance on both the original and our developed datasets. Finally, we show that applying logic-driven data augmentation for fine-tuning and prompting can enhance generalisation in both discriminative and generative models, offering a path to improving their robustness for tasks involving logical reasoning. Source code and data are made publicly available at https://github.com/Strong-AI-Lab/Logical-and-abstract-reasoning.
comment: The short version (v3) was accepted for oral presentation at the first LLM@IJCAI 2023 non-archival symposium, and the full version was accepted by ICONIP 2024
♻ ☆ GRASP: A Grid-Based Benchmark for Evaluating Commonsense Spatial Reasoning
Spatial reasoning, an important faculty of human cognition with many practical applications, is one of the core commonsense skills that is not purely language-based and, for satisfying (as opposed to optimal) solutions, requires some minimum degree of planning. Existing benchmarks of Commonsense Spatial Reasoning (CSR) tend to evaluate how Large Language Models (LLMs) interpret text-based spatial $\textit{descriptions}$ rather than directly evaluate a plan produced by the LLM in response to a $\textit{specific}$ spatial reasoning problem. In this paper, we construct a large-scale benchmark called GRASP, which consists of 16,000 grid-based environments where the agent is tasked with an energy collection problem. These environments include 100 grid instances instantiated using each of the 160 different grid settings, involving five different energy distributions, two modes of agent starting position, and two distinct obstacle configurations, as well as three kinds of agent constraints. Using GRASP, we compare classic baseline approaches, such as random walk and greedy search methods, with advanced LLMs like GPT-3.5-Turbo, GPT-4o, and GPT-o1-mini. The experimental results indicate that even these advanced LLMs struggle to consistently achieve satisfactory solutions.
♻ ☆ T3: A Novel Zero-shot Transfer Learning Framework Iteratively Training on an Assistant Task for a Target Task
Long text summarization, gradually being essential for efficiently processing large volumes of information, stays challenging for Large Language Models (LLMs) such as GPT and LLaMA families because of the insufficient open-sourced training datasets and the high requirement of contextual details dealing. To address the issue, we design a novel zero-shot transfer learning framework, abbreviated as T3, to iteratively training a baseline LLM on an assistant task for the target task, where the former should own richer data resources and share structural or semantic similarity with the latter. In practice, T3 is approached to deal with the long text summarization task by utilizing question answering as the assistant task, and further validated its effectiveness on the BBC summary, NarraSum, FairytaleQA, and NLQuAD datasets, with up to nearly 14% improvement in ROUGE, 35% improvement in BLEU, and 16% improvement in Factscore compared to three baseline LLMs, demonstrating its potential for more assistant-target task combinations.
♻ ☆ Can AI-Generated Text be Reliably Detected?
Large Language Models (LLMs) perform impressively well in various applications. However, the potential for misuse of these models in activities such as plagiarism, generating fake news, and spamming has raised concern about their responsible use. Consequently, the reliable detection of AI-generated text has become a critical area of research. AI text detectors have shown to be effective under their specific settings. In this paper, we stress-test the robustness of these AI text detectors in the presence of an attacker. We introduce recursive paraphrasing attack to stress test a wide range of detection schemes, including the ones using the watermarking as well as neural network-based detectors, zero shot classifiers, and retrieval-based detectors. Our experiments conducted on passages, each approximately 300 tokens long, reveal the varying sensitivities of these detectors to our attacks. Our findings indicate that while our recursive paraphrasing method can significantly reduce detection rates, it only slightly degrades text quality in many cases, highlighting potential vulnerabilities in current detection systems in the presence of an attacker. Additionally, we investigate the susceptibility of watermarked LLMs to spoofing attacks aimed at misclassifying human-written text as AI-generated. We demonstrate that an attacker can infer hidden AI text signatures without white-box access to the detection method, potentially leading to reputational risks for LLM developers. Finally, we provide a theoretical framework connecting the AUROC of the best possible detector to the Total Variation distance between human and AI text distributions. This analysis offers insights into the fundamental challenges of reliable detection as language models continue to advance. Our code is publicly available at https://github.com/vinusankars/Reliability-of-AI-text-detectors.
comment: Published in Transactions on Machine Learning Research (TMLR)
♻ ☆ Aligning with Human Judgement: The Role of Pairwise Preference in Large Language Model Evaluators
Large Language Models (LLMs) have demonstrated promising capabilities as automatic evaluators in assessing the quality of generated natural language. However, LLMs still exhibit biases in evaluation and often struggle to generate coherent evaluations that align with human assessments. In this work, we first conduct a systematic study of the misalignment between LLM evaluators and human evaluation, revealing that existing calibration methods aimed at mitigating biases of LLMs are insufficient for effectively aligning LLM evaluators. Inspired by the use of preference data in RLHF, we formulate the evaluation as a ranking problem and introduce Pairwise-preference Search (PAIRS), an uncertainty-guided search-based rank aggregation method that employs LLMs to conduct pairwise comparisons locally and efficiently ranks candidate texts globally. PAIRS achieves state-of-the-art performance on representative evaluation tasks in long-form generations and demonstrates significant improvements over direct scoring. Furthermore, we provide insights into the role of pairwise preference in quantifying the transitivity of LLMs and demonstrate how PAIRS benefits from calibration using debiased pairwise evaluations.
comment: This paper has been accepted by COLM 2024
♻ ☆ NL2KQL: From Natural Language to Kusto Query
Data is growing rapidly in volume and complexity. Proficiency in database query languages is pivotal for crafting effective queries. As coding assistants become more prevalent, there is significant opportunity to enhance database query languages. The Kusto Query Language (KQL) is a widely used query language for large semi-structured data such as logs, telemetries, and time-series for big data analytics platforms. This paper introduces NL2KQL an innovative framework that uses large language models (LLMs) to convert natural language queries (NLQs) to KQL queries. The proposed NL2KQL framework includes several key components: Schema Refiner which narrows down the schema to its most pertinent elements; the Few-shot Selector which dynamically selects relevant examples from a few-shot dataset; and the Query Refiner which repairs syntactic and semantic errors in KQL queries. Additionally, this study outlines a method for generating large datasets of synthetic NLQ-KQL pairs which are valid within a specific database contexts. To validate NL2KQL's performance, we utilize an array of online (based on query execution) and offline (based on query parsing) metrics. Through ablation studies, the significance of each framework component is examined, and the datasets used for benchmarking are made publicly available. This work is the first of its kind and is compared with available baselines to demonstrate its effectiveness.
♻ ☆ Challenge Summary U-MedSAM: Uncertainty-aware MedSAM for Medical Image Segmentation
Medical Image Foundation Models have proven to be powerful tools for mask prediction across various datasets. However, accurately assessing the uncertainty of their predictions remains a significant challenge. To address this, we propose a new model, U-MedSAM, which integrates the MedSAM model with an uncertainty-aware loss function and the Sharpness-Aware Minimization (SharpMin) optimizer. The uncertainty-aware loss function automatically combines region-based, distribution-based, and pixel-based loss designs to enhance segmentation accuracy and robustness. SharpMin improves generalization by finding flat minima in the loss landscape, thereby reducing overfitting. Our method was evaluated in the CVPR24 MedSAM on Laptop challenge, where U-MedSAM demonstrated promising performance.
comment: arXiv admin note: text overlap with arXiv:2405.17496
♻ ☆ LLM Hallucinations in Practical Code Generation: Phenomena, Mechanism, and Mitigation ISSTA 2025
Code generation aims to automatically generate code from input requirements, significantly enhancing development efficiency. Recent large language models (LLMs) based approaches have shown promising results and revolutionized code generation task. Despite the promising performance, LLMs often generate contents with hallucinations, especially for the code generation scenario requiring the handling of complex contextual dependencies in practical development process. Although previous study has analyzed hallucinations in LLM-powered code generation, the study is limited to standalone function generation. In this paper, we conduct an empirical study to study the phenomena, mechanism, and mitigation of LLM hallucinations within more practical and complex development contexts in repository-level generation scenario. First, we manually examine the code generation results from six mainstream LLMs to establish a hallucination taxonomy of LLM-generated code. Next, we elaborate on the phenomenon of hallucinations, analyze their distribution across different models. We then analyze causes of hallucinations and identify four potential factors contributing to hallucinations. Finally, we propose an RAG-based mitigation method, which demonstrates consistent effectiveness in all studied LLMs. The replication package including code, data, and experimental results is available at https://github.com/DeepSoftwareAnalytics/LLMCodingHallucination
comment: Accepted by ISSTA 2025
♻ ☆ Keeping LLMs Aligned After Fine-tuning: The Crucial Role of Prompt Templates NeurIPS 2024
Public LLMs such as the Llama 2-Chat underwent alignment training and were considered safe. Recently Qi et al. [2024] reported that even benign fine-tuning on seemingly safe datasets can give rise to unsafe behaviors in the models. The current paper is about methods and best practices to mitigate such loss of alignment. We focus on the setting where a public model is fine-tuned before serving users for specific usage, where the model should improve on the downstream task while maintaining alignment. Through extensive experiments on several chat models (Meta's Llama 2-Chat, Mistral AI's Mistral 7B Instruct v0.2, and OpenAI's GPT-3.5 Turbo), this paper uncovers that the prompt templates used during fine-tuning and inference play a crucial role in preserving safety alignment, and proposes the ``Pure Tuning, Safe Testing'' (PTST) strategy -- fine-tune models without a safety prompt, but include it at test time. This seemingly counterintuitive strategy incorporates an intended distribution shift to encourage alignment preservation. Fine-tuning experiments on GSM8K, ChatDoctor, and OpenOrca show that PTST significantly reduces the rise of unsafe behaviors.
comment: NeurIPS 2024
♻ ☆ Evaluating the Propensity of Generative AI for Producing Harmful Disinformation During an Election Cycle
Generative Artificial Intelligence offers a powerful tool for adversaries who wish to engage in influence operations, such as the Chinese Spamouflage operation and the Russian Internet Research Agency effort that both sought to interfere with recent US election cycles. Therefore, this study seeks to investigate the propensity of current generative AI models for producing harmful disinformation during an election cycle. The probability that different generative AI models produced disinformation when given adversarial prompts was evaluated, in addition the associated harm. This allows for the expected harm for each model to be computed and it was discovered that Copilot and Gemini tied for the overall safest performance by realizing the lowest expected harm, while GPT-4o produced the greatest rates of harmful disinformation, resulting in much higher expected harm scores. The impact of disinformation category was also investigated and Gemini was safest within the political category of disinformation due to mitigation attempts made by developers during the election, while Copilot was safest for topics related to health. Moreover, characteristics of adversarial roles were discovered that led to greater expected harm across all models. Finally, classification models were developed that predicted disinformation production based on the conditions considered in this study, which offers insight into factors important for predicting disinformation production. Based on all of these insights, recommendations are provided that seek to mitigate factors that lead to harmful disinformation being produced by generative AI models. It is hoped that developers will use these insights to improve future models.
♻ ☆ RLPF: Reinforcement Learning from Prediction Feedback for User Summarization with LLMs AAAI 2025
LLM-powered personalization agent systems employ Large Language Models (LLMs) to predict users' behavior from their past activities. However, their effectiveness often hinges on the ability to effectively leverage extensive, long user historical data due to its inherent noise and length of such data. Existing pretrained LLMs may generate summaries that are concise but lack the necessary context for downstream tasks, hindering their utility in personalization systems. To address these challenges, we introduce Reinforcement Learning from Prediction Feedback (RLPF). RLPF fine-tunes LLMs to generate concise, human-readable user summaries that are optimized for downstream task performance. By maximizing the usefulness of the generated summaries, RLPF effectively distills extensive user history data while preserving essential information for downstream tasks. Our empirical evaluation demonstrates significant improvements in both extrinsic downstream task utility and intrinsic summary quality, surpassing baseline methods by up to 22% on downstream task performance and achieving an up to 84.59% win rate on Factuality, Abstractiveness, and Readability. RLPF also achieves a remarkable 74% reduction in context length while improving performance on 16 out of 19 unseen tasks and/or datasets, showcasing its generalizability. This approach offers a promising solution for enhancing LLM personalization by effectively transforming long, noisy user histories into informative and human-readable representations.
comment: AAAI 2025
♻ ☆ A Systematic Study of Multi-Agent Deep Reinforcement Learning for Safe and Robust Autonomous Highway Ramp Entry
Vehicles today can drive themselves on highways and driverless robotaxis operate in major cities, with more sophisticated levels of autonomous driving expected to be available and become more common in the future. Yet, technically speaking, so-called "Level 5" (L5) operation, corresponding to full autonomy, has not been achieved. For that to happen, functions such as fully autonomous highway ramp entry must be available, and provide provably safe, and reliably robust behavior to enable full autonomy. We present a systematic study of a highway ramp function that controls the vehicles forward-moving actions to minimize collisions with the stream of highway traffic into which a merging (ego) vehicle enters. We take a game-theoretic multi-agent (MA) approach to this problem and study the use of controllers based on deep reinforcement learning (DRL). The virtual environment of the MA DRL uses self-play with simulated data where merging vehicles safely learn to control longitudinal position during a taper-type merge. The work presented in this paper extends existing work by studying the interaction of more than two vehicles (agents) and does so by systematically expanding the road scene with additional traffic and ego vehicles. While previous work on the two-vehicle setting established that collision-free controllers are theoretically impossible in fully decentralized, non-coordinated environments, we empirically show that controllers learned using our approach are nearly ideal when measured against idealized optimal controllers.
comment: 9 pages, 9 figures; added support ack
♻ ☆ A Complete Characterization of Learnability for Stochastic Noisy Bandits
We study the stochastic noisy bandit problem with an unknown reward function $f^*$ in a known function class $\mathcal{F}$. Formally, a model $M$ maps arms $\pi$ to a probability distribution $M(\pi)$ of reward. A model class $\mathcal{M}$ is a collection of models. For each model $M$, define its mean reward function $f^M(\pi)=\mathbb{E}_{r \sim M(\pi)}[r]$. In the bandit learning problem, we proceed in rounds, pulling one arm $\pi$ each round and observing a reward sampled from $M(\pi)$. With knowledge of $\mathcal{M}$, supposing that the true model $M\in \mathcal{M}$, the objective is to identify an arm $\hat{\pi}$ of near-maximal mean reward $f^M(\hat{\pi})$ with high probability in a bounded number of rounds. If this is possible, then the model class is said to be learnable. Importantly, a result of \cite{hanneke2023bandit} shows there exist model classes for which learnability is undecidable. However, the model class they consider features deterministic rewards, and they raise the question of whether learnability is decidable for classes containing sufficiently noisy models. For the first time, we answer this question in the positive by giving a complete characterization of learnability for model classes with arbitrary noise. In addition to that, we also describe the full spectrum of possible optimal query complexities. Further, we prove adaptivity is sometimes necessary to achieve the optimal query complexity. Last, we revisit an important complexity measure for interactive decision making, the Decision-Estimation-Coefficient \citep{foster2021statistical,foster2023tight}, and propose a new variant of the DEC which also characterizes learnability in this setting.
♻ ☆ A Generic Model for Swarm Intelligence and Its Validations
The modeling of emergent swarm intelligence constitutes a major challenge and it has been tackled in a number of different ways. However, existing approaches fail to capture the nature of swarm intelligence and they are either too abstract for practical application or not generic enough to describe the various types of emergence phenomena. In this paper, a contradiction-centric model for swarm intelligence is proposed, in which individu-als determine their behaviors based on their internal contradictions whilst they associate and interact to update their contradictions. The model hypothesizes that 1) the emergence of swarm intelligence is rooted in the de-velopment of individuals' internal contradictions and the interactions taking place between individuals and the environment, and 2) swarm intelligence is essentially a combinative reflection of the configurations of individuals' internal contradictions and the distributions of these contradictions across individuals. The model is formally described and five swarm intelligence systems are studied to illustrate its broad applicability. The studies confirm the generic character of the model and its effectiveness for describing the emergence of various kinds of swarm intelligence; and they also demonstrate that the model is straightforward to apply, without the need for complicated computations.
comment: 15 pages
Robotics 30
☆ Distilling Multi-modal Large Language Models for Autonomous Driving
Autonomous driving demands safe motion planning, especially in critical "long-tail" scenarios. Recent end-to-end autonomous driving systems leverage large language models (LLMs) as planners to improve generalizability to rare events. However, using LLMs at test time introduces high computational costs. To address this, we propose DiMA, an end-to-end autonomous driving system that maintains the efficiency of an LLM-free (or vision-based) planner while leveraging the world knowledge of an LLM. DiMA distills the information from a multi-modal LLM to a vision-based end-to-end planner through a set of specially designed surrogate tasks. Under a joint training strategy, a scene encoder common to both networks produces structured representations that are semantically grounded as well as aligned to the final planning objective. Notably, the LLM is optional at inference, enabling robust planning without compromising on efficiency. Training with DiMA results in a 37% reduction in the L2 trajectory error and an 80% reduction in the collision rate of the vision-based planner, as well as a 44% trajectory error reduction in longtail scenarios. DiMA also achieves state-of-the-art performance on the nuScenes planning benchmark.
☆ FAST: Efficient Action Tokenization for Vision-Language-Action Models
Autoregressive sequence models, such as Transformer-based vision-language action (VLA) policies, can be tremendously effective for capturing complex and generalizable robotic behaviors. However, such models require us to choose a tokenization of our continuous action signals, which determines how the discrete symbols predicted by the model map to continuous robot actions. We find that current approaches for robot action tokenization, based on simple per-dimension, per-timestep binning schemes, typically perform poorly when learning dexterous skills from high-frequency robot data. To address this challenge, we propose a new compression-based tokenization scheme for robot actions, based on the discrete cosine transform. Our tokenization approach, Frequency-space Action Sequence Tokenization (FAST), enables us to train autoregressive VLAs for highly dexterous and high-frequency tasks where standard discretization methods fail completely. Based on FAST, we release FAST+, a universal robot action tokenizer, trained on 1M real robot action trajectories. It can be used as a black-box tokenizer for a wide range of robot action sequences, with diverse action spaces and control frequencies. Finally, we show that, when combined with the pi0 VLA, our method can scale to training on 10k hours of robot data and match the performance of diffusion VLAs, while reducing training time by up to 5x.
comment: Website: https://www.pi.website/research/fast
☆ FLOL: Fast Baselines for Real-World Low-Light Enhancement
Low-Light Image Enhancement (LLIE) is a key task in computational photography and imaging. The problem of enhancing images captured during night or in dark environments has been well-studied in the image signal processing literature. However, current deep learning-based solutions struggle with efficiency and robustness in real-world scenarios (e.g. scenes with noise, saturated pixels, bad illumination). We propose a lightweight neural network that combines image processing in the frequency and spatial domains. Our method, FLOL+, is one of the fastest models for this task, achieving state-of-the-art results on popular real scenes datasets such as LOL and LSRW. Moreover, we are able to process 1080p images under 12ms. Code and models at https://github.com/cidautai/FLOL
comment: Technical Report
☆ CoNav Chair: Design of a ROS-based Smart Wheelchair for Shared Control Navigation in the Built Environment
With the number of people with disabilities (PWD) increasing worldwide each year, the demand for mobility support to enable independent living and social integration is also growing. Wheelchairs commonly support the mobility of PWD in both indoor and outdoor environments. However, current powered wheelchairs (PWC) often fail to meet the needs of PWD, who may find it difficult to operate them. Furthermore, existing research on robotic wheelchairs typically focuses either on full autonomy or enhanced manual control, which can lead to reduced efficiency and user trust. To address these issues, this paper proposes a Robot Operating System (ROS)-based smart wheelchair, called CoNav Chair, that incorporates a shared control navigation algorithm and obstacle avoidance to support PWD while fostering efficiency and trust between the robot and the user. Our design consists of hardware and software components. Experimental results conducted in a typical indoor social environment demonstrate the performance and effectiveness of the smart wheelchair hardware and software design. This integrated design promotes trust and autonomy, which are crucial for the acceptance of assistive mobility technologies in the built environment.
comment: 8 pages, 9 figures
☆ Model Predictive Path Integral Docking of Fully Actuated Surface Vessel
Autonomous docking remains one of the most challenging maneuvers in marine robotics, requiring precise control and robust perception in confined spaces. This paper presents a novel approach integrating Model Predictive Path Integral(MPPI) control with real-time LiDAR-based dock detection for autonomous surface vessel docking. Our framework uniquely combines probabilistic trajectory optimization with a multiobjective cost function that simultaneously considers docking precision, safety constraints, and motion efficiency. The MPPI controller generates optimal trajectories by intelligently sampling control sequences and evaluating their costs based on dynamic clearance requirements, orientation alignment, and target position objectives. We introduce an adaptive dock detection pipeline that processes LiDAR point clouds to extract critical geometric features, enabling real-time updates of docking parameters. The proposed method is extensively validated in a physics-based simulation environment that incorporates realistic sensor noise, vessel dynamics, and environmental constraints. Results demonstrate successful docking from various initial positions while maintaining safe clearances and smooth motion characteristics.
comment: 6 pages, 6 figures, 1 table, UT2025 Conference, IEEE International Symposium on Underwater Technology 2025
☆ Monte Carlo Tree Search with Velocity Obstacles for safe and efficient motion planning in dynamic environments
Online motion planning is a challenging problem for intelligent robots moving in dense environments with dynamic obstacles, e.g., crowds. In this work, we propose a novel approach for optimal and safe online motion planning with minimal information about dynamic obstacles. Specifically, our approach requires only the current position of the obstacles and their maximum speed, but it does not need any information about their exact trajectories or dynamic model. The proposed methodology combines Monte Carlo Tree Search (MCTS), for online optimal planning via model simulations, with Velocity Obstacles (VO), for obstacle avoidance. We perform experiments in a cluttered simulated environment with walls, and up to 40 dynamic obstacles moving with random velocities and directions. With an ablation study, we show the key contribution of VO in scaling up the efficiency of MCTS, selecting the safest and most rewarding actions in the tree of simulations. Moreover, we show the superiority of our methodology with respect to state-of-the-art planners, including Non-linear Model Predictive Control (NMPC), in terms of improved collision rate, computational and task performance.
☆ Mesh2SLAM in VR: A Fast Geometry-Based SLAM Framework for Rapid Prototyping in Virtual Reality Applications
SLAM is a foundational technique with broad applications in robotics and AR/VR. SLAM simulations evaluate new concepts, but testing on resource-constrained devices, such as VR HMDs, faces challenges: high computational cost and restricted sensor data access. This work proposes a sparse framework using mesh geometry projections as features, which improves efficiency and circumvents direct sensor data access, advancing SLAM research as we demonstrate in VR and through numerical evaluation.
☆ Comparison of Various SLAM Systems for Mobile Robot in an Indoor Environment
This article presents a comparative analysis of a mobile robot trajectories computed by various ROS-based SLAM systems. For this reason we developed a prototype of a mobile robot with common sensors: 2D lidar, a monocular and ZED stereo cameras. Then we conducted experiments in a typical office environment and collected data from all sensors, running all tested SLAM systems based on the acquired dataset. We studied the following SLAM systems: (a) 2D lidar-based: GMapping, Hector SLAM, Cartographer; (b) monocular camera-based: Large Scale Direct monocular SLAM (LSD SLAM), ORB SLAM, Direct Sparse Odometry (DSO); and (c) stereo camera-based: ZEDfu, Real-Time Appearance-Based Mapping (RTAB map), ORB SLAM, Stereo Parallel Tracking and Mapping (S-PTAM). Since all SLAM methods were tested on the same dataset we compared results for different SLAM systems with appropriate metrics, demonstrating encouraging results for lidar-based Cartographer SLAM, Monocular ORB SLAM and Stereo RTAB Map methods.
comment: 6 pages, 6 figures
☆ Sensorimotor Control Strategies for Tactile Robotics
How are robots becoming smarter at interacting with their surroundings? Recent advances have reshaped how robots use tactile sensing to perceive and engage with the world. Tactile sensing is a game-changer, allowing robots to embed sensorimotor control strategies to interact with complex environments and skillfully handle heterogeneous objects. Such control frameworks plan contact-driven motions while staying responsive to sudden changes. We review the latest methods for building perception and control systems in tactile robotics while offering practical guidelines for their design and implementation. We also address key challenges to shape the future of intelligent robots.
comment: 39 pages, 8 figures, 1 table
☆ Real-Time Generation of Near-Minimum-Energy Trajectories via Constraint-Informed Residual Learning
Industrial robotics demands significant energy to operate, making energy-reduction methodologies increasingly important. Strategies for planning minimum-energy trajectories typically involve solving nonlinear optimal control problems (OCPs), which rarely cope with real-time requirements. In this paper, we propose a paradigm for generating near minimum-energy trajectories for manipulators by learning from optimal solutions. Our paradigm leverages a residual learning approach, which embeds boundary conditions while focusing on learning only the adjustments needed to steer a standard solution to an optimal one. Compared to a computationally expensive OCP-based planner, our paradigm achieves 87.3% of the performance near the training dataset and 50.8% far from the dataset, while being two to three orders of magnitude faster.
☆ Path Planning for a UAV Swarm Using Formation Teaching-Learning-Based Optimization
This work addresses the path planning problem for a group of unmanned aerial vehicles (UAVs) to maintain a desired formation during operation. Our approach formulates the problem as an optimization task by defining a set of fitness functions that not only ensure the formation but also include constraints for optimal and safe UAV operation. To optimize the fitness function and obtain a suboptimal path, we employ the teaching-learning-based optimization algorithm and then further enhance it with mechanisms such as mutation, elite strategy, and multi-subject combination. A number of simulations and experiments have been conducted to evaluate the proposed method. The results demonstrate that the algorithm successfully generates valid paths for the UAVs to fly in a triangular formation for an inspection task.
comment: in Proceedings of the 2025 International Conference on Energy, Infrastructure and Environmental Research (EIER2025)
☆ Robust UAV Path Planning with Obstacle Avoidance for Emergency Rescue
The unmanned aerial vehicles (UAVs) are efficient tools for diverse tasks such as electronic reconnaissance, agricultural operations and disaster relief. In the complex three-dimensional (3D) environments, the path planning with obstacle avoidance for UAVs is a significant issue for security assurance. In this paper, we construct a comprehensive 3D scenario with obstacles and no-fly zones for dynamic UAV trajectory. Moreover, a novel artificial potential field algorithm coupled with simulated annealing (APF-SA) is proposed to tackle the robust path planning problem. APF-SA modifies the attractive and repulsive potential functions and leverages simulated annealing to escape local minimum and converge to globally optimal solutions. Simulation results demonstrate that the effectiveness of APF-SA, enabling efficient autonomous path planning for UAVs with obstacle avoidance.
☆ RoboReflect: Robotic Reflective Reasoning for Grasping Ambiguous-Condition Objects
As robotic technology rapidly develops, robots are being employed in an increasing number of fields. However, due to the complexity of deployment environments or the prevalence of ambiguous-condition objects, the practical application of robotics still faces many challenges, leading to frequent errors. Traditional methods and some LLM-based approaches, although improved, still require substantial human intervention and struggle with autonomous error correction in complex scenarios.In this work, we propose RoboReflect, a novel framework leveraging large vision-language models (LVLMs) to enable self-reflection and autonomous error correction in robotic grasping tasks. RoboReflect allows robots to automatically adjust their strategies based on unsuccessful attempts until successful execution is achieved.The corrected strategies are saved in a memory for future task reference.We evaluate RoboReflect through extensive testing on eight common objects prone to ambiguous conditions of three categories.Our results demonstrate that RoboReflect not only outperforms existing grasp pose estimation methods like AnyGrasp and high-level action planning techniques using GPT-4V but also significantly enhances the robot's ability to adapt and correct errors independently. These findings underscore the critical importance of autonomous selfreflection in robotic systems while effectively addressing the challenges posed by ambiguous environments.
☆ Interoceptive Robots for Convergent Shared Control in Collaborative Construction Work
Building autonomous mobile robots (AMRs) with optimized efficiency and adaptive capabilities-able to respond to changing task demands and dynamic environments-is a strongly desired goal for advancing construction robotics. Such robots can play a critical role in enabling automation, reducing operational carbon footprints, and supporting modular construction processes. Inspired by the adaptive autonomy of living organisms, we introduce interoception, which centers on the robot's internal state representation, as a foundation for developing self-reflection and conscious learning to enable continual learning and adaptability in robotic agents. In this paper, we factorize internal state variables and mathematical properties as "cognitive dissonance" in shared control paradigms, where human interventions occasionally occur. We offer a new perspective on how interoception can help build adaptive motion planning in AMRs by integrating the legacy of heuristic costs from grid/graph-based algorithms with recent advances in neuroscience and reinforcement learning. Declarative and procedural knowledge extracted from human semantic inputs is encoded into a hypergraph model that overlaps with the spatial configuration of onsite layout for path planning. In addition, we design a velocity-replay module using an encoder-decoder architecture with few-shot learning to enable robots to replicate velocity profiles in contextualized scenarios for multi-robot synchronization and handover collaboration. These "cached" knowledge representations are demonstrated in simulated environments for multi-robot motion planning and stacking tasks. The insights from this study pave the way toward artificial general intelligence in AMRs, fostering their progression from complexity to competence in construction automation.
☆ ThinTact:Thin Vision-Based Tactile Sensor by Lensless Imaging
Vision-based tactile sensors have drawn increasing interest in the robotics community. However, traditional lens-based designs impose minimum thickness constraints on these sensors, limiting their applicability in space-restricted settings. In this paper, we propose ThinTact, a novel lensless vision-based tactile sensor with a sensing field of over 200 mm2 and a thickness of less than 10 mm.ThinTact utilizes the mask-based lensless imaging technique to map the contact information to CMOS signals. To ensure real-time tactile sensing, we propose a real-time lensless reconstruction algorithm that leverages a frequency-spatial-domain joint filter based on discrete cosine transform (DCT). This algorithm achieves computation significantly faster than existing optimization-based methods. Additionally, to improve the sensing quality, we develop a mask optimization method based on the generic algorithm and the corresponding system matrix calibration algorithm.We evaluate the performance of our proposed lensless reconstruction and tactile sensing through qualitative and quantitative experiments. Furthermore, we demonstrate ThinTact's practical applicability in diverse applications, including texture recognition and contact-rich object manipulation. The paper will appear in the IEEE Transactions on Robotics: https://ieeexplore.ieee.org/document/10842357. Video: https://youtu.be/YrOO9BDMAHo
comment: \c{opyright} 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
☆ Are Open-Vocabulary Models Ready for Detection of MEP Elements on Construction Sites
The construction industry has long explored robotics and computer vision, yet their deployment on construction sites remains very limited. These technologies have the potential to revolutionize traditional workflows by enhancing accuracy, efficiency, and safety in construction management. Ground robots equipped with advanced vision systems could automate tasks such as monitoring mechanical, electrical, and plumbing (MEP) systems. The present research evaluates the applicability of open-vocabulary vision-language models compared to fine-tuned, lightweight, closed-set object detectors for detecting MEP components using a mobile ground robotic platform. A dataset collected with cameras mounted on a ground robot was manually annotated and analyzed to compare model performance. The results demonstrate that, despite the versatility of vision-language models, fine-tuned lightweight models still largely outperform them in specialized environments and for domain-specific tasks.
comment: 4 pages, 3 figures
☆ Torque Responsive Metamaterials Enable High Payload Soft Robot Arms
Soft robots have struggled to support large forces and moments while also supporting their own weight against gravity. This limits their ability to reach certain configurations necessary for tasks such as inspection and pushing objects up. We have overcome this limitation by creating an electrically driven metamaterial soft arm using handed shearing auxetics (HSA) and bendable extendable torque resistant (BETR) shafts. These use the large force and torque capacity of HSAs and the nestable torque transmission of BETRs to create a strong soft arm. We found that the HSA arm was able to push 2.3 kg vertically and lift more than 600 g when positioned horizontally, supporting 0.33 Nm of torque at the base. The arm is able to move between waypoints while carrying the large payload and demonstrates consistent movement with path variance below 5 mm. The HSA arm's ability to perform active grasping with HSA grippers was also demonstrated, requiring 20 N of pull force to dislodge the object. Finally, we test the arm in a pipe inspection task. The arm is able to locate all the defects while sliding against the inner surface of the pipe, demonstrating its compliance.
comment: 9 pages, 8 figures, currently under review
☆ GeoManip: Geometric Constraints as General Interfaces for Robot Manipulation
We present GeoManip, a framework to enable generalist robots to leverage essential conditions derived from object and part relationships, as geometric constraints, for robot manipulation. For example, cutting the carrot requires adhering to a geometric constraint: the blade of the knife should be perpendicular to the carrot's direction. By interpreting these constraints through symbolic language representations and translating them into low-level actions, GeoManip bridges the gap between natural language and robotic execution, enabling greater generalizability across diverse even unseen tasks, objects, and scenarios. Unlike vision-language-action models that require extensive training, operates training-free by utilizing large foundational models: a constraint generation module that predicts stage-specific geometric constraints and a geometry parser that identifies object parts involved in these constraints. A solver then optimizes trajectories to satisfy inferred constraints from task descriptions and the scene. Furthermore, GeoManip learns in-context and provides five appealing human-robot interaction features: on-the-fly policy adaptation, learning from human demonstrations, learning from failure cases, long-horizon action planning, and efficient data collection for imitation learning. Extensive evaluations on both simulations and real-world scenarios demonstrate GeoManip's state-of-the-art performance, with superior out-of-distribution generalization while avoiding costly model training.
comment: 32 pages, 13 figures
☆ SMPLest-X: Ultimate Scaling for Expressive Human Pose and Shape Estimation
Expressive human pose and shape estimation (EHPS) unifies body, hands, and face motion capture with numerous applications. Despite encouraging progress, current state-of-the-art methods focus on training innovative architectural designs on confined datasets. In this work, we investigate the impact of scaling up EHPS towards a family of generalist foundation models. 1) For data scaling, we perform a systematic investigation on 40 EHPS datasets, encompassing a wide range of scenarios that a model trained on any single dataset cannot handle. More importantly, capitalizing on insights obtained from the extensive benchmarking process, we optimize our training scheme and select datasets that lead to a significant leap in EHPS capabilities. Ultimately, we achieve diminishing returns at 10M training instances from diverse data sources. 2) For model scaling, we take advantage of vision transformers (up to ViT-Huge as the backbone) to study the scaling law of model sizes in EHPS. To exclude the influence of algorithmic design, we base our experiments on two minimalist architectures: SMPLer-X, which consists of an intermediate step for hand and face localization, and SMPLest-X, an even simpler version that reduces the network to its bare essentials and highlights significant advances in the capture of articulated hands. With big data and the large model, the foundation models exhibit strong performance across diverse test benchmarks and excellent transferability to even unseen environments. Moreover, our finetuning strategy turns the generalist into specialist models, allowing them to achieve further performance boosts. Notably, our foundation models consistently deliver state-of-the-art results on seven benchmarks such as AGORA, UBody, EgoBody, and our proposed SynHand dataset for comprehensive hand evaluation. (Code is available at: https://github.com/wqyin/SMPLest-X).
comment: An extension of SMPLer-X [arXiv:2309.17448]. Homepage: https://caizhongang.com/projects/SMPLer-X/
♻ ☆ Global SLAM in Visual-Inertial Systems with 5G Time-of-Arrival Integration
This paper presents a novel approach that integrates 5G Time of Arrival (ToA) measurements into ORB-SLAM3 to enable global localization and enhance mapping capabilities for indoor drone navigation. We extend ORB-SLAM3's optimization pipeline to jointly process ToA data from 5G base stations alongside visual and inertial measurements while estimating system biases. This integration transforms the inherently local SLAM estimates into globally referenced trajectories and effectively resolves scale ambiguity in monocular configurations. Our method is evaluated using five real-world indoor datasets collected with RGB-D cameras and inertial measurement units (IMUs), complemented by simulated 5G ToA measurements at 28 GHz and 78 GHz frequencies using MATLAB and QuaDRiGa. Extensive experiments across four SLAM configurations (RGB-D, RGB-D-Inertial, Monocular, and Monocular-Inertial) demonstrate that ToA integration enables consistent global positioning across all modes while significantly improving local accuracy in minimal sensor setups. Notably, ToA-enhanced monocular SLAM achieves superior local accuracy (6.3 cm average) compared to the RGB-D baseline (11.5 cm), and enables reliable operation of monocular-inertial SLAM in scenarios where the baseline system fails completely. While ToA integration offers limited local accuracy improvements for sensor-rich configurations like RGB-D SLAM, it consistently enables robust global localization.
♻ ☆ AeroHaptix: A Wearable Vibrotactile Feedback System for Enhancing Collision Avoidance in UAV Teleoperation
Haptic feedback enhances collision avoidance by providing directional obstacle information to operators during unmanned aerial vehicle (UAV) teleoperation. However, such feedback is often rendered via haptic joysticks, which are unfamiliar to UAV operators and limited to single-direction force feedback. Additionally, the direct coupling between the input device and the feedback method diminishes operators' sense of control and induces oscillatory movements. To overcome these limitations, we propose AeroHaptix, a wearable haptic feedback system that uses spatial vibrations to simultaneously communicate multiple obstacle directions to operators, without interfering with their input control. The layout of vibrotactile actuators was optimized via a perceptual study to eliminate perceptual biases and achieve uniform spatial coverage. A novel rendering algorithm, MultiCBF, extended control barrier functions to support multi-directional feedback. Our system evaluation showed that compared to a no-feedback condition, AeroHaptix effectively reduced the number of collisions and input disagreement. Furthermore, operators reported that AeroHaptix was more helpful than force feedback, with improved situational awareness and comparable workload.
♻ ☆ Learning Constraint Network from Demonstrations via Positive-Unlabeled Learning with Memory Replay
Planning for a wide range of real-world tasks necessitates to know and write all constraints. However, instances exist where these constraints are either unknown or challenging to specify accurately. A possible solution is to infer the unknown constraints from expert demonstration. The majority of prior works limit themselves to learning simple linear constraints, or require strong knowledge of the true constraint parameterization or environmental model. To mitigate these problems, this paper presents a positive-unlabeled (PU) learning approach to infer a continuous, arbitrary and possibly nonlinear, constraint from demonstration. From a PU learning view, We treat all data in demonstrations as positive (feasible) data, and learn a (sub)-optimal policy to generate high-reward-winning but potentially infeasible trajectories, which serve as unlabeled data containing both feasible and infeasible states. Under an assumption on data distribution, a feasible-infeasible classifier (i.e., constraint model) is learned from the two datasets through a postprocessing PU learning technique. The entire method employs an iterative framework alternating between updating the policy, which generates and selects higher-reward policies, and updating the constraint model. Additionally, a memory buffer is introduced to record and reuse samples from previous iterations to prevent forgetting. The effectiveness of the proposed method is validated in two Mujoco environments, successfully inferring continuous nonlinear constraints and outperforming a baseline method in terms of constraint accuracy and policy safety.
♻ ☆ Positive-Unlabeled Constraint Learning for Inferring Nonlinear Continuous Constraints Functions from Expert Demonstrations
Planning for diverse real-world robotic tasks necessitates to know and write all constraints. However, instances exist where these constraints are either unknown or challenging to specify accurately. A possible solution is to infer the unknown constraints from expert demonstration. This paper presents a novel two-step Positive-Unlabeled Constraint Learning (PUCL) algorithm to infer a continuous constraint function from demonstrations, without requiring prior knowledge of the true constraint parameterization or environmental model as existing works. We treat all data in demonstrations as positive (feasible) data, and learn a control policy to generate potentially infeasible trajectories, which serve as unlabeled data. The proposed two-step learning framework first identifies reliable infeasible data using a distance metric, and secondly learns a binary feasibility classifier (i.e., constraint function) from the feasible demonstrations and reliable infeasible data. The proposed method is flexible to learn complex-shaped constraint boundary and will not mistakenly classify demonstrations as infeasible as previous methods. The effectiveness of the proposed method is verified in four constrained environments, using a networked policy or a dynamical system policy. It successfully infers the continuous nonlinear constraints and outperforms other baseline methods in terms of constraint accuracy and policy safety. This work has been published in IEEE Robotics and Automation Letters (RA-L). Please refer to the final version at https://doi.org/10.1109/LRA.2024.3522756
♻ ☆ Humanoid Robot RHP Friends: Seamless Combination of Autonomous and Teleoperated Tasks in a Nursing Context
This paper describes RHP Friends, a social humanoid robot developed to enable assistive robotic deployments in human-coexisting environments. As a use-case application, we present its potential use in nursing by extending its capabilities to operate human devices and tools according to the task and by enabling remote assistance operations. To meet a wide variety of tasks and situations in environments designed by and for humans, we developed a system that seamlessly integrates the slim and lightweight robot and several technologies: locomanipulation, multi-contact motion, teleoperation, and object detection and tracking. We demonstrated the system's usage in a nursing application. The robot efficiently performed the daily task of patient transfer and a non-routine task, represented by a request to operate a circuit breaker. This demonstration, held at the 2023 International Robot Exhibition (IREX), conducted three times a day over three days.
comment: IEEE Robotics and Automation Magazine, In press
♻ ☆ Equivariant IMU Preintegration with Biases: a Galilean Group Approach
This letter proposes a new approach for Inertial Measurement Unit (IMU) preintegration, a fundamental building block that can be leveraged in different optimization-based Inertial Navigation System (INS) localization solutions. Inspired by recent advances in equivariant theory applied to biased INSs, we derive a discrete-time formulation of the IMU preintegration on ${\mathbf{Gal}(3) \ltimes \mathfrak{gal}(3)}$, the left-trivialization of the tangent group of the Galilean group $\mathbf{Gal}(3)$. We define a novel preintegration error that geometrically couples the navigation states and the bias leading to lower linearization error. Our method improves in consistency compared to existing preintegration approaches which treat IMU biases as a separate state-space. Extensive validation against state-of-the-art methods, both in simulation and with real-world IMU data, implementation in the Lie++ library, and open-source code are provided.
♻ ☆ PO-GVINS: Tightly Coupled GNSS-Visual-Inertial Integration with Pose-Only Representation
Accurate and reliable positioning is crucial for perception, decision-making, and other high-level applications in autonomous driving, unmanned aerial vehicles, and intelligent robots. Given the inherent limitations of standalone sensors, integrating heterogeneous sensors with complementary capabilities is one of the most effective approaches to achieving this goal. In this paper, we propose a filtering-based, tightly coupled global navigation satellite system (GNSS)-visual-inertial positioning framework with a pose-only formulation applied to the visual-inertial system (VINS), termed PO-GVINS. Specifically, multiple-view imaging used in current VINS requires a priori of 3D feature, then jointly estimate camera poses and 3D feature position, which inevitably introduces linearization error of the feature as well as facing dimensional explosion. However, the pose-only (PO) formulation, which is demonstrated to be equivalent to the multiple-view imaging and has been applied in visual reconstruction, represent feature depth using two camera poses and thus 3D feature position is removed from state vector avoiding aforementioned difficulties. Inspired by this, we first apply PO formulation in our VINS, i.e., PO-VINS. GNSS raw measurements are then incorporated with integer ambiguity resolved to achieve accurate and drift-free estimation. Extensive experiments demonstrate that the proposed PO-VINS significantly outperforms the multi-state constrained Kalman filter (MSCKF). By incorporating GNSS measurements, PO-GVINS achieves accurate, drift-free state estimation, making it a robust solution for positioning in challenging environments.
♻ ☆ Autonomous Algorithm for Training Autonomous Vehicles with Minimal Human Intervention
Recent reinforcement learning (RL) algorithms have demonstrated impressive results in simulated driving environments. However, autonomous vehicles trained in simulation often struggle to work well in the real world due to the fidelity gap between simulated and real-world environments. While directly training real-world autonomous vehicles with RL algorithms is a promising approach to bypass the fidelity gap problem, it presents several challenges. One critical yet often overlooked challenge is the need to reset a driving environment between every episode. This reset process demands significant human intervention, leading to poor training efficiency in the real world. In this paper, we introduce a novel autonomous algorithm that enables off-the-shelf RL algorithms to train autonomous vehicles with minimal human intervention. Our algorithm reduces unnecessary human intervention by aborting episodes to prevent unsafe states and identifying informative initial states for subsequent episodes. The key idea behind identifying informative initial states is to estimate the expected amount of information that can be obtained from under-explored but reachable states. Our algorithm also revisits rule-based autonomous driving algorithms and highlights their benefits in safely returning an autonomous vehicle to initial states. To evaluate how much human intervention is required during training, we implement challenging urban driving tasks that require an autonomous vehicle to reset to initial states on its own. The experimental results show that our autonomous algorithm is task-agnostic and achieves competitive driving performance with much less human intervention than baselines.
comment: 8 pages, 6 figures, 2 tables, conference
♻ ☆ Gameplay Filters: Robust Zero-Shot Safety through Adversarial Imagination
Despite the impressive recent advances in learning-based robot control, ensuring robustness to out-of-distribution conditions remains an open challenge. Safety filters can, in principle, keep arbitrary control policies from incurring catastrophic failures by overriding unsafe actions, but existing solutions for complex (e.g., legged) robot dynamics do not span the full motion envelope and instead rely on local, reduced-order models. These filters tend to overly restrict agility and can still fail when perturbed away from nominal conditions. This paper presents the gameplay filter, a new class of predictive safety filter that continually plays out hypothetical matches between its simulation-trained safety strategy and a virtual adversary co-trained to invoke worst-case events and sim-to-real error, and precludes actions that would cause failures down the line. We demonstrate the scalability and robustness of the approach with a first-of-its-kind full-order safety filter for (36-D) quadrupedal dynamics. Physical experiments on two different quadruped platforms demonstrate the superior zero-shot effectiveness of the gameplay filter under large perturbations such as tugging and unmodeled terrain. Experiment videos and open-source software are available online: https://saferobotics.org/research/gameplay-filter
♻ ☆ The Dark Side of Rich Rewards: Understanding and Mitigating Noise in VLM Rewards
While Vision-Language Models (VLMs) are increasingly used to generate reward signals for training embodied agents to follow instructions, our research reveals that agents guided by VLM rewards often underperform compared to those employing only intrinsic (exploration-driven) rewards, contradicting expectations set by recent work. We hypothesize that false positive rewards -- instances where unintended trajectories are incorrectly rewarded -- are more detrimental than false negatives. Our analysis confirms this hypothesis, revealing that the widely used cosine similarity metric is prone to false positive reward estimates. To address this, we introduce BiMI ({Bi}nary {M}utual {I}nformation), a novel reward function designed to mitigate noise. BiMI significantly enhances learning efficiency across diverse and challenging embodied navigation environments. Our findings offer a nuanced understanding of how different types of reward noise impact agent learning and highlight the importance of addressing multimodal reward signal noise when training embodied agents
comment: 11 main body pages, 21 appendix pages
♻ ☆ Visual collective behaviors on spherical robots
The implementation of collective motion, traditionally, disregard the limited sensing capabilities of an individual, to instead assuming an omniscient perception of the environment. This study implements a visual flocking model in a ``robot-in-the-loop'' approach to reproduce these behaviors with a flock composed of 10 independent spherical robots. The model achieves robotic collective motion by only using panoramic visual information of each robot, such as retinal position, optical size and optic flow of the neighboring robots. We introduce a virtual anchor to confine the collective robotic movements so to avoid wall interactions. For the first time, a simple visual robot-in-the-loop approach succeed in reproducing several collective motion phases, in particular, swarming, and milling. Another milestone achieved with by this model is bridging the gap between simulation and physical experiments by demonstrating nearly identical behaviors in both environments with the same visual model. To conclude, we show that our minimal visual collective motion model is sufficient to recreate most collective behaviors on a robot-in-the-loop system that is scalable, behaves as numerical simulations predict and is easily comparable to traditional models.
comment: 26 pages, 16 figures, journal bioinspired and biomimetics
Systems and Control 22
☆ Design-Agnostic Distributed Timing Fault Injection Monitor With End-to-End Design Automation
Fault injection attacks induce hardware failures in circuits and exploit these faults to compromise the security of the system. It has been demonstrated that FIAs can bypass system security mechanisms, cause faulty outputs, and gain access to secret information. Certain types of FIAs can be mounted with little effort by tampering with clock signals and or the chip operating conditions. To mitigate such low cost, yet powerful attacks, we propose a fully synthesizable and distributable in situ fault injection monitor that employs a delay locked loop to track the pulsewidth of the clock. We further develop a fully automated design framework to optimize and implement the FIA monitors at any process node. Our design is fabricated and verified in 65 nm CMOS technology with a small footprint of 1500 um2. It can lock to clock frequencies from 2 MHz to 1.26 GHz while detecting all 12 types of possible clock glitches, as well as timing FIA injections via the supply voltage, electromagnetic signals, and chip temperature.
comment: 12 pages, 26 figures
☆ Intra-day Solar and Power Forecast for Optimization of Intraday Market Participation
The prediction of solar irradiance enhances reliability in photovoltaic (PV) solar plant generation and grid integration. In Colombia, PV plants face penalties if energy production deviates beyond governmental thresholds from intraday market offers. This research employs Long Short-Term Memory (LSTM) and Bidirectional-LSTM (Bi-LSTM) models, utilizing meteorological data from a PV plant in El Paso, Cesar, Colombia, to predict solar irradiance with a 6-hour horizon and 10-minute resolution. While Bi-LSTM showed superior performance, the LSTM model achieved comparable results with significantly reduced training time (6 hours versus 18 hours), making it computationally advantageous. The LSTM predictions were averaged to create an hourly resolution model, evaluated using Mean Absolute Error, Root-Mean-Square Error, Normalized Root-Mean-Square Error, and Mean Absolute Percentage Error metrics. Comparison with the Global Forecast System (GFS) revealed similar performance, with both models effectively capturing daily solar irradiance patterns. The forecast model integrates with an Object-Oriented power production model, enabling accurate energy offers in the intraday market while minimizing penalty costs.
comment: 20 pages, 37 figures, 9 tables
☆ A Dataset Generation Toolbox for Dynamic Security Assessment: On the Role of the Security Boundary
Dynamic security assessment (DSA) is crucial for ensuring the reliable operation of power systems. However, conventional DSA approaches are becoming intractable for future power systems, driving interest in more computationally efficient data-driven methods. Efficient dataset generation is a cornerstone of these methods. While importance and generic sampling techniques often focus on operating points near the system's security boundary, systematic methods for sampling in this region remain scarce. Furthermore, the impact of sampling near the security boundary on the performance of data-driven DSA methods has yet to be established. This paper highlights the critical role of accurately capturing security boundaries for effective security assessment. As such, we propose a novel method for generating a high number of samples close to the security boundary, considering both AC feasibility and small-signal stability. Case studies on the PGLib-OPF 39-bus and PGLib-OPF 162-bus systems demonstrate the importance of including boundary-adjacent operating points in training datasets while maintaining a balanced distribution of secure and insecure points.
comment: Submitted to IREP 2025 (under review)
☆ Power-Efficient RAN Intelligent Controllers Through Optimized KPI Monitoring
The Open Radio Access Network (RAN) paradigm envisions a more flexible, interoperable, and intelligent RAN ecosystem via new open interfaces and elements like the RAN Intelligent Controller (RIC). However, the impact of these elements on Open RAN's power consumption remains heavily unexplored. This work for the first time evaluates the impact of Key Performance Indicator (KPI) monitoring on RIC's power consumption using real traffic and power measurements. By analyzing various RIC-RAN communication scenarios, we identify that RIC's power consumption can become a scalability bottleneck, particularly in large-scale deployments, even when RIC is limited to its core operational functionalities and without incorporating application-specific processes. In this context, also for the first time we explore potential power savings through the elimination of redundant KPI transmissions, extending existing techniques for identical subscription removal and KPI selection, achieving significant power consumption gains exceeding 87\% of the overall RIC power consumption.
comment: Accepted for publication and presentation at IEEE WCNC 2025
☆ HpC: A Calculus for Hybrid and Mobile Systems -- Full Version SP
Networked cybernetic and physical systems of the Internet of Things (IoT) immerse civilian and industrial infrastructures into an interconnected and dynamic web of hybrid and mobile devices. The key feature of such systems is the hybrid and tight coupling of mobile and pervasive discrete communications in a continuously evolving environment (discrete computations with predominant continuous dynamics). In the aim of ensuring the correctness and reliability of such heterogeneous infrastructures, we introduce the hybrid {\pi}-calculus (HpC), to formally capture both mobility, pervasiveness and hybridisation in infrastructures where the network topology and its communicating entities evolve continuously in the physical world. The {\pi}-calculus proposed by Robin Milner et al. is a process calculus that can model mobile communications and computations in a very elegant manner. The HpC we propose is a conservative extension of the classical {\pi}-calculus, i.e., the extension is ``minimal'', and yet describes mobility, time and physics of systems, while allowing to lift all theoretical results (e.g. bisimulation) to the context of that extension. We showcase the HpC by considering a realistic handover protocol among mobile devices.
comment: The published version of this article will be available in the ACM Digital Library as part of the Proceedings of the ACM on Programming Languages issue for SPLASH/OOPSLA 2025. This extended version contains additional appendices, proofs and case studies
☆ Path Planning for a UAV Swarm Using Formation Teaching-Learning-Based Optimization
This work addresses the path planning problem for a group of unmanned aerial vehicles (UAVs) to maintain a desired formation during operation. Our approach formulates the problem as an optimization task by defining a set of fitness functions that not only ensure the formation but also include constraints for optimal and safe UAV operation. To optimize the fitness function and obtain a suboptimal path, we employ the teaching-learning-based optimization algorithm and then further enhance it with mechanisms such as mutation, elite strategy, and multi-subject combination. A number of simulations and experiments have been conducted to evaluate the proposed method. The results demonstrate that the algorithm successfully generates valid paths for the UAVs to fly in a triangular formation for an inspection task.
comment: in Proceedings of the 2025 International Conference on Energy, Infrastructure and Environmental Research (EIER2025)
☆ Robust UAV Path Planning with Obstacle Avoidance for Emergency Rescue
The unmanned aerial vehicles (UAVs) are efficient tools for diverse tasks such as electronic reconnaissance, agricultural operations and disaster relief. In the complex three-dimensional (3D) environments, the path planning with obstacle avoidance for UAVs is a significant issue for security assurance. In this paper, we construct a comprehensive 3D scenario with obstacles and no-fly zones for dynamic UAV trajectory. Moreover, a novel artificial potential field algorithm coupled with simulated annealing (APF-SA) is proposed to tackle the robust path planning problem. APF-SA modifies the attractive and repulsive potential functions and leverages simulated annealing to escape local minimum and converge to globally optimal solutions. Simulation results demonstrate that the effectiveness of APF-SA, enabling efficient autonomous path planning for UAVs with obstacle avoidance.
☆ Safety-Critical Control for Discrete-time Stochastic Systems with Flexible Safe Bounds using Affine and Quadratic Control Barrier Functions
This paper presents a safe controller synthesis of discrete-time stochastic systems using Control Barrier Functions (CBFs). The proposed condition allows the design of a safe controller synthesis that ensures system safety while avoiding the conservative bounds of safe probabilities. In particular, this study focuses on the design of CBFs that provide flexibility in the choice of functions to obtain tighter bounds on the safe probabilities. Numerical examples demonstrate the effectiveness of the approach.
☆ Control Barrier Function-Based Safety Filters: Characterization of Undesired Equilibria, Unbounded Trajectories, and Limit Cycles
This paper focuses on safety filters designed based on Control Barrier Functions (CBFs): these are modifications of a nominal stabilizing controller typically utilized in safety-critical control applications to render a given subset of states forward invariant. The paper investigates the dynamical properties of the closed-loop systems, with a focus on characterizing undesirable behaviors that may emerge due to the use of CBF-based filters. These undesirable behaviors include unbounded trajectories, limit cycles, and undesired equilibria, which can be locally stable and even form a continuum. Our analysis offer the following contributions: (i) conditions under which trajectories remain bounded and (ii) conditions under which limit cycles do not exist; (iii) we show that undesired equilibria can be characterized by solving an algebraic equation, and (iv) we provide examples that show that asymptotically stable undesired equilibria can exist for a large class of nominal controllers and design parameters of the safety filter (even for convex safe sets). Further, for the specific class of planar systems, (v) we provide explicit formulas for the total number of undesired equilibria and the proportion of saddle points and asymptotically stable equilibria, and (vi) in the case of linear planar systems, we present an exhaustive analysis of their global stability properties. Examples throughout the paper illustrate the results.
☆ From Explainability to Interpretability: Interpretable Policies in Reinforcement Learning Via Model Explanation AAAI
Deep reinforcement learning (RL) has shown remarkable success in complex domains, however, the inherent black box nature of deep neural network policies raises significant challenges in understanding and trusting the decision-making processes. While existing explainable RL methods provide local insights, they fail to deliver a global understanding of the model, particularly in high-stakes applications. To overcome this limitation, we propose a novel model-agnostic approach that bridges the gap between explainability and interpretability by leveraging Shapley values to transform complex deep RL policies into transparent representations. The proposed approach offers two key contributions: a novel approach employing Shapley values to policy interpretation beyond local explanations and a general framework applicable to off-policy and on-policy algorithms. We evaluate our approach with three existing deep RL algorithms and validate its performance in two classic control environments. The results demonstrate that our approach not only preserves the original models' performance but also generates more stable interpretable policies.
comment: Accepted to Deployable AI (DAI) Workshop at the Thirty-Ninth AAAI Conference on Artificial Intelligence (AAAI-25)
☆ Efficient Probabilistic Assessment of Power System Resilience Using the Polynomial Chaos Expansion Method with Enhanced Stability
Increasing frequency and intensity of extreme weather events motivates the assessment of power system resilience. The random nature of these events and the resulting failures mandates probabilistic resilience assessment, but state-of-the-art methods (e.g., Monte Carlo simulation) are computationally inefficient. This paper leverages the polynomial chaos expansion (PCE) method to efficiently quantify uncertainty in power system resilience. To address repeatability issues arising from PCE computation with different sample sets, we propose the integration of the Maximin-LHS experiment design method with the PCE method. Numerical studies on the IEEE 39-bus system illustrate the improved repeatability and convergence of the proposed method. The enhanced PCE method is then used to assess the resilience of the system and propose adaptation measures to improve it.
comment: Submitted to IEEE PESGM 2025
☆ Greening the Grid: Electricity Market Clearing with Consumer-Based Carbon Cost
To enhance decarbonization efforts in electric power systems, we propose a novel electricity market clearing model that internalizes the allocation of emissions from generations to loads and allows for consideration of consumer-side carbon costs. Specifically, consumers can not only bid for power but also assign a cost to the carbon emissions incurred by their electricity use. These carbon costs provide consumers, ranging from carbon-agnostic to carbon-sensitive, with a tool to actively manage their roles in carbon emission mitigation. By incorporating carbon allocation and consumer-side carbon costs, the market clearing is influenced not solely by production and demand dynamics but also by the allocation of carbon emission responsibilities. To demonstrate the effect of our proposed model, we conduct a case study comparing market clearing outcomes across various percentages of carbon-sensitive consumers with differing carbon costs.
comment: 10 pages, 8 figures
☆ Crossover-BPSO Driven Multi-Agent Technology for Managing Local Energy Systems
This article presents a new hybrid algorithm, crossover binary particle swarm optimization (crBPSO), for allocating resources in local energy systems via multi-agent (MA) technology. Initially, a hierarchical MA-based architecture in a grid-connected local energy setup is presented. In this architecture, task specific agents operate in a master-slave manner. Where, the master runs a well-formulated optimization routine aiming at minimizing costs of energy procurement, battery degradation, and load scheduling delay. The slaves update the master on their current status and receive optimal action plans accordingly. Simulation results demonstrate that the proposed algorithm outperforms selected existing ones by 21\% in terms average energy system costs while satisfying customers' energy demand and maintaining the required quality of service.
♻ ☆ Quantum Annealing based Power Grid Partitioning for Parallel Simulation
Graph partitioning has many applications in powersystems from decentralized state estimation to parallel simulation. Focusing on parallel simulation, optimal grid partitioning minimizes the idle time caused by different simulation times for the sub-networks and their components and reduces the overhead required to simulate the cuts. Partitioning a graph into two parts such that, for example, the cut is minimal and the subgraphs have equal size is an NP-hard problem. In this paper we show how optimal partitioning of a graph can be obtained using quantum annealing (QA). We show how to map the requirements for optimal splitting to a quadratic unconstrained binary optimization (QUBO) formulation and test the proposed formulation using a current D-Wave QPU. We show that the necessity to find an embedding of the QUBO on current D-Wave QPUs limits the problem size to under 200 buses and notably affects the time-to-solution. We finally discuss the implications on near-term implementation of QA in combination to traditional CPU or GPU based simulation.
comment: 13 pages, 7 figures
♻ ☆ Characterization of full-scale denial-of-service
This article investigates the resilient control problem for Cyber-Physical Systems (CPSs) with multiple sensors, where both sides of the communication channels are affected by Denial-of-Service (DoS) attacks. While previous work focused on characterizing Multi-Channel DoS (MCDoS), this study emphasizes the characterization of Full-Scale DoS (FSDoS). First, a partial observer technique is proposed to address the MCDoS condition. Then, an event-triggered control strategy is designed to handle FSDoS. Finally, the frequency and duration of FSDoS are analyzed to ensure the Input-to-State Stability (ISS) of the closed-loop system.
♻ ☆ Observability for Nonlinear Systems: Connecting Variational Dynamics, Lyapunov Exponents, and Empirical Gramians
Observability quantification is a key problem in dynamic network sciences. While it has been thoroughly studied for linear systems, observability quantification for nonlinear networks is less intuitive and more cumbersome. One common approach to quantify observability for nonlinear systems is via the Empirical Gramian (Empr-Gram) -- a generalized form of the Gramian of linear systems. In this paper, we produce three new results. First, we establish that a variational form of discrete-time autonomous nonlinear systems (computed via perturbing initial conditions) yields a so-called Variational Gramian (Var-Gram) that is equivalent to the classic Empr-Gram; the former being easier to compute than the latter. Via Lyapunov exponents derived from Lyapunov's direct method, the paper's second result derives connections between existing observability measures and Var-Gram. The third result demonstrates the applicability of these new notions for sensor selection/placement in nonlinear systems. Numerical case studies demonstrate these three developments and their merits.
♻ ☆ Safe Control and Learning Using the Generalized Action Governor
This article introduces a general framework for safe control and learning based on the generalized action governor (AG). The AG is a supervisory scheme for augmenting a nominal closed-loop system with the ability of strictly handling prescribed safety constraints. In the first part of this article, we present a generalized AG methodology and analyze its key properties in a general setting. Then, we introduce tailored AG design approaches derived from the generalized methodology for linear and discrete systems. Afterward, we discuss the application of the generalized AG to facilitate safe online learning, which aims at safely evolving control parameters using real-time data to enhance control performance in uncertain systems. We present two safe learning algorithms based on, respectively, reinforcement learning and data-driven Koopman operator-based control integrated with the generalized AG to exemplify this application. Finally, we illustrate the developments with a numerical example.
comment: 22 pages, 4 figures, submitted to the International Journal of Control
♻ ☆ Collaborative Secret and Covert Communications for Multi-User Multi-Antenna Uplink UAV Systems: Design and Optimization
Motivated by diverse secure requirements of multi-user in UAV systems, we propose a collaborative secret and covert transmission method for multi-antenna ground users to unmanned aerial vehicle (UAV) communications. Specifically, based on the power domain non-orthogonal multiple access (NOMA), two ground users with distinct security requirements, named Bob and Carlo, superimpose their signals and transmit the combined signal to the UAV named Alice. An adversary Willie attempts to simultaneously eavesdrop Bob's confidential message and detect whether Carlo is transmitting or not. We derive close-form expressions of the secrecy connection probability (SCP) and the covert connection probability (CCP) to evaluate the link reliability for wiretap and covert transmissions, respectively. Furthermore, we bound the secrecy outage probability (SOP) from Bob to Alice and the detection error probability (DEP) of Willie to evaluate the link security for wiretap and covert transmissions, respectively. To characterize the theoretical benchmark of the above model, we formulate a weighted multi-objective optimization problem to maximize the average of secret and covert transmission rates subject to constraints SOP, DEP, the beamformers of Bob and Carlo, and UAV trajectory parameters. To solve the optimization problem, we propose an iterative optimization algorithm using successive convex approximation and block coordinate descent (SCA-BCD) methods. Our results reveal the influence of design parameters of the system on the wiretap and covert rates, analytically and numerically. In summary, our study fills the gaps in joint secret and covert transmission for multi-user multi-antenna uplink UAV communications and provides insights to construct such systems.
♻ ☆ Modeling and Predictive Control for the Treatment of Hyperthyroidism
In this work, we propose an approach to determine the dosages of antithyroid agents to treat hyperthyroid patients. Instead of relying on a trial-and-error approach as it is commonly done in clinical practice, we suggest to determine the dosages by means of a model predictive control (MPC) scheme. To this end, we first extend a mathematical model of the pituitary-thyroid feedback loop such that the intake of methimazole, a common antithyroid agent, can be considered. Second, based on the extended model, we develop an MPC scheme to determine suitable dosages. In numerical simulations, we consider scenarios in which (i) patients are affected by Graves' disease and take the medication orally and (ii) patients suffering from a life-threatening thyrotoxicosis, in which the medication is usually given intravenously. Our conceptual study suggests that determining the medication dosages by means of an MPC scheme could be a promising alternative to the currently applied trial-and-error approach.
comment: 6 pages
♻ ☆ Multi-hop Upstream Anticipatory Traffic Signal Control with Deep Reinforcement Learning
Coordination in traffic signal control is crucial for managing congestion in urban networks. Existing pressure-based control methods focus only on immediate upstream links, leading to suboptimal green time allocation and increased network delays. However, effective signal control inherently requires coordination across a broader spatial scope, as the effect of upstream traffic should influence signal control decisions at downstream intersections, impacting a large area in the traffic network. Although agent communication using neural network-based feature extraction can implicitly enhance spatial awareness, it significantly increases the learning complexity, adding an additional layer of difficulty to the challenging task of control in deep reinforcement learning. To address the issue of learning complexity and myopic traffic pressure definition, our work introduces a novel concept based on Markov chain theory, namely \textit{multi-hop upstream pressure}, which generalizes the conventional pressure to account for traffic conditions beyond the immediate upstream links. This farsighted and compact metric informs the deep reinforcement learning agent to preemptively clear the multi-hop upstream queues, guiding the agent to optimize signal timings with a broader spatial awareness. Simulations on synthetic and realistic (Toronto) scenarios demonstrate controllers utilizing multi-hop upstream pressure significantly reduce overall network delay by prioritizing traffic movements based on a broader understanding of upstream congestion.
comment: 5 tables, 11 figures
♻ ☆ Visual collective behaviors on spherical robots
The implementation of collective motion, traditionally, disregard the limited sensing capabilities of an individual, to instead assuming an omniscient perception of the environment. This study implements a visual flocking model in a ``robot-in-the-loop'' approach to reproduce these behaviors with a flock composed of 10 independent spherical robots. The model achieves robotic collective motion by only using panoramic visual information of each robot, such as retinal position, optical size and optic flow of the neighboring robots. We introduce a virtual anchor to confine the collective robotic movements so to avoid wall interactions. For the first time, a simple visual robot-in-the-loop approach succeed in reproducing several collective motion phases, in particular, swarming, and milling. Another milestone achieved with by this model is bridging the gap between simulation and physical experiments by demonstrating nearly identical behaviors in both environments with the same visual model. To conclude, we show that our minimal visual collective motion model is sufficient to recreate most collective behaviors on a robot-in-the-loop system that is scalable, behaves as numerical simulations predict and is easily comparable to traditional models.
comment: 26 pages, 16 figures, journal bioinspired and biomimetics
♻ ☆ Time-Varying Convex Optimization: A Contraction and Equilibrium Tracking Approach
In this article, we provide a novel and broadly-applicable contraction-theoretic approach to continuous-time time-varying convex optimization. For any parameter-dependent contracting dynamics, we show that the tracking error is asymptotically proportional to the rate of change of the parameter and that the proportionality constant is upper bounded by Lipschitz constant in which the parameter appears divided by the contraction rate of the dynamics squared. We additionally establish that augmenting any parameter-dependent contracting dynamics with a feedforward prediction term ensures that the tracking error vanishes exponentially quickly. To apply these results to time-varying convex optimization, we establish the strong infinitesimal contractivity of dynamics solving three canonical problems: monotone inclusions, linear equality-constrained problems, and composite minimization problems. For each case, we derive the sharpest-known contraction rates and provide explicit bounds on the tracking error between solution trajectories and minimizing trajectories. We validate our theoretical results on two numerical examples and on an application to control barrier function-based controller design that involves real hardware.
Optimization and Control 31
☆ Tensor-based Dinkelbach method for computing generalized tensor eigenvalues and its applications
In this paper, we propose a novel tensor-based Dinkelbach--Type method for computing extremal tensor generalized eigenvalues. We show that the extremal tensor generalized eigenvalue can be reformulated as a critical subproblem of the classical Dinkelbach--Type method, which can subsequently be expressed as a multilinear optimization problem (MOP). The MOP is solved under a spherical constraint using an efficient proximal alternative minimization method, in which we rigorously establish the global convergence. Additionally, the equivalent MOP is reformulated as an unconstrained optimization problem, allowing for the analysis of the Kurdyka-Lojasiewicz (KL) exponent and providing an explicit expression for the convergence rate of the proposed algorithm. Preliminary numerical experiments on solving extremal tensor generalized eigenvalues and minimizing high-order trust-region subproblems are provided, validating the efficacy and practical utility of the proposed method.
☆ Random Subspace Cubic-Regularization Methods, with Applications to Low-Rank Functions
We propose and analyze random subspace variants of the second-order Adaptive Regularization using Cubics (ARC) algorithm. These methods iteratively restrict the search space to some random subspace of the parameters, constructing and minimizing a local model only within this subspace. Thus, our variants only require access to (small-dimensional) projections of first- and second-order problem derivatives and calculate a reduced step inexpensively. Under suitable assumptions, the ensuing methods maintain the optimal first-order, and second-order, global rates of convergence of (full-dimensional) cubic regularization, while showing improved scalability both theoretically and numerically, particularly when applied to low-rank functions. When applied to the latter, our adaptive variant naturally adapts the subspace size to the true rank of the function, without knowing it a priori.
☆ Convergence of a Deep BSDE solver with jumps
We study the error arising in the numerical approximation of FBSDEs and related PIDEs by means of a deep learning-based method. Our results focus on decoupled FBSDEs with jumps and extend the seminal work of HAn and Long (2020) analyzing the numerical error of the deep BSDE solver proposed in E et al. (2017). We provide a priori and a posteriori error estimates for the finite and infinite activity case.
comment: 33 pages
☆ Distributionally Fair Peer-to-Peer Electricity Trading
Peer-to-peer energy trading platforms enable direct electricity exchanges between peers who belong to the same energy community. In a semi-decentralized system, a community manager adheres to grid restrictions while optimizing social welfare. However, with no further supervision, some peers can be discriminated against from participating in the electricity trades. To solve this issue, this paper proposes an optimization-based mechanism to enable distributionally fair peer-to-peer electricity trading. For the implementation of our mechanism, peers are grouped by energy poverty level. The proposed model aims to redistribute the electricity trades to minimize the maximum Wasserstein distance among the transaction distributions linked to the groups while limiting the sacrifice level with a predefined parameter. We demonstrate the effectiveness of our proposal using the IEEE 33-bus distribution grid, simulating an energy community with 1600 peers. Results indicate that up to 70.1% of unfairness can be eliminated by using our proposed model, even achieving a full elimination when including a non-profit community photovoltaic plant.
☆ A Simplification Method for Inequality Constraints in Integer Binary Encoding HOBO Formulations
This study proposes a novel method for simplifying inequality constraints in Higher-Order Binary Optimization (HOBO) formulations. The proposed method addresses challenges associated with Quadratic Unconstrained Binary Optimization (QUBO) formulations, specifically the increased computational complexity and reduced solution accuracy caused by the introduction of slack variables and the resulting growth in auxiliary qubits. By efficiently integrating constraints, the method enhances the computational efficiency and accuracy of both quantum and classical solvers. The effectiveness of the proposed approach is demonstrated through numerical experiments applied to combinatorial optimization problems. The results indicate that this method expands the applicability of quantum algorithms to high-dimensional problems and improves the practicality of classical optimization solvers for optimization problems involving inequality constraints.
☆ Faces of homogeneous cones and applications to homogeneous chordality
A convex cone $\mathcal{K}$ is said to be homogeneous if its group of automorphisms acts transitively on its relative interior. Important examples of homogeneous cones include symmetric cones and cones of positive semidefinite (PSD) matrices that follow a sparsity pattern given by a homogeneous chordal graph. Our goal in this paper is to elucidate the facial structure of homogeneous cones and make it as transparent as the faces of the PSD matrices. We prove that each face of a homogeneous cone $\mathcal{K}$ is mapped by an automorphism of $\mathcal{K}$ to one of its finitely many so-called principal faces. Furthermore, constructing such an automorphism can be done algorithmically by making use of a generalized Cholesky decomposition. Among other consequences, we give a proof that homogeneous cones are projectionally exposed, which strengthens the previous best result that they are amenable. Using our results, we will carefully analyze the facial structure of cones of PSD matrices satisfying homogeneous chordality and discuss consequences for the corresponding family of PSD completion problems.
comment: 29 pages. Comments welcome
☆ A Multi-agent System for Hybrid Optimization
Optimization problems in process engineering, including design and operation, can often pose challenges to many solvers: multi-modal, non-smooth, and discontinuous models often with large computational requirements. In such cases, the optimization problem is often treated as a black box in which only the value of the objective function is required, sometimes with some indication of the measure of the violation of the constraints. Such problems have traditionally been tackled through the use of direct search and meta-heuristic methods. The challenge, then, is to determine which of these methods or combination of methods should be considered to make most effective use of finite computational resources. This paper presents a multi-agent system for optimization which enables a set of solvers to be applied simultaneously to an optimization problem, including different instantiations of any solver. The evaluation of the optimization problem model is controlled by a scheduler agent which facilitates cooperation and competition between optimization methods. The architecture and implementation of the agent system is described in detail, including the solver, model evaluation, and scheduler agents. A suite of direct search and meta-heuristic methods has been developed for use with this system. Case studies from process systems engineering applications are presented and the results show the potential benefits of automated cooperation between different optimization solvers and motivates the implementation of competition between solvers.
comment: 22 pages, 6 figures
☆ On a Variant of the Minimum Path Cover Problem in Acyclic Digraphs: Computational Complexity Results and Exact Method
The Minimum Path Cover (MPC) problem consists of finding a minimum-cardinality set of node-disjoint paths that cover all nodes in a given graph. We explore a variant of the MPC problem on acyclic digraphs (DAGs) where, given a subset of arcs, each path within the MPC should contain at least one arc from this subset. We prove that the feasibility problem is strongly NP-hard on arbitrary DAGs, but the problem can be solved in polynomial time when the DAG is the transitive closure of a path. Given that the problem may not always be feasible, our solution focuses on covering a maximum number of nodes with a minimum number of node-disjoint paths, such that each path includes at least one arc from the predefined subset of arcs. This paper introduces and investigates two integer programming formulations for this problem. We propose several valid inequalities to enhance the linear programming relaxations, employing them as cutting planes in a branch-and-cut approach. The procedure is implemented and tested on a wide range of instances, including real-world instances derived from an airline crew scheduling problem, demonstrating the effectiveness of the proposed approach.
☆ Rates of (T-)asymptotic regularity of the generalized Krasnoselskii-Mann-type iteration
In this paper we use proof mining methods to compute rates of ($T$-)asymptotic regularity of the generalized Krasnoselskii-Mann-type iteration associated to a nonexpansive mapping $T:X\to X$ in a uniformly convex normed space $X$. For special choices of the parameter sequences, we obtain quadratic rates.
☆ Proximal Quasi-Newton Method for Composite Optimization over the Stiefel Manifold
In this paper, we consider the composite optimization problems over the Stiefel manifold. A successful method to solve this class of problems is the proximal gradient method proposed by Chen et al. Motivated by the proximal Newton-type techniques in the Euclidean space, we present a Riemannian proximal quasi-Newton method, named ManPQN, to solve the composite optimization problems. The global convergence of the ManPQN method is proved and iteration complexity for obtaining an $\epsilon$-stationary point is analyzed. Under some mild conditions, we also establish the local linear convergence result of the ManPQN method. Numerical results are encouraging, which shows that the proximal quasi-Newton technique can be used to accelerate the proximal gradient method.
comment: 37 pages, 12 figures
☆ Optimal taxes and subsidies to incentivize modal shift for inner-city freight transport
With increasing freight demands for inner-city transport, shifting freight from road to scheduled line services such as buses, metros, trams, and barges is a sustainable solution. Public authorities typically impose economic policies, including road taxes and subsidies for scheduled line services, to achieve this modal shift. This study models such a policy using a bi-level approach: at the upper level, authorities set road taxes and scheduled line subsidies, while at the lower level, freight forwarders arrange transportation via road or a combination of road and scheduled lines. We prove that fully subsidizing the scheduled line is an optimal and budget-efficient policy. Due to its computational complexity, we solve the problem heuristically using a bi-section algorithm for the upper level and an Adaptive Large Neighbourhood Search for the lower level. Our results show that optimally setting subsidy and tax can reduce the driving distance by up to 12.5\% and substantially increase modal shift, albeit at a higher operational cost due to increased taxes. Furthermore, increased scheduled line frequency and decreased geographical scatteredness of freight orders increase modal shift. For the partial subsidy policy, we found that an additional budget provides a better trade-off between minimizing distance and transportation costs than solely increasing the subsidy level. In a Berlin, Germany, case study, we find that we can achieve up to 2.9\% reduction in driven distance due to 23.2\% scheduled line usage, which amounts to an increase of multiple orders of magnitude, despite only using a few stations for transshipment.
☆ Mid-term bio-economic optimization of multi-species fisheries
In this paper, we analyze the dynamics of a multi-species fisheries system in the presence of harvesting. We solve the problem of finding the optimal harvesting strategy for a mid-term horizon with a fixed final stock of each species, while maximizing the expected present value of total revenues. The problem is formulated as an optimal control problem. For its solution, we combine techniques derived from Pontryagin's Maximum Principle, cyclic coordinate descent and the shooting method. The algorithm we develop can solve problems both with inter-species competition and with predator-prey behaviors. Several numerical examples are presented to illustrate the different possibilities of the method and a study of the dependence of the behavior on some parameters is performed.
☆ The Effective Generalized Moment Problem
We establish new convergence rates for the moment-sum-of-squares (Moment-SOS) relaxations for the Generalized Moment Problem (GMP). These bounds, which adapt to the geometry of the underlying semi-algebraic set, apply to both the convergence of optima, and to the convergence in Hausdorff distance between the relaxation feasibility set and the GMP feasibility set. This research extends previous works limited to specific problems in polynomial optimization, volume computation and optimal control. We complement our theoretical analysis with an application: minimal rank symmetric tensor decomposition. In the examples, we formulate the problem as a GMP, solve using Moment-SOS relaxation, and apply the theoretical results to observe a convergence rate of the relaxations.
☆ Control Barrier Function-Based Safety Filters: Characterization of Undesired Equilibria, Unbounded Trajectories, and Limit Cycles
This paper focuses on safety filters designed based on Control Barrier Functions (CBFs): these are modifications of a nominal stabilizing controller typically utilized in safety-critical control applications to render a given subset of states forward invariant. The paper investigates the dynamical properties of the closed-loop systems, with a focus on characterizing undesirable behaviors that may emerge due to the use of CBF-based filters. These undesirable behaviors include unbounded trajectories, limit cycles, and undesired equilibria, which can be locally stable and even form a continuum. Our analysis offer the following contributions: (i) conditions under which trajectories remain bounded and (ii) conditions under which limit cycles do not exist; (iii) we show that undesired equilibria can be characterized by solving an algebraic equation, and (iv) we provide examples that show that asymptotically stable undesired equilibria can exist for a large class of nominal controllers and design parameters of the safety filter (even for convex safe sets). Further, for the specific class of planar systems, (v) we provide explicit formulas for the total number of undesired equilibria and the proportion of saddle points and asymptotically stable equilibria, and (vi) in the case of linear planar systems, we present an exhaustive analysis of their global stability properties. Examples throughout the paper illustrate the results.
☆ On the convergence of noisy Bayesian Optimization with Expected Improvement
Expected improvement (EI) is one of the most widely-used acquisition functions in Bayesian optimization (BO). Despite its proven success in applications for decades, important open questions remain on the theoretical convergence behaviors and rates for EI. In this paper, we contribute to the convergence theories of EI in three novel and critical area. First, we consider objective functions that are under the Gaussian process (GP) prior assumption, whereas existing works mostly focus on functions in the reproducing kernel Hilbert space (RKHS). Second, we establish the first asymptotic error bound and its corresponding rate for GP-EI with noisy observations under the GP prior assumption. Third, by investigating the exploration and exploitation of the non-convex EI function, we prove improved error bounds for both the noise-free and noisy cases. The improved noiseless bound is extended to the RKHS assumption as well.
☆ A Dynamic Unmanned Aerial Vehicle Routing Framework for Urban Traffic Monitoring
Unmanned Aerial Vehicles (UAVs) have great potential in urban traffic monitoring due to their rapid speed, cost-effectiveness, and extensive field-of-view, while being unconstrained by traffic congestion. However, their limited flight duration presents critical challenges in sustainable recharging strategies and efficient route planning in long-term monitoring tasks. Additionally, existing approaches for long-term monitoring often neglect the evolving nature of urban traffic networks. In this study, we introduce a novel dynamic UAV routing framework for long-term, network-wide urban traffic monitoring, leveraging existing ground vehicles as mobile charging stations without disrupting their operations. To address the complexity of long-term monitoring scenarios involving multiple flights, we decompose the problem into manageable single-flight tasks, in which each flight is modeled as a Team Arc Orienteering Problem with Decreasing Profits with the objective to collectively maximize the spatiotemporal network coverage. Between flights, we adaptively update the edge weights to incorporate real-time traffic changes and revisit intervals. We validate our framework through extensive microscopic simulations in a modified Sioux Falls network under various scenarios. Comparative results demonstrate that our model outperforms three baseline approaches, especially when historical information is incomplete or absent. Moreover, we show that our monitoring framework can capture network-wide traffic trends and construct accurate Macroscopic Fundamental Diagrams (MFDs). These findings demonstrate the effectiveness of the proposed dynamic UAV routing framework, underscoring its suitability for efficient and reliable long-term traffic monitoring. Our approach's adaptability and high accuracy in capturing the MFD highlight its potential in network-wide traffic control and management applications.
☆ Adaptive Weighted Total Variation boosted by learning techniques in few-view tomographic imaging
This study presents the development of a spatially adaptive weighting strategy for Total Variation regularization, aimed at addressing under-determined linear inverse problems. The method leverages the rapid computation of an accurate approximation of the true image (or its gradient magnitude) through a neural network. Our approach operates without requiring prior knowledge of the noise intensity in the data and avoids the iterative recomputation of weights. Additionally, the paper includes a theoretical analysis of the proposed method, establishing its validity as a regularization approach. This framework integrates advanced neural network capabilities within a regularization context, thereby making the results of the networks interpretable. The results are promising as they enable high-quality reconstructions from limited-view tomographic measurements.
comment: 23 pages, 8 figures, submitted to journal for peer-review
☆ On the Complexity of p-Order Cone Programs
This manuscript explores novel complexity results for the feasibility problem over $p$-order cones, extending the foundational work of Porkolab and Khachiyan. By leveraging the intrinsic structure of $p$-order cones, we derive refined complexity bounds that surpass those obtained via standard semidefinite programming reformulations. Our analysis not only improves theoretical bounds but also provides practical insights into the computational efficiency of solving such problems. In addition to establishing complexity results, we derive explicit bounds for solutions when the feasibility problem admits one. For infeasible instances, we analyze their discrepancy quantifying the degree of infeasibility. Finally, we examine specific cases of interest, highlighting scenarios where the geometry of $p$-order cones or problem structure yields further computational simplifications. These findings contribute to both the theoretical understanding and practical tractability of optimization problems involving $p$-order cones.
comment: 21 pages, 2 tables
☆ Generalized TCP-RED dynamical model for Internet congestion control
Adaptive management of traffic congestion in the Internet is a complex problem that can gain useful insights from a dynamical approach. In this paper we propose and analyze a one-dimensional, discrete-time nonlinear model for Internet congestion control at the routers. Specifically, the states correspond to the average queue sizes of the incoming data packets and the dynamical core consists of a monotone or unimodal mapping with a unique fixed point. This model generalizes a previous one in that additional control parameters are introduced via the data packet drop probability with the objective of enhancing stability. To make the analysis more challenging, the original model was shown to exhibit the usual features of low-dimensional chaos with respect to several system and control parameters, e.g., positive Lyapunov exponents and Feigenbaum-like bifurcation diagrams. We concentrate first on the theoretical aspects that may promote the unique stationary state of the system to a global attractor, which in our case amounts to global stability. In a second step, those theoretical results are translated into stability domains for robust setting of the new control parameters in practical applications. Numerical simulations confirm that the new parameters make it possible to extend the stability domains, in comparison with previous results. Therefore, the present work may lead to an adaptive congestion control algorithm with a more stable performance than other algorithms currently in use.
♻ ☆ Uses of Sub-sample Estimates to Reduce Errors in Stochastic Optimization Models
Optimization software enables the solution of problems with millions of variables and associated parameters. These parameters are, however, often uncertain and represented with an analytical description of the parameter's distribution or with some form of sample. With large numbers of such parameters, optimization of the resulting model is often driven by mis-specifications or extreme sample characteristics, resulting in solutions that are far from a true optimum. This paper describes how asymptotic convergence results may not be useful in large-scale problems and how the optimization of problems based on sub-sample estimates may achieve improved results over models using full-sample solution estimates. A motivating example and numerical results from a portfolio optimization problem demonstrate the potential improvement. A theoretical analysis also provides insight into the structure of problems where sub-sample optimization may be most beneficial.
♻ ☆ Actuation manifold from snapshot data
We propose a data-driven methodology to learn a low-dimensional manifold of controlled flows. The starting point is resolving snapshot flow data for a representative ensemble of actuations. Key enablers for the actuation manifold are isometric mapping as encoder and a combination of a neural network and a k-nearest-neighbour interpolation as decoder. This methodology is tested for the fluidic pinball, a cluster of three parallel cylinders perpendicular to the oncoming uniform flow. The centres of these cylinders are the vertices of an equilateral triangle pointing upstream. The flow is manipulated by constant rotation of the cylinders, i.e. described by three actuation parameters. The Reynolds number based on a cylinder diameter is chosen to be 30. The unforced flow yields statistically symmetric periodic shedding represented by a one-dimensional limit cycle. The proposed methodology yields a five-dimensional manifold describing a wide range of dynamics with small representation error. Interestingly, the manifold coordinates automatically unveil physically meaningful parameters. Two of them describe the downstream periodic vortex shedding. The other three describe the near-field actuation, i.e. the strength of boat-tailing, the Magnus effect and forward stagnation point. The manifold is shown to be a key enabler for control-oriented flow estimation.
comment: 14 pages, 7 figures
♻ ☆ Heavy Ball Momentum for Non-Strongly Convex Optimization
When considering the minimization of a quadratic or strongly convex function, it is well known that first-order methods involving an inertial term weighted by a constant-in-time parameter are particularly efficient (see Polyak [32], Nesterov [28], and references therein). By setting the inertial parameter according to the condition number of the objective function, these methods guarantee a fast exponential decay of the error. We prove that this type of schemes (which are later called Heavy Ball schemes) is relevant in a relaxed setting, i.e. for composite functions satisfying a quadratic growth condition. In particular, we adapt V-FISTA, introduced by Beck in [10] for strongly convex functions, to this broader class of functions. To the authors' knowledge, the resulting worst-case convergence rates are faster than any other in the literature, including those of FISTA restart schemes. No assumption on the set of minimizers is required and guarantees are also given in the non-optimal case, i.e. when the condition number is not exactly known. This analysis follows the study of the corresponding continuous-time dynamical system (Heavy Ball with friction system), for which new convergence results of the trajectory are shown.
♻ ☆ OPM, a collection of Optimization Problems in Matlab
OPM is a small collection of CUTEst unconstrained and bound-constrained nonlinear optimization problems, which can be used in Matlab for testing optimization algorithms directly (i.e. without installing additional software).
♻ ☆ Safe Control and Learning Using the Generalized Action Governor
This article introduces a general framework for safe control and learning based on the generalized action governor (AG). The AG is a supervisory scheme for augmenting a nominal closed-loop system with the ability of strictly handling prescribed safety constraints. In the first part of this article, we present a generalized AG methodology and analyze its key properties in a general setting. Then, we introduce tailored AG design approaches derived from the generalized methodology for linear and discrete systems. Afterward, we discuss the application of the generalized AG to facilitate safe online learning, which aims at safely evolving control parameters using real-time data to enhance control performance in uncertain systems. We present two safe learning algorithms based on, respectively, reinforcement learning and data-driven Koopman operator-based control integrated with the generalized AG to exemplify this application. Finally, we illustrate the developments with a numerical example.
comment: 22 pages, 4 figures, submitted to the International Journal of Control
♻ ☆ Sparsity-Aware Distributed Learning for Gaussian Processes with Linear Multiple Kernel
Gaussian processes (GPs) stand as crucial tools in machine learning and signal processing, with their effectiveness hinging on kernel design and hyper-parameter optimization. This paper presents a novel GP linear multiple kernel (LMK) and a generic sparsity-aware distributed learning framework to optimize the hyper-parameters. The newly proposed grid spectral mixture product (GSMP) kernel is tailored for multi-dimensional data, effectively reducing the number of hyper-parameters while maintaining good approximation capability. We further demonstrate that the associated hyper-parameter optimization of this kernel yields sparse solutions. To exploit the inherent sparsity of the solutions, we introduce the Sparse LInear Multiple Kernel Learning (SLIM-KL) framework. The framework incorporates a quantized alternating direction method of multipliers (ADMM) scheme for collaborative learning among multiple agents, where the local optimization problem is solved using a distributed successive convex approximation (DSCA) algorithm. SLIM-KL effectively manages large-scale hyper-parameter optimization for the proposed kernel, simultaneously ensuring data privacy and minimizing communication costs. Theoretical analysis establishes convergence guarantees for the learning framework, while experiments on diverse datasets demonstrate the superior prediction performance and efficiency of our proposed methods.
♻ ☆ Wasserstein Gradient Flows for Moreau Envelopes of f-Divergences in Reproducing Kernel Hilbert Spaces
Commonly used $f$-divergences of measures, e.g., the Kullback-Leibler divergence, are subject to limitations regarding the support of the involved measures. A remedy is regularizing the $f$-divergence by a squared maximum mean discrepancy (MMD) associated with a characteristic kernel $K$. We use the kernel mean embedding to show that this regularization can be rewritten as the Moreau envelope of some function on the associated reproducing kernel Hilbert space. Then, we exploit well-known results on Moreau envelopes in Hilbert spaces to analyze the MMD-regularized $f$-divergences, particularly their gradients. Subsequently, we use our findings to analyze Wasserstein gradient flows of MMD-regularized $f$-divergences. We provide proof-of-the-concept numerical examples for flows starting from empirical measures. Here, we cover $f$-divergences with infinite and finite recession constants. Lastly, we extend our results to the tight variational formulation of $f$-divergences and numerically compare the resulting flows.
comment: 56 pages, 14 figures, 3 tables. Comments welcome! NEW: Incorporated Reviewers' suggestions, added FISTA and tight formulation
♻ ☆ Distributed Riemannian Stochastic Gradient Tracking Algorithm on the Stiefel Manifold
This paper focus on investigating the distributed Riemannian stochastic optimization problem on the Stiefel manifold for multi-agent systems, where all the agents work collaboratively to optimize a function modeled by the average of their expectation-valued local costs. Each agent only processes its own local cost function and communicate with neighboring agents to achieve optimal results while ensuring consensus. Since the local Riemannian gradient in stochastic regimes cannot be directly calculated, we will estimate the gradient by the average of a variable number of sampled gradient, which however brings about noise to the system. We then propose a distributed Riemannian stochastic optimization algorithm on the Stiefel manifold by combining the variable sample size gradient approximation method with the gradient tracking dynamic. It is worth noticing that the suitably chosen increasing sample size plays an important role in improving the algorithm efficiency, as it reduces the noise variance. In an expectation-valued sense, the iterates of all agents are proved to converge to a stationary point (or neighborhood) with fixed step sizes. We further establish the convergence rate of the iterates for the cases when the sample size is exponentially increasing, polynomial increasing, or a constant, respectively. Finally, numerical experiments are implemented to demonstrate the theoretical results.
♻ ☆ Cislunar Constellation Design for Space Situational Awareness with Time-Expanded p-Median Problem
Driven by the surmounting interest for a dedicated infrastructure in cislunar space, this work considers the satellite constellation design for cislunar space situational awareness (CSSA). We propose a linear programming (LP)-based formulation that simultaneously tackles the constellation design and sensor-tasking subproblems surrounding CSSA. Our approach generates constellation designs that provide coverage with considerations for the field-of-view of observers. We propose a time-expanded p-Median problem (TE-p-MP) which considers the optimal placement of p space-based observers into discretized locations based on orbital slots along libration point orbits, simultaneously with observer pointing directions across discretized time. We further develop a Lagrangian method for the TE-p-MP, where a relaxed problem with an analytical solution is derived, and customized heuristics leveraging the orbital structure of candidate observer locations are devised. The performance of the proposed formulation is demonstrated with several case studies for CSSA constellations monitoring the cislunar Cone of Shame and a periodic time-varying transit window for low-energy transfers located in the Earth-Moon L2 neck region. The proposed problem formulation, along with the Lagrangian method, is demonstrated to enable a fast assessment of near-optimal CSSA constellations, equipping decision-makers with a critical technique for exploring the design trade space.
comment: 49 pages, 15 figures
♻ ☆ Thermal Bootstrap of Matrix Quantum Mechanics
We implement a bootstrap method that combines Schwinger-Dyson equations, thermal inequalities, and semidefinite relaxations of matrix logarithm in the ungauged one-matrix quantum mechanics, at finite rank N as well as in the large N limit, and determine finite temperature observables that interpolate between available analytic results in the low and high temperature limits respectively. We also obtain bootstrap bounds on thermal phase transition as well as preliminary results in the ungauged two-matrix quantum mechanics.
comment: 31 pages, 8 figures, v2: references added
♻ ☆ Convergence and Bound Computation for Chance Constrained Distributionally Robust Models using Sample Approximation
This paper considers a distributionally robust chance constraint model with a general ambiguity set. We show that a sample based approximation of this model converges under suitable sufficient conditions. We also show that upper and lower bounds on the optimal value of the model can be estimated statistically. Specific ambiguity sets are discussed as examples.
♻ ☆ Time-Varying Convex Optimization: A Contraction and Equilibrium Tracking Approach
In this article, we provide a novel and broadly-applicable contraction-theoretic approach to continuous-time time-varying convex optimization. For any parameter-dependent contracting dynamics, we show that the tracking error is asymptotically proportional to the rate of change of the parameter and that the proportionality constant is upper bounded by Lipschitz constant in which the parameter appears divided by the contraction rate of the dynamics squared. We additionally establish that augmenting any parameter-dependent contracting dynamics with a feedforward prediction term ensures that the tracking error vanishes exponentially quickly. To apply these results to time-varying convex optimization, we establish the strong infinitesimal contractivity of dynamics solving three canonical problems: monotone inclusions, linear equality-constrained problems, and composite minimization problems. For each case, we derive the sharpest-known contraction rates and provide explicit bounds on the tracking error between solution trajectories and minimizing trajectories. We validate our theoretical results on two numerical examples and on an application to control barrier function-based controller design that involves real hardware.
Computer Vision and Pattern Recognition 122
☆ Distilling Multi-modal Large Language Models for Autonomous Driving
Autonomous driving demands safe motion planning, especially in critical "long-tail" scenarios. Recent end-to-end autonomous driving systems leverage large language models (LLMs) as planners to improve generalizability to rare events. However, using LLMs at test time introduces high computational costs. To address this, we propose DiMA, an end-to-end autonomous driving system that maintains the efficiency of an LLM-free (or vision-based) planner while leveraging the world knowledge of an LLM. DiMA distills the information from a multi-modal LLM to a vision-based end-to-end planner through a set of specially designed surrogate tasks. Under a joint training strategy, a scene encoder common to both networks produces structured representations that are semantically grounded as well as aligned to the final planning objective. Notably, the LLM is optional at inference, enabling robust planning without compromising on efficiency. Training with DiMA results in a 37% reduction in the L2 trajectory error and an 80% reduction in the collision rate of the vision-based planner, as well as a 44% trajectory error reduction in longtail scenarios. DiMA also achieves state-of-the-art performance on the nuScenes planning benchmark.
☆ SynthLight: Portrait Relighting with Diffusion Model by Learning to Re-render Synthetic Faces
We introduce SynthLight, a diffusion model for portrait relighting. Our approach frames image relighting as a re-rendering problem, where pixels are transformed in response to changes in environmental lighting conditions. Using a physically-based rendering engine, we synthesize a dataset to simulate this lighting-conditioned transformation with 3D head assets under varying lighting. We propose two training and inference strategies to bridge the gap between the synthetic and real image domains: (1) multi-task training that takes advantage of real human portraits without lighting labels; (2) an inference time diffusion sampling procedure based on classifier-free guidance that leverages the input portrait to better preserve details. Our method generalizes to diverse real photographs and produces realistic illumination effects, including specular highlights and cast shadows, while preserving the subject's identity. Our quantitative experiments on Light Stage data demonstrate results comparable to state-of-the-art relighting methods. Our qualitative results on in-the-wild images showcase rich and unprecedented illumination effects. Project Page: \url{https://vrroom.github.io/synthlight/}
comment: 27 pages, 25 figures, Project Page https://vrroom.github.io/synthlight/
☆ Learnings from Scaling Visual Tokenizers for Reconstruction and Generation
Visual tokenization via auto-encoding empowers state-of-the-art image and video generative models by compressing pixels into a latent space. Although scaling Transformer-based generators has been central to recent advances, the tokenizer component itself is rarely scaled, leaving open questions about how auto-encoder design choices influence both its objective of reconstruction and downstream generative performance. Our work aims to conduct an exploration of scaling in auto-encoders to fill in this blank. To facilitate this exploration, we replace the typical convolutional backbone with an enhanced Vision Transformer architecture for Tokenization (ViTok). We train ViTok on large-scale image and video datasets far exceeding ImageNet-1K, removing data constraints on tokenizer scaling. We first study how scaling the auto-encoder bottleneck affects both reconstruction and generation -- and find that while it is highly correlated with reconstruction, its relationship with generation is more complex. We next explored the effect of separately scaling the auto-encoders' encoder and decoder on reconstruction and generation performance. Crucially, we find that scaling the encoder yields minimal gains for either reconstruction or generation, while scaling the decoder boosts reconstruction but the benefits for generation are mixed. Building on our exploration, we design ViTok as a lightweight auto-encoder that achieves competitive performance with state-of-the-art auto-encoders on ImageNet-1K and COCO reconstruction tasks (256p and 512p) while outperforming existing auto-encoders on 16-frame 128p video reconstruction for UCF-101, all with 2-5x fewer FLOPs. When integrated with Diffusion Transformers, ViTok demonstrates competitive performance on image generation for ImageNet-1K and sets new state-of-the-art benchmarks for class-conditional video generation on UCF-101.
comment: 28 pages, 25 figures, 7 Tables
☆ Lost in Translation, Found in Context: Sign Language Translation with Contextual Cues
Our objective is to translate continuous sign language into spoken language text. Inspired by the way human interpreters rely on context for accurate translation, we incorporate additional contextual cues together with the signing video, into a new translation framework. Specifically, besides visual sign recognition features that encode the input video, we integrate complementary textual information from (i) captions describing the background show, (ii) translation of previous sentences, as well as (iii) pseudo-glosses transcribing the signing. These are automatically extracted and inputted along with the visual features to a pre-trained large language model (LLM), which we fine-tune to generate spoken language translations in text form. Through extensive ablation studies, we show the positive contribution of each input cue to the translation performance. We train and evaluate our approach on BOBSL -- the largest British Sign Language dataset currently available. We show that our contextual approach significantly enhances the quality of the translations compared to previously reported results on BOBSL, and also to state-of-the-art methods that we implement as baselines. Furthermore, we demonstrate the generality of our approach by applying it also to How2Sign, an American Sign Language dataset, and achieve competitive results.
☆ SRE-Conv: Symmetric Rotation Equivariant Convolution for Biomedical Image Classification
Convolutional neural networks (CNNs) are essential tools for computer vision tasks, but they lack traditionally desired properties of extracted features that could further improve model performance, e.g., rotational equivariance. Such properties are ubiquitous in biomedical images, which often lack explicit orientation. While current work largely relies on data augmentation or explicit modules to capture orientation information, this comes at the expense of increased training costs or ineffective approximations of the desired equivariance. To overcome these challenges, we propose a novel and efficient implementation of the Symmetric Rotation-Equivariant (SRE) Convolution (SRE-Conv) kernel, designed to learn rotation-invariant features while simultaneously compressing the model size. The SRE-Conv kernel can easily be incorporated into any CNN backbone. We validate the ability of a deep SRE-CNN to capture equivariance to rotation using the public MedMNISTv2 dataset (16 total tasks). SRE-Conv-CNN demonstrated improved rotated image classification performance accuracy on all 16 test datasets in both 2D and 3D images, all while increasing efficiency with fewer parameters and reduced memory footprint. The code is available at https://github.com/XYPB/SRE-Conv.
comment: Accepted by IEEE ISBI 2025 4-page paper
☆ ComplexVAD: Detecting Interaction Anomalies in Video WACV
Existing video anomaly detection datasets are inadequate for representing complex anomalies that occur due to the interactions between objects. The absence of complex anomalies in previous video anomaly detection datasets affects research by shifting the focus onto simple anomalies. To address this problem, we introduce a new large-scale dataset: ComplexVAD. In addition, we propose a novel method to detect complex anomalies via modeling the interactions between objects using a scene graph with spatio-temporal attributes. With our proposed method and two other state-of-the-art video anomaly detection methods, we obtain baseline scores on ComplexVAD and demonstrate that our new method outperforms existing works.
comment: 16 pages, 11 figures, to appear in WACV Workshop ASTAD 2025
☆ Inference-Time Scaling for Diffusion Models beyond Scaling Denoising Steps
Generative models have made significant impacts across various domains, largely due to their ability to scale during training by increasing data, computational resources, and model size, a phenomenon characterized by the scaling laws. Recent research has begun to explore inference-time scaling behavior in Large Language Models (LLMs), revealing how performance can further improve with additional computation during inference. Unlike LLMs, diffusion models inherently possess the flexibility to adjust inference-time computation via the number of denoising steps, although the performance gains typically flatten after a few dozen. In this work, we explore the inference-time scaling behavior of diffusion models beyond increasing denoising steps and investigate how the generation performance can further improve with increased computation. Specifically, we consider a search problem aimed at identifying better noises for the diffusion sampling process. We structure the design space along two axes: the verifiers used to provide feedback, and the algorithms used to find better noise candidates. Through extensive experiments on class-conditioned and text-conditioned image generation benchmarks, our findings reveal that increasing inference-time compute leads to substantial improvements in the quality of samples generated by diffusion models, and with the complicated nature of images, combinations of the components in the framework can be specifically chosen to conform with different application scenario.
☆ A Simple Aerial Detection Baseline of Multimodal Language Models
The multimodal language models (MLMs) based on generative pre-trained Transformer are considered powerful candidates for unifying various domains and tasks. MLMs developed for remote sensing (RS) have demonstrated outstanding performance in multiple tasks, such as visual question answering and visual grounding. In addition to visual grounding that detects specific objects corresponded to given instruction, aerial detection, which detects all objects of multiple categories, is also a valuable and challenging task for RS foundation models. However, aerial detection has not been explored by existing RS MLMs because the autoregressive prediction mechanism of MLMs differs significantly from the detection outputs. In this paper, we present a simple baseline for applying MLMs to aerial detection for the first time, named LMMRotate. Specifically, we first introduce a normalization method to transform detection outputs into textual outputs to be compatible with the MLM framework. Then, we propose a evaluation method, which ensures a fair comparison between MLMs and conventional object detection models. We construct the baseline by fine-tuning open-source general-purpose MLMs and achieve impressive detection performance comparable to conventional detector. We hope that this baseline will serve as a reference for future MLM development, enabling more comprehensive capabilities for understanding RS images. Code is available at https://github.com/Li-Qingyun/mllm-mmrotate.
comment: 4 pages, 1 table, 4 figures
☆ FLOL: Fast Baselines for Real-World Low-Light Enhancement
Low-Light Image Enhancement (LLIE) is a key task in computational photography and imaging. The problem of enhancing images captured during night or in dark environments has been well-studied in the image signal processing literature. However, current deep learning-based solutions struggle with efficiency and robustness in real-world scenarios (e.g. scenes with noise, saturated pixels, bad illumination). We propose a lightweight neural network that combines image processing in the frequency and spatial domains. Our method, FLOL+, is one of the fastest models for this task, achieving state-of-the-art results on popular real scenes datasets such as LOL and LSRW. Moreover, we are able to process 1080p images under 12ms. Code and models at https://github.com/cidautai/FLOL
comment: Technical Report
☆ Practical Continual Forgetting for Pre-trained Vision Models
For privacy and security concerns, the need to erase unwanted information from pre-trained vision models is becoming evident nowadays. In real-world scenarios, erasure requests originate at any time from both users and model owners, and these requests usually form a sequence. Therefore, under such a setting, selective information is expected to be continuously removed from a pre-trained model while maintaining the rest. We define this problem as continual forgetting and identify three key challenges. (i) For unwanted knowledge, efficient and effective deleting is crucial. (ii) For remaining knowledge, the impact brought by the forgetting procedure should be minimal. (iii) In real-world scenarios, the training samples may be scarce or partially missing during the process of forgetting. To address them, we first propose Group Sparse LoRA (GS-LoRA). Specifically, towards (i), we introduce LoRA modules to fine-tune the FFN layers in Transformer blocks for each forgetting task independently, and towards (ii), a simple group sparse regularization is adopted, enabling automatic selection of specific LoRA groups and zeroing out the others. To further extend GS-LoRA to more practical scenarios, we incorporate prototype information as additional supervision and introduce a more practical approach, GS-LoRA++. For each forgotten class, we move the logits away from its original prototype. For the remaining classes, we pull the logits closer to their respective prototypes. We conduct extensive experiments on face recognition, object detection and image classification and demonstrate that our method manages to forget specific classes with minimal impact on other classes. Codes have been released on https://github.com/bjzhb666/GS-LoRA.
☆ Mitigating Hallucinations in Large Vision-Language Models via DPO: On-Policy Data Hold the Key
Hallucination remains a major challenge for Large Vision-Language Models (LVLMs). Direct Preference Optimization (DPO) has gained increasing attention as a simple solution to hallucination issues. It directly learns from constructed preference pairs that reflect the severity of hallucinations in responses to the same prompt and image. Nonetheless, different data construction methods in existing works bring notable performance variations. We identify a crucial factor here: outcomes are largely contingent on whether the constructed data aligns on-policy w.r.t the initial (reference) policy of DPO. Theoretical analysis suggests that learning from off-policy data is impeded by the presence of KL-divergence between the updated policy and the reference policy. From the perspective of dataset distribution, we systematically summarize the inherent flaws in existing algorithms that employ DPO to address hallucination issues. To alleviate the problems, we propose On-Policy Alignment (OPA)-DPO framework, which uniquely leverages expert feedback to correct hallucinated responses and aligns both the original and expert-revised responses in an on-policy manner. Notably, with only 4.8k data, OPA-DPO achieves an additional reduction in the hallucination rate of LLaVA-1.5-7B: 13.26% on the AMBER benchmark and 5.39% on the Object-Hal benchmark, compared to the previous SOTA algorithm trained with 16k samples.
comment: 18 pages, 15 figures
☆ Fine-Grained Image-Text Correspondence with Cost Aggregation for Open-Vocabulary Part Segmentation
Open-Vocabulary Part Segmentation (OVPS) is an emerging field for recognizing fine-grained parts in unseen categories. We identify two primary challenges in OVPS: (1) the difficulty in aligning part-level image-text correspondence, and (2) the lack of structural understanding in segmenting object parts. To address these issues, we propose PartCATSeg, a novel framework that integrates object-aware part-level cost aggregation, compositional loss, and structural guidance from DINO. Our approach employs a disentangled cost aggregation strategy that handles object and part-level costs separately, enhancing the precision of part-level segmentation. We also introduce a compositional loss to better capture part-object relationships, compensating for the limited part annotations. Additionally, structural guidance from DINO features improves boundary delineation and inter-part understanding. Extensive experiments on Pascal-Part-116, ADE20K-Part-234, and PartImageNet datasets demonstrate that our method significantly outperforms state-of-the-art approaches, setting a new baseline for robust generalization to unseen part categories.
☆ Robin: a Suite of Multi-Scale Vision-Language Models and the CHIRP Evaluation Benchmark
The proliferation of Vision-Language Models (VLMs) in the past several years calls for rigorous and comprehensive evaluation methods and benchmarks. This work analyzes existing VLM evaluation techniques, including automated metrics, AI-based assessments, and human evaluations across diverse tasks. We first introduce Robin - a novel suite of VLMs that we built by combining Large Language Models (LLMs) and Vision Encoders (VEs) at multiple scales, and use Robin to identify shortcomings of current evaluation approaches across scales. Next, to overcome the identified limitations, we introduce CHIRP - a new long form response benchmark we developed for more robust and complete VLM evaluation. We provide open access to the Robin training code, model suite, and CHIRP benchmark to promote reproducibility and advance VLM research.
☆ Unified Face Matching and Physical-Digital Spoofing Attack Detection
Face recognition technology has dramatically transformed the landscape of security, surveillance, and authentication systems, offering a user-friendly and non-invasive biometric solution. However, despite its significant advantages, face recognition systems face increasing threats from physical and digital spoofing attacks. Current research typically treats face recognition and attack detection as distinct classification challenges. This approach necessitates the implementation of separate models for each task, leading to considerable computational complexity, particularly on devices with limited resources. Such inefficiencies can stifle scalability and hinder performance. In response to these challenges, this paper introduces an innovative unified model designed for face recognition and detection of physical and digital attacks. By leveraging the advanced Swin Transformer backbone and incorporating HiLo attention in a convolutional neural network framework, we address unified face recognition and spoof attack detection more effectively. Moreover, we introduce augmentation techniques that replicate the traits of physical and digital spoofing cues, significantly enhancing our model robustness. Through comprehensive experimental evaluation across various datasets, we showcase the effectiveness of our model in unified face recognition and spoof detection. Additionally, we confirm its resilience against unseen physical and digital spoofing attacks, underscoring its potential for real-world applications.
☆ WMamba: Wavelet-based Mamba for Face Forgery Detection
With the rapid advancement of deepfake generation technologies, the demand for robust and accurate face forgery detection algorithms has become increasingly critical. Recent studies have demonstrated that wavelet analysis can uncover subtle forgery artifacts that remain imperceptible in the spatial domain. Wavelets effectively capture important facial contours, which are often slender, fine-grained, and global in nature. However, existing wavelet-based approaches fail to fully leverage these unique characteristics, resulting in sub-optimal feature extraction and limited generalizability. To address this challenge, we introduce WMamba, a novel wavelet-based feature extractor built upon the Mamba architecture. WMamba maximizes the utility of wavelet information through two key innovations. First, we propose Dynamic Contour Convolution (DCConv), which employs specially crafted deformable kernels to adaptively model slender facial contours. Second, by leveraging the Mamba architecture, our method captures long-range spatial relationships with linear computational complexity. This efficiency allows for the extraction of fine-grained, global forgery artifacts from small image patches. Extensive experimental results show that WMamba achieves state-of-the-art (SOTA) performance, highlighting its effectiveness and superiority in face forgery detection.
☆ Metric Learning with Progressive Self-Distillation for Audio-Visual Embedding Learning ICASSP 2025
Metric learning projects samples into an embedded space, where similarities and dissimilarities are quantified based on their learned representations. However, existing methods often rely on label-guided representation learning, where representations of different modalities, such as audio and visual data, are aligned based on annotated labels. This approach tends to underutilize latent complex features and potential relationships inherent in the distributions of audio and visual data that are not directly tied to the labels, resulting in suboptimal performance in audio-visual embedding learning. To address this issue, we propose a novel architecture that integrates cross-modal triplet loss with progressive self-distillation. Our method enhances representation learning by leveraging inherent distributions and dynamically refining soft audio-visual alignments -- probabilistic alignments between audio and visual data that capture the inherent relationships beyond explicit labels. Specifically, the model distills audio-visual distribution-based knowledge from annotated labels in a subset of each batch. This self-distilled knowledge is used t
comment: 5 pages, 3 figures, 2 tables. Accepted by ICASSP 2025
☆ Mesh2SLAM in VR: A Fast Geometry-Based SLAM Framework for Rapid Prototyping in Virtual Reality Applications
SLAM is a foundational technique with broad applications in robotics and AR/VR. SLAM simulations evaluate new concepts, but testing on resource-constrained devices, such as VR HMDs, faces challenges: high computational cost and restricted sensor data access. This work proposes a sparse framework using mesh geometry projections as features, which improves efficiency and circumvents direct sensor data access, advancing SLAM research as we demonstrate in VR and through numerical evaluation.
☆ Sequential PatchCore: Anomaly Detection for Surface Inspection using Synthetic Impurities
The appearance of surface impurities (e.g., water stains, fingerprints, stickers) is an often-mentioned issue that causes degradation of automated visual inspection systems. At the same time, synthetic data generation techniques for visual surface inspection have focused primarily on generating perfect examples and defects, disregarding impurities. This study highlights the importance of considering impurities when generating synthetic data. We introduce a procedural method to include photorealistic water stains in synthetic data. The synthetic datasets are generated to correspond to real datasets and are further used to train an anomaly detection model and investigate the influence of water stains. The high-resolution images used for surface inspection lead to memory bottlenecks during anomaly detection training. To address this, we introduce Sequential PatchCore - a method to build coresets sequentially and make training on large images using consumer-grade hardware tractable. This allows us to perform transfer learning using coresets pre-trained on different dataset versions. Our results show the benefits of using synthetic data for pre-training an explicit coreset anomaly model and the extended performance benefits of finetuning the coreset using real data. We observed how the impurities and labelling ambiguity lower the model performance and have additionally reported the defect-wise recall to provide an industrially relevant perspective on model performance.
☆ A New Teacher-Reviewer-Student Framework for Semi-supervised 2D Human Pose Estimation
Conventional 2D human pose estimation methods typically require extensive labeled annotations, which are both labor-intensive and expensive. In contrast, semi-supervised 2D human pose estimation can alleviate the above problems by leveraging a large amount of unlabeled data along with a small portion of labeled data. Existing semi-supervised 2D human pose estimation methods update the network through backpropagation, ignoring crucial historical information from the previous training process. Therefore, we propose a novel semi-supervised 2D human pose estimation method by utilizing a newly designed Teacher-Reviewer-Student framework. Specifically, we first mimic the phenomenon that human beings constantly review previous knowledge for consolidation to design our framework, in which the teacher predicts results to guide the student's learning and the reviewer stores important historical parameters to provide additional supervision signals. Secondly, we introduce a Multi-level Feature Learning strategy, which utilizes the outputs from different stages of the backbone to estimate the heatmap to guide network training, enriching the supervisory information while effectively capturing keypoint relationships. Finally, we design a data augmentation strategy, i.e., Keypoint-Mix, to perturb pose information by mixing different keypoints, thus enhancing the network's ability to discern keypoints. Extensive experiments on publicly available datasets, demonstrate our method achieves significant improvements compared to the existing methods.
☆ Text-driven Adaptation of Foundation Models for Few-shot Surgical Workflow Analysis
Purpose: Surgical workflow analysis is crucial for improving surgical efficiency and safety. However, previous studies rely heavily on large-scale annotated datasets, posing challenges in cost, scalability, and reliance on expert annotations. To address this, we propose Surg-FTDA (Few-shot Text-driven Adaptation), designed to handle various surgical workflow analysis tasks with minimal paired image-label data. Methods: Our approach has two key components. First, Few-shot selection-based modality alignment selects a small subset of images and aligns their embeddings with text embeddings from the downstream task, bridging the modality gap. Second, Text-driven adaptation leverages only text data to train a decoder, eliminating the need for paired image-text data. This decoder is then applied to aligned image embeddings, enabling image-related tasks without explicit image-text pairs. Results: We evaluate our approach to generative tasks (image captioning) and discriminative tasks (triplet recognition and phase recognition). Results show that Surg-FTDA outperforms baselines and generalizes well across downstream tasks. Conclusion: We propose a text-driven adaptation approach that mitigates the modality gap and handles multiple downstream tasks in surgical workflow analysis, with minimal reliance on large annotated datasets. The code and dataset will be released in https://github.com/TingxuanSix/Surg-FTDA.
☆ Exploring AI-based System Design for Pixel-level Protected Health Information Detection in Medical Images
De-identification of medical images is a critical step to ensure privacy during data sharing in research and clinical settings. The initial step in this process involves detecting Protected Health Information (PHI), which can be found in image metadata or imprinted within image pixels. Despite the importance of such systems, there has been limited evaluation of existing AI-based solutions, creating barriers to the development of reliable and robust tools. In this study, we present an AI-based pipeline for PHI detection, comprising three key components: text detection, text extraction, and analysis of PHI content in medical images. By experimenting with exchanging roles of vision and language models within the pipeline, we evaluate the performance and recommend the best setup for the PHI detection task.
comment: In progress
☆ AdaFV: Accelerating VLMs with Self-Adaptive Cross-Modality Attention Mixture
The success of VLMs often relies on the dynamic high-resolution schema that adaptively augments the input images to multiple crops, so that the details of the images can be retained. However, such approaches result in a large number of redundant visual tokens, thus significantly reducing the efficiency of the VLMs. To improve the VLMs' efficiency without introducing extra training costs, many research works are proposed to reduce the visual tokens by filtering the uninformative visual tokens or aggregating their information. Some approaches propose to reduce the visual tokens according to the self-attention of VLMs, which are biased, to result in inaccurate responses. The token reduction approaches solely rely on visual cues are text-agnostic, and fail to focus on the areas that are most relevant to the question, especially when the queried objects are non-salient to the image. In this work, we first conduct experiments to show that the original text embeddings are aligned with the visual tokens, without bias on the tailed visual tokens. We then propose a self-adaptive cross-modality attention mixture mechanism that dynamically leverages the effectiveness of visual saliency and text-to-image similarity in the pre-LLM layers to select the visual tokens that are informative. Extensive experiments demonstrate that the proposed approach achieves state-of-the-art training-free VLM acceleration performance, especially when the reduction rate is sufficiently large.
comment: 12 pages, 6 figures
☆ HydraMix: Multi-Image Feature Mixing for Small Data Image Classification
Training deep neural networks requires datasets with a large number of annotated examples. The collection and annotation of these datasets is not only extremely expensive but also faces legal and privacy problems. These factors are a significant limitation for many real-world applications. To address this, we introduce HydraMix, a novel architecture that generates new image compositions by mixing multiple different images from the same class. HydraMix learns the fusion of the content of various images guided by a segmentation-based mixing mask in feature space and is optimized via a combination of unsupervised and adversarial training. Our data augmentation scheme allows the creation of models trained from scratch on very small datasets. We conduct extensive experiments on ciFAIR-10, STL-10, and ciFAIR-100. Additionally, we introduce a novel text-image metric to assess the generality of the augmented datasets. Our results show that HydraMix outperforms existing state-of-the-art methods for image classification on small datasets.
☆ AnyStory: Towards Unified Single and Multiple Subject Personalization in Text-to-Image Generation
Recently, large-scale generative models have demonstrated outstanding text-to-image generation capabilities. However, generating high-fidelity personalized images with specific subjects still presents challenges, especially in cases involving multiple subjects. In this paper, we propose AnyStory, a unified approach for personalized subject generation. AnyStory not only achieves high-fidelity personalization for single subjects, but also for multiple subjects, without sacrificing subject fidelity. Specifically, AnyStory models the subject personalization problem in an "encode-then-route" manner. In the encoding step, AnyStory utilizes a universal and powerful image encoder, i.e., ReferenceNet, in conjunction with CLIP vision encoder to achieve high-fidelity encoding of subject features. In the routing step, AnyStory utilizes a decoupled instance-aware subject router to accurately perceive and predict the potential location of the corresponding subject in the latent space, and guide the injection of subject conditions. Detailed experimental results demonstrate the excellent performance of our method in retaining subject details, aligning text descriptions, and personalizing for multiple subjects. The project page is at https://aigcdesigngroup.github.io/AnyStory/ .
comment: Tech report; Project page: https://aigcdesigngroup.github.io/AnyStory/
☆ Omni-Emotion: Extending Video MLLM with Detailed Face and Audio Modeling for Multimodal Emotion Analysis
Understanding emotions accurately is essential for fields like human-computer interaction. Due to the complexity of emotions and their multi-modal nature (e.g., emotions are influenced by facial expressions and audio), researchers have turned to using multi-modal models to understand human emotions rather than single-modality. However, current video multi-modal large language models (MLLMs) encounter difficulties in effectively integrating audio and identifying subtle facial micro-expressions. Furthermore, the lack of detailed emotion analysis datasets also limits the development of multimodal emotion analysis. To address these issues, we introduce a self-reviewed dataset and a human-reviewed dataset, comprising 24,137 coarse-grained samples and 3,500 manually annotated samples with detailed emotion annotations, respectively. These datasets allow models to learn from diverse scenarios and better generalize to real-world applications. Moreover, in addition to the audio modeling, we propose to explicitly integrate facial encoding models into the existing advanced Video MLLM, enabling the MLLM to effectively unify audio and the subtle facial cues for emotion understanding. By aligning these features within a unified space and employing instruction tuning in our proposed datasets, our Omni-Emotion achieves state-of-the-art performance in both emotion recognition and reasoning tasks.
☆ VanGogh: A Unified Multimodal Diffusion-based Framework for Video Colorization
Video colorization aims to transform grayscale videos into vivid color representations while maintaining temporal consistency and structural integrity. Existing video colorization methods often suffer from color bleeding and lack comprehensive control, particularly under complex motion or diverse semantic cues. To this end, we introduce VanGogh, a unified multimodal diffusion-based framework for video colorization. VanGogh tackles these challenges using a Dual Qformer to align and fuse features from multiple modalities, complemented by a depth-guided generation process and an optical flow loss, which help reduce color overflow. Additionally, a color injection strategy and luma channel replacement are implemented to improve generalization and mitigate flickering artifacts. Thanks to this design, users can exercise both global and local control over the generation process, resulting in higher-quality colorized videos. Extensive qualitative and quantitative evaluations, and user studies, demonstrate that VanGogh achieves superior temporal consistency and color fidelity.Project page: https://becauseimbatman0.github.io/VanGogh.
☆ Comparison of Various SLAM Systems for Mobile Robot in an Indoor Environment
This article presents a comparative analysis of a mobile robot trajectories computed by various ROS-based SLAM systems. For this reason we developed a prototype of a mobile robot with common sensors: 2D lidar, a monocular and ZED stereo cameras. Then we conducted experiments in a typical office environment and collected data from all sensors, running all tested SLAM systems based on the acquired dataset. We studied the following SLAM systems: (a) 2D lidar-based: GMapping, Hector SLAM, Cartographer; (b) monocular camera-based: Large Scale Direct monocular SLAM (LSD SLAM), ORB SLAM, Direct Sparse Odometry (DSO); and (c) stereo camera-based: ZEDfu, Real-Time Appearance-Based Mapping (RTAB map), ORB SLAM, Stereo Parallel Tracking and Mapping (S-PTAM). Since all SLAM methods were tested on the same dataset we compared results for different SLAM systems with appropriate metrics, demonstrating encouraging results for lidar-based Cartographer SLAM, Monocular ORB SLAM and Stereo RTAB Map methods.
comment: 6 pages, 6 figures
☆ The Devil is in the Details: Simple Remedies for Image-to-LiDAR Representation Learning ACCV2024
LiDAR is a crucial sensor in autonomous driving, commonly used alongside cameras. By exploiting this camera-LiDAR setup and recent advances in image representation learning, prior studies have shown the promising potential of image-to-LiDAR distillation. These prior arts focus on the designs of their own losses to effectively distill the pre-trained 2D image representations into a 3D model. However, the other parts of the designs have been surprisingly unexplored. We find that fundamental design elements, e.g., the LiDAR coordinate system, quantization according to the existing input interface, and data utilization, are more critical than developing loss functions, which have been overlooked in prior works. In this work, we show that simple fixes to these designs notably outperform existing methods by 16% in 3D semantic segmentation on the nuScenes dataset and 13% in 3D object detection on the KITTI dataset in downstream task performance. We focus on overlooked design choices along the spatial and temporal axes. Spatially, prior work has used cylindrical coordinate and voxel sizes without considering their side effects yielded with a commonly deployed sparse convolution layer input interface, leading to spatial quantization errors in 3D models. Temporally, existing work has avoided cumbersome data curation by discarding unsynced data, limiting the use to only the small portion of data that is temporally synced across sensors. We analyze these effects and propose simple solutions for each overlooked aspect.
comment: Accepted to ACCV2024
☆ MonoSOWA: Scalable monocular 3D Object detector Without human Annotations
Detecting the three-dimensional position and orientation of objects using a single RGB camera is a foundational task in computer vision with many important applications. Traditionally, 3D object detection methods are trained in a fully-supervised setup, requiring vast amounts of human annotations, which are laborious, costly, and do not scale well with the ever-increasing amounts of data being captured. In this paper, we present the first method to train 3D object detectors for monocular RGB cameras without domain-specific human annotations, thus making orders of magnitude more data available for training. Thanks to newly proposed Canonical Object Space, the method can not only exploit data across a variety of datasets and camera setups to train a single 3D detector, but unlike previous work it also works out of the box in previously unseen camera setups. All this is crucial for practical applications, where the data and cameras are extremely heterogeneous. The method is evaluated on two standard autonomous driving datasets, where it outperforms previous works, which, unlike our method, still rely on 2D human annotations.
☆ DEFOM-Stereo: Depth Foundation Model Based Stereo Matching
Stereo matching is a key technique for metric depth estimation in computer vision and robotics. Real-world challenges like occlusion and non-texture hinder accurate disparity estimation from binocular matching cues. Recently, monocular relative depth estimation has shown remarkable generalization using vision foundation models. Thus, to facilitate robust stereo matching with monocular depth cues, we incorporate a robust monocular relative depth model into the recurrent stereo-matching framework, building a new framework for depth foundation model-based stereo-matching, DEFOM-Stereo. In the feature extraction stage, we construct the combined context and matching feature encoder by integrating features from conventional CNNs and DEFOM. In the update stage, we use the depth predicted by DEFOM to initialize the recurrent disparity and introduce a scale update module to refine the disparity at the correct scale. DEFOM-Stereo is verified to have comparable performance on the Scene Flow dataset with state-of-the-art (SOTA) methods and notably shows much stronger zero-shot generalization. Moreover, DEFOM-Stereo achieves SOTA performance on the KITTI 2012, KITTI 2015, Middlebury, and ETH3D benchmarks, ranking 1st on many metrics. In the joint evaluation under the robust vision challenge, our model simultaneously outperforms previous models on the individual benchmarks. Both results demonstrate the outstanding capabilities of the proposed model.
comment: Code: https://github.com/Insta360-Research-Team/DEFOM-Stereo
☆ RE-POSE: Synergizing Reinforcement Learning-Based Partitioning and Offloading for Edge Object Detection
Object detection plays a crucial role in smart video analysis, with applications ranging from autonomous driving and security to smart cities. However, achieving real-time object detection on edge devices presents significant challenges due to their limited computational resources and the high demands of deep neural network (DNN)-based detection models, particularly when processing high-resolution video. Conventional strategies, such as input down-sampling and network up-scaling, often compromise detection accuracy for faster performance or lead to higher inference latency. To address these issues, this paper introduces RE-POSE, a Reinforcement Learning (RL)-Driven Partitioning and Edge Offloading framework designed to optimize the accuracy-latency trade-off in resource-constrained edge environments. Our approach features an RL-Based Dynamic Clustering Algorithm (RL-DCA) that partitions video frames into non-uniform blocks based on object distribution and the computational characteristics of DNNs. Furthermore, a parallel edge offloading scheme is implemented to distribute these blocks across multiple edge servers for concurrent processing. Experimental evaluations show that RE-POSE significantly enhances detection accuracy and reduces inference latency, surpassing existing methods.
☆ Normal-NeRF: Ambiguity-Robust Normal Estimation for Highly Reflective Scenes AAAI 2025
Neural Radiance Fields (NeRF) often struggle with reconstructing and rendering highly reflective scenes. Recent advancements have developed various reflection-aware appearance models to enhance NeRF's capability to render specular reflections. However, the robust reconstruction of highly reflective scenes is still hindered by the inherent shape ambiguity on specular surfaces. Existing methods typically rely on additional geometry priors to regularize the shape prediction, but this can lead to oversmoothed geometry in complex scenes. Observing the critical role of surface normals in parameterizing reflections, we introduce a transmittance-gradient-based normal estimation technique that remains robust even under ambiguous shape conditions. Furthermore, we propose a dual activated densities module that effectively bridges the gap between smooth surface normals and sharp object boundaries. Combined with a reflection-aware appearance model, our proposed method achieves robust reconstruction and high-fidelity rendering of scenes featuring both highly specular reflections and intricate geometric structures. Extensive experiments demonstrate that our method outperforms existing state-of-the-art methods on various datasets.
comment: AAAI 2025, code available at https://github.com/sjj118/Normal-NeRF
☆ On the Relation between Optical Aperture and Automotive Object Detection
We explore the impact of aperture size and shape on automotive camera systems for deep-learning-based tasks like traffic sign recognition and light state detection. A method is proposed to simulate optical effects using the point spread function (PSF), enhancing realism and reducing the domain gap between synthetic and real-world images. Computer-generated scenes are refined with this technique to model optical distortions and improve simulation accuracy.
☆ Double Visual Defense: Adversarial Pre-training and Instruction Tuning for Improving Vision-Language Model Robustness
This paper investigates the robustness of vision-language models against adversarial visual perturbations and introduces a novel ``double visual defense" to enhance this robustness. Unlike previous approaches that resort to lightweight adversarial fine-tuning of a pre-trained CLIP model, we perform large-scale adversarial vision-language pre-training from scratch using web-scale data. We then strengthen the defense by incorporating adversarial visual instruction tuning. The resulting models from each stage, $\Delta$CLIP and $\Delta^2$LLaVA, show substantially enhanced zero-shot robustness and set a new state-of-the-art in adversarial defense for vision-language models. For example, the adversarial robustness of $\Delta$CLIP surpasses that of the previous best models on ImageNet-1k by ~20%. %For example, $\Delta$CLIP surpasses the previous best models on ImageNet-1k by ~20% in terms of adversarial robustness. Similarly, compared to prior art, $\Delta^2$LLaVA brings a ~30% robustness improvement to image captioning task and a ~20% robustness improvement to visual question answering task. Furthermore, our models exhibit stronger zero-shot recognition capability, fewer hallucinations, and superior reasoning performance compared to baselines. Our project page is https://doublevisualdefense.github.io/.
☆ Scaling up self-supervised learning for improved surgical foundation models
Foundation models have revolutionized computer vision by achieving vastly superior performance across diverse tasks through large-scale pretraining on extensive datasets. However, their application in surgical computer vision has been limited. This study addresses this gap by introducing SurgeNetXL, a novel surgical foundation model that sets a new benchmark in surgical computer vision. Trained on the largest reported surgical dataset to date, comprising over 4.7 million video frames, SurgeNetXL achieves consistent top-tier performance across six datasets spanning four surgical procedures and three tasks, including semantic segmentation, phase recognition, and critical view of safety (CVS) classification. Compared with the best-performing surgical foundation models, SurgeNetXL shows mean improvements of 2.4, 9.0, and 12.6 percent for semantic segmentation, phase recognition, and CVS classification, respectively. Additionally, SurgeNetXL outperforms the best-performing ImageNet-based variants by 14.4, 4.0, and 1.6 percent in the respective tasks. In addition to advancing model performance, this study provides key insights into scaling pretraining datasets, extending training durations, and optimizing model architectures specifically for surgical computer vision. These findings pave the way for improved generalizability and robustness in data-scarce scenarios, offering a comprehensive framework for future research in this domain. All models and a subset of the SurgeNetXL dataset, including over 2 million video frames, are publicly available at: https://github.com/TimJaspers0801/SurgeNet.
☆ CaPa: Carve-n-Paint Synthesis for Efficient 4K Textured Mesh Generation
The synthesis of high-quality 3D assets from textual or visual inputs has become a central objective in modern generative modeling. Despite the proliferation of 3D generation algorithms, they frequently grapple with challenges such as multi-view inconsistency, slow generation times, low fidelity, and surface reconstruction problems. While some studies have addressed some of these issues, a comprehensive solution remains elusive. In this paper, we introduce \textbf{CaPa}, a carve-and-paint framework that generates high-fidelity 3D assets efficiently. CaPa employs a two-stage process, decoupling geometry generation from texture synthesis. Initially, a 3D latent diffusion model generates geometry guided by multi-view inputs, ensuring structural consistency across perspectives. Subsequently, leveraging a novel, model-agnostic Spatially Decoupled Attention, the framework synthesizes high-resolution textures (up to 4K) for a given geometry. Furthermore, we propose a 3D-aware occlusion inpainting algorithm that fills untextured regions, resulting in cohesive results across the entire model. This pipeline generates high-quality 3D assets in less than 30 seconds, providing ready-to-use outputs for commercial applications. Experimental results demonstrate that CaPa excels in both texture fidelity and geometric stability, establishing a new standard for practical, scalable 3D asset generation.
comment: project page: https://ncsoft.github.io/CaPa/
☆ AugRefer: Advancing 3D Visual Grounding via Cross-Modal Augmentation and Spatial Relation-based Referring AAAI 2025
3D visual grounding (3DVG), which aims to correlate a natural language description with the target object within a 3D scene, is a significant yet challenging task. Despite recent advancements in this domain, existing approaches commonly encounter a shortage: a limited amount and diversity of text3D pairs available for training. Moreover, they fall short in effectively leveraging different contextual clues (e.g., rich spatial relations within the 3D visual space) for grounding. To address these limitations, we propose AugRefer, a novel approach for advancing 3D visual grounding. AugRefer introduces cross-modal augmentation designed to extensively generate diverse text-3D pairs by placing objects into 3D scenes and creating accurate and semantically rich descriptions using foundation models. Notably, the resulting pairs can be utilized by any existing 3DVG methods for enriching their training data. Additionally, AugRefer presents a language-spatial adaptive decoder that effectively adapts the potential referring objects based on the language description and various 3D spatial relations. Extensive experiments on three benchmark datasets clearly validate the effectiveness of AugRefer.
comment: AAAI 2025
☆ Vision-Language Models Do Not Understand Negation
Many practical vision-language applications require models that understand negation, e.g., when using natural language to retrieve images which contain certain objects but not others. Despite advancements in vision-language models (VLMs) through large-scale training, their ability to comprehend negation remains underexplored. This study addresses the question: how well do current VLMs understand negation? We introduce NegBench, a new benchmark designed to evaluate negation understanding across 18 task variations and 79k examples spanning image, video, and medical datasets. The benchmark consists of two core tasks designed to evaluate negation understanding in diverse multimodal settings: Retrieval with Negation and Multiple Choice Questions with Negated Captions. Our evaluation reveals that modern VLMs struggle significantly with negation, often performing at chance level. To address these shortcomings, we explore a data-centric approach wherein we finetune CLIP models on large-scale synthetic datasets containing millions of negated captions. We show that this approach can result in a 10% increase in recall on negated queries and a 40% boost in accuracy on multiple-choice questions with negated captions.
comment: Project page: https://negbench.github.io
☆ Dynamic Neural Style Transfer for Artistic Image Generation using VGG19
Throughout history, humans have created remarkable works of art, but artificial intelligence has only recently started to make strides in generating visually compelling art. Breakthroughs in the past few years have focused on using convolutional neural networks (CNNs) to separate and manipulate the content and style of images, applying texture synthesis techniques. Nevertheless, a number of current techniques continue to encounter obstacles, including lengthy processing times, restricted choices of style images, and the inability to modify the weight ratio of styles. We proposed a neural style transfer system that can add various artistic styles to a desired image to address these constraints allowing flexible adjustments to style weight ratios and reducing processing time. The system uses the VGG19 model for feature extraction, ensuring high-quality, flexible stylization without compromising content integrity.
☆ Towards Robust and Realistic Human Pose Estimation via WiFi Signals
Robust WiFi-based human pose estimation is a challenging task that bridges discrete and subtle WiFi signals to human skeletons. This paper revisits this problem and reveals two critical yet overlooked issues: 1) cross-domain gap, i.e., due to significant variations between source-target domain pose distributions; and 2) structural fidelity gap, i.e., predicted skeletal poses manifest distorted topology, usually with misplaced joints and disproportionate bone lengths. This paper fills these gaps by reformulating the task into a novel two-phase framework dubbed DT-Pose: Domain-consistent representation learning and Topology-constrained Pose decoding. Concretely, we first propose a temporal-consistent contrastive learning strategy with uniformity regularization, coupled with self-supervised masking-reconstruction operations, to enable robust learning of domain-consistent and motion-discriminative WiFi-specific representations. Beyond this, we introduce a simple yet effective pose decoder with task prompts, which integrates Graph Convolution Network (GCN) and Transformer layers to constrain the topology structure of the generated skeleton by exploring the adjacent-overarching relationships among human joints. Extensive experiments conducted on various benchmark datasets highlight the superior performance of our method in tackling these fundamental challenges in both 2D/3D human pose estimation tasks.
comment: 15 pages, 9 figures
☆ PISCO: Self-Supervised k-Space Regularization for Improved Neural Implicit k-Space Representations of Dynamic MRI
Neural implicit k-space representations (NIK) have shown promising results for dynamic magnetic resonance imaging (MRI) at high temporal resolutions. Yet, reducing acquisition time, and thereby available training data, results in severe performance drops due to overfitting. To address this, we introduce a novel self-supervised k-space loss function $\mathcal{L}_\mathrm{PISCO}$, applicable for regularization of NIK-based reconstructions. The proposed loss function is based on the concept of parallel imaging-inspired self-consistency (PISCO), enforcing a consistent global k-space neighborhood relationship without requiring additional data. Quantitative and qualitative evaluations on static and dynamic MR reconstructions show that integrating PISCO significantly improves NIK representations. Particularly for high acceleration factors (R$\geq$54), NIK with PISCO achieves superior spatio-temporal reconstruction quality compared to state-of-the-art methods. Furthermore, an extensive analysis of the loss assumptions and stability shows PISCO's potential as versatile self-supervised k-space loss function for further applications and architectures. Code is available at: https://github.com/compai-lab/2025-pisco-spieker
☆ Joint Transmission and Deblurring: A Semantic Communication Approach Using Events
Deep learning-based joint source-channel coding (JSCC) is emerging as a promising technology for effective image transmission. However, most existing approaches focus on transmitting clear images, overlooking real-world challenges such as motion blur caused by camera shaking or fast-moving objects. Motion blur often degrades image quality, making transmission and reconstruction more challenging. Event cameras, which asynchronously record pixel intensity changes with extremely low latency, have shown great potential for motion deblurring tasks. However, the efficient transmission of the abundant data generated by event cameras remains a significant challenge. In this work, we propose a novel JSCC framework for the joint transmission of blurry images and events, aimed at achieving high-quality reconstructions under limited channel bandwidth. This approach is designed as a deblurring task-oriented JSCC system. Since RGB cameras and event cameras capture the same scene through different modalities, their outputs contain both shared and domain-specific information. To avoid repeatedly transmitting the shared information, we extract and transmit their shared information and domain-specific information, respectively. At the receiver, the received signals are processed by a deblurring decoder to generate clear images. Additionally, we introduce a multi-stage training strategy to train the proposed model. Simulation results demonstrate that our method significantly outperforms existing JSCC-based image transmission schemes, addressing motion blur effectively.
☆ SVIA: A Street View Image Anonymization Framework for Self-Driving Applications SC 2024
In recent years, there has been an increasing interest in image anonymization, particularly focusing on the de-identification of faces and individuals. However, for self-driving applications, merely de-identifying faces and individuals might not provide sufficient privacy protection since street views like vehicles and buildings can still disclose locations, trajectories, and other sensitive information. Therefore, it remains crucial to extend anonymization techniques to street view images to fully preserve the privacy of users, pedestrians, and vehicles. In this paper, we propose a Street View Image Anonymization (SVIA) framework for self-driving applications. The SVIA framework consists of three integral components: a semantic segmenter to segment an input image into functional regions, an inpainter to generate alternatives to privacy-sensitive regions, and a harmonizer to seamlessly stitch modified regions to guarantee visual coherence. Compared to existing methods, SVIA achieves a much better trade-off between image generation quality and privacy protection, as evidenced by experimental results for five common metrics on two widely used public datasets.
comment: 8 pages, 6 figures, 3 tables. Accepted by IEEE ITSC 2024
☆ Image Segmentation with transformers: An Overview, Challenges and Future
Image segmentation, a key task in computer vision, has traditionally relied on convolutional neural networks (CNNs), yet these models struggle with capturing complex spatial dependencies, objects with varying scales, need for manually crafted architecture components and contextual information. This paper explores the shortcomings of CNN-based models and the shift towards transformer architectures -to overcome those limitations. This work reviews state-of-the-art transformer-based segmentation models, addressing segmentation-specific challenges and their solutions. The paper discusses current challenges in transformer-based segmentation and outlines promising future trends, such as lightweight architectures and enhanced data efficiency. This survey serves as a guide for understanding the impact of transformers in advancing segmentation capabilities and overcoming the limitations of traditional models.
☆ Identification of Traditional Medicinal Plant Leaves Using an effective Deep Learning model and Self-Curated Dataset
Medicinal plants have been a key component in producing traditional and modern medicines, especially in the field of Ayurveda, an ancient Indian medical system. Producing these medicines and collecting and extracting the right plant is a crucial step due to the visually similar nature of some plants. The extraction of these plants from nonmedicinal plants requires human expert intervention. To solve the issue of accurate plant identification and reduce the need for a human expert in the collection process; employing computer vision methods will be efficient and beneficial. In this paper, we have proposed a model that solves such issues. The proposed model is a custom convolutional neural network (CNN) architecture with 6 convolution layers, max-pooling layers, and dense layers. The model was tested on three different datasets named Indian Medicinal Leaves Image Dataset,MED117 Medicinal Plant Leaf Dataset, and the self-curated dataset by the authors. The proposed model achieved respective accuracies of 99.5%, 98.4%, and 99.7% using various optimizers including Adam, RMSprop, and SGD with momentum.
☆ Strategic Base Representation Learning via Feature Augmentations for Few-Shot Class Incremental Learning WACV 2025
Few-shot class incremental learning implies the model to learn new classes while retaining knowledge of previously learned classes with a small number of training instances. Existing frameworks typically freeze the parameters of the previously learned classes during the incorporation of new classes. However, this approach often results in suboptimal class separation of previously learned classes, leading to overlap between old and new classes. Consequently, the performance of old classes degrades on new classes. To address these challenges, we propose a novel feature augmentation driven contrastive learning framework designed to enhance the separation of previously learned classes to accommodate new classes. Our approach involves augmenting feature vectors and assigning proxy labels to these vectors. This strategy expands the feature space, ensuring seamless integration of new classes within the expanded space. Additionally, we employ a self-supervised contrastive loss to improve the separation between previous classes. We validate our framework through experiments on three FSCIL benchmark datasets: CIFAR100, miniImageNet, and CUB200. The results demonstrate that our Feature Augmentation driven Contrastive Learning framework significantly outperforms other approaches, achieving state-of-the-art performance.
comment: Accepted at WACV 2025
☆ YETI (YET to Intervene) Proactive Interventions by Multimodal AI Agents in Augmented Reality Tasks
Multimodal AI Agents are AI models that have the capability of interactively and cooperatively assisting human users to solve day-to-day tasks. Augmented Reality (AR) head worn devices can uniquely improve the user experience of solving procedural day-to-day tasks by providing egocentric multimodal (audio and video) observational capabilities to AI Agents. Such AR capabilities can help AI Agents see and listen to actions that users take which can relate to multimodal capabilities of human users. Existing AI Agents, either Large Language Models (LLMs) or Multimodal Vision-Language Models (VLMs) are reactive in nature, which means that models cannot take an action without reading or listening to the human user's prompts. Proactivity of AI Agents on the other hand can help the human user detect and correct any mistakes in agent observed tasks, encourage users when they do tasks correctly or simply engage in conversation with the user - akin to a human teaching or assisting a user. Our proposed YET to Intervene (YETI) multimodal agent focuses on the research question of identifying circumstances that may require the agent to intervene proactively. This allows the agent to understand when it can intervene in a conversation with human users that can help the user correct mistakes on tasks, like cooking, using AR. Our YETI Agent learns scene understanding signals based on interpretable notions of Structural Similarity (SSIM) on consecutive video frames. We also define the alignment signal which the AI Agent can learn to identify if the video frames corresponding to the user's actions on the task are consistent with expected actions. These signals are used by our AI Agent to determine when it should proactively intervene. We compare our results on the instances of proactive intervention in the HoloAssist multimodal benchmark for an expert agent guiding a user to complete procedural tasks.
comment: Preprint
☆ Making Your Dreams A Reality: Decoding the Dreams into a Coherent Video Story from fMRI Signals
This paper studies the brave new idea for Multimedia community, and proposes a novel framework to convert dreams into coherent video narratives using fMRI data. Essentially, dreams have intrigued humanity for centuries, offering glimpses into our subconscious minds. Recent advancements in brain imaging, particularly functional magnetic resonance imaging (fMRI), have provided new ways to explore the neural basis of dreaming. By combining subjective dream experiences with objective neurophysiological data, we aim to understand the visual aspects of dreams and create complete video narratives. Our process involves three main steps: reconstructing visual perception, decoding dream imagery, and integrating dream stories. Using innovative techniques in fMRI analysis and language modeling, we seek to push the boundaries of dream research and gain deeper insights into visual experiences during sleep. This technical report introduces a novel approach to visually decoding dreams using fMRI signals and weaving dream visuals into narratives using language models. We gather a dataset of dreams along with descriptions to assess the effectiveness of our framework.
comment: Work in progress
☆ UVRM: A Scalable 3D Reconstruction Model from Unposed Videos
Large Reconstruction Models (LRMs) have recently become a popular method for creating 3D foundational models. Training 3D reconstruction models with 2D visual data traditionally requires prior knowledge of camera poses for the training samples, a process that is both time-consuming and prone to errors. Consequently, 3D reconstruction training has been confined to either synthetic 3D datasets or small-scale datasets with annotated poses. In this study, we investigate the feasibility of 3D reconstruction using unposed video data of various objects. We introduce UVRM, a novel 3D reconstruction model capable of being trained and evaluated on monocular videos without requiring any information about the pose. UVRM uses a transformer network to implicitly aggregate video frames into a pose-invariant latent feature space, which is then decoded into a tri-plane 3D representation. To obviate the need for ground-truth pose annotations during training, UVRM employs a combination of the score distillation sampling (SDS) method and an analysis-by-synthesis approach, progressively synthesizing pseudo novel-views using a pre-trained diffusion model. We qualitatively and quantitatively evaluate UVRM's performance on the G-Objaverse and CO3D datasets without relying on pose information. Extensive experiments show that UVRM is capable of effectively and efficiently reconstructing a wide range of 3D objects from unposed videos.
☆ SE-BSFV: Online Subspace Learning based Shadow Enhancement and Background Suppression for ViSAR under Complex Background
Video synthetic aperture radar (ViSAR) has attracted substantial attention in the moving target detection (MTD) field due to its ability to continuously monitor changes in the target area. In ViSAR, the moving targets' shadows will not offset and defocus, which is widely used as a feature for MTD. However, the shadows are difficult to distinguish from the low scattering region in the background, which will cause more missing and false alarms. Therefore, it is worth investigating how to enhance the distinction between the shadows and background. In this study, we proposed the Shadow Enhancement and Background Suppression for ViSAR (SE-BSFV) algorithm. The SE-BSFV algorithm is based on the low-rank representation (LRR) theory and adopts online subspace learning technique to enhance shadows and suppress background for ViSAR images. Firstly, we use a registration algorithm to register the ViSAR images and utilize Gaussian mixture distribution (GMD) to model the ViSAR data. Secondly, the knowledge learned from the previous frames is leveraged to estimate the GMD parameters of the current frame, and the Expectation-maximization (EM) algorithm is used to estimate the subspace parameters. Then, the foreground matrix of the current frame can be obtained. Finally, the alternating direction method of multipliers (ADMM) is used to eliminate strong scattering objects in the foreground matrix to obtain the final results. The experimental results indicate that the SE-BSFV algorithm significantly enhances the shadows' saliency and greatly improves the detection performance while ensuring efficiency compared with several other advanced pre-processing algorithms.
Prompt-CAM: A Simpler Interpretable Transformer for Fine-Grained Analysis
We present a simple usage of pre-trained Vision Transformers (ViTs) for fine-grained analysis, aiming to identify and localize the traits that distinguish visually similar categories, such as different bird species or dog breeds. Pre-trained ViTs such as DINO have shown remarkable capabilities to extract localized, informative features. However, using saliency maps like Grad-CAM can hardly point out the traits: they often locate the whole object by a blurred, coarse heatmap, not traits. We propose a novel approach Prompt Class Attention Map (Prompt-CAM) to the rescue. Prompt-CAM learns class-specific prompts to a pre-trained ViT and uses the corresponding outputs for classification. To classify an image correctly, the true-class prompt must attend to the unique image patches not seen in other classes' images, i.e., traits. As such, the true class's multi-head attention maps reveal traits and their locations. Implementation-wise, Prompt-CAM is almost a free lunch by simply modifying the prediction head of Visual Prompt Tuning (VPT). This makes Prompt-CAM fairly easy to train and apply, sharply contrasting other interpretable methods that design specific models and training processes. It is even simpler than the recently published INterpretable TRansformer (INTR), whose encoder-decoder architecture prevents it from leveraging pre-trained ViTs. Extensive empirical studies on a dozen datasets from various domains (e.g., birds, fishes, insects, fungi, flowers, food, and cars) validate Prompt-CAM superior interpretation capability.
☆ Soft Knowledge Distillation with Multi-Dimensional Cross-Net Attention for Image Restoration Models Compression ICASSP2025
Transformer-based encoder-decoder models have achieved remarkable success in image-to-image transfer tasks, particularly in image restoration. However, their high computational complexity-manifested in elevated FLOPs and parameter counts-limits their application in real-world scenarios. Existing knowledge distillation methods in image restoration typically employ lightweight student models that directly mimic the intermediate features and reconstruction results of the teacher, overlooking the implicit attention relationships between them. To address this, we propose a Soft Knowledge Distillation (SKD) strategy that incorporates a Multi-dimensional Cross-net Attention (MCA) mechanism for compressing image restoration models. This mechanism facilitates interaction between the student and teacher across both channel and spatial dimensions, enabling the student to implicitly learn the attention matrices. Additionally, we employ a Gaussian kernel function to measure the distance between student and teacher features in kernel space, ensuring stable and efficient feature learning. To further enhance the quality of reconstructed images, we replace the commonly used L1 or KL divergence loss with a contrastive learning loss at the image level. Experiments on three tasks-image deraining, deblurring, and denoising-demonstrate that our SKD strategy significantly reduces computational complexity while maintaining strong image restoration capabilities.
comment: Accepted by ICASSP2025
☆ Shape-Based Single Object Classification Using Ensemble Method Classifiers
Nowadays, more and more images are available. Annotation and retrieval of the images pose classification problems, where each class is defined as the group of database images labelled with a common semantic label. Various systems have been proposed for content-based retrieval, as well as for image classification and indexing. In this paper, a hierarchical classification framework has been proposed for bridging the semantic gap effectively and achieving multi-category image classification. A well known pre-processing and post-processing method was used and applied to three problems; image segmentation, object identification and image classification. The method was applied to classify single object images from Amazon and Google datasets. The classification was tested for four different classifiers; BayesNetwork (BN), Random Forest (RF), Bagging and Vote. The estimated classification accuracies ranged from 20% to 99% (using 10-fold cross validation). The Bagging classifier presents the best performance, followed by the Random Forest classifier.
☆ Domain-conditioned and Temporal-guided Diffusion Modeling for Accelerated Dynamic MRI Reconstruction
Purpose: To propose a domain-conditioned and temporal-guided diffusion modeling method, termed dynamic Diffusion Modeling (dDiMo), for accelerated dynamic MRI reconstruction, enabling diffusion process to characterize spatiotemporal information for time-resolved multi-coil Cartesian and non-Cartesian data. Methods: The dDiMo framework integrates temporal information from time-resolved dimensions, allowing for the concurrent capture of intra-frame spatial features and inter-frame temporal dynamics in diffusion modeling. It employs additional spatiotemporal ($x$-$t$) and self-consistent frequency-temporal ($k$-$t$) priors to guide the diffusion process. This approach ensures precise temporal alignment and enhances the recovery of fine image details. To facilitate a smooth diffusion process, the nonlinear conjugate gradient algorithm is utilized during the reverse diffusion steps. The proposed model was tested on two types of MRI data: Cartesian-acquired multi-coil cardiac MRI and Golden-Angle-Radial-acquired multi-coil free-breathing lung MRI, across various undersampling rates. Results: dDiMo achieved high-quality reconstructions at various acceleration factors, demonstrating improved temporal alignment and structural recovery compared to other competitive reconstruction methods, both qualitatively and quantitatively. This proposed diffusion framework exhibited robust performance in handling both Cartesian and non-Cartesian acquisitions, effectively reconstructing dynamic datasets in cardiac and lung MRI under different imaging conditions. Conclusion: This study introduces a novel diffusion modeling method for dynamic MRI reconstruction.
comment: 21 pages, 15 figures, 2 tables
☆ Finding the Trigger: Causal Abductive Reasoning on Video Events
This paper introduces a new problem, Causal Abductive Reasoning on Video Events (CARVE), which involves identifying causal relationships between events in a video and generating hypotheses about causal chains that account for the occurrence of a target event. To facilitate research in this direction, we create two new benchmark datasets with both synthetic and realistic videos, accompanied by trigger-target labels generated through a novel counterfactual synthesis approach. To explore the challenge of solving CARVE, we present a Causal Event Relation Network (CERN) that examines the relationships between video events in temporal and semantic spaces to efficiently determine the root-cause trigger events. Through extensive experiments, we demonstrate the critical roles of event relational representation learning and interaction modeling in solving video causal reasoning challenges. The introduction of the CARVE task, along with the accompanying datasets and the CERN framework, will advance future research on video causal reasoning and significantly facilitate various applications, including video surveillance, root-cause analysis and movie content management.
☆ Creating Virtual Environments with 3D Gaussian Splatting: A Comparative Study
3D Gaussian Splatting (3DGS) has recently emerged as an innovative and efficient 3D representation technique. While its potential for extended reality (XR) applications is frequently highlighted, its practical effectiveness remains underexplored. In this work, we examine three distinct 3DGS-based approaches for virtual environment (VE) creation, leveraging their unique strengths for efficient and visually compelling scene representation. By conducting a comparable study, we evaluate the feasibility of 3DGS in creating immersive VEs, identify its limitations in XR applications, and discuss future research and development opportunities.
comment: IEEE VR 2025 Posters
☆ Efficient Few-Shot Medical Image Analysis via Hierarchical Contrastive Vision-Language Learning
Few-shot learning in medical image classification presents a significant challenge due to the limited availability of annotated data and the complex nature of medical imagery. In this work, we propose Adaptive Vision-Language Fine-tuning with Hierarchical Contrastive Alignment (HiCA), a novel framework that leverages the capabilities of Large Vision-Language Models (LVLMs) for medical image analysis. HiCA introduces a two-stage fine-tuning strategy, combining domain-specific pretraining and hierarchical contrastive learning to align visual and textual representations at multiple levels. We evaluate our approach on two benchmark datasets, Chest X-ray and Breast Ultrasound, achieving state-of-the-art performance in both few-shot and zero-shot settings. Further analyses demonstrate the robustness, generalizability, and interpretability of our method, with substantial improvements in performance compared to existing baselines. Our work highlights the potential of hierarchical contrastive strategies in adapting LVLMs to the unique challenges of medical imaging tasks.
☆ SoccerSynth-Detection: A Synthetic Dataset for Soccer Player Detection
In soccer video analysis, player detection is essential for identifying key events and reconstructing tactical positions. The presence of numerous players and frequent occlusions, combined with copyright restrictions, severely restricts the availability of datasets, leaving limited options such as SoccerNet-Tracking and SportsMOT. These datasets suffer from a lack of diversity, which hinders algorithms from adapting effectively to varied soccer video contexts. To address these challenges, we developed SoccerSynth-Detection, the first synthetic dataset designed for the detection of synthetic soccer players. It includes a broad range of random lighting and textures, as well as simulated camera motion blur. We validated its efficacy using the object detection model (Yolov8n) against real-world datasets (SoccerNet-Tracking and SportsMoT). In transfer tests, it matched the performance of real datasets and significantly outperformed them in images with motion blur; in pre-training tests, it demonstrated its efficacy as a pre-training dataset, significantly enhancing the algorithm's overall performance. Our work demonstrates the potential of synthetic datasets to replace real datasets for algorithm training in the field of soccer video analysis.
☆ Text-guided Synthetic Geometric Augmentation for Zero-shot 3D Understanding CVPR
Zero-shot recognition models require extensive training data for generalization. However, in zero-shot 3D classification, collecting 3D data and captions is costly and laborintensive, posing a significant barrier compared to 2D vision. Recent advances in generative models have achieved unprecedented realism in synthetic data production, and recent research shows the potential for using generated data as training data. Here, naturally raising the question: Can synthetic 3D data generated by generative models be used as expanding limited 3D datasets? In response, we present a synthetic 3D dataset expansion method, Textguided Geometric Augmentation (TeGA). TeGA is tailored for language-image-3D pretraining, which achieves SoTA in zero-shot 3D classification, and uses a generative textto-3D model to enhance and extend limited 3D datasets. Specifically, we automatically generate text-guided synthetic 3D data and introduce a consistency filtering strategy to discard noisy samples where semantics and geometric shapes do not match with text. In the experiment to double the original dataset size using TeGA, our approach demonstrates improvements over the baselines, achieving zeroshot performance gains of 3.0% on Objaverse-LVIS, 4.6% on ScanObjectNN, and 8.7% on ModelNet40. These results demonstrate that TeGA effectively bridges the 3D data gap, enabling robust zero-shot 3D classification even with limited real training data and paving the way for zero-shot 3D vision application.
comment: 14 pages, 8 figures, this paper is submitted to CVPR
☆ Bias for Action: Video Implicit Neural Representations with Bias Modulation
We propose a new continuous video modeling framework based on implicit neural representations (INRs) called ActINR. At the core of our approach is the observation that INRs can be considered as a learnable dictionary, with the shapes of the basis functions governed by the weights of the INR, and their locations governed by the biases. Given compact non-linear activation functions, we hypothesize that an INR's biases are suitable to capture motion across images, and facilitate compact representations for video sequences. Using these observations, we design ActINR to share INR weights across frames of a video sequence, while using unique biases for each frame. We further model the biases as the output of a separate INR conditioned on time index to promote smoothness. By training the video INR and this bias INR together, we demonstrate unique capabilities, including $10\times$ video slow motion, $4\times$ spatial super resolution along with $2\times$ slow motion, denoising, and video inpainting. ActINR performs remarkably well across numerous video processing tasks (often achieving more than 6dB improvement), setting a new standard for continuous modeling of videos.
☆ Knowledge Distillation for Image Restoration : Simultaneous Learning from Degraded and Clean Images ICASSP2025
Model compression through knowledge distillation has seen extensive application in classification and segmentation tasks. However, its potential in image-to-image translation, particularly in image restoration, remains underexplored. To address this gap, we propose a Simultaneous Learning Knowledge Distillation (SLKD) framework tailored for model compression in image restoration tasks. SLKD employs a dual-teacher, single-student architecture with two distinct learning strategies: Degradation Removal Learning (DRL) and Image Reconstruction Learning (IRL), simultaneously. In DRL, the student encoder learns from Teacher A to focus on removing degradation factors, guided by a novel BRISQUE extractor. In IRL, the student decoder learns from Teacher B to reconstruct clean images, with the assistance of a proposed PIQE extractor. These strategies enable the student to learn from degraded and clean images simultaneously, ensuring high-quality compression of image restoration models. Experimental results across five datasets and three tasks demonstrate that SLKD achieves substantial reductions in FLOPs and parameters, exceeding 80\%, while maintaining strong image restoration performance.
comment: Accepted by ICASSP2025
☆ Are Open-Vocabulary Models Ready for Detection of MEP Elements on Construction Sites
The construction industry has long explored robotics and computer vision, yet their deployment on construction sites remains very limited. These technologies have the potential to revolutionize traditional workflows by enhancing accuracy, efficiency, and safety in construction management. Ground robots equipped with advanced vision systems could automate tasks such as monitoring mechanical, electrical, and plumbing (MEP) systems. The present research evaluates the applicability of open-vocabulary vision-language models compared to fine-tuned, lightweight, closed-set object detectors for detecting MEP components using a mobile ground robotic platform. A dataset collected with cameras mounted on a ground robot was manually annotated and analyzed to compare model performance. The results demonstrate that, despite the versatility of vision-language models, fine-tuned lightweight models still largely outperform them in specialized environments and for domain-specific tasks.
comment: 4 pages, 3 figures
☆ OpticFusion: Multi-Modal Neural Implicit 3D Reconstruction of Microstructures by Fusing White Light Interferometry and Optical Microscopy 3DV 2025
White Light Interferometry (WLI) is a precise optical tool for measuring the 3D topography of microstructures. However, conventional WLI cannot capture the natural color of a sample's surface, which is essential for many microscale research applications that require both 3D geometry and color information. Previous methods have attempted to overcome this limitation by modifying WLI hardware and analysis software, but these solutions are often costly. In this work, we address this challenge from a computer vision multi-modal reconstruction perspective for the first time. We introduce OpticFusion, a novel approach that uses an additional digital optical microscope (OM) to achieve 3D reconstruction with natural color textures using multi-view WLI and OM images. Our method employs a two-step data association process to obtain the poses of WLI and OM data. By leveraging the neural implicit representation, we fuse multi-modal data and apply color decomposition technology to extract the sample's natural color. Tested on our multi-modal dataset of various microscale samples, OpticFusion achieves detailed 3D reconstructions with color textures. Our method provides an effective tool for practical applications across numerous microscale research fields. The source code and our real-world dataset are available at https://github.com/zju3dv/OpticFusion.
comment: 3DV 2025
☆ Leveraging Scale-aware Representations for improved Concept-Representation Alignment in ViTs
Vision Transformers (ViTs) are increasingly being adopted in various sensitive vision applications - like medical diagnosis, facial recognition, etc. To improve the interpretability of such models, many approaches attempt to forward-align them with carefully annotated abstract, human-understandable semantic entities - concepts. Concepts provide global rationales to the model predictions and can be quickly understood/intervened on by domain experts. Most current research focuses on designing model-agnostic, plug-and-play generic concept-based explainability modules that do not incorporate the inner workings of foundation models (e.g., inductive biases, scale invariance, etc.) during training. To alleviate this issue for ViTs, in this paper, we propose a novel Concept Representation Alignment Module (CRAM) which learns both scale and position-aware representations from multi-scale feature pyramids and patch representations respectively. CRAM further aligns these representations with concept annotations through an attention matrix. The proposed CRAM module improves the predictive performance of ViT architectures and also provides accurate and robust concept explanations as demonstrated on five datasets - including three widely used benchmarks (CUB, Pascal APY, Concept-MNIST) and 2 real-world datasets (AWA2, KITS).
☆ Adaptive Law-Based Transformation (ALT): A Lightweight Feature Representation for Time Series Classification
Time series classification (TSC) is fundamental in numerous domains, including finance, healthcare, and environmental monitoring. However, traditional TSC methods often struggle with the inherent complexity and variability of time series data. Building on our previous work with the linear law-based transformation (LLT) - which improved classification accuracy by transforming the feature space based on key data patterns - we introduce adaptive law-based transformation (ALT). ALT enhances LLT by incorporating variable-length shifted time windows, enabling it to capture distinguishing patterns of various lengths and thereby handle complex time series more effectively. By mapping features into a linearly separable space, ALT provides a fast, robust, and transparent solution that achieves state-of-the-art performance with only a few hyperparameters.
comment: 8 pages, 1 figure, 5 tables
☆ Surgical Visual Understanding (SurgVU) Dataset
Owing to recent advances in machine learning and the ability to harvest large amounts of data during robotic-assisted surgeries, surgical data science is ripe for foundational work. We present a large dataset of surgical videos and their accompanying labels for this purpose. We describe how the data was collected and some of its unique attributes. Multiple example problems are outlined. Although the dataset was curated for a particular set of scientific challenges (in an accompanying paper), it is general enough to be used for a broad range machine learning questions. Our hope is that this dataset exposes the larger machine learning community to the challenging problems within surgical data science, and becomes a touchstone for future research. The videos are available at https://storage.googleapis.com/isi-surgvu/surgvu24_videos_only.zip, the labels at https://storage.googleapis.com/isi-surgvu/surgvu24_labels_updated_v2.zip, and a validation set for tool detection problem at https://storage.googleapis.com/isi-surgvu/cat1_test_set_public.zip.
☆ Semi-Supervised Image-Based Narrative Extraction: A Case Study with Historical Photographic Records ECIR 2025
This paper presents a semi-supervised approach to extracting narratives from historical photographic records using an adaptation of the narrative maps algorithm. We extend the original unsupervised text-based method to work with image data, leveraging deep learning techniques for visual feature extraction and similarity computation. Our method is applied to the ROGER dataset, a collection of photographs from the 1928 Sacambaya Expedition in Bolivia captured by Robert Gerstmann. We compare our algorithmically extracted visual narratives with expert-curated timelines of varying lengths (5 to 30 images) to evaluate the effectiveness of our approach. In particular, we use the Dynamic Time Warping (DTW) algorithm to match the extracted narratives with the expert-curated baseline. In addition, we asked an expert on the topic to qualitatively evaluate a representative example of the resulting narratives. Our findings show that the narrative maps approach generally outperforms random sampling for longer timelines (10+ images, p < 0.05), with expert evaluation confirming the historical accuracy and coherence of the extracted narratives. This research contributes to the field of computational analysis of visual cultural heritage, offering new tools for historians, archivists, and digital humanities scholars to explore and understand large-scale image collections. The method's ability to generate meaningful narratives from visual data opens up new possibilities for the study and interpretation of historical events through photographic evidence.
comment: This paper has been accepted for oral presentation in the findings track of the 47th European Conference on Information Retrieval (ECIR 2025). Source code and experiments are available at https://github.com/faustogerman/ROGER-Concept-Narratives
☆ ASTRA: A Scene-aware TRAnsformer-based model for trajectory prediction
We present ASTRA (A} Scene-aware TRAnsformer-based model for trajectory prediction), a light-weight pedestrian trajectory forecasting model that integrates the scene context, spatial dynamics, social inter-agent interactions and temporal progressions for precise forecasting. We utilised a U-Net-based feature extractor, via its latent vector representation, to capture scene representations and a graph-aware transformer encoder for capturing social interactions. These components are integrated to learn an agent-scene aware embedding, enabling the model to learn spatial dynamics and forecast the future trajectory of pedestrians. The model is designed to produce both deterministic and stochastic outcomes, with the stochastic predictions being generated by incorporating a Conditional Variational Auto-Encoder (CVAE). ASTRA also proposes a simple yet effective weighted penalty loss function, which helps to yield predictions that outperform a wide array of state-of-the-art deterministic and generative models. ASTRA demonstrates an average improvement of 27%/10% in deterministic/stochastic settings on the ETH-UCY dataset, and 26% improvement on the PIE dataset, respectively, along with seven times fewer parameters than the existing state-of-the-art model (see Figure 1). Additionally, the model's versatility allows it to generalize across different perspectives, such as Bird's Eye View (BEV) and Ego-Vehicle View (EVV).
☆ Detection of Vascular Leukoencephalopathy in CT Images
Artificial intelligence (AI) has seen a significant surge in popularity, particularly in its application to medicine. This study explores AI's role in diagnosing leukoencephalopathy, a small vessel disease of the brain, and a leading cause of vascular dementia and hemorrhagic strokes. We utilized a dataset of approximately 1200 patients with axial brain CT scans to train convolutional neural networks (CNNs) for binary disease classification. Addressing the challenge of varying scan dimensions due to different patient physiologies, we processed the data to a uniform size and applied three preprocessing methods to improve model accuracy. We compared four neural network architectures: ResNet50, ResNet50 3D, ConvNext, and Densenet. The ConvNext model achieved the highest accuracy of 98.5% without any preprocessing, outperforming models with 3D convolutions. To gain insights into model decision-making, we implemented Grad-CAM heatmaps, which highlighted the focus areas of the models on the scans. Our results demonstrate that AI, particularly the ConvNext architecture, can significantly enhance diagnostic accuracy for leukoencephalopathy. This study underscores AI's potential in advancing diagnostic methodologies for brain diseases and highlights the effectiveness of CNNs in medical imaging applications.
☆ CrossModalityDiffusion: Multi-Modal Novel View Synthesis with Unified Intermediate Representation WACV
Geospatial imaging leverages data from diverse sensing modalities-such as EO, SAR, and LiDAR, ranging from ground-level drones to satellite views. These heterogeneous inputs offer significant opportunities for scene understanding but present challenges in interpreting geometry accurately, particularly in the absence of precise ground truth data. To address this, we propose CrossModalityDiffusion, a modular framework designed to generate images across different modalities and viewpoints without prior knowledge of scene geometry. CrossModalityDiffusion employs modality-specific encoders that take multiple input images and produce geometry-aware feature volumes that encode scene structure relative to their input camera positions. The space where the feature volumes are placed acts as a common ground for unifying input modalities. These feature volumes are overlapped and rendered into feature images from novel perspectives using volumetric rendering techniques. The rendered feature images are used as conditioning inputs for a modality-specific diffusion model, enabling the synthesis of novel images for the desired output modality. In this paper, we show that jointly training different modules ensures consistent geometric understanding across all modalities within the framework. We validate CrossModalityDiffusion's capabilities on the synthetic ShapeNet cars dataset, demonstrating its effectiveness in generating accurate and consistent novel views across multiple imaging modalities and perspectives.
comment: Accepted in the 2025 WACV workshop GeoCV
☆ EraseBench: Understanding The Ripple Effects of Concept Erasure Techniques
Concept erasure techniques have recently gained significant attention for their potential to remove unwanted concepts from text-to-image models. While these methods often demonstrate success in controlled scenarios, their robustness in real-world applications and readiness for deployment remain uncertain. In this work, we identify a critical gap in evaluating sanitized models, particularly in terms of their performance across various concept dimensions. We systematically investigate the failure modes of current concept erasure techniques, with a focus on visually similar, binomial, and semantically related concepts. We propose that these interconnected relationships give rise to a phenomenon of concept entanglement resulting in ripple effects and degradation in image quality. To facilitate more comprehensive evaluation, we introduce EraseBENCH, a multi-dimensional benchmark designed to assess concept erasure methods with greater depth. Our dataset includes over 100 diverse concepts and more than 1,000 tailored prompts, paired with a comprehensive suite of metrics that together offer a holistic view of erasure efficacy. Our findings reveal that even state-of-the-art techniques struggle with maintaining quality post-erasure, indicating that these approaches are not yet ready for real-world deployment. This highlights the gap in reliability of the concept erasure techniques.
comment: 11 pages main; 9 pages supplemental material
☆ PIXELS: Progressive Image Xemplar-based Editing with Latent Surgery
Recent advancements in language-guided diffusion models for image editing are often bottle-necked by cumbersome prompt engineering to precisely articulate desired changes. An intuitive alternative calls on guidance from in-the-wild image exemplars to help users bring their imagined edits to life. Contemporary exemplar-based editing methods shy away from leveraging the rich latent space learnt by pre-existing large text-to-image (TTI) models and fall back on training with curated objective functions to achieve the task. Though somewhat effective, this demands significant computational resources and lacks compatibility with diverse base models and arbitrary exemplar count. On further investigation, we also find that these techniques restrict user control to only applying uniform global changes over the entire edited region. In this paper, we introduce a novel framework for progressive exemplar-driven editing with off-the-shelf diffusion models, dubbed PIXELS, to enable customization by providing granular control over edits, allowing adjustments at the pixel or region level. Our method operates solely during inference to facilitate imitative editing, enabling users to draw inspiration from a dynamic number of reference images, or multimodal prompts, and progressively incorporate all the desired changes without retraining or fine-tuning existing TTI models. This capability of fine-grained control opens up a range of new possibilities, including selective modification of individual objects and specifying gradual spatial changes. We demonstrate that PIXELS delivers high-quality edits efficiently, leading to a notable improvement in quantitative metrics as well as human evaluation. By making high-quality image editing more accessible, PIXELS has the potential to enable professional-grade edits to a wider audience with the ease of using any open-source image generation model.
☆ Generalized Single-Image-Based Morphing Attack Detection Using Deep Representations from Vision Transformer
Face morphing attacks have posed severe threats to Face Recognition Systems (FRS), which are operated in border control and passport issuance use cases. Correspondingly, morphing attack detection algorithms (MAD) are needed to defend against such attacks. MAD approaches must be robust enough to handle unknown attacks in an open-set scenario where attacks can originate from various morphing generation algorithms, post-processing and the diversity of printers/scanners. The problem of generalization is further pronounced when the detection has to be made on a single suspected image. In this paper, we propose a generalized single-image-based MAD (S-MAD) algorithm by learning the encoding from Vision Transformer (ViT) architecture. Compared to CNN-based architectures, ViT model has the advantage on integrating local and global information and hence can be suitable to detect the morphing traces widely distributed among the face region. Extensive experiments are carried out on face morphing datasets generated using publicly available FRGC face datasets. Several state-of-the-art (SOTA) MAD algorithms, including representative ones that have been publicly evaluated, have been selected and benchmarked with our ViT-based approach. Obtained results demonstrate the improved detection performance of the proposed S-MAD method on inter-dataset testing (when different data is used for training and testing) and comparable performance on intra-dataset testing (when the same data is used for training and testing) experimental protocol.
☆ Lossy Compression with Pretrained Diffusion Models
We apply the DiffC algorithm (Theis et al. 2022) to Stable Diffusion 1.5, 2.1, XL, and Flux-dev, and demonstrate that these pretrained models are remarkably capable lossy image compressors. A principled algorithm for lossy compression using pretrained diffusion models has been understood since at least Ho et al. 2020, but challenges in reverse-channel coding have prevented such algorithms from ever being fully implemented. We introduce simple workarounds that lead to the first complete implementation of DiffC, which is capable of compressing and decompressing images using Stable Diffusion in under 10 seconds. Despite requiring no additional training, our method is competitive with other state-of-the-art generative compression methods at low ultra-low bitrates.
☆ SMPLest-X: Ultimate Scaling for Expressive Human Pose and Shape Estimation
Expressive human pose and shape estimation (EHPS) unifies body, hands, and face motion capture with numerous applications. Despite encouraging progress, current state-of-the-art methods focus on training innovative architectural designs on confined datasets. In this work, we investigate the impact of scaling up EHPS towards a family of generalist foundation models. 1) For data scaling, we perform a systematic investigation on 40 EHPS datasets, encompassing a wide range of scenarios that a model trained on any single dataset cannot handle. More importantly, capitalizing on insights obtained from the extensive benchmarking process, we optimize our training scheme and select datasets that lead to a significant leap in EHPS capabilities. Ultimately, we achieve diminishing returns at 10M training instances from diverse data sources. 2) For model scaling, we take advantage of vision transformers (up to ViT-Huge as the backbone) to study the scaling law of model sizes in EHPS. To exclude the influence of algorithmic design, we base our experiments on two minimalist architectures: SMPLer-X, which consists of an intermediate step for hand and face localization, and SMPLest-X, an even simpler version that reduces the network to its bare essentials and highlights significant advances in the capture of articulated hands. With big data and the large model, the foundation models exhibit strong performance across diverse test benchmarks and excellent transferability to even unseen environments. Moreover, our finetuning strategy turns the generalist into specialist models, allowing them to achieve further performance boosts. Notably, our foundation models consistently deliver state-of-the-art results on seven benchmarks such as AGORA, UBody, EgoBody, and our proposed SynHand dataset for comprehensive hand evaluation. (Code is available at: https://github.com/wqyin/SMPLest-X).
comment: An extension of SMPLer-X [arXiv:2309.17448]. Homepage: https://caizhongang.com/projects/SMPLer-X/
☆ VideoWorld: Exploring Knowledge Learning from Unlabeled Videos
This work explores whether a deep generative model can learn complex knowledge solely from visual input, in contrast to the prevalent focus on text-based models like large language models (LLMs). We develop VideoWorld, an auto-regressive video generation model trained on unlabeled video data, and test its knowledge acquisition abilities in video-based Go and robotic control tasks. Our experiments reveal two key findings: (1) video-only training provides sufficient information for learning knowledge, including rules, reasoning and planning capabilities, and (2) the representation of visual change is crucial for knowledge acquisition. To improve both the efficiency and efficacy of this process, we introduce the Latent Dynamics Model (LDM) as a key component of VideoWorld. Remarkably, VideoWorld reaches a 5-dan professional level in the Video-GoBench with just a 300-million-parameter model, without relying on search algorithms or reward mechanisms typical in reinforcement learning. In robotic tasks, VideoWorld effectively learns diverse control operations and generalizes across environments, approaching the performance of oracle models in CALVIN and RLBench. This study opens new avenues for knowledge acquisition from visual data, with all code, data, and models open-sourced for further research.
comment: Code and models are released at: https://maverickren.github.io/VideoWorld.github.io/
♻ ☆ FutureDepth: Learning to Predict the Future Improves Video Depth Estimation ECCV 2024
In this paper, we propose a novel video depth estimation approach, FutureDepth, which enables the model to implicitly leverage multi-frame and motion cues to improve depth estimation by making it learn to predict the future at training. More specifically, we propose a future prediction network, F-Net, which takes the features of multiple consecutive frames and is trained to predict multi-frame features one time step ahead iteratively. In this way, F-Net learns the underlying motion and correspondence information, and we incorporate its features into the depth decoding process. Additionally, to enrich the learning of multiframe correspondence cues, we further leverage a reconstruction network, R-Net, which is trained via adaptively masked auto-encoding of multiframe feature volumes. At inference time, both F-Net and R-Net are used to produce queries to work with the depth decoder, as well as a final refinement network. Through extensive experiments on several benchmarks, i.e., NYUDv2, KITTI, DDAD, and Sintel, which cover indoor, driving, and open-domain scenarios, we show that FutureDepth significantly improves upon baseline models, outperforms existing video depth estimation methods, and sets new state-of-the-art (SOTA) accuracy. Furthermore, FutureDepth is more efficient than existing SOTA video depth estimation models and has similar latencies when comparing to monocular models
comment: ECCV 2024
♻ ☆ MAMo: Leveraging Memory and Attention for Monocular Video Depth Estimation ICCV 2023
We propose MAMo, a novel memory and attention frame-work for monocular video depth estimation. MAMo can augment and improve any single-image depth estimation networks into video depth estimation models, enabling them to take advantage of the temporal information to predict more accurate depth. In MAMo, we augment model with memory which aids the depth prediction as the model streams through the video. Specifically, the memory stores learned visual and displacement tokens of the previous time instances. This allows the depth network to cross-reference relevant features from the past when predicting depth on the current frame. We introduce a novel scheme to continuously update the memory, optimizing it to keep tokens that correspond with both the past and the present visual information. We adopt attention-based approach to process memory features where we first learn the spatio-temporal relation among the resultant visual and displacement memory tokens using self-attention module. Further, the output features of self-attention are aggregated with the current visual features through cross-attention. The cross-attended features are finally given to a decoder to predict depth on the current frame. Through extensive experiments on several benchmarks, including KITTI, NYU-Depth V2, and DDAD, we show that MAMo consistently improves monocular depth estimation networks and sets new state-of-the-art (SOTA) accuracy. Notably, our MAMo video depth estimation provides higher accuracy with lower latency, when omparing to SOTA cost-volume-based video depth models.
comment: Accepted at ICCV 2023
♻ ☆ Vulnerability-Aware Spatio-Temporal Learning for Generalizable and Interpretable Deepfake Video Detection
Detecting deepfake videos is highly challenging due to the complex intertwined spatial and temporal artifacts in forged sequences. Most recent approaches rely on binary classifiers trained on both real and fake data. However, such methods may struggle to focus on important artifacts, which can hinder their generalization capability. Additionally, these models often lack interpretability, making it difficult to understand how predictions are made. To address these issues, we propose FakeSTormer, offering two key contributions. First, we introduce a multi-task learning framework with additional spatial and temporal branches that enable the model to focus on subtle spatio-temporal artifacts. These branches also provide interpretability by highlighting video regions that may contain artifacts. Second, we propose a video-level data synthesis algorithm that generates pseudo-fake videos with subtle artifacts, providing the model with high-quality samples and ground truth data for our spatial and temporal branches. Extensive experiments on several challenging benchmarks demonstrate the competitiveness of our approach compared to recent state-of-the-art methods. The code is available at https://github.com/10Ring/FakeSTormer.
♻ ☆ Super-class guided Transformer for Zero-Shot Attribute Classification AAAI25
Attribute classification is crucial for identifying specific characteristics within image regions. Vision-Language Models (VLMs) have been effective in zero-shot tasks by leveraging their general knowledge from large-scale datasets. Recent studies demonstrate that transformer-based models with class-wise queries can effectively address zero-shot multi-label classification. However, poor utilization of the relationship between seen and unseen attributes makes the model lack generalizability. Additionally, attribute classification generally involves many attributes, making maintaining the model's scalability difficult. To address these issues, we propose Super-class guided transFormer (SugaFormer), a novel framework that leverages super-classes to enhance scalability and generalizability for zero-shot attribute classification. SugaFormer employs Super-class Query Initialization (SQI) to reduce the number of queries, utilizing common semantic information from super-classes, and incorporates Multi-context Decoding (MD) to handle diverse visual cues. To strengthen generalizability, we introduce two knowledge transfer strategies that utilize VLMs. During training, Super-class guided Consistency Regularization (SCR) aligns model's features with VLMs using super-class guided prompts, and during inference, Zero-shot Retrieval-based Score Enhancement (ZRSE) refines predictions for unseen attributes. Extensive experiments demonstrate that SugaFormer achieves state-of-the-art performance across three widely-used attribute classification benchmarks under zero-shot, and cross-dataset transfer settings. Our code is available at https://github.com/mlvlab/SugaFormer.
comment: AAAI25
♻ ☆ VIS-MAE: An Efficient Self-supervised Learning Approach on Medical Image Segmentation and Classification
Artificial Intelligence (AI) has the potential to revolutionize diagnosis and segmentation in medical imaging. However, development and clinical implementation face multiple challenges including limited data availability, lack of generalizability, and the necessity to incorporate multi-modal data effectively. A foundation model, which is a large-scale pre-trained AI model, offers a versatile base that can be adapted to a variety of specific tasks and contexts. Here, we present VIsualization and Segmentation Masked AutoEncoder (VIS-MAE), novel model weights specifically designed for medical imaging. Specifically, VIS-MAE is trained on a dataset of 2.5 million unlabeled images from various modalities (CT, MR, PET,X-rays, and ultrasound), using self-supervised learning techniques. It is then adapted to classification and segmentation tasks using explicit labels. VIS-MAE has high label efficiency, outperforming several benchmark models in both in-domain and out-of-domain applications. In addition, VIS-MAE has improved label efficiency as it can achieve similar performance to other models with a reduced amount of labeled training data (50% or 80%) compared to other pre-trained weights. VIS-MAE represents a significant advancement in medical imaging AI, offering a generalizable and robust solution for improving segmentation and classification tasks while reducing the data annotation workload. The source code of this work is available at https://github.com/lzl199704/VIS-MAE.
♻ ☆ A Comparative Study on Multi-task Uncertainty Quantification in Semantic Segmentation and Monocular Depth Estimation
Deep neural networks excel in perception tasks such as semantic segmentation and monocular depth estimation, making them indispensable in safety-critical applications like autonomous driving and industrial inspection. However, they often suffer from overconfidence and poor explainability, especially for out-of-domain data. While uncertainty quantification has emerged as a promising solution to these challenges, multi-task settings have yet to be explored. In an effort to shed light on this, we evaluate Monte Carlo Dropout, Deep Sub-Ensembles, and Deep Ensembles for joint semantic segmentation and monocular depth estimation. Thereby, we reveal that Deep Ensembles stand out as the preferred choice, particularly in out-of-domain scenarios, and show the potential benefit of multi-task learning with regard to the uncertainty quality in comparison to solving both tasks separately. Additionally, we highlight the impact of employing different uncertainty thresholds to classify pixels as certain or uncertain, with the median uncertainty emerging as a robust default.
comment: This manuscript is an extended version of a previously published conference paper and is currently in review for a journal
♻ ☆ A Comprehensive Survey of Foundation Models in Medicine
Foundation models (FMs) are large-scale deep learning models trained on massive datasets, often using self-supervised learning techniques. These models serve as a versatile base for a wide range of downstream tasks, including those in medicine and healthcare. FMs have demonstrated remarkable success across multiple healthcare domains. However, existing surveys in this field do not comprehensively cover all areas where FMs have made significant strides. In this survey, we present a comprehensive review of FMs in medicine, focusing on their evolution, learning strategies, flagship models, applications, and associated challenges. We examine how prominent FMs, such as the BERT and GPT families, are transforming various aspects of healthcare, including clinical large language models, medical image analysis, and omics research. Additionally, we provide a detailed taxonomy of FM-enabled healthcare applications, spanning clinical natural language processing, medical computer vision, graph learning, and other biology- and omics- related tasks. Despite the transformative potentials of FMs, they also pose unique challenges. This survey delves into these challenges and highlights open research questions and lessons learned to guide researchers and practitioners. Our goal is to provide valuable insights into the capabilities of FMs in health, facilitating responsible deployment and mitigating associated risks.
comment: Currently under review in IEEE REVIEWS IN BIOMEDICAL ENGINEERING
♻ ☆ Improving Zero-Shot Object-Level Change Detection by Incorporating Visual Correspondence
Detecting object-level changes between two images across possibly different views is a core task in many applications that involve visual inspection or camera surveillance. Existing change-detection approaches suffer from three major limitations: (1) lack of evaluation on image pairs that contain no changes, leading to unreported false positive rates; (2) lack of correspondences (i.e., localizing the regions before and after a change); and (3) poor zero-shot generalization across different domains. To address these issues, we introduce a novel method that leverages change correspondences (a) during training to improve change detection accuracy, and (b) at test time, to minimize false positives. That is, we harness the supervision labels of where an object is added or removed to supervise change detectors, improving their accuracy over previous work by a large margin. Our work is also the first to predict correspondences between pairs of detected changes using estimated homography and the Hungarian algorithm. Our model demonstrates superior performance over existing methods, achieving state-of-the-art results in change detection and change correspondence accuracy across both in-distribution and zero-shot benchmarks.
♻ ☆ MECD+: Unlocking Event-Level Causal Graph Discovery for Video Reasoning NeurIPS 2024
Video causal reasoning aims to achieve a high-level understanding of videos from a causal perspective. However, it exhibits limitations in its scope, primarily executed in a question-answering paradigm and focusing on brief video segments containing isolated events and basic causal relations, lacking comprehensive and structured causality analysis for videos with multiple interconnected events. To fill this gap, we introduce a new task and dataset, Multi-Event Causal Discovery (MECD). It aims to uncover the causal relations between events distributed chronologically across long videos. Given visual segments and textual descriptions of events, MECD identifies the causal associations between these events to derive a comprehensive and structured event-level video causal graph explaining why and how the result event occurred. To address the challenges of MECD, we devise a novel framework inspired by the Granger Causality method, incorporating an efficient mask-based event prediction model to perform an Event Granger Test. It estimates causality by comparing the predicted result event when premise events are masked versus unmasked. Furthermore, we integrate causal inference techniques such as front-door adjustment and counterfactual inference to mitigate challenges in MECD like causality confounding and illusory causality. Additionally, context chain reasoning is introduced to conduct more robust and generalized reasoning. Experiments validate the effectiveness of our framework in reasoning complete causal relations, outperforming GPT-4o and VideoChat2 by 5.77% and 2.70%, respectively. Further experiments demonstrate that causal relation graphs can also contribute to downstream video understanding tasks such as video question answering and video event prediction.
comment: IEEE TPAMI Submission. continuous work of arXiv:2409.17647 (NeurIPS 2024)
♻ ☆ VITA-1.5: Towards GPT-4o Level Real-Time Vision and Speech Interaction
Recent Multimodal Large Language Models (MLLMs) have typically focused on integrating visual and textual modalities, with less emphasis placed on the role of speech in enhancing interaction. However, speech plays a crucial role in multimodal dialogue systems, and implementing high-performance in both vision and speech tasks remains a significant challenge due to the fundamental modality differences. In this paper, we propose a carefully designed multi-stage training methodology that progressively trains LLM to understand both visual and speech information, ultimately enabling fluent vision and speech interaction. Our approach not only preserves strong vision-language capacity, but also enables efficient speech-to-speech dialogue capabilities without separate ASR and TTS modules, significantly accelerating multimodal end-to-end response speed. By comparing our method against state-of-the-art counterparts across benchmarks for image, video, and speech tasks, we demonstrate that our model is equipped with both strong visual and speech capabilities, making near real-time vision and speech interaction.
comment: https://github.com/VITA-MLLM/VITA
♻ ☆ Bayesian Low-Rank LeArning (Bella): A Practical Approach to Bayesian Neural Networks AAAI'2025
Computational complexity of Bayesian learning is impeding its adoption in practical, large-scale tasks. Despite demonstrations of significant merits such as improved robustness and resilience to unseen or out-of-distribution inputs over their non- Bayesian counterparts, their practical use has faded to near insignificance. In this study, we introduce an innovative framework to mitigate the computational burden of Bayesian neural networks (BNNs). Our approach follows the principle of Bayesian techniques based on deep ensembles, but significantly reduces their cost via multiple low-rank perturbations of parameters arising from a pre-trained neural network. Both vanilla version of ensembles as well as more sophisticated schemes such as Bayesian learning with Stein Variational Gradient Descent (SVGD), previously deemed impractical for large models, can be seamlessly implemented within the proposed framework, called Bayesian Low-Rank LeArning (Bella). In a nutshell, i) Bella achieves a dramatic reduction in the number of trainable parameters required to approximate a Bayesian posterior; and ii) it not only maintains, but in some instances, surpasses the performance of conventional Bayesian learning methods and non-Bayesian baselines. Our results with large-scale tasks such as ImageNet, CAMELYON17, DomainNet, VQA with CLIP, LLaVA demonstrate the effectiveness and versatility of Bella in building highly scalable and practical Bayesian deep models for real-world applications.
comment: This paper is accepted in AAAI'2025
♻ ☆ Latent Space Characterization of Autoencoder Variants
Understanding the latent spaces learned by deep learning models is crucial in exploring how they represent and generate complex data. Autoencoders (AEs) have played a key role in the area of representation learning, with numerous regularization techniques and training principles developed not only to enhance their ability to learn compact and robust representations, but also to reveal how different architectures influence the structure and smoothness of the lower-dimensional non-linear manifold. We strive to characterize the structure of the latent spaces learned by different autoencoders including convolutional autoencoders (CAEs), denoising autoencoders (DAEs), and variational autoencoders (VAEs) and how they change with the perturbations in the input. By characterizing the matrix manifolds corresponding to the latent spaces, we provide an explanation for the well-known observation that the latent spaces of CAE and DAE form non-smooth manifolds, while that of VAE forms a smooth manifold. We also map the points of the matrix manifold to a Hilbert space using distance preserving transforms and provide an alternate view in terms of the subspaces generated in the Hilbert space as a function of the distortion in the input. The results show that the latent manifolds of CAE and DAE are stratified with each stratum being a smooth product manifold, while the manifold of VAE is a smooth product manifold of two symmetric positive definite matrices and a symmetric positive semi-definite matrix.
comment: 9 pages, 6 figures, and 1 table
♻ ☆ STROOBnet Optimization via GPU-Accelerated Proximal Recurrence Strategies
Spatiotemporal networks' observational capabilities are crucial for accurate data gathering and informed decisions across multiple sectors. This study focuses on the Spatiotemporal Ranged Observer-Observable Bipartite Network (STROOBnet), linking observational nodes (e.g., surveillance cameras) to events within defined geographical regions, enabling efficient monitoring. Using data from Real-Time Crime Camera (RTCC) systems and Calls for Service (CFS) in New Orleans, where RTCC combats rising crime amidst reduced police presence, we address the network's initial observational imbalances. Aiming for uniform observational efficacy, we propose the Proximal Recurrence approach. It outperformed traditional clustering methods like k-means and DBSCAN by offering holistic event frequency and spatial consideration, enhancing observational coverage.
comment: 10 pages, 17 figures, 2023 IEEE International Conference on Big Data (BigData)
♻ ☆ Enhancing Few-Shot Image Classification through Learnable Multi-Scale Embedding and Attention Mechanisms
In the context of few-shot classification, the goal is to train a classifier using a limited number of samples while maintaining satisfactory performance. However, traditional metric-based methods exhibit certain limitations in achieving this objective. These methods typically rely on a single distance value between the query feature and support feature, thereby overlooking the contribution of shallow features. To overcome this challenge, we propose a novel approach in this paper. Our approach involves utilizing a multi-output embedding network that maps samples into distinct feature spaces. The proposed method extracts feature vectors at different stages, enabling the model to capture both global and abstract features. By utilizing these diverse feature spaces, our model enhances its performance. Moreover, employing a self-attention mechanism improves the refinement of features at each stage, leading to even more robust representations and improved overall performance. Furthermore, assigning learnable weights to each stage significantly improved performance and results. We conducted comprehensive evaluations on the MiniImageNet and FC100 datasets, specifically in the 5-way 1-shot and 5-way 5-shot scenarios. Additionally, we performed cross-domain tasks across eight benchmark datasets, achieving high accuracy in the testing domains. These evaluations demonstrate the efficacy of our proposed method in comparison to state-of-the-art approaches. https://github.com/FatemehAskari/MSENet
♻ ☆ A Multi-Modal Approach for Face Anti-Spoofing in Non-Calibrated Systems using Disparity Maps
Face recognition technologies are increasingly used in various applications, yet they are vulnerable to face spoofing attacks. These spoofing attacks often involve unique 3D structures, such as printed papers or mobile device screens. Although stereo-depth cameras can detect such attacks effectively, their high-cost limits their widespread adoption. Conversely, two-sensor systems without extrinsic calibration offer a cost-effective alternative but are unable to calculate depth using stereo techniques. In this work, we propose a method to overcome this challenge by leveraging facial attributes to derive disparity information and estimate relative depth for anti-spoofing purposes, using non-calibrated systems. We introduce a multi-modal anti-spoofing model, coined Disparity Model, that incorporates created disparity maps as a third modality alongside the two original sensor modalities. We demonstrate the effectiveness of the Disparity Model in countering various spoof attacks using a comprehensive dataset collected from the Intel RealSense ID Solution F455. Our method outperformed existing methods in the literature, achieving an Equal Error Rate (EER) of 1.71% and a False Negative Rate (FNR) of 2.77% at a False Positive Rate (FPR) of 1%. These errors are lower by 2.45% and 7.94% than the errors of the best comparison method, respectively. Additionally, we introduce a model ensemble that addresses 3D spoof attacks as well, achieving an EER of 2.04% and an FNR of 3.83% at an FPR of 1%. Overall, our work provides a state-of-the-art solution for the challenging task of anti-spoofing in non-calibrated systems that lack depth information.
♻ ☆ Evaluating alignment between humans and neural network representations in image-based learning tasks
Humans represent scenes and objects in rich feature spaces, carrying information that allows us to generalise about category memberships and abstract functions with few examples. What determines whether a neural network model generalises like a human? We tested how well the representations of $86$ pretrained neural network models mapped to human learning trajectories across two tasks where humans had to learn continuous relationships and categories of natural images. In these tasks, both human participants and neural networks successfully identified the relevant stimulus features within a few trials, demonstrating effective generalisation. We found that while training dataset size was a core determinant of alignment with human choices, contrastive training with multi-modal data (text and imagery) was a common feature of currently publicly available models that predicted human generalisation. Intrinsic dimensionality of representations had different effects on alignment for different model types. Lastly, we tested three sets of human-aligned representations and found no consistent improvements in predictive accuracy compared to the baselines. In conclusion, pretrained neural networks can serve to extract representations for cognitive models, as they appear to capture some fundamental aspects of cognition that are transferable across tasks. Both our paradigms and modelling approach offer a novel way to quantify alignment between neural networks and humans and extend cognitive science into more naturalistic domains.
♻ ☆ Instruction-Guided Fusion of Multi-Layer Visual Features in Large Vision-Language Models
Large Vision-Language Models (LVLMs) have achieved significant success in multimodal tasks by combining pre-trained vision encoders and large language models. However, current LVLMs mainly rely on features from the final layers of the vision encoder, neglecting complementary information in shallower layers. While recent methods have explored multi-layer features, they are often task-agnostic. We investigate the contributions of visual features from different encoder layers across 18 benchmarks and 6 task categories. Our results show that multi-layer features provide complementary strengths with varying task dependencies, and uniform fusion performs suboptimally. Based on these findings, we propose an instruction-guided vision aggregator that dynamically integrates multi-layer features based on textual instructions, without increasing the number of visual tokens. Extensive evaluations show superior performance, and analysis reveals the dominance of mid-to-high-level features in semantic tasks and the critical role of low-level features in fine-grained perception. This work provides valuable insights into the adaptive use of hierarchical visual features in LVLMs, advancing more flexible multimodal systems.
♻ ☆ Diffusion Models in Vision: A Survey
Denoising diffusion models represent a recent emerging topic in computer vision, demonstrating remarkable results in the area of generative modeling. A diffusion model is a deep generative model that is based on two stages, a forward diffusion stage and a reverse diffusion stage. In the forward diffusion stage, the input data is gradually perturbed over several steps by adding Gaussian noise. In the reverse stage, a model is tasked at recovering the original input data by learning to gradually reverse the diffusion process, step by step. Diffusion models are widely appreciated for the quality and diversity of the generated samples, despite their known computational burdens, i.e. low speeds due to the high number of steps involved during sampling. In this survey, we provide a comprehensive review of articles on denoising diffusion models applied in vision, comprising both theoretical and practical contributions in the field. First, we identify and present three generic diffusion modeling frameworks, which are based on denoising diffusion probabilistic models, noise conditioned score networks, and stochastic differential equations. We further discuss the relations between diffusion models and other deep generative models, including variational auto-encoders, generative adversarial networks, energy-based models, autoregressive models and normalizing flows. Then, we introduce a multi-perspective categorization of diffusion models applied in computer vision. Finally, we illustrate the current limitations of diffusion models and envision some interesting directions for future research.
comment: Accepted in IEEE Transactions on Pattern Analysis and Machine Intelligence. 25 pages, 3 figures
♻ ☆ DriveLM: Driving with Graph Visual Question Answering ECCV 2024
We study how vision-language models (VLMs) trained on web-scale data can be integrated into end-to-end driving systems to boost generalization and enable interactivity with human users. While recent approaches adapt VLMs to driving via single-round visual question answering (VQA), human drivers reason about decisions in multiple steps. Starting from the localization of key objects, humans estimate object interactions before taking actions. The key insight is that with our proposed task, Graph VQA, where we model graph-structured reasoning through perception, prediction and planning question-answer pairs, we obtain a suitable proxy task to mimic the human reasoning process. We instantiate datasets (DriveLM-Data) built upon nuScenes and CARLA, and propose a VLM-based baseline approach (DriveLM-Agent) for jointly performing Graph VQA and end-to-end driving. The experiments demonstrate that Graph VQA provides a simple, principled framework for reasoning about a driving scene, and DriveLM-Data provides a challenging benchmark for this task. Our DriveLM-Agent baseline performs end-to-end autonomous driving competitively in comparison to state-of-the-art driving-specific architectures. Notably, its benefits are pronounced when it is evaluated zero-shot on unseen objects or sensor configurations. We hope this work can be the starting point to shed new light on how to apply VLMs for autonomous driving. To facilitate future research, all code, data, and models are available to the public.
comment: Accepted to ECCV 2024 as Oral paper
♻ ☆ Towards an End-to-End (E2E) Adversarial Learning and Application in the Physical World
The traditional learning process of patch-based adversarial attacks, conducted in the digital domain and then applied in the physical domain (e.g., via printed stickers), may suffer from reduced performance due to adversarial patches' limited transferability from the digital domain to the physical domain. Given that previous studies have considered using projectors to apply adversarial attacks, we raise the following question: can adversarial learning (i.e., patch generation) be performed entirely in the physical domain with a projector? In this work, we propose the Physical-domain Adversarial Patch Learning Augmentation (PAPLA) framework, a novel end-to-end (E2E) framework that converts adversarial learning from the digital domain to the physical domain using a projector. We evaluate PAPLA across multiple scenarios, including controlled laboratory settings and realistic outdoor environments, demonstrating its ability to ensure attack success compared to conventional digital learning-physical application (DL-PA) methods. We also analyze the impact of environmental factors, such as projection surface color, projector strength, ambient light, distance, and angle of the target object relative to the camera, on the effectiveness of projected patches. Finally, we demonstrate the feasibility of the attack against a parked car and a stop sign in a real-world outdoor environment. Our results show that under specific conditions, E2E adversarial learning in the physical domain eliminates the transferability issue and ensures evasion by object detectors. Finally, we provide insights into the challenges and opportunities of applying adversarial learning in the physical domain and explain where such an approach is more effective than using a sticker.
♻ ☆ TextureCrop: Enhancing Synthetic Image Detection through Texture-based Cropping
Generative AI technologies produce increasingly realistic imagery, which, despite its potential for creative applications, can also be misused to produce misleading and harmful content. This renders Synthetic Image Detection (SID) methods essential for identifying AI-generated content online. State-of-the-art SID methods typically resize or center-crop input images due to architectural or computational constraints, which hampers the detection of artifacts that appear in high-resolution images. To address this limitation, we propose TextureCrop, an image pre-processing component that can be plugged in any pre-trained SID model to improve its performance. By focusing on high-frequency image parts where generative artifacts are prevalent, TextureCrop enhances SID performance with manageable memory requirements. Experimental results demonstrate a consistent improvement in AUC across various detectors by 6.1% compared to center cropping and by 15% compared to resizing, across high-resolution images from the Forensynths, Synthbuster and TWIGMA datasets. Code available at https : //github.com/mever-team/texture-crop.
comment: 10 pages, 7 images
♻ ☆ IOR: Inversed Objects Replay for Incremental Object Detection
Existing Incremental Object Detection (IOD) methods partially alleviate catastrophic forgetting when incrementally detecting new objects in real-world scenarios. However, many of these methods rely on the assumption that unlabeled old-class objects may co-occur with labeled new-class objects in the incremental data. When unlabeled old-class objects are absent, the performance of existing methods tends to degrade. The absence can be mitigated by generating old-class samples, but it incurs high costs. This paper argues that previous generation-based IOD suffers from redundancy, both in the use of generative models, which require additional training and storage, and in the overproduction of generated samples, many of which do not contribute significantly to performance improvements. To eliminate the redundancy, we propose Inversed Objects Replay (IOR). Specifically, we generate old-class samples by inversing the original detectors, thus eliminating the necessity of training and storing additional generative models. We propose augmented replay to reuse the objects in generated samples, reducing redundant generations. Moreover, we propose high-value knowledge distillation focusing on the positions of old-class objects overwhelmed by the background, which transfers the knowledge to the incremental detector. Extensive experiments conducted on MS COCO 2017 demonstrate that our method can efficiently improve detection performance in IOD scenarios with the absence of old-class objects.
♻ ☆ Skinned Motion Retargeting with Dense Geometric Interaction Perception NeurIPS 2024
Capturing and maintaining geometric interactions among different body parts is crucial for successful motion retargeting in skinned characters. Existing approaches often overlook body geometries or add a geometry correction stage after skeletal motion retargeting. This results in conflicts between skeleton interaction and geometry correction, leading to issues such as jittery, interpenetration, and contact mismatches. To address these challenges, we introduce a new retargeting framework, MeshRet, which directly models the dense geometric interactions in motion retargeting. Initially, we establish dense mesh correspondences between characters using semantically consistent sensors (SCS), effective across diverse mesh topologies. Subsequently, we develop a novel spatio-temporal representation called the dense mesh interaction (DMI) field. This field, a collection of interacting SCS feature vectors, skillfully captures both contact and non-contact interactions between body geometries. By aligning the DMI field during retargeting, MeshRet not only preserves motion semantics but also prevents self-interpenetration and ensures contact preservation. Extensive experiments on the public Mixamo dataset and our newly-collected ScanRet dataset demonstrate that MeshRet achieves state-of-the-art performance. Code available at https://github.com/abcyzj/MeshRet.
comment: NeurIPS 2024 Spotlight
♻ ☆ reBEN: Refined BigEarthNet Dataset for Remote Sensing Image Analysis
This paper presents refined BigEarthNet (reBEN) that is a large-scale, multi-modal remote sensing dataset constructed to support deep learning (DL) studies for remote sensing image analysis. The reBEN dataset consists of 549,488 pairs of Sentinel-1 and Sentinel-2 image patches. To construct reBEN, we initially consider the Sentinel-1 and Sentinel-2 tiles used to construct the BigEarthNet dataset and then divide them into patches of size 1200 m x 1200 m. We apply atmospheric correction to the Sentinel-2 patches using the latest version of the sen2cor tool, resulting in higher-quality patches compared to those present in BigEarthNet. Each patch is then associated with a pixel-level reference map and scene-level multi-labels. This makes reBEN suitable for pixel- and scene-based learning tasks. The labels are derived from the most recent CORINE Land Cover (CLC) map of 2018 by utilizing the 19-class nomenclature as in BigEarthNet. The use of the most recent CLC map results in overcoming the label noise present in BigEarthNet. Furthermore, we introduce a new geographical-based split assignment algorithm that significantly reduces the spatial correlation among the train, validation, and test sets with respect to those present in BigEarthNet. This increases the reliability of the evaluation of DL models. To minimize the DL model training time, we introduce software tools that convert the reBEN dataset into a DL-optimized data format. In our experiments, we show the potential of reBEN for multi-modal multi-label image classification problems by considering several state-of-the-art DL models. The pre-trained model weights, associated code, and complete dataset are available at https://bigearth.net.
♻ ☆ DehazeGS: Seeing Through Fog with 3D Gaussian Splatting
Current novel view synthesis tasks primarily rely on high-quality and clear images. However, in foggy scenes, scattering and attenuation can significantly degrade the reconstruction and rendering quality. Although NeRF-based dehazing reconstruction algorithms have been developed, their use of deep fully connected neural networks and per-ray sampling strategies leads to high computational costs. Moreover, NeRF's implicit representation struggles to recover fine details from hazy scenes. In contrast, recent advancements in 3D Gaussian Splatting achieve high-quality 3D scene reconstruction by explicitly modeling point clouds into 3D Gaussians. In this paper, we propose leveraging the explicit Gaussian representation to explain the foggy image formation process through a physically accurate forward rendering process. We introduce DehazeGS, a method capable of decomposing and rendering a fog-free background from participating media using only muti-view foggy images as input. We model the transmission within each Gaussian distribution to simulate the formation of fog. During this process, we jointly learn the atmospheric light and scattering coefficient while optimizing the Gaussian representation of the hazy scene. In the inference stage, we eliminate the effects of scattering and attenuation on the Gaussians and directly project them onto a 2D plane to obtain a clear view. Experiments on both synthetic and real-world foggy datasets demonstrate that DehazeGS achieves state-of-the-art performance in terms of both rendering quality and computational efficiency. visualizations are available at https://dehazegs.github.io/
comment: 9 pages,4 figures
♻ ☆ StructSR: Refuse Spurious Details in Real-World Image Super-Resolution
Diffusion-based models have shown great promise in real-world image super-resolution (Real-ISR), but often generate content with structural errors and spurious texture details due to the empirical priors and illusions of these models. To address this issue, we introduce StructSR, a simple, effective, and plug-and-play method that enhances structural fidelity and suppresses spurious details for diffusion-based Real-ISR. StructSR operates without the need for additional fine-tuning, external model priors, or high-level semantic knowledge. At its core is the Structure-Aware Screening (SAS) mechanism, which identifies the image with the highest structural similarity to the low-resolution (LR) input in the early inference stage, allowing us to leverage it as a historical structure knowledge to suppress the generation of spurious details. By intervening in the diffusion inference process, StructSR seamlessly integrates with existing diffusion-based Real-ISR models. Our experimental results demonstrate that StructSR significantly improves the fidelity of structure and texture, improving the PSNR and SSIM metrics by an average of 5.27% and 9.36% on a synthetic dataset (DIV2K-Val) and 4.13% and 8.64% on two real-world datasets (RealSR and DRealSR) when integrated with four state-of-the-art diffusion-based Real-ISR methods.
♻ ☆ Direct Unlearning Optimization for Robust and Safe Text-to-Image Models NeurIPS 2024
Recent advancements in text-to-image (T2I) models have unlocked a wide range of applications but also present significant risks, particularly in their potential to generate unsafe content. To mitigate this issue, researchers have developed unlearning techniques to remove the model's ability to generate potentially harmful content. However, these methods are easily bypassed by adversarial attacks, making them unreliable for ensuring the safety of generated images. In this paper, we propose Direct Unlearning Optimization (DUO), a novel framework for removing Not Safe For Work (NSFW) content from T2I models while preserving their performance on unrelated topics. DUO employs a preference optimization approach using curated paired image data, ensuring that the model learns to remove unsafe visual concepts while retaining unrelated features. Furthermore, we introduce an output-preserving regularization term to maintain the model's generative capabilities on safe content. Extensive experiments demonstrate that DUO can robustly defend against various state-of-the-art red teaming methods without significant performance degradation on unrelated topics, as measured by FID and CLIP scores. Our work contributes to the development of safer and more reliable T2I models, paving the way for their responsible deployment in both closed-source and open-source scenarios.
comment: This paper has been accepted for NeurIPS 2024
♻ ☆ Geometric Distortion Guided Transformer for Omnidirectional Image Super-Resolution
As virtual and augmented reality applications gain popularity, omnidirectional image (ODI) super-resolution has become increasingly important. Unlike 2D plain images that are formed on a plane, ODIs are projected onto spherical surfaces. Applying established image super-resolution methods to ODIs, therefore, requires performing equirectangular projection (ERP) to map the ODIs onto a plane. ODI super-resolution needs to take into account geometric distortion resulting from ERP. However, without considering such geometric distortion of ERP images, previous deep-learning-based methods only utilize a limited range of pixels and may easily miss self-similar textures for reconstruction. In this paper, we introduce a novel Geometric Distortion Guided Transformer for Omnidirectional image Super-Resolution (GDGT-OSR). Specifically, a distortion modulated rectangle-window self-attention mechanism, integrated with deformable self-attention, is proposed to better perceive the distortion and thus involve more self-similar textures. Distortion modulation is achieved through a newly devised distortion guidance generator that produces guidance by exploiting the variability of distortion across latitudes. Furthermore, we propose a dynamic feature aggregation scheme to adaptively fuse the features from different self-attention modules. We present extensive experimental results on public datasets and show that the new GDGT-OSR outperforms methods in existing literature.
comment: 13 pages, 12 figures, journal
♻ ☆ iFADIT: Invertible Face Anonymization via Disentangled Identity Transform
Face anonymization aims to conceal the visual identity of a face to safeguard the individual's privacy. Traditional methods like blurring and pixelation can largely remove identifying features, but these techniques significantly degrade image quality and are vulnerable to deep reconstruction attacks. Generative models have emerged as a promising solution for anonymizing faces while preserving a natural appearance. However, many still face limitations in visual quality and often overlook the potential to recover the original face from the anonymized version, which can be valuable in specific contexts such as image forensics. This paper proposes a novel framework named iFADIT, an acronym for Invertible Face Anonymization via Disentangled Identity Transform. The framework features a disentanglement architecture coupled with a secure flow-based model: the former decouples identity information from non-identifying attributes, while the latter transforms the decoupled identity into an anonymized version in an invertible manner controlled by a secret key. The anonymized face can then be reconstructed based on a pre-trained StyleGAN that ensures high image quality and realistic facial details. Recovery of the original face (aka de-anonymization) is possible upon the availability of the matching secret, by inverting the anonymization process based on the same set of model parameters. Furthermore, a dedicated secret-key mechanism along with a dual-phase training strategy is devised to ensure the desired properties of face anonymization. Qualitative and quantitative experiments demonstrate the superiority of the proposed approach in anonymity, reversibility, security, diversity, and interpretability over competing methods.
♻ ☆ Go-with-the-Flow: Motion-Controllable Video Diffusion Models Using Real-Time Warped Noise
Generative modeling aims to transform random noise into structured outputs. In this work, we enhance video diffusion models by allowing motion control via structured latent noise sampling. This is achieved by just a change in data: we pre-process training videos to yield structured noise. Consequently, our method is agnostic to diffusion model design, requiring no changes to model architectures or training pipelines. Specifically, we propose a novel noise warping algorithm, fast enough to run in real time, that replaces random temporal Gaussianity with correlated warped noise derived from optical flow fields, while preserving the spatial Gaussianity. The efficiency of our algorithm enables us to fine-tune modern video diffusion base models using warped noise with minimal overhead, and provide a one-stop solution for a wide range of user-friendly motion control: local object motion control, global camera movement control, and motion transfer. The harmonization between temporal coherence and spatial Gaussianity in our warped noise leads to effective motion control while maintaining per-frame pixel quality. Extensive experiments and user studies demonstrate the advantages of our method, making it a robust and scalable approach for controlling motion in video diffusion models. Video results are available on our webpage: https://vgenai-netflix-eyeline-research.github.io/Go-with-the-Flow. Source code and model checkpoints are available on GitHub: https://github.com/VGenAI-Netflix-Eyeline-Research/Go-with-the-Flow.
♻ ☆ Point-PRC: A Prompt Learning Based Regulation Framework for Generalizable Point Cloud Analysis NeurIPS 2024
This paper investigates the 3D domain generalization (3DDG) ability of large 3D models based on prevalent prompt learning. Recent works demonstrate the performances of 3D point cloud recognition can be boosted remarkably by parameter-efficient prompt tuning. However, we observe that the improvement on downstream tasks comes at the expense of a severe drop in 3D domain generalization. To resolve this challenge, we present a comprehensive regulation framework that allows the learnable prompts to actively interact with the well-learned general knowledge in large 3D models to maintain good generalization. Specifically, the proposed framework imposes multiple explicit constraints on the prompt learning trajectory by maximizing the mutual agreement between task-specific predictions and task-agnostic knowledge. We design the regulation framework as a plug-and-play module to embed into existing representative large 3D models. Surprisingly, our method not only realizes consistently increasing generalization ability but also enhances task-specific 3D recognition performances across various 3DDG benchmarks by a clear margin. Considering the lack of study and evaluation on 3DDG, we also create three new benchmarks, namely base-to-new, cross-dataset and few-shot generalization benchmarks, to enrich the field and inspire future research. Code and benchmarks are available at \url{https://github.com/auniquesun/Point-PRC}.
comment: 5 figures, 14 tables; accepted by NeurIPS 2024
♻ ☆ CMRxRecon2024: A Multi-Modality, Multi-View K-Space Dataset Boosting Universal Machine Learning for Accelerated Cardiac MRI
Cardiac magnetic resonance imaging (MRI) has emerged as a clinically gold-standard technique for diagnosing cardiac diseases, thanks to its ability to provide diverse information with multiple modalities and anatomical views. Accelerated cardiac MRI is highly expected to achieve time-efficient and patient-friendly imaging, and then advanced image reconstruction approaches are required to recover high-quality, clinically interpretable images from undersampled measurements. However, the lack of publicly available cardiac MRI k-space dataset in terms of both quantity and diversity has severely hindered substantial technological progress, particularly for data-driven artificial intelligence. Here, we provide a standardized, diverse, and high-quality CMRxRecon2024 dataset to facilitate the technical development, fair evaluation, and clinical transfer of cardiac MRI reconstruction approaches, towards promoting the universal frameworks that enable fast and robust reconstructions across different cardiac MRI protocols in clinical practice. To the best of our knowledge, the CMRxRecon2024 dataset is the largest and most protocal-diverse publicly available cardiac k-space dataset. It is acquired from 330 healthy volunteers, covering commonly used modalities, anatomical views, and acquisition trajectories in clinical cardiac MRI workflows. Besides, an open platform with tutorials, benchmarks, and data processing tools is provided to facilitate data usage, advanced method development, and fair performance evaluation.
comment: 23 pages, 3 figures, 2 tables
♻ ☆ VLG-CBM: Training Concept Bottleneck Models with Vision-Language Guidance NeurIPS 2024
Concept Bottleneck Models (CBMs) provide interpretable prediction by introducing an intermediate Concept Bottleneck Layer (CBL), which encodes human-understandable concepts to explain models' decision. Recent works proposed to utilize Large Language Models and pre-trained Vision-Language Models to automate the training of CBMs, making it more scalable and automated. However, existing approaches still fall short in two aspects: First, the concepts predicted by CBL often mismatch the input image, raising doubts about the faithfulness of interpretation. Second, it has been shown that concept values encode unintended information: even a set of random concepts could achieve comparable test accuracy to state-of-the-art CBMs. To address these critical limitations, in this work, we propose a novel framework called Vision-Language-Guided Concept Bottleneck Model (VLG-CBM) to enable faithful interpretability with the benefits of boosted performance. Our method leverages off-the-shelf open-domain grounded object detectors to provide visually grounded concept annotation, which largely enhances the faithfulness of concept prediction while further improving the model performance. In addition, we propose a new metric called Number of Effective Concepts (NEC) to control the information leakage and provide better interpretability. Extensive evaluations across five standard benchmarks show that our method, VLG-CBM, outperforms existing methods by at least 4.27% and up to 51.09% on Accuracy at NEC=5 (denoted as ANEC-5), and by at least 0.45% and up to 29.78% on average accuracy (denoted as ANEC-avg), while preserving both faithfulness and interpretability of the learned concepts as demonstrated in extensive experiments.
comment: Appeared at NeurIPS 2024
♻ ☆ Synthesizing Forestry Images Conditioned on Plant Phenotype Using a Generative Adversarial Network
Plant phenology and phenotype prediction using remote sensing data are increasingly gaining attention within the plant science community as a promising approach to enhance agricultural productivity. This work focuses on generating synthetic forestry images that satisfy certain phenotypic attributes, viz. canopy greenness. We harness a Generative Adversarial Network (GAN) to synthesize biologically plausible and phenotypically stable forestry images conditioned on the greenness of vegetation (a continuous attribute) over a specific region of interest, describing a particular vegetation type in a mixed forest. The training data is based on the automated digital camera imagery provided by the National Ecological Observatory Network (NEON) and processed by the PhenoCam Network. Our method helps render the appearance of forest sites specific to a greenness value. The synthetic images are subsequently utilized to predict another phenotypic attribute, viz., redness of plants. The quality of the synthetic images is assessed using the Structural SIMilarity (SSIM) index and Fr\'echet Inception Distance (FID). Further, the greenness and redness indices of the synthetic images are compared against those of the original images using Root Mean Squared Percentage Error (RMSPE) to evaluate their accuracy and integrity. The generalizability and scalability of our proposed GAN model are established by effectively transforming it to generate synthetic images for other forest sites and vegetation types. From a broader perspective, this approach could be leveraged to visualize forestry based on different phenotypic attributes in the context of various environmental parameters.
comment: Accepted to Pattern Recognition journal
♻ ☆ BRIGHT-VO: Brightness-Guided Hybrid Transformer for Visual Odometry with Multi-modality Refinement Module
Visual odometry (VO) plays a crucial role in autonomous driving, robotic navigation, and other related tasks by estimating the position and orientation of a camera based on visual input. Significant progress has been made in data-driven VO methods, particularly those leveraging deep learning techniques to extract image features and estimate camera poses. However, these methods often struggle in low-light conditions because of the reduced visibility of features and the increased difficulty of matching keypoints. To address this limitation, we introduce BrightVO, a novel VO model based on Transformer architecture, which not only performs front-end visual feature extraction, but also incorporates a multi-modality refinement module in the back-end that integrates Inertial Measurement Unit (IMU) data. Using pose graph optimization, this module iteratively refines pose estimates to reduce errors and improve both accuracy and robustness. Furthermore, we create a synthetic low-light dataset, KiC4R, which includes a variety of lighting conditions to facilitate the training and evaluation of VO frameworks in challenging environments. Experimental results demonstrate that BrightVO achieves state-of-the-art performance on both the KiC4R dataset and the KITTI benchmarks. Specifically, it provides an average improvement of 20% in pose estimation accuracy in normal outdoor environments and 259% in low-light conditions, outperforming existing methods. For widespread use and further development, the research work is fully open-source at https://github.com/Anastasiawd/BrightVO.
comment: We have identified significant issues in the methodology and data analysis that impact the validity of our conclusions
♻ ☆ A General Framework for Inference-time Scaling and Steering of Diffusion Models
Diffusion models produce impressive results in modalities ranging from images and video to protein design and text. However, generating samples with user-specified properties remains a challenge. Recent research proposes fine-tuning models to maximize rewards that capture desired properties, but these methods require expensive training and are prone to mode collapse. In this work, we propose Feynman Kac (FK) steering, an inference-time framework for steering diffusion models with reward functions. FK steering works by sampling a system of multiple interacting diffusion processes, called particles, and resampling particles at intermediate steps based on scores computed using functions called potentials. Potentials are defined using rewards for intermediate states and are selected such that a high value indicates that the particle will yield a high-reward sample. We explore various choices of potentials, intermediate rewards, and samplers. We evaluate FK steering on text-to-image and text diffusion models. For steering text-to-image models with a human preference reward, we find that FK steering a 0.8B parameter model outperforms a 2.6B parameter fine-tuned model on prompt fidelity, with faster sampling and no training. For steering text diffusion models with rewards for text quality and specific text attributes, we find that FK steering generates lower perplexity, more linguistically acceptable outputs and enables gradient-free control of attributes like toxicity. Our results demonstrate that inference-time scaling and steering of diffusion models, even with off-the-shelf rewards, can provide significant sample quality gains and controllability benefits. Code is available at https://github.com/zacharyhorvitz/Fk-Diffusion-Steering .
♻ ☆ DiffMesh: A Motion-aware Diffusion Framework for Human Mesh Recovery from Videos WACV 2025
Human mesh recovery (HMR) provides rich human body information for various real-world applications. While image-based HMR methods have achieved impressive results, they often struggle to recover humans in dynamic scenarios, leading to temporal inconsistencies and non-smooth 3D motion predictions due to the absence of human motion. In contrast, video-based approaches leverage temporal information to mitigate this issue. In this paper, we present DiffMesh, an innovative motion-aware Diffusion-like framework for video-based HMR. DiffMesh establishes a bridge between diffusion models and human motion, efficiently generating accurate and smooth output mesh sequences by incorporating human motion within the forward process and reverse process in the diffusion model. Extensive experiments are conducted on the widely used datasets (Human3.6M \cite{h36m_pami} and 3DPW \cite{pw3d2018}), which demonstrate the effectiveness and efficiency of our DiffMesh. Visual comparisons in real-world scenarios further highlight DiffMesh's suitability for practical applications.
comment: WACV 2025
♻ ☆ Towards Balanced Continual Multi-Modal Learning in Human Pose Estimation
3D human pose estimation (3D HPE) has emerged as a prominent research topic, particularly in the realm of RGB-based methods. However, RGB images are susceptible to limitations such as sensitivity to lighting conditions and potential user discomfort. Consequently, multi-modal sensing, which leverages non-intrusive sensors, is gaining increasing attention. Nevertheless, multi-modal 3D HPE still faces challenges, including modality imbalance and the imperative for continual learning. In this work, we introduce a novel balanced continual multi-modal learning method for 3D HPE, which harnesses the power of RGB, LiDAR, mmWave, and WiFi. Specifically, we propose a Shapley value-based contribution algorithm to quantify the contribution of each modality and identify modality imbalance. To address this imbalance, we employ a re-learning strategy. Furthermore, recognizing that raw data is prone to noise contamination, we develop a novel denoising continual learning approach. This approach incorporates a noise identification and separation module to mitigate the adverse effects of noise and collaborates with the balanced learning strategy to enhance optimization. Additionally, an adaptive EWC mechanism is employed to alleviate catastrophic forgetting. We conduct extensive experiments on the widely-adopted multi-modal dataset, MM-Fi, which demonstrate the superiority of our approach in boosting 3D pose estimation and mitigating catastrophic forgetting in complex scenarios. We will release our codes.
♻ ☆ Collaboration in Immersive Environments: Challenges and Solutions
Virtual Reality (VR) and Augmented Reality (AR) tools have been applied in all engineering fields in order to avoid the use of physical prototypes, to train in high-risk situations, and to interpret real or simulated results. In order to complete a shared task or assign tasks to the agents in such immersive environments, collaboration or Shared Cooperative Activities are a necessity. Collaboration in immersive environments is an emerging field of research that aims to study and enhance the ways in which people interact and work together in Virtual and Augmented Reality settings. Collaboration in immersive environments is a complex process that involves different factors such as communication, coordination, and social presence. This paper provides an overview of the current state of research on collaboration in immersive environments. It discusses the different types of immersive environments, including VR and AR, and the different forms of collaboration that can occur in these environments. The paper also highlights the challenges and limitations of collaboration in immersive environments, such as the lack of physical cues, cost and usability and the need for further research in this area. Overall, collaboration in immersive environments is a promising field with a wide range of potential applications, from education to industry, and it can benefit both individuals and groups by enhancing their ability to work together effectively.
comment: Added new references in Networking section
♻ ☆ Rethinking Pre-Trained Feature Extractor Selection in Multiple Instance Learning for Whole Slide Image Classification
Multiple instance learning (MIL) has become a preferred method for gigapixel whole slide image (WSI) classification without requiring patch-level annotations. Current MIL research primarily relies on embedding-based approaches, which extract patch features using a pre-trained feature extractor and aggregate them for slide-level prediction. Despite the critical role of feature extraction, there is limited guidance on selecting optimal feature extractors to maximize WSI performance. This study addresses this gap by systematically evaluating MIL feature extractors across three dimensions: pre-training dataset, backbone model, and pre-training method. Extensive experiments were conducted on two public WSI datasets (TCGA-NSCLC and Camelyon16) using four state-of-the-art (SOTA) MIL models. Our findings reveal that: 1) selecting a robust self-supervised learning (SSL) method has a greater impact on performance than relying solely on an in-domain pre-training dataset; 2) prioritizing Transformer-based backbones with deeper architectures over CNN-based models; and 3) using larger, more diverse pre-training datasets significantly enhances classification outcomes. We hope that these insights can provide practical guidance for optimizing WSI classification and explain the reasons behind the performance advantages of the current SOTA pathology foundation models. Furthermore, this work may inform the development of more effective pathology foundation models. Our code is publicly available at https://github.com/bryanwong17/MIL-Feature-Extractor-Selection
comment: Accepted to IEEE International Symposium on Biomedical Imaging (ISBI) 2025
♻ ☆ PhysMamba: State Space Duality Model for Remote Physiological Measurement
Remote Photoplethysmography (rPPG) enables non-contact physiological signal extraction from facial videos, offering applications in psychological state analysis, medical assistance, and anti-face spoofing. However, challenges such as motion artifacts, lighting variations, and noise limit its real-world applicability. To address these issues, we propose PhysMamba, a novel dual-pathway time-frequency interaction model based on Synergistic State Space Duality (SSSD), which for the first time integrates state space models with attention mechanisms in a dual-branch framework. Combined with a Multi-Scale Query (MQ) mechanism, PhysMamba achieves efficient information exchange and enhanced feature representation, ensuring robustness under noisy and dynamic conditions. Experiments on PURE, UBFC-rPPG, and MMPD datasets demonstrate that PhysMamba outperforms state-of-the-art methods, offering superior accuracy and generalization. This work lays a strong foundation for practical applications in non-contact health monitoring, including real-time remote patient care.
♻ ☆ Enhanced Masked Image Modeling to Avoid Model Collapse on Multi-modal MRI Datasets
Multi-modal magnetic resonance imaging (MRI) provides information of lesions for computer-aided diagnosis from different views. Deep learning algorithms are suitable for identifying specific anatomical structures, segmenting lesions, and classifying diseases. Manual labels are limited due to the high expense, which hinders further improvement of accuracy. Self-supervised learning, particularly masked image modeling (MIM), has shown promise in utilizing unlabeled data. However, we spot model collapse when applying MIM to multi-modal MRI datasets. The performance of downstream tasks does not see any improvement following the collapsed model. To solve model collapse, we analyze and address it in two types: complete collapse and dimensional collapse. We find complete collapse occurs because the collapsed loss value in multi-modal MRI datasets falls below the normally converged loss value. Based on this, the hybrid mask pattern (HMP) masking strategy is introduced to elevate the collapsed loss above the normally converged loss value and avoid complete collapse. Additionally, we reveal that dimensional collapse stems from insufficient feature uniformity in MIM. We mitigate dimensional collapse by introducing the pyramid barlow twins (PBT) module as an explicit regularization method. Overall, we construct the enhanced MIM (E-MIM) with HMP and PBT module to avoid model collapse multi-modal MRI. Experiments are conducted on three multi-modal MRI datasets to validate the effectiveness of our approach in preventing both types of model collapse. By preventing model collapse, the training of the model becomes more stable, resulting in a decent improvement in performance for segmentation and classification tasks. The code is available at https://github.com/LinxuanHan/E-MIM.
comment: This work has been submitted to the lEEE for possible publication. copyright may be transferred without notice, after which this version may no longer be accessible
♻ ☆ CryoBench: Diverse and challenging datasets for the heterogeneity problem in cryo-EM NeurIPS 2024
Cryo-electron microscopy (cryo-EM) is a powerful technique for determining high-resolution 3D biomolecular structures from imaging data. Its unique ability to capture structural variability has spurred the development of heterogeneous reconstruction algorithms that can infer distributions of 3D structures from noisy, unlabeled imaging data. Despite the growing number of advanced methods, progress in the field is hindered by the lack of standardized benchmarks with ground truth information and reliable validation metrics. Here, we introduce CryoBench, a suite of datasets, metrics, and benchmarks for heterogeneous reconstruction in cryo-EM. CryoBench includes five datasets representing different sources of heterogeneity and degrees of difficulty. These include conformational heterogeneity generated from designed motions of antibody complexes or sampled from a molecular dynamics simulation, as well as compositional heterogeneity from mixtures of ribosome assembly states or 100 common complexes present in cells. We then analyze state-of-the-art heterogeneous reconstruction tools, including neural and non-neural methods, assess their sensitivity to noise, and propose new metrics for quantitative evaluation. We hope that CryoBench will be a foundational resource for accelerating algorithmic development and evaluation in the cryo-EM and machine learning communities. Project page: https://cryobench.cs.princeton.edu.
comment: Accepted by NeurIPS 2024 (Spotlight)
♻ ☆ Swin transformers are robust to distribution and concept drift in endoscopy-based longitudinal rectal cancer assessment SP
Endoscopic images are used at various stages of rectal cancer treatment starting from cancer screening, diagnosis, during treatment to assess response and toxicity from treatments such as colitis, and at follow up to detect new tumor or local regrowth (LR). However, subjective assessment is highly variable and can underestimate the degree of response in some patients, subjecting them to unnecessary surgery, or overestimate response that places patients at risk of disease spread. Advances in deep learning has shown the ability to produce consistent and objective response assessment for endoscopic images. However, methods for detecting cancers, regrowth, and monitoring response during the entire course of patient treatment and follow-up are lacking. This is because, automated diagnosis and rectal cancer response assessment requires methods that are robust to inherent imaging illumination variations and confounding conditions (blood, scope, blurring) present in endoscopy images as well as changes to the normal lumen and tumor during treatment. Hence, a hierarchical shifted window (Swin) transformer was trained to distinguish rectal cancer from normal lumen using endoscopy images. Swin as well as two convolutional (ResNet-50, WideResNet-50), and vision transformer (ViT) models were trained and evaluated on follow-up longitudinal images to detect LR on private dataset as well as on out-of-distribution (OOD) public colonoscopy datasets to detect pre/non-cancerous polyps. Color shifts were applied using optimal transport to simulate distribution shifts. Swin and ResNet models were similarly accurate in the in-distribution dataset. Swin was more accurate than other methods (follow-up: 0.84, OOD: 0.83) even when subject to color shifts (follow-up: 0.83, OOD: 0.87), indicating capability to provide robust performance for longitudinal cancer assessment.
comment: The work has been accepted for publication in 2024 SPIE Medical Imaging conference proceedings
♻ ☆ TakuNet: an Energy-Efficient CNN for Real-Time Inference on Embedded UAV systems in Emergency Response Scenarios WACV
Designing efficient neural networks for embedded devices is a critical challenge, particularly in applications requiring real-time performance, such as aerial imaging with drones and UAVs for emergency responses. In this work, we introduce TakuNet, a novel light-weight architecture which employs techniques such as depth-wise convolutions and an early downsampling stem to reduce computational complexity while maintaining high accuracy. It leverages dense connections for fast convergence during training and uses 16-bit floating-point precision for optimization on embedded hardware accelerators. Experimental evaluation on two public datasets shows that TakuNet achieves near-state-of-the-art accuracy in classifying aerial images of emergency situations, despite its minimal parameter count. Real-world tests on embedded devices, namely Jetson Orin Nano and Raspberry Pi, confirm TakuNet's efficiency, achieving more than 650 fps on the 15W Jetson board, making it suitable for real-time AI processing on resource-constrained platforms and advancing the applicability of drones in emergency scenarios. The code and implementation details are publicly released.
comment: This paper has been accepted at WACVW 2025, which will take place on 28/02/2025. The official conference proceedings have not yet been published at the time of submission to arXiv. The final version of the paper, incorporating any changes based on feedback received during the conference, will be included in the proceedings once they are made available
♻ ☆ AgRegNet: A Deep Regression Network for Flower and Fruit Density Estimation, Localization, and Counting in Orchards
One of the major challenges for the agricultural industry today is the uncertainty in manual labor availability and the associated cost. Automated flower and fruit density estimation, localization, and counting could help streamline harvesting, yield estimation, and crop-load management strategies such as flower and fruitlet thinning. This article proposes a deep regression-based network, AgRegNet, to estimate density, count, and location of flower and fruit in tree fruit canopies without explicit object detection or polygon annotation. Inspired by popular U-Net architecture, AgRegNet is a U-shaped network with an encoder-to-decoder skip connection and modified ConvNeXt-T as an encoder feature extractor. AgRegNet can be trained based on information from point annotation and leverages segmentation information and attention modules (spatial and channel) to highlight relevant flower and fruit features while suppressing non-relevant background features. Experimental evaluation in apple flower and fruit canopy images under an unstructured orchard environment showed that AgRegNet achieved promising accuracy as measured by Structural Similarity Index (SSIM), percentage Mean Absolute Error (pMAE) and mean Average Precision (mAP) to estimate flower and fruit density, count, and centroid location, respectively. Specifically, the SSIM, pMAE, and mAP values for flower images were 0.938, 13.7%, and 0.81, respectively. For fruit images, the corresponding values were 0.910, 5.6%, and 0.93. Since the proposed approach relies on information from point annotation, it is suitable for sparsely and densely located objects. This simplified technique will be highly applicable for growers to accurately estimate yields and decide on optimal chemical and mechanical flower thinning practices.
comment: Published in Computers and Electronics in Agriculture
Information Retrieval 22
☆ Enhancing Lexicon-Based Text Embeddings with Large Language Models
Recent large language models (LLMs) have demonstrated exceptional performance on general-purpose text embedding tasks. While dense embeddings have dominated related research, we introduce the first Lexicon-based EmbeddiNgS (LENS) leveraging LLMs that achieve competitive performance on these tasks. Regarding the inherent tokenization redundancy issue and unidirectional attention limitations in traditional causal LLMs, LENS consolidates the vocabulary space through token embedding clustering, and investigates bidirectional attention and various pooling strategies. Specifically, LENS simplifies lexicon matching by assigning each dimension to a specific token cluster, where semantically similar tokens are grouped together, and unlocking the full potential of LLMs through bidirectional attention. Extensive experiments demonstrate that LENS outperforms dense embeddings on the Massive Text Embedding Benchmark (MTEB), delivering compact feature representations that match the sizes of dense counterparts. Notably, combining LENSE with dense embeddings achieves state-of-the-art performance on the retrieval subset of MTEB (i.e. BEIR).
☆ Metric Learning with Progressive Self-Distillation for Audio-Visual Embedding Learning ICASSP 2025
Metric learning projects samples into an embedded space, where similarities and dissimilarities are quantified based on their learned representations. However, existing methods often rely on label-guided representation learning, where representations of different modalities, such as audio and visual data, are aligned based on annotated labels. This approach tends to underutilize latent complex features and potential relationships inherent in the distributions of audio and visual data that are not directly tied to the labels, resulting in suboptimal performance in audio-visual embedding learning. To address this issue, we propose a novel architecture that integrates cross-modal triplet loss with progressive self-distillation. Our method enhances representation learning by leveraging inherent distributions and dynamically refining soft audio-visual alignments -- probabilistic alignments between audio and visual data that capture the inherent relationships beyond explicit labels. Specifically, the model distills audio-visual distribution-based knowledge from annotated labels in a subset of each batch. This self-distilled knowledge is used t
comment: 5 pages, 3 figures, 2 tables. Accepted by ICASSP 2025
☆ Evaluating Conversational Recommender Systems with Large Language Models: A User-Centric Evaluation Framework
Conversational recommender systems (CRS) involve both recommendation and dialogue tasks, which makes their evaluation a unique challenge. Although past research has analyzed various factors that may affect user satisfaction with CRS interactions from the perspective of user studies, few evaluation metrics for CRS have been proposed. Recent studies have shown that LLMs can align with human preferences, and several LLM-based text quality evaluation measures have been introduced. However, the application of LLMs in CRS evaluation remains relatively limited. To address this research gap and advance the development of user-centric conversational recommender systems, this study proposes an automated LLM-based CRS evaluation framework, building upon existing research in human-computer interaction and psychology. The framework evaluates CRS from four dimensions: dialogue behavior, language expression, recommendation items, and response content. We use this framework to evaluate four different conversational recommender systems.
☆ Evaluating LLM Abilities to Understand Tabular Electronic Health Records: A Comprehensive Study of Patient Data Extraction and Retrieval ECIR
Electronic Health Record (EHR) tables pose unique challenges among which is the presence of hidden contextual dependencies between medical features with a high level of data dimensionality and sparsity. This study presents the first investigation into the abilities of LLMs to comprehend EHRs for patient data extraction and retrieval. We conduct extensive experiments using the MIMICSQL dataset to explore the impact of the prompt structure, instruction, context, and demonstration, of two backbone LLMs, Llama2 and Meditron, based on task performance. Through quantitative and qualitative analyses, our findings show that optimal feature selection and serialization methods can enhance task performance by up to 26.79% compared to naive approaches. Similarly, in-context learning setups with relevant example selection improve data extraction performance by 5.95%. Based on our study findings, we propose guidelines that we believe would help the design of LLM-based models to support health search.
comment: To be published as full paper in the Proceedings of the European Conference on Information Retrieval (ECIR) 2025. Preprint
☆ A Multi-tiered Solution for Personalized Baggage Item Recommendations using FastText and Association Rule Mining
This paper introduces an intelligent baggage item recommendation system to optimize packing for air travelers by providing tailored suggestions based on specific travel needs and destinations. Using FastText word embeddings and Association Rule Mining (ARM), the system ensures efficient luggage space utilization, compliance with weight limits, and an enhanced travel experience. The methodology comprises four phases: (1) data collection and preprocessing with pre-trained FastText embeddings for text representation and similarity scoring (2) a content-based recommendation system enriched by user search history (3) application of ARM to user interactions to uncover meaningful item associations and (4) integration of FastText and ARM for accurate, personalized recommendations. Performance is evaluated using metrics such as coverage, support, confidence, lift, leverage, and conviction. Results demonstrate the system's effectiveness in providing relevant suggestions, improving customer satisfaction, and simplifying the packing process. These insights advance personalized recommendations, targeted marketing, and product optimization in air travel and beyond.
☆ Style4Rec: Enhancing Transformer-based E-commerce Recommendation Systems with Style and Shopping Cart Information
Understanding users' product preferences is essential to the efficacy of a recommendation system. Precision marketing leverages users' historical data to discern these preferences and recommends products that align with them. However, recent browsing and purchase records might better reflect current purchasing inclinations. Transformer-based recommendation systems have made strides in sequential recommendation tasks, but they often fall short in utilizing product image style information and shopping cart data effectively. In light of this, we propose Style4Rec, a transformer-based e-commerce recommendation system that harnesses style and shopping cart information to enhance existing transformer-based sequential product recommendation systems. Style4Rec represents a significant step forward in personalized e-commerce recommendations, outperforming benchmarks across various evaluation metrics. Style4Rec resulted in notable improvements: HR@5 increased from 0.681 to 0.735, NDCG@5 increased from 0.594 to 0.674, and MRR@5 increased from 0.559 to 0.654. We tested our model using an e-commerce dataset from our partnering company and found that it exceeded established transformer-based sequential recommendation benchmarks across various evaluation metrics. Thus, Style4Rec presents a significant step forward in personalized e-commerce recommendation systems.
comment: 9 pages, 6 images, 4 tables
☆ To Retrieve or Not to Retrieve? Uncertainty Detection for Dynamic Retrieval Augmented Generation
Retrieval-Augmented Generation equips large language models with the capability to retrieve external knowledge, thereby mitigating hallucinations by incorporating information beyond the model's intrinsic abilities. However, most prior works have focused on invoking retrieval deterministically, which makes it unsuitable for tasks such as long-form question answering. Instead, dynamically performing retrieval by invoking it only when the underlying LLM lacks the required knowledge can be more efficient. In this context, we delve deeper into the question, "To Retrieve or Not to Retrieve?" by exploring multiple uncertainty detection methods. We evaluate these methods for the task of long-form question answering, employing dynamic retrieval, and present our comparisons. Our findings suggest that uncertainty detection metrics, such as Degree Matrix Jaccard and Eccentricity, can reduce the number of retrieval calls by almost half, with only a slight reduction in question-answering accuracy.
☆ Fuzzy Integration of Data Lake Tables
Data integration is an important step in any data science pipeline where the objective is to unify the information available in different datasets for comprehensive analysis. Full Disjunction, which is an associative extension of the outer join operator, has been shown to be an effective operator for integrating datasets. It fully preserves and combines the available information. Existing Full Disjunction algorithms only consider the equi-join scenario where only tuples having the same value on joining columns are integrated. This, however, does not realistically represent an open data scenario, where datasets come from diverse sources with inconsistent values (e.g., synonyms, abbreviations, etc.) and with limited metadata. So, joining just on equal values severely limits the ability of Full Disjunction to fully combine datasets. Thus, in this work, we propose an extension of Full Disjunction to also account for "fuzzy" matches among tuples. We present a novel data-driven approach to enable the joining of approximate or fuzzy matches within Full Disjunction. Experimentally, we show that fuzzy Full Disjunction does not add significant time overhead over a state-of-the-art Full Disjunction implementation and also that it enhances the integration effectiveness.
☆ Semi-Supervised Image-Based Narrative Extraction: A Case Study with Historical Photographic Records ECIR 2025
This paper presents a semi-supervised approach to extracting narratives from historical photographic records using an adaptation of the narrative maps algorithm. We extend the original unsupervised text-based method to work with image data, leveraging deep learning techniques for visual feature extraction and similarity computation. Our method is applied to the ROGER dataset, a collection of photographs from the 1928 Sacambaya Expedition in Bolivia captured by Robert Gerstmann. We compare our algorithmically extracted visual narratives with expert-curated timelines of varying lengths (5 to 30 images) to evaluate the effectiveness of our approach. In particular, we use the Dynamic Time Warping (DTW) algorithm to match the extracted narratives with the expert-curated baseline. In addition, we asked an expert on the topic to qualitatively evaluate a representative example of the resulting narratives. Our findings show that the narrative maps approach generally outperforms random sampling for longer timelines (10+ images, p < 0.05), with expert evaluation confirming the historical accuracy and coherence of the extracted narratives. This research contributes to the field of computational analysis of visual cultural heritage, offering new tools for historians, archivists, and digital humanities scholars to explore and understand large-scale image collections. The method's ability to generate meaningful narratives from visual data opens up new possibilities for the study and interpretation of historical events through photographic evidence.
comment: This paper has been accepted for oral presentation in the findings track of the 47th European Conference on Information Retrieval (ECIR 2025). Source code and experiments are available at https://github.com/faustogerman/ROGER-Concept-Narratives
☆ Empirical Evaluation of Embedding Models in the Context of Text Classification in Document Review in Construction Delay Disputes
Text embeddings are numerical representations of text data, where words, phrases, or entire documents are converted into vectors of real numbers. These embeddings capture semantic meanings and relationships between text elements in a continuous vector space. The primary goal of text embeddings is to enable the processing of text data by machine learning models, which require numerical input. Numerous embedding models have been developed for various applications. This paper presents our work in evaluating different embeddings through a comprehensive comparative analysis of four distinct models, focusing on their text classification efficacy. We employ both K-Nearest Neighbors (KNN) and Logistic Regression (LR) to perform binary classification tasks, specifically determining whether a text snippet is associated with 'delay' or 'not delay' within a labeled dataset. Our research explores the use of text snippet embeddings for training supervised text classification models to identify delay-related statements during the document review process of construction delay disputes. The results of this study highlight the potential of embedding models to enhance the efficiency and accuracy of document analysis in legal contexts, paving the way for more informed decision-making in complex investigative scenarios.
☆ Conversational Text Extraction with Large Language Models Using Retrieval-Augmented Systems
This study introduces a system leveraging Large Language Models (LLMs) to extract text and enhance user interaction with PDF documents via a conversational interface. Utilizing Retrieval-Augmented Generation (RAG), the system provides informative responses to user inquiries while highlighting relevant passages within the PDF. Upon user upload, the system processes the PDF, employing sentence embeddings to create a document-specific vector store. This vector store enables efficient retrieval of pertinent sections in response to user queries. The LLM then engages in a conversational exchange, using the retrieved information to extract text and generate comprehensive, contextually aware answers. While our approach demonstrates competitive ROUGE values compared to existing state-of-the-art techniques for text extraction and summarization, we acknowledge that further qualitative evaluation is necessary to fully assess its effectiveness in real-world applications. The proposed system gives competitive ROUGE values as compared to existing state-of-the-art techniques for text extraction and summarization, thus offering a valuable tool for researchers, students, and anyone seeking to efficiently extract knowledge and gain insights from documents through an intuitive question-answering interface.
☆ OmniThink: Expanding Knowledge Boundaries in Machine Writing through Thinking
Machine writing with large language models often relies on retrieval-augmented generation. However, these approaches remain confined within the boundaries of the model's predefined scope, limiting the generation of content with rich information. Specifically, vanilla-retrieved information tends to lack depth, utility, and suffers from redundancy, which negatively impacts the quality of generated articles, leading to shallow, repetitive, and unoriginal outputs. To address these issues, we propose OmniThink, a machine writing framework that emulates the human-like process of iterative expansion and reflection. The core idea behind OmniThink is to simulate the cognitive behavior of learners as they progressively deepen their knowledge of the topics. Experimental results demonstrate that OmniThink improves the knowledge density of generated articles without compromising metrics such as coherence and depth. Human evaluations and expert feedback further highlight the potential of OmniThink to address real-world challenges in the generation of long-form articles.
☆ Lossless Compression of Vector IDs for Approximate Nearest Neighbor Search
Approximate nearest neighbor search for vectors relies on indexes that are most often accessed from RAM. Therefore, storage is the factor limiting the size of the database that can be served from a machine. Lossy vector compression, i.e., embedding quantization, has been applied extensively to reduce the size of indexes. However, for inverted file and graph-based indices, auxiliary data such as vector ids and links (edges) can represent most of the storage cost. We introduce and evaluate lossless compression schemes for these cases. These approaches are based on asymmetric numeral systems or wavelet trees that exploit the fact that the ordering of ids is irrelevant within the data structures. In some settings, we are able to compress the vector ids by a factor 7, with no impact on accuracy or search runtime. On billion-scale datasets, this results in a reduction of 30% of the index size. Furthermore, we show that for some datasets, these methods can also compress the quantized vector codes losslessly, by exploiting sub-optimalities in the original quantization algorithm. The source code for our approach available at https://github.com/facebookresearch/vector_db_id_compression.
♻ ☆ Algorithmic Collective Action in Recommender Systems: Promoting Songs by Reordering Playlists NeurIPS 2024
We investigate algorithmic collective action in transformer-based recommender systems. Our use case is a music streaming platform where a collective of fans aims to promote the visibility of an underrepresented artist by strategically placing one of their songs in the existing playlists they control. We introduce two easily implementable strategies to select the position at which to insert the song with the goal to boost recommendations at test time. The strategies exploit statistical properties of the learner by targeting discontinuities in the recommendations, and leveraging the long-tail nature of song distributions. We evaluate the efficacy of our strategies using a publicly available recommender system model released by a major music streaming platform. Our findings reveal that through strategic placement even small collectives (controlling less than 0.01\% of the training data) can achieve up to $40\times$ more test time recommendations than an average song with the same number of training set occurrences. Focusing on the externalities of the strategy, we find that the recommendations of other songs are largely preserved, and the newly gained recommendations are distributed across various artists. Together, our findings demonstrate how carefully designed collective action strategies can be effective while not necessarily being adversarial.
comment: Published at NeurIPS 2024, camera-ready updates
♻ ☆ SPRec: Leveraging Self-Play to Debias Preference Alignment for Large Language Model-based Recommendations
Large language models (LLMs) have attracted significant attention in recommendation systems. Current LLM-based recommender systems primarily rely on supervised fine-tuning (SFT) to train the model for recommendation tasks. However, relying solely on positive samples limits the model's ability to align with user satisfaction and expectations. To address this, researchers have introduced Direct Preference Optimization (DPO), which explicitly aligns recommendations with user preferences using offline preference ranking data. Despite its advantages, our theoretical analysis reveals that DPO inherently biases the model towards a few items, exacerbating the filter bubble issue and ultimately degrading user experience. In this paper, we propose SPRec, a novel self-play recommendation framework designed to mitigate over-recommendation and improve fairness without requiring additional data or manual intervention. In each self-play iteration, the model undergoes an SFT step followed by a DPO step, treating offline interaction data as positive samples and the predicted outputs from the previous iteration as negative samples. This effectively re-weights the DPO loss function using the model's logits, adaptively suppressing biased items. Extensive experiments on multiple real-world datasets demonstrate SPRec's effectiveness in enhancing recommendation accuracy and addressing fairness concerns. The implementation is available via https://github.com/RegionCh/SPRec
♻ ☆ Tapping the Potential of Large Language Models as Recommender Systems: A Comprehensive Framework and Empirical Analysis
Recently, Large Language Models~(LLMs) such as ChatGPT have showcased remarkable abilities in solving general tasks, demonstrating the potential for applications in recommender systems. To assess how effectively LLMs can be used in recommendation tasks, our study primarily focuses on employing LLMs as recommender systems through prompting engineering. We propose a general framework for utilizing LLMs in recommendation tasks, focusing on the capabilities of LLMs as recommenders. To conduct our analysis, we formalize the input of LLMs for recommendation into natural language prompts with two key aspects, and explain how our framework can be generalized to various recommendation scenarios. As for the use of LLMs as recommenders, we analyze the impact of public availability, tuning strategies, model architecture, parameter scale, and context length on recommendation results based on the classification of LLMs. As for prompt engineering, we further analyze the impact of four important components of prompts, \ie task descriptions, user interest modeling, candidate items construction and prompting strategies. In each section, we first define and categorize concepts in line with the existing literature. Then, we propose inspiring research questions followed by detailed experiments on two public datasets, in order to systematically analyze the impact of different factors on performance. Based on our empirical analysis, we finally summarize promising directions to shed lights on future research.
comment: 52 pages, under review
♻ ☆ Knowledge Retrieval Based on Generative AI
This study develops a question-answering system based on Retrieval-Augmented Generation (RAG) using Chinese Wikipedia and Lawbank as retrieval sources. Using TTQA and TMMLU+ as evaluation datasets, the system employs BGE-M3 for dense vector retrieval to obtain highly relevant search results and BGE-reranker to reorder these results based on query relevance. The most pertinent retrieval outcomes serve as reference knowledge for a Large Language Model (LLM), enhancing its ability to answer questions and establishing a knowledge retrieval system grounded in generative AI. The system's effectiveness is assessed through a two-stage evaluation: automatic and assisted performance evaluations. The automatic evaluation calculates accuracy by comparing the model's auto-generated labels with ground truth answers, measuring performance under standardized conditions without human intervention. The assisted performance evaluation involves 20 finance-related multiple-choice questions answered by 20 participants without financial backgrounds. Initially, participants answer independently. Later, they receive system-generated reference information to assist in answering, examining whether the system improves accuracy when assistance is provided. The main contributions of this research are: (1) Enhanced LLM Capability: By integrating BGE-M3 and BGE-reranker, the system retrieves and reorders highly relevant results, reduces hallucinations, and dynamically accesses authorized or public knowledge sources. (2) Improved Data Privacy: A customized RAG architecture enables local operation of the LLM, eliminating the need to send private data to external servers. This approach enhances data security, reduces reliance on commercial services, lowers operational costs, and mitigates privacy risks.
comment: 8 pages, 13 figures, 1 table
♻ ☆ Enhancing User Interest based on Stream Clustering and Memory Networks in Large-Scale Recommender Systems
Recommender Systems (RSs) provide personalized recommendation service based on user interest, which are widely used in various platforms. However, there are lots of users with sparse interest due to lacking consumption behaviors, which leads to poor recommendation results for them. This problem is widespread in large-scale RSs and is particularly difficult to address. To solve this problem, we propose a novel solution named User Interest Enhancement (UIE) which enhances user interest including user profile and user history behavior sequences using the enhancement vectors and personalized enhancement vector generated based on stream clustering and memory networks from different perspectives. UIE not only remarkably improves model performance on the users with sparse interest but also significantly enhance model performance on other users. UIE is an end-to-end solution which is easy to be implemented based on ranking model. Moreover, we expand our solution and apply similar methods to long-tail items, which also achieves excellent improvement. Furthermore, we conduct extensive offline and online experiments in a large-scale industrial RS. The results demonstrate that our model outperforms other models remarkably, especially for the users with sparse interest. Until now, UIE has been fully deployed in multiple large-scale RSs and achieved remarkable improvements.
♻ ☆ SSD4Rec: A Structured State Space Duality Model for Efficient Sequential Recommendation
Sequential recommendation methods are crucial in modern recommender systems for their remarkable capability to understand a user's changing interests based on past interactions. However, a significant challenge faced by current methods (e.g., RNN- or Transformer-based models) is to effectively and efficiently capture users' preferences by modeling long behavior sequences, which impedes their various applications like short video platforms where user interactions are numerous. Recently, an emerging architecture named Mamba, built on state space models (SSM) with efficient hardware-aware designs, has showcased the tremendous potential for sequence modeling, presenting a compelling avenue for addressing the challenge effectively. Inspired by this, we propose a novel generic and efficient sequential recommendation backbone, SSD4Rec, which explores the seamless adaptation of Mamba for sequential recommendations. Specifically, SSD4Rec marks the variable- and long-length item sequences with sequence registers and processes the item representations with bidirectional Structured State Space Duality (SSD) blocks. This not only allows for hardware-aware matrix multiplication but also empowers outstanding capabilities in variable-length and long-range sequence modeling. Extensive evaluations on four benchmark datasets demonstrate that the proposed model achieves state-of-the-art performance while maintaining near-linear scalability with user sequence length. Our code is publicly available at https://github.com/ZhangYifeng1995/SSD4Rec.
comment: Significant revisions have been implemented in our paper, particularly focusing on both the methodology and experimental sections
♻ ☆ Scenario-Wise Rec: A Multi-Scenario Recommendation Benchmark
Multi Scenario Recommendation (MSR) tasks, referring to building a unified model to enhance performance across all recommendation scenarios, have recently gained much attention. However, current research in MSR faces two significant challenges that hinder the field's development: the absence of uniform procedures for multi-scenario dataset processing, thus hindering fair comparisons, and most models being closed-sourced, which complicates comparisons with current SOTA models. Consequently, we introduce our benchmark, \textbf{Scenario-Wise Rec}, which comprises 6 public datasets and 12 benchmark models, along with a training and evaluation pipeline. Additionally, we validated the benchmark using an industrial advertising dataset, reinforcing its reliability and applicability in real-world scenarios. We aim for this benchmark to offer researchers valuable insights from prior work, enabling the development of novel models based on our benchmark and thereby fostering a collaborative research ecosystem in MSR. Our source code is also publicly available.
♻ ☆ Fusion Self-supervised Learning for Recommendation
Recommender systems are widely deployed in various web environments, and self-supervised learning (SSL) has recently attracted significant attention in this field. Contrastive learning (CL) stands out as a major SSL paradigm due to its robust ability to generate self-supervised signals. Mainstream graph contrastive learning (GCL)-based methods typically implement CL by creating contrastive views through various data augmentation techniques. Despite these methods are effective, we argue that there still exist several challenges. i) Data augmentation ($e.g.,$ discarding edges or adding noise) necessitates additional graph convolution (GCN) or modeling operations, which are highly time-consuming and potentially harm the embedding quality. ii) Existing CL-based methods use traditional CL objectives to capture self-supervised signals. However, few studies have explored obtaining CL objectives from more perspectives and have attempted to fuse the varying signals from these CL objectives to enhance recommendation performance. To overcome these challenges, we propose a Fusion Self-supervised Learning framework for recommendation. Specifically, instead of facilitating data augmentations, we use high-order information from GCN process to create contrastive views. Additionally, to integrate self-supervised signals from various CL objectives, we propose an advanced CL objective. By ensuring that positive pairs are distanced from negative samples derived from both contrastive views, we effectively fuse self-supervised signals from distinct CL objectives, thereby enhancing the mutual information between positive pairs. Experimental results on three public datasets demonstrate the superior recommendation performance and efficiency of HFGCL compared to the state-of-the-art baselines.
♻ ☆ Cold-Start Recommendation towards the Era of Large Language Models (LLMs): A Comprehensive Survey and Roadmap
Cold-start problem is one of the long-standing challenges in recommender systems, focusing on accurately modeling new or interaction-limited users or items to provide better recommendations. Due to the diversification of internet platforms and the exponential growth of users and items, the importance of cold-start recommendation (CSR) is becoming increasingly evident. At the same time, large language models (LLMs) have achieved tremendous success and possess strong capabilities in modeling user and item information, providing new potential for cold-start recommendations. However, the research community on CSR still lacks a comprehensive review and reflection in this field. Based on this, in this paper, we stand in the context of the era of large language models and provide a comprehensive review and discussion on the roadmap, related literature, and future directions of CSR. Specifically, we have conducted an exploration of the development path of how existing CSR utilizes information, from content features, graph relations, and domain information, to the world knowledge possessed by large language models, aiming to provide new insights for both the research and industrial communities on CSR. Related resources of cold-start recommendations are collected and continuously updated for the community in https://github.com/YuanchenBei/Awesome-Cold-Start-Recommendation.
Machine Learning 156
☆ SRE-Conv: Symmetric Rotation Equivariant Convolution for Biomedical Image Classification
Convolutional neural networks (CNNs) are essential tools for computer vision tasks, but they lack traditionally desired properties of extracted features that could further improve model performance, e.g., rotational equivariance. Such properties are ubiquitous in biomedical images, which often lack explicit orientation. While current work largely relies on data augmentation or explicit modules to capture orientation information, this comes at the expense of increased training costs or ineffective approximations of the desired equivariance. To overcome these challenges, we propose a novel and efficient implementation of the Symmetric Rotation-Equivariant (SRE) Convolution (SRE-Conv) kernel, designed to learn rotation-invariant features while simultaneously compressing the model size. The SRE-Conv kernel can easily be incorporated into any CNN backbone. We validate the ability of a deep SRE-CNN to capture equivariance to rotation using the public MedMNISTv2 dataset (16 total tasks). SRE-Conv-CNN demonstrated improved rotated image classification performance accuracy on all 16 test datasets in both 2D and 3D images, all while increasing efficiency with fewer parameters and reduced memory footprint. The code is available at https://github.com/XYPB/SRE-Conv.
comment: Accepted by IEEE ISBI 2025 4-page paper
☆ FAST: Efficient Action Tokenization for Vision-Language-Action Models
Autoregressive sequence models, such as Transformer-based vision-language action (VLA) policies, can be tremendously effective for capturing complex and generalizable robotic behaviors. However, such models require us to choose a tokenization of our continuous action signals, which determines how the discrete symbols predicted by the model map to continuous robot actions. We find that current approaches for robot action tokenization, based on simple per-dimension, per-timestep binning schemes, typically perform poorly when learning dexterous skills from high-frequency robot data. To address this challenge, we propose a new compression-based tokenization scheme for robot actions, based on the discrete cosine transform. Our tokenization approach, Frequency-space Action Sequence Tokenization (FAST), enables us to train autoregressive VLAs for highly dexterous and high-frequency tasks where standard discretization methods fail completely. Based on FAST, we release FAST+, a universal robot action tokenizer, trained on 1M real robot action trajectories. It can be used as a black-box tokenizer for a wide range of robot action sequences, with diverse action spaces and control frequencies. Finally, we show that, when combined with the pi0 VLA, our method can scale to training on 10k hours of robot data and match the performance of diffusion VLAs, while reducing training time by up to 5x.
comment: Website: https://www.pi.website/research/fast
☆ Suggesting Code Edits in Interactive Machine Learning Notebooks Using Large Language Models
Machine learning developers frequently use interactive computational notebooks, such as Jupyter notebooks, to host code for data processing and model training. Jupyter notebooks provide a convenient tool for writing machine learning pipelines and interactively observing outputs, however, maintaining Jupyter notebooks, e.g., to add new features or fix bugs, can be challenging due to the length and complexity of the notebooks. Moreover, there is no existing benchmark related to developer edits on Jupyter notebooks. To address this, we present the first dataset of 48,398 Jupyter notebook edits derived from 20,095 revisions of 792 machine learning repositories on GitHub, and perform the first study of the using LLMs to predict code edits in Jupyter notebooks. Our dataset captures granular details of cell-level and line-level modifications, offering a foundation for understanding real-world maintenance patterns in machine learning workflows. We observed that the edits on Jupyter notebooks are highly localized, with changes averaging only 166 lines of code in repositories. While larger models outperform smaller counterparts in code editing, all models have low accuracy on our dataset even after finetuning, demonstrating the complexity of real-world machine learning maintenance tasks. Our findings emphasize the critical role of contextual information in improving model performance and point toward promising avenues for advancing large language models' capabilities in engineering machine learning code.
☆ Random Subspace Cubic-Regularization Methods, with Applications to Low-Rank Functions
We propose and analyze random subspace variants of the second-order Adaptive Regularization using Cubics (ARC) algorithm. These methods iteratively restrict the search space to some random subspace of the parameters, constructing and minimizing a local model only within this subspace. Thus, our variants only require access to (small-dimensional) projections of first- and second-order problem derivatives and calculate a reduced step inexpensively. Under suitable assumptions, the ensuing methods maintain the optimal first-order, and second-order, global rates of convergence of (full-dimensional) cubic regularization, while showing improved scalability both theoretically and numerically, particularly when applied to low-rank functions. When applied to the latter, our adaptive variant naturally adapts the subspace size to the true rank of the function, without knowing it a priori.
☆ Predictions as Surrogates: Revisiting Surrogate Outcomes in the Age of AI
We establish a formal connection between the decades-old surrogate outcome model in biostatistics and economics and the emerging field of prediction-powered inference (PPI). The connection treats predictions from pre-trained models, prevalent in the age of AI, as cost-effective surrogates for expensive outcomes. Building on the surrogate outcomes literature, we develop recalibrated prediction-powered inference, a more efficient approach to statistical inference than existing PPI proposals. Our method departs from the existing proposals by using flexible machine learning techniques to learn the optimal ``imputed loss'' through a step we call recalibration. Importantly, the method always improves upon the estimator that relies solely on the data with available true outcomes, even when the optimal imputed loss is estimated imperfectly, and it achieves the smallest asymptotic variance among PPI estimators if the estimate is consistent. Computationally, our optimization objective is convex whenever the loss function that defines the target parameter is convex. We further analyze the benefits of recalibration, both theoretically and numerically, in several common scenarios where machine learning predictions systematically deviate from the outcome of interest. We demonstrate significant gains in effective sample size over existing PPI proposals via three applications leveraging state-of-the-art machine learning/AI models.
☆ Generating particle physics Lagrangians with transformers
In physics, Lagrangians provide a systematic way to describe laws governing physical systems. In the context of particle physics, they encode the interactions and behavior of the fundamental building blocks of our universe. By treating Lagrangians as complex, rule-based constructs similar to linguistic expressions, we trained a transformer model -- proven to be effective in natural language tasks -- to predict the Lagrangian corresponding to a given list of particles. We report on the transformer's performance in constructing Lagrangians respecting the Standard Model $\mathrm{SU}(3)\times \mathrm{SU}(2)\times \mathrm{U}(1)$ gauge symmetries. The resulting model is shown to achieve high accuracies (over 90\%) with Lagrangians up to six matter fields, with the capacity to generalize beyond the training distribution, albeit within architectural constraints. We show through an analysis of input embeddings that the model has internalized concepts such as group representations and conjugation operations as it learned to generate Lagrangians. We make the model and training datasets available to the community. An interactive demonstration can be found at: \url{https://huggingface.co/spaces/JoseEliel/generate-lagrangians}.
comment: 32 pages, 11 figues, 18 tables
☆ Attention based Bidirectional GRU hybrid model for inappropriate content detection in Urdu language
With the increased use of the internet and social networks for online discussions, the spread of toxic and inappropriate content on social networking sites has also increased. Several studies have been conducted in different languages. However, there is less work done for South Asian languages for inappropriate content identification using deep learning techniques. In Urdu language, the spellings are not unique, and people write different common spellings for the same word, while mixing it other languages, like English in the text makes it more challenging, and limited research work is available to process such language with the finest algorithms. The use of attention layer with a deep learning model can help handling the long-term dependencies and increase its efficiency . To explore the effects of the attention layer, this study proposes attention-based Bidirectional GRU hybrid model for identifying inappropriate content in Urdu Unicode text language. Four different baseline deep learning models; LSTM, Bi-LSTM, GRU, and TCN, are used to compare the performance of the proposed model. The results of these models were compared based on evaluation metrics, dataset size, and impact of the word embedding layer. The pre-trained Urdu word2Vec embeddings were utilized for our case. Our proposed model BiGRU-A outperformed all other baseline models by yielding 84\% accuracy without using pre-trained word2Vec layer. From our experiments, we have established that the attention layer improves the model's efficiency, and pre-trained word2Vec embedding does not work well with an inappropriate content dataset.
☆ Practical Continual Forgetting for Pre-trained Vision Models
For privacy and security concerns, the need to erase unwanted information from pre-trained vision models is becoming evident nowadays. In real-world scenarios, erasure requests originate at any time from both users and model owners, and these requests usually form a sequence. Therefore, under such a setting, selective information is expected to be continuously removed from a pre-trained model while maintaining the rest. We define this problem as continual forgetting and identify three key challenges. (i) For unwanted knowledge, efficient and effective deleting is crucial. (ii) For remaining knowledge, the impact brought by the forgetting procedure should be minimal. (iii) In real-world scenarios, the training samples may be scarce or partially missing during the process of forgetting. To address them, we first propose Group Sparse LoRA (GS-LoRA). Specifically, towards (i), we introduce LoRA modules to fine-tune the FFN layers in Transformer blocks for each forgetting task independently, and towards (ii), a simple group sparse regularization is adopted, enabling automatic selection of specific LoRA groups and zeroing out the others. To further extend GS-LoRA to more practical scenarios, we incorporate prototype information as additional supervision and introduce a more practical approach, GS-LoRA++. For each forgotten class, we move the logits away from its original prototype. For the remaining classes, we pull the logits closer to their respective prototypes. We conduct extensive experiments on face recognition, object detection and image classification and demonstrate that our method manages to forget specific classes with minimal impact on other classes. Codes have been released on https://github.com/bjzhb666/GS-LoRA.
☆ Cueless EEG imagined speech for subject identification: dataset and benchmarks
Electroencephalogram (EEG) signals have emerged as a promising modality for biometric identification. While previous studies have explored the use of imagined speech with semantically meaningful words for subject identification, most have relied on additional visual or auditory cues. In this study, we introduce a cueless EEG-based imagined speech paradigm, where subjects imagine the pronunciation of semantically meaningful words without any external cues. This innovative approach addresses the limitations of prior methods by requiring subjects to select and imagine words from a predefined list naturally. The dataset comprises over 4,350 trials from 11 subjects across five sessions. We assess a variety of classification methods, including traditional machine learning techniques such as Support Vector Machines (SVM) and XGBoost, as well as time-series foundation models and deep learning architectures specifically designed for EEG classification, such as EEG Conformer and Shallow ConvNet. A session-based hold-out validation strategy was employed to ensure reliable evaluation and prevent data leakage. Our results demonstrate outstanding classification accuracy, reaching 97.93%. These findings highlight the potential of cueless EEG paradigms for secure and reliable subject identification in real-world applications, such as brain-computer interfaces (BCIs).
☆ A Near-optimal Algorithm for Learning Margin Halfspaces with Massart Noise
We study the problem of PAC learning $\gamma$-margin halfspaces in the presence of Massart noise. Without computational considerations, the sample complexity of this learning problem is known to be $\widetilde{\Theta}(1/(\gamma^2 \epsilon))$. Prior computationally efficient algorithms for the problem incur sample complexity $\tilde{O}(1/(\gamma^4 \epsilon^3))$ and achieve 0-1 error of $\eta+\epsilon$, where $\eta<1/2$ is the upper bound on the noise rate. Recent work gave evidence of an information-computation tradeoff, suggesting that a quadratic dependence on $1/\epsilon$ is required for computationally efficient algorithms. Our main result is a computationally efficient learner with sample complexity $\widetilde{\Theta}(1/(\gamma^2 \epsilon^2))$, nearly matching this lower bound. In addition, our algorithm is simple and practical, relying on online SGD on a carefully selected sequence of convex losses.
☆ U-Fair: Uncertainty-based Multimodal Multitask Learning for Fairer Depression Detection ML4H
Machine learning bias in mental health is becoming an increasingly pertinent challenge. Despite promising efforts indicating that multitask approaches often work better than unitask approaches, there is minimal work investigating the impact of multitask learning on performance and fairness in depression detection nor leveraged it to achieve fairer prediction outcomes. In this work, we undertake a systematic investigation of using a multitask approach to improve performance and fairness for depression detection. We propose a novel gender-based task-reweighting method using uncertainty grounded in how the PHQ-8 questionnaire is structured. Our results indicate that, although a multitask approach improves performance and fairness compared to a unitask approach, the results are not always consistent and we see evidence of negative transfer and a reduction in the Pareto frontier, which is concerning given the high-stake healthcare setting. Our proposed approach of gender-based reweighting with uncertainty improves performance and fairness and alleviates both challenges to a certain extent. Our findings on each PHQ-8 subitem task difficulty are also in agreement with the largest study conducted on the PHQ-8 subitem discrimination capacity, thus providing the very first tangible evidence linking ML findings with large-scale empirical population studies conducted on the PHQ-8.
comment: To appear at the Proceedings of Machine Learning Research 259, 1-14, 2024 as part of the Machine Learning for Health (ML4H) Symposium 2024
☆ Reward-Guided Controlled Generation for Inference-Time Alignment in Diffusion Models: Tutorial and Review
This tutorial provides an in-depth guide on inference-time guidance and alignment methods for optimizing downstream reward functions in diffusion models. While diffusion models are renowned for their generative modeling capabilities, practical applications in fields such as biology often require sample generation that maximizes specific metrics (e.g., stability, affinity in proteins, closeness to target structures). In these scenarios, diffusion models can be adapted not only to generate realistic samples but also to explicitly maximize desired measures at inference time without fine-tuning. This tutorial explores the foundational aspects of such inference-time algorithms. We review these methods from a unified perspective, demonstrating that current techniques -- such as Sequential Monte Carlo (SMC)-based guidance, value-based sampling, and classifier guidance -- aim to approximate soft optimal denoising processes (a.k.a. policies in RL) that combine pre-trained denoising processes with value functions serving as look-ahead functions that predict from intermediate states to terminal rewards. Within this framework, we present several novel algorithms not yet covered in the literature. Furthermore, we discuss (1) fine-tuning methods combined with inference-time techniques, (2) inference-time algorithms based on search algorithms such as Monte Carlo tree search, which have received limited attention in current research, and (3) connections between inference-time algorithms in language models and diffusion models. The code of this tutorial on protein design is available at https://github.com/masa-ue/AlignInversePro
comment: We plan to add more content/codes. Please let us know if there are any comments
☆ Rough kernel hedging
Building on the functional-analytic framework of operator-valued kernels and un-truncated signature kernels, we propose a scalable, provably convergent signature-based algorithm for a broad class of high-dimensional, path-dependent hedging problems. We make minimal assumptions about market dynamics by modelling them as general geometric rough paths, yielding a fully model-free approach. Furthermore, through a representer theorem, we provide theoretical guarantees on the existence and uniqueness of a global minimum for the resulting optimization problem and derive an analytic solution under highly general loss functions. Similar to the popular deep hedging approach, but in a more rigorous fashion, our method can also incorporate additional features via the underlying operator-valued kernel, such as trading signals, news analytics, and past hedging decisions, closely aligning with true machine-learning practice.
☆ Fokker-Planck to Callan-Symanzik: evolution of weight matrices under training
The dynamical evolution of a neural network during training has been an incredibly fascinating subject of study. First principal derivation of generic evolution of variables in statistical physics systems has proved useful when used to describe training dynamics conceptually, which in practice means numerically solving equations such as Fokker-Planck equation. Simulating entire networks inevitably runs into the curse of dimensionality. In this paper, we utilize Fokker-Planck to simulate the probability density evolution of individual weight matrices in the bottleneck layers of a simple 2-bottleneck-layered auto-encoder and compare the theoretical evolutions against the empirical ones by examining the output data distributions. We also derive physically relevant partial differential equations such as Callan-Symanzik and Kardar-Parisi-Zhang equations from the dynamical equation we have.
comment: 8 pages, 9 figures
☆ A Survey of Research in Large Language Models for Electronic Design Automation
Within the rapidly evolving domain of Electronic Design Automation (EDA), Large Language Models (LLMs) have emerged as transformative technologies, offering unprecedented capabilities for optimizing and automating various aspects of electronic design. This survey provides a comprehensive exploration of LLM applications in EDA, focusing on advancements in model architectures, the implications of varying model sizes, and innovative customization techniques that enable tailored analytical insights. By examining the intersection of LLM capabilities and EDA requirements, the paper highlights the significant impact these models have on extracting nuanced understandings from complex datasets. Furthermore, it addresses the challenges and opportunities in integrating LLMs into EDA workflows, paving the way for future research and application in this dynamic field. Through this detailed analysis, the survey aims to offer valuable insights to professionals in the EDA industry, AI researchers, and anyone interested in the convergence of advanced AI technologies and electronic design.
comment: 21 pages, 2 figures, 3 tables, accepted by TODAES
☆ LLM-Based Routing in Mixture of Experts: A Novel Framework for Trading AAAI 2025
Recent advances in deep learning and large language models (LLMs) have facilitated the deployment of the mixture-of-experts (MoE) mechanism in the stock investment domain. While these models have demonstrated promising trading performance, they are often unimodal, neglecting the wealth of information available in other modalities, such as textual data. Moreover, the traditional neural network-based router selection mechanism fails to consider contextual and real-world nuances, resulting in suboptimal expert selection. To address these limitations, we propose LLMoE, a novel framework that employs LLMs as the router within the MoE architecture. Specifically, we replace the conventional neural network-based router with LLMs, leveraging their extensive world knowledge and reasoning capabilities to select experts based on historical price data and stock news. This approach provides a more effective and interpretable selection mechanism. Our experiments on multimodal real-world stock datasets demonstrate that LLMoE outperforms state-of-the-art MoE models and other deep neural network approaches. Additionally, the flexible architecture of LLMoE allows for easy adaptation to various downstream tasks.
comment: Accepted by AAAI 2025 Workshop on AI for Social Impact - Bridging Innovations in Finance, Social Media, and Crime Prevention
☆ Empowering Large Language Models in Wireless Communication: A Novel Dataset and Fine-Tuning Framework
In this work, we develop a specialized dataset aimed at enhancing the evaluation and fine-tuning of large language models (LLMs) specifically for wireless communication applications. The dataset includes a diverse set of multi-hop questions, including true/false and multiple-choice types, spanning varying difficulty levels from easy to hard. By utilizing advanced language models for entity extraction and question generation, rigorous data curation processes are employed to maintain high quality and relevance. Additionally, we introduce a Pointwise V-Information (PVI) based fine-tuning method, providing a detailed theoretical analysis and justification for its use in quantifying the information content of training data with 2.24\% and 1.31\% performance boost for different models compared to baselines, respectively. To demonstrate the effectiveness of the fine-tuned models with the proposed methodologies on practical tasks, we also consider different tasks, including summarizing optimization problems from technical papers and solving the mathematical problems related to non-orthogonal multiple access (NOMA), which are generated by using the proposed multi-agent framework. Simulation results show significant performance gain in summarization tasks with 20.9\% in the ROUGE-L metrics. We also study the scaling laws of fine-tuning LLMs and the challenges LLMs face in the field of wireless communications, offering insights into their adaptation to wireless communication tasks. This dataset and fine-tuning methodology aim to enhance the training and evaluation of LLMs, contributing to advancements in LLMs for wireless communication research and applications.
comment: 13 pages, 13 figure, journal
☆ Weight for Robustness: A Comprehensive Approach towards Optimal Fault-Tolerant Asynchronous ML
We address the challenges of Byzantine-robust training in asynchronous distributed machine learning systems, aiming to enhance efficiency amid massive parallelization and heterogeneous computing resources. Asynchronous systems, marked by independently operating workers and intermittent updates, uniquely struggle with maintaining integrity against Byzantine failures, which encompass malicious or erroneous actions that disrupt learning. The inherent delays in such settings not only introduce additional bias to the system but also obscure the disruptions caused by Byzantine faults. To tackle these issues, we adapt the Byzantine framework to asynchronous dynamics by introducing a novel weighted robust aggregation framework. This allows for the extension of robust aggregators and a recent meta-aggregator to their weighted versions, mitigating the effects of delayed updates. By further incorporating a recent variance-reduction technique, we achieve an optimal convergence rate for the first time in an asynchronous Byzantine environment. Our methodology is rigorously validated through empirical and theoretical analysis, demonstrating its effectiveness in enhancing fault tolerance and optimizing performance in asynchronous ML systems.
☆ Beyond Reward Hacking: Causal Rewards for Large Language Model Alignment
Recent advances in large language models (LLMs) have demonstrated significant progress in performing complex tasks. While Reinforcement Learning from Human Feedback (RLHF) has been effective in aligning LLMs with human preferences, it is susceptible to spurious correlations in reward modeling. Consequently, it often introduces biases-such as length bias, sycophancy, conceptual bias, and discrimination that hinder the model's ability to capture true causal relationships. To address this, we propose a novel causal reward modeling approach that integrates causal inference to mitigate these spurious correlations. Our method enforces counterfactual invariance, ensuring reward predictions remain consistent when irrelevant variables are altered. Through experiments on both synthetic and real-world datasets, we show that our approach mitigates various types of spurious correlations effectively, resulting in more reliable and fair alignment of LLMs with human preferences. As a drop-in enhancement to the existing RLHF workflow, our causal reward modeling provides a practical way to improve the trustworthiness and fairness of LLM finetuning.
☆ ARMAX identification of low rank graphical models
In large-scale systems, complex internal relationships are often present. Such interconnected systems can be effectively described by low rank stochastic processes. When identifying a predictive model of low rank processes from sampling data, the rank-deficient property of spectral densities is often obscured by the inevitable measurement noise in practice. However, existing low rank identification approaches often did not take noise into explicit consideration, leading to non-negligible inaccuracies even under weak noise. In this paper, we address the identification issue of low rank processes under measurement noise. We find that the noisy measurement model admits a sparse plus low rank structure in latent-variable graphical models. Specifically, we first decompose the problem into a maximum entropy covariance extension problem, and a low rank graphical estimation problem based on an autoregressive moving-average with exogenous input (ARMAX) model. To identify the ARMAX low rank graphical models, we propose an estimation approach based on maximum likelihood. The identifiability and consistency of this approach are proven under certain conditions. Simulation results confirm the reliable performance of the entire algorithm in both the parameter estimation and noisy data filtering.
☆ EVaDE : Event-Based Variational Thompson Sampling for Model-Based Reinforcement Learning
Posterior Sampling for Reinforcement Learning (PSRL) is a well-known algorithm that augments model-based reinforcement learning (MBRL) algorithms with Thompson sampling. PSRL maintains posterior distributions of the environment transition dynamics and the reward function, which are intractable for tasks with high-dimensional state and action spaces. Recent works show that dropout, used in conjunction with neural networks, induces variational distributions that can approximate these posteriors. In this paper, we propose Event-based Variational Distributions for Exploration (EVaDE), which are variational distributions that are useful for MBRL, especially when the underlying domain is object-based. We leverage the general domain knowledge of object-based domains to design three types of event-based convolutional layers to direct exploration. These layers rely on Gaussian dropouts and are inserted between the layers of the deep neural network model to help facilitate variational Thompson sampling. We empirically show the effectiveness of EVaDE-equipped Simulated Policy Learning (EVaDE-SimPLe) on the 100K Atari game suite.
☆ Adversarial-Ensemble Kolmogorov Arnold Networks for Enhancing Indoor Wi-Fi Positioning: A Defensive Approach Against Spoofing and Signal Manipulation Attacks
The research presents a study on enhancing the robustness of Wi-Fi-based indoor positioning systems against adversarial attacks. The goal is to improve the positioning accuracy and resilience of these systems under two attack scenarios: Wi-Fi Spoofing and Signal Strength Manipulation. Three models are developed and evaluated: a baseline model (M_Base), an adversarially trained robust model (M_Rob), and an ensemble model (M_Ens). All models utilize a Kolmogorov-Arnold Network (KAN) architecture. The robust model is trained with adversarially perturbed data, while the ensemble model combines predictions from both the base and robust models. Experimental results show that the robust model reduces positioning error by approximately 10% compared to the baseline, achieving 2.03 meters error under Wi-Fi spoofing and 2.00 meters under signal strength manipulation. The ensemble model further outperforms with errors of 2.01 meters and 1.975 meters for the respective attack types. This analysis highlights the effectiveness of adversarial training techniques in mitigating attack impacts. The findings underscore the importance of considering adversarial scenarios in developing indoor positioning systems, as improved resilience can significantly enhance the accuracy and reliability of such systems in mission-critical environments.
☆ Reducing the Sensitivity of Neural Physics Simulators to Mesh Topology via Pretraining
Meshes are used to represent complex objects in high fidelity physics simulators across a variety of domains, such as radar sensing and aerodynamics. There is growing interest in using neural networks to accelerate physics simulations, and also a growing body of work on applying neural networks directly to irregular mesh data. Since multiple mesh topologies can represent the same object, mesh augmentation is typically required to handle topological variation when training neural networks. Due to the sensitivity of physics simulators to small changes in mesh shape, it is challenging to use these augmentations when training neural network-based physics simulators. In this work, we show that variations in mesh topology can significantly reduce the performance of neural network simulators. We evaluate whether pretraining can be used to address this issue, and find that employing an established autoencoder pretraining technique with graph embedding models reduces the sensitivity of neural network simulators to variations in mesh topology. Finally, we highlight future research directions that may further reduce neural simulator sensitivity to mesh topology.
comment: 5 pages, 3 figures
☆ IFRA: a machine learning-based Instrumented Fall Risk Assessment Scale derived from Instrumented Timed Up and Go test in stroke patients
Effective fall risk assessment is critical for post-stroke patients. The present study proposes a novel, data-informed fall risk assessment method based on the instrumented Timed Up and Go (ITUG) test data, bringing in many mobility measures that traditional clinical scales fail to capture. IFRA, which stands for Instrumented Fall Risk Assessment, has been developed using a two-step process: first, features with the highest predictive power among those collected in a ITUG test have been identified using machine learning techniques; then, a strategy is proposed to stratify patients into low, medium, or high-risk strata. The dataset used in our analysis consists of 142 participants, out of which 93 were used for training (15 synthetically generated), 17 for validation and 32 to test the resulting IFRA scale (22 non-fallers and 10 fallers). Features considered in the IFRA scale include gait speed, vertical acceleration during sit-to-walk transition, and turning angular velocity, which align well with established literature on the risk of fall in neurological patients. In a comparison with traditional clinical scales such as the traditional Timed Up & Go and the Mini-BESTest, IFRA demonstrates competitive performance, being the only scale to correctly assign more than half of the fallers to the high-risk stratum (Fischer's Exact test p = 0.004). Despite the dataset's limited size, this is the first proof-of-concept study to pave the way for future evidence regarding the use of IFRA tool for continuous patient monitoring and fall prevention both in clinical stroke rehabilitation and at home post-discharge.
comment: 26 pages, 2 figures, submitted for review dec 2024
☆ Metrics for Inter-Dataset Similarity with Example Applications in Synthetic Data and Feature Selection Evaluation -- Extended Version SDM
Measuring inter-dataset similarity is an important task in machine learning and data mining with various use cases and applications. Existing methods for measuring inter-dataset similarity are computationally expensive, limited, or sensitive to different entities and non-trivial choices for parameters. They also lack a holistic perspective on the entire dataset. In this paper, we propose two novel metrics for measuring inter-dataset similarity. We discuss the mathematical foundation and the theoretical basis of our proposed metrics. We demonstrate the effectiveness of the proposed metrics by investigating two applications in the evaluation of synthetic data and in the evaluation of feature selection methods. The theoretical and empirical studies conducted in this paper illustrate the effectiveness of the proposed metrics.
comment: This is the extended version of a paper accepted at 2025 SIAM International Conference on Data Mining (SDM)
☆ Atleus: Accelerating Transformers on the Edge Enabled by 3D Heterogeneous Manycore Architectures
Transformer architectures have become the standard neural network model for various machine learning applications including natural language processing and computer vision. However, the compute and memory requirements introduced by transformer models make them challenging to adopt for edge applications. Furthermore, fine-tuning pre-trained transformers (e.g., foundation models) is a common task to enhance the model's predictive performance on specific tasks/applications. Existing transformer accelerators are oblivious to complexities introduced by fine-tuning. In this paper, we propose the design of a three-dimensional (3D) heterogeneous architecture referred to as Atleus that incorporates heterogeneous computing resources specifically optimized to accelerate transformer models for the dual purposes of fine-tuning and inference. Specifically, Atleus utilizes non-volatile memory and systolic array for accelerating transformer computational kernels using an integrated 3D platform. Moreover, we design a suitable NoC to achieve high performance and energy efficiency. Finally, Atleus adopts an effective quantization scheme to support model compression. Experimental results demonstrate that Atleus outperforms existing state-of-the-art by up to 56x and 64.5x in terms of performance and energy efficiency respectively
comment: Accepted for Publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD)
☆ Sequential PatchCore: Anomaly Detection for Surface Inspection using Synthetic Impurities
The appearance of surface impurities (e.g., water stains, fingerprints, stickers) is an often-mentioned issue that causes degradation of automated visual inspection systems. At the same time, synthetic data generation techniques for visual surface inspection have focused primarily on generating perfect examples and defects, disregarding impurities. This study highlights the importance of considering impurities when generating synthetic data. We introduce a procedural method to include photorealistic water stains in synthetic data. The synthetic datasets are generated to correspond to real datasets and are further used to train an anomaly detection model and investigate the influence of water stains. The high-resolution images used for surface inspection lead to memory bottlenecks during anomaly detection training. To address this, we introduce Sequential PatchCore - a method to build coresets sequentially and make training on large images using consumer-grade hardware tractable. This allows us to perform transfer learning using coresets pre-trained on different dataset versions. Our results show the benefits of using synthetic data for pre-training an explicit coreset anomaly model and the extended performance benefits of finetuning the coreset using real data. We observed how the impurities and labelling ambiguity lower the model performance and have additionally reported the defect-wise recall to provide an industrially relevant perspective on model performance.
☆ Towards Spectral Convergence of Locally Linear Embedding on Manifolds with Boundary
We study the eigenvalues and eigenfunctions of a differential operator that governs the asymptotic behavior of the unsupervised learning algorithm known as Locally Linear Embedding when a large data set is sampled from an interval or disc. In particular, the differential operator is of second order, mixed-type, and degenerates near the boundary. We show that a natural regularity condition on the eigenfunctions imposes a consistent boundary condition and use the Frobenius method to estimate pointwise behavior. We then determine the limiting sequence of eigenvalues analytically and compare them to numerical predictions. Finally, we propose a variational framework for determining eigenvalues on other compact manifolds.
comment: 26 pages, 7 figures; the author welcomes all comments
☆ MatrixNet: Learning over symmetry groups using learned group representations NeurIPS 2024
Group theory has been used in machine learning to provide a theoretically grounded approach for incorporating known symmetry transformations in tasks from robotics to protein modeling. In these applications, equivariant neural networks use known symmetry groups with predefined representations to learn over geometric input data. We propose MatrixNet, a neural network architecture that learns matrix representations of group element inputs instead of using predefined representations. MatrixNet achieves higher sample efficiency and generalization over several standard baselines in prediction tasks over the several finite groups and the Artin braid group. We also show that MatrixNet respects group relations allowing generalization to group elements of greater word length than in the training set.
comment: NeurIPS 2024
☆ Overshoot: Taking advantage of future gradients in momentum-based stochastic optimization
Overshoot is a novel, momentum-based stochastic gradient descent optimization method designed to enhance performance beyond standard and Nesterov's momentum. In conventional momentum methods, gradients from previous steps are aggregated with the gradient at current model weights before taking a step and updating the model. Rather than calculating gradient at the current model weights, Overshoot calculates the gradient at model weights shifted in the direction of the current momentum. This sacrifices the immediate benefit of using the gradient w.r.t. the exact model weights now, in favor of evaluating at a point, which will likely be more relevant for future updates. We show that incorporating this principle into momentum-based optimizers (SGD with momentum and Adam) results in faster convergence (saving on average at least 15% of steps). Overshoot consistently outperforms both standard and Nesterov's momentum across a wide range of tasks and integrates into popular momentum-based optimizers with zero memory and small computational overhead.
☆ Intra-day Solar and Power Forecast for Optimization of Intraday Market Participation
The prediction of solar irradiance enhances reliability in photovoltaic (PV) solar plant generation and grid integration. In Colombia, PV plants face penalties if energy production deviates beyond governmental thresholds from intraday market offers. This research employs Long Short-Term Memory (LSTM) and Bidirectional-LSTM (Bi-LSTM) models, utilizing meteorological data from a PV plant in El Paso, Cesar, Colombia, to predict solar irradiance with a 6-hour horizon and 10-minute resolution. While Bi-LSTM showed superior performance, the LSTM model achieved comparable results with significantly reduced training time (6 hours versus 18 hours), making it computationally advantageous. The LSTM predictions were averaged to create an hourly resolution model, evaluated using Mean Absolute Error, Root-Mean-Square Error, Normalized Root-Mean-Square Error, and Mean Absolute Percentage Error metrics. Comparison with the Global Forecast System (GFS) revealed similar performance, with both models effectively capturing daily solar irradiance patterns. The forecast model integrates with an Object-Oriented power production model, enabling accurate energy offers in the intraday market while minimizing penalty costs.
comment: 20 pages, 37 figures, 9 tables
☆ MOGNET: A Mux-residual quantized Network leveraging Online-Generated weights
This paper presents a compact model architecture called MOGNET, compatible with a resource-limited hardware. MOGNET uses a streamlined Convolutional factorization block based on a combination of 2 point-wise (1x1) convolutions with a group-wise convolution in-between. To further limit the overall model size and reduce the on-chip required memory, the second point-wise convolution's parameters are on-line generated by a Cellular Automaton structure. In addition, MOGNET enables the use of low-precision weights and activations, by taking advantage of a Multiplexer mechanism with a proper Bitshift rescaling for integrating residual paths without increasing the hardware-related complexity. To efficiently train this model we also introduce a novel weight ternarization method favoring the balance between quantized levels. Experimental results show that given tiny memory budget (sub-2Mb), MOGNET can achieve higher accuracy with a clear gap up to 1% at a similar or even lower model size compared to recent state-of-the-art methods.
comment: Published at IEEE AICAS 2022
☆ Confidence Estimation for Error Detection in Text-to-SQL Systems AAAI 2025
Text-to-SQL enables users to interact with databases through natural language, simplifying the retrieval and synthesis of information. Despite the success of large language models (LLMs) in converting natural language questions into SQL queries, their broader adoption is limited by two main challenges: achieving robust generalization across diverse queries and ensuring interpretative confidence in their predictions. To tackle these issues, our research investigates the integration of selective classifiers into Text-to-SQL systems. We analyse the trade-off between coverage and risk using entropy based confidence estimation with selective classifiers and assess its impact on the overall performance of Text-to-SQL models. Additionally, we explore the models' initial calibration and improve it with calibration techniques for better model alignment between confidence and accuracy. Our experimental results show that encoder-decoder T5 is better calibrated than in-context-learning GPT 4 and decoder-only Llama 3, thus the designated external entropy-based selective classifier has better performance. The study also reveal that, in terms of error detection, selective classifier with a higher probability detects errors associated with irrelevant questions rather than incorrect query generations.
comment: 15 pages, 11 figures, to be published in AAAI 2025 Proceedings
☆ Class Incremental Fault Diagnosis under Limited Fault Data via Supervised Contrastive Knowledge Distillation
Class-incremental fault diagnosis requires a model to adapt to new fault classes while retaining previous knowledge. However, limited research exists for imbalanced and long-tailed data. Extracting discriminative features from few-shot fault data is challenging, and adding new fault classes often demands costly model retraining. Moreover, incremental training of existing methods risks catastrophic forgetting, and severe class imbalance can bias the model's decisions toward normal classes. To tackle these issues, we introduce a Supervised Contrastive knowledge distiLlation for class Incremental Fault Diagnosis (SCLIFD) framework proposing supervised contrastive knowledge distillation for improved representation learning capability and less forgetting, a novel prioritized exemplar selection method for sample replay to alleviate catastrophic forgetting, and the Random Forest Classifier to address the class imbalance. Extensive experimentation on simulated and real-world industrial datasets across various imbalance ratios demonstrates the superiority of SCLIFD over existing approaches. Our code can be found at https://github.com/Zhang-Henry/SCLIFD_TII.
☆ Merging Models on the Fly Without Retraining: A Sequential Approach to Scalable Continual Model Merging
Deep model merging represents an emerging research direction that combines multiple fine-tuned models to harness their specialized capabilities across different tasks and domains. Current model merging techniques focus on merging all available models simultaneously, with weight interpolation-based methods being the predominant approaches. However, these conventional approaches are not well-suited for scenarios where models become available sequentially, and they often suffer from high memory requirements and potential interference between tasks. In this study, we propose a training-free projection-based continual merging method that processes models sequentially through orthogonal projections of weight matrices and adaptive scaling mechanisms. Our method operates by projecting new parameter updates onto subspaces orthogonal to existing merged parameter updates while using an adaptive scaling mechanism to maintain stable parameter distances, enabling efficient sequential integration of task-specific knowledge. Our approach maintains constant memory complexity to the number of models, minimizes interference between tasks through orthogonal projections, and retains the performance of previously merged models through adaptive task vector scaling. Extensive experiments on CLIP-ViT models demonstrate that our method achieves a 5-8% average accuracy improvement while maintaining robust performance in different task orderings.
☆ Multi-task deep-learning for sleep event detection and stage classification
Polysomnographic sleep analysis is the standard clinical method to accurately diagnose and treat sleep disorders. It is an intricate process which involves the manual identification, classification, and location of multiple sleep event patterns. This is complex, for which identification of different types of events involves focusing on different subsets of signals, resulting on an iterative time-consuming process entailing several visual analysis passes. In this paper we propose a multi-task deep-learning approach for the simultaneous detection of sleep events and hypnogram construction in one single pass. Taking as reference state-of-the-art methodology for object-detection in the field of Computer Vision, we reformulate the problem for the analysis of multi-variate time sequences, and more specifically for pattern detection in the sleep analysis scenario. We investigate the performance of the resulting method in identifying different assembly combinations of EEG arousals, respiratory events (apneas and hypopneas) and sleep stages, also considering different input signal montage configurations. Furthermore, we evaluate our approach using two independent datasets, assessing true-generalization effects involving local and external validation scenarios. Based on our results, we analyze and discuss our method's capabilities and its potential wide-range applicability across different settings and datasets.
☆ PIER: A Novel Metric for Evaluating What Matters in Code-Switching ICASSP 2025
Code-switching, the alternation of languages within a single discourse, presents a significant challenge for Automatic Speech Recognition. Despite the unique nature of the task, performance is commonly measured with established metrics such as Word-Error-Rate (WER). However, in this paper, we question whether these general metrics accurately assess performance on code-switching. Specifically, using both Connectionist-Temporal-Classification and Encoder-Decoder models, we show fine-tuning on non-code-switched data from both matrix and embedded language improves classical metrics on code-switching test sets, although actual code-switched words worsen (as expected). Therefore, we propose Point-of-Interest Error Rate (PIER), a variant of WER that focuses only on specific words of interest. We instantiate PIER on code-switched utterances and show that this more accurately describes the code-switching performance, showing huge room for improvement in future work. This focused evaluation allows for a more precise assessment of model performance, particularly in challenging aspects such as inter-word and intra-word code-switching.
comment: Accepted at ICASSP 2025
☆ Multimodal Marvels of Deep Learning in Medical Diagnosis: A Comprehensive Review of COVID-19 Detection
This study presents a comprehensive review of the potential of multimodal deep learning (DL) in medical diagnosis, using COVID-19 as a case example. Motivated by the success of artificial intelligence applications during the COVID-19 pandemic, this research aims to uncover the capabilities of DL in disease screening, prediction, and classification, and to derive insights that enhance the resilience, sustainability, and inclusiveness of science, technology, and innovation systems. Adopting a systematic approach, we investigate the fundamental methodologies, data sources, preprocessing steps, and challenges encountered in various studies and implementations. We explore the architecture of deep learning models, emphasising their data-specific structures and underlying algorithms. Subsequently, we compare different deep learning strategies utilised in COVID-19 analysis, evaluating them based on methodology, data, performance, and prerequisites for future research. By examining diverse data types and diagnostic modalities, this research contributes to scientific understanding and knowledge of the multimodal application of DL and its effectiveness in diagnosis. We have implemented and analysed 11 deep learning models using COVID-19 image, text, and speech (ie, cough) data. Our analysis revealed that the MobileNet model achieved the highest accuracy of 99.97% for COVID-19 image data and 93.73% for speech data (i.e., cough). However, the BiGRU model demonstrated superior performance in COVID-19 text classification with an accuracy of 99.89%. The broader implications of this research suggest potential benefits for other domains and disciplines that could leverage deep learning techniques for image, text, and speech analysis.
comment: 43 pages
☆ MonoSOWA: Scalable monocular 3D Object detector Without human Annotations
Detecting the three-dimensional position and orientation of objects using a single RGB camera is a foundational task in computer vision with many important applications. Traditionally, 3D object detection methods are trained in a fully-supervised setup, requiring vast amounts of human annotations, which are laborious, costly, and do not scale well with the ever-increasing amounts of data being captured. In this paper, we present the first method to train 3D object detectors for monocular RGB cameras without domain-specific human annotations, thus making orders of magnitude more data available for training. Thanks to newly proposed Canonical Object Space, the method can not only exploit data across a variety of datasets and camera setups to train a single 3D detector, but unlike previous work it also works out of the box in previously unseen camera setups. All this is crucial for practical applications, where the data and cameras are extremely heterogeneous. The method is evaluated on two standard autonomous driving datasets, where it outperforms previous works, which, unlike our method, still rely on 2D human annotations.
☆ Utilizing AI Language Models to Identify Prognostic Factors for Coronary Artery Disease: A Study in Mashhad Residents
Abstract: Background: Understanding cardiovascular artery disease risk factors, the leading global cause of mortality, is crucial for influencing its etiology, prevalence, and treatment. This study aims to evaluate prognostic markers for coronary artery disease in Mashhad using Naive Bayes, REP Tree, J48, CART, and CHAID algorithms. Methods: Using data from the 2009 MASHAD STUDY, prognostic factors for coronary artery disease were determined with Naive Bayes, REP Tree, J48, CART, CHAID, and Random Forest algorithms using R 3.5.3 and WEKA 3.9.4. Model efficiency was compared by sensitivity, specificity, and accuracy. Cases were patients with coronary artery disease; each had three controls (totally 940). Results: Prognostic factors for coronary artery disease in Mashhad residents varied by algorithm. CHAID identified age, myocardial infarction history, and hypertension. CART included depression score and physical activity. REP added education level and anxiety score. NB included diabetes and family history. J48 highlighted father's heart disease and weight loss. CHAID had the highest accuracy (0.80). Conclusion: Key prognostic factors for coronary artery disease in CART and CHAID models include age, myocardial infarction history, hypertension, depression score, physical activity, and BMI. NB, REP Tree, and J48 identified numerous factors. CHAID had the highest accuracy, sensitivity, and specificity. CART offers simpler interpretation, aiding physician and paramedic model selection based on specific. Keywords: RF, Na\"ive Bayes, REP, J48 algorithms, Coronary Artery Disease (CAD).
☆ Predicting Air Temperature from Volumetric Urban Morphology with Machine Learning
In this study, we firstly introduce a method that converts CityGML data into voxels which works efficiently and fast in high resolution for large scale datasets such as cities but by sacrificing some building details to overcome the limitations of previous voxelization methodologies that have been computationally intensive and inefficient at transforming large-scale urban areas into voxel representations for high resolution. Those voxelized 3D city data from multiple cities and corresponding air temperature data are used to develop a machine learning model. Before the model training, Gaussian blurring is implemented on input data to consider spatial relationships, as a result the correlation rate between air temperature and volumetric building morphology is also increased after the Gaussian blurring. After the model training, the prediction results are not just evaluated with Mean Square Error (MSE) but some image similarity metrics such as Structural Similarity Index Measure (SSIM) and Learned Perceptual Image Patch Similarity (LPIPS) that are able to detect and consider spatial relations during the evaluation process. This trained model is capable of predicting the spatial distribution of air temperature by using building volume information of corresponding pixel as input. By doing so, this research aims to assist urban planners in incorporating environmental parameters into their planning strategies, thereby facilitating more sustainable and inhabitable urban environments.
comment: 30 pages, 8 figures, 2 tables
☆ Pruning for Sparse Diffusion Models based on Gradient Flow ICASSP2025
Diffusion Models (DMs) have impressive capabilities among generation models, but are limited to slower inference speeds and higher computational costs. Previous works utilize one-shot structure pruning to derive lightweight DMs from pre-trained ones, but this approach often leads to a significant drop in generation quality and may result in the removal of crucial weights. Thus we propose a iterative pruning method based on gradient flow, including the gradient flow pruning process and the gradient flow pruning criterion. We employ a progressive soft pruning strategy to maintain the continuity of the mask matrix and guide it along the gradient flow of the energy function based on the pruning criterion in sparse space, thereby avoiding the sudden information loss typically caused by one-shot pruning. Gradient-flow based criterion prune parameters whose removal increases the gradient norm of loss function and can enable fast convergence for a pruned model in iterative pruning stage. Our extensive experiments on widely used datasets demonstrate that our method achieves superior performance in efficiency and consistency with pre-trained models.
comment: 5 pages, 1 figure, accepted by ICASSP2025
☆ Teaching Wav2Vec2 the Language of the Brain ICASSP 2025
The decoding of continuously spoken speech from neuronal activity has the potential to become an important clinical solution for paralyzed patients. Deep Learning Brain Computer Interfaces (BCIs) have recently successfully mapped neuronal activity to text contents in subjects who attempted to formulate speech. However, only small BCI datasets are available. In contrast, labeled data and pre-trained models for the closely related task of speech recognition from audio are widely available. One such model is Wav2Vec2 which has been trained in a self-supervised fashion to create meaningful representations of speech audio data. In this study, we show that patterns learned by Wav2Vec2 are transferable to brain data. Specifically, we replace its audio feature extractor with an untrained Brain Feature Extractor (BFE) model. We then execute full fine-tuning with pre-trained weights for Wav2Vec2, training ''from scratch'' without pre-trained weights as well as freezing a pre-trained Wav2Vec2 and training only the BFE each for 45 different BFE architectures. Across these experiments, the best run is from full fine-tuning with pre-trained weights, achieving a Character Error Rate (CER) of 18.54\%, outperforming the best training from scratch run by 20.46\% and that of frozen Wav2Vec2 training by 15.92\% percentage points. These results indicate that knowledge transfer from audio speech recognition to brain decoding is possible and significantly improves brain decoding performance for the same architectures. Related source code is available at https://github.com/tfiedlerdev/Wav2Vec2ForBrain.
comment: Paper was submitted to ICASSP 2025 but marginally rejected
☆ Solving the unsolvable: Translating case law in Hong Kong
This paper addresses the challenges translating case law under Hong Kong's bilingual legal system. It highlights the initial success of translating all written statutes into Chinese before the 1997 handover, a task mandated by the Basic Law. The effort involved significant collaboration among legal, linguistic, and translation experts, resulting in a comprehensive and culturally appropriate bilingual legal system. However, translating case law remains a significant challenge due to the sheer volume and continuous growth of judicial decisions. The paper critiques the governments and judiciarys sporadic and uncoordinated efforts to translate case law, contrasting it with the thorough approach previously taken for statute translation. Although the government acknowledges the importance of legal bilingualism, it lacks a sustainable strategy for translating case law. The Judiciarys position that translating all judgments is unnecessary, unrealistic, and not cost-effectiveis analyzed and critiqued for its impact on legal transparency and public trust. A proposed solution involves leveraging machine translation technology through a human-machine interactive translation platform, which undergoes two major transitions. Initially based on a neural model, the platform transitions to using a large language model for improved translation accuracy. Furthermore, it evolves from a single-agent system to a multi-agent system, incorporating Translator, Annotator, and Proofreader agents. This multi-agent approach, supported by a grant, aims to facilitate efficient, high-quality translation of judicial judgments by integrating advanced artificial intelligence and continuous feedback mechanisms, thus better meeting the needs of a bilingual legal system.
☆ ADAGE: A generic two-layer framework for adaptive agent based modelling AAMAS
Agent-based models (ABMs) are valuable for modelling complex, potentially out-of-equilibria scenarios. However, ABMs have long suffered from the Lucas critique, stating that agent behaviour should adapt to environmental changes. Furthermore, the environment itself often adapts to these behavioural changes, creating a complex bi-level adaptation problem. Recent progress integrating multi-agent reinforcement learning into ABMs introduces adaptive agent behaviour, beginning to address the first part of this critique, however, the approaches are still relatively ad hoc, lacking a general formulation, and furthermore, do not tackle the second aspect of simultaneously adapting environmental level characteristics in addition to the agent behaviours. In this work, we develop a generic two-layer framework for ADaptive AGEnt based modelling (ADAGE) for addressing these problems. This framework formalises the bi-level problem as a Stackelberg game with conditional behavioural policies, providing a consolidated framework for adaptive agent-based modelling based on solving a coupled set of non-linear equations. We demonstrate how this generic approach encapsulates several common (previously viewed as distinct) ABM tasks, such as policy design, calibration, scenario generation, and robust behavioural learning under one unified framework. We provide example simulations on multiple complex economic and financial environments, showing the strength of the novel framework under these canonical settings, addressing long-standing critiques of traditional ABMs.
comment: Accepted at the 2025 International Conference on Autonomous Agents and Multiagent Systems (AAMAS)
☆ Dynamic Neural Style Transfer for Artistic Image Generation using VGG19
Throughout history, humans have created remarkable works of art, but artificial intelligence has only recently started to make strides in generating visually compelling art. Breakthroughs in the past few years have focused on using convolutional neural networks (CNNs) to separate and manipulate the content and style of images, applying texture synthesis techniques. Nevertheless, a number of current techniques continue to encounter obstacles, including lengthy processing times, restricted choices of style images, and the inability to modify the weight ratio of styles. We proposed a neural style transfer system that can add various artistic styles to a desired image to address these constraints allowing flexible adjustments to style weight ratios and reducing processing time. The system uses the VGG19 model for feature extraction, ensuring high-quality, flexible stylization without compromising content integrity.
☆ FASP: Fast and Accurate Structured Pruning of Large Language Models
The rapid increase in the size of large language models (LLMs) has significantly escalated their computational and memory demands, posing challenges for efficient deployment, especially on resource-constrained devices. Structured pruning has emerged as an effective model compression method that can reduce these demands while preserving performance. In this paper, we introduce FASP (Fast and Accurate Structured Pruning), a novel structured pruning framework for LLMs that emphasizes both speed and accuracy. FASP employs a distinctive pruning structure that interlinks sequential layers, allowing for the removal of columns in one layer while simultaneously eliminating corresponding rows in the preceding layer without incurring additional performance loss. The pruning metric, inspired by Wanda, is computationally efficient and effectively selects components to prune. Additionally, we propose a restoration mechanism that enhances model fidelity by adjusting the remaining weights post-pruning. We evaluate FASP on the OPT and LLaMA model families, demonstrating superior performance in terms of perplexity and accuracy on downstream tasks compared to state-of-the-art methods. Our approach achieves significant speed-ups, pruning models such as OPT-125M in 17 seconds and LLaMA-30B in 15 minutes on a single NVIDIA RTX 4090 GPU, making it a highly practical solution for optimizing LLMs.
☆ MoE$^2$: Optimizing Collaborative Inference for Edge Large Language Models
Large language models (LLMs) have demonstrated remarkable capabilities across a wide range of natural language processing tasks. Exploiting the heterogeneous capabilities of edge LLMs is crucial for diverse emerging applications, as it enables greater cost-effectiveness and reduced latency. In this work, we introduce \textit{Mixture-of-Edge-Experts (MoE$^2$)}, a novel collaborative inference framework for edge LLMs. We formulate the joint gating and expert selection problem to optimize inference performance under energy and latency constraints. Unlike conventional MoE problems, LLM expert selection is significantly more challenging due to the combinatorial nature and the heterogeneity of edge LLMs across various attributes. To this end, we propose a two-level expert selection mechanism through which we uncover an optimality-preserving property of gating parameters across expert selections. This property enables the decomposition of the training and selection processes, significantly reducing complexity. Furthermore, we leverage the objective's monotonicity and design a discrete monotonic optimization algorithm for optimal expert selection. We implement edge servers with NVIDIA Jetson AGX Orins and NVIDIA RTX 4090 GPUs, and perform extensive experiments. Our results validate that performance improvements of various LLM models and show that our MoE$^2$ method can achieve optimal trade-offs among different delay and energy budgets, and outperforms baselines under various system resource constraints.
comment: Submitted to IEEE/ACM Transactions on Networking
☆ PISCO: Self-Supervised k-Space Regularization for Improved Neural Implicit k-Space Representations of Dynamic MRI
Neural implicit k-space representations (NIK) have shown promising results for dynamic magnetic resonance imaging (MRI) at high temporal resolutions. Yet, reducing acquisition time, and thereby available training data, results in severe performance drops due to overfitting. To address this, we introduce a novel self-supervised k-space loss function $\mathcal{L}_\mathrm{PISCO}$, applicable for regularization of NIK-based reconstructions. The proposed loss function is based on the concept of parallel imaging-inspired self-consistency (PISCO), enforcing a consistent global k-space neighborhood relationship without requiring additional data. Quantitative and qualitative evaluations on static and dynamic MR reconstructions show that integrating PISCO significantly improves NIK representations. Particularly for high acceleration factors (R$\geq$54), NIK with PISCO achieves superior spatio-temporal reconstruction quality compared to state-of-the-art methods. Furthermore, an extensive analysis of the loss assumptions and stability shows PISCO's potential as versatile self-supervised k-space loss function for further applications and architectures. Code is available at: https://github.com/compai-lab/2025-pisco-spieker
☆ Fast Searching of Extreme Operating Conditions for Relay Protection Setting Calculation Based on Graph Neural Network and Reinforcement Learning
Searching for the Extreme Operating Conditions (EOCs) is one of the core problems of power system relay protection setting calculation. The current methods based on brute-force search, heuristic algorithms, and mathematical programming can hardly meet the requirements of today's power systems in terms of computation speed due to the drastic changes in operating conditions induced by renewables and power electronics. This paper proposes an EOC fast search method, named Graph Dueling Double Deep Q Network (Graph D3QN), which combines graph neural network and deep reinforcement learning to address this challenge. First, the EOC search problem is modeled as a Markov decision process, where the information of the underlying power system is extracted using graph neural networks, so that the EOC of the system can be found via deep reinforcement learning. Then, a two-stage Guided Learning and Free Exploration (GLFE) training framework is constructed to accelerate the convergence speed of reinforcement learning. Finally, the proposed Graph D3QN method is validated through case studies of searching maximum fault current for relay protection setting calculation on the IEEE 39-bus and 118-bus systems. The experimental results demonstrate that Graph D3QN can reduce the computation time by 10 to 1000 times while guaranteeing the accuracy of the selected EOCs.
comment: 10 pages, 9 figures
☆ ELM-DeepONets: Backpropagation-Free Training of Deep Operator Networks via Extreme Learning Machines
Deep Operator Networks (DeepONets) are among the most prominent frameworks for operator learning, grounded in the universal approximation theorem for operators. However, training DeepONets typically requires significant computational resources. To address this limitation, we propose ELM-DeepONets, an Extreme Learning Machine (ELM) framework for DeepONets that leverages the backpropagation-free nature of ELM. By reformulating DeepONet training as a least-squares problem for newly introduced parameters, the ELM-DeepONet approach significantly reduces training complexity. Validation on benchmark problems, including nonlinear ODEs and PDEs, demonstrates that the proposed method not only achieves superior accuracy but also drastically reduces computational costs. This work offers a scalable and efficient alternative for operator learning in scientific computing.
☆ Quantum-Enhanced Transformers for Robust Acoustic Scene Classification in IoT Environments
The proliferation of Internet of Things (IoT) devices equipped with acoustic sensors necessitates robust acoustic scene classification (ASC) capabilities, even in noisy and data-limited environments. Traditional machine learning methods often struggle to generalize effectively under such conditions. To address this, we introduce Q-ASC, a novel Quantum-Inspired Acoustic Scene Classifier that leverages the power of quantum-inspired transformers. By integrating quantum concepts like superposition and entanglement, Q-ASC achieves superior feature learning and enhanced noise resilience compared to classical models. Furthermore, we introduce a Quantum Variational Autoencoder (QVAE) based data augmentation technique to mitigate the challenge of limited labeled data in IoT deployments. Extensive evaluations on the Tampere University of Technology (TUT) Acoustic Scenes 2016 benchmark dataset demonstrate that Q-ASC achieves remarkable accuracy between 68.3% and 88.5% under challenging conditions, outperforming state-of-the-art methods by over 5% in the best case. This research paves the way for deploying intelligent acoustic sensing in IoT networks, with potential applications in smart homes, industrial monitoring, and environmental surveillance, even in adverse acoustic environments.
comment: 5 pages, 4 figures
☆ PAL: Prompting Analytic Learning with Missing Modality for Multi-Modal Class-Incremental Learning
Multi-modal class-incremental learning (MMCIL) seeks to leverage multi-modal data, such as audio-visual and image-text pairs, thereby enabling models to learn continuously across a sequence of tasks while mitigating forgetting. While existing studies primarily focus on the integration and utilization of multi-modal information for MMCIL, a critical challenge remains: the issue of missing modalities during incremental learning phases. This oversight can exacerbate severe forgetting and significantly impair model performance. To bridge this gap, we propose PAL, a novel exemplar-free framework tailored to MMCIL under missing-modality scenarios. Concretely, we devise modality-specific prompts to compensate for missing information, facilitating the model to maintain a holistic representation of the data. On this foundation, we reformulate the MMCIL problem into a Recursive Least-Squares task, delivering an analytical linear solution. Building upon these, PAL not only alleviates the inherent under-fitting limitation in analytic learning but also preserves the holistic representation of missing-modality data, achieving superior performance with less forgetting across various multi-modal incremental scenarios. Extensive experiments demonstrate that PAL significantly outperforms competitive methods across various datasets, including UPMC-Food101 and N24News, showcasing its robustness towards modality absence and its anti-forgetting ability to maintain high incremental accuracy.
☆ Rational Tuning of LLM Cascades via Probabilistic Modeling
Understanding the reliability of large language models (LLMs) has recently garnered significant attention. Given LLMs' propensity to hallucinate, as well as their high sensitivity to prompt design, it is already challenging to predict the performance of an individual LLM. However, the problem becomes more complex for compound LLM systems such as cascades, where in addition to each model's standalone performance, we must understand how the error rates of different models interact. In this paper, we present a probabilistic model for the joint performance distribution of a sequence of LLMs, which enables a framework for rationally tuning the confidence thresholds of a LLM cascade using continuous optimization. Compared to selecting confidence thresholds using grid search, our parametric Markov-copula model significantly improves runtime scaling with respect to the length of the cascade and the desired resolution of the cost-error curve, turning them from intractable into low-order polynomial. In addition, the optimal thresholds computed using our continuous optimization-based algorithm increasingly outperform those found via grid search as cascade length grows, improving the area under the cost-error curve by 1.9% on average for cascades consisting of at least three models. Overall, our Markov-copula model provides a rational basis for tuning LLM cascade performance and points to the potential of probabilistic methods in analyzing LLM systems.
☆ Estimating shared subspace with AJIVE: the power and limitation of multiple data matrices
Integrative data analysis often requires disentangling joint and individual variations across multiple datasets, a challenge commonly addressed by the Joint and Individual Variation Explained (JIVE) model. While numerous methods have been developed to estimate the shared subspace under JIVE, the theoretical understanding of their performance remains limited, particularly in the context of multiple matrices and varying levels of subspace misalignment. This paper bridges this gap by providing a systematic analysis of shared subspace estimation in multi-matrix settings. We focus on the Angle-based Joint and Individual Variation Explained (AJIVE) method, a two-stage spectral approach, and establish new performance guarantees that uncover its strengths and limitations. Specifically, we show that in high signal-to-noise ratio (SNR) regimes, AJIVE's estimation error decreases with the number of matrices, demonstrating the power of multi-matrix integration. Conversely, in low-SNR settings, AJIVE exhibits a non-diminishing error, highlighting fundamental limitations. To complement these results, we derive minimax lower bounds, showing that AJIVE achieves optimal rates in high-SNR regimes. Furthermore, we analyze an oracle-aided spectral estimator to demonstrate that the non-diminishing error in low-SNR scenarios is a fundamental barrier. Extensive numerical experiments corroborate our theoretical findings, providing insights into the interplay between SNR, matrix count, and subspace misalignment.
☆ Identifying Information from Observations with Uncertainty and Novelty
A machine learning tasks from observations must encounter and process uncertainty and novelty, especially when it is expected to maintain performance when observing new information and to choose the best fitting hypothesis to the currently observed information. In this context, some key questions arise: what is information, how much information did the observations provide, how much information is required to identify the data-generating process, how many observations remain to get that information, and how does a predictor determine that it has observed novel information? This paper strengthens existing answers to these questions by formalizing the notion of "identifiable information" that arises from the language used to express the relationship between distinct states. Model identifiability and sample complexity are defined via computation of an indicator function over a set of hypotheses. Their properties and asymptotic statistics are described for data-generating processes ranging from deterministic processes to ergodic stationary stochastic processes. This connects the notion of identifying information in finite steps with asymptotic statistics and PAC-learning. The indicator function's computation naturally formalizes novel information and its identification from observations with respect to a hypothesis set. We also proved that computable PAC-Bayes learners' sample complexity distribution is determined by its moments in terms of the the prior probability distribution over a fixed finite hypothesis set.
comment: 43 pages, 1 figure, 1 table, and 2 inline algorithms. Submitted to JMLR Jan. 6, 2025
☆ On Learning Informative Trajectory Embeddings for Imitation, Classification and Regression AAMAS 2025
In real-world sequential decision making tasks like autonomous driving, robotics, and healthcare, learning from observed state-action trajectories is critical for tasks like imitation, classification, and clustering. For example, self-driving cars must replicate human driving behaviors, while robots and healthcare systems benefit from modeling decision sequences, whether or not they come from expert data. Existing trajectory encoding methods often focus on specific tasks or rely on reward signals, limiting their ability to generalize across domains and tasks. Inspired by the success of embedding models like CLIP and BERT in static domains, we propose a novel method for embedding state-action trajectories into a latent space that captures the skills and competencies in the dynamic underlying decision-making processes. This method operates without the need for reward labels, enabling better generalization across diverse domains and tasks. Our contributions are threefold: (1) We introduce a trajectory embedding approach that captures multiple abilities from state-action data. (2) The learned embeddings exhibit strong representational power across downstream tasks, including imitation, classification, clustering, and regression. (3) The embeddings demonstrate unique properties, such as controlling agent behaviors in IQ-Learn and an additive structure in the latent space. Experimental results confirm that our method outperforms traditional approaches, offering more flexible and powerful trajectory representations for various applications. Our code is available at https://github.com/Erasmo1015/vte.
comment: AAMAS 2025
☆ Cooperative Decentralized Backdoor Attacks on Vertical Federated Learning
Federated learning (FL) is vulnerable to backdoor attacks, where adversaries alter model behavior on target classification labels by embedding triggers into data samples. While these attacks have received considerable attention in horizontal FL, they are less understood for vertical FL (VFL), where devices hold different features of the samples, and only the server holds the labels. In this work, we propose a novel backdoor attack on VFL which (i) does not rely on gradient information from the server and (ii) considers potential collusion among multiple adversaries for sample selection and trigger embedding. Our label inference model augments variational autoencoders with metric learning, which adversaries can train locally. A consensus process over the adversary graph topology determines which datapoints to poison. We further propose methods for trigger splitting across the adversaries, with an intensity-based implantation scheme skewing the server towards the trigger. Our convergence analysis reveals the impact of backdoor perturbations on VFL indicated by a stationarity gap for the trained model, which we verify empirically as well. We conduct experiments comparing our attack with recent backdoor VFL approaches, finding that ours obtains significantly higher success rates for the same main task performance despite not using server information. Additionally, our results verify the impact of collusion on attack performance.
comment: This paper is currently under review in the IEEE/ACM Transactions on Networking Special Issue on AI and Networking
☆ Finding the Trigger: Causal Abductive Reasoning on Video Events
This paper introduces a new problem, Causal Abductive Reasoning on Video Events (CARVE), which involves identifying causal relationships between events in a video and generating hypotheses about causal chains that account for the occurrence of a target event. To facilitate research in this direction, we create two new benchmark datasets with both synthetic and realistic videos, accompanied by trigger-target labels generated through a novel counterfactual synthesis approach. To explore the challenge of solving CARVE, we present a Causal Event Relation Network (CERN) that examines the relationships between video events in temporal and semantic spaces to efficiently determine the root-cause trigger events. Through extensive experiments, we demonstrate the critical roles of event relational representation learning and interaction modeling in solving video causal reasoning challenges. The introduction of the CARVE task, along with the accompanying datasets and the CERN framework, will advance future research on video causal reasoning and significantly facilitate various applications, including video surveillance, root-cause analysis and movie content management.
☆ Physics-informed deep learning for infectious disease forecasting
Accurate forecasting of contagious illnesses has become increasingly important to public health policymaking, and better prediction could prevent the loss of millions of lives. To better prepare for future pandemics, it is essential to improve forecasting methods and capabilities. In this work, we propose a new infectious disease forecasting model based on physics-informed neural networks (PINNs), an emerging area of scientific machine learning. The proposed PINN model incorporates dynamical systems representations of disease transmission into the loss function, thereby assimilating epidemiological theory and data using neural networks (NNs). Our approach is designed to prevent model overfitting, which often occurs when training deep learning models with observation data alone. In addition, we employ an additional sub-network to account for mobility, vaccination, and other covariates that influence the transmission rate, a key parameter in the compartment model. To demonstrate the capability of the proposed model, we examine the performance of the model using state-level COVID-19 data in California. Our simulation results show that predictions of PINN model on the number of cases, deaths, and hospitalizations are consistent with existing benchmarks. In particular, the PINN model outperforms the basic NN model and naive baseline forecast. We also show that the performance of the PINN model is comparable to a sophisticated Gaussian infection state space with time dependence (GISST) forecasting model that integrates the compartment model with a data observation model and a regression model for inferring parameters in the compartment model. Nonetheless, the PINN model offers a simpler structure and is easier to implement. Our results show that the proposed forecaster could potentially serve as a new computational tool to enhance the current capacity of infectious disease forecasting.
☆ Free-Knots Kolmogorov-Arnold Network: On the Analysis of Spline Knots and Advancing Stability
Kolmogorov-Arnold Neural Networks (KANs) have gained significant attention in the machine learning community. However, their implementation often suffers from poor training stability and heavy trainable parameter. Furthermore, there is limited understanding of the behavior of the learned activation functions derived from B-splines. In this work, we analyze the behavior of KANs through the lens of spline knots and derive the lower and upper bound for the number of knots in B-spline-based KANs. To address existing limitations, we propose a novel Free Knots KAN that enhances the performance of the original KAN while reducing the number of trainable parameters to match the trainable parameter scale of standard Multi-Layer Perceptrons (MLPs). Additionally, we introduce new a training strategy to ensure $C^2$ continuity of the learnable spline, resulting in smoother activation compared to the original KAN and improve the training stability by range expansion. The proposed method is comprehensively evaluated on 8 datasets spanning various domains, including image, text, time series, multimodal, and function approximation tasks. The promising results demonstrates the feasibility of KAN-based network and the effectiveness of proposed method.
☆ Large Language Model is Secretly a Protein Sequence Optimizer
We consider the protein sequence engineering problem, which aims to find protein sequences with high fitness levels, starting from a given wild-type sequence. Directed evolution has been a dominating paradigm in this field which has an iterative process to generate variants and select via experimental feedback. We demonstrate large language models (LLMs), despite being trained on massive texts, are secretly protein sequence optimizers. With a directed evolutionary method, LLM can perform protein engineering through Pareto and experiment-budget constrained optimization, demonstrating success on both synthetic and experimental fitness landscapes.
comment: Preprint
☆ On the convergence of noisy Bayesian Optimization with Expected Improvement
Expected improvement (EI) is one of the most widely-used acquisition functions in Bayesian optimization (BO). Despite its proven success in applications for decades, important open questions remain on the theoretical convergence behaviors and rates for EI. In this paper, we contribute to the convergence theories of EI in three novel and critical area. First, we consider objective functions that are under the Gaussian process (GP) prior assumption, whereas existing works mostly focus on functions in the reproducing kernel Hilbert space (RKHS). Second, we establish the first asymptotic error bound and its corresponding rate for GP-EI with noisy observations under the GP prior assumption. Third, by investigating the exploration and exploitation of the non-convex EI function, we prove improved error bounds for both the noise-free and noisy cases. The improved noiseless bound is extended to the RKHS assumption as well.
☆ Clone-Robust AI Alignment
A key challenge in training Large Language Models (LLMs) is properly aligning them with human preferences. Reinforcement Learning with Human Feedback (RLHF) uses pairwise comparisons from human annotators to train reward functions and has emerged as a popular alignment method. However, input datasets in RLHF are not necessarily balanced in the types of questions and answers that are included. Therefore, we want RLHF algorithms to perform well even when the set of alternatives is not uniformly distributed. Drawing on insights from social choice theory, we introduce robustness to approximate clones, a desirable property of RLHF algorithms which requires that adding near-duplicate alternatives does not significantly change the learned reward function. We first demonstrate that the standard RLHF algorithm based on regularized maximum likelihood estimation (MLE) fails to satisfy this property. We then propose the weighted MLE, a new RLHF algorithm that modifies the standard regularized MLE by weighting alternatives based on their similarity to other alternatives. This new algorithm guarantees robustness to approximate clones while preserving desirable theoretical properties.
☆ Task Vectors in In-Context Learning: Emergence, Formation, and Benefit
In-context learning is a remarkable capability of transformers, referring to their ability to adapt to specific tasks based on a short history or context. Previous research has found that task-specific information is locally encoded within models, though their emergence and functionality remain unclear due to opaque pre-training processes. In this work, we investigate the formation of task vectors in a controlled setting, using models trained from scratch on synthetic datasets. Our findings confirm that task vectors naturally emerge under certain conditions, but the tasks may be relatively weakly and/or non-locally encoded within the model. To promote strong task vectors encoded at a prescribed location within the model, we propose an auxiliary training mechanism based on a task vector prompting loss (TVP-loss). This method eliminates the need to search for task-correlated encodings within the trained model and demonstrably improves robustness and generalization.
☆ Mono-Forward: Backpropagation-Free Algorithm for Efficient Neural Network Training Harnessing Local Errors
Backpropagation is the standard method for achieving state-of-the-art accuracy in neural network training, but it often imposes high memory costs and lacks biological plausibility. In this paper, we introduce the Mono-Forward algorithm, a purely local layerwise learning method inspired by Hinton's Forward-Forward framework. Unlike backpropagation, Mono-Forward optimizes each layer solely with locally available information, eliminating the reliance on global error signals. We evaluated Mono-Forward on multi-layer perceptrons and convolutional neural networks across multiple benchmarks, including MNIST, Fashion-MNIST, CIFAR-10, and CIFAR-100. The test results show that Mono-Forward consistently matches or surpasses the accuracy of backpropagation across all tasks, with significantly reduced and more even memory usage, better parallelizability, and a comparable convergence rate.
comment: 12 pages
☆ Tessellated Linear Model for Age Prediction from Voice
Voice biometric tasks, such as age estimation require modeling the often complex relationship between voice features and the biometric variable. While deep learning models can handle such complexity, they typically require large amounts of accurately labeled data to perform well. Such data are often scarce for biometric tasks such as voice-based age prediction. On the other hand, simpler models like linear regression can work with smaller datasets but often fail to generalize to the underlying non-linear patterns present in the data. In this paper we propose the Tessellated Linear Model (TLM), a piecewise linear approach that combines the simplicity of linear models with the capacity of non-linear functions. TLM tessellates the feature space into convex regions and fits a linear model within each region. We optimize the tessellation and the linear models using a hierarchical greedy partitioning. We evaluated TLM on the TIMIT dataset on the task of age prediction from voice, where it outperformed state-of-the-art deep learning models.
☆ Foundations of Large Language Models
This is a book about large language models. As indicated by the title, it primarily focuses on foundational concepts rather than comprehensive coverage of all cutting-edge technologies. The book is structured into four main chapters, each exploring a key area: pre-training, generative models, prompting techniques, and alignment methods. It is intended for college students, professionals, and practitioners in natural language processing and related fields, and can serve as a reference for anyone interested in large language models.
☆ Leveraging Scale-aware Representations for improved Concept-Representation Alignment in ViTs
Vision Transformers (ViTs) are increasingly being adopted in various sensitive vision applications - like medical diagnosis, facial recognition, etc. To improve the interpretability of such models, many approaches attempt to forward-align them with carefully annotated abstract, human-understandable semantic entities - concepts. Concepts provide global rationales to the model predictions and can be quickly understood/intervened on by domain experts. Most current research focuses on designing model-agnostic, plug-and-play generic concept-based explainability modules that do not incorporate the inner workings of foundation models (e.g., inductive biases, scale invariance, etc.) during training. To alleviate this issue for ViTs, in this paper, we propose a novel Concept Representation Alignment Module (CRAM) which learns both scale and position-aware representations from multi-scale feature pyramids and patch representations respectively. CRAM further aligns these representations with concept annotations through an attention matrix. The proposed CRAM module improves the predictive performance of ViT architectures and also provides accurate and robust concept explanations as demonstrated on five datasets - including three widely used benchmarks (CUB, Pascal APY, Concept-MNIST) and 2 real-world datasets (AWA2, KITS).
☆ Adaptive Law-Based Transformation (ALT): A Lightweight Feature Representation for Time Series Classification
Time series classification (TSC) is fundamental in numerous domains, including finance, healthcare, and environmental monitoring. However, traditional TSC methods often struggle with the inherent complexity and variability of time series data. Building on our previous work with the linear law-based transformation (LLT) - which improved classification accuracy by transforming the feature space based on key data patterns - we introduce adaptive law-based transformation (ALT). ALT enhances LLT by incorporating variable-length shifted time windows, enabling it to capture distinguishing patterns of various lengths and thereby handle complex time series more effectively. By mapping features into a linearly separable space, ALT provides a fast, robust, and transparent solution that achieves state-of-the-art performance with only a few hyperparameters.
comment: 8 pages, 1 figure, 5 tables
☆ CLAP-S: Support Set Based Adaptation for Downstream Fiber-optic Acoustic Recognition ICASSP 2025
Contrastive Language-Audio Pretraining (CLAP) models have demonstrated unprecedented performance in various acoustic signal recognition tasks. Fiber-optic-based acoustic recognition is one of the most important downstream tasks and plays a significant role in environmental sensing. Adapting CLAP for fiber-optic acoustic recognition has become an active research area. As a non-conventional acoustic sensor, fiber-optic acoustic recognition presents a challenging, domain-specific, low-shot deployment environment with significant domain shifts due to unique frequency response and noise characteristics. To address these challenges, we propose a support-based adaptation method, CLAP-S, which linearly interpolates a CLAP Adapter with the Support Set, leveraging both implicit knowledge through fine-tuning and explicit knowledge retrieved from memory for cross-domain generalization. Experimental results show that our method delivers competitive performance on both laboratory-recorded fiber-optic ESC-50 datasets and a real-world fiber-optic gunshot-firework dataset. Our research also provides valuable insights for other downstream acoustic recognition tasks. The code and gunshot-firework dataset are available at https://github.com/Jingchensun/clap-s.
comment: Accepted to ICASSP 2025
☆ Geometry-Preserving Encoder/Decoder in Latent Generative Models
Generative modeling aims to generate new data samples that resemble a given dataset, with diffusion models recently becoming the most popular generative model. One of the main challenges of diffusion models is solving the problem in the input space, which tends to be very high-dimensional. Recently, solving diffusion models in the latent space through an encoder that maps from the data space to a lower-dimensional latent space has been considered to make the training process more efficient and has shown state-of-the-art results. The variational autoencoder (VAE) is the most commonly used encoder/decoder framework in this domain, known for its ability to learn latent representations and generate data samples. In this paper, we introduce a novel encoder/decoder framework with theoretical properties distinct from those of the VAE, specifically designed to preserve the geometric structure of the data distribution. We demonstrate the significant advantages of this geometry-preserving encoder in the training process of both the encoder and decoder. Additionally, we provide theoretical results proving convergence of the training process, including convergence guarantees for encoder training, and results showing faster convergence of decoder training when using the geometry-preserving encoder.
comment: 41 pages
☆ An LLM-Guided Tutoring System for Social Skills Training
Social skills training targets behaviors necessary for success in social interactions. However, traditional classroom training for such skills is often insufficient to teach effective communication -- one-to-one interaction in real-world scenarios is preferred to lecture-style information delivery. This paper introduces a framework that allows instructors to collaborate with large language models to dynamically design realistic scenarios for students to communicate. Our framework uses these scenarios to enable student rehearsal, provide immediate feedback, and visualize performance for both students and instructors. Unlike traditional intelligent tutoring systems, instructors can easily co-create scenarios with a large language model without technical skills. Additionally, the system generates new scenario branches in real time when existing options do not fit the student's response.
☆ From Explainability to Interpretability: Interpretable Policies in Reinforcement Learning Via Model Explanation AAAI
Deep reinforcement learning (RL) has shown remarkable success in complex domains, however, the inherent black box nature of deep neural network policies raises significant challenges in understanding and trusting the decision-making processes. While existing explainable RL methods provide local insights, they fail to deliver a global understanding of the model, particularly in high-stakes applications. To overcome this limitation, we propose a novel model-agnostic approach that bridges the gap between explainability and interpretability by leveraging Shapley values to transform complex deep RL policies into transparent representations. The proposed approach offers two key contributions: a novel approach employing Shapley values to policy interpretation beyond local explanations and a general framework applicable to off-policy and on-policy algorithms. We evaluate our approach with three existing deep RL algorithms and validate its performance in two classic control environments. The results demonstrate that our approach not only preserves the original models' performance but also generates more stable interpretable policies.
comment: Accepted to Deployable AI (DAI) Workshop at the Thirty-Ninth AAAI Conference on Artificial Intelligence (AAAI-25)
☆ Learning Noisy Halfspaces with a Margin: Massart is No Harder than Random NeurIPS 2024
We study the problem of PAC learning $\gamma$-margin halfspaces with Massart noise. We propose a simple proper learning algorithm, the Perspectron, that has sample complexity $\widetilde{O}((\epsilon\gamma)^{-2})$ and achieves classification error at most $\eta+\epsilon$ where $\eta$ is the Massart noise rate. Prior works [DGT19,CKMY20] came with worse sample complexity guarantees (in both $\epsilon$ and $\gamma$) or could only handle random classification noise [DDK+23,KIT+23] -- a much milder noise assumption. We also show that our results extend to the more challenging setting of learning generalized linear models with a known link function under Massart noise, achieving a similar sample complexity to the halfspace case. This significantly improves upon the prior state-of-the-art in this setting due to [CKMY20], who introduced this model.
comment: Appeared in NeurIPS 2024
☆ Coded Deep Learning: Framework and Algorithm
The success of deep learning (DL) is often achieved with large models and high complexity during both training and post-training inferences, hindering training in resource-limited settings. To alleviate these issues, this paper introduces a new framework dubbed ``coded deep learning'' (CDL), which integrates information-theoretic coding concepts into the inner workings of DL, to significantly compress model weights and activations, reduce computational complexity at both training and post-training inference stages, and enable efficient model/data parallelism. Specifically, within CDL, (i) we first propose a novel probabilistic method for quantizing both model weights and activations, and its soft differentiable variant which offers an analytic formula for gradient calculation during training; (ii) both the forward and backward passes during training are executed over quantized weights and activations, eliminating most floating-point operations and reducing training complexity; (iii) during training, both weights and activations are entropy constrained so that they are compressible in an information-theoretic sense throughout training, thus reducing communication costs in model/data parallelism; and (iv) the trained model in CDL is by default in a quantized format with compressible quantized weights, reducing post-training inference and storage complexity. Additionally, a variant of CDL, namely relaxed CDL (R-CDL), is presented to further improve the trade-off between validation accuracy and compression though requiring full precision in training with other advantageous features of CDL intact. Extensive empirical results show that CDL and R-CDL outperform the state-of-the-art algorithms in DNN compression in the literature.
☆ pFedWN: A Personalized Federated Learning Framework for D2D Wireless Networks with Heterogeneous Data
Traditional Federated Learning (FL) approaches often struggle with data heterogeneity across clients, leading to suboptimal model performance for individual clients. To address this issue, Personalized Federated Learning (PFL) emerges as a solution to the challenges posed by non-independent and identically distributed (non-IID) and unbalanced data across clients. Furthermore, in most existing decentralized machine learning works, a perfect communication channel is considered for model parameter transmission between clients and servers. However, decentralized PFL over wireless links introduces new challenges, such as resource allocation and interference management. To overcome these challenges, we formulate a joint optimization problem that incorporates the underlying device-to-device (D2D) wireless channel conditions into a server-free PFL approach. The proposed method, dubbed pFedWN, optimizes the learning performance for each client while accounting for the variability in D2D wireless channels. To tackle the formulated problem, we divide it into two sub-problems: PFL neighbor selection and PFL weight assignment. The PFL neighbor selection is addressed through channel-aware neighbor selection within unlicensed spectrum bands such as ISM bands. Next, to assign PFL weights, we utilize the Expectation-Maximization (EM) method to evaluate the similarity between clients' data and obtain optimal weight distribution among the chosen PFL neighbors. Empirical results show that pFedWN provides efficient and personalized learning performance with non-IID and unbalanced datasets. Furthermore, it outperforms the existing FL and PFL methods in terms of learning efficacy and robustness, particularly under dynamic and unpredictable wireless channel conditions.
comment: 16 pages, 9 figures, 3 tables, submitted to Transactions on Networking
☆ BN-Pool: a Bayesian Nonparametric Approach to Graph Pooling
We introduce BN-Pool, the first clustering-based pooling method for Graph Neural Networks (GNNs) that adaptively determines the number of supernodes in a coarsened graph. By leveraging a Bayesian non-parametric framework, BN-Pool employs a generative model capable of partitioning graph nodes into an unbounded number of clusters. During training, we learn the node-to-cluster assignments by combining the supervised loss of the downstream task with an unsupervised auxiliary term, which encourages the reconstruction of the original graph topology while penalizing unnecessary proliferation of clusters. This adaptive strategy allows BN-Pool to automatically discover an optimal coarsening level, offering enhanced flexibility and removing the need to specify sensitive pooling ratios. We show that BN-Pool achieves superior performance across diverse benchmarks.
☆ Enhancing Generalization in Chain of Thought Reasoning for Smaller Models
Chain-of-Thought (CoT) reasoning in smaller language models is a challenging natural language process problem yet highly desirable in many real-life applications. Existing CoT knowledge distillation methods often suffer from overly conservative memorization in smaller LLMs, leading to low generalization confidence. As fully preserving the CoT ability of teacher model is impossible, we hypothesize that adversarial CoT fine-tuning is crucial for developing smaller LLM with robust CoT generalization. To this end, we propose \textit{PRompt-Assisted Domain-Adversarial fine-tuning} (PRADA), a principled fine-tuning framework that integrates diverse CoT domains. Specifically, PRADA pioneers two CoT improvements in smaller LLM: (1) Recovering the domain-invariant feature insight which typically lost during distillation with domain adversarial fine-tuning; (2) Enhancing the domain adaptability of CoT prompt engineering by employing domain-adversarial approaches. We theoretically demonstrate the effectiveness of our approach and empirically show that it significantly outperforms the state of the arts in a wide range of tasks. Moreover, our empirical findings reveal that the smaller LLM, when leveraging PRADA, aligns closely with domain knowledge, thereby improving the explainability of our approach.
☆ Graph Neural Networks for Travel Distance Estimation and Route Recommendation Under Probabilistic Hazards
Estimating the shortest travel time and providing route recommendation between different locations in a city or region can quantitatively measure the conditions of the transportation network during or after extreme events. One common approach is to use Dijkstra's Algorithm, which produces the shortest path as well as the shortest distance. However, this option is computationally expensive when applied to large-scale networks. This paper proposes a novel fast framework based on graph neural networks (GNNs) which approximate the single-source shortest distance between pairs of locations, and predict the single-source shortest path subsequently. We conduct multiple experiments on synthetic graphs of different size to demonstrate the feasibility and computational efficiency of the proposed model. In real-world case studies, we also applied the proposed method of flood risk analysis of coastal urban areas to calculate delays in evacuation to public shelters during hurricanes. The results indicate the accuracy and computational efficiency of the GNN model, and its potential for effective implementation in emergency planning and management.
comment: 17 pages, 11 figures
☆ OmniThink: Expanding Knowledge Boundaries in Machine Writing through Thinking
Machine writing with large language models often relies on retrieval-augmented generation. However, these approaches remain confined within the boundaries of the model's predefined scope, limiting the generation of content with rich information. Specifically, vanilla-retrieved information tends to lack depth, utility, and suffers from redundancy, which negatively impacts the quality of generated articles, leading to shallow, repetitive, and unoriginal outputs. To address these issues, we propose OmniThink, a machine writing framework that emulates the human-like process of iterative expansion and reflection. The core idea behind OmniThink is to simulate the cognitive behavior of learners as they progressively deepen their knowledge of the topics. Experimental results demonstrate that OmniThink improves the knowledge density of generated articles without compromising metrics such as coherence and depth. Human evaluations and expert feedback further highlight the potential of OmniThink to address real-world challenges in the generation of long-form articles.
☆ Multi-Head Self-Attending Neural Tucker Factorization
Quality-of-service (QoS) data exhibit dynamic temporal patterns that are crucial for accurately predicting missing values. These patterns arise from the evolving interactions between users and services, making it essential to capture the temporal dynamics inherent in such data for improved prediction performance. As the size and complexity of QoS datasets increase, existing models struggle to provide accurate predictions, highlighting the need for more flexible and dynamic methods to better capture the underlying patterns in large-scale QoS data. To address this issue, we introduce a neural network-based tensor factorization approach tailored for learning spatiotemporal representations of high-dimensional and incomplete (HDI) tensors, namely the Multi-head Self-attending Neural Tucker Factorization (MSNTucF). The model is elaborately designed for modeling intricate nonlinear spatiotemporal feature interaction patterns hidden in real world data with a two-fold idea. It first employs a neural network structure to generalize the traditional framework of Tucker factorization and then proposes to leverage a multi-head self-attending module to enforce nonlinear latent interaction learning. In empirical studies on two dynamic QoS datasets from real applications, the proposed MSNTucF model demonstrates superior performance compared to state-of-the-art benchmark models in estimating missing observations. This highlights its ability to learn non-linear spatiotemporal representations of HDI tensors.
♻ ☆ Algorithmic Collective Action in Recommender Systems: Promoting Songs by Reordering Playlists NeurIPS 2024
We investigate algorithmic collective action in transformer-based recommender systems. Our use case is a music streaming platform where a collective of fans aims to promote the visibility of an underrepresented artist by strategically placing one of their songs in the existing playlists they control. We introduce two easily implementable strategies to select the position at which to insert the song with the goal to boost recommendations at test time. The strategies exploit statistical properties of the learner by targeting discontinuities in the recommendations, and leveraging the long-tail nature of song distributions. We evaluate the efficacy of our strategies using a publicly available recommender system model released by a major music streaming platform. Our findings reveal that through strategic placement even small collectives (controlling less than 0.01\% of the training data) can achieve up to $40\times$ more test time recommendations than an average song with the same number of training set occurrences. Focusing on the externalities of the strategy, we find that the recommendations of other songs are largely preserved, and the newly gained recommendations are distributed across various artists. Together, our findings demonstrate how carefully designed collective action strategies can be effective while not necessarily being adversarial.
comment: Published at NeurIPS 2024, camera-ready updates
♻ ☆ Using Machine Learning to Discover Parsimonious and Physically-Interpretable Representations of Catchment-Scale Rainfall-Runoff Dynamics
Despite the excellent real-world predictive performance of modern machine learning (ML) methods, many scientists remain hesitant to discard traditional physical-conceptual (PC) approaches due mainly to their relative interpretability, which contributes to credibility during decision-making. In this context, a currently underexplored aspect of ML is how to develop minimally-optimal representations that can facilitate better insight regarding system functioning. Regardless of how this is achieved, it is arguably true that parsimonious representations better support the advancement of scientific understanding. Our own view is that ML-based modeling of geoscientific systems should be based in the use of computational units that are fundamentally interpretable by design. This paper continues our exploration of how the strengths of ML can be exploited in the service of better understanding via scientific investigation. Here, we use the Mass Conserving Perceptron (MCP) as the fundamental computational unit in a generic network architecture consisting of nodes arranged in series and parallel to explore several generic and important issues related to the use of observational data for constructing input-state-output models of dynamical systems. In the context of lumped catchment modeling, we show that physical interpretability and excellent predictive performance can both be achieved using a relatively parsimonious distributed-state multiple-flow-path network with context-dependent gating and information sharing across the nodes, suggesting that MCP-based modeling can play a significant role in application of ML to geoscientific investigation.
comment: 74 Pages, 4 Tables, 13 Figures, 11 Tables and 11 Figures in Supplementary Materials
♻ ☆ Dynamics of Moral Behavior in Heterogeneous Populations of Learning Agents AAAI
Growing concerns about safety and alignment of AI systems highlight the importance of embedding moral capabilities in artificial agents: a promising solution is the use of learning from experience, i.e., Reinforcement Learning. In multi-agent (social) environments, complex population-level phenomena may emerge from interactions between individual learning agents. Many of the existing studies rely on simulated social dilemma environments to study the interactions of independent learning agents; however, they tend to ignore the moral heterogeneity that is likely to be present in societies of agents in practice. For example, at different points in time a single learning agent may face opponents who are consequentialist (i.e., focused on maximizing outcomes over time), norm-based (i.e., conforming to specific norms), or virtue-based (i.e., considering a combination of different virtues). The extent to which agents' co-development may be impacted by such moral heterogeneity in populations is not well understood. In this paper, we present a study of the learning dynamics of morally heterogeneous populations interacting in a social dilemma setting. Using an Iterated Prisoner's Dilemma environment with a partner selection mechanism, we investigate the extent to which the prevalence of diverse moral agents in populations affects individual agents' learning behaviors and emergent population-level outcomes. We observe several types of non-trivial interactions between pro-social and anti-social agents, and find that certain types of moral agents are able to steer selfish agents towards more cooperative behavior.
comment: Presented at AIES 2024 (7th AAAI/ACM Conference on AI, Ethics, and Society - San Jose, CA, USA) - see https://ojs.aaai.org/index.php/AIES/article/view/31736
♻ ☆ A Comparative Study on Multi-task Uncertainty Quantification in Semantic Segmentation and Monocular Depth Estimation
Deep neural networks excel in perception tasks such as semantic segmentation and monocular depth estimation, making them indispensable in safety-critical applications like autonomous driving and industrial inspection. However, they often suffer from overconfidence and poor explainability, especially for out-of-domain data. While uncertainty quantification has emerged as a promising solution to these challenges, multi-task settings have yet to be explored. In an effort to shed light on this, we evaluate Monte Carlo Dropout, Deep Sub-Ensembles, and Deep Ensembles for joint semantic segmentation and monocular depth estimation. Thereby, we reveal that Deep Ensembles stand out as the preferred choice, particularly in out-of-domain scenarios, and show the potential benefit of multi-task learning with regard to the uncertainty quality in comparison to solving both tasks separately. Additionally, we highlight the impact of employing different uncertainty thresholds to classify pixels as certain or uncertain, with the median uncertainty emerging as a robust default.
comment: This manuscript is an extended version of a previously published conference paper and is currently in review for a journal
♻ ☆ Aligning Brain Activity with Advanced Transformer Models: Exploring the Role of Punctuation in Semantic Processing
This research examines the congruence between neural activity and advanced transformer models, emphasizing the semantic significance of punctuation in text understanding. Utilizing an innovative approach originally proposed by Toneva and Wehbe, we evaluate four advanced transformer models RoBERTa, DistiliBERT, ALBERT, and ELECTRA against neural activity data. Our findings indicate that RoBERTa exhibits the closest alignment with neural activity, surpassing BERT in accuracy. Furthermore, we investigate the impact of punctuation removal on model performance and neural alignment, revealing that BERT's accuracy enhances in the absence of punctuation. This study contributes to the comprehension of how neural networks represent language and the influence of punctuation on semantic processing within the human brain.
♻ ☆ Flexible task abstractions emerge in linear networks with fast and bounded units
Animals survive in dynamic environments changing at arbitrary timescales, but such data distribution shifts are a challenge to neural networks. To adapt to change, neural systems may change a large number of parameters, which is a slow process involving forgetting past information. In contrast, animals leverage distribution changes to segment their stream of experience into tasks and associate them with internal task abstracts. Animals can then respond flexibly by selecting the appropriate task abstraction. However, how such flexible task abstractions may arise in neural systems remains unknown. Here, we analyze a linear gated network where the weights and gates are jointly optimized via gradient descent, but with neuron-like constraints on the gates including a faster timescale, nonnegativity, and bounded activity. We observe that the weights self-organize into modules specialized for tasks or sub-tasks encountered, while the gates layer forms unique representations that switch the appropriate weight modules (task abstractions). We analytically reduce the learning dynamics to an effective eigenspace, revealing a virtuous cycle: fast adapting gates drive weight specialization by protecting previous knowledge, while weight specialization in turn increases the update rate of the gating layer. Task switching in the gating layer accelerates as a function of curriculum block size and task training, mirroring key findings in cognitive neuroscience. We show that the discovered task abstractions support generalization through both task and subtask composition, and we extend our findings to a non-linear network switching between two tasks. Overall, our work offers a theory of cognitive flexibility in animals as arising from joint gradient descent on synaptic and neural gating in a neural network architecture.
♻ ☆ A Comprehensive Survey of Foundation Models in Medicine
Foundation models (FMs) are large-scale deep learning models trained on massive datasets, often using self-supervised learning techniques. These models serve as a versatile base for a wide range of downstream tasks, including those in medicine and healthcare. FMs have demonstrated remarkable success across multiple healthcare domains. However, existing surveys in this field do not comprehensively cover all areas where FMs have made significant strides. In this survey, we present a comprehensive review of FMs in medicine, focusing on their evolution, learning strategies, flagship models, applications, and associated challenges. We examine how prominent FMs, such as the BERT and GPT families, are transforming various aspects of healthcare, including clinical large language models, medical image analysis, and omics research. Additionally, we provide a detailed taxonomy of FM-enabled healthcare applications, spanning clinical natural language processing, medical computer vision, graph learning, and other biology- and omics- related tasks. Despite the transformative potentials of FMs, they also pose unique challenges. This survey delves into these challenges and highlights open research questions and lessons learned to guide researchers and practitioners. Our goal is to provide valuable insights into the capabilities of FMs in health, facilitating responsible deployment and mitigating associated risks.
comment: Currently under review in IEEE REVIEWS IN BIOMEDICAL ENGINEERING
♻ ☆ Hybrid Approaches for Moral Value Alignment in AI Agents: a Manifesto
Increasing interest in ensuring the safety of next-generation Artificial Intelligence (AI) systems calls for novel approaches to embedding morality into autonomous agents. This goal differs qualitatively from traditional task-specific AI methodologies. In this paper, we provide a systematization of existing approaches to the problem of introducing morality in machines - modelled as a continuum. Our analysis suggests that popular techniques lie at the extremes of this continuum - either being fully hard-coded into top-down, explicit rules, or entirely learned in a bottom-up, implicit fashion with no direct statement of any moral principle (this includes learning from human feedback, as applied to the training and finetuning of large language models, or LLMs). Given the relative strengths and weaknesses of each type of methodology, we argue that more hybrid solutions are needed to create adaptable and robust, yet controllable and interpretable agentic systems. To that end, this paper discusses both the ethical foundations (including deontology, consequentialism and virtue ethics) and implementations of morally aligned AI systems. We present a series of case studies that rely on intrinsic rewards, moral constraints or textual instructions, applied to either pure-Reinforcement Learning or LLM-based agents. By analysing these diverse implementations under one framework, we compare their relative strengths and shortcomings in developing morally aligned AI systems. We then discuss strategies for evaluating the effectiveness of moral learning agents. Finally, we present open research questions and implications for the future of AI safety and ethics which are emerging from this hybrid framework.
♻ ☆ ReFactor GNNs: Revisiting Factorisation-based Models from a Message-Passing Perspective NeurIPS 2022
Factorisation-based Models (FMs), such as DistMult, have enjoyed enduring success for Knowledge Graph Completion (KGC) tasks, often outperforming Graph Neural Networks (GNNs). However, unlike GNNs, FMs struggle to incorporate node features and generalise to unseen nodes in inductive settings. Our work bridges the gap between FMs and GNNs by proposing ReFactor GNNs. This new architecture draws upon both modelling paradigms, which previously were largely thought of as disjoint. Concretely, using a message-passing formalism, we show how FMs can be cast as GNNs by reformulating the gradient descent procedure as message-passing operations, which forms the basis of our ReFactor GNNs. Across a multitude of well-established KGC benchmarks, our ReFactor GNNs achieve comparable transductive performance to FMs, and state-of-the-art inductive performance while using an order of magnitude fewer parameters.
comment: 36th Conference on Neural Information Processing Systems (NeurIPS 2022)
♻ ☆ Local Anti-Concentration Class: Logarithmic Regret for Greedy Linear Contextual Bandit NeurIPS2024
We study the performance guarantees of exploration-free greedy algorithms for the linear contextual bandit problem. We introduce a novel condition, named the \textit{Local Anti-Concentration} (LAC) condition, which enables a greedy bandit algorithm to achieve provable efficiency. We show that the LAC condition is satisfied by a broad class of distributions, including Gaussian, exponential, uniform, Cauchy, and Student's~$t$ distributions, along with other exponential family distributions and their truncated variants. This significantly expands the class of distributions under which greedy algorithms can perform efficiently. Under our proposed LAC condition, we prove that the cumulative expected regret of the greedy algorithm for the linear contextual bandit is bounded by $O(\operatorname{poly} \log T)$. Our results establish the widest range of distributions known to date that allow a sublinear regret bound for greedy algorithms, further achieving a sharp poly-logarithmic regret.
comment: NeurIPS2024
♻ ☆ Higher-Order Topological Directionality and Directed Simplicial Neural Networks
Topological Deep Learning (TDL) has emerged as a paradigm to process and learn from signals defined on higher-order combinatorial topological spaces, such as simplicial or cell complexes. Although many complex systems have an asymmetric relational structure, most TDL models forcibly symmetrize these relationships. In this paper, we first introduce a novel notion of higher-order directionality and we then design Directed Simplicial Neural Networks (Dir-SNNs) based on it. Dir-SNNs are message-passing networks operating on directed simplicial complexes able to leverage directed and possibly asymmetric interactions among the simplices. To our knowledge, this is the first TDL model using a notion of higher-order directionality. We theoretically and empirically prove that Dir-SNNs are more expressive than their directed graph counterpart in distinguishing isomorphic directed graphs. Experiments on a synthetic source localization task demonstrate that Dir-SNNs outperform undirected SNNs when the underlying complex is directed, and perform comparably when the underlying complex is undirected.
comment: 7 pages, 8 figures, 1 table
♻ ☆ Hybrid additive modeling with partial dependence for supervised regression and dynamical systems forecasting
Learning processes by exploiting restricted domain knowledge is an important task across a plethora of scientific areas, with more and more hybrid training methods additively combining data-driven and model-based approaches. Although the obtained models are more accurate than purely data-driven models, the optimization process usually comes with sensitive regularization constraints. Furthermore, while such hybrid methods have been tested in various scientific applications, they have been mostly tested on dynamical systems, with only limited study about the influence of each model component on global performance and parameter identification. In this work, we introduce a new hybrid training approach based on partial dependence, which removes the need for intricate regularization. Moreover, we assess the performance of hybrid modeling against traditional machine learning methods on standard regression problems. We compare, on both synthetic and real regression problems, several approaches for training such hybrid models. We focus on hybrid methods that additively combine a parametric term with a machine learning term and investigate model-agnostic training procedures. Therefore, experiments are carried out with different types of machine learning models, including tree-based models and artificial neural networks. We also extend our partial dependence optimization process for dynamical systems forecasting and compare it to existing schemes.
comment: Extended version of the paper entitled "Knowledge-Guided Additive Modeling for Supervised Regression" (https://link.springer.com/chapter/10.1007/978-3-031-45275-8_5), accepted for publication in the Machine Learning journal. The extension includes new experiments in the static setting, along with a dedicated section on the application of our method to the problem of dynamical systems forecasting
♻ ☆ Provably Efficient Reinforcement Learning with Multinomial Logit Function Approximation NeurIPS 2024
We study a new class of MDPs that employs multinomial logit (MNL) function approximation to ensure valid probability distributions over the state space. Despite its significant benefits, incorporating the non-linear function raises substantial challenges in both statistical and computational efficiency. The best-known result of Hwang and Oh [2023] has achieved an $\widetilde{\mathcal{O}}(\kappa^{-1}dH^2\sqrt{K})$ regret upper bound, where $\kappa$ is a problem-dependent quantity, $d$ is the feature dimension, $H$ is the episode length, and $K$ is the number of episodes. However, we observe that $\kappa^{-1}$ exhibits polynomial dependence on the number of reachable states, which can be as large as the state space size in the worst case and thus undermines the motivation for function approximation. Additionally, their method requires storing all historical data and the time complexity scales linearly with the episode count, which is computationally expensive. In this work, we propose a statistically efficient algorithm that achieves a regret of $\widetilde{\mathcal{O}}(dH^2\sqrt{K} + \kappa^{-1}d^2H^2)$, eliminating the dependence on $\kappa^{-1}$ in the dominant term for the first time. We then address the computational challenges by introducing an enhanced algorithm that achieves the same regret guarantee but with only constant cost. Finally, we establish the first lower bound for this problem, justifying the optimality of our results in $d$ and $K$.
comment: NeurIPS 2024; v3 substantially improves the presentation and further illustrates the role of $\kappa$ in function approximation
♻ ☆ Bayesian Low-Rank LeArning (Bella): A Practical Approach to Bayesian Neural Networks AAAI'2025
Computational complexity of Bayesian learning is impeding its adoption in practical, large-scale tasks. Despite demonstrations of significant merits such as improved robustness and resilience to unseen or out-of-distribution inputs over their non- Bayesian counterparts, their practical use has faded to near insignificance. In this study, we introduce an innovative framework to mitigate the computational burden of Bayesian neural networks (BNNs). Our approach follows the principle of Bayesian techniques based on deep ensembles, but significantly reduces their cost via multiple low-rank perturbations of parameters arising from a pre-trained neural network. Both vanilla version of ensembles as well as more sophisticated schemes such as Bayesian learning with Stein Variational Gradient Descent (SVGD), previously deemed impractical for large models, can be seamlessly implemented within the proposed framework, called Bayesian Low-Rank LeArning (Bella). In a nutshell, i) Bella achieves a dramatic reduction in the number of trainable parameters required to approximate a Bayesian posterior; and ii) it not only maintains, but in some instances, surpasses the performance of conventional Bayesian learning methods and non-Bayesian baselines. Our results with large-scale tasks such as ImageNet, CAMELYON17, DomainNet, VQA with CLIP, LLaVA demonstrate the effectiveness and versatility of Bella in building highly scalable and practical Bayesian deep models for real-world applications.
comment: This paper is accepted in AAAI'2025
♻ ☆ Latent Space Characterization of Autoencoder Variants
Understanding the latent spaces learned by deep learning models is crucial in exploring how they represent and generate complex data. Autoencoders (AEs) have played a key role in the area of representation learning, with numerous regularization techniques and training principles developed not only to enhance their ability to learn compact and robust representations, but also to reveal how different architectures influence the structure and smoothness of the lower-dimensional non-linear manifold. We strive to characterize the structure of the latent spaces learned by different autoencoders including convolutional autoencoders (CAEs), denoising autoencoders (DAEs), and variational autoencoders (VAEs) and how they change with the perturbations in the input. By characterizing the matrix manifolds corresponding to the latent spaces, we provide an explanation for the well-known observation that the latent spaces of CAE and DAE form non-smooth manifolds, while that of VAE forms a smooth manifold. We also map the points of the matrix manifold to a Hilbert space using distance preserving transforms and provide an alternate view in terms of the subspaces generated in the Hilbert space as a function of the distortion in the input. The results show that the latent manifolds of CAE and DAE are stratified with each stratum being a smooth product manifold, while the manifold of VAE is a smooth product manifold of two symmetric positive definite matrices and a symmetric positive semi-definite matrix.
comment: 9 pages, 6 figures, and 1 table
♻ ☆ FSDEM: Feature Selection Dynamic Evaluation Metric
Expressive evaluation metrics are indispensable for informative experiments in all areas, and while several metrics are established in some areas, in others, such as feature selection, only indirect or otherwise limited evaluation metrics are found. In this paper, we propose a novel evaluation metric to address several problems of its predecessors and allow for flexible and reliable evaluation of feature selection algorithms. The proposed metric is a dynamic metric with two properties that can be used to evaluate both the performance and the stability of a feature selection algorithm. We conduct several empirical experiments to illustrate the use of the proposed metric in the successful evaluation of feature selection algorithms. We also provide a comparison and analysis to show the different aspects involved in the evaluation of the feature selection algorithms. The results indicate that the proposed metric is successful in carrying out the evaluation task for feature selection algorithms. This paper is an extended version of a paper published at SISAP 2024.
comment: Short version of this paper is published at 17th International Conference on Similarity Search and Applications, SISAP 2024
♻ ☆ STROOBnet Optimization via GPU-Accelerated Proximal Recurrence Strategies
Spatiotemporal networks' observational capabilities are crucial for accurate data gathering and informed decisions across multiple sectors. This study focuses on the Spatiotemporal Ranged Observer-Observable Bipartite Network (STROOBnet), linking observational nodes (e.g., surveillance cameras) to events within defined geographical regions, enabling efficient monitoring. Using data from Real-Time Crime Camera (RTCC) systems and Calls for Service (CFS) in New Orleans, where RTCC combats rising crime amidst reduced police presence, we address the network's initial observational imbalances. Aiming for uniform observational efficacy, we propose the Proximal Recurrence approach. It outperformed traditional clustering methods like k-means and DBSCAN by offering holistic event frequency and spatial consideration, enhancing observational coverage.
comment: 10 pages, 17 figures, 2023 IEEE International Conference on Big Data (BigData)
♻ ☆ A Consolidated Volatility Prediction with Back Propagation Neural Network and Genetic Algorithm ICML 2024
This paper provides a unique approach with AI algorithms to predict emerging stock markets volatility. Traditionally, stock volatility is derived from historical volatility,Monte Carlo simulation and implied volatility as well. In this paper, the writer designs a consolidated model with back-propagation neural network and genetic algorithm to predict future volatility of emerging stock markets and found that the results are quite accurate with low errors.
comment: 6 pages, 7 figures, 1 table, The paper will be published by IEEE on conference: 2024 3rd International Conference on Image Processing, Computer Vision and Machine Learning (ICICML 2024) (V2)
♻ ☆ SimHawNet: A Modified Hawkes Process for Temporal Network Simulation
Temporal networks allow representing connections between objects while incorporating the temporal dimension. While static network models can capture unchanging topological regularities, they often fail to model the effects associated with the causal generative process of the network that occurs in time. Hence, exploiting the temporal aspect of networks has been the focus of many recent studies. In this context, we propose a new framework for generative models of continuous-time temporal networks. We assume that the activation of the edges in a temporal network is driven by a specified temporal point process. This approach allows to directly model the waiting time between events while incorporating time-varying history-based features as covariates in the predictions. Coupled with a thinning algorithm designed for the simulation of point processes, SimHawNet enables simulation of the evolution of temporal networks in continuous time. Finally, we introduce a comprehensive evaluation framework to assess the performance of such an approach, in which we demonstrate that SimHawNet successfully simulates the evolution of networks with very different generative processes and achieves performance comparable to the state of the art, while being significantly faster.
♻ ☆ Benchmarking quantum machine learning kernel training for classification tasks
Quantum-enhanced machine learning is a rapidly evolving field that aims to leverage the unique properties of quantum mechanics to enhance classical machine learning. However, the practical applicability of these methods remains an open question, particularly beyond the context of specifically-crafted toy problems, and given the current limitations of quantum hardware. This study focuses on quantum kernel methods in the context of classification tasks. In particular, it examines the performance of Quantum Kernel Estimation (QKE) and Quantum Kernel Training (QKT) in connection with two quantum feature mappings, namely ZZFeatureMap and CovariantFeatureMap. Remarkably, these feature maps have been proposed in the literature under the conjecture of possible near-term quantum advantage and have shown promising performance in ad-hoc datasets. In this study, we aim to evaluate their versatility and generalization capabilities in a more general benchmark, encompassing both artificial and established reference datasets. Classical machine learning methods, specifically Support Vector Machines (SVMs) and logistic regression, are also incorporated as baseline comparisons. Experimental results indicate that quantum methods exhibit varying performance across different datasets. Despite outperforming classical methods in ad-hoc datasets, mixed results are obtained for the general case among standard classical benchmarks. Our experiments call into question a general added value of applying QKT optimization, for which the additional computational cost does not necessarily translate into improved classification performance. Instead, it is suggested that a careful choice of the quantum feature map in connection with proper hyperparameterization may prove more effective.
comment: 19 pages, 4 figures; extended experiments and datasets, fixed typos; in consideration for publication in IEEE TQE
♻ ☆ Formation-Controlled Dimensionality Reduction
Dimensionality reduction represents the process of generating a low dimensional representation of high dimensional data. Motivated by the formation control of mobile agents, we propose a nonlinear dynamical system for dimensionality reduction. The system consists of two parts; the control of neighbor points, addressing local structures, and the control of remote points, accounting for global structures.We also include a brief mathematical analysis of the model and its numerical procedure. Numerical experiments are performed on both synthetic and real datasets and comparisons with existing models demonstrate the soundness and effectiveness of the proposed model.
♻ ☆ Sparsity-Aware Distributed Learning for Gaussian Processes with Linear Multiple Kernel
Gaussian processes (GPs) stand as crucial tools in machine learning and signal processing, with their effectiveness hinging on kernel design and hyper-parameter optimization. This paper presents a novel GP linear multiple kernel (LMK) and a generic sparsity-aware distributed learning framework to optimize the hyper-parameters. The newly proposed grid spectral mixture product (GSMP) kernel is tailored for multi-dimensional data, effectively reducing the number of hyper-parameters while maintaining good approximation capability. We further demonstrate that the associated hyper-parameter optimization of this kernel yields sparse solutions. To exploit the inherent sparsity of the solutions, we introduce the Sparse LInear Multiple Kernel Learning (SLIM-KL) framework. The framework incorporates a quantized alternating direction method of multipliers (ADMM) scheme for collaborative learning among multiple agents, where the local optimization problem is solved using a distributed successive convex approximation (DSCA) algorithm. SLIM-KL effectively manages large-scale hyper-parameter optimization for the proposed kernel, simultaneously ensuring data privacy and minimizing communication costs. Theoretical analysis establishes convergence guarantees for the learning framework, while experiments on diverse datasets demonstrate the superior prediction performance and efficiency of our proposed methods.
♻ ☆ AALF: Almost Always Linear Forecasting
Recent works for time-series forecasting more and more leverage the high predictive power of Deep Learning models. With this increase in model complexity, however, comes a lack in understanding of the underlying model decision process, which is problematic for high-stakes application scenarios. At the same time, simple, interpretable forecasting methods such as ARIMA still perform very well, sometimes on-par, with Deep Learning approaches. We argue that simple models are good enough most of the time, and that forecasting performance could be improved by choosing a Deep Learning method only for few, important predictions, increasing the overall interpretability of the forecasting process. In this context, we propose a novel online model selection framework which learns to identify these predictions. An extensive empirical study on various real-world datasets shows that our selection methodology performs comparable to state-of-the-art online model selections methods in most cases while being significantly more interpretable. We find that almost always choosing a simple autoregressive linear model for forecasting results in competitive performance, suggesting that the need for opaque black-box models in time-series forecasting might be smaller than recent works would suggest.
♻ ☆ Evaluating alignment between humans and neural network representations in image-based learning tasks
Humans represent scenes and objects in rich feature spaces, carrying information that allows us to generalise about category memberships and abstract functions with few examples. What determines whether a neural network model generalises like a human? We tested how well the representations of $86$ pretrained neural network models mapped to human learning trajectories across two tasks where humans had to learn continuous relationships and categories of natural images. In these tasks, both human participants and neural networks successfully identified the relevant stimulus features within a few trials, demonstrating effective generalisation. We found that while training dataset size was a core determinant of alignment with human choices, contrastive training with multi-modal data (text and imagery) was a common feature of currently publicly available models that predicted human generalisation. Intrinsic dimensionality of representations had different effects on alignment for different model types. Lastly, we tested three sets of human-aligned representations and found no consistent improvements in predictive accuracy compared to the baselines. In conclusion, pretrained neural networks can serve to extract representations for cognitive models, as they appear to capture some fundamental aspects of cognition that are transferable across tasks. Both our paradigms and modelling approach offer a novel way to quantify alignment between neural networks and humans and extend cognitive science into more naturalistic domains.
♻ ☆ Instruction-Guided Fusion of Multi-Layer Visual Features in Large Vision-Language Models
Large Vision-Language Models (LVLMs) have achieved significant success in multimodal tasks by combining pre-trained vision encoders and large language models. However, current LVLMs mainly rely on features from the final layers of the vision encoder, neglecting complementary information in shallower layers. While recent methods have explored multi-layer features, they are often task-agnostic. We investigate the contributions of visual features from different encoder layers across 18 benchmarks and 6 task categories. Our results show that multi-layer features provide complementary strengths with varying task dependencies, and uniform fusion performs suboptimally. Based on these findings, we propose an instruction-guided vision aggregator that dynamically integrates multi-layer features based on textual instructions, without increasing the number of visual tokens. Extensive evaluations show superior performance, and analysis reveals the dominance of mid-to-high-level features in semantic tasks and the critical role of low-level features in fine-grained perception. This work provides valuable insights into the adaptive use of hierarchical visual features in LVLMs, advancing more flexible multimodal systems.
♻ ☆ Wasserstein Gradient Flows for Moreau Envelopes of f-Divergences in Reproducing Kernel Hilbert Spaces
Commonly used $f$-divergences of measures, e.g., the Kullback-Leibler divergence, are subject to limitations regarding the support of the involved measures. A remedy is regularizing the $f$-divergence by a squared maximum mean discrepancy (MMD) associated with a characteristic kernel $K$. We use the kernel mean embedding to show that this regularization can be rewritten as the Moreau envelope of some function on the associated reproducing kernel Hilbert space. Then, we exploit well-known results on Moreau envelopes in Hilbert spaces to analyze the MMD-regularized $f$-divergences, particularly their gradients. Subsequently, we use our findings to analyze Wasserstein gradient flows of MMD-regularized $f$-divergences. We provide proof-of-the-concept numerical examples for flows starting from empirical measures. Here, we cover $f$-divergences with infinite and finite recession constants. Lastly, we extend our results to the tight variational formulation of $f$-divergences and numerically compare the resulting flows.
comment: 56 pages, 14 figures, 3 tables. Comments welcome! NEW: Incorporated Reviewers' suggestions, added FISTA and tight formulation
♻ ☆ Learning Constraint Network from Demonstrations via Positive-Unlabeled Learning with Memory Replay
Planning for a wide range of real-world tasks necessitates to know and write all constraints. However, instances exist where these constraints are either unknown or challenging to specify accurately. A possible solution is to infer the unknown constraints from expert demonstration. The majority of prior works limit themselves to learning simple linear constraints, or require strong knowledge of the true constraint parameterization or environmental model. To mitigate these problems, this paper presents a positive-unlabeled (PU) learning approach to infer a continuous, arbitrary and possibly nonlinear, constraint from demonstration. From a PU learning view, We treat all data in demonstrations as positive (feasible) data, and learn a (sub)-optimal policy to generate high-reward-winning but potentially infeasible trajectories, which serve as unlabeled data containing both feasible and infeasible states. Under an assumption on data distribution, a feasible-infeasible classifier (i.e., constraint model) is learned from the two datasets through a postprocessing PU learning technique. The entire method employs an iterative framework alternating between updating the policy, which generates and selects higher-reward policies, and updating the constraint model. Additionally, a memory buffer is introduced to record and reuse samples from previous iterations to prevent forgetting. The effectiveness of the proposed method is validated in two Mujoco environments, successfully inferring continuous nonlinear constraints and outperforming a baseline method in terms of constraint accuracy and policy safety.
♻ ☆ Focus On This, Not That! Steering LLMs With Adaptive Feature Specification
Despite the success of Instruction Tuning (IT) in training large language models (LLMs) to perform arbitrary user-specified tasks, these models often still leverage spurious or biased features learned from their training data, leading to undesired behaviours when deploying them in new contexts. In this work, we introduce Focus Instruction Tuning (FIT), which trains LLMs to condition their responses by focusing on specific features whilst ignoring others, leading to different behaviours based on what features are specified. Across several experimental settings, we show that focus-tuned models can be adaptively steered by focusing on different features at inference-time: for instance, robustness can be improved by focusing on task-causal features and ignoring spurious features, and social bias can be mitigated by ignoring demographic categories. Furthermore, FIT can steer behaviour in new contexts, generalising under distribution shift and to new unseen features at inference time, and thereby facilitating more robust, fair, and controllable LLM applications in real-world environments.
comment: 28pages, 14 figures
♻ ☆ Diffusion Models in Vision: A Survey
Denoising diffusion models represent a recent emerging topic in computer vision, demonstrating remarkable results in the area of generative modeling. A diffusion model is a deep generative model that is based on two stages, a forward diffusion stage and a reverse diffusion stage. In the forward diffusion stage, the input data is gradually perturbed over several steps by adding Gaussian noise. In the reverse stage, a model is tasked at recovering the original input data by learning to gradually reverse the diffusion process, step by step. Diffusion models are widely appreciated for the quality and diversity of the generated samples, despite their known computational burdens, i.e. low speeds due to the high number of steps involved during sampling. In this survey, we provide a comprehensive review of articles on denoising diffusion models applied in vision, comprising both theoretical and practical contributions in the field. First, we identify and present three generic diffusion modeling frameworks, which are based on denoising diffusion probabilistic models, noise conditioned score networks, and stochastic differential equations. We further discuss the relations between diffusion models and other deep generative models, including variational auto-encoders, generative adversarial networks, energy-based models, autoregressive models and normalizing flows. Then, we introduce a multi-perspective categorization of diffusion models applied in computer vision. Finally, we illustrate the current limitations of diffusion models and envision some interesting directions for future research.
comment: Accepted in IEEE Transactions on Pattern Analysis and Machine Intelligence. 25 pages, 3 figures
♻ ☆ WindsorML: High-Fidelity Computational Fluid Dynamics Dataset For Automotive Aerodynamics
This paper presents a new open-source high-fidelity dataset for Machine Learning (ML) containing 355 geometric variants of the Windsor body, to help the development and testing of ML surrogate models for external automotive aerodynamics. Each Computational Fluid Dynamics (CFD) simulation was run with a GPU-native high-fidelity Wall-Modeled Large-Eddy Simulations (WMLES) using a Cartesian immersed-boundary method using more than 280M cells to ensure the greatest possible accuracy. The dataset contains geometry variants that exhibits a wide range of flow characteristics that are representative of those observed on road-cars. The dataset itself contains the 3D time-averaged volume & boundary data as well as the geometry and force & moment coefficients. This paper discusses the validation of the underlying CFD methods as well as contents and structure of the dataset. To the authors knowledge, this represents the first, large-scale high-fidelity CFD dataset for the Windsor body with a permissive open-source license (CC-BY-SA).
♻ ☆ Contrastive Policy Gradient: Aligning LLMs on sequence-level scores in a supervised-friendly fashion EMNLP 2024
Reinforcement Learning (RL) has been used to finetune Large Language Models (LLMs) using a reward model trained from preference data, to better align with human judgment. The recently introduced direct alignment methods, which are often simpler, more stable, and computationally lighter, can more directly achieve this. However, these approaches cannot optimize arbitrary rewards, and the preference-based ones are not the only rewards of interest for LLMs (eg., unit tests for code generation or textual entailment for summarization, among others). RL-finetuning is usually done with a variation of policy gradient, which calls for on-policy or near-on-policy samples, requiring costly generations. We introduce Contrastive Policy Gradient, or CoPG, a simple and mathematically principled new RL algorithm that can estimate the optimal policy even from off-policy data. It can be seen as an off-policy policy gradient approach that does not rely on important sampling techniques and highlights the importance of using (the right) state baseline. We show this approach to generalize the direct alignment method IPO (identity preference optimization) and classic policy gradient. We experiment with the proposed CoPG on a toy bandit problem to illustrate its properties, as well as for finetuning LLMs on a summarization task, using a learned reward function considered as ground truth for the purpose of the experiments.
comment: EMNLP 2024
♻ ☆ Dataset-Free Weight-Initialization on Restricted Boltzmann Machine
In feed-forward neural networks, dataset-free weight-initialization methods such as LeCun, Xavier (or Glorot), and He initializations have been developed. These methods randomly determine the initial values of weight parameters based on specific distributions (e.g., Gaussian or uniform distributions) without using training datasets. To the best of the authors' knowledge, such a dataset-free weight-initialization method is yet to be developed for restricted Boltzmann machines (RBMs), which are probabilistic neural networks consisting of two layers. In this study, we derive a dataset-free weight-initialization method for Bernoulli--Bernoulli RBMs based on statistical mechanical analysis. In the proposed weight-initialization method, the weight parameters are drawn from a Gaussian distribution with zero mean. The standard deviation of the Gaussian distribution is optimized based on our hypothesis that a standard deviation providing a larger layer correlation (LC) between the two layers improves the learning efficiency. The expression of the LC is derived based on a statistical mechanical analysis. The optimal value of the standard deviation corresponds to the maximum point of the LC. The proposed weight-initialization method is identical to Xavier initialization in a specific case (i.e., when the sizes of the two layers are the same, the random variables of the layers are $\{-1,1\}$-binary, and all bias parameters are zero). The validity of the proposed weight-initialization method is demonstrated in numerical experiments using a toy and real-world datasets.
♻ ☆ Machine Learning Nonadiabatic Dynamics: Eliminating Phase Freedom of Nonadiabatic Couplings with the State-Intraction State-Averaged Spin-Restricted Ensemble-Referenced Kohn-Sham Approach
Excited-state molecular dynamics (ESMD) simulations near conical intersections (CIs) pose significant challenges when using machine learning potentials (MLPs). Although MLPs have gained recognition for their integration into mixed quantum-classical (MQC) methods, such as trajectory surface hopping (TSH), and their capacity to model correlated electron-nuclear dynamics efficiently, difficulties persist in managing nonadiabatic dynamics. Specifically, singularities at CIs and double-valued coupling elements result in discontinuities that disrupt the smoothness of predictive functions. Partial solutions have been provided by learning diabatic Hamiltonians with phaseless loss functions to these challenges. However, a definitive method for addressing the discontinuities caused by CIs and double-valued coupling elements has yet to be developed. Here, we introduce the phaseless coupling term, $\Delta^2$, derived from the square of the off-diagonal elements of the diabatic Hamiltonian in the state-interaction state-averaged spin-restricted ensemble-referenced Kohn-Sham (SI-SA-REKS, briefly SSR)(2,2) formalism. This approach improves the stability and accuracy of the MLP model by addressing the issues arising from CI singularities and double-valued coupling functions. We apply this method to the penta-2,4-dieniminium cation (PSB3), demonstrating its effectiveness in improving MLP training for ML-based nonadiabatic dynamics. Our results show that the $\Delta^2$ based ML-ESMD method can reproduce ab initio ESMD simulations, underscoring its potential and efficiency for broader applications, particularly in large-scale and long-timescale ESMD simulations.
♻ ☆ Positive-Unlabeled Constraint Learning for Inferring Nonlinear Continuous Constraints Functions from Expert Demonstrations
Planning for diverse real-world robotic tasks necessitates to know and write all constraints. However, instances exist where these constraints are either unknown or challenging to specify accurately. A possible solution is to infer the unknown constraints from expert demonstration. This paper presents a novel two-step Positive-Unlabeled Constraint Learning (PUCL) algorithm to infer a continuous constraint function from demonstrations, without requiring prior knowledge of the true constraint parameterization or environmental model as existing works. We treat all data in demonstrations as positive (feasible) data, and learn a control policy to generate potentially infeasible trajectories, which serve as unlabeled data. The proposed two-step learning framework first identifies reliable infeasible data using a distance metric, and secondly learns a binary feasibility classifier (i.e., constraint function) from the feasible demonstrations and reliable infeasible data. The proposed method is flexible to learn complex-shaped constraint boundary and will not mistakenly classify demonstrations as infeasible as previous methods. The effectiveness of the proposed method is verified in four constrained environments, using a networked policy or a dynamical system policy. It successfully infers the continuous nonlinear constraints and outperforms other baseline methods in terms of constraint accuracy and policy safety. This work has been published in IEEE Robotics and Automation Letters (RA-L). Please refer to the final version at https://doi.org/10.1109/LRA.2024.3522756
♻ ☆ ERGNN: Spectral Graph Neural Network With Explicitly-Optimized Rational Graph Filters ICASSP 2025
Approximation-based spectral graph neural networks, which construct graph filters with function approximation, have shown substantial performance in graph learning tasks. Despite their great success, existing works primarily employ polynomial approximation to construct the filters, whereas another superior option, namely ration approximation, remains underexplored. Although a handful of prior works have attempted to deploy the rational approximation, their implementations often involve intensive computational demands or still resort to polynomial approximations, hindering full potential of the rational graph filters. To address the issues, this paper introduces ERGNN, a novel spectral GNN with explicitly-optimized rational filter. ERGNN adopts a unique two-step framework that sequentially applies the numerator filter and the denominator filter to the input signals, thus streamlining the model paradigm while enabling explicit optimization of both numerator and denominator of the rational filter. Extensive experiments validate the superiority of ERGNN over state-of-the-art methods, establishing it as a practical solution for deploying rational-based GNNs.
comment: Accepted in 2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
♻ ☆ An Adaptive Collocation Point Strategy For Physics Informed Neural Networks via the QR Discrete Empirical Interpolation Method ICML 2025
Physics-informed neural networks (PINNs) have gained significant attention for solving forward and inverse problems related to partial differential equations (PDEs). While advancements in loss functions and network architectures have improved PINN accuracy, the impact of collocation point sampling on their performance remains underexplored. Fixed sampling methods, such as uniform random sampling and equispaced grids, can fail to capture critical regions with high solution gradients, limiting their effectiveness for complex PDEs. Adaptive methods, inspired by adaptive mesh refinement from traditional numerical methods, address this by dynamically updating collocation points during training but may overlook residual dynamics between updates, potentially losing valuable information. To overcome this limitation, we propose an adaptive collocation point selection strategy utilizing the QR Discrete Empirical Interpolation Method (QR-DEIM), a reduced-order modeling technique for efficiently approximating nonlinear functions. Our results on benchmark PDEs, including the wave, Allen-Cahn, and Burgers' equations, demonstrate that our QR-DEIM-based approach improves PINN accuracy compared to existing methods, offering a promising direction for adaptive collocation point strategies.
comment: Submitted to ICML 2025. Under review
♻ ☆ Deterministic Uncertainty Propagation for Improved Model-Based Offline Reinforcement Learning
Current approaches to model-based offline reinforcement learning often incorporate uncertainty-based reward penalization to address the distributional shift problem. These approaches, commonly known as pessimistic value iteration, use Monte Carlo sampling to estimate the Bellman target to perform temporal difference-based policy evaluation. We find out that the randomness caused by this sampling step significantly delays convergence. We present a theoretical result demonstrating the strong dependency of suboptimality on the number of Monte Carlo samples taken per Bellman target calculation. Our main contribution is a deterministic approximation to the Bellman target that uses progressive moment matching, a method developed originally for deterministic variational inference. The resulting algorithm, which we call Moment Matching Offline Model-Based Policy Optimization (MOMBO), propagates the uncertainty of the next state through a nonlinear Q-network in a deterministic fashion by approximating the distributions of hidden layer activations by a normal distribution. We show that it is possible to provide tighter guarantees for the suboptimality of MOMBO than the existing Monte Carlo sampling approaches. We also observe MOMBO to converge faster than these approaches in a large set of benchmark tasks.
♻ ☆ Disentangled Interleaving Variational Encoding
Conflicting objectives present a considerable challenge in interleaving multi-task learning, necessitating the need for meticulous design and balance to ensure effective learning of a representative latent data space across all tasks without mutual negative impact. Drawing inspiration from the concept of marginal and conditional probability distributions in probability theory, we design a principled and well-founded approach to disentangle the original input into marginal and conditional probability distributions in the latent space of a variational autoencoder. Our proposed model, Deep Disentangled Interleaving Variational Encoding (DeepDIVE) learns disentangled features from the original input to form clusters in the embedding space and unifies these features via the cross-attention mechanism in the fusion stage. We theoretically prove that combining the objectives for reconstruction and forecasting fully captures the lower bound and mathematically derive a loss function for disentanglement using Na\"ive Bayes. Under the assumption that the prior is a mixture of log-concave distributions, we also establish that the Kullback-Leibler divergence between the prior and the posterior is upper bounded by a function minimized by the minimizer of the cross entropy loss, informing our adoption of radial basis functions (RBF) and cross entropy with interleaving training for DeepDIVE to provide a justified basis for convergence. Experiments on two public datasets show that DeepDIVE disentangles the original input and yields forecast accuracies better than the original VAE and comparable to existing state-of-the-art baselines.
♻ ☆ PeFLL: Personalized Federated Learning by Learning to Learn
We present PeFLL, a new personalized federated learning algorithm that improves over the state-of-the-art in three aspects: 1) it produces more accurate models, especially in the low-data regime, and not only for clients present during its training phase, but also for any that may emerge in the future; 2) it reduces the amount of on-client computation and client-server communication by providing future clients with ready-to-use personalized models that require no additional finetuning or optimization; 3) it comes with theoretical guarantees that establish generalization from the observed clients to future ones. At the core of PeFLL lies a learning-to-learn approach that jointly trains an embedding network and a hypernetwork. The embedding network is used to represent clients in a latent descriptor space in a way that reflects their similarity to each other. The hypernetwork takes as input such descriptors and outputs the parameters of fully personalized client models. In combination, both networks constitute a learning algorithm that achieves state-of-the-art performance in several personalized federated learning benchmarks.
♻ ☆ LLM360 K2: Building a 65B 360-Open-Source Large Language Model from Scratch
We detail the training of the LLM360 K2-65B model, scaling up our 360-degree OPEN SOURCE approach to the largest and most powerful models under project LLM360. While open-source LLMs continue to advance, the answer to "How are the largest LLMs trained?" remains unclear within the community. The implementation details for such high-capacity models are often protected due to business considerations associated with their high cost. This lack of transparency prevents LLM researchers from leveraging valuable insights from prior experience, e.g., "What are the best practices for addressing loss spikes?" The LLM360 K2 project addresses this gap by providing full transparency and access to resources accumulated during the training of LLMs at the largest scale. This report highlights key elements of the K2 project, including our first model, K2 DIAMOND, a 65 billion-parameter LLM that surpasses LLaMA-65B and rivals LLaMA2-70B, while requiring fewer FLOPs and tokens. We detail the implementation steps and present a longitudinal analysis of K2 DIAMOND's capabilities throughout its training process. We also outline ongoing projects such as TXT360, setting the stage for future models in the series. By offering previously unavailable resources, the K2 project also resonates with the 360-degree OPEN SOURCE principles of transparency, reproducibility, and accessibility, which we believe are vital in the era of resource-intensive AI research.
♻ ☆ Enhancing User Interest based on Stream Clustering and Memory Networks in Large-Scale Recommender Systems
Recommender Systems (RSs) provide personalized recommendation service based on user interest, which are widely used in various platforms. However, there are lots of users with sparse interest due to lacking consumption behaviors, which leads to poor recommendation results for them. This problem is widespread in large-scale RSs and is particularly difficult to address. To solve this problem, we propose a novel solution named User Interest Enhancement (UIE) which enhances user interest including user profile and user history behavior sequences using the enhancement vectors and personalized enhancement vector generated based on stream clustering and memory networks from different perspectives. UIE not only remarkably improves model performance on the users with sparse interest but also significantly enhance model performance on other users. UIE is an end-to-end solution which is easy to be implemented based on ranking model. Moreover, we expand our solution and apply similar methods to long-tail items, which also achieves excellent improvement. Furthermore, we conduct extensive offline and online experiments in a large-scale industrial RS. The results demonstrate that our model outperforms other models remarkably, especially for the users with sparse interest. Until now, UIE has been fully deployed in multiple large-scale RSs and achieved remarkable improvements.
♻ ☆ Simplified and Generalized Masked Diffusion for Discrete Data NeurIPS 2024
Masked (or absorbing) diffusion is actively explored as an alternative to autoregressive models for generative modeling of discrete data. However, existing work in this area has been hindered by unnecessarily complex model formulations and unclear relationships between different perspectives, leading to suboptimal parameterization, training objectives, and ad hoc adjustments to counteract these issues. In this work, we aim to provide a simple and general framework that unlocks the full potential of masked diffusion models. We show that the continuous-time variational objective of masked diffusion models is a simple weighted integral of cross-entropy losses. Our framework also enables training generalized masked diffusion models with state-dependent masking schedules. When evaluated by perplexity, our models trained on OpenWebText surpass prior diffusion language models at GPT-2 scale and demonstrate superior performance on 4 out of 5 zero-shot language modeling tasks. Furthermore, our models vastly outperform previous discrete diffusion models on pixel-level image modeling, achieving 2.75 (CIFAR-10) and 3.40 (ImageNet 64x64) bits per dimension that are better than autoregressive models of similar sizes. Our code is available at https://github.com/google-deepmind/md4.
comment: NeurIPS 2024. Code is available at: https://github.com/google-deepmind/md4
♻ ☆ Balancing Act: Prioritization Strategies for LLM-Designed Restless Bandit Rewards
LLMs are increasingly used to design reward functions based on human preferences in Reinforcement Learning (RL). We focus on LLM-designed rewards for Restless Multi-Armed Bandits, a framework for allocating limited resources among agents. In applications such as public health, this approach empowers grassroots health workers to tailor automated allocation decisions to community needs. In the presence of multiple agents, altering the reward function based on human preferences can impact subpopulations very differently, leading to complex tradeoffs and a multi-objective resource allocation problem. We are the first to present a principled method termed Social Choice Language Model for dealing with these tradeoffs for LLM-designed rewards for multiagent planners in general and restless bandits in particular. The novel part of our model is a transparent and configurable selection component, called an adjudicator, external to the LLM that controls complex tradeoffs via a user-selected social welfare function. Our experiments demonstrate that our model reliably selects more effective, aligned, and balanced reward functions compared to purely LLM-based approaches.
♻ ☆ Learning to Assist Humans without Inferring Rewards NeurIPS
Assistive agents should make humans' lives easier. Classically, such assistance is studied through the lens of inverse reinforcement learning, where an assistive agent (e.g., a chatbot, a robot) infers a human's intention and then selects actions to help the human reach that goal. This approach requires inferring intentions, which can be difficult in high-dimensional settings. We build upon prior work that studies assistance through the lens of empowerment: an assistive agent aims to maximize the influence of the human's actions such that they exert a greater control over the environmental outcomes and can solve tasks in fewer steps. We lift the major limitation of prior work in this area--scalability to high-dimensional settings--with contrastive successor representations. We formally prove that these representations estimate a similar notion of empowerment to that studied by prior work and provide a ready-made mechanism for optimizing it. Empirically, our proposed method outperforms prior methods on synthetic benchmarks, and scales to Overcooked, a cooperative game setting. Theoretically, our work connects ideas from information theory, neuroscience, and reinforcement learning, and charts a path for representations to play a critical role in solving assistive problems.
comment: Conference on Neural Information Processing Systems (NeurIPS), 2024
♻ ☆ Discriminative Representation learning via Attention-Enhanced Contrastive Learning for Short Text Clustering
Contrastive learning has gained significant attention in short text clustering, yet it has an inherent drawback of mistakenly identifying samples from the same category as negatives and then separating them in the feature space (false negative separation), which hinders the generation of superior representations. To generate more discriminative representations for efficient clustering, we propose a novel short text clustering method, called Discriminative Representation learning via \textbf{A}ttention-\textbf{E}nhanced \textbf{C}ontrastive \textbf{L}earning for Short Text Clustering (\textbf{AECL}). The \textbf{AECL} consists of two modules which are the pseudo-label generation module and the contrastive learning module. Both modules build a sample-level attention mechanism to capture similarity relationships between samples and aggregate cross-sample features to generate consistent representations. Then, the former module uses the more discriminative consistent representation to produce reliable supervision information for assist clustering, while the latter module explores similarity relationships and consistent representations optimize the construction of positive samples to perform similarity-guided contrastive learning, effectively addressing the false negative separation issue. Experimental results demonstrate that the proposed \textbf{AECL} outperforms state-of-the-art methods. If the paper is accepted, we will open-source the code.
♻ ☆ PsyDI: Towards a Personalized and Progressively In-depth Chatbot for Psychological Measurements
In the field of psychology, traditional assessment methods, such as standardized scales, are frequently critiqued for their static nature, lack of personalization, and reduced participant engagement, while comprehensive counseling evaluations are often inaccessible. The complexity of quantifying psychological traits further limits these methods. Despite advances with large language models (LLMs), many still depend on single-round Question-and-Answer interactions. To bridge this gap, we introduce PsyDI, a personalized and progressively in-depth chatbot designed for psychological measurements, exemplified by its application in the Myers-Briggs Type Indicator (MBTI) framework. PsyDI leverages user-related multi-modal information and engages in customized, multi-turn interactions to provide personalized, easily accessible measurements, while ensuring precise MBTI type determination. To address the challenge of unquantifiable psychological traits, we introduce a novel training paradigm that involves learning the ranking of proxy variables associated with these traits, culminating in a robust score model for MBTI measurements. The score model enables PsyDI to conduct comprehensive and precise measurements through multi-turn interactions within a unified estimation context. Through various experiments, we validate the efficacy of both the score model and the PsyDI pipeline, demonstrating its potential to serve as a general framework for psychological measurements. Furthermore, the online deployment of PsyDI has garnered substantial user engagement, with over 3,000 visits, resulting in the collection of numerous multi-turn dialogues annotated with MBTI types, which facilitates further research. The source code for the training and web service components is publicly available as a part of OpenDILab at: https://github.com/opendilab/PsyDI
comment: 29 pages, 15 figures
♻ ☆ Mitigating Overfitting in Graph Neural Networks via Feature and Hyperplane Perturbation
Graph neural networks (GNNs) are commonly used in semi-supervised settings. Previous research has primarily focused on finding appropriate graph filters (e.g. aggregation methods) to perform well on both homophilic and heterophilic graphs. While these methods are effective, they can still suffer from the sparsity of node features, where the initial data contain few non-zero elements. This can lead to overfitting in certain dimensions in the first projection matrix, as training samples may not cover the entire range of graph filters (hyperplanes). To address this, we propose a novel data augmentation strategy. Specifically, by flipping both the initial features and hyperplane, we create additional space for training, which leads to more precise updates of the learnable parameters and improved robustness for unseen features during inference. To the best of our knowledge, this is the first attempt to mitigate the overfitting caused by the initial features. Extensive experiments on real-world datasets show that our proposed technique increases node classification accuracy by up to 46.5% relatively.
♻ ☆ Enhanced SPS Velocity-adaptive Scheme: Access Fairness in 5G NR V2I Networks SP
Vehicle-to-Infrastructure (V2I) technology enables information exchange between vehicles and road infrastructure. Specifically, when a vehicle approaches a roadside unit (RSU), it can exchange information with the RSU to obtain accurate data that assists in driving. With the release of the 3rd Generation Partnership Project (3GPP) Release 16, which includes the 5G New Radio (NR) Vehicle-to-Everything (V2X) standards, vehicles typically adopt mode-2 communication using sensing-based semi-persistent scheduling (SPS) for resource allocation. In this approach, vehicles identify candidate resources within a selection window and exclude ineligible resources based on information from a sensing window. However, vehicles often drive at different speeds, resulting in varying amounts of data transmission with RSUs as they pass by, which leads to unfair access. Therefore, it is essential to design an access scheme that accounts for different vehicle speeds to achieve fair access across the network. This paper formulates an optimization problem for vehicular networks and proposes a multi-objective optimization scheme to address it by adjusting the selection window in the SPS mechanism of 5G NR V2I mode-2. Simulation results demonstrate the effectiveness of the proposed scheme
comment: This paper has been submitted to IEEE Journal. The source code has been released at: https://github.com/qiongwu86/Enhanced-SPS-Velocity-adaptiveScheme-Access-Fariness-in-5G-NR-V2I-Networks
♻ ☆ Efficient PAC Learning of Halfspaces with Constant Malicious Noise Rate ALT 2025
Understanding noise tolerance of machine learning algorithms is a central quest in learning theory. In this work, we study the problem of computationally efficient PAC learning of halfspaces in the presence of malicious noise, where an adversary can corrupt both instances and labels of training samples. The best-known noise tolerance either depends on a target error rate under distributional assumptions or on a margin parameter under large-margin conditions. In this work, we show that when both types of conditions are satisfied, it is possible to achieve constant noise tolerance by minimizing a reweighted hinge loss. Our key ingredients include: 1) an efficient algorithm that finds weights to control the gradient deterioration from corrupted samples, and 2) a new analysis on the robustness of the hinge loss equipped with such weights.
comment: ALT 2025
♻ ☆ VLG-CBM: Training Concept Bottleneck Models with Vision-Language Guidance NeurIPS 2024
Concept Bottleneck Models (CBMs) provide interpretable prediction by introducing an intermediate Concept Bottleneck Layer (CBL), which encodes human-understandable concepts to explain models' decision. Recent works proposed to utilize Large Language Models and pre-trained Vision-Language Models to automate the training of CBMs, making it more scalable and automated. However, existing approaches still fall short in two aspects: First, the concepts predicted by CBL often mismatch the input image, raising doubts about the faithfulness of interpretation. Second, it has been shown that concept values encode unintended information: even a set of random concepts could achieve comparable test accuracy to state-of-the-art CBMs. To address these critical limitations, in this work, we propose a novel framework called Vision-Language-Guided Concept Bottleneck Model (VLG-CBM) to enable faithful interpretability with the benefits of boosted performance. Our method leverages off-the-shelf open-domain grounded object detectors to provide visually grounded concept annotation, which largely enhances the faithfulness of concept prediction while further improving the model performance. In addition, we propose a new metric called Number of Effective Concepts (NEC) to control the information leakage and provide better interpretability. Extensive evaluations across five standard benchmarks show that our method, VLG-CBM, outperforms existing methods by at least 4.27% and up to 51.09% on Accuracy at NEC=5 (denoted as ANEC-5), and by at least 0.45% and up to 29.78% on average accuracy (denoted as ANEC-avg), while preserving both faithfulness and interpretability of the learned concepts as demonstrated in extensive experiments.
comment: Appeared at NeurIPS 2024
♻ ☆ The Power of Types: Exploring the Impact of Type Checking on Neural Bug Detection in Dynamically Typed Languages ICSE'25
Motivation: Automated bug detection in dynamically typed languages such as Python is essential for maintaining code quality. The lack of mandatory type annotations in such languages can lead to errors that are challenging to identify early with traditional static analysis tools. Recent progress in deep neural networks has led to increased use of neural bug detectors. In statically typed languages, a type checker is integrated into the compiler and thus taken into consideration when the neural bug detector is designed for these languages. Problem: However, prior studies overlook this aspect during the training and testing of neural bug detectors for dynamically typed languages. When an optional type checker is used, assessing existing neural bug detectors on bugs easily detectable by type checkers may impact their performance estimation. Moreover, including these bugs in the training set of neural bug detectors can shift their detection focus toward the wrong type of bugs. Contribution: We explore the impact of type checking on various neural bug detectors for variable misuse bugs, a common type targeted by neural bug detectors. Existing synthetic and real-world datasets are type-checked to evaluate the prevalence of type-related bugs. Then, we investigate how type-related bugs influence the training and testing of the neural bug detectors. Findings: Our findings indicate that existing bug detection datasets contain a significant proportion of type-related bugs. Building on this insight, we discover integrating the neural bug detector with a type checker can be beneficial, especially when the code is annotated with types. Further investigation reveals neural bug detectors perform better on type-related bugs than other bugs. Moreover, removing type-related bugs from the training data helps improve neural bug detectors' ability to identify bugs beyond the scope of type checkers.
comment: Accepted by ICSE'25 Research Track
♻ ☆ Cost-aware Bayesian Optimization via the Pandora's Box Gittins Index
Bayesian optimization is a technique for efficiently optimizing unknown functions in a black-box manner. To handle practical settings where gathering data requires use of finite resources, it is desirable to explicitly incorporate function evaluation costs into Bayesian optimization policies. To understand how to do so, we develop a previously-unexplored connection between cost-aware Bayesian optimization and the Pandora's Box problem, a decision problem from economics. The Pandora's Box problem admits a Bayesian-optimal solution based on an expression called the Gittins index, which can be reinterpreted as an acquisition function. We study the use of this acquisition function for cost-aware Bayesian optimization, and demonstrate empirically that it performs well, particularly in medium-high dimensions. We further show that this performance carries over to classical Bayesian optimization without explicit evaluation costs. Our work constitutes a first step towards integrating techniques from Gittins index theory into Bayesian optimization.
♻ ☆ Graph Analysis Using a GPU-based Parallel Algorithm: Quantum Clustering
The article introduces a new method for applying Quantum Clustering to graph structures. Quantum Clustering (QC) is a novel density-based unsupervised learning method that determines cluster centers by constructing a potential function. In this method, we use the Graph Gradient Descent algorithm to find the centers of clusters. GPU parallelization is utilized for computing potential values. We also conducted experiments on five widely used datasets and evaluated using four indicators. The results show superior performance of the method. Finally, we discuss the influence of $\sigma$ on the experimental results.
♻ ☆ The surprising efficiency of temporal difference learning for rare event prediction NeurIPS 2024
We quantify the efficiency of temporal difference (TD) learning over the direct, or Monte Carlo (MC), estimator for policy evaluation in reinforcement learning, with an emphasis on estimation of quantities related to rare events. Policy evaluation is complicated in the rare event setting by the long timescale of the event and by the need for \emph{relative accuracy} in estimates of very small values. Specifically, we focus on least-squares TD (LSTD) prediction for finite state Markov chains, and show that LSTD can achieve relative accuracy far more efficiently than MC. We prove a central limit theorem for the LSTD estimator and upper bound the \emph{relative asymptotic variance} by simple quantities characterizing the connectivity of states relative to the transition probabilities between them. Using this bound, we show that, even when both the timescale of the rare event and the relative accuracy of the MC estimator are exponentially large in the number of states, LSTD maintains a fixed level of relative accuracy with a total number of observed transitions of the Markov chain that is only \emph{polynomially} large in the number of states.
comment: Final camera-ready version published at NeurIPS 2024. Correct an assumption statement and typos, and change/add a few sentences from the last version
♻ ☆ Model-Based Transfer Learning for Contextual Reinforcement Learning NeurIPS 2024
Deep reinforcement learning (RL) is a powerful approach to complex decision making. However, one issue that limits its practical application is its brittleness, sometimes failing to train in the presence of small changes in the environment. Motivated by the success of zero-shot transfer-where pre-trained models perform well on related tasks-we consider the problem of selecting a good set of training tasks to maximize generalization performance across a range of tasks. Given the high cost of training, it is critical to select training tasks strategically, but not well understood how to do so. We hence introduce Model-Based Transfer Learning (MBTL), which layers on top of existing RL methods to effectively solve contextual RL problems. MBTL models the generalization performance in two parts: 1) the performance set point, modeled using Gaussian processes, and 2) performance loss (generalization gap), modeled as a linear function of contextual similarity. MBTL combines these two pieces of information within a Bayesian optimization (BO) framework to strategically select training tasks. We show theoretically that the method exhibits sublinear regret in the number of training tasks and discuss conditions to further tighten regret bounds. We experimentally validate our methods using urban traffic and standard continuous control benchmarks. The experimental results suggest that MBTL can achieve up to 43x improved sample efficiency compared with canonical independent training and multi-task training. Further experiments demonstrate the efficacy of BO and the insensitivity to the underlying RL algorithm and hyperparameters. This work lays the foundations for investigating explicit modeling of generalization, thereby enabling principled yet effective methods for contextual RL.
comment: 38th Conference on Neural Information Processing Systems (NeurIPS 2024)
♻ ☆ Statistical Efficiency of Distributional Temporal Difference Learning and Freedman's Inequality in Hilbert Spaces
Distributional reinforcement learning (DRL) has achieved empirical success in various domains. One core task in DRL is distributional policy evaluation, which involves estimating the return distribution $\eta^\pi$ for a given policy $\pi$. Distributional temporal difference learning has been accordingly proposed, which extends the classic temporal difference learning (TD) in RL. In this paper, we focus on the non-asymptotic statistical rates of distributional TD. To facilitate theoretical analysis, we propose non-parametric distributional TD (NTD). For a $\gamma$-discounted infinite-horizon tabular Markov decision process, we show that for NTD with a generative model, we need $\tilde{O}(\varepsilon^{-2}\mu_{\min}^{-1}(1-\gamma)^{-3})$ interactions with the environment to achieve an $\varepsilon$-optimal estimator with high probability, when the estimation error is measured by the $1$-Wasserstein. This sample complexity bound is minimax optimal up to logarithmic factors. In addition, we revisit categorical distributional TD (CTD), showing that the same non-asymptotic convergence bounds hold for CTD in the case of the $1$-Wasserstein distance. We also extend our analysis to the more general setting where the data generating process is Markovian. In the Markovian setting, we propose variance-reduced variants of NTD and CTD, and show that both can achieve a $\tilde{O}(\varepsilon^{-2} \mu_{\pi,\min}^{-1}(1-\gamma)^{-3}+t_{mix}\mu_{\pi,\min}^{-1}(1-\gamma)^{-1})$ sample complexity bounds in the case of the $1$-Wasserstein distance, which matches the state-of-the-art statistical results for classic policy evaluation. To achieve the sharp statistical rates, we establish a novel Freedman's inequality in Hilbert spaces. This new Freedman's inequality would be of independent interest for statistical analysis of various infinite-dimensional online learning problems.
♻ ☆ A General Framework for Inference-time Scaling and Steering of Diffusion Models
Diffusion models produce impressive results in modalities ranging from images and video to protein design and text. However, generating samples with user-specified properties remains a challenge. Recent research proposes fine-tuning models to maximize rewards that capture desired properties, but these methods require expensive training and are prone to mode collapse. In this work, we propose Feynman Kac (FK) steering, an inference-time framework for steering diffusion models with reward functions. FK steering works by sampling a system of multiple interacting diffusion processes, called particles, and resampling particles at intermediate steps based on scores computed using functions called potentials. Potentials are defined using rewards for intermediate states and are selected such that a high value indicates that the particle will yield a high-reward sample. We explore various choices of potentials, intermediate rewards, and samplers. We evaluate FK steering on text-to-image and text diffusion models. For steering text-to-image models with a human preference reward, we find that FK steering a 0.8B parameter model outperforms a 2.6B parameter fine-tuned model on prompt fidelity, with faster sampling and no training. For steering text diffusion models with rewards for text quality and specific text attributes, we find that FK steering generates lower perplexity, more linguistically acceptable outputs and enables gradient-free control of attributes like toxicity. Our results demonstrate that inference-time scaling and steering of diffusion models, even with off-the-shelf rewards, can provide significant sample quality gains and controllability benefits. Code is available at https://github.com/zacharyhorvitz/Fk-Diffusion-Steering .
♻ ☆ Smoothness Really Matters: A Simple Yet Effective Approach for Unsupervised Graph Domain Adaptation AAAI2025
Unsupervised Graph Domain Adaptation (UGDA) seeks to bridge distribution shifts between domains by transferring knowledge from labeled source graphs to given unlabeled target graphs. Existing UGDA methods primarily focus on aligning features in the latent space learned by graph neural networks (GNNs) across domains, often overlooking structural shifts, resulting in limited effectiveness when addressing structurally complex transfer scenarios. Given the sensitivity of GNNs to local structural features, even slight discrepancies between source and target graphs could lead to significant shifts in node embeddings, thereby reducing the effectiveness of knowledge transfer. To address this issue, we introduce a novel approach for UGDA called Target-Domain Structural Smoothing (TDSS). TDSS is a simple and effective method designed to perform structural smoothing directly on the target graph, thereby mitigating structural distribution shifts and ensuring the consistency of node representations. Specifically, by integrating smoothing techniques with neighborhood sampling, TDSS maintains the structural coherence of the target graph while mitigating the risk of over-smoothing. Our theoretical analysis shows that TDSS effectively reduces target risk by improving model smoothness. Empirical results on three real-world datasets demonstrate that TDSS outperforms recent state-of-the-art baselines, achieving significant improvements across six transfer scenarios. The code is available in https://github.com/cwei01/TDSS.
comment: 11 pages, Accpected by AAAI2025
♻ ☆ Surveying Attitudinal Alignment Between Large Language Models Vs. Humans Towards 17 Sustainable Development Goals
Large Language Models (LLMs) have emerged as potent tools for advancing the United Nations' Sustainable Development Goals (SDGs). However, the attitudinal disparities between LLMs and humans towards these goals can pose significant challenges. This study conducts a comprehensive review and analysis of the existing literature on the attitudes of LLMs towards the 17 SDGs, emphasizing the comparison between their attitudes and support for each goal and those of humans. We examine the potential disparities, primarily focusing on aspects such as understanding and emotions, cultural and regional differences, task objective variations, and factors considered in the decision-making process. These disparities arise from the underrepresentation and imbalance in LLM training data, historical biases, quality issues, lack of contextual understanding, and skewed ethical values reflected. The study also investigates the risks and harms that may arise from neglecting the attitudes of LLMs towards the SDGs, including the exacerbation of social inequalities, racial discrimination, environmental destruction, and resource wastage. To address these challenges, we propose strategies and recommendations to guide and regulate the application of LLMs, ensuring their alignment with the principles and goals of the SDGs, and therefore creating a more just, inclusive, and sustainable future.
♻ ☆ Autonomous Algorithm for Training Autonomous Vehicles with Minimal Human Intervention
Recent reinforcement learning (RL) algorithms have demonstrated impressive results in simulated driving environments. However, autonomous vehicles trained in simulation often struggle to work well in the real world due to the fidelity gap between simulated and real-world environments. While directly training real-world autonomous vehicles with RL algorithms is a promising approach to bypass the fidelity gap problem, it presents several challenges. One critical yet often overlooked challenge is the need to reset a driving environment between every episode. This reset process demands significant human intervention, leading to poor training efficiency in the real world. In this paper, we introduce a novel autonomous algorithm that enables off-the-shelf RL algorithms to train autonomous vehicles with minimal human intervention. Our algorithm reduces unnecessary human intervention by aborting episodes to prevent unsafe states and identifying informative initial states for subsequent episodes. The key idea behind identifying informative initial states is to estimate the expected amount of information that can be obtained from under-explored but reachable states. Our algorithm also revisits rule-based autonomous driving algorithms and highlights their benefits in safely returning an autonomous vehicle to initial states. To evaluate how much human intervention is required during training, we implement challenging urban driving tasks that require an autonomous vehicle to reset to initial states on its own. The experimental results show that our autonomous algorithm is task-agnostic and achieves competitive driving performance with much less human intervention than baselines.
comment: 8 pages, 6 figures, 2 tables, conference
♻ ☆ Federated Deep Subspace Clustering
This paper introduces FDSC, a private-protected subspace clustering (SC) approach with federated learning (FC) schema. In each client, there is a deep subspace clustering network accounting for grouping the isolated data, composed of a encode network, a self-expressive layer, and a decode network. FDSC is achieved by uploading the encode network to communicate with other clients in the server. Besides, FDSC is also enhanced by preserving the local neighborhood relationship in each client. With the effects of federated learning and locality preservation, the learned data features from the encoder are boosted so as to enhance the self-expressiveness learning and result in better clustering performance. Experiments test FDSC on public datasets and compare with other clustering methods, demonstrating the effectiveness of FDSC.
comment: 8pages,4 figures, 4 Tables
♻ ☆ Gameplay Filters: Robust Zero-Shot Safety through Adversarial Imagination
Despite the impressive recent advances in learning-based robot control, ensuring robustness to out-of-distribution conditions remains an open challenge. Safety filters can, in principle, keep arbitrary control policies from incurring catastrophic failures by overriding unsafe actions, but existing solutions for complex (e.g., legged) robot dynamics do not span the full motion envelope and instead rely on local, reduced-order models. These filters tend to overly restrict agility and can still fail when perturbed away from nominal conditions. This paper presents the gameplay filter, a new class of predictive safety filter that continually plays out hypothetical matches between its simulation-trained safety strategy and a virtual adversary co-trained to invoke worst-case events and sim-to-real error, and precludes actions that would cause failures down the line. We demonstrate the scalability and robustness of the approach with a first-of-its-kind full-order safety filter for (36-D) quadrupedal dynamics. Physical experiments on two different quadruped platforms demonstrate the superior zero-shot effectiveness of the gameplay filter under large perturbations such as tugging and unmodeled terrain. Experiment videos and open-source software are available online: https://saferobotics.org/research/gameplay-filter
♻ ☆ Enhancing Graph Self-Supervised Learning with Graph Interplay
Graph self-supervised learning (GSSL) has emerged as a compelling framework for extracting informative representations from graph-structured data without extensive reliance on labeled inputs. In this study, we introduce Graph Interplay (GIP), an innovative and versatile approach that significantly enhances the performance equipped with various existing GSSL methods. To this end, GIP advocates direct graph-level communications by introducing random inter-graph edges within standard batches. Against GIP's simplicity, we further theoretically show that \textsc{GIP} essentially performs a principled manifold separation via combining inter-graph message passing and GSSL, bringing about more structured embedding manifolds and thus benefits a series of downstream tasks. Our empirical study demonstrates that GIP surpasses the performance of prevailing GSSL methods across multiple benchmarks by significant margins, highlighting its potential as a breakthrough approach. Besides, GIP can be readily integrated into a series of GSSL methods and consistently offers additional performance gain. This advancement not only amplifies the capability of GSSL but also potentially sets the stage for a novel graph learning paradigm in a broader sense.
comment: Due to potential implicit data leakage in our experimental setup, where the pretraining dataset was ordered by default labels, we withdraw this manuscript for further self-examination and rigorous validation
♻ ☆ CryoBench: Diverse and challenging datasets for the heterogeneity problem in cryo-EM NeurIPS 2024
Cryo-electron microscopy (cryo-EM) is a powerful technique for determining high-resolution 3D biomolecular structures from imaging data. Its unique ability to capture structural variability has spurred the development of heterogeneous reconstruction algorithms that can infer distributions of 3D structures from noisy, unlabeled imaging data. Despite the growing number of advanced methods, progress in the field is hindered by the lack of standardized benchmarks with ground truth information and reliable validation metrics. Here, we introduce CryoBench, a suite of datasets, metrics, and benchmarks for heterogeneous reconstruction in cryo-EM. CryoBench includes five datasets representing different sources of heterogeneity and degrees of difficulty. These include conformational heterogeneity generated from designed motions of antibody complexes or sampled from a molecular dynamics simulation, as well as compositional heterogeneity from mixtures of ribosome assembly states or 100 common complexes present in cells. We then analyze state-of-the-art heterogeneous reconstruction tools, including neural and non-neural methods, assess their sensitivity to noise, and propose new metrics for quantitative evaluation. We hope that CryoBench will be a foundational resource for accelerating algorithmic development and evaluation in the cryo-EM and machine learning communities. Project page: https://cryobench.cs.princeton.edu.
comment: Accepted by NeurIPS 2024 (Spotlight)
♻ ☆ An efficient likelihood-free Bayesian inference method based on sequential neural posterior estimation
Sequential neural posterior estimation (SNPE) techniques have been recently proposed for dealing with simulation-based models with intractable likelihoods. Unlike approximate Bayesian computation, SNPE techniques learn the posterior from sequential simulation using neural network-based conditional density estimators by minimizing a specific loss function. The SNPE method proposed by Lueckmann et al. (2017) used a calibration kernel to boost the sample weights around the observed data, resulting in a concentrated loss function. However, the use of calibration kernels may increase the variances of both the empirical loss and its gradient, making the training inefficient. To improve the stability of SNPE, this paper proposes to use an adaptive calibration kernel and several variance reduction techniques. The proposed method greatly speeds up the process of training and provides a better approximation of the posterior than the original SNPE method and some existing competitors as confirmed by numerical experiments. We also managed to demonstrate the superiority of the proposed method for a high-dimensional model with a real-world dataset.
comment: 28 pages, 9 figures
♻ ☆ The Dark Side of Rich Rewards: Understanding and Mitigating Noise in VLM Rewards
While Vision-Language Models (VLMs) are increasingly used to generate reward signals for training embodied agents to follow instructions, our research reveals that agents guided by VLM rewards often underperform compared to those employing only intrinsic (exploration-driven) rewards, contradicting expectations set by recent work. We hypothesize that false positive rewards -- instances where unintended trajectories are incorrectly rewarded -- are more detrimental than false negatives. Our analysis confirms this hypothesis, revealing that the widely used cosine similarity metric is prone to false positive reward estimates. To address this, we introduce BiMI ({Bi}nary {M}utual {I}nformation), a novel reward function designed to mitigate noise. BiMI significantly enhances learning efficiency across diverse and challenging embodied navigation environments. Our findings offer a nuanced understanding of how different types of reward noise impact agent learning and highlight the importance of addressing multimodal reward signal noise when training embodied agents
comment: 11 main body pages, 21 appendix pages
♻ ☆ A Mechanistic Explanatory Strategy for XAI
Despite significant advancements in XAI, scholars note a persistent lack of solid conceptual foundations and integration with broader scientific discourse on explanation. In response, emerging XAI research draws on explanatory strategies from various sciences and philosophy of science literature to fill these gaps. This paper outlines a mechanistic strategy for explaining the functional organization of deep learning systems, situating recent advancements in AI explainability within a broader philosophical context. According to the mechanistic approach, the explanation of opaque AI systems involves identifying mechanisms that drive decision-making. For deep neural networks, this means discerning functionally relevant components -- such as neurons, layers, circuits, or activation patterns -- and understanding their roles through decomposition, localization, and recomposition. Proof-of-principle case studies from image recognition and language modeling align these theoretical approaches with the latest research from AI labs like OpenAI and Anthropic. This research suggests that a systematic approach to studying model organization can reveal elements that simpler (or ''more modest'') explainability techniques might miss, fostering more thoroughly explainable AI. The paper concludes with a discussion on the epistemic relevance of the mechanistic approach positioned in the context of selected philosophical debates on XAI.
comment: Forthcoming in M\"uller, V. C., Dewey, A. R., Dung, L., & L\"ohr, G. (Eds.), Philosophy of Artificial Intelligence: The State of the Art, Synthese Library, Berlin: Springer Nature. Please cite the published version
♻ ☆ Preference-based Pure Exploration
We study the preference-based pure exploration problem for bandits with vector-valued rewards. The rewards are ordered using a (given) preference cone $\mathcal{C}$ and our goal is to identify the set of Pareto optimal arms. First, to quantify the impact of preferences, we derive a novel lower bound on sample complexity for identifying the most preferred policy with a confidence level $1-\delta$. Our lower bound elicits the role played by the geometry of the preference cone and punctuates the difference in hardness compared to existing best-arm identification variants of the problem. We further explicate this geometry when the rewards follow Gaussian distributions. We then provide a convex relaxation of the lower bound and leverage it to design the Preference-based Track and Stop (PreTS) algorithm that identifies the most preferred policy. Finally, we show that the sample complexity of PreTS is asymptotically tight by deriving a new concentration inequality for vector-valued rewards.
♻ ☆ Intelligent Icing Detection Model of Wind Turbine Blades Based on SCADA data
Diagnosis of ice accretion on wind turbine blades is all the time a hard nut to crack in condition monitoring of wind farms. Existing methods focus on mechanism analysis of icing process, deviation degree analysis of feature engineering. However, there have not been deep researches of neural networks applied in this field at present. Supervisory control and data acquisition (SCADA) makes it possible to train networks through continuously providing not only operation parameters and performance parameters of wind turbines but also environmental parameters and operation modes. This paper explores the possibility that using convolutional neural networks (CNNs), generative adversarial networks (GANs) and domain adaption learning to establish intelligent diagnosis frameworks under different training scenarios. Specifically, PGANC and PGANT are proposed for sufficient and non-sufficient target wind turbine labeled data, respectively. The basic idea is that we consider a two-stage training with parallel GANs, which are aimed at capturing intrinsic features for normal and icing samples, followed by classification CNN or domain adaption module in various training cases. Model validation on three wind turbine SCADA data shows that two-stage training can effectively improve the model performance. Besides, if there is no sufficient labeled data for a target turbine, which is an extremely common phenomenon in real industrial practices, the addition of domain adaption learning makes the trained model show better performance. Overall, our proposed intelligent diagnosis frameworks can achieve more accurate detection on the same wind turbine and more generalized capability on a new wind turbine, compared with other machine learning models and conventional CNNs.
comment: 10 pages, 6 figures
♻ ☆ Multi-hop Upstream Anticipatory Traffic Signal Control with Deep Reinforcement Learning
Coordination in traffic signal control is crucial for managing congestion in urban networks. Existing pressure-based control methods focus only on immediate upstream links, leading to suboptimal green time allocation and increased network delays. However, effective signal control inherently requires coordination across a broader spatial scope, as the effect of upstream traffic should influence signal control decisions at downstream intersections, impacting a large area in the traffic network. Although agent communication using neural network-based feature extraction can implicitly enhance spatial awareness, it significantly increases the learning complexity, adding an additional layer of difficulty to the challenging task of control in deep reinforcement learning. To address the issue of learning complexity and myopic traffic pressure definition, our work introduces a novel concept based on Markov chain theory, namely \textit{multi-hop upstream pressure}, which generalizes the conventional pressure to account for traffic conditions beyond the immediate upstream links. This farsighted and compact metric informs the deep reinforcement learning agent to preemptively clear the multi-hop upstream queues, guiding the agent to optimize signal timings with a broader spatial awareness. Simulations on synthetic and realistic (Toronto) scenarios demonstrate controllers utilizing multi-hop upstream pressure significantly reduce overall network delay by prioritizing traffic movements based on a broader understanding of upstream congestion.
comment: 5 tables, 11 figures
♻ ☆ Model Alignment Search
When can we say that two neural systems are the same? The answer to this question is goal-dependent, and it is often addressed through correlative methods such as Representational Similarity Analysis (RSA) and Centered Kernel Alignment (CKA). What do we miss when we forgo causal explorations, and how can we target specific types of similarity? In this work, we introduce Model Alignment Search (MAS), a method for causally exploring distributed representational similarity. The method learns invertible linear transformations that align a subspace between two distributed networks' representations where causal information can be freely interchanged. We first show that the method can be used to transfer specific causal variables, such as the number of items in a counting task, between networks with different training seeds. We then explore open questions in number cognition by comparing different types of numeric representations in models trained on structurally different numeric tasks. We then explore differences between MAS vs preexisting causal similarity methods, and lastly, we introduce a counterfactual latent auxiliary loss function that helps shape causally relevant alignments even in cases where we do not have causal access to one of the two models for training.
♻ ☆ Reinforcement learning with non-ergodic reward increments: robustness via ergodicity transformations
Envisioned application areas for reinforcement learning (RL) include autonomous driving, precision agriculture, and finance, which all require RL agents to make decisions in the real world. A significant challenge hindering the adoption of RL methods in these domains is the non-robustness of conventional algorithms. In particular, the focus of RL is typically on the expected value of the return. The expected value is the average over the statistical ensemble of infinitely many trajectories, which can be uninformative about the performance of the average individual. For instance, when we have a heavy-tailed return distribution, the ensemble average can be dominated by rare extreme events. Consequently, optimizing the expected value can lead to policies that yield exceptionally high returns with a probability that approaches zero but almost surely result in catastrophic outcomes in single long trajectories. In this paper, we develop an algorithm that lets RL agents optimize the long-term performance of individual trajectories. The algorithm enables the agents to learn robust policies, which we show in an instructive example with a heavy-tailed return distribution and standard RL benchmarks. The key element of the algorithm is a transformation that we learn from data. This transformation turns the time series of collected returns into one for whose increments expected value and the average over a long trajectory coincide. Optimizing these increments results in robust policies.
comment: Accepted final version to appear in the Transactions on Machine Learning Research
♻ ☆ On the uncertainty principle of neural networks
In this study, we explore the inherent trade-off between accuracy and robustness in neural networks, drawing an analogy to the uncertainty principle in quantum mechanics. We propose that neural networks are subject to an uncertainty relation, which manifests as a fundamental limitation in their ability to simultaneously achieve high accuracy and robustness against adversarial attacks. Through mathematical proofs and empirical evidence, we demonstrate that this trade-off is a natural consequence of the sharp boundaries formed between different class concepts during training. Our findings reveal that the complementarity principle, a cornerstone of quantum physics, applies to neural networks, imposing fundamental limits on their capabilities in simultaneous learning of conjugate features. Meanwhile, our work suggests that achieving human-level intelligence through a single network architecture or massive datasets alone may be inherently limited. Our work provides new insights into the theoretical foundations of neural network vulnerability and opens up avenues for designing more robust neural network architectures.
comment: 8 pages, 5 figures
♻ ☆ Hidden Markov Neural Networks
We define an evolving in-time Bayesian neural network called a Hidden Markov Neural Network, which addresses the crucial challenge in time-series forecasting and continual learning: striking a balance between adapting to new data and appropriately forgetting outdated information. This is achieved by modelling the weights of a neural network as the hidden states of a Hidden Markov model, with the observed process defined by the available data. A filtering algorithm is employed to learn a variational approximation of the evolving-in-time posterior distribution over the weights. By leveraging a sequential variant of Bayes by Backprop, enriched with a stronger regularization technique called variational DropConnect, Hidden Markov Neural Networks achieve robust regularization and scalable inference. Experiments on MNIST, dynamic classification tasks, and next-frame forecasting in videos demonstrate that Hidden Markov Neural Networks provide strong predictive performance while enabling effective uncertainty quantification.
Multimedia 7
☆ Metric Learning with Progressive Self-Distillation for Audio-Visual Embedding Learning ICASSP 2025
Metric learning projects samples into an embedded space, where similarities and dissimilarities are quantified based on their learned representations. However, existing methods often rely on label-guided representation learning, where representations of different modalities, such as audio and visual data, are aligned based on annotated labels. This approach tends to underutilize latent complex features and potential relationships inherent in the distributions of audio and visual data that are not directly tied to the labels, resulting in suboptimal performance in audio-visual embedding learning. To address this issue, we propose a novel architecture that integrates cross-modal triplet loss with progressive self-distillation. Our method enhances representation learning by leveraging inherent distributions and dynamically refining soft audio-visual alignments -- probabilistic alignments between audio and visual data that capture the inherent relationships beyond explicit labels. Specifically, the model distills audio-visual distribution-based knowledge from annotated labels in a subset of each batch. This self-distilled knowledge is used t
comment: 5 pages, 3 figures, 2 tables. Accepted by ICASSP 2025
☆ PAL: Prompting Analytic Learning with Missing Modality for Multi-Modal Class-Incremental Learning
Multi-modal class-incremental learning (MMCIL) seeks to leverage multi-modal data, such as audio-visual and image-text pairs, thereby enabling models to learn continuously across a sequence of tasks while mitigating forgetting. While existing studies primarily focus on the integration and utilization of multi-modal information for MMCIL, a critical challenge remains: the issue of missing modalities during incremental learning phases. This oversight can exacerbate severe forgetting and significantly impair model performance. To bridge this gap, we propose PAL, a novel exemplar-free framework tailored to MMCIL under missing-modality scenarios. Concretely, we devise modality-specific prompts to compensate for missing information, facilitating the model to maintain a holistic representation of the data. On this foundation, we reformulate the MMCIL problem into a Recursive Least-Squares task, delivering an analytical linear solution. Building upon these, PAL not only alleviates the inherent under-fitting limitation in analytic learning but also preserves the holistic representation of missing-modality data, achieving superior performance with less forgetting across various multi-modal incremental scenarios. Extensive experiments demonstrate that PAL significantly outperforms competitive methods across various datasets, including UPMC-Food101 and N24News, showcasing its robustness towards modality absence and its anti-forgetting ability to maintain high incremental accuracy.
☆ LAVCap: LLM-based Audio-Visual Captioning using Optimal Transport ICASSP 2025
Automated audio captioning is a task that generates textual descriptions for audio content, and recent studies have explored using visual information to enhance captioning quality. However, current methods often fail to effectively fuse audio and visual data, missing important semantic cues from each modality. To address this, we introduce LAVCap, a large language model (LLM)-based audio-visual captioning framework that effectively integrates visual information with audio to improve audio captioning performance. LAVCap employs an optimal transport-based alignment loss to bridge the modality gap between audio and visual features, enabling more effective semantic extraction. Additionally, we propose an optimal transport attention module that enhances audio-visual fusion using an optimal transport assignment map. Combined with the optimal training strategy, experimental results demonstrate that each component of our framework is effective. LAVCap outperforms existing state-of-the-art methods on the AudioCaps dataset, without relying on large datasets or post-processing. Code is available at https://github.com/NAVER-INTEL-Co-Lab/gaudi-lavcap.
comment: 5 pages, 2 figures; Accepted to ICASSP 2025
☆ MagnetDB: A Longitudinal Torrent Discovery Dataset with IMDb-Matched Movies and TV Shows
BitTorrent remains a prominent channel for illicit distribution of copyrighted material, yet the supply side of such content remains understudied. We introduce MagnetDB, a longitudinal dataset of torrents discovered through the BitTorrent DHT between 2018 and 2024, containing more than 28.6 million torrents and metadata of more than 950 million files. While our primary focus is on enabling research based on the supply of pirated movies and TV shows, the dataset also encompasses other legitimate and illegitimate torrents. By applying IMDb-matching and annotation to movie and TV show torrents, MagnetDB facilitates detailed analyses of pirated content evolution in the BitTorrent network. Researchers can leverage MagnetDB to examine distribution trends, subcultural practices, and the gift economy within piracy ecosystems. Through its scale and temporal scope, MagnetDB presents a unique opportunity for investigating the broader dynamics of BitTorrent and advancing empirical knowledge on digital piracy.
☆ SMPLest-X: Ultimate Scaling for Expressive Human Pose and Shape Estimation
Expressive human pose and shape estimation (EHPS) unifies body, hands, and face motion capture with numerous applications. Despite encouraging progress, current state-of-the-art methods focus on training innovative architectural designs on confined datasets. In this work, we investigate the impact of scaling up EHPS towards a family of generalist foundation models. 1) For data scaling, we perform a systematic investigation on 40 EHPS datasets, encompassing a wide range of scenarios that a model trained on any single dataset cannot handle. More importantly, capitalizing on insights obtained from the extensive benchmarking process, we optimize our training scheme and select datasets that lead to a significant leap in EHPS capabilities. Ultimately, we achieve diminishing returns at 10M training instances from diverse data sources. 2) For model scaling, we take advantage of vision transformers (up to ViT-Huge as the backbone) to study the scaling law of model sizes in EHPS. To exclude the influence of algorithmic design, we base our experiments on two minimalist architectures: SMPLer-X, which consists of an intermediate step for hand and face localization, and SMPLest-X, an even simpler version that reduces the network to its bare essentials and highlights significant advances in the capture of articulated hands. With big data and the large model, the foundation models exhibit strong performance across diverse test benchmarks and excellent transferability to even unseen environments. Moreover, our finetuning strategy turns the generalist into specialist models, allowing them to achieve further performance boosts. Notably, our foundation models consistently deliver state-of-the-art results on seven benchmarks such as AGORA, UBody, EgoBody, and our proposed SynHand dataset for comprehensive hand evaluation. (Code is available at: https://github.com/wqyin/SMPLest-X).
comment: An extension of SMPLer-X [arXiv:2309.17448]. Homepage: https://caizhongang.com/projects/SMPLer-X/
♻ ☆ Frechet Music Distance: A Metric For Generative Symbolic Music Evaluation
In this paper we introduce the Frechet Music Distance (FMD), a novel evaluation metric for generative symbolic music models, inspired by the Frechet Inception Distance (FID) in computer vision and Frechet Audio Distance (FAD) in generative audio. FMD calculates the distance between distributions of reference and generated symbolic music embeddings, capturing abstract musical features. We validate FMD across several datasets and models. Results indicate that FMD effectively differentiates model quality, providing a domain-specific metric for evaluating symbolic music generation, and establishing a reproducible standard for future research in symbolic music modeling.
♻ ☆ DiffMesh: A Motion-aware Diffusion Framework for Human Mesh Recovery from Videos WACV 2025
Human mesh recovery (HMR) provides rich human body information for various real-world applications. While image-based HMR methods have achieved impressive results, they often struggle to recover humans in dynamic scenarios, leading to temporal inconsistencies and non-smooth 3D motion predictions due to the absence of human motion. In contrast, video-based approaches leverage temporal information to mitigate this issue. In this paper, we present DiffMesh, an innovative motion-aware Diffusion-like framework for video-based HMR. DiffMesh establishes a bridge between diffusion models and human motion, efficiently generating accurate and smooth output mesh sequences by incorporating human motion within the forward process and reverse process in the diffusion model. Extensive experiments are conducted on the widely used datasets (Human3.6M \cite{h36m_pami} and 3DPW \cite{pw3d2018}), which demonstrate the effectiveness and efficiency of our DiffMesh. Visual comparisons in real-world scenarios further highlight DiffMesh's suitability for practical applications.
comment: WACV 2025
Artificial Intelligence 130
☆ Learnings from Scaling Visual Tokenizers for Reconstruction and Generation
Visual tokenization via auto-encoding empowers state-of-the-art image and video generative models by compressing pixels into a latent space. Although scaling Transformer-based generators has been central to recent advances, the tokenizer component itself is rarely scaled, leaving open questions about how auto-encoder design choices influence both its objective of reconstruction and downstream generative performance. Our work aims to conduct an exploration of scaling in auto-encoders to fill in this blank. To facilitate this exploration, we replace the typical convolutional backbone with an enhanced Vision Transformer architecture for Tokenization (ViTok). We train ViTok on large-scale image and video datasets far exceeding ImageNet-1K, removing data constraints on tokenizer scaling. We first study how scaling the auto-encoder bottleneck affects both reconstruction and generation -- and find that while it is highly correlated with reconstruction, its relationship with generation is more complex. We next explored the effect of separately scaling the auto-encoders' encoder and decoder on reconstruction and generation performance. Crucially, we find that scaling the encoder yields minimal gains for either reconstruction or generation, while scaling the decoder boosts reconstruction but the benefits for generation are mixed. Building on our exploration, we design ViTok as a lightweight auto-encoder that achieves competitive performance with state-of-the-art auto-encoders on ImageNet-1K and COCO reconstruction tasks (256p and 512p) while outperforming existing auto-encoders on 16-frame 128p video reconstruction for UCF-101, all with 2-5x fewer FLOPs. When integrated with Diffusion Transformers, ViTok demonstrates competitive performance on image generation for ImageNet-1K and sets new state-of-the-art benchmarks for class-conditional video generation on UCF-101.
comment: 28 pages, 25 figures, 7 Tables
☆ KU AIGEN ICL EDI@BC8 Track 3: Advancing Phenotype Named Entity Recognition and Normalization for Dysmorphology Physical Examination Reports
The objective of BioCreative8 Track 3 is to extract phenotypic key medical findings embedded within EHR texts and subsequently normalize these findings to their Human Phenotype Ontology (HPO) terms. However, the presence of diverse surface forms in phenotypic findings makes it challenging to accurately normalize them to the correct HPO terms. To address this challenge, we explored various models for named entity recognition and implemented data augmentation techniques such as synonym marginalization to enhance the normalization step. Our pipeline resulted in an exact extraction and normalization F1 score 2.6\% higher than the mean score of all submissions received in response to the challenge. Furthermore, in terms of the normalization F1 score, our approach surpassed the average performance by 1.9\%. These findings contribute to the advancement of automated medical data extraction and normalization techniques, showcasing potential pathways for future research and application in the biomedical domain.
comment: This article is part of the Proceedings of the BioCreative VIII Challenge and Workshop: Curation and Evaluation in the era of Generative Models
☆ Parallel multi-objective metaheuristics for smart communications in vehicular networks
This article analyzes the use of two parallel multi-objective soft computing algorithms to automatically search for high-quality settings of the Ad hoc On Demand Vector routing protocol for vehicular networks. These methods are based on an evolutionary algorithm and on a swarm intelligence approach. The experimental analysis demonstrates that the configurations computed by our optimization algorithms outperform other state-of-the-art optimized ones. In turn, the computational efficiency achieved by all the parallel versions is greater than 87 %. Therefore, the line of work presented in this article represents an efficient framework to improve vehicular communications.
☆ A Simple Aerial Detection Baseline of Multimodal Language Models
The multimodal language models (MLMs) based on generative pre-trained Transformer are considered powerful candidates for unifying various domains and tasks. MLMs developed for remote sensing (RS) have demonstrated outstanding performance in multiple tasks, such as visual question answering and visual grounding. In addition to visual grounding that detects specific objects corresponded to given instruction, aerial detection, which detects all objects of multiple categories, is also a valuable and challenging task for RS foundation models. However, aerial detection has not been explored by existing RS MLMs because the autoregressive prediction mechanism of MLMs differs significantly from the detection outputs. In this paper, we present a simple baseline for applying MLMs to aerial detection for the first time, named LMMRotate. Specifically, we first introduce a normalization method to transform detection outputs into textual outputs to be compatible with the MLM framework. Then, we propose a evaluation method, which ensures a fair comparison between MLMs and conventional object detection models. We construct the baseline by fine-tuning open-source general-purpose MLMs and achieve impressive detection performance comparable to conventional detector. We hope that this baseline will serve as a reference for future MLM development, enabling more comprehensive capabilities for understanding RS images. Code is available at https://github.com/Li-Qingyun/mllm-mmrotate.
comment: 4 pages, 1 table, 4 figures
☆ CyberMentor: AI Powered Learning Tool Platform to Address Diverse Student Needs in Cybersecurity Education
Many non-traditional students in cybersecurity programs often lack access to advice from peers, family members and professors, which can hinder their educational experiences. Additionally, these students may not fully benefit from various LLM-powered AI assistants due to issues like content relevance, locality of advice, minimum expertise, and timing. This paper addresses these challenges by introducing an application designed to provide comprehensive support by answering questions related to knowledge, skills, and career preparation advice tailored to the needs of these students. We developed a learning tool platform, CyberMentor, to address the diverse needs and pain points of students majoring in cybersecurity. Powered by agentic workflow and Generative Large Language Models (LLMs), the platform leverages Retrieval-Augmented Generation (RAG) for accurate and contextually relevant information retrieval to achieve accessibility and personalization. We demonstrated its value in addressing knowledge requirements for cybersecurity education and for career marketability, in tackling skill requirements for analytical and programming assignments, and in delivering real time on demand learning support. Using three use scenarios, we showcased CyberMentor in facilitating knowledge acquisition and career preparation and providing seamless skill-based guidance and support. We also employed the LangChain prompt-based evaluation methodology to evaluate the platform's impact, confirming its strong performance in helpfulness, correctness, and completeness. These results underscore the system's ability to support students in developing practical cybersecurity skills while improving equity and sustainability within higher education. Furthermore, CyberMentor's open-source design allows for adaptation across other disciplines, fostering educational innovation and broadening its potential impact.
comment: 11 pages, 8 figures
☆ The Goofus & Gallant Story Corpus for Practical Value Alignment ICML
Values or principles are key elements of human society that influence people to behave and function according to an accepted standard set of social rules to maintain social order. As AI systems are becoming ubiquitous in human society, it is a major concern that they could violate these norms or values and potentially cause harm. Thus, to prevent intentional or unintentional harm, AI systems are expected to take actions that align with these principles. Training systems to exhibit this type of behavior is difficult and often requires a specialized dataset. This work presents a multi-modal dataset illustrating normative and non-normative behavior in real-life situations described through natural language and artistic images. This training set contains curated sets of images that are designed to teach young children about social principles. We argue that this is an ideal dataset to use for training socially normative agents given this fact.
comment: Accepted by International Conference on Machine Learning and Applications (ICMLA) 2024. Main Conference, Long Paper
☆ Practical Continual Forgetting for Pre-trained Vision Models
For privacy and security concerns, the need to erase unwanted information from pre-trained vision models is becoming evident nowadays. In real-world scenarios, erasure requests originate at any time from both users and model owners, and these requests usually form a sequence. Therefore, under such a setting, selective information is expected to be continuously removed from a pre-trained model while maintaining the rest. We define this problem as continual forgetting and identify three key challenges. (i) For unwanted knowledge, efficient and effective deleting is crucial. (ii) For remaining knowledge, the impact brought by the forgetting procedure should be minimal. (iii) In real-world scenarios, the training samples may be scarce or partially missing during the process of forgetting. To address them, we first propose Group Sparse LoRA (GS-LoRA). Specifically, towards (i), we introduce LoRA modules to fine-tune the FFN layers in Transformer blocks for each forgetting task independently, and towards (ii), a simple group sparse regularization is adopted, enabling automatic selection of specific LoRA groups and zeroing out the others. To further extend GS-LoRA to more practical scenarios, we incorporate prototype information as additional supervision and introduce a more practical approach, GS-LoRA++. For each forgotten class, we move the logits away from its original prototype. For the remaining classes, we pull the logits closer to their respective prototypes. We conduct extensive experiments on face recognition, object detection and image classification and demonstrate that our method manages to forget specific classes with minimal impact on other classes. Codes have been released on https://github.com/bjzhb666/GS-LoRA.
☆ Cueless EEG imagined speech for subject identification: dataset and benchmarks
Electroencephalogram (EEG) signals have emerged as a promising modality for biometric identification. While previous studies have explored the use of imagined speech with semantically meaningful words for subject identification, most have relied on additional visual or auditory cues. In this study, we introduce a cueless EEG-based imagined speech paradigm, where subjects imagine the pronunciation of semantically meaningful words without any external cues. This innovative approach addresses the limitations of prior methods by requiring subjects to select and imagine words from a predefined list naturally. The dataset comprises over 4,350 trials from 11 subjects across five sessions. We assess a variety of classification methods, including traditional machine learning techniques such as Support Vector Machines (SVM) and XGBoost, as well as time-series foundation models and deep learning architectures specifically designed for EEG classification, such as EEG Conformer and Shallow ConvNet. A session-based hold-out validation strategy was employed to ensure reliable evaluation and prevent data leakage. Our results demonstrate outstanding classification accuracy, reaching 97.93%. These findings highlight the potential of cueless EEG paradigms for secure and reliable subject identification in real-world applications, such as brain-computer interfaces (BCIs).
☆ Towards Large Reasoning Models: A Survey of Reinforced Reasoning with Large Language Models
Language has long been conceived as an essential tool for human reasoning. The breakthrough of Large Language Models (LLMs) has sparked significant research interest in leveraging these models to tackle complex reasoning tasks. Researchers have moved beyond simple autoregressive token generation by introducing the concept of "thought" -- a sequence of tokens representing intermediate steps in the reasoning process. This innovative paradigm enables LLMs' to mimic complex human reasoning processes, such as tree search and reflective thinking. Recently, an emerging trend of learning to reason has applied reinforcement learning (RL) to train LLMs to master reasoning processes. This approach enables the automatic generation of high-quality reasoning trajectories through trial-and-error search algorithms, significantly expanding LLMs' reasoning capacity by providing substantially more training data. Furthermore, recent studies demonstrate that encouraging LLMs to "think" with more tokens during test-time inference can further significantly boost reasoning accuracy. Therefore, the train-time and test-time scaling combined to show a new research frontier -- a path toward Large Reasoning Model. The introduction of OpenAI's o1 series marks a significant milestone in this research direction. In this survey, we present a comprehensive review of recent progress in LLM reasoning. We begin by introducing the foundational background of LLMs and then explore the key technical components driving the development of large reasoning models, with a focus on automated data construction, learning-to-reason techniques, and test-time scaling. We also analyze popular open-source projects at building large reasoning models, and conclude with open challenges and future research directions.
comment: 36 pages, 5 figures
☆ Reward-Guided Controlled Generation for Inference-Time Alignment in Diffusion Models: Tutorial and Review
This tutorial provides an in-depth guide on inference-time guidance and alignment methods for optimizing downstream reward functions in diffusion models. While diffusion models are renowned for their generative modeling capabilities, practical applications in fields such as biology often require sample generation that maximizes specific metrics (e.g., stability, affinity in proteins, closeness to target structures). In these scenarios, diffusion models can be adapted not only to generate realistic samples but also to explicitly maximize desired measures at inference time without fine-tuning. This tutorial explores the foundational aspects of such inference-time algorithms. We review these methods from a unified perspective, demonstrating that current techniques -- such as Sequential Monte Carlo (SMC)-based guidance, value-based sampling, and classifier guidance -- aim to approximate soft optimal denoising processes (a.k.a. policies in RL) that combine pre-trained denoising processes with value functions serving as look-ahead functions that predict from intermediate states to terminal rewards. Within this framework, we present several novel algorithms not yet covered in the literature. Furthermore, we discuss (1) fine-tuning methods combined with inference-time techniques, (2) inference-time algorithms based on search algorithms such as Monte Carlo tree search, which have received limited attention in current research, and (3) connections between inference-time algorithms in language models and diffusion models. The code of this tutorial on protein design is available at https://github.com/masa-ue/AlignInversePro
comment: We plan to add more content/codes. Please let us know if there are any comments
☆ Incorporating Quantum Advantage in Quantum Circuit Generation through Genetic Programming
Designing efficient quantum circuits that leverage quantum advantage compared to classical computing has become increasingly critical. Genetic algorithms have shown potential in generating such circuits through artificial evolution. However, integrating quantum advantage into the fitness function of these algorithms remains unexplored. In this paper, we aim to enhance the efficiency of quantum circuit design by proposing two novel approaches for incorporating quantum advantage metrics into the fitness function of genetic algorithms.1 We evaluate our approaches based on the Bernstein-Vazirani Problem and the Unstructured Database Search Problem as test cases. The results demonstrate that our approaches not only improve the convergence speed of the genetic algorithm but also produce circuits comparable to expert-designed solutions. Our findings suggest that automated quantum circuit design using genetic algorithms that incorporate a measure of quantum advantage is a promising approach to accelerating the development of quantum algorithms.
☆ Authenticated Delegation and Authorized AI Agents
The rapid deployment of autonomous AI agents creates urgent challenges around authorization, accountability, and access control in digital spaces. New standards are needed to know whom AI agents act on behalf of and guide their use appropriately, protecting online spaces while unlocking the value of task delegation to autonomous agents. We introduce a novel framework for authenticated, authorized, and auditable delegation of authority to AI agents, where human users can securely delegate and restrict the permissions and scope of agents while maintaining clear chains of accountability. This framework builds on existing identification and access management protocols, extending OAuth 2.0 and OpenID Connect with agent-specific credentials and metadata, maintaining compatibility with established authentication and web infrastructure. Further, we propose a framework for translating flexible, natural language permissions into auditable access control configurations, enabling robust scoping of AI agent capabilities across diverse interaction modalities. Taken together, this practical approach facilitates immediate deployment of AI agents while addressing key security and accountability concerns, working toward ensuring agentic AI systems perform only appropriate actions and providing a tool for digital service providers to enable AI agent interactions without risking harm from scalable interaction.
☆ Robin: a Suite of Multi-Scale Vision-Language Models and the CHIRP Evaluation Benchmark
The proliferation of Vision-Language Models (VLMs) in the past several years calls for rigorous and comprehensive evaluation methods and benchmarks. This work analyzes existing VLM evaluation techniques, including automated metrics, AI-based assessments, and human evaluations across diverse tasks. We first introduce Robin - a novel suite of VLMs that we built by combining Large Language Models (LLMs) and Vision Encoders (VEs) at multiple scales, and use Robin to identify shortcomings of current evaluation approaches across scales. Next, to overcome the identified limitations, we introduce CHIRP - a new long form response benchmark we developed for more robust and complete VLM evaluation. We provide open access to the Robin training code, model suite, and CHIRP benchmark to promote reproducibility and advance VLM research.
☆ The Heap: A Contamination-Free Multilingual Code Dataset for Evaluating Large Language Models
The recent rise in the popularity of large language models has spurred the development of extensive code datasets needed to train them. This has left limited code available for collection and use in the downstream investigation of specific behaviors, or evaluation of large language models without suffering from data contamination. To address this problem, we release The Heap, a large multilingual dataset covering 57 programming languages that has been deduplicated with respect to other open datasets of code, enabling researchers to conduct fair evaluations of large language models without significant data cleaning overhead.
comment: Pre-Print. Accepted to FORGE 2025 Dataset Track
☆ Monte Carlo Tree Search with Velocity Obstacles for safe and efficient motion planning in dynamic environments
Online motion planning is a challenging problem for intelligent robots moving in dense environments with dynamic obstacles, e.g., crowds. In this work, we propose a novel approach for optimal and safe online motion planning with minimal information about dynamic obstacles. Specifically, our approach requires only the current position of the obstacles and their maximum speed, but it does not need any information about their exact trajectories or dynamic model. The proposed methodology combines Monte Carlo Tree Search (MCTS), for online optimal planning via model simulations, with Velocity Obstacles (VO), for obstacle avoidance. We perform experiments in a cluttered simulated environment with walls, and up to 40 dynamic obstacles moving with random velocities and directions. With an ablation study, we show the key contribution of VO in scaling up the efficiency of MCTS, selecting the safest and most rewarding actions in the tree of simulations. Moreover, we show the superiority of our methodology with respect to state-of-the-art planners, including Non-linear Model Predictive Control (NMPC), in terms of improved collision rate, computational and task performance.
☆ NS-Gym: Open-Source Simulation Environments and Benchmarks for Non-Stationary Markov Decision Processes
In many real-world applications, agents must make sequential decisions in environments where conditions are subject to change due to various exogenous factors. These non-stationary environments pose significant challenges to traditional decision-making models, which typically assume stationary dynamics. Non-stationary Markov decision processes (NS-MDPs) offer a framework to model and solve decision problems under such changing conditions. However, the lack of standardized benchmarks and simulation tools has hindered systematic evaluation and advance in this field. We present NS-Gym, the first simulation toolkit designed explicitly for NS-MDPs, integrated within the popular Gymnasium framework. In NS-Gym, we segregate the evolution of the environmental parameters that characterize non-stationarity from the agent's decision-making module, allowing for modular and flexible adaptations to dynamic environments. We review prior work in this domain and present a toolkit encapsulating key problem characteristics and types in NS-MDPs. This toolkit is the first effort to develop a set of standardized interfaces and benchmark problems to enable consistent and reproducible evaluation of algorithms under non-stationary conditions. We also benchmark six algorithmic approaches from prior work on NS-MDPs using NS-Gym. Our vision is that NS-Gym will enable researchers to assess the adaptability and robustness of their decision-making algorithms to non-stationary conditions.
comment: 23 pages, 17 figures
☆ CarMem: Enhancing Long-Term Memory in LLM Voice Assistants through Category-Bounding COLING 2025
In today's assistant landscape, personalisation enhances interactions, fosters long-term relationships, and deepens engagement. However, many systems struggle with retaining user preferences, leading to repetitive user requests and disengagement. Furthermore, the unregulated and opaque extraction of user preferences in industry applications raises significant concerns about privacy and trust, especially in regions with stringent regulations like Europe. In response to these challenges, we propose a long-term memory system for voice assistants, structured around predefined categories. This approach leverages Large Language Models to efficiently extract, store, and retrieve preferences within these categories, ensuring both personalisation and transparency. We also introduce a synthetic multi-turn, multi-session conversation dataset (CarMem), grounded in real industry data, tailored to an in-car voice assistant setting. Benchmarked on the dataset, our system achieves an F1-score of .78 to .95 in preference extraction, depending on category granularity. Our maintenance strategy reduces redundant preferences by 95% and contradictory ones by 92%, while the accuracy of optimal retrieval is at .87. Collectively, the results demonstrate the system's suitability for industrial applications.
comment: Accepted for presentation at the International Conference on Computational Linguistics (COLING 2025)
☆ Electronic Health Records: Towards Digital Twins in Healthcare
The pivotal shift from traditional paper-based records to sophisticated Electronic Health Records (EHR), enabled systematic collection and analysis of patient data through descriptive statistics, providing insight into patterns and trends across patient populations. This evolution continued toward predictive analytics, allowing healthcare providers to anticipate patient outcomes and potential complications before they occur. This progression from basic digital record-keeping to sophisticated predictive modelling and digital twins reflects healthcare's broader evolution toward more integrated, patient-centred approaches that combine data-driven insights with personalized care delivery. This chapter explores the evolution and significance of healthcare information systems, beginning with an examination of the implementation of EHR in the UK and the USA. It provides a comprehensive overview of the International Classification of Diseases (ICD) system, tracing its development from ICD-9 to ICD-10. Central to this discussion is the MIMIC-III database, a landmark achievement in healthcare data sharing and arguably the most comprehensive critical care database freely available to researchers worldwide. MIMIC-III has democratized access to high-quality healthcare data, enabling unprecedented opportunities for research and analysis. The chapter examines its structure, clinical outcome analysis capabilities, and practical applications through case studies, with a particular focus on mortality and length of stay metrics, vital signs extraction, and ICD coding. Through detailed entity-relationship diagrams and practical examples, the text illustrates MIMIC's complex data structure and demonstrates how different querying approaches can lead to subtly different results, emphasizing the critical importance of understanding the database's architecture for accurate data extraction.
☆ Platform-Aware Mission Planning
Planning for autonomous systems typically requires reasoning with models at different levels of abstraction, and the harmonization of two competing sets of objectives: high-level mission goals that refer to an interaction of the system with the external environment, and low-level platform constraints that aim to preserve the integrity and the correct interaction of the subsystems. The complicated interplay between these two models makes it very hard to reason on the system as a whole, especially when the objective is to find plans with robustness guarantees, considering the non-deterministic behavior of the lower layers of the system. In this paper, we introduce the problem of Platform-Aware Mission Planning (PAMP), addressing it in the setting of temporal durative actions. The PAMP problem differs from standard temporal planning for its exists-forall nature: the high-level plan dealing with mission goals is required to satisfy safety and executability constraints, for all the possible non-deterministic executions of the low-level model of the platform and the environment. We propose two approaches for solving PAMP. The first baseline approach amalgamates the mission and platform levels, while the second is based on an abstraction-refinement loop that leverages the combination of a planner and a verification engine. We prove the soundness and completeness of the proposed approaches and validate them experimentally, demonstrating the importance of heterogeneous modeling and the superiority of the technique based on abstraction-refinement.
☆ Artificial Intelligence-Driven Clinical Decision Support Systems
As artificial intelligence (AI) becomes increasingly embedded in healthcare delivery, this chapter explores the critical aspects of developing reliable and ethical Clinical Decision Support Systems (CDSS). Beginning with the fundamental transition from traditional statistical models to sophisticated machine learning approaches, this work examines rigorous validation strategies and performance assessment methods, including the crucial role of model calibration and decision curve analysis. The chapter emphasizes that creating trustworthy AI systems in healthcare requires more than just technical accuracy; it demands careful consideration of fairness, explainability, and privacy. The challenge of ensuring equitable healthcare delivery through AI is stressed, discussing methods to identify and mitigate bias in clinical predictive models. The chapter then delves into explainability as a cornerstone of human-centered CDSS. This focus reflects the understanding that healthcare professionals must not only trust AI recommendations but also comprehend their underlying reasoning. The discussion advances in an analysis of privacy vulnerabilities in medical AI systems, from data leakage in deep learning models to sophisticated attacks against model explanations. The text explores privacy-preservation strategies such as differential privacy and federated learning, while acknowledging the inherent trade-offs between privacy protection and model performance. This progression, from technical validation to ethical considerations, reflects the multifaceted challenges of developing AI systems that can be seamlessly and reliably integrated into daily clinical practice while maintaining the highest standards of patient care and data protection.
☆ Beyond Reward Hacking: Causal Rewards for Large Language Model Alignment
Recent advances in large language models (LLMs) have demonstrated significant progress in performing complex tasks. While Reinforcement Learning from Human Feedback (RLHF) has been effective in aligning LLMs with human preferences, it is susceptible to spurious correlations in reward modeling. Consequently, it often introduces biases-such as length bias, sycophancy, conceptual bias, and discrimination that hinder the model's ability to capture true causal relationships. To address this, we propose a novel causal reward modeling approach that integrates causal inference to mitigate these spurious correlations. Our method enforces counterfactual invariance, ensuring reward predictions remain consistent when irrelevant variables are altered. Through experiments on both synthetic and real-world datasets, we show that our approach mitigates various types of spurious correlations effectively, resulting in more reliable and fair alignment of LLMs with human preferences. As a drop-in enhancement to the existing RLHF workflow, our causal reward modeling provides a practical way to improve the trustworthiness and fairness of LLM finetuning.
☆ Metric Learning with Progressive Self-Distillation for Audio-Visual Embedding Learning ICASSP 2025
Metric learning projects samples into an embedded space, where similarities and dissimilarities are quantified based on their learned representations. However, existing methods often rely on label-guided representation learning, where representations of different modalities, such as audio and visual data, are aligned based on annotated labels. This approach tends to underutilize latent complex features and potential relationships inherent in the distributions of audio and visual data that are not directly tied to the labels, resulting in suboptimal performance in audio-visual embedding learning. To address this issue, we propose a novel architecture that integrates cross-modal triplet loss with progressive self-distillation. Our method enhances representation learning by leveraging inherent distributions and dynamically refining soft audio-visual alignments -- probabilistic alignments between audio and visual data that capture the inherent relationships beyond explicit labels. Specifically, the model distills audio-visual distribution-based knowledge from annotated labels in a subset of each batch. This self-distilled knowledge is used t
comment: 5 pages, 3 figures, 2 tables. Accepted by ICASSP 2025
☆ Managed-Retention Memory: A New Class of Memory for the AI Era
AI clusters today are one of the major uses of High Bandwidth Memory (HBM). However, HBM is suboptimal for AI workloads for several reasons. Analysis shows HBM is overprovisioned on write performance, but underprovisioned on density and read bandwidth, and also has significant energy per bit overheads. It is also expensive, with lower yield than DRAM due to manufacturing complexity. We propose a new memory class: Managed-Retention Memory (MRM), which is more optimized to store key data structures for AI inference workloads. We believe that MRM may finally provide a path to viability for technologies that were originally proposed to support Storage Class Memory (SCM). These technologies traditionally offered long-term persistence (10+ years) but provided poor IO performance and/or endurance. MRM makes different trade-offs, and by understanding the workload IO patterns, MRM foregoes long-term data retention and write performance for better potential performance on the metrics important for these workloads.
comment: 8 pages (5 content + 3 refs); 1 figure
☆ Reducing the Sensitivity of Neural Physics Simulators to Mesh Topology via Pretraining
Meshes are used to represent complex objects in high fidelity physics simulators across a variety of domains, such as radar sensing and aerodynamics. There is growing interest in using neural networks to accelerate physics simulations, and also a growing body of work on applying neural networks directly to irregular mesh data. Since multiple mesh topologies can represent the same object, mesh augmentation is typically required to handle topological variation when training neural networks. Due to the sensitivity of physics simulators to small changes in mesh shape, it is challenging to use these augmentations when training neural network-based physics simulators. In this work, we show that variations in mesh topology can significantly reduce the performance of neural network simulators. We evaluate whether pretraining can be used to address this issue, and find that employing an established autoencoder pretraining technique with graph embedding models reduces the sensitivity of neural network simulators to variations in mesh topology. Finally, we highlight future research directions that may further reduce neural simulator sensitivity to mesh topology.
comment: 5 pages, 3 figures
☆ IFRA: a machine learning-based Instrumented Fall Risk Assessment Scale derived from Instrumented Timed Up and Go test in stroke patients
Effective fall risk assessment is critical for post-stroke patients. The present study proposes a novel, data-informed fall risk assessment method based on the instrumented Timed Up and Go (ITUG) test data, bringing in many mobility measures that traditional clinical scales fail to capture. IFRA, which stands for Instrumented Fall Risk Assessment, has been developed using a two-step process: first, features with the highest predictive power among those collected in a ITUG test have been identified using machine learning techniques; then, a strategy is proposed to stratify patients into low, medium, or high-risk strata. The dataset used in our analysis consists of 142 participants, out of which 93 were used for training (15 synthetically generated), 17 for validation and 32 to test the resulting IFRA scale (22 non-fallers and 10 fallers). Features considered in the IFRA scale include gait speed, vertical acceleration during sit-to-walk transition, and turning angular velocity, which align well with established literature on the risk of fall in neurological patients. In a comparison with traditional clinical scales such as the traditional Timed Up & Go and the Mini-BESTest, IFRA demonstrates competitive performance, being the only scale to correctly assign more than half of the fallers to the high-risk stratum (Fischer's Exact test p = 0.004). Despite the dataset's limited size, this is the first proof-of-concept study to pave the way for future evidence regarding the use of IFRA tool for continuous patient monitoring and fall prevention both in clinical stroke rehabilitation and at home post-discharge.
comment: 26 pages, 2 figures, submitted for review dec 2024
☆ MatrixNet: Learning over symmetry groups using learned group representations NeurIPS 2024
Group theory has been used in machine learning to provide a theoretically grounded approach for incorporating known symmetry transformations in tasks from robotics to protein modeling. In these applications, equivariant neural networks use known symmetry groups with predefined representations to learn over geometric input data. We propose MatrixNet, a neural network architecture that learns matrix representations of group element inputs instead of using predefined representations. MatrixNet achieves higher sample efficiency and generalization over several standard baselines in prediction tasks over the several finite groups and the Artin braid group. We also show that MatrixNet respects group relations allowing generalization to group elements of greater word length than in the training set.
comment: NeurIPS 2024
☆ Text-driven Adaptation of Foundation Models for Few-shot Surgical Workflow Analysis
Purpose: Surgical workflow analysis is crucial for improving surgical efficiency and safety. However, previous studies rely heavily on large-scale annotated datasets, posing challenges in cost, scalability, and reliance on expert annotations. To address this, we propose Surg-FTDA (Few-shot Text-driven Adaptation), designed to handle various surgical workflow analysis tasks with minimal paired image-label data. Methods: Our approach has two key components. First, Few-shot selection-based modality alignment selects a small subset of images and aligns their embeddings with text embeddings from the downstream task, bridging the modality gap. Second, Text-driven adaptation leverages only text data to train a decoder, eliminating the need for paired image-text data. This decoder is then applied to aligned image embeddings, enabling image-related tasks without explicit image-text pairs. Results: We evaluate our approach to generative tasks (image captioning) and discriminative tasks (triplet recognition and phase recognition). Results show that Surg-FTDA outperforms baselines and generalizes well across downstream tasks. Conclusion: We propose a text-driven adaptation approach that mitigates the modality gap and handles multiple downstream tasks in surgical workflow analysis, with minimal reliance on large annotated datasets. The code and dataset will be released in https://github.com/TingxuanSix/Surg-FTDA.
☆ AI in Support of Diversity and Inclusion
In this paper, we elaborate on how AI can support diversity and inclusion and exemplify research projects conducted in that direction. We start by looking at the challenges and progress in making large language models (LLMs) more transparent, inclusive, and aware of social biases. Even though LLMs like ChatGPT have impressive abilities, they struggle to understand different cultural contexts and engage in meaningful, human like conversations. A key issue is that biases in language processing, especially in machine translation, can reinforce inequality. Tackling these biases requires a multidisciplinary approach to ensure AI promotes diversity, fairness, and inclusion. We also highlight AI's role in identifying biased content in media, which is important for improving representation. By detecting unequal portrayals of social groups, AI can help challenge stereotypes and create more inclusive technologies. Transparent AI algorithms, which clearly explain their decisions, are essential for building trust and reducing bias in AI systems. We also stress AI systems need diverse and inclusive training data. Projects like the Child Growth Monitor show how using a wide range of data can help address real world problems like malnutrition and poverty. We present a project that demonstrates how AI can be applied to monitor the role of search engines in spreading disinformation about the LGBTQ+ community. Moreover, we discuss the SignON project as an example of how technology can bridge communication gaps between hearing and deaf people, emphasizing the importance of collaboration and mutual trust in developing inclusive AI. Overall, with this paper, we advocate for AI systems that are not only effective but also socially responsible, promoting fair and inclusive interactions between humans and machines.
comment: 14 pages, 2 figures
☆ Class Incremental Fault Diagnosis under Limited Fault Data via Supervised Contrastive Knowledge Distillation
Class-incremental fault diagnosis requires a model to adapt to new fault classes while retaining previous knowledge. However, limited research exists for imbalanced and long-tailed data. Extracting discriminative features from few-shot fault data is challenging, and adding new fault classes often demands costly model retraining. Moreover, incremental training of existing methods risks catastrophic forgetting, and severe class imbalance can bias the model's decisions toward normal classes. To tackle these issues, we introduce a Supervised Contrastive knowledge distiLlation for class Incremental Fault Diagnosis (SCLIFD) framework proposing supervised contrastive knowledge distillation for improved representation learning capability and less forgetting, a novel prioritized exemplar selection method for sample replay to alleviate catastrophic forgetting, and the Random Forest Classifier to address the class imbalance. Extensive experimentation on simulated and real-world industrial datasets across various imbalance ratios demonstrates the superiority of SCLIFD over existing approaches. Our code can be found at https://github.com/Zhang-Henry/SCLIFD_TII.
☆ MonoSOWA: Scalable monocular 3D Object detector Without human Annotations
Detecting the three-dimensional position and orientation of objects using a single RGB camera is a foundational task in computer vision with many important applications. Traditionally, 3D object detection methods are trained in a fully-supervised setup, requiring vast amounts of human annotations, which are laborious, costly, and do not scale well with the ever-increasing amounts of data being captured. In this paper, we present the first method to train 3D object detectors for monocular RGB cameras without domain-specific human annotations, thus making orders of magnitude more data available for training. Thanks to newly proposed Canonical Object Space, the method can not only exploit data across a variety of datasets and camera setups to train a single 3D detector, but unlike previous work it also works out of the box in previously unseen camera setups. All this is crucial for practical applications, where the data and cameras are extremely heterogeneous. The method is evaluated on two standard autonomous driving datasets, where it outperforms previous works, which, unlike our method, still rely on 2D human annotations.
☆ Predicting Air Temperature from Volumetric Urban Morphology with Machine Learning
In this study, we firstly introduce a method that converts CityGML data into voxels which works efficiently and fast in high resolution for large scale datasets such as cities but by sacrificing some building details to overcome the limitations of previous voxelization methodologies that have been computationally intensive and inefficient at transforming large-scale urban areas into voxel representations for high resolution. Those voxelized 3D city data from multiple cities and corresponding air temperature data are used to develop a machine learning model. Before the model training, Gaussian blurring is implemented on input data to consider spatial relationships, as a result the correlation rate between air temperature and volumetric building morphology is also increased after the Gaussian blurring. After the model training, the prediction results are not just evaluated with Mean Square Error (MSE) but some image similarity metrics such as Structural Similarity Index Measure (SSIM) and Learned Perceptual Image Patch Similarity (LPIPS) that are able to detect and consider spatial relations during the evaluation process. This trained model is capable of predicting the spatial distribution of air temperature by using building volume information of corresponding pixel as input. By doing so, this research aims to assist urban planners in incorporating environmental parameters into their planning strategies, thereby facilitating more sustainable and inhabitable urban environments.
comment: 30 pages, 8 figures, 2 tables
☆ RE-POSE: Synergizing Reinforcement Learning-Based Partitioning and Offloading for Edge Object Detection
Object detection plays a crucial role in smart video analysis, with applications ranging from autonomous driving and security to smart cities. However, achieving real-time object detection on edge devices presents significant challenges due to their limited computational resources and the high demands of deep neural network (DNN)-based detection models, particularly when processing high-resolution video. Conventional strategies, such as input down-sampling and network up-scaling, often compromise detection accuracy for faster performance or lead to higher inference latency. To address these issues, this paper introduces RE-POSE, a Reinforcement Learning (RL)-Driven Partitioning and Edge Offloading framework designed to optimize the accuracy-latency trade-off in resource-constrained edge environments. Our approach features an RL-Based Dynamic Clustering Algorithm (RL-DCA) that partitions video frames into non-uniform blocks based on object distribution and the computational characteristics of DNNs. Furthermore, a parallel edge offloading scheme is implemented to distribute these blocks across multiple edge servers for concurrent processing. Experimental evaluations show that RE-POSE significantly enhances detection accuracy and reduces inference latency, surpassing existing methods.
☆ Solving the unsolvable: Translating case law in Hong Kong
This paper addresses the challenges translating case law under Hong Kong's bilingual legal system. It highlights the initial success of translating all written statutes into Chinese before the 1997 handover, a task mandated by the Basic Law. The effort involved significant collaboration among legal, linguistic, and translation experts, resulting in a comprehensive and culturally appropriate bilingual legal system. However, translating case law remains a significant challenge due to the sheer volume and continuous growth of judicial decisions. The paper critiques the governments and judiciarys sporadic and uncoordinated efforts to translate case law, contrasting it with the thorough approach previously taken for statute translation. Although the government acknowledges the importance of legal bilingualism, it lacks a sustainable strategy for translating case law. The Judiciarys position that translating all judgments is unnecessary, unrealistic, and not cost-effectiveis analyzed and critiqued for its impact on legal transparency and public trust. A proposed solution involves leveraging machine translation technology through a human-machine interactive translation platform, which undergoes two major transitions. Initially based on a neural model, the platform transitions to using a large language model for improved translation accuracy. Furthermore, it evolves from a single-agent system to a multi-agent system, incorporating Translator, Annotator, and Proofreader agents. This multi-agent approach, supported by a grant, aims to facilitate efficient, high-quality translation of judicial judgments by integrating advanced artificial intelligence and continuous feedback mechanisms, thus better meeting the needs of a bilingual legal system.
☆ A Survey on Responsible LLMs: Inherent Risk, Malicious Use, and Mitigation Strategy
While large language models (LLMs) present significant potential for supporting numerous real-world applications and delivering positive social impacts, they still face significant challenges in terms of the inherent risk of privacy leakage, hallucinated outputs, and value misalignment, and can be maliciously used for generating toxic content and unethical purposes after been jailbroken. Therefore, in this survey, we present a comprehensive review of recent advancements aimed at mitigating these issues, organized across the four phases of LLM development and usage: data collecting and pre-training, fine-tuning and alignment, prompting and reasoning, and post-processing and auditing. We elaborate on the recent advances for enhancing the performance of LLMs in terms of privacy protection, hallucination reduction, value alignment, toxicity elimination, and jailbreak defenses. In contrast to previous surveys that focus on a single dimension of responsible LLMs, this survey presents a unified framework that encompasses these diverse dimensions, providing a comprehensive view of enhancing LLMs to better serve real-world applications.
☆ ADAGE: A generic two-layer framework for adaptive agent based modelling AAMAS
Agent-based models (ABMs) are valuable for modelling complex, potentially out-of-equilibria scenarios. However, ABMs have long suffered from the Lucas critique, stating that agent behaviour should adapt to environmental changes. Furthermore, the environment itself often adapts to these behavioural changes, creating a complex bi-level adaptation problem. Recent progress integrating multi-agent reinforcement learning into ABMs introduces adaptive agent behaviour, beginning to address the first part of this critique, however, the approaches are still relatively ad hoc, lacking a general formulation, and furthermore, do not tackle the second aspect of simultaneously adapting environmental level characteristics in addition to the agent behaviours. In this work, we develop a generic two-layer framework for ADaptive AGEnt based modelling (ADAGE) for addressing these problems. This framework formalises the bi-level problem as a Stackelberg game with conditional behavioural policies, providing a consolidated framework for adaptive agent-based modelling based on solving a coupled set of non-linear equations. We demonstrate how this generic approach encapsulates several common (previously viewed as distinct) ABM tasks, such as policy design, calibration, scenario generation, and robust behavioural learning under one unified framework. We provide example simulations on multiple complex economic and financial environments, showing the strength of the novel framework under these canonical settings, addressing long-standing critiques of traditional ABMs.
comment: Accepted at the 2025 International Conference on Autonomous Agents and Multiagent Systems (AAMAS)
☆ Dynamic Neural Style Transfer for Artistic Image Generation using VGG19
Throughout history, humans have created remarkable works of art, but artificial intelligence has only recently started to make strides in generating visually compelling art. Breakthroughs in the past few years have focused on using convolutional neural networks (CNNs) to separate and manipulate the content and style of images, applying texture synthesis techniques. Nevertheless, a number of current techniques continue to encounter obstacles, including lengthy processing times, restricted choices of style images, and the inability to modify the weight ratio of styles. We proposed a neural style transfer system that can add various artistic styles to a desired image to address these constraints allowing flexible adjustments to style weight ratios and reducing processing time. The system uses the VGG19 model for feature extraction, ensuring high-quality, flexible stylization without compromising content integrity.
☆ MoE$^2$: Optimizing Collaborative Inference for Edge Large Language Models
Large language models (LLMs) have demonstrated remarkable capabilities across a wide range of natural language processing tasks. Exploiting the heterogeneous capabilities of edge LLMs is crucial for diverse emerging applications, as it enables greater cost-effectiveness and reduced latency. In this work, we introduce \textit{Mixture-of-Edge-Experts (MoE$^2$)}, a novel collaborative inference framework for edge LLMs. We formulate the joint gating and expert selection problem to optimize inference performance under energy and latency constraints. Unlike conventional MoE problems, LLM expert selection is significantly more challenging due to the combinatorial nature and the heterogeneity of edge LLMs across various attributes. To this end, we propose a two-level expert selection mechanism through which we uncover an optimality-preserving property of gating parameters across expert selections. This property enables the decomposition of the training and selection processes, significantly reducing complexity. Furthermore, we leverage the objective's monotonicity and design a discrete monotonic optimization algorithm for optimal expert selection. We implement edge servers with NVIDIA Jetson AGX Orins and NVIDIA RTX 4090 GPUs, and perform extensive experiments. Our results validate that performance improvements of various LLM models and show that our MoE$^2$ method can achieve optimal trade-offs among different delay and energy budgets, and outperforms baselines under various system resource constraints.
comment: Submitted to IEEE/ACM Transactions on Networking
☆ ELM-DeepONets: Backpropagation-Free Training of Deep Operator Networks via Extreme Learning Machines
Deep Operator Networks (DeepONets) are among the most prominent frameworks for operator learning, grounded in the universal approximation theorem for operators. However, training DeepONets typically requires significant computational resources. To address this limitation, we propose ELM-DeepONets, an Extreme Learning Machine (ELM) framework for DeepONets that leverages the backpropagation-free nature of ELM. By reformulating DeepONet training as a least-squares problem for newly introduced parameters, the ELM-DeepONet approach significantly reduces training complexity. Validation on benchmark problems, including nonlinear ODEs and PDEs, demonstrates that the proposed method not only achieves superior accuracy but also drastically reduces computational costs. This work offers a scalable and efficient alternative for operator learning in scientific computing.
☆ Quantum-Enhanced Transformers for Robust Acoustic Scene Classification in IoT Environments
The proliferation of Internet of Things (IoT) devices equipped with acoustic sensors necessitates robust acoustic scene classification (ASC) capabilities, even in noisy and data-limited environments. Traditional machine learning methods often struggle to generalize effectively under such conditions. To address this, we introduce Q-ASC, a novel Quantum-Inspired Acoustic Scene Classifier that leverages the power of quantum-inspired transformers. By integrating quantum concepts like superposition and entanglement, Q-ASC achieves superior feature learning and enhanced noise resilience compared to classical models. Furthermore, we introduce a Quantum Variational Autoencoder (QVAE) based data augmentation technique to mitigate the challenge of limited labeled data in IoT deployments. Extensive evaluations on the Tampere University of Technology (TUT) Acoustic Scenes 2016 benchmark dataset demonstrate that Q-ASC achieves remarkable accuracy between 68.3% and 88.5% under challenging conditions, outperforming state-of-the-art methods by over 5% in the best case. This research paves the way for deploying intelligent acoustic sensing in IoT networks, with potential applications in smart homes, industrial monitoring, and environmental surveillance, even in adverse acoustic environments.
comment: 5 pages, 4 figures
☆ Aligning Instruction Tuning with Pre-training
Instruction tuning enhances large language models (LLMs) to follow human instructions across diverse tasks, relying on high-quality datasets to guide behavior. However, these datasets, whether manually curated or synthetically generated, are often narrowly focused and misaligned with the broad distributions captured during pre-training, limiting LLM generalization and effective use of pre-trained knowledge. We propose *Aligning Instruction Tuning with Pre-training* (AITP), a method that bridges this gap by identifying coverage shortfalls in instruction-tuning datasets and rewriting underrepresented pre-training data into high-quality instruction-response pairs. This approach enriches dataset diversity while preserving task-specific objectives. Evaluations on three fully open LLMs across eight benchmarks demonstrate consistent performance improvements with AITP. Ablations highlight the benefits of adaptive data selection, controlled rewriting, and balanced integration, emphasizing the importance of aligning instruction tuning with pre-training distributions to unlock the full potential of LLMs.
☆ YETI (YET to Intervene) Proactive Interventions by Multimodal AI Agents in Augmented Reality Tasks
Multimodal AI Agents are AI models that have the capability of interactively and cooperatively assisting human users to solve day-to-day tasks. Augmented Reality (AR) head worn devices can uniquely improve the user experience of solving procedural day-to-day tasks by providing egocentric multimodal (audio and video) observational capabilities to AI Agents. Such AR capabilities can help AI Agents see and listen to actions that users take which can relate to multimodal capabilities of human users. Existing AI Agents, either Large Language Models (LLMs) or Multimodal Vision-Language Models (VLMs) are reactive in nature, which means that models cannot take an action without reading or listening to the human user's prompts. Proactivity of AI Agents on the other hand can help the human user detect and correct any mistakes in agent observed tasks, encourage users when they do tasks correctly or simply engage in conversation with the user - akin to a human teaching or assisting a user. Our proposed YET to Intervene (YETI) multimodal agent focuses on the research question of identifying circumstances that may require the agent to intervene proactively. This allows the agent to understand when it can intervene in a conversation with human users that can help the user correct mistakes on tasks, like cooking, using AR. Our YETI Agent learns scene understanding signals based on interpretable notions of Structural Similarity (SSIM) on consecutive video frames. We also define the alignment signal which the AI Agent can learn to identify if the video frames corresponding to the user's actions on the task are consistent with expected actions. These signals are used by our AI Agent to determine when it should proactively intervene. We compare our results on the instances of proactive intervention in the HoloAssist multimodal benchmark for an expert agent guiding a user to complete procedural tasks.
comment: Preprint
☆ Style4Rec: Enhancing Transformer-based E-commerce Recommendation Systems with Style and Shopping Cart Information
Understanding users' product preferences is essential to the efficacy of a recommendation system. Precision marketing leverages users' historical data to discern these preferences and recommends products that align with them. However, recent browsing and purchase records might better reflect current purchasing inclinations. Transformer-based recommendation systems have made strides in sequential recommendation tasks, but they often fall short in utilizing product image style information and shopping cart data effectively. In light of this, we propose Style4Rec, a transformer-based e-commerce recommendation system that harnesses style and shopping cart information to enhance existing transformer-based sequential product recommendation systems. Style4Rec represents a significant step forward in personalized e-commerce recommendations, outperforming benchmarks across various evaluation metrics. Style4Rec resulted in notable improvements: HR@5 increased from 0.681 to 0.735, NDCG@5 increased from 0.594 to 0.674, and MRR@5 increased from 0.559 to 0.654. We tested our model using an e-commerce dataset from our partnering company and found that it exceeded established transformer-based sequential recommendation benchmarks across various evaluation metrics. Thus, Style4Rec presents a significant step forward in personalized e-commerce recommendation systems.
comment: 9 pages, 6 images, 4 tables
☆ Rational Tuning of LLM Cascades via Probabilistic Modeling
Understanding the reliability of large language models (LLMs) has recently garnered significant attention. Given LLMs' propensity to hallucinate, as well as their high sensitivity to prompt design, it is already challenging to predict the performance of an individual LLM. However, the problem becomes more complex for compound LLM systems such as cascades, where in addition to each model's standalone performance, we must understand how the error rates of different models interact. In this paper, we present a probabilistic model for the joint performance distribution of a sequence of LLMs, which enables a framework for rationally tuning the confidence thresholds of a LLM cascade using continuous optimization. Compared to selecting confidence thresholds using grid search, our parametric Markov-copula model significantly improves runtime scaling with respect to the length of the cascade and the desired resolution of the cost-error curve, turning them from intractable into low-order polynomial. In addition, the optimal thresholds computed using our continuous optimization-based algorithm increasingly outperform those found via grid search as cascade length grows, improving the area under the cost-error curve by 1.9% on average for cascades consisting of at least three models. Overall, our Markov-copula model provides a rational basis for tuning LLM cascade performance and points to the potential of probabilistic methods in analyzing LLM systems.
Prompt-CAM: A Simpler Interpretable Transformer for Fine-Grained Analysis
We present a simple usage of pre-trained Vision Transformers (ViTs) for fine-grained analysis, aiming to identify and localize the traits that distinguish visually similar categories, such as different bird species or dog breeds. Pre-trained ViTs such as DINO have shown remarkable capabilities to extract localized, informative features. However, using saliency maps like Grad-CAM can hardly point out the traits: they often locate the whole object by a blurred, coarse heatmap, not traits. We propose a novel approach Prompt Class Attention Map (Prompt-CAM) to the rescue. Prompt-CAM learns class-specific prompts to a pre-trained ViT and uses the corresponding outputs for classification. To classify an image correctly, the true-class prompt must attend to the unique image patches not seen in other classes' images, i.e., traits. As such, the true class's multi-head attention maps reveal traits and their locations. Implementation-wise, Prompt-CAM is almost a free lunch by simply modifying the prediction head of Visual Prompt Tuning (VPT). This makes Prompt-CAM fairly easy to train and apply, sharply contrasting other interpretable methods that design specific models and training processes. It is even simpler than the recently published INterpretable TRansformer (INTR), whose encoder-decoder architecture prevents it from leveraging pre-trained ViTs. Extensive empirical studies on a dozen datasets from various domains (e.g., birds, fishes, insects, fungi, flowers, food, and cars) validate Prompt-CAM superior interpretation capability.
☆ Neural Honeytrace: A Robust Plug-and-Play Watermarking Framework against Model Extraction Attacks
Developing high-performance deep learning models is resource-intensive, leading model owners to utilize Machine Learning as a Service (MLaaS) platforms instead of publicly releasing their models. However, malicious users may exploit query interfaces to execute model extraction attacks, reconstructing the target model's functionality locally. While prior research has investigated triggerable watermarking techniques for asserting ownership, existing methods face significant challenges: (1) most approaches require additional training, resulting in high overhead and limited flexibility, and (2) they often fail to account for advanced attackers, leaving them vulnerable to adaptive attacks. In this paper, we propose Neural Honeytrace, a robust plug-and-play watermarking framework against model extraction attacks. We first formulate a watermark transmission model from an information-theoretic perspective, providing an interpretable account of the principles and limitations of existing triggerable watermarking. Guided by the model, we further introduce: (1) a similarity-based training-free watermarking method for plug-and-play and flexible watermarking, and (2) a distribution-based multi-step watermark information transmission strategy for robust watermarking. Comprehensive experiments on four datasets demonstrate that Neural Honeytrace outperforms previous methods in efficiency and resisting adaptive attacks. Neural Honeytrace reduces the average number of samples required for a worst-case t-Test-based copyright claim from $12,000$ to $200$ with zero training cost.
☆ On Learning Informative Trajectory Embeddings for Imitation, Classification and Regression AAMAS 2025
In real-world sequential decision making tasks like autonomous driving, robotics, and healthcare, learning from observed state-action trajectories is critical for tasks like imitation, classification, and clustering. For example, self-driving cars must replicate human driving behaviors, while robots and healthcare systems benefit from modeling decision sequences, whether or not they come from expert data. Existing trajectory encoding methods often focus on specific tasks or rely on reward signals, limiting their ability to generalize across domains and tasks. Inspired by the success of embedding models like CLIP and BERT in static domains, we propose a novel method for embedding state-action trajectories into a latent space that captures the skills and competencies in the dynamic underlying decision-making processes. This method operates without the need for reward labels, enabling better generalization across diverse domains and tasks. Our contributions are threefold: (1) We introduce a trajectory embedding approach that captures multiple abilities from state-action data. (2) The learned embeddings exhibit strong representational power across downstream tasks, including imitation, classification, clustering, and regression. (3) The embeddings demonstrate unique properties, such as controlling agent behaviors in IQ-Learn and an additive structure in the latent space. Experimental results confirm that our method outperforms traditional approaches, offering more flexible and powerful trajectory representations for various applications. Our code is available at https://github.com/Erasmo1015/vte.
comment: AAMAS 2025
☆ SOP-Agent: Empower General Purpose AI Agent with Domain-Specific SOPs
Despite significant advancements in general-purpose AI agents, several challenges still hinder their practical application in real-world scenarios. First, the limited planning capabilities of Large Language Models (LLM) restrict AI agents from effectively solving complex tasks that require long-horizon planning. Second, general-purpose AI agents struggle to efficiently utilize domain-specific knowledge and human expertise. In this paper, we introduce the Standard Operational Procedure-guided Agent (SOP-agent), a novel framework for constructing domain-specific agents through pseudocode-style Standard Operational Procedures (SOPs) written in natural language. Formally, we represent a SOP as a decision graph, which is traversed to guide the agent in completing tasks specified by the SOP. We conduct extensive experiments across tasks in multiple domains, including decision-making, search and reasoning, code generation, data cleaning, and grounded customer service. The SOP-agent demonstrates excellent versatility, achieving performance superior to general-purpose agent frameworks and comparable to domain-specific agent systems. Additionally, we introduce the Grounded Customer Service Benchmark, the first benchmark designed to evaluate the grounded decision-making capabilities of AI agents in customer service scenarios based on SOPs.
comment: 35 pages, 5 figures
☆ Shape-Based Single Object Classification Using Ensemble Method Classifiers
Nowadays, more and more images are available. Annotation and retrieval of the images pose classification problems, where each class is defined as the group of database images labelled with a common semantic label. Various systems have been proposed for content-based retrieval, as well as for image classification and indexing. In this paper, a hierarchical classification framework has been proposed for bridging the semantic gap effectively and achieving multi-category image classification. A well known pre-processing and post-processing method was used and applied to three problems; image segmentation, object identification and image classification. The method was applied to classify single object images from Amazon and Google datasets. The classification was tested for four different classifiers; BayesNetwork (BN), Random Forest (RF), Bagging and Vote. The estimated classification accuracies ranged from 20% to 99% (using 10-fold cross validation). The Bagging classifier presents the best performance, followed by the Random Forest classifier.
☆ A Study of In-Context-Learning-Based Text-to-SQL Errors
Large language models (LLMs) have been adopted to perform text-to-SQL tasks, utilizing their in-context learning (ICL) capability to translate natural language questions into structured query language (SQL). However, such a technique faces correctness problems and requires efficient repairing solutions. In this paper, we conduct the first comprehensive study of text-to-SQL errors. Our study covers four representative ICL-based techniques, five basic repairing methods, two benchmarks, and two LLM settings. We find that text-to-SQL errors are widespread and summarize 29 error types of 7 categories. We also find that existing repairing attempts have limited correctness improvement at the cost of high computational overhead with many mis-repairs. Based on the findings, we propose MapleRepair, a novel text-to-SQL error detection and repairing framework. The evaluation demonstrates that MapleRepair outperforms existing solutions by repairing 13.8% more queries with neglectable mis-repairs and 67.4% less overhead.
☆ Understanding Mental Health Content on Social Media and Its Effect Towards Suicidal Ideation
This review underscores the critical need for effective strategies to identify and support individuals with suicidal ideation, exploiting technological innovations in ML and DL to further suicide prevention efforts. The study details the application of these technologies in analyzing vast amounts of unstructured social media data to detect linguistic patterns, keywords, phrases, tones, and contextual cues associated with suicidal thoughts. It explores various ML and DL models like SVMs, CNNs, LSTM, neural networks, and their effectiveness in interpreting complex data patterns and emotional nuances within text data. The review discusses the potential of these technologies to serve as a life-saving tool by identifying at-risk individuals through their digital traces. Furthermore, it evaluates the real-world effectiveness, limitations, and ethical considerations of employing these technologies for suicide prevention, stressing the importance of responsible development and usage. The study aims to fill critical knowledge gaps by analyzing recent studies, methodologies, tools, and techniques in this field. It highlights the importance of synthesizing current literature to inform practical tools and suicide prevention efforts, guiding innovation in reliable, ethical systems for early intervention. This research synthesis evaluates the intersection of technology and mental health, advocating for the ethical and responsible application of ML, DL, and NLP to offer life-saving potential worldwide while addressing challenges like generalizability, biases, privacy, and the need for further research to ensure these technologies do not exacerbate existing inequities and harms.
☆ To Retrieve or Not to Retrieve? Uncertainty Detection for Dynamic Retrieval Augmented Generation
Retrieval-Augmented Generation equips large language models with the capability to retrieve external knowledge, thereby mitigating hallucinations by incorporating information beyond the model's intrinsic abilities. However, most prior works have focused on invoking retrieval deterministically, which makes it unsuitable for tasks such as long-form question answering. Instead, dynamically performing retrieval by invoking it only when the underlying LLM lacks the required knowledge can be more efficient. In this context, we delve deeper into the question, "To Retrieve or Not to Retrieve?" by exploring multiple uncertainty detection methods. We evaluate these methods for the task of long-form question answering, employing dynamic retrieval, and present our comparisons. Our findings suggest that uncertainty detection metrics, such as Degree Matrix Jaccard and Eccentricity, can reduce the number of retrieval calls by almost half, with only a slight reduction in question-answering accuracy.
☆ LAVCap: LLM-based Audio-Visual Captioning using Optimal Transport ICASSP 2025
Automated audio captioning is a task that generates textual descriptions for audio content, and recent studies have explored using visual information to enhance captioning quality. However, current methods often fail to effectively fuse audio and visual data, missing important semantic cues from each modality. To address this, we introduce LAVCap, a large language model (LLM)-based audio-visual captioning framework that effectively integrates visual information with audio to improve audio captioning performance. LAVCap employs an optimal transport-based alignment loss to bridge the modality gap between audio and visual features, enabling more effective semantic extraction. Additionally, we propose an optimal transport attention module that enhances audio-visual fusion using an optimal transport assignment map. Combined with the optimal training strategy, experimental results demonstrate that each component of our framework is effective. LAVCap outperforms existing state-of-the-art methods on the AudioCaps dataset, without relying on large datasets or post-processing. Code is available at https://github.com/NAVER-INTEL-Co-Lab/gaudi-lavcap.
comment: 5 pages, 2 figures; Accepted to ICASSP 2025
☆ SEAL: Entangled White-box Watermarks on Low-Rank Adaptation
Recently, LoRA and its variants have become the de facto strategy for training and sharing task-specific versions of large pretrained models, thanks to their efficiency and simplicity. However, the issue of copyright protection for LoRA weights, especially through watermark-based techniques, remains underexplored. To address this gap, we propose SEAL (SEcure wAtermarking on LoRA weights), the universal whitebox watermarking for LoRA. SEAL embeds a secret, non-trainable matrix between trainable LoRA weights, serving as a passport to claim ownership. SEAL then entangles the passport with the LoRA weights through training, without extra loss for entanglement, and distributes the finetuned weights after hiding the passport. When applying SEAL, we observed no performance degradation across commonsense reasoning, textual/visual instruction tuning, and text-to-image synthesis tasks. We demonstrate that SEAL is robust against a variety of known attacks: removal, obfuscation, and ambiguity attacks.
comment: 26 pages, 16 tables, 9 figures, initial version
☆ Text Semantics to Flexible Design: A Residential Layout Generation Method Based on Stable Diffusion Model
Flexibility in the AI-based residential layout design remains a significant challenge, as traditional methods like rule-based heuristics and graph-based generation often lack flexibility and require substantial design knowledge from users. To address these limitations, we propose a cross-modal design approach based on the Stable Diffusion model for generating flexible residential layouts. The method offers multiple input types for learning objectives, allowing users to specify both boundaries and layouts. It incorporates natural language as design constraints and introduces ControlNet to enable stable layout generation through two distinct pathways. We also present a scheme that encapsulates design expertise within a knowledge graph and translates it into natural language, providing an interpretable representation of design knowledge. This comprehensibility and diversity of input options enable professionals and non-professionals to directly express design requirements, enhancing flexibility and controllability. Finally, experiments verify the flexibility of the proposed methods under multimodal constraints better than state-of-the-art models, even when specific semantic information about room areas or connections is incomplete.
☆ Large Language Model is Secretly a Protein Sequence Optimizer
We consider the protein sequence engineering problem, which aims to find protein sequences with high fitness levels, starting from a given wild-type sequence. Directed evolution has been a dominating paradigm in this field which has an iterative process to generate variants and select via experimental feedback. We demonstrate large language models (LLMs), despite being trained on massive texts, are secretly protein sequence optimizers. With a directed evolutionary method, LLM can perform protein engineering through Pareto and experiment-budget constrained optimization, demonstrating success on both synthetic and experimental fitness landscapes.
comment: Preprint
☆ Perspective Transition of Large Language Models for Solving Subjective Tasks
Large language models (LLMs) have revolutionized the field of natural language processing, enabling remarkable progress in various tasks. Different from objective tasks such as commonsense reasoning and arithmetic question-answering, the performance of LLMs on subjective tasks is still limited, where the perspective on the specific problem plays crucial roles for better interpreting the context and giving proper response. For example, in certain scenarios, LLMs may perform better when answering from an expert role perspective, potentially eliciting their relevant domain knowledge. In contrast, in some scenarios, LLMs may provide more accurate responses when answering from a third-person standpoint, enabling a more comprehensive understanding of the problem and potentially mitigating inherent biases. In this paper, we propose Reasoning through Perspective Transition (RPT), a method based on in-context learning that enables LLMs to dynamically select among direct, role, and third-person perspectives for the best way to solve corresponding subjective problem. Through extensive experiments on totally 12 subjective tasks by using both closed-source and open-source LLMs including GPT-4, GPT-3.5, Llama-3, and Qwen-2, our method outperforms widely used single fixed perspective based methods such as chain-of-thought prompting and expert prompting, highlights the intricate ways that LLMs can adapt their perspectives to provide nuanced and contextually appropriate responses for different problems.
☆ Clone-Robust AI Alignment
A key challenge in training Large Language Models (LLMs) is properly aligning them with human preferences. Reinforcement Learning with Human Feedback (RLHF) uses pairwise comparisons from human annotators to train reward functions and has emerged as a popular alignment method. However, input datasets in RLHF are not necessarily balanced in the types of questions and answers that are included. Therefore, we want RLHF algorithms to perform well even when the set of alternatives is not uniformly distributed. Drawing on insights from social choice theory, we introduce robustness to approximate clones, a desirable property of RLHF algorithms which requires that adding near-duplicate alternatives does not significantly change the learned reward function. We first demonstrate that the standard RLHF algorithm based on regularized maximum likelihood estimation (MLE) fails to satisfy this property. We then propose the weighted MLE, a new RLHF algorithm that modifies the standard regularized MLE by weighting alternatives based on their similarity to other alternatives. This new algorithm guarantees robustness to approximate clones while preserving desirable theoretical properties.
☆ AI-based Identity Fraud Detection: A Systematic Review
With the rapid development of digital services, a large volume of personally identifiable information (PII) is stored online and is subject to cyberattacks such as Identity fraud. Most recently, the use of Artificial Intelligence (AI) enabled deep fake technologies has significantly increased the complexity of identity fraud. Fraudsters may use these technologies to create highly sophisticated counterfeit personal identification documents, photos and videos. These advancements in the identity fraud landscape pose challenges for identity fraud detection and society at large. There is a pressing need to review and understand identity fraud detection methods, their limitations and potential solutions. This research aims to address this important need by using the well-known systematic literature review method. This paper reviewed a selected set of 43 papers across 4 major academic literature databases. In particular, the review results highlight the two types of identity fraud prevention and detection methods, in-depth and open challenges. The results were also consolidated into a taxonomy of AI-based identity fraud detection and prevention methods including key insights and trends. Overall, this paper provides a foundational knowledge base to researchers and practitioners for further research and development in this important area of digital identity fraud.
☆ Foundations of Large Language Models
This is a book about large language models. As indicated by the title, it primarily focuses on foundational concepts rather than comprehensive coverage of all cutting-edge technologies. The book is structured into four main chapters, each exploring a key area: pre-training, generative models, prompting techniques, and alignment methods. It is intended for college students, professionals, and practitioners in natural language processing and related fields, and can serve as a reference for anyone interested in large language models.
☆ Interpretable Droplet Digital PCR Assay for Trustworthy Molecular Diagnostics
Accurate molecular quantification is essential for advancing research and diagnostics in fields such as infectious diseases, cancer biology, and genetic disorders. Droplet digital PCR (ddPCR) has emerged as a gold standard for achieving absolute quantification. While computational ddPCR technologies have advanced significantly, achieving automatic interpretation and consistent adaptability across diverse operational environments remains a challenge. To address these limitations, we introduce the intelligent interpretable droplet digital PCR (I2ddPCR) assay, a comprehensive framework integrating front-end predictive models (for droplet segmentation and classification) with GPT-4o multimodal large language model (MLLM, for context-aware explanations and recommendations) to automate and enhance ddPCR image analysis. This approach surpasses the state-of-the-art models, affording 99.05% accuracy in processing complex ddPCR images containing over 300 droplets per image with varying signal-to-noise ratios (SNRs). By combining specialized neural networks and large language models, the I2ddPCR assay offers a robust and adaptable solution for absolute molecular quantification, achieving a sensitivity capable of detecting low-abundance targets as low as 90.32 copies/{\mu}L. Furthermore, it improves model's transparency through detailed explanation and troubleshooting guidance, empowering users to make informed decisions. This innovative framework has the potential to benefit molecular diagnostics, disease research, and clinical applications, especially in resource-constrained settings.
☆ Adaptive Law-Based Transformation (ALT): A Lightweight Feature Representation for Time Series Classification
Time series classification (TSC) is fundamental in numerous domains, including finance, healthcare, and environmental monitoring. However, traditional TSC methods often struggle with the inherent complexity and variability of time series data. Building on our previous work with the linear law-based transformation (LLT) - which improved classification accuracy by transforming the feature space based on key data patterns - we introduce adaptive law-based transformation (ALT). ALT enhances LLT by incorporating variable-length shifted time windows, enabling it to capture distinguishing patterns of various lengths and thereby handle complex time series more effectively. By mapping features into a linearly separable space, ALT provides a fast, robust, and transparent solution that achieves state-of-the-art performance with only a few hyperparameters.
comment: 8 pages, 1 figure, 5 tables
☆ ASTRA: A Scene-aware TRAnsformer-based model for trajectory prediction
We present ASTRA (A} Scene-aware TRAnsformer-based model for trajectory prediction), a light-weight pedestrian trajectory forecasting model that integrates the scene context, spatial dynamics, social inter-agent interactions and temporal progressions for precise forecasting. We utilised a U-Net-based feature extractor, via its latent vector representation, to capture scene representations and a graph-aware transformer encoder for capturing social interactions. These components are integrated to learn an agent-scene aware embedding, enabling the model to learn spatial dynamics and forecast the future trajectory of pedestrians. The model is designed to produce both deterministic and stochastic outcomes, with the stochastic predictions being generated by incorporating a Conditional Variational Auto-Encoder (CVAE). ASTRA also proposes a simple yet effective weighted penalty loss function, which helps to yield predictions that outperform a wide array of state-of-the-art deterministic and generative models. ASTRA demonstrates an average improvement of 27%/10% in deterministic/stochastic settings on the ETH-UCY dataset, and 26% improvement on the PIE dataset, respectively, along with seven times fewer parameters than the existing state-of-the-art model (see Figure 1). Additionally, the model's versatility allows it to generalize across different perspectives, such as Bird's Eye View (BEV) and Ego-Vehicle View (EVV).
☆ From Explainability to Interpretability: Interpretable Policies in Reinforcement Learning Via Model Explanation AAAI
Deep reinforcement learning (RL) has shown remarkable success in complex domains, however, the inherent black box nature of deep neural network policies raises significant challenges in understanding and trusting the decision-making processes. While existing explainable RL methods provide local insights, they fail to deliver a global understanding of the model, particularly in high-stakes applications. To overcome this limitation, we propose a novel model-agnostic approach that bridges the gap between explainability and interpretability by leveraging Shapley values to transform complex deep RL policies into transparent representations. The proposed approach offers two key contributions: a novel approach employing Shapley values to policy interpretation beyond local explanations and a general framework applicable to off-policy and on-policy algorithms. We evaluate our approach with three existing deep RL algorithms and validate its performance in two classic control environments. The results demonstrate that our approach not only preserves the original models' performance but also generates more stable interpretable policies.
comment: Accepted to Deployable AI (DAI) Workshop at the Thirty-Ninth AAAI Conference on Artificial Intelligence (AAAI-25)
☆ CrossModalityDiffusion: Multi-Modal Novel View Synthesis with Unified Intermediate Representation WACV
Geospatial imaging leverages data from diverse sensing modalities-such as EO, SAR, and LiDAR, ranging from ground-level drones to satellite views. These heterogeneous inputs offer significant opportunities for scene understanding but present challenges in interpreting geometry accurately, particularly in the absence of precise ground truth data. To address this, we propose CrossModalityDiffusion, a modular framework designed to generate images across different modalities and viewpoints without prior knowledge of scene geometry. CrossModalityDiffusion employs modality-specific encoders that take multiple input images and produce geometry-aware feature volumes that encode scene structure relative to their input camera positions. The space where the feature volumes are placed acts as a common ground for unifying input modalities. These feature volumes are overlapped and rendered into feature images from novel perspectives using volumetric rendering techniques. The rendered feature images are used as conditioning inputs for a modality-specific diffusion model, enabling the synthesis of novel images for the desired output modality. In this paper, we show that jointly training different modules ensures consistent geometric understanding across all modalities within the framework. We validate CrossModalityDiffusion's capabilities on the synthetic ShapeNet cars dataset, demonstrating its effectiveness in generating accurate and consistent novel views across multiple imaging modalities and perspectives.
comment: Accepted in the 2025 WACV workshop GeoCV
☆ Bridging Language Barriers in Healthcare: A Study on Arabic LLMs
This paper investigates the challenges of developing large language models (LLMs) proficient in both multilingual understanding and medical knowledge. We demonstrate that simply translating medical data does not guarantee strong performance on clinical tasks in the target language. Our experiments reveal that the optimal language mix in training data varies significantly across different medical tasks. We find that larger models with carefully calibrated language ratios achieve superior performance on native-language clinical tasks. Furthermore, our results suggest that relying solely on fine-tuning may not be the most effective approach for incorporating new language knowledge into LLMs. Instead, data and computationally intensive pretraining methods may still be necessary to achieve optimal performance in multilingual medical settings. These findings provide valuable guidance for building effective and inclusive medical AI systems for diverse linguistic communities.
☆ Generalized Single-Image-Based Morphing Attack Detection Using Deep Representations from Vision Transformer
Face morphing attacks have posed severe threats to Face Recognition Systems (FRS), which are operated in border control and passport issuance use cases. Correspondingly, morphing attack detection algorithms (MAD) are needed to defend against such attacks. MAD approaches must be robust enough to handle unknown attacks in an open-set scenario where attacks can originate from various morphing generation algorithms, post-processing and the diversity of printers/scanners. The problem of generalization is further pronounced when the detection has to be made on a single suspected image. In this paper, we propose a generalized single-image-based MAD (S-MAD) algorithm by learning the encoding from Vision Transformer (ViT) architecture. Compared to CNN-based architectures, ViT model has the advantage on integrating local and global information and hence can be suitable to detect the morphing traces widely distributed among the face region. Extensive experiments are carried out on face morphing datasets generated using publicly available FRGC face datasets. Several state-of-the-art (SOTA) MAD algorithms, including representative ones that have been publicly evaluated, have been selected and benchmarked with our ViT-based approach. Obtained results demonstrate the improved detection performance of the proposed S-MAD method on inter-dataset testing (when different data is used for training and testing) and comparable performance on intra-dataset testing (when the same data is used for training and testing) experimental protocol.
☆ Enhancing Generalization in Chain of Thought Reasoning for Smaller Models
Chain-of-Thought (CoT) reasoning in smaller language models is a challenging natural language process problem yet highly desirable in many real-life applications. Existing CoT knowledge distillation methods often suffer from overly conservative memorization in smaller LLMs, leading to low generalization confidence. As fully preserving the CoT ability of teacher model is impossible, we hypothesize that adversarial CoT fine-tuning is crucial for developing smaller LLM with robust CoT generalization. To this end, we propose \textit{PRompt-Assisted Domain-Adversarial fine-tuning} (PRADA), a principled fine-tuning framework that integrates diverse CoT domains. Specifically, PRADA pioneers two CoT improvements in smaller LLM: (1) Recovering the domain-invariant feature insight which typically lost during distillation with domain adversarial fine-tuning; (2) Enhancing the domain adaptability of CoT prompt engineering by employing domain-adversarial approaches. We theoretically demonstrate the effectiveness of our approach and empirically show that it significantly outperforms the state of the arts in a wide range of tasks. Moreover, our empirical findings reveal that the smaller LLM, when leveraging PRADA, aligns closely with domain knowledge, thereby improving the explainability of our approach.
☆ OmniThink: Expanding Knowledge Boundaries in Machine Writing through Thinking
Machine writing with large language models often relies on retrieval-augmented generation. However, these approaches remain confined within the boundaries of the model's predefined scope, limiting the generation of content with rich information. Specifically, vanilla-retrieved information tends to lack depth, utility, and suffers from redundancy, which negatively impacts the quality of generated articles, leading to shallow, repetitive, and unoriginal outputs. To address these issues, we propose OmniThink, a machine writing framework that emulates the human-like process of iterative expansion and reflection. The core idea behind OmniThink is to simulate the cognitive behavior of learners as they progressively deepen their knowledge of the topics. Experimental results demonstrate that OmniThink improves the knowledge density of generated articles without compromising metrics such as coherence and depth. Human evaluations and expert feedback further highlight the potential of OmniThink to address real-world challenges in the generation of long-form articles.
☆ Multiple Choice Questions: Reasoning Makes Large Language Models (LLMs) More Self-Confident Even When They Are Wrong
One of the most widely used methods to evaluate LLMs are Multiple Choice Question (MCQ) tests. MCQ benchmarks enable the testing of LLM knowledge on almost any topic at scale as the results can be processed automatically. To help the LLM answer, a few examples called few shots can be included in the prompt. Moreover, the LLM can be asked to answer the question directly with the selected option or to first provide the reasoning and then the selected answer, which is known as chain of thought. In addition to checking whether the selected answer is correct, the evaluation can look at the LLM-estimated probability of its response as an indication of the confidence of the LLM in the response. In this paper, we study how the LLM confidence in its answer depends on whether the model has been asked to answer directly or to provide the reasoning before answering. The results of the evaluation of questions on a wide range of topics in seven different models show that LLMs are more confident in their answers when they provide reasoning before the answer. This occurs regardless of whether the selected answer is correct. Our hypothesis is that this behavior is due to the reasoning that modifies the probability of the selected answer, as the LLM predicts the answer based on the input question and the reasoning that supports the selection made. Therefore, LLM estimated probabilities seem to have intrinsic limitations that should be understood in order to use them in evaluation procedures. Interestingly, the same behavior has been observed in humans, for whom explaining an answer increases confidence in its correctness.
♻ ☆ Meaning-Typed Programming: Language-level Abstractions and Runtime for GenAI Applications
Software is rapidly evolving from being programmed with traditional logical code, to neuro-integrated applications that leverage generative AI and large language models (LLMs) for application functionality. This shift increases the complexity of building applications, as developers now must reasoning about, program, and prompt LLMs. Despite efforts to create tools to assist with prompt engineering, these solutions often introduce additional layers of complexity to the development of neuro-integrated applications. This paper proposes meaning-typed programming (MTP), a novel approach to simplify the creation of neuro-integrated applications by introducing new language-level abstractions that hide the complexities of LLM integration. Our key insight is that typical conventional code already possesses a high level of semantic richness that can be automatically reasoned about, as it is designed to be readable and maintainable by humans. Leveraging this insight, we conceptualize LLMs as meaning-typed code constructs and introduce a by abstraction at the language level, MT-IR, a new meaning-based intermediate representation at the compiler level, and MT Runtime, an automated run-time engine for LLM integration and operations. We implement MTP in a production-grade Python super-set language called Jac and perform an extensive evaluation. Our results demonstrate that MTP not only simplifies the development process but also meets or exceeds the efficacy of state-of-the-art manual and tool-assisted prompt engineering techniques in terms of accuracy and usability.
♻ ☆ Using Machine Learning to Discover Parsimonious and Physically-Interpretable Representations of Catchment-Scale Rainfall-Runoff Dynamics
Despite the excellent real-world predictive performance of modern machine learning (ML) methods, many scientists remain hesitant to discard traditional physical-conceptual (PC) approaches due mainly to their relative interpretability, which contributes to credibility during decision-making. In this context, a currently underexplored aspect of ML is how to develop minimally-optimal representations that can facilitate better insight regarding system functioning. Regardless of how this is achieved, it is arguably true that parsimonious representations better support the advancement of scientific understanding. Our own view is that ML-based modeling of geoscientific systems should be based in the use of computational units that are fundamentally interpretable by design. This paper continues our exploration of how the strengths of ML can be exploited in the service of better understanding via scientific investigation. Here, we use the Mass Conserving Perceptron (MCP) as the fundamental computational unit in a generic network architecture consisting of nodes arranged in series and parallel to explore several generic and important issues related to the use of observational data for constructing input-state-output models of dynamical systems. In the context of lumped catchment modeling, we show that physical interpretability and excellent predictive performance can both be achieved using a relatively parsimonious distributed-state multiple-flow-path network with context-dependent gating and information sharing across the nodes, suggesting that MCP-based modeling can play a significant role in application of ML to geoscientific investigation.
comment: 74 Pages, 4 Tables, 13 Figures, 11 Tables and 11 Figures in Supplementary Materials
♻ ☆ NL2KQL: From Natural Language to Kusto Query
Data is growing rapidly in volume and complexity. Proficiency in database query languages is pivotal for crafting effective queries. As coding assistants become more prevalent, there is significant opportunity to enhance database query languages. The Kusto Query Language (KQL) is a widely used query language for large semi-structured data such as logs, telemetries, and time-series for big data analytics platforms. This paper introduces NL2KQL an innovative framework that uses large language models (LLMs) to convert natural language queries (NLQs) to KQL queries. The proposed NL2KQL framework includes several key components: Schema Refiner which narrows down the schema to its most pertinent elements; the Few-shot Selector which dynamically selects relevant examples from a few-shot dataset; and the Query Refiner which repairs syntactic and semantic errors in KQL queries. Additionally, this study outlines a method for generating large datasets of synthetic NLQ-KQL pairs which are valid within a specific database contexts. To validate NL2KQL's performance, we utilize an array of online (based on query execution) and offline (based on query parsing) metrics. Through ablation studies, the significance of each framework component is examined, and the datasets used for benchmarking are made publicly available. This work is the first of its kind and is compared with available baselines to demonstrate its effectiveness.
♻ ☆ Frechet Music Distance: A Metric For Generative Symbolic Music Evaluation
In this paper we introduce the Frechet Music Distance (FMD), a novel evaluation metric for generative symbolic music models, inspired by the Frechet Inception Distance (FID) in computer vision and Frechet Audio Distance (FAD) in generative audio. FMD calculates the distance between distributions of reference and generated symbolic music embeddings, capturing abstract musical features. We validate FMD across several datasets and models. Results indicate that FMD effectively differentiates model quality, providing a domain-specific metric for evaluating symbolic music generation, and establishing a reproducible standard for future research in symbolic music modeling.
♻ ☆ Dynamics of Moral Behavior in Heterogeneous Populations of Learning Agents AAAI
Growing concerns about safety and alignment of AI systems highlight the importance of embedding moral capabilities in artificial agents: a promising solution is the use of learning from experience, i.e., Reinforcement Learning. In multi-agent (social) environments, complex population-level phenomena may emerge from interactions between individual learning agents. Many of the existing studies rely on simulated social dilemma environments to study the interactions of independent learning agents; however, they tend to ignore the moral heterogeneity that is likely to be present in societies of agents in practice. For example, at different points in time a single learning agent may face opponents who are consequentialist (i.e., focused on maximizing outcomes over time), norm-based (i.e., conforming to specific norms), or virtue-based (i.e., considering a combination of different virtues). The extent to which agents' co-development may be impacted by such moral heterogeneity in populations is not well understood. In this paper, we present a study of the learning dynamics of morally heterogeneous populations interacting in a social dilemma setting. Using an Iterated Prisoner's Dilemma environment with a partner selection mechanism, we investigate the extent to which the prevalence of diverse moral agents in populations affects individual agents' learning behaviors and emergent population-level outcomes. We observe several types of non-trivial interactions between pro-social and anti-social agents, and find that certain types of moral agents are able to steer selfish agents towards more cooperative behavior.
comment: Presented at AIES 2024 (7th AAAI/ACM Conference on AI, Ethics, and Society - San Jose, CA, USA) - see https://ojs.aaai.org/index.php/AIES/article/view/31736
♻ ☆ Convex Markov Games: A Framework for Creativity, Imitation, Fairness, and Safety in Multiagent Learning
Behavioral diversity, expert imitation, fairness, safety goals and others give rise to preferences in sequential decision making domains that do not decompose additively across time. We introduce the class of convex Markov games that allow general convex preferences over occupancy measures. Despite infinite time horizon and strictly higher generality than Markov games, pure strategy Nash equilibria exist. Furthermore, equilibria can be approximated empirically by performing gradient descent on an upper bound of exploitability. Our experiments reveal novel solutions to classic repeated normal-form games, find fair solutions in a repeated asymmetric coordination game, and prioritize safe long-term behavior in a robot warehouse environment. In the prisoner's dilemma, our algorithm leverages transient imitation to find a policy profile that deviates from observed human play only slightly, yet achieves higher per-player utility while also being three orders of magnitude less exploitable.
♻ ☆ A Systems Thinking Approach to Algorithmic Fairness
Systems thinking provides us with a way to model the algorithmic fairness problem by allowing us to encode prior knowledge and assumptions about where we believe bias might exist in the data generating process. We can then encode these beliefs as a series of causal graphs, enabling us to link AI/ML systems to politics and the law. This allows us to combine techniques from machine learning, causal inference, and system dynamics in order to capture different emergent aspects of the fairness problem. We can use systems thinking to help policymakers on both sides of the political aisle to understand the complex trade-offs that exist from different types of fairness policies, providing a sociotechnical foundation for designing AI policy that is aligned to their political agendas.
comment: This paper has been submitted to the 2025 ACM FAccT conference for review
♻ ☆ A Comparative Study on Multi-task Uncertainty Quantification in Semantic Segmentation and Monocular Depth Estimation
Deep neural networks excel in perception tasks such as semantic segmentation and monocular depth estimation, making them indispensable in safety-critical applications like autonomous driving and industrial inspection. However, they often suffer from overconfidence and poor explainability, especially for out-of-domain data. While uncertainty quantification has emerged as a promising solution to these challenges, multi-task settings have yet to be explored. In an effort to shed light on this, we evaluate Monte Carlo Dropout, Deep Sub-Ensembles, and Deep Ensembles for joint semantic segmentation and monocular depth estimation. Thereby, we reveal that Deep Ensembles stand out as the preferred choice, particularly in out-of-domain scenarios, and show the potential benefit of multi-task learning with regard to the uncertainty quality in comparison to solving both tasks separately. Additionally, we highlight the impact of employing different uncertainty thresholds to classify pixels as certain or uncertain, with the median uncertainty emerging as a robust default.
comment: This manuscript is an extended version of a previously published conference paper and is currently in review for a journal
♻ ☆ A Comprehensive Survey of Foundation Models in Medicine
Foundation models (FMs) are large-scale deep learning models trained on massive datasets, often using self-supervised learning techniques. These models serve as a versatile base for a wide range of downstream tasks, including those in medicine and healthcare. FMs have demonstrated remarkable success across multiple healthcare domains. However, existing surveys in this field do not comprehensively cover all areas where FMs have made significant strides. In this survey, we present a comprehensive review of FMs in medicine, focusing on their evolution, learning strategies, flagship models, applications, and associated challenges. We examine how prominent FMs, such as the BERT and GPT families, are transforming various aspects of healthcare, including clinical large language models, medical image analysis, and omics research. Additionally, we provide a detailed taxonomy of FM-enabled healthcare applications, spanning clinical natural language processing, medical computer vision, graph learning, and other biology- and omics- related tasks. Despite the transformative potentials of FMs, they also pose unique challenges. This survey delves into these challenges and highlights open research questions and lessons learned to guide researchers and practitioners. Our goal is to provide valuable insights into the capabilities of FMs in health, facilitating responsible deployment and mitigating associated risks.
comment: Currently under review in IEEE REVIEWS IN BIOMEDICAL ENGINEERING
♻ ☆ Improving Zero-Shot Object-Level Change Detection by Incorporating Visual Correspondence
Detecting object-level changes between two images across possibly different views is a core task in many applications that involve visual inspection or camera surveillance. Existing change-detection approaches suffer from three major limitations: (1) lack of evaluation on image pairs that contain no changes, leading to unreported false positive rates; (2) lack of correspondences (i.e., localizing the regions before and after a change); and (3) poor zero-shot generalization across different domains. To address these issues, we introduce a novel method that leverages change correspondences (a) during training to improve change detection accuracy, and (b) at test time, to minimize false positives. That is, we harness the supervision labels of where an object is added or removed to supervise change detectors, improving their accuracy over previous work by a large margin. Our work is also the first to predict correspondences between pairs of detected changes using estimated homography and the Hungarian algorithm. Our model demonstrates superior performance over existing methods, achieving state-of-the-art results in change detection and change correspondence accuracy across both in-distribution and zero-shot benchmarks.
♻ ☆ Hybrid Approaches for Moral Value Alignment in AI Agents: a Manifesto
Increasing interest in ensuring the safety of next-generation Artificial Intelligence (AI) systems calls for novel approaches to embedding morality into autonomous agents. This goal differs qualitatively from traditional task-specific AI methodologies. In this paper, we provide a systematization of existing approaches to the problem of introducing morality in machines - modelled as a continuum. Our analysis suggests that popular techniques lie at the extremes of this continuum - either being fully hard-coded into top-down, explicit rules, or entirely learned in a bottom-up, implicit fashion with no direct statement of any moral principle (this includes learning from human feedback, as applied to the training and finetuning of large language models, or LLMs). Given the relative strengths and weaknesses of each type of methodology, we argue that more hybrid solutions are needed to create adaptable and robust, yet controllable and interpretable agentic systems. To that end, this paper discusses both the ethical foundations (including deontology, consequentialism and virtue ethics) and implementations of morally aligned AI systems. We present a series of case studies that rely on intrinsic rewards, moral constraints or textual instructions, applied to either pure-Reinforcement Learning or LLM-based agents. By analysing these diverse implementations under one framework, we compare their relative strengths and shortcomings in developing morally aligned AI systems. We then discuss strategies for evaluating the effectiveness of moral learning agents. Finally, we present open research questions and implications for the future of AI safety and ethics which are emerging from this hybrid framework.
♻ ☆ Monte Carlo Tree Search for Comprehensive Exploration in LLM-Based Automatic Heuristic Design
Handcrafting heuristics for solving complex planning tasks (e.g., NP-hard combinatorial optimization (CO) problems) is a common practice but requires extensive domain knowledge. Recently, Large Language Model (LLM)-based automatic heuristics design (AHD) methods have shown promise in generating high-quality heuristics without manual intervention. Existing LLM-based AHD methods employ a population to maintain a fixed number of top-performing LLM-generated heuristics and introduce evolutionary computation (EC) to enhance the population iteratively. However, the population-based procedure brings greedy properties, often resulting in convergence to local optima. Instead, to more comprehensively explore the space of heuristics, we propose using Monte Carlo Tree Search (MCTS) for LLM-based heuristic evolution while preserving all LLM-generated heuristics in a tree structure. With a novel thought-alignment process and an exploration-decay technique, the proposed MCTS-AHD method delivers significantly higher-quality heuristics on various complex tasks. Our code is available at https://github.com/zz1358m/MCTS-AHD-master.
♻ ☆ ReFactor GNNs: Revisiting Factorisation-based Models from a Message-Passing Perspective NeurIPS 2022
Factorisation-based Models (FMs), such as DistMult, have enjoyed enduring success for Knowledge Graph Completion (KGC) tasks, often outperforming Graph Neural Networks (GNNs). However, unlike GNNs, FMs struggle to incorporate node features and generalise to unseen nodes in inductive settings. Our work bridges the gap between FMs and GNNs by proposing ReFactor GNNs. This new architecture draws upon both modelling paradigms, which previously were largely thought of as disjoint. Concretely, using a message-passing formalism, we show how FMs can be cast as GNNs by reformulating the gradient descent procedure as message-passing operations, which forms the basis of our ReFactor GNNs. Across a multitude of well-established KGC benchmarks, our ReFactor GNNs achieve comparable transductive performance to FMs, and state-of-the-art inductive performance while using an order of magnitude fewer parameters.
comment: 36th Conference on Neural Information Processing Systems (NeurIPS 2022)
♻ ☆ Bayesian Low-Rank LeArning (Bella): A Practical Approach to Bayesian Neural Networks AAAI'2025
Computational complexity of Bayesian learning is impeding its adoption in practical, large-scale tasks. Despite demonstrations of significant merits such as improved robustness and resilience to unseen or out-of-distribution inputs over their non- Bayesian counterparts, their practical use has faded to near insignificance. In this study, we introduce an innovative framework to mitigate the computational burden of Bayesian neural networks (BNNs). Our approach follows the principle of Bayesian techniques based on deep ensembles, but significantly reduces their cost via multiple low-rank perturbations of parameters arising from a pre-trained neural network. Both vanilla version of ensembles as well as more sophisticated schemes such as Bayesian learning with Stein Variational Gradient Descent (SVGD), previously deemed impractical for large models, can be seamlessly implemented within the proposed framework, called Bayesian Low-Rank LeArning (Bella). In a nutshell, i) Bella achieves a dramatic reduction in the number of trainable parameters required to approximate a Bayesian posterior; and ii) it not only maintains, but in some instances, surpasses the performance of conventional Bayesian learning methods and non-Bayesian baselines. Our results with large-scale tasks such as ImageNet, CAMELYON17, DomainNet, VQA with CLIP, LLaVA demonstrate the effectiveness and versatility of Bella in building highly scalable and practical Bayesian deep models for real-world applications.
comment: This paper is accepted in AAAI'2025
♻ ☆ Modeling Time-Variant Responses of Optical Compressors with Selective State Space Models
This paper presents a method for modeling optical dynamic range compressors using deep neural networks with Selective State Space models. The proposed approach surpasses previous methods based on recurrent layers by employing a Selective State Space block to encode the input audio. It features a refined technique integrating Feature-wise Linear Modulation and Gated Linear Units to adjust the network dynamically, conditioning the compression's attack and release phases according to external parameters. The proposed architecture is well-suited for low-latency and real-time applications, crucial in live audio processing. The method has been validated on the analog optical compressors TubeTech CL 1B and Teletronix LA-2A, which possess distinct characteristics. Evaluation is performed using quantitative metrics and subjective listening tests, comparing the proposed method with other state-of-the-art models. Results show that our black-box modeling methods outperform all others, achieving accurate emulation of the compression process for both seen and unseen settings during training. We further show a correlation between this accuracy and the sampling density of the control parameters in the dataset and identify settings with fast attack and slow release as the most challenging to emulate.
comment: Journal of the Audio Engineering Society
♻ ☆ Enhancing Few-Shot Image Classification through Learnable Multi-Scale Embedding and Attention Mechanisms
In the context of few-shot classification, the goal is to train a classifier using a limited number of samples while maintaining satisfactory performance. However, traditional metric-based methods exhibit certain limitations in achieving this objective. These methods typically rely on a single distance value between the query feature and support feature, thereby overlooking the contribution of shallow features. To overcome this challenge, we propose a novel approach in this paper. Our approach involves utilizing a multi-output embedding network that maps samples into distinct feature spaces. The proposed method extracts feature vectors at different stages, enabling the model to capture both global and abstract features. By utilizing these diverse feature spaces, our model enhances its performance. Moreover, employing a self-attention mechanism improves the refinement of features at each stage, leading to even more robust representations and improved overall performance. Furthermore, assigning learnable weights to each stage significantly improved performance and results. We conducted comprehensive evaluations on the MiniImageNet and FC100 datasets, specifically in the 5-way 1-shot and 5-way 5-shot scenarios. Additionally, we performed cross-domain tasks across eight benchmark datasets, achieving high accuracy in the testing domains. These evaluations demonstrate the efficacy of our proposed method in comparison to state-of-the-art approaches. https://github.com/FatemehAskari/MSENet
♻ ☆ Sines, Transient, Noise Neural Modeling of Piano Notes
This paper introduces a novel method for emulating piano sounds. We propose to exploit the sines, transient, and noise decomposition to design a differentiable spectral modeling synthesizer replicating piano notes. Three sub-modules learn these components from piano recordings and generate the corresponding harmonic, transient, and noise signals. Splitting the emulation into three independently trainable models reduces the modeling tasks' complexity. The quasi-harmonic content is produced using a differentiable sinusoidal model guided by physics-derived formulas, whose parameters are automatically estimated from audio recordings. The noise sub-module uses a learnable time-varying filter, and the transients are generated using a deep convolutional network. From singular notes, we emulate the coupling between different keys in trichords with a convolutional-based network. Results show the model matches the partial distribution of the target while predicting the energy in the higher part of the spectrum presents more challenges. The energy distribution in the spectra of the transient and noise components is accurate overall. While the model is more computationally and memory efficient, perceptual tests reveal limitations in accurately modeling the attack phase of notes. Despite this, it generally achieves perceptual accuracy in emulating single notes and trichords.
♻ ☆ Safe Control and Learning Using the Generalized Action Governor
This article introduces a general framework for safe control and learning based on the generalized action governor (AG). The AG is a supervisory scheme for augmenting a nominal closed-loop system with the ability of strictly handling prescribed safety constraints. In the first part of this article, we present a generalized AG methodology and analyze its key properties in a general setting. Then, we introduce tailored AG design approaches derived from the generalized methodology for linear and discrete systems. Afterward, we discuss the application of the generalized AG to facilitate safe online learning, which aims at safely evolving control parameters using real-time data to enhance control performance in uncertain systems. We present two safe learning algorithms based on, respectively, reinforcement learning and data-driven Koopman operator-based control integrated with the generalized AG to exemplify this application. Finally, we illustrate the developments with a numerical example.
comment: 22 pages, 4 figures, submitted to the International Journal of Control
♻ ☆ Silent Abandonment in Text-Based Contact Centers: Identifying, Quantifying, and Mitigating its Operational Impacts
In the quest to improve services, companies offer customers the option to interact with agents via texting. Such contact centers face unique challenges compared to traditional call centers, as measuring customer experience proxies like abandonment and patience involves uncertainty. A key source of this uncertainty is silent abandonment, where customers leave without notifying the system, wasting agent time and leaving their status unclear. Silent abandonment also obscures whether a customer was served or left. Our goals are to measure the magnitude of silent abandonment and mitigate its effects. Classification models show that 3%-70% of customers across 17 companies abandon silently. In one study, 71.3% of abandoning customers did so silently, reducing agent efficiency by 3.2% and system capacity by 15.3%, incurring $5,457 in annual costs per agent. We develop an expectation-maximization (EM) algorithm to estimate customer patience under uncertainty and identify influencing covariates. We find that companies should use classification models to estimate abandonment scope and our EM algorithm to assess patience. We suggest strategies to operationally mitigate the impact of silent abandonment by predicting suspected silent-abandonment behavior or changing service design. Specifically, we show that while allowing customers to write while waiting in the queue creates a missing data challenge, it also significantly increases patience and reduces service time, leading to reduced abandonment and lower staffing requirements.
comment: 75% of the paper is an updated version of arXiv:2304.11754
♻ ☆ A Multi-Modal Approach for Face Anti-Spoofing in Non-Calibrated Systems using Disparity Maps
Face recognition technologies are increasingly used in various applications, yet they are vulnerable to face spoofing attacks. These spoofing attacks often involve unique 3D structures, such as printed papers or mobile device screens. Although stereo-depth cameras can detect such attacks effectively, their high-cost limits their widespread adoption. Conversely, two-sensor systems without extrinsic calibration offer a cost-effective alternative but are unable to calculate depth using stereo techniques. In this work, we propose a method to overcome this challenge by leveraging facial attributes to derive disparity information and estimate relative depth for anti-spoofing purposes, using non-calibrated systems. We introduce a multi-modal anti-spoofing model, coined Disparity Model, that incorporates created disparity maps as a third modality alongside the two original sensor modalities. We demonstrate the effectiveness of the Disparity Model in countering various spoof attacks using a comprehensive dataset collected from the Intel RealSense ID Solution F455. Our method outperformed existing methods in the literature, achieving an Equal Error Rate (EER) of 1.71% and a False Negative Rate (FNR) of 2.77% at a False Positive Rate (FPR) of 1%. These errors are lower by 2.45% and 7.94% than the errors of the best comparison method, respectively. Additionally, we introduce a model ensemble that addresses 3D spoof attacks as well, achieving an EER of 2.04% and an FNR of 3.83% at an FPR of 1%. Overall, our work provides a state-of-the-art solution for the challenging task of anti-spoofing in non-calibrated systems that lack depth information.
♻ ☆ aiXcoder-7B: A Lightweight and Effective Large Language Model for Code Processing ICSE 2025
Large Language Models (LLMs) have been widely used in code completion, and researchers are focusing on scaling up LLMs to improve their accuracy. However, larger LLMs have lower inference efficiency, affecting developers' experience and productivity. In this paper, we propose a lightweight and effective LLM for code completion named aiXcoder-7B. Compared to existing LLMs, aiXcoder-7B achieves higher code completion accuracy while having smaller scales (i.e., 7 billion parameters). We attribute the superiority of aiXcoder-7B to three key factors: (1) Multi-objective training. We employ three training objectives, one of which is our proposed Structured Fill-In-the-Middle (SFIM). SFIM considers the syntax structures in code and effectively improves the performance of LLMs for code. (2) Diverse data sampling strategies. They consider inter-file relationships and enhance the capability of LLMs in understanding cross-file contexts. (3) Extensive high-quality data. We establish a rigorous data collection pipeline and consume a total of 1.2 trillion unique tokens for training aiXcoder-7B. This vast volume of data enables aiXcoder-7B to learn a broad distribution of code. We evaluate aiXcoder-7B in five popular code completion benchmarks and a new benchmark collected by this paper. The results show that aiXcoder-7B outperforms the latest six LLMs with similar sizes and even surpasses four larger LLMs (e.g., StarCoder2-15B and CodeLlama-34B), positioning aiXcoder-7B as a lightweight and effective LLM for academia and industry. Finally, we summarize three valuable insights for helping practitioners train the next generations of LLMs for code. aiXcoder-7B has been open-souced and gained significant attention. Until January 2025, aiXcoder-7B has received 2,226 GitHub Stars.
comment: (1) Accepted by the 47th International Conference on Software Engineering (ICSE 2025). (2) aiXcoder-7B is available at https://github.com/aixcoder-plugin/aiXcoder-7B
♻ ☆ AudioBERT: Audio Knowledge Augmented Language Model ICASSP 2025
Recent studies have identified that language models, pretrained on text-only datasets, often lack elementary visual knowledge, \textit{e.g.,} colors of everyday objects. Motivated by this observation, we ask whether a similar shortcoming exists in terms of the \textit{auditory} knowledge. To answer this question, we construct a new dataset called AuditoryBench, which consists of two novel tasks for evaluating auditory knowledge. Based on our analysis using the benchmark, we find that language models also suffer from a severe lack of auditory knowledge. To address this limitation, we propose AudioBERT, a novel method to augment the auditory knowledge of BERT through a retrieval-based approach. First, we detect auditory knowledge spans in prompts to query our retrieval model efficiently. Then, we inject audio knowledge into BERT and switch on low-rank adaptation for effective adaptation when audio knowledge is required. Our experiments demonstrate that AudioBERT is quite effective, achieving superior performance on the AuditoryBench. The dataset and code are available at \bulurl{https://github.com/HJ-Ok/AudioBERT}.
comment: 5 pages, 3 figures, ICASSP 2025
♻ ☆ Evaluating alignment between humans and neural network representations in image-based learning tasks
Humans represent scenes and objects in rich feature spaces, carrying information that allows us to generalise about category memberships and abstract functions with few examples. What determines whether a neural network model generalises like a human? We tested how well the representations of $86$ pretrained neural network models mapped to human learning trajectories across two tasks where humans had to learn continuous relationships and categories of natural images. In these tasks, both human participants and neural networks successfully identified the relevant stimulus features within a few trials, demonstrating effective generalisation. We found that while training dataset size was a core determinant of alignment with human choices, contrastive training with multi-modal data (text and imagery) was a common feature of currently publicly available models that predicted human generalisation. Intrinsic dimensionality of representations had different effects on alignment for different model types. Lastly, we tested three sets of human-aligned representations and found no consistent improvements in predictive accuracy compared to the baselines. In conclusion, pretrained neural networks can serve to extract representations for cognitive models, as they appear to capture some fundamental aspects of cognition that are transferable across tasks. Both our paradigms and modelling approach offer a novel way to quantify alignment between neural networks and humans and extend cognitive science into more naturalistic domains.
♻ ☆ Learning Constraint Network from Demonstrations via Positive-Unlabeled Learning with Memory Replay
Planning for a wide range of real-world tasks necessitates to know and write all constraints. However, instances exist where these constraints are either unknown or challenging to specify accurately. A possible solution is to infer the unknown constraints from expert demonstration. The majority of prior works limit themselves to learning simple linear constraints, or require strong knowledge of the true constraint parameterization or environmental model. To mitigate these problems, this paper presents a positive-unlabeled (PU) learning approach to infer a continuous, arbitrary and possibly nonlinear, constraint from demonstration. From a PU learning view, We treat all data in demonstrations as positive (feasible) data, and learn a (sub)-optimal policy to generate high-reward-winning but potentially infeasible trajectories, which serve as unlabeled data containing both feasible and infeasible states. Under an assumption on data distribution, a feasible-infeasible classifier (i.e., constraint model) is learned from the two datasets through a postprocessing PU learning technique. The entire method employs an iterative framework alternating between updating the policy, which generates and selects higher-reward policies, and updating the constraint model. Additionally, a memory buffer is introduced to record and reuse samples from previous iterations to prevent forgetting. The effectiveness of the proposed method is validated in two Mujoco environments, successfully inferring continuous nonlinear constraints and outperforming a baseline method in terms of constraint accuracy and policy safety.
♻ ☆ Focus On This, Not That! Steering LLMs With Adaptive Feature Specification
Despite the success of Instruction Tuning (IT) in training large language models (LLMs) to perform arbitrary user-specified tasks, these models often still leverage spurious or biased features learned from their training data, leading to undesired behaviours when deploying them in new contexts. In this work, we introduce Focus Instruction Tuning (FIT), which trains LLMs to condition their responses by focusing on specific features whilst ignoring others, leading to different behaviours based on what features are specified. Across several experimental settings, we show that focus-tuned models can be adaptively steered by focusing on different features at inference-time: for instance, robustness can be improved by focusing on task-causal features and ignoring spurious features, and social bias can be mitigated by ignoring demographic categories. Furthermore, FIT can steer behaviour in new contexts, generalising under distribution shift and to new unseen features at inference time, and thereby facilitating more robust, fair, and controllable LLM applications in real-world environments.
comment: 28pages, 14 figures
♻ ☆ Diffusion Models in Vision: A Survey
Denoising diffusion models represent a recent emerging topic in computer vision, demonstrating remarkable results in the area of generative modeling. A diffusion model is a deep generative model that is based on two stages, a forward diffusion stage and a reverse diffusion stage. In the forward diffusion stage, the input data is gradually perturbed over several steps by adding Gaussian noise. In the reverse stage, a model is tasked at recovering the original input data by learning to gradually reverse the diffusion process, step by step. Diffusion models are widely appreciated for the quality and diversity of the generated samples, despite their known computational burdens, i.e. low speeds due to the high number of steps involved during sampling. In this survey, we provide a comprehensive review of articles on denoising diffusion models applied in vision, comprising both theoretical and practical contributions in the field. First, we identify and present three generic diffusion modeling frameworks, which are based on denoising diffusion probabilistic models, noise conditioned score networks, and stochastic differential equations. We further discuss the relations between diffusion models and other deep generative models, including variational auto-encoders, generative adversarial networks, energy-based models, autoregressive models and normalizing flows. Then, we introduce a multi-perspective categorization of diffusion models applied in computer vision. Finally, we illustrate the current limitations of diffusion models and envision some interesting directions for future research.
comment: Accepted in IEEE Transactions on Pattern Analysis and Machine Intelligence. 25 pages, 3 figures
♻ ☆ Positive-Unlabeled Constraint Learning for Inferring Nonlinear Continuous Constraints Functions from Expert Demonstrations
Planning for diverse real-world robotic tasks necessitates to know and write all constraints. However, instances exist where these constraints are either unknown or challenging to specify accurately. A possible solution is to infer the unknown constraints from expert demonstration. This paper presents a novel two-step Positive-Unlabeled Constraint Learning (PUCL) algorithm to infer a continuous constraint function from demonstrations, without requiring prior knowledge of the true constraint parameterization or environmental model as existing works. We treat all data in demonstrations as positive (feasible) data, and learn a control policy to generate potentially infeasible trajectories, which serve as unlabeled data. The proposed two-step learning framework first identifies reliable infeasible data using a distance metric, and secondly learns a binary feasibility classifier (i.e., constraint function) from the feasible demonstrations and reliable infeasible data. The proposed method is flexible to learn complex-shaped constraint boundary and will not mistakenly classify demonstrations as infeasible as previous methods. The effectiveness of the proposed method is verified in four constrained environments, using a networked policy or a dynamical system policy. It successfully infers the continuous nonlinear constraints and outperforms other baseline methods in terms of constraint accuracy and policy safety. This work has been published in IEEE Robotics and Automation Letters (RA-L). Please refer to the final version at https://doi.org/10.1109/LRA.2024.3522756
♻ ☆ RAGBench: Explainable Benchmark for Retrieval-Augmented Generation Systems
Retrieval-Augmented Generation (RAG) has become a standard architectural pattern for incorporating domain-specific knowledge into user-facing chat applications powered by Large Language Models (LLMs). RAG systems are characterized by (1) a document retriever that queries a domain-specific corpus for context information relevant to an input query, and (2) an LLM that generates a response based on the provided query and context. However, comprehensive evaluation of RAG systems remains a challenge due to the lack of unified evaluation criteria and annotated datasets. In response, we introduce RAGBench: the first comprehensive, large-scale RAG benchmark dataset of 100k examples. It covers five unique industry-specific domains and various RAG task types. RAGBench examples are sourced from industry corpora such as user manuals, making it particularly relevant for industry applications. Further, we formalize the TRACe evaluation framework: a set of explainable and actionable RAG evaluation metrics applicable across all RAG domains. We release the labeled dataset at https://huggingface.co/datasets/rungalileo/ragbench. RAGBench explainable labels facilitate holistic evaluation of RAG systems, enabling actionable feedback for continuous improvement of production applications. Thorough extensive benchmarking, we find that LLM-based RAG evaluation methods struggle to compete with a finetuned RoBERTa model on the RAG evaluation task. We identify areas where existing approaches fall short and propose the adoption of RAGBench with TRACe towards advancing the state of RAG evaluation systems.
♻ ☆ Knowledge Retrieval Based on Generative AI
This study develops a question-answering system based on Retrieval-Augmented Generation (RAG) using Chinese Wikipedia and Lawbank as retrieval sources. Using TTQA and TMMLU+ as evaluation datasets, the system employs BGE-M3 for dense vector retrieval to obtain highly relevant search results and BGE-reranker to reorder these results based on query relevance. The most pertinent retrieval outcomes serve as reference knowledge for a Large Language Model (LLM), enhancing its ability to answer questions and establishing a knowledge retrieval system grounded in generative AI. The system's effectiveness is assessed through a two-stage evaluation: automatic and assisted performance evaluations. The automatic evaluation calculates accuracy by comparing the model's auto-generated labels with ground truth answers, measuring performance under standardized conditions without human intervention. The assisted performance evaluation involves 20 finance-related multiple-choice questions answered by 20 participants without financial backgrounds. Initially, participants answer independently. Later, they receive system-generated reference information to assist in answering, examining whether the system improves accuracy when assistance is provided. The main contributions of this research are: (1) Enhanced LLM Capability: By integrating BGE-M3 and BGE-reranker, the system retrieves and reorders highly relevant results, reduces hallucinations, and dynamically accesses authorized or public knowledge sources. (2) Improved Data Privacy: A customized RAG architecture enables local operation of the LLM, eliminating the need to send private data to external servers. This approach enhances data security, reduces reliance on commercial services, lowers operational costs, and mitigates privacy risks.
comment: 8 pages, 13 figures, 1 table
♻ ☆ Balancing Act: Prioritization Strategies for LLM-Designed Restless Bandit Rewards
LLMs are increasingly used to design reward functions based on human preferences in Reinforcement Learning (RL). We focus on LLM-designed rewards for Restless Multi-Armed Bandits, a framework for allocating limited resources among agents. In applications such as public health, this approach empowers grassroots health workers to tailor automated allocation decisions to community needs. In the presence of multiple agents, altering the reward function based on human preferences can impact subpopulations very differently, leading to complex tradeoffs and a multi-objective resource allocation problem. We are the first to present a principled method termed Social Choice Language Model for dealing with these tradeoffs for LLM-designed rewards for multiagent planners in general and restless bandits in particular. The novel part of our model is a transparent and configurable selection component, called an adjudicator, external to the LLM that controls complex tradeoffs via a user-selected social welfare function. Our experiments demonstrate that our model reliably selects more effective, aligned, and balanced reward functions compared to purely LLM-based approaches.
♻ ☆ Learning to Assist Humans without Inferring Rewards NeurIPS
Assistive agents should make humans' lives easier. Classically, such assistance is studied through the lens of inverse reinforcement learning, where an assistive agent (e.g., a chatbot, a robot) infers a human's intention and then selects actions to help the human reach that goal. This approach requires inferring intentions, which can be difficult in high-dimensional settings. We build upon prior work that studies assistance through the lens of empowerment: an assistive agent aims to maximize the influence of the human's actions such that they exert a greater control over the environmental outcomes and can solve tasks in fewer steps. We lift the major limitation of prior work in this area--scalability to high-dimensional settings--with contrastive successor representations. We formally prove that these representations estimate a similar notion of empowerment to that studied by prior work and provide a ready-made mechanism for optimizing it. Empirically, our proposed method outperforms prior methods on synthetic benchmarks, and scales to Overcooked, a cooperative game setting. Theoretically, our work connects ideas from information theory, neuroscience, and reinforcement learning, and charts a path for representations to play a critical role in solving assistive problems.
comment: Conference on Neural Information Processing Systems (NeurIPS), 2024
♻ ☆ TPIA: Towards Target-specific Prompt Injection Attack against Code-oriented Large Language Models
Recently, code-oriented large language models (Code LLMs) have been widely exploited to simplify and facilitate programming. With these tools, developers can easily generate the desired complete functional code based on incomplete code snippets and natural language prompts. Unfortunately, a few pioneering works revealed that these Code LLMs are vulnerable to backdoor and adversarial attacks. The former poisons the training data or model parameters, hijacking the LLMs to generate malicious code snippets when encountering the trigger. The latter crafts malicious adversarial input codes to reduce the quality of the generated codes. However, both attacks have some inherent limitations: backdoor attacks rely on the adversary's capability of controlling the model training process; adversarial attacks struggle with fulfilling specific malicious purposes. This paper presents a novel attack paradigm against Code LLMs, namely target-specific prompt injection attack (TPIA). TPIA generates non-functional perturbations containing the information of malicious instructions and inserts them into the victim's code context by spreading them into potentially used dependencies (e.g., packages or RAG's knowledge base). It induces the Code LLMs to generate attacker-specified malicious code snippets at the target location. In general, we compress the attacker-specified malicious objective into the perturbation by adversarial optimization based on greedy token search. We collect 13 representative malicious objectives to design 31 threat cases for three popular programming languages. We show that our TPIA can successfully attack three representative open-source Code LLMs (with an ASR of up to 97.9%) and two mainstream commercial Code LLM-integrated applications (with an ASR of over 90%) in all threat cases, using only a 12-token perturbation. Our work alerts a new practical threat of using Code LLMs.
♻ ☆ PsyDI: Towards a Personalized and Progressively In-depth Chatbot for Psychological Measurements
In the field of psychology, traditional assessment methods, such as standardized scales, are frequently critiqued for their static nature, lack of personalization, and reduced participant engagement, while comprehensive counseling evaluations are often inaccessible. The complexity of quantifying psychological traits further limits these methods. Despite advances with large language models (LLMs), many still depend on single-round Question-and-Answer interactions. To bridge this gap, we introduce PsyDI, a personalized and progressively in-depth chatbot designed for psychological measurements, exemplified by its application in the Myers-Briggs Type Indicator (MBTI) framework. PsyDI leverages user-related multi-modal information and engages in customized, multi-turn interactions to provide personalized, easily accessible measurements, while ensuring precise MBTI type determination. To address the challenge of unquantifiable psychological traits, we introduce a novel training paradigm that involves learning the ranking of proxy variables associated with these traits, culminating in a robust score model for MBTI measurements. The score model enables PsyDI to conduct comprehensive and precise measurements through multi-turn interactions within a unified estimation context. Through various experiments, we validate the efficacy of both the score model and the PsyDI pipeline, demonstrating its potential to serve as a general framework for psychological measurements. Furthermore, the online deployment of PsyDI has garnered substantial user engagement, with over 3,000 visits, resulting in the collection of numerous multi-turn dialogues annotated with MBTI types, which facilitates further research. The source code for the training and web service components is publicly available as a part of OpenDILab at: https://github.com/opendilab/PsyDI
comment: 29 pages, 15 figures
♻ ☆ Mitigating Overfitting in Graph Neural Networks via Feature and Hyperplane Perturbation
Graph neural networks (GNNs) are commonly used in semi-supervised settings. Previous research has primarily focused on finding appropriate graph filters (e.g. aggregation methods) to perform well on both homophilic and heterophilic graphs. While these methods are effective, they can still suffer from the sparsity of node features, where the initial data contain few non-zero elements. This can lead to overfitting in certain dimensions in the first projection matrix, as training samples may not cover the entire range of graph filters (hyperplanes). To address this, we propose a novel data augmentation strategy. Specifically, by flipping both the initial features and hyperplane, we create additional space for training, which leads to more precise updates of the learnable parameters and improved robustness for unseen features during inference. To the best of our knowledge, this is the first attempt to mitigate the overfitting caused by the initial features. Extensive experiments on real-world datasets show that our proposed technique increases node classification accuracy by up to 46.5% relatively.
♻ ☆ Collaborative Gym: A Framework for Enabling and Evaluating Human-Agent Collaboration
Recent advancements in language models (LMs) have sparked growing interest in developing LM agents. While fully autonomous agents could excel in many scenarios, numerous use cases inherently require them to collaborate with humans due to humans' latent preferences, domain expertise, or need for control. To facilitate the study of human-agent collaboration, we present Collaborative Gym (Co-Gym), a general framework enabling asynchronous, tripartite interaction among agents, humans, and task environments. We instantiate Co-Gym with three representative tasks in both simulated and real-world conditions, and propose an evaluation framework that assesses both the collaboration outcomes and processes. Our findings reveal that collaborative agents consistently outperform their fully autonomous counterparts in task performance within those delivered cases, achieving win rates of 86% in Travel Planning, 74% in Tabular Analysis, and 66% in Related Work when evaluated by real users. However, our study also highlights significant challenges in developing collaborative agents, requiring advancements in core aspects of intelligence -- communication capabilities, situational awareness, and balancing autonomy and human control.
comment: Preprint. Work in progress
♻ ☆ CMRxRecon2024: A Multi-Modality, Multi-View K-Space Dataset Boosting Universal Machine Learning for Accelerated Cardiac MRI
Cardiac magnetic resonance imaging (MRI) has emerged as a clinically gold-standard technique for diagnosing cardiac diseases, thanks to its ability to provide diverse information with multiple modalities and anatomical views. Accelerated cardiac MRI is highly expected to achieve time-efficient and patient-friendly imaging, and then advanced image reconstruction approaches are required to recover high-quality, clinically interpretable images from undersampled measurements. However, the lack of publicly available cardiac MRI k-space dataset in terms of both quantity and diversity has severely hindered substantial technological progress, particularly for data-driven artificial intelligence. Here, we provide a standardized, diverse, and high-quality CMRxRecon2024 dataset to facilitate the technical development, fair evaluation, and clinical transfer of cardiac MRI reconstruction approaches, towards promoting the universal frameworks that enable fast and robust reconstructions across different cardiac MRI protocols in clinical practice. To the best of our knowledge, the CMRxRecon2024 dataset is the largest and most protocal-diverse publicly available cardiac k-space dataset. It is acquired from 330 healthy volunteers, covering commonly used modalities, anatomical views, and acquisition trajectories in clinical cardiac MRI workflows. Besides, an open platform with tutorials, benchmarks, and data processing tools is provided to facilitate data usage, advanced method development, and fair performance evaluation.
comment: 23 pages, 3 figures, 2 tables
♻ ☆ MERaLiON-TextLLM: Cross-Lingual Understanding of Large Language Models in Chinese, Indonesian, Malay, and Singlish
Multilingual large language models (MLLMs) have shown impressive capabilities across a variety of languages. However, efficacy can differ greatly between different language families, especially for those with limited linguistic resources. This report presents MERaLiON-TextLLM, a series of open-source language models specifically tailored to improve understanding and generation in Chinese, Indonesian, Malay, and Singlish. The initial released model is built on Llama-3-8B-Base and refined through a meticulously crafted process of continued pre-training and weight merging. Our approach achieves performance improvements across benchmarks in these languages, exceeding the capabilities of the official Llama-3 models. We provide the model checkpoints as a resource to support further research and development in cross-lingual language understanding.
♻ ☆ Do LLMs Really Think Step-by-step In Implicit Reasoning?
It has been well-known that Chain-of-Thought can remarkably enhance LLMs' performance on complex tasks. However, because it also introduces slower inference speeds and higher computational costs, many researches have attempted to use implicit CoT, which does not need LLMs to explicitly generate the intermediate steps. However, the invisible reasoning process leaves us a doubt that, can implicit CoT really be equal to explicit CoT? Therefore, in this study, we address this question through experiments. We probe the information of intermediate steps from the model's hidden states when it is either trained or prompted to perform implicit CoT. The results surprisingly indicate that when prompted, LLMs hardly think about intermediate steps, suggesting they may just rely on experience rather than strict step-by-step reasoning. But when trained, they indeed calculate intermediate steps. Moreover, in both situations, we find the effect of using implicit CoT is susceptible to the format of the problem, reaffirming the current deficiency of implicit CoT.
comment: The code is in https://github.com/yuyijiong/if_step_by_step_implicit_CoT
♻ ☆ Measuring Diversity of Game Scenarios
This survey comprehensively reviews the multi-dimensionality of game scenario diversity, spotlighting the innovative use of procedural content generation and other fields as cornerstones for enriching player experiences through diverse game scenarios. By traversing a wide array of disciplines, from affective modeling and multi-agent systems to psychological studies, our research underscores the importance of diverse game scenarios in gameplay and education. Through a taxonomy of diversity metrics and evaluation methods, we aim to bridge the current gaps in literature and practice, offering insights into effective strategies for measuring and integrating diversity in game scenarios. Our analysis highlights the necessity for a unified taxonomy to aid developers and researchers in crafting more engaging and varied game worlds. This survey not only charts a path for future research in diverse game scenarios but also serves as a handbook for industry practitioners seeking to leverage diversity as a key component of game design and development.
♻ ☆ The surprising efficiency of temporal difference learning for rare event prediction NeurIPS 2024
We quantify the efficiency of temporal difference (TD) learning over the direct, or Monte Carlo (MC), estimator for policy evaluation in reinforcement learning, with an emphasis on estimation of quantities related to rare events. Policy evaluation is complicated in the rare event setting by the long timescale of the event and by the need for \emph{relative accuracy} in estimates of very small values. Specifically, we focus on least-squares TD (LSTD) prediction for finite state Markov chains, and show that LSTD can achieve relative accuracy far more efficiently than MC. We prove a central limit theorem for the LSTD estimator and upper bound the \emph{relative asymptotic variance} by simple quantities characterizing the connectivity of states relative to the transition probabilities between them. Using this bound, we show that, even when both the timescale of the rare event and the relative accuracy of the MC estimator are exponentially large in the number of states, LSTD maintains a fixed level of relative accuracy with a total number of observed transitions of the Markov chain that is only \emph{polynomially} large in the number of states.
comment: Final camera-ready version published at NeurIPS 2024. Correct an assumption statement and typos, and change/add a few sentences from the last version
♻ ☆ MERaLiON-AudioLLM: Bridging Audio and Language with Large Language Models
We introduce MERaLiON-AudioLLM (Multimodal Empathetic Reasoning and Learning in One Network), the first speech-text model tailored for Singapore's multilingual and multicultural landscape. Developed under the National Large Language Models Funding Initiative, Singapore, MERaLiON-AudioLLM integrates advanced speech and text processing to address the diverse linguistic nuances of local accents and dialects, enhancing accessibility and usability in complex, multilingual environments. Our results demonstrate improvements in both speech recognition and task-specific understanding, positioning MERaLiON-AudioLLM as a pioneering solution for region specific AI applications. We envision this release to set a precedent for future models designed to address localised linguistic and cultural contexts in a global framework.
comment: https://huggingface.co/MERaLiON/MERaLiON-AudioLLM-Whisper-SEA-LION
♻ ☆ CrisisSense-LLM: Instruction Fine-Tuned Large Language Model for Multi-label Social Media Text Classification in Disaster Informatics
In the field of crisis/disaster informatics, social media is increasingly being used for improving situational awareness to inform response and relief efforts. Efficient and accurate text classification tools have been a focal area of investigation in crisis informatics. However, current methods mostly rely on single-label text classification models, which fails to capture different insights embedded in dynamic and multifaceted disaster-related social media data. This study introduces a novel approach to disaster text classification by enhancing a pre-trained Large Language Model (LLM) through instruction fine-tuning targeted for multi-label classification of disaster-related tweets. Our methodology involves creating a comprehensive instruction dataset from disaster-related tweets, which is then used to fine-tune an open-source LLM, thereby embedding it with disaster-specific knowledge. This fine-tuned model can classify multiple aspects of disaster-related information simultaneously, such as the type of event, informativeness, and involvement of human aid, significantly improving the utility of social media data for situational awareness in disasters. The results demonstrate that this approach enhances the categorization of critical information from social media posts, thereby facilitating a more effective deployment for situational awareness during emergencies. This research paves the way for more advanced, adaptable, and robust disaster management tools, leveraging the capabilities of LLMs to improve real-time situational awareness and response strategies in disaster scenarios.
comment: Relevant source code and data is available: https://github.com/KaiYin97/CrsisLLM
♻ ☆ Can ChatGPT Overcome Behavioral Biases in the Financial Sector? Classify-and-Rethink: Multi-Step Zero-Shot Reasoning in the Gold Investment
Large Language Models (LLMs) have achieved remarkable success recently, displaying exceptional capabilities in creating understandable and organized text. These LLMs have been utilized in diverse fields, such as clinical research, where domain-specific models like Med-Palm have achieved human-level performance. Recently, researchers have employed advanced prompt engineering to enhance the general reasoning ability of LLMs. Despite the remarkable success of zero-shot Chain-of-Thoughts (CoT) in solving general reasoning tasks, the potential of these methods still remains paid limited attention in the financial reasoning task.To address this issue, we explore multiple prompt strategies and incorporated semantic news information to improve LLMs' performance on financial reasoning tasks.To the best of our knowledge, we are the first to explore this important issue by applying ChatGPT to the gold investment.In this work, our aim is to investigate the financial reasoning capabilities of LLMs and their capacity to generate logical and persuasive investment opinions. We will use ChatGPT, one of the most powerful LLMs recently, and prompt engineering to achieve this goal. Our research will focus on understanding the ability of LLMs in sophisticated analysis and reasoning within the context of investment decision-making. Our study finds that ChatGPT with CoT prompt can provide more explainable predictions and overcome behavioral biases, which is crucial in finance-related tasks and can achieve higher investment returns.
♻ ☆ Smoothness Really Matters: A Simple Yet Effective Approach for Unsupervised Graph Domain Adaptation AAAI2025
Unsupervised Graph Domain Adaptation (UGDA) seeks to bridge distribution shifts between domains by transferring knowledge from labeled source graphs to given unlabeled target graphs. Existing UGDA methods primarily focus on aligning features in the latent space learned by graph neural networks (GNNs) across domains, often overlooking structural shifts, resulting in limited effectiveness when addressing structurally complex transfer scenarios. Given the sensitivity of GNNs to local structural features, even slight discrepancies between source and target graphs could lead to significant shifts in node embeddings, thereby reducing the effectiveness of knowledge transfer. To address this issue, we introduce a novel approach for UGDA called Target-Domain Structural Smoothing (TDSS). TDSS is a simple and effective method designed to perform structural smoothing directly on the target graph, thereby mitigating structural distribution shifts and ensuring the consistency of node representations. Specifically, by integrating smoothing techniques with neighborhood sampling, TDSS maintains the structural coherence of the target graph while mitigating the risk of over-smoothing. Our theoretical analysis shows that TDSS effectively reduces target risk by improving model smoothness. Empirical results on three real-world datasets demonstrate that TDSS outperforms recent state-of-the-art baselines, achieving significant improvements across six transfer scenarios. The code is available in https://github.com/cwei01/TDSS.
comment: 11 pages, Accpected by AAAI2025
♻ ☆ MVGT: A Multi-view Graph Transformer Based on Spatial Relations for EEG Emotion Recognition
Electroencephalography (EEG), a technique that records electrical activity from the scalp using electrodes, plays a vital role in affective computing. However, fully utilizing the multi-domain characteristics of EEG signals remains a significant challenge. Traditional single-perspective analyses often fail to capture the complex interplay of temporal, frequency, and spatial dimensions in EEG data. To address this, we introduce a multi-view graph transformer (MVGT) based on spatial relations that integrates information across three domains: temporal dynamics from continuous series, frequency features extracted from frequency bands, and inter-channel relationships captured through several spatial encodings. This comprehensive approach allows model to capture the nuanced properties inherent in EEG signals, enhancing its flexibility and representational power. Evaluation on publicly available datasets demonstrates that MVGT surpasses state-of-the-art methods in performance. The results highlight its ability to extract multi-domain information and effectively model inter-channel relationships, showcasing its potential for EEG-based emotion recognition tasks.
♻ ☆ DiffMesh: A Motion-aware Diffusion Framework for Human Mesh Recovery from Videos WACV 2025
Human mesh recovery (HMR) provides rich human body information for various real-world applications. While image-based HMR methods have achieved impressive results, they often struggle to recover humans in dynamic scenarios, leading to temporal inconsistencies and non-smooth 3D motion predictions due to the absence of human motion. In contrast, video-based approaches leverage temporal information to mitigate this issue. In this paper, we present DiffMesh, an innovative motion-aware Diffusion-like framework for video-based HMR. DiffMesh establishes a bridge between diffusion models and human motion, efficiently generating accurate and smooth output mesh sequences by incorporating human motion within the forward process and reverse process in the diffusion model. Extensive experiments are conducted on the widely used datasets (Human3.6M \cite{h36m_pami} and 3DPW \cite{pw3d2018}), which demonstrate the effectiveness and efficiency of our DiffMesh. Visual comparisons in real-world scenarios further highlight DiffMesh's suitability for practical applications.
comment: WACV 2025
♻ ☆ Surveying Attitudinal Alignment Between Large Language Models Vs. Humans Towards 17 Sustainable Development Goals
Large Language Models (LLMs) have emerged as potent tools for advancing the United Nations' Sustainable Development Goals (SDGs). However, the attitudinal disparities between LLMs and humans towards these goals can pose significant challenges. This study conducts a comprehensive review and analysis of the existing literature on the attitudes of LLMs towards the 17 SDGs, emphasizing the comparison between their attitudes and support for each goal and those of humans. We examine the potential disparities, primarily focusing on aspects such as understanding and emotions, cultural and regional differences, task objective variations, and factors considered in the decision-making process. These disparities arise from the underrepresentation and imbalance in LLM training data, historical biases, quality issues, lack of contextual understanding, and skewed ethical values reflected. The study also investigates the risks and harms that may arise from neglecting the attitudes of LLMs towards the SDGs, including the exacerbation of social inequalities, racial discrimination, environmental destruction, and resource wastage. To address these challenges, we propose strategies and recommendations to guide and regulate the application of LLMs, ensuring their alignment with the principles and goals of the SDGs, and therefore creating a more just, inclusive, and sustainable future.
♻ ☆ Towards Balanced Continual Multi-Modal Learning in Human Pose Estimation
3D human pose estimation (3D HPE) has emerged as a prominent research topic, particularly in the realm of RGB-based methods. However, RGB images are susceptible to limitations such as sensitivity to lighting conditions and potential user discomfort. Consequently, multi-modal sensing, which leverages non-intrusive sensors, is gaining increasing attention. Nevertheless, multi-modal 3D HPE still faces challenges, including modality imbalance and the imperative for continual learning. In this work, we introduce a novel balanced continual multi-modal learning method for 3D HPE, which harnesses the power of RGB, LiDAR, mmWave, and WiFi. Specifically, we propose a Shapley value-based contribution algorithm to quantify the contribution of each modality and identify modality imbalance. To address this imbalance, we employ a re-learning strategy. Furthermore, recognizing that raw data is prone to noise contamination, we develop a novel denoising continual learning approach. This approach incorporates a noise identification and separation module to mitigate the adverse effects of noise and collaborates with the balanced learning strategy to enhance optimization. Additionally, an adaptive EWC mechanism is employed to alleviate catastrophic forgetting. We conduct extensive experiments on the widely-adopted multi-modal dataset, MM-Fi, which demonstrate the superiority of our approach in boosting 3D pose estimation and mitigating catastrophic forgetting in complex scenarios. We will release our codes.
♻ ☆ PeFoMed: Parameter Efficient Fine-tuning of Multimodal Large Language Models for Medical Imaging
Multimodal large language models (MLLMs) represent an evolutionary expansion in the capabilities of traditional large language models, enabling them to tackle challenges that surpass the scope of purely text-based applications. It leverages the knowledge previously encoded within these language models, thereby enhancing their applicability and functionality in the reign of multimodal contexts. Recent works investigate the adaptation of MLLMs as a universal solution to address medical multi-modal problems as a generative task. In this paper, we propose a parameter efficient framework for fine-tuning MLLMs, specifically validated on medical visual question answering (Med-VQA) and medical report generation (MRG) tasks, using public benchmark datasets. We also introduce an evaluation metric using the 5-point Likert scale and its weighted average value to measure the quality of the generated reports for MRG tasks, where the scale ratings are labelled by both humans manually and the GPT-4 model. We further assess the consistency of performance metrics across traditional measures, GPT-4, and human ratings for both VQA and MRG tasks. The results indicate that semantic similarity assessments using GPT-4 align closely with human annotators and provide greater stability, yet they reveal a discrepancy when compared to conventional lexical similarity measurements. This questions the reliability of lexical similarity metrics for evaluating the performance of generative models in Med-VQA and report generation tasks. Besides, our fine-tuned model significantly outperforms GPT-4v. This indicates that without additional fine-tuning, multi-modal models like GPT-4v do not perform effectively on medical imaging tasks. The code will be available here: https://github.com/jinlHe/PeFoMed.
comment: 12 pages, 8 figures, 12 tables
♻ ☆ Federated Deep Subspace Clustering
This paper introduces FDSC, a private-protected subspace clustering (SC) approach with federated learning (FC) schema. In each client, there is a deep subspace clustering network accounting for grouping the isolated data, composed of a encode network, a self-expressive layer, and a decode network. FDSC is achieved by uploading the encode network to communicate with other clients in the server. Besides, FDSC is also enhanced by preserving the local neighborhood relationship in each client. With the effects of federated learning and locality preservation, the learned data features from the encoder are boosted so as to enhance the self-expressiveness learning and result in better clustering performance. Experiments test FDSC on public datasets and compare with other clustering methods, demonstrating the effectiveness of FDSC.
comment: 8pages,4 figures, 4 Tables
♻ ☆ VBIM-Net: Variational Born Iterative Network for Inverse Scattering Problems
Recently, studies have shown the potential of integrating field-type iterative methods with deep learning (DL) techniques in solving inverse scattering problems (ISPs). In this article, we propose a novel Variational Born Iterative Network, namely, VBIM-Net, to solve the full-wave ISPs with significantly improved structural rationality and inversion quality. The proposed VBIM-Net emulates the alternating updates of the total electric field and the contrast in the variational Born iterative method (VBIM) by multiple layers of subnetworks. We embed the analytical calculation of the contrast variation into each subnetwork, converting the scattered field residual into an approximate contrast variation and then enhancing it by a U-Net, thus avoiding the requirement of matched measurement dimension and grid resolution as in existing approaches. The total field and contrast of each layer's output is supervised in the loss function of VBIM-Net, imposing soft physical constraints on the variables in the subnetworks, which benefits the model's performance. In addition, we design a training scheme with extra noise to enhance the model's stability. Extensive numerical results on synthetic and experimental data both verify the inversion quality, generalization ability, and robustness of the proposed VBIM-Net. This work may provide some new inspiration for the design of efficient field-type DL schemes.
comment: Accepted by IEEE Transactions on Geoscience and Remote Sensing
♻ ☆ DynST: Dynamic Sparse Training for Resource-Constrained Spatio-Temporal Forecasting
The ever-increasing sensor service, though opening a precious path and providing a deluge of earth system data for deep-learning-oriented earth science, sadly introduce a daunting obstacle to their industrial level deployment. Concretely, earth science systems rely heavily on the extensive deployment of sensors, however, the data collection from sensors is constrained by complex geographical and social factors, making it challenging to achieve comprehensive coverage and uniform deployment. To alleviate the obstacle, traditional approaches to sensor deployment utilize specific algorithms to design and deploy sensors. These methods \textit{dynamically adjust the activation times of sensors to optimize the detection process across each sub-region}. Regrettably, formulating an activation strategy generally based on historical observations and geographic characteristics, which make the methods and resultant models were neither simple nor practical. Worse still, the complex technical design may ultimately lead to a model with weak generalizability. In this paper, we introduce for the first time the concept of spatio-temporal data dynamic sparse training and are committed to adaptively, dynamically filtering important sensor distributions. To our knowledge, this is the \textbf{first} proposal (\textit{termed DynST}) of an \textbf{industry-level} deployment optimization concept at the data level. However, due to the existence of the temporal dimension, pruning of spatio-temporal data may lead to conflicts at different timestamps. To achieve this goal, we employ dynamic merge technology, along with ingenious dimensional mapping to mitigate potential impacts caused by the temporal aspect. During the training process, DynST utilize iterative pruning and sparse training, repeatedly identifying and dynamically removing sensor perception areas that contribute the least to future predictions.
♻ ☆ Enhanced Masked Image Modeling to Avoid Model Collapse on Multi-modal MRI Datasets
Multi-modal magnetic resonance imaging (MRI) provides information of lesions for computer-aided diagnosis from different views. Deep learning algorithms are suitable for identifying specific anatomical structures, segmenting lesions, and classifying diseases. Manual labels are limited due to the high expense, which hinders further improvement of accuracy. Self-supervised learning, particularly masked image modeling (MIM), has shown promise in utilizing unlabeled data. However, we spot model collapse when applying MIM to multi-modal MRI datasets. The performance of downstream tasks does not see any improvement following the collapsed model. To solve model collapse, we analyze and address it in two types: complete collapse and dimensional collapse. We find complete collapse occurs because the collapsed loss value in multi-modal MRI datasets falls below the normally converged loss value. Based on this, the hybrid mask pattern (HMP) masking strategy is introduced to elevate the collapsed loss above the normally converged loss value and avoid complete collapse. Additionally, we reveal that dimensional collapse stems from insufficient feature uniformity in MIM. We mitigate dimensional collapse by introducing the pyramid barlow twins (PBT) module as an explicit regularization method. Overall, we construct the enhanced MIM (E-MIM) with HMP and PBT module to avoid model collapse multi-modal MRI. Experiments are conducted on three multi-modal MRI datasets to validate the effectiveness of our approach in preventing both types of model collapse. By preventing model collapse, the training of the model becomes more stable, resulting in a decent improvement in performance for segmentation and classification tasks. The code is available at https://github.com/LinxuanHan/E-MIM.
comment: This work has been submitted to the lEEE for possible publication. copyright may be transferred without notice, after which this version may no longer be accessible
♻ ☆ Enhancing Graph Self-Supervised Learning with Graph Interplay
Graph self-supervised learning (GSSL) has emerged as a compelling framework for extracting informative representations from graph-structured data without extensive reliance on labeled inputs. In this study, we introduce Graph Interplay (GIP), an innovative and versatile approach that significantly enhances the performance equipped with various existing GSSL methods. To this end, GIP advocates direct graph-level communications by introducing random inter-graph edges within standard batches. Against GIP's simplicity, we further theoretically show that \textsc{GIP} essentially performs a principled manifold separation via combining inter-graph message passing and GSSL, bringing about more structured embedding manifolds and thus benefits a series of downstream tasks. Our empirical study demonstrates that GIP surpasses the performance of prevailing GSSL methods across multiple benchmarks by significant margins, highlighting its potential as a breakthrough approach. Besides, GIP can be readily integrated into a series of GSSL methods and consistently offers additional performance gain. This advancement not only amplifies the capability of GSSL but also potentially sets the stage for a novel graph learning paradigm in a broader sense.
comment: Due to potential implicit data leakage in our experimental setup, where the pretraining dataset was ordered by default labels, we withdraw this manuscript for further self-examination and rigorous validation
♻ ☆ CryoBench: Diverse and challenging datasets for the heterogeneity problem in cryo-EM NeurIPS 2024
Cryo-electron microscopy (cryo-EM) is a powerful technique for determining high-resolution 3D biomolecular structures from imaging data. Its unique ability to capture structural variability has spurred the development of heterogeneous reconstruction algorithms that can infer distributions of 3D structures from noisy, unlabeled imaging data. Despite the growing number of advanced methods, progress in the field is hindered by the lack of standardized benchmarks with ground truth information and reliable validation metrics. Here, we introduce CryoBench, a suite of datasets, metrics, and benchmarks for heterogeneous reconstruction in cryo-EM. CryoBench includes five datasets representing different sources of heterogeneity and degrees of difficulty. These include conformational heterogeneity generated from designed motions of antibody complexes or sampled from a molecular dynamics simulation, as well as compositional heterogeneity from mixtures of ribosome assembly states or 100 common complexes present in cells. We then analyze state-of-the-art heterogeneous reconstruction tools, including neural and non-neural methods, assess their sensitivity to noise, and propose new metrics for quantitative evaluation. We hope that CryoBench will be a foundational resource for accelerating algorithmic development and evaluation in the cryo-EM and machine learning communities. Project page: https://cryobench.cs.princeton.edu.
comment: Accepted by NeurIPS 2024 (Spotlight)
♻ ☆ A Mechanistic Explanatory Strategy for XAI
Despite significant advancements in XAI, scholars note a persistent lack of solid conceptual foundations and integration with broader scientific discourse on explanation. In response, emerging XAI research draws on explanatory strategies from various sciences and philosophy of science literature to fill these gaps. This paper outlines a mechanistic strategy for explaining the functional organization of deep learning systems, situating recent advancements in AI explainability within a broader philosophical context. According to the mechanistic approach, the explanation of opaque AI systems involves identifying mechanisms that drive decision-making. For deep neural networks, this means discerning functionally relevant components -- such as neurons, layers, circuits, or activation patterns -- and understanding their roles through decomposition, localization, and recomposition. Proof-of-principle case studies from image recognition and language modeling align these theoretical approaches with the latest research from AI labs like OpenAI and Anthropic. This research suggests that a systematic approach to studying model organization can reveal elements that simpler (or ''more modest'') explainability techniques might miss, fostering more thoroughly explainable AI. The paper concludes with a discussion on the epistemic relevance of the mechanistic approach positioned in the context of selected philosophical debates on XAI.
comment: Forthcoming in M\"uller, V. C., Dewey, A. R., Dung, L., & L\"ohr, G. (Eds.), Philosophy of Artificial Intelligence: The State of the Art, Synthese Library, Berlin: Springer Nature. Please cite the published version
♻ ☆ Intelligent Icing Detection Model of Wind Turbine Blades Based on SCADA data
Diagnosis of ice accretion on wind turbine blades is all the time a hard nut to crack in condition monitoring of wind farms. Existing methods focus on mechanism analysis of icing process, deviation degree analysis of feature engineering. However, there have not been deep researches of neural networks applied in this field at present. Supervisory control and data acquisition (SCADA) makes it possible to train networks through continuously providing not only operation parameters and performance parameters of wind turbines but also environmental parameters and operation modes. This paper explores the possibility that using convolutional neural networks (CNNs), generative adversarial networks (GANs) and domain adaption learning to establish intelligent diagnosis frameworks under different training scenarios. Specifically, PGANC and PGANT are proposed for sufficient and non-sufficient target wind turbine labeled data, respectively. The basic idea is that we consider a two-stage training with parallel GANs, which are aimed at capturing intrinsic features for normal and icing samples, followed by classification CNN or domain adaption module in various training cases. Model validation on three wind turbine SCADA data shows that two-stage training can effectively improve the model performance. Besides, if there is no sufficient labeled data for a target turbine, which is an extremely common phenomenon in real industrial practices, the addition of domain adaption learning makes the trained model show better performance. Overall, our proposed intelligent diagnosis frameworks can achieve more accurate detection on the same wind turbine and more generalized capability on a new wind turbine, compared with other machine learning models and conventional CNNs.
comment: 10 pages, 6 figures
♻ ☆ Multi-hop Upstream Anticipatory Traffic Signal Control with Deep Reinforcement Learning
Coordination in traffic signal control is crucial for managing congestion in urban networks. Existing pressure-based control methods focus only on immediate upstream links, leading to suboptimal green time allocation and increased network delays. However, effective signal control inherently requires coordination across a broader spatial scope, as the effect of upstream traffic should influence signal control decisions at downstream intersections, impacting a large area in the traffic network. Although agent communication using neural network-based feature extraction can implicitly enhance spatial awareness, it significantly increases the learning complexity, adding an additional layer of difficulty to the challenging task of control in deep reinforcement learning. To address the issue of learning complexity and myopic traffic pressure definition, our work introduces a novel concept based on Markov chain theory, namely \textit{multi-hop upstream pressure}, which generalizes the conventional pressure to account for traffic conditions beyond the immediate upstream links. This farsighted and compact metric informs the deep reinforcement learning agent to preemptively clear the multi-hop upstream queues, guiding the agent to optimize signal timings with a broader spatial awareness. Simulations on synthetic and realistic (Toronto) scenarios demonstrate controllers utilizing multi-hop upstream pressure significantly reduce overall network delay by prioritizing traffic movements based on a broader understanding of upstream congestion.
comment: 5 tables, 11 figures
♻ ☆ Model Alignment Search
When can we say that two neural systems are the same? The answer to this question is goal-dependent, and it is often addressed through correlative methods such as Representational Similarity Analysis (RSA) and Centered Kernel Alignment (CKA). What do we miss when we forgo causal explorations, and how can we target specific types of similarity? In this work, we introduce Model Alignment Search (MAS), a method for causally exploring distributed representational similarity. The method learns invertible linear transformations that align a subspace between two distributed networks' representations where causal information can be freely interchanged. We first show that the method can be used to transfer specific causal variables, such as the number of items in a counting task, between networks with different training seeds. We then explore open questions in number cognition by comparing different types of numeric representations in models trained on structurally different numeric tasks. We then explore differences between MAS vs preexisting causal similarity methods, and lastly, we introduce a counterfactual latent auxiliary loss function that helps shape causally relevant alignments even in cases where we do not have causal access to one of the two models for training.
♻ ☆ AgRegNet: A Deep Regression Network for Flower and Fruit Density Estimation, Localization, and Counting in Orchards
One of the major challenges for the agricultural industry today is the uncertainty in manual labor availability and the associated cost. Automated flower and fruit density estimation, localization, and counting could help streamline harvesting, yield estimation, and crop-load management strategies such as flower and fruitlet thinning. This article proposes a deep regression-based network, AgRegNet, to estimate density, count, and location of flower and fruit in tree fruit canopies without explicit object detection or polygon annotation. Inspired by popular U-Net architecture, AgRegNet is a U-shaped network with an encoder-to-decoder skip connection and modified ConvNeXt-T as an encoder feature extractor. AgRegNet can be trained based on information from point annotation and leverages segmentation information and attention modules (spatial and channel) to highlight relevant flower and fruit features while suppressing non-relevant background features. Experimental evaluation in apple flower and fruit canopy images under an unstructured orchard environment showed that AgRegNet achieved promising accuracy as measured by Structural Similarity Index (SSIM), percentage Mean Absolute Error (pMAE) and mean Average Precision (mAP) to estimate flower and fruit density, count, and centroid location, respectively. Specifically, the SSIM, pMAE, and mAP values for flower images were 0.938, 13.7%, and 0.81, respectively. For fruit images, the corresponding values were 0.910, 5.6%, and 0.93. Since the proposed approach relies on information from point annotation, it is suitable for sparsely and densely located objects. This simplified technique will be highly applicable for growers to accurately estimate yields and decide on optimal chemical and mechanical flower thinning practices.
comment: Published in Computers and Electronics in Agriculture
♻ ☆ Cold-Start Recommendation towards the Era of Large Language Models (LLMs): A Comprehensive Survey and Roadmap
Cold-start problem is one of the long-standing challenges in recommender systems, focusing on accurately modeling new or interaction-limited users or items to provide better recommendations. Due to the diversification of internet platforms and the exponential growth of users and items, the importance of cold-start recommendation (CSR) is becoming increasingly evident. At the same time, large language models (LLMs) have achieved tremendous success and possess strong capabilities in modeling user and item information, providing new potential for cold-start recommendations. However, the research community on CSR still lacks a comprehensive review and reflection in this field. Based on this, in this paper, we stand in the context of the era of large language models and provide a comprehensive review and discussion on the roadmap, related literature, and future directions of CSR. Specifically, we have conducted an exploration of the development path of how existing CSR utilizes information, from content features, graph relations, and domain information, to the world knowledge possessed by large language models, aiming to provide new insights for both the research and industrial communities on CSR. Related resources of cold-start recommendations are collected and continuously updated for the community in https://github.com/YuanchenBei/Awesome-Cold-Start-Recommendation.
Robotics 27
☆ Applying General Turn-taking Models to Conversational Human-Robot Interaction
Turn-taking is a fundamental aspect of conversation, but current Human-Robot Interaction (HRI) systems often rely on simplistic, silence-based models, leading to unnatural pauses and interruptions. This paper investigates, for the first time, the application of general turn-taking models, specifically TurnGPT and Voice Activity Projection (VAP), to improve conversational dynamics in HRI. These models are trained on human-human dialogue data using self-supervised learning objectives, without requiring domain-specific fine-tuning. We propose methods for using these models in tandem to predict when a robot should begin preparing responses, take turns, and handle potential interruptions. We evaluated the proposed system in a within-subject study against a traditional baseline system, using the Furhat robot with 39 adults in a conversational setting, in combination with a large language model for autonomous response generation. The results show that participants significantly prefer the proposed system, and it significantly reduces response delays and interruptions.
comment: Accepted at HRI 2025 (the IEEE/ACM International Conference on Human-Robot Interaction)
☆ A Reinforcement Learning Approach to Quiet and Safe UAM Traffic Management
Urban air mobility (UAM) is a transformative system that operates various small aerial vehicles in urban environments to reshape urban transportation. However, integrating UAM into existing urban environments presents a variety of complex challenges. Recent analyses of UAM's operational constraints highlight aircraft noise and system safety as key hurdles to UAM system implementation. Future UAM air traffic management schemes must ensure that the system is both quiet and safe. We propose a multi-agent reinforcement learning approach to manage UAM traffic, aiming at both vertical separation assurance and noise mitigation. Through extensive training, the reinforcement learning agent learns to balance the two primary objectives by employing altitude adjustments in a multi-layer UAM network. The results reveal the tradeoffs among noise impact, traffic congestion, and separation. Overall, our findings demonstrate the potential of reinforcement learning in mitigating UAM's noise impact while maintaining safe separation using altitude adjustments
comment: Paper presented at SciTech 2025
☆ When Uncertainty Leads to Unsafety: Empirical Insights into the Role of Uncertainty in Unmanned Aerial Vehicle Safety
Despite the recent developments in obstacle avoidance and other safety features, autonomous Unmanned Aerial Vehicles (UAVs) continue to face safety challenges. No previous work investigated the relationship between the behavioral uncertainty of a UAV and the unsafety of its flight. By quantifying uncertainty, it is possible to develop a predictor for unsafety, which acts as a flight supervisor. We conducted a large-scale empirical investigation of safety violations using PX4-Autopilot, an open-source UAV software platform. Our dataset of over 5,000 simulated flights, created to challenge obstacle avoidance, allowed us to explore the relation between uncertain UAV decisions and safety violations: up to 89% of unsafe UAV states exhibit significant decision uncertainty, and up to 74% of uncertain decisions lead to unsafe states. Based on these findings, we implemented Superialist (Supervising Autonomous Aerial Vehicles), a runtime uncertainty detector based on autoencoders, the state-of-the-art technology for anomaly detection. Superialist achieved high performance in detecting uncertain behaviors with up to 96% precision and 93% recall. Despite the observed performance degradation when using the same approach for predicting unsafety (up to 74% precision and 87% recall), Superialist enabled early prediction of unsafe states up to 50 seconds in advance.
comment: 36 pages
☆ SLC$^2$-SLAM: Semantic-guided Loop Closure with Shared Latent Code for NeRF SLAM
Targeting the notorious cumulative drift errors in NeRF SLAM, we propose a Semantic-guided Loop Closure with Shared Latent Code, dubbed SLC$^2$-SLAM. Especially, we argue that latent codes stored in many NeRF SLAM systems are not fully exploited, as they are only used for better reconstruction. In this paper, we propose a simple yet effective way to detect potential loops using the same latent codes as local features. To further improve the loop detection performance, we use the semantic information, which are also decoded from the same latent codes to guide the aggregation of local features. Finally, with the potential loops detected, we close them with a graph optimization followed by bundle adjustment to refine both the estimated poses and the reconstructed scene. To evaluate the performance of our SLC$^2$-SLAM, we conduct extensive experiments on Replica and ScanNet datasets. Our proposed semantic-guided loop closure significantly outperforms the pre-trained NetVLAD and ORB combined with Bag-of-Words, which are used in all the other NeRF SLAM with loop closure. As a result, our SLC$^2$-SLAM also demonstrated better tracking and reconstruction performance, especially in larger scenes with more loops, like ScanNet.
comment: 8 pages, 5 figures, 4 tables
☆ Task Allocation in Mobile Robot Fleets: A review
Mobile robot fleets are currently used in different scenarios such as medical environments or logistics. The management of these systems provides different challenges that vary from the control of the movement of each robot to the allocation of tasks to be performed. Task Allocation (TA) problem is a key topic for the proper management of mobile robot fleets to ensure the minimization of energy consumption and quantity of necessary robots. Solutions on this aspect are essential to reach economic and environmental sustainability of robot fleets, mainly in industry applications such as warehouse logistics. The minimization of energy consumption introduces TA problem as an optimization issue which has been treated in recent studies. This work focuses on the analysis of current trends in solving TA of mobile robot fleets. Main TA optimization algorithms are presented, including novel methods based on Artificial Intelligence (AI). Additionally, this work showcases most important results extracted from simulations, including frameworks utilized for the development of the simulations. Finally, some conclusions are obtained from the analysis to target on gaps that must be treated in the future.
☆ GS-LIVO: Real-Time LiDAR, Inertial, and Visual Multi-sensor Fused Odometry with Gaussian Mapping
In recent years, 3D Gaussian splatting (3D-GS) has emerged as a novel scene representation approach. However, existing vision-only 3D-GS methods often rely on hand-crafted heuristics for point-cloud densification and face challenges in handling occlusions and high GPU memory and computation consumption. LiDAR-Inertial-Visual (LIV) sensor configuration has demonstrated superior performance in localization and dense mapping by leveraging complementary sensing characteristics: rich texture information from cameras, precise geometric measurements from LiDAR, and high-frequency motion data from IMU. Inspired by this, we propose a novel real-time Gaussian-based simultaneous localization and mapping (SLAM) system. Our map system comprises a global Gaussian map and a sliding window of Gaussians, along with an IESKF-based odometry. The global Gaussian map consists of hash-indexed voxels organized in a recursive octree, effectively covering sparse spatial volumes while adapting to different levels of detail and scales. The Gaussian map is initialized through multi-sensor fusion and optimized with photometric gradients. Our system incrementally maintains a sliding window of Gaussians, significantly reducing GPU computation and memory consumption by only optimizing the map within the sliding window. Moreover, we implement a tightly coupled multi-sensor fusion odometry with an iterative error state Kalman filter (IESKF), leveraging real-time updating and rendering of the Gaussian map. Our system represents the first real-time Gaussian-based SLAM framework deployable on resource-constrained embedded systems, demonstrated on the NVIDIA Jetson Orin NX platform. The framework achieves real-time performance while maintaining robust multi-sensor fusion capabilities. All implementation algorithms, hardware designs, and CAD models will be publicly available.
☆ Application of Deep Reinforcement Learning to UAV Swarming for Ground Surveillance
This paper summarizes in depth the state of the art of aerial swarms, covering both classical and new reinforcement-learning-based approaches for their management. Then, it proposes a hybrid AI system, integrating deep reinforcement learning in a multi-agent centralized swarm architecture. The proposed system is tailored to perform surveillance of a specific area, searching and tracking ground targets, for security and law enforcement applications. The swarm is governed by a central swarm controller responsible for distributing different search and tracking tasks among the cooperating UAVs. Each UAV agent is then controlled by a collection of cooperative sub-agents, whose behaviors have been trained using different deep reinforcement learning models, tailored for the different task types proposed by the swarm controller. More specifically, proximal policy optimization (PPO) algorithms were used to train the agents' behavior. In addition, several metrics to assess the performance of the swarm in this application were defined. The results obtained through simulation show that our system searches the operation area effectively, acquires the targets in a reasonable time, and is capable of tracking them continuously and consistently.
☆ Self-Organizing Edge Computing Distribution Framework for Visual SLAM
Localization within a known environment is a crucial capability for mobile robots. Simultaneous Localization and Mapping (SLAM) is a prominent solution to this problem. SLAM is a framework that consists of a diverse set of computational tasks ranging from real-time tracking to computation-intensive map optimization. This combination can present a challenge for resource-limited mobile robots. Previously, edge-assisted SLAM methods have demonstrated promising real-time execution capabilities by offloading heavy computations while performing real-time tracking onboard. However, the common approach of utilizing a client-server architecture for offloading is sensitive to server and network failures. In this article, we propose a novel edge-assisted SLAM framework capable of self-organizing fully distributed SLAM execution across a network of devices or functioning on a single device without connectivity. The architecture consists of three layers and is designed to be device-agnostic, resilient to network failures, and minimally invasive to the core SLAM system. We have implemented and demonstrated the framework for monocular ORB SLAM3 and evaluated it in both fully distributed and standalone SLAM configurations against the ORB SLAM3. The experiment results demonstrate that the proposed design matches the accuracy and resource utilization of the monolithic approach while enabling collaborative execution.
comment: 8 pages, 5 figures
☆ Image-to-Force Estimation for Soft Tissue Interaction in Robotic-Assisted Surgery Using Structured Light
For Minimally Invasive Surgical (MIS) robots, accurate haptic interaction force feedback is essential for ensuring the safety of interacting with soft tissue. However, most existing MIS robotic systems cannot facilitate direct measurement of the interaction force with hardware sensors due to space limitations. This letter introduces an effective vision-based scheme that utilizes a One-Shot structured light projection with a designed pattern on soft tissue coupled with haptic information processing through a trained image-to-force neural network. The images captured from the endoscopic stereo camera are analyzed to reconstruct high-resolution 3D point clouds for soft tissue deformation. Based on this, a modified PointNet-based force estimation method is proposed, which excels in representing the complex mechanical properties of soft tissue. Numerical force interaction experiments are conducted on three silicon materials with different stiffness. The results validate the effectiveness of the proposed scheme.
☆ GOTLoc: General Outdoor Text-based Localization Using Scene Graph Retrieval with OpenStreetMap
We propose GOTLoc, a robust localization method capable of operating even in outdoor environments where GPS signals are unavailable. The method achieves this robust localization by leveraging comparisons between scene graphs generated from text descriptions and maps. Existing text-based localization studies typically represent maps as point clouds and identify the most similar scenes by comparing embeddings of text and point cloud data. However, point cloud maps have limited scalability as it is impractical to pre-generate maps for all outdoor spaces. Furthermore, their large data size makes it challenging to store and utilize them directly on actual robots. To address these issues, GOTLoc leverages compact data structures, such as scene graphs, to store spatial information, enabling individual robots to carry and utilize large amounts of map data. Additionally, by utilizing publicly available map data, such as OpenStreetMap, which provides global information on outdoor spaces, we eliminate the need for additional effort to create custom map data. For performance evaluation, we utilized the KITTI360Pose dataset in conjunction with corresponding OpenStreetMap data to compare the proposed method with existing approaches. Our results demonstrate that the proposed method achieves accuracy comparable to algorithms relying on point cloud maps. Moreover, in city-scale tests, GOTLoc required significantly less storage compared to point cloud-based methods and completed overall processing within a few seconds, validating its applicability to real-world robotics. Our code is available at https://github.com/donghwijung/GOTLoc.
☆ LAMS: LLM-Driven Automatic Mode Switching for Assistive Teleoperation
Teleoperating high degrees-of-freedom (DoF) robotic manipulators via low-DoF controllers like joysticks often requires frequent switching between control modes, where each mode maps controller movements to specific robot actions. Manually performing this frequent switching can make teleoperation cumbersome and inefficient. On the other hand, existing automatic mode-switching solutions, such as heuristic-based or learning-based methods, are often task-specific and lack generalizability. In this paper, we introduce LLM-Driven Automatic Mode Switching (LAMS), a novel approach that leverages Large Language Models (LLMs) to automatically switch control modes based on task context. Unlike existing methods, LAMS requires no prior task demonstrations and incrementally improves by integrating user-generated mode-switching examples. We validate LAMS through an ablation study and a user study with 10 participants on complex, long-horizon tasks, demonstrating that LAMS effectively reduces manual mode switches, is preferred over alternative methods, and improves performance over time. The project website with supplementary materials is at https://lams-assistance.github.io/.
☆ Chance-Constrained Sampling-Based MPC for Collision Avoidance in Uncertain Dynamic Environments
Navigating safely in dynamic and uncertain environments is challenging due to uncertainties in perception and motion. This letter presents C2U-MPPI, a robust sampling-based Model Predictive Control (MPC) framework that addresses these challenges by leveraging the Unscented Model Predictive Path Integral (U-MPPI) control strategy with integrated probabilistic chance constraints, ensuring more reliable and efficient navigation under uncertainty. Unlike gradient-based MPC methods, our approach (i) avoids linearization of system dynamics and directly applies non-convex and nonlinear chance constraints, enabling more accurate and flexible optimization, and (ii) enhances computational efficiency by reformulating probabilistic constraints into a deterministic form and employing a layered dynamic obstacle representation, enabling real-time handling of multiple obstacles. Extensive experiments in simulated and real-world human-shared environments validate the effectiveness of our algorithm against baseline methods, showcasing its capability to generate feasible trajectories and control inputs that adhere to system dynamics and constraints in dynamic settings, enabled by unscented-based sampling strategy and risk-sensitive trajectory evaluation. A supplementary video is available at: https://youtu.be/FptAhvJlQm8
comment: This paper has 8 pages, 2 figures, 5 tables
☆ A Framework for Dynamic Situational Awareness in Human Robot Teams: An Interview Study
In human-robot teams, human situational awareness is the operator's conscious knowledge of the team's states, actions, plans and their environment. Appropriate human situational awareness is critical to successful human-robot collaboration. In human-robot teaming, it is often assumed that the best and required level of situational awareness is knowing everything at all times. This view is problematic, because what a human needs to know for optimal team performance varies given the dynamic environmental conditions, task context and roles and capabilities of team members. We explore this topic by interviewing 16 participants with active and repeated experience in diverse human-robot teaming applications. Based on analysis of these interviews, we derive a framework explaining the dynamic nature of required situational awareness in human-robot teaming. In addition, we identify a range of factors affecting the dynamic nature of required and actual levels of situational awareness (i.e., dynamic situational awareness), types of situational awareness inefficiencies resulting from gaps between actual and required situational awareness, and their main consequences. We also reveal various strategies, initiated by humans and robots, that assist in maintaining the required situational awareness. Our findings inform the implementation of accurate estimates of dynamic situational awareness and the design of user-adaptive human-robot interfaces. Therefore, this work contributes to the future design of more collaborative and effective human-robot teams.
☆ Unified Few-shot Crack Segmentation and its Precise 3D Automatic Measurement in Concrete Structures
Visual-Spatial Systems has become increasingly essential in concrete crack inspection. However, existing methods often lacks adaptability to diverse scenarios, exhibits limited robustness in image-based approaches, and struggles with curved or complex geometries. To address these limitations, an innovative framework for two-dimensional (2D) crack detection, three-dimensional (3D) reconstruction, and 3D automatic crack measurement was proposed by integrating computer vision technologies and multi-modal Simultaneous localization and mapping (SLAM) in this study. Firstly, building on a base DeepLabv3+ segmentation model, and incorporating specific refinements utilizing foundation model Segment Anything Model (SAM), we developed a crack segmentation method with strong generalization across unfamiliar scenarios, enabling the generation of precise 2D crack masks. To enhance the accuracy and robustness of 3D reconstruction, Light Detection and Ranging (LiDAR) point clouds were utilized together with image data and segmentation masks. By leveraging both image- and LiDAR-SLAM, we developed a multi-frame and multi-modal fusion framework that produces dense, colorized point clouds, effectively capturing crack semantics at a 3D real-world scale. Furthermore, the crack geometric attributions were measured automatically and directly within 3D dense point cloud space, surpassing the limitations of conventional 2D image-based measurements. This advancement makes the method suitable for structural components with curved and complex 3D geometries. Experimental results across various concrete structures highlight the significant improvements and unique advantages of the proposed method, demonstrating its effectiveness, accuracy, and robustness in real-world applications.
☆ Combining Movement Primitives with Contraction Theory
This paper presents a modular framework for motion planning using movement primitives. Central to the approach is Contraction Theory, a modular stability tool for nonlinear dynamical systems. The approach extends prior methods by achieving parallel and sequential combinations of both discrete and rhythmic movements, while enabling independent modulation of each movement. This modular framework enables a divide-and-conquer strategy to simplify the programming of complex robot motion planning. Simulation examples illustrate the flexibility and versatility of the framework, highlighting its potential to address diverse challenges in robot motion planning.
comment: 8 pages, 4 figures, submitted to Robotics and Automation Letters (RA-L) for review
☆ Estimation-Aware Trajectory Optimization with Set-Valued Measurement Uncertainties
In this paper, we present an optimization-based framework for generating estimation-aware trajectories in scenarios where measurement (output) uncertainties are state-dependent and set-valued. The framework leverages the concept of regularity for set-valued output maps. Specifically, we demonstrate that, for output-regular maps, one can utilize a set-valued observability measure that is concave with respect to finite-horizon state trajectories. By maximizing this measure, optimized estimation-aware trajectories can be designed for a broad class of systems, including those with locally linearized dynamics. To illustrate the effectiveness of the proposed approach, we provide a representative example in the context of trajectory planning for vision-based estimation. We present an estimation-aware trajectory for an uncooperative target-tracking problem that uses a machine learning (ML)-based estimation module on an ego-satellite.
comment: 25 pages, 5 figures
☆ Embodied Scene Understanding for Vision Language Models via MetaVQA
Vision Language Models (VLMs) demonstrate significant potential as embodied AI agents for various mobility applications. However, a standardized, closed-loop benchmark for evaluating their spatial reasoning and sequential decision-making capabilities is lacking. To address this, we present MetaVQA: a comprehensive benchmark designed to assess and enhance VLMs' understanding of spatial relationships and scene dynamics through Visual Question Answering (VQA) and closed-loop simulations. MetaVQA leverages Set-of-Mark prompting and top-down view ground-truth annotations from nuScenes and Waymo datasets to automatically generate extensive question-answer pairs based on diverse real-world traffic scenarios, ensuring object-centric and context-rich instructions. Our experiments show that fine-tuning VLMs with the MetaVQA dataset significantly improves their spatial reasoning and embodied scene comprehension in safety-critical simulations, evident not only in improved VQA accuracies but also in emerging safety-aware driving maneuvers. In addition, the learning demonstrates strong transferability from simulation to real-world observation. Code and data will be publicly available at https://metadriverse.github.io/metavqa .
comment: for the project webpage, see https://metadriverse.github.io/metavqa
☆ AutoLoop: Fast Visual SLAM Fine-tuning through Agentic Curriculum Learning
Current visual SLAM systems face significant challenges in balancing computational efficiency with robust loop closure handling. Traditional approaches require careful manual tuning and incur substantial computational overhead, while learning-based methods either lack explicit loop closure capabilities or implement them through computationally expensive methods. We present AutoLoop, a novel approach that combines automated curriculum learning with efficient fine-tuning for visual SLAM systems. Our method employs a DDPG (Deep Deterministic Policy Gradient) agent to dynamically adjust loop closure weights during training, eliminating the need for manual hyperparameter search while significantly reducing the required training steps. The approach pre-computes potential loop closure pairs offline and leverages them through an agent-guided curriculum, allowing the model to adapt efficiently to new scenarios. Experiments conducted on TartanAir for training and validated across multiple benchmarks including KITTI, EuRoC, ICL-NUIM and TUM RGB-D demonstrate that AutoLoop achieves comparable or superior performance while reducing training time by an order of magnitude compared to traditional approaches. AutoLoop provides a practical solution for rapid adaptation of visual SLAM systems, automating the weight tuning process that traditionally requires multiple manual iterations. Our results show that this automated curriculum strategy not only accelerates training but also maintains or improves the model's performance across diverse environmental conditions.
♻ ☆ Real-World Evaluation of two Cooperative Intersection Management Approaches
Cooperative maneuver planning promises to significantly improve traffic efficiency at unsignalized intersections by leveraging connected automated vehicles. Previous works on this topic have been mostly developed for completely automated traffic in a simple simulated environment. In contrast, our previously introduced planning approaches are specifically designed to handle real-world mixed traffic. The two methods are based on multi-scenario prediction and graph-based reinforcement learning, respectively. This is the first study to perform evaluations in a novel mixed traffic simulation framework as well as real-world drives with prototype connected automated vehicles in public traffic. The simulation features the same connected automated driving software stack as deployed on one of the automated vehicles. Our quantitative evaluations show that cooperative maneuver planning achieves a substantial reduction in crossing times and the number of stops. In a realistic environment with few automated vehicles, there are noticeable efficiency gains with only slightly increasing criticality metrics.
comment: M. Klimke and M. B. Mertens are both first authors with equal contribution. 10 pages, 9 figures, 3 tables, submitted to IEEE Intelligent Transportation Systems Magazine
♻ ☆ Learning Low-Dimensional Strain Models of Soft Robots by Looking at the Evolution of Their Shape with Application to Model-Based Control
Obtaining dynamic models of continuum soft robots is central to the analysis and control of soft robots, and researchers have devoted much attention to the challenge of proposing both data-driven and first-principle solutions. Both avenues have, however, shown their limitations; the former lacks structure and performs poorly outside training data, while the latter requires significant simplifications and extensive expert knowledge to be used in practice. This paper introduces a streamlined method for learning low-dimensional, physics-based models that are both accurate and easy to interpret. We start with an algorithm that uses image data (i.e., shape evolutions) to determine the minimal necessary segments for describing a soft robot's movement. Following this, we apply a dynamic regression and strain sparsification algorithm to identify relevant strains and define the model's dynamics. We validate our approach through simulations with various planar soft manipulators, comparing its performance against other learning strategies, showing that our models are both computationally efficient and 25x more accurate on out-of-training distribution inputs. Finally, we demonstrate that thanks to the capability of the method of generating physically compatible models, the learned models can be straightforwardly combined with model-based control policies.
comment: 8 pages, appearing in Proceedings of the 2025 IEEE 8th International Conference on Soft Robotics (RoboSoft)
♻ ☆ Evaluation of Artificial Intelligence Methods for Lead Time Prediction in Non-Cycled Areas of Automotive Production
The present study examines the effectiveness of applying Artificial Intelligence methods in an automotive production environment to predict unknown lead times in a non-cycle-controlled production area. Data structures are analyzed to identify contextual features and then preprocessed using one-hot encoding. Methods selection focuses on supervised machine learning techniques. In supervised learning methods, regression and classification methods are evaluated. Continuous regression based on target size distribution is not feasible. Classification methods analysis shows that Ensemble Learning and Support Vector Machines are the most suitable. Preliminary study results indicate that gradient boosting algorithms LightGBM, XGBoost, and CatBoost yield the best results. After further testing and extensive hyperparameter optimization, the final method choice is the LightGBM algorithm. Depending on feature availability and prediction interval granularity, relative prediction accuracies of up to 90% can be achieved. Further tests highlight the importance of periodic retraining of AI models to accurately represent complex production processes using the database. The research demonstrates that AI methods can be effectively applied to highly variable production data, adding business value by providing an additional metric for various control tasks while outperforming current non AI-based systems.
♻ ☆ Mind the Error! Detection and Localization of Instruction Errors in Vision-and-Language Navigation IROS'24
Vision-and-Language Navigation in Continuous Environments (VLN-CE) is one of the most intuitive yet challenging embodied AI tasks. Agents are tasked to navigate towards a target goal by executing a set of low-level actions, following a series of natural language instructions. All VLN-CE methods in the literature assume that language instructions are exact. However, in practice, instructions given by humans can contain errors when describing a spatial environment due to inaccurate memory or confusion. Current VLN-CE benchmarks do not address this scenario, making the state-of-the-art methods in VLN-CE fragile in the presence of erroneous instructions from human users. For the first time, we propose a novel benchmark dataset that introduces various types of instruction errors considering potential human causes. This benchmark provides valuable insight into the robustness of VLN systems in continuous environments. We observe a noticeable performance drop (up to -25%) in Success Rate when evaluating the state-of-the-art VLN-CE methods on our benchmark. Moreover, we formally define the task of Instruction Error Detection and Localization, and establish an evaluation protocol on top of our benchmark dataset. We also propose an effective method, based on a cross-modal transformer architecture, that achieves the best performance in error detection and localization, compared to baselines. Surprisingly, our proposed method has revealed errors in the validation set of the two commonly used datasets for VLN-CE, i.e., R2R-CE and RxR-CE, demonstrating the utility of our technique in other tasks. Code and dataset available at https://intelligolabs.github.io/R2RIE-CE
comment: 3 figures, 8 pages. Accepted at IROS'24
♻ ☆ Reward-Driven Automated Curriculum Learning for Interaction-Aware Self-Driving at Unsignalized Intersections
In this work, we present a reward-driven automated curriculum reinforcement learning approach for interaction-aware self-driving at unsignalized intersections, taking into account the uncertainties associated with surrounding vehicles (SVs). These uncertainties encompass the uncertainty of SVs' driving intention and also the quantity of SVs. To deal with this problem, the curriculum set is specifically designed to accommodate a progressively increasing number of SVs. By implementing an automated curriculum selection mechanism, the importance weights are rationally allocated across various curricula, thereby facilitating improved sample efficiency and training outcomes. Furthermore, the reward function is meticulously designed to guide the agent towards effective policy exploration. Thus the proposed framework could proactively address the above uncertainties at unsignalized intersections by employing the automated curriculum learning technique that progressively increases task difficulty, and this ensures safe self-driving through effective interaction with SVs. Comparative experiments are conducted in $Highway\_Env$, and the results indicate that our approach achieves the highest task success rate, attains strong robustness to initialization parameters of the curriculum selection module, and exhibits superior adaptability to diverse situational configurations at unsignalized intersections. Furthermore, the effectiveness of the proposed method is validated using the high-fidelity CARLA simulator.
comment: 8 pages, 6 figures, add grant information, minor textual polishing
♻ ☆ ModCube: Modular, Self-Assembling Cubic Underwater Robot
This paper presents a low-cost, centralized modular underwater robot platform, ModCube, which can be used to study swarm coordination for a wide range of tasks in underwater environments. A ModCube structure consists of multiple ModCube robots. Each robot can move in six DoF with eight thrusters and can be rigidly connected to other ModCube robots with an electromagnet controlled by onboard computer. In this paper, we present a novel method for characterizing and visualizing dynamic behavior, along with four benchmarks to evaluate the morphological performance of the robot. Analysis shows that our ModCube design is desirable for omnidirectional tasks, compared with the configurations widely used by commercial underwater robots. We run real robot experiments in two water tanks to demonstrate the robust control and self-assemble of the proposed system, We also open-source the design and code to facilitate future research.
comment: 8 pages, 8 figures, letter
♻ ☆ RoboHorizon: An LLM-Assisted Multi-View World Model for Long-Horizon Robotic Manipulation
Efficient control in long-horizon robotic manipulation is challenging due to complex representation and policy learning requirements. Model-based visual reinforcement learning (RL) has shown great potential in addressing these challenges but still faces notable limitations, particularly in handling sparse rewards and complex visual features in long-horizon environments. To address these limitations, we propose the Recognize-Sense-Plan-Act (RSPA) pipeline for long-horizon tasks and further introduce RoboHorizon, an LLM-assisted multi-view world model tailored for long-horizon robotic manipulation. In RoboHorizon, pre-trained LLMs generate dense reward structures for multi-stage sub-tasks based on task language instructions, enabling robots to better recognize long-horizon tasks. Keyframe discovery is then integrated into the multi-view masked autoencoder (MAE) architecture to enhance the robot's ability to sense critical task sequences, strengthening its multi-stage perception of long-horizon processes. Leveraging these dense rewards and multi-view representations, a robotic world model is constructed to efficiently plan long-horizon tasks, enabling the robot to reliably act through RL algorithms. Experiments on two representative benchmarks, RLBench and FurnitureBench, show that RoboHorizon outperforms state-of-the-art visual model-based RL methods, achieving a 23.35% improvement in task success rates on RLBench's 4 short-horizon tasks and a 29.23% improvement on 6 long-horizon tasks from RLBench and 3 furniture assembly tasks from FurnitureBench.
comment: Under review
♻ ☆ On the Surprising Effectiveness of Spectrum Clipping in Learning Stable Linear Dynamics
When learning stable linear dynamical systems from data, three important properties are desirable: i) predictive accuracy, ii) provable stability, and iii) computational efficiency. Unconstrained minimization of reconstruction errors leads to high accuracy and efficiency but cannot guarantee stability. Existing methods to remedy this focus on enforcing stability while also ensuring accuracy, but do so only at the cost of increased computation. In this work, we investigate if a straightforward approach can simultaneously offer all three desiderata of learning stable linear systems. Specifically, we consider a post-hoc approach that manipulates the spectrum of the learned system matrix after it is learned in an unconstrained fashion. We call this approach spectrum clipping (SC) as it involves eigen decomposition and subsequent reconstruction of the system matrix after clipping all of its eigenvalues that are larger than one to one (without altering the eigenvectors). Through detailed experiments involving two different applications and publicly available benchmark datasets, we demonstrate that this simple technique can simultaneously learn highly accurate linear systems that are provably stable. Notably, we demonstrate that SC can achieve similar or better performance than strong baselines while being orders-of-magnitude faster. We also show that SC can be readily combined with Koopman operators to learn stable nonlinear dynamics, such as those underlying complex dexterous manipulation skills involving multi-fingered robotic hands. Further, we find that SC can learn stable robot policies even when the training data includes unsuccessful or truncated demonstrations. Our codes and dataset can be found at https://github.com/GT-STAR-Lab/spec_clip.
comment: Under review by L4DC 2025
♻ ☆ Experimental Study on The Effect of Multi-step Deep Reinforcement Learning in POMDPs
Deep Reinforcement Learning (DRL) has made tremendous advances in both simulated and real-world robot control tasks in recent years. This is particularly the case for tasks that can be carefully engineered with a full state representation, and which can then be formulated as a Markov Decision Process (MDP). However, applying DRL strategies designed for MDPs to novel robot control tasks can be challenging, because the available observations may be a partial representation of the state, resulting in a Partially Observable Markov Decision Process (POMDP). This paper considers three popular DRL algorithms, namely Proximal Policy Optimization (PPO), Twin Delayed Deep Deterministic Policy Gradient (TD3), and Soft Actor-Critic (SAC), invented for MDPs, and studies their performance in POMDP scenarios. While prior work has found that SAC and TD3 typically outperform PPO across a broad range of tasks that can be represented as MDPs, we show that this is not always the case, using three representative POMDP environments. Empirical studies show that this is related to multi-step bootstrapping, where multi-step immediate rewards, instead of one-step immediate reward, are used to calculate the target value estimation of an observation and action pair. We identify this by observing that the inclusion of multi-step bootstrapping in TD3 (MTD3) and SAC (MSAC) results in improved robustness in POMDP settings.
Systems and Control 23
☆ Efficient Planning in Large-scale Systems Using Hierarchical Finite State Machines
We consider optimal planning in a large-scale system formalised as a hierarchical finite state machine (HFSM). A planning algorithm is proposed computing an optimal plan between any two states in the HFSM, consisting of two steps: A pre-processing step that computes optimal exit costs of the machines in the HFSM, with time complexity scaling with the number of machines; and a query step that efficiently computes an optimal plan by removing irrelevant subtrees of the HFSM using the optimal exit costs. The algorithm is reconfigurable in the sense that changes in the HFSM are handled with ease, where the pre-processing step recomputes only the optimal exit costs affected by the change. The algorithm can also exploit compact representations that groups together identical machines in the HFSM, where the algorithm only needs to compute the optimal exit costs for one of the identical machines within each group, thereby avoid unnecessary recomputations. We validate the algorithm on large systems with millions of states and a robotic application. It is shown that our approach outperforms Dijkstra's algorithm, Bidirectional Dijkstra and Contraction Hierarchies.
comment: Submitted to TAC
☆ Integrating Cybersecurity in Predictive Cost-Benefit Power Scheduling: A DeepStack Model with Dynamic Defense Mechanism
This paper introduces a novel, deep learning-based predictive model tailored to address wind curtailment in contemporary power systems, while enhancing cybersecurity measures through the implementation of a Dynamic Defense Mechanism (DDM). The augmented BiLSTM architecture facilitates accurate short-term predictions for wind power. In addition, a ConvGAN-driven step for stochastic scenario generation and a hierarchical, multi-stage optimization framework, which includes cases with and without Battery Energy Storage (BES), significantly minimizes operational costs. The inclusion of DDM strategically alters network reactances, thereby obfuscating the system's operational parameters to deter cyber threats. This robust solution not only integrates wind power more efficiently into power grids, leveraging BES potential to improve the economic efficiency of the system, but also boosting the cyber security of the system. Validation using the Illinois 200-bus system demonstrates the model's potential, achieving a 98% accuracy in forecasting and substantial cost reductions of over 3.8%. The results underscore the dual benefits of enhancing system reliability and security through advanced deep learning architectures and the strategic application of cybersecurity measures.
☆ Processing and Analyzing Real-World Driving Data: Insights on Trips, Scenarios, and Human Driving Behaviors
Analyzing large volumes of real-world driving data is essential for providing meaningful and reliable insights into real-world trips, scenarios, and human driving behaviors. To this end, we developed a multi-level data processing approach that adds new information, segments data, and extracts desired parameters. Leveraging a confidential but extensive dataset (over 1 million km), this approach leads to three levels of in-depth analysis: trip, scenario, and driving. The trip-level analysis explains representative properties observed in real-world trips, while the scenario-level analysis focuses on scenario conditions resulting from road events that reduce vehicle speed. The driving-level analysis identifies the cause of driving regimes for specific situations and characterizes typical human driving behaviors. Such analyses can support the design of both trip- and scenario-based tests, the modeling of human drivers, and the establishment of guidelines for connected and automated vehicles.
☆ Achieving Stability and Optimality: Control Strategy for a Wind Turbine Supplying an Electrolyzer in the Islanded Storage-less Microgrid
Wind power generation supplying electrolyzers in islanded microgrids is an essential technical pathway for green hydrogen production, attracting growing attention in the transition towards net zero carbon emissions. Both academia and industry widely recognize that islanded AC microgrids normally rely on battery energy storage systems (BESSs) for grid-forming functions. However, the high cost of BESS significantly increases the levelized cost of hydrogen (LCOH), compromising economic feasibility. To address this challenge and reduce the LCOH, this paper focuses on a wind turbine (WT) supplying an electrolyzer in a storage-less microgrid and identifies a unique characteristic that challenges the conventional understanding of this microgrid: active power is coupled with microgrid voltage rather than frequency, the latter being entirely decoupled from active power balance. Based on this unique characteristic, this paper develops a new control strategy that maintains power balance, stabilizes the voltage and frequency, and maximizes hydrogen production. The effectiveness of the control strategy is validated through case studies conducted in Matlab/Simulink, especially its capability to maintain stability while maximizing hydrogen production under various conditions.
☆ A Bayesian Hierarchical Model for Generating Synthetic Unbalanced Power Distribution Grids
The real-world data of power networks is often inaccessible due to privacy and security concerns, highlighting the need for tools to generate realistic synthetic network data. Existing methods leverage geographic tools like OpenStreetMap with heuristic rules to model system topology and typically focus on single-phase, balanced systems, limiting their applicability to real-world distribution systems, which are usually unbalanced. This work proposes a Bayesian Hierarchical Model (BHM) to generate unbalanced three-phase distribution systems learning from existing networks. The scheme takes as input the base topology and aggregated demand per node and outputs a three-phase unbalanced system. The proposed scheme achieves a Mean Absolute Percentage Error (MAPE) of less than $8\%$ across all phases, with computation times of 20.4 seconds for model training and 3.1 seconds per sample generation. The tool is applied to learn from publicly available SMART-DS dataset and applied to generate European 906 and IEEE-123 systems. We demonstrate the transfer learning capability of the proposed tool by leveraging a model trained on an observed system to generate a synthetic network for an unobserved system. Specifically, the tool is trained using the publicly available SMART-DS dataset and subsequently applied to generate synthetic networks for the European 906-bus system and the IEEE 123-bus system. This tool allows researchers to simulate realistic unbalanced three-phase power data with high accuracy and speed, enhancing planning and operational analysis for modern power grids.
☆ Cultivating Precision: Comparative Analysis of Sensor-Based Yogurt Fermentation Monitoring Techniques
Fermented dairy products, including yogurt, are widely consumed for their nutritional and health benefits. While numerous methods exist to monitor and understand yogurt fermentation, the literature lacks an integrated evaluation of diverse sensing approaches within a single experimental framework. To address this gap, this study systematically examines and compares multiple measurement techniques--electrical impedance, DC resistance, pH, optical transparency, carbon dioxide concentration, ambient temperature, and relative humidity--in tracking the yogurt fermentation process. By presenting a unified set of experimental results and assessing each method's observational characteristics, this work offers an encompassing reference point for researchers seeking to understand the relative merits and limitations of different sensing modalities. Rather than establishing definitive guidelines or practical recommendations, the findings provide a foundation for subsequent investigations into sensor-based fermentation monitoring, thereby contributing to a more comprehensive understanding of yogurt fermentation dynamics.
comment: 11 pages, 11 figures
☆ Some remarks on practical stabilization via CLF-based control under measurement noise
Practical stabilization of input-affine systems in the presence of measurement errors and input constraints is considered in this brief note. Assuming that a Lyapunov function and a stabilizing control exist for an input-affine system, the required measurement accuracy at each point of the state space is computed. This is done via the Lyapunov function-based decay condition, which describes along with the input constraints a set of admissible controls. Afterwards, the measurement time points are computed based on the system dynamics. It is shown that between these self-triggered measurement time points, the system evolves and converges into the so-called target ball, i.e. a vicinity of the origin, where it remains. Furthermore, it is shown that the approach ensures the existence of a control law, which is admissible for all possible states and it introduces a connection between measurement time points, measurement accuracy, target ball, and decay. The results of the approach are shown in three examples.
comment: 14 pages, 8 figures, DOI 10.1109/ACCESS.2024.3521048
☆ Digital Twin Online Channel Modeling: Challenges,Principles, and Applications
Different from traditional offline channel modeling, digital twin online channel modeling can sense and accurately characterize dynamic wireless channels in real time, and can therefore greatly assist 6G network optimization. This article proposes a novel promising framework and a step-by-step design procedure of digital twin online channel models (DTOCM). By enabling continuous visualization and accurate prediction of dynamic channel variations, DTOCM can synchronize the performance between simulated and real networks. We first explore the evolution and conceptual advancements of DTOCM, highlighting its visions and associated challenges. Then, we explain its operational principles, construction mechanisms, and applications to typical 6G scenarios. Subsequently, the real-time channel information provisioning and visualization capabilities of DTOCM are illustrated through our DTOCM platform based on practical scenarios. Finally, future research directions and open issues are discussed.
☆ A Novel Multiple Interval Prediction Method for Electricity Prices based on Scenarios Generation: Results
This paper introduces an innovative interval prediction methodology aimed at addressing the limitations of current evaluation indicators while enhancing prediction accuracy and reliability. To achieve this, new evaluation metrics are proposed, offering a comprehensive assessment of interval prediction methods across both all-sample and single-sample scenarios. Additionally, a novel Pattern-Diversity Conditional Time-Series Generative Adversarial Network (PDCTSGAN) is developed, designed to generate realistic scenarios and support a new interval prediction framework based on scenario generation. The PDCTSGAN model incorporates unique modifications to random noise inputs, enabling the creation of pattern-diverse and realistic scenarios. These scenarios are then utilized to produce multiple interval patterns characterized by high coverage probability and reduced average width. The proposed approach is validated through detailed case studies, and the paper concludes with a discussion of future research directions to further refine interval prediction techniques.
☆ A Novel Multiple Interval Prediction Method for Electricity Prices based on Scenarios Generation: Definition and Method
This paper presents interval prediction methodology to address limitations in existing evaluation indicators and improve prediction accuracy and reliability. First, new evaluation indicators are proposed to comprehensively assess interval prediction methods, considering both all-sample and single-sample scenarios. Second, a novel Pattern-Diversity Conditional Time-Series Generative Adversarial Network (PDCTSGAN) is introduced to generate realistic scenarios, enabling a new interval prediction approach based on scenario generation. The PDCTSGAN model innovatively incorporates modifications to random noise inputs, allowing the generation of pattern-diverse realistic scenarios. These scenarios are further utilized to construct multiple interval patterns with high coverage probability and low average width. The effectiveness of the proposed methodology is demonstrated through comprehensive case studies. The paper concludes by highlighting future research directions to further enhance interval prediction methods.
comment: arXiv admin note: text overlap with arXiv:2501.07827
☆ Chance-Constrained Sampling-Based MPC for Collision Avoidance in Uncertain Dynamic Environments
Navigating safely in dynamic and uncertain environments is challenging due to uncertainties in perception and motion. This letter presents C2U-MPPI, a robust sampling-based Model Predictive Control (MPC) framework that addresses these challenges by leveraging the Unscented Model Predictive Path Integral (U-MPPI) control strategy with integrated probabilistic chance constraints, ensuring more reliable and efficient navigation under uncertainty. Unlike gradient-based MPC methods, our approach (i) avoids linearization of system dynamics and directly applies non-convex and nonlinear chance constraints, enabling more accurate and flexible optimization, and (ii) enhances computational efficiency by reformulating probabilistic constraints into a deterministic form and employing a layered dynamic obstacle representation, enabling real-time handling of multiple obstacles. Extensive experiments in simulated and real-world human-shared environments validate the effectiveness of our algorithm against baseline methods, showcasing its capability to generate feasible trajectories and control inputs that adhere to system dynamics and constraints in dynamic settings, enabled by unscented-based sampling strategy and risk-sensitive trajectory evaluation. A supplementary video is available at: https://youtu.be/FptAhvJlQm8
comment: This paper has 8 pages, 2 figures, 5 tables
☆ A Survey on IBR Penetrated Power System Stability Analysis Using Frequency Scanning
The rapid rise in inverter-based renewable resources has heightened concerns over subsynchronous resonance and oscillations, thereby challenging grid stability. This paper reviews approaches to identify and mitigate these issues, focusing on frequency scanning methods for stability assessment. It categorizes white-, black-, and gray-box modeling techniques, compares positive-sequence, dq-frame, and alpha-beta domain scanning, and examines perturbation shapes like step, ramp, and chirp. A comparative study highlights their strengths, limitations, and suitability for specific scenarios. By summarizing past events and surveying available tools, this work guides operators and researchers toward more effective, reliable stability analysis methods in grids with high renewable penetration.
☆ Estimation-Aware Trajectory Optimization with Set-Valued Measurement Uncertainties
In this paper, we present an optimization-based framework for generating estimation-aware trajectories in scenarios where measurement (output) uncertainties are state-dependent and set-valued. The framework leverages the concept of regularity for set-valued output maps. Specifically, we demonstrate that, for output-regular maps, one can utilize a set-valued observability measure that is concave with respect to finite-horizon state trajectories. By maximizing this measure, optimized estimation-aware trajectories can be designed for a broad class of systems, including those with locally linearized dynamics. To illustrate the effectiveness of the proposed approach, we provide a representative example in the context of trajectory planning for vision-based estimation. We present an estimation-aware trajectory for an uncooperative target-tracking problem that uses a machine learning (ML)-based estimation module on an ego-satellite.
comment: 25 pages, 5 figures
☆ Reducing real-time complexity via sub-control Lyapunov functions: from theory to experiments
The techniques to design control Lyapunov functions (CLF), along with a proper stabilizing feedback, possibly in the presence of constraints, often provide control laws that are too complex for proper implementation online, especially when an optimization problem is involved. In this work, we show how to acquire an alternative, computationally attractive feedback. Given a nominal CLF and a nominal state feedback, we say that a different positive definite function is a Sub-control Lyapunov function (SCLF) if its Lyapunov derivative is negative-definite and bounded above by the Lyapunov derivative of the nominal function with the nominal control. It turns out that if we consider a family of basis functions, then a SCLF can be computed by linear programming, with an infinite number of constraints. The idea is that although the offline computational burden to achieve the new controller and solve the linear program is considerable, the online computational burden is drastically reduced. Comprehensive simulations and experiments on drone control are conducted to demonstrate the effectiveness of the study.
♻ ☆ A Discrete-sequence Dataset for Evaluating Online Unsupervised Anomaly Detection Approaches for Multivariate Time Series
Benchmarking anomaly detection approaches for multivariate time series is challenging due to the lack of high-quality datasets. Current publicly available datasets are too small, not diverse and feature trivial anomalies, which hinders measurable progress in this research area. We propose a solution: a diverse, extensive, and non-trivial dataset generated via state-of-the-art simulation tools that reflects realistic behaviour of an automotive powertrain, including its multivariate, dynamic and variable-state properties. To cater for both unsupervised and semi-supervised anomaly detection settings, as well as time series generation and forecasting, we make different versions of the dataset available, where training and test subsets are offered in contaminated and clean versions, depending on the task. We also provide baseline results from a small selection of approaches based on deterministic and variational autoencoders, as well as a non-parametric approach. As expected, the baseline experimentation shows that the approaches trained on the semi-supervised version of the dataset outperform their unsupervised counterparts, highlighting a need for approaches more robust to contaminated training data.
comment: Submitted to the IEEE Transactions on Reliability journal
♻ ☆ Enforcing contraction via data
We present data-based conditions for enforcing contractivity via feedback control and obtain desired asymptotic properties of the closed-loop system. We focus on unknown nonlinear control systems whose vector fields are expressible via a dictionary of functions and derive data-dependent semidefinite programs whose solution returns the controller that guarantees contractivity. When data are perturbed by disturbances that are linear combinations of sinusoids of known frequencies (but unknown amplitude and phase) and constants, we remarkably obtain conditions for contractivity that do not depend on the magnitude of the disturbances, with imaginable positive consequences for the synthesis of the controller. Finally, we show how to design from data an integral controller for nonlinear systems that achieves constant reference tracking and constant disturbance rejection.
♻ ☆ SupplyGraph: A Benchmark Dataset for Supply Chain Planning using Graph Neural Networks AAAI 2024
Graph Neural Networks (GNNs) have gained traction across different domains such as transportation, bio-informatics, language processing, and computer vision. However, there is a noticeable absence of research on applying GNNs to supply chain networks. Supply chain networks are inherently graph-like in structure, making them prime candidates for applying GNN methodologies. This opens up a world of possibilities for optimizing, predicting, and solving even the most complex supply chain problems. A major setback in this approach lies in the absence of real-world benchmark datasets to facilitate the research and resolution of supply chain problems using GNNs. To address the issue, we present a real-world benchmark dataset for temporal tasks, obtained from one of the leading FMCG companies in Bangladesh, focusing on supply chain planning for production purposes. The dataset includes temporal data as node features to enable sales predictions, production planning, and the identification of factory issues. By utilizing this dataset, researchers can employ GNNs to address numerous supply chain problems, thereby advancing the field of supply chain analytics and planning. Source: https://github.com/CIOL-SUST/SupplyGraph
comment: Accepted to 4th workshop on Graphs and more Complex structures for Learning and Reasoning, colocated with AAAI 2024
♻ ☆ Implications of Zoning Ordinances for Rural Utility-Scale Solar Deployment and Power System Decarbonization in the Great Lakes Region
Local zoning ordinances across the United States have the impact of restricting development of energy infrastructure, including utility-scale solar photovoltaics. While these ordinances may be developed for legitimate purposes to protect public health and safety, they could impede or increase costs of power sector decarbonization. We quantify the role of utility-scale solar zoning ordinances on power sector decarbonization across the Great Lakes region (Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin) by integrating 6,300 rural community zoning ordinances into a power system planning model. Relative to no ordinances, solar zoning ordinances reduce total potential deployment of solar PV by 52% (or 1.6 TW) across our region. Currently, however, the biggest zoning barrier to deployment is zoning ordinances which are silent on utility-scale solar. Deployment restrictions translate to up to 4 GW greater investment needs and 5.6% greater PV investment costs to achieve a 10% PV generation target. Starker shifts occur at the state level, e.g. Wisconsin sees a 40% reduction in PV investments due to zoning restrictions. Our results underscore the need for planning that aligns local zoning laws with state and regional goals.
♻ ☆ EdgeSight: Enabling Modeless and Cost-Efficient Inference at the Edge
Traditional ML inference is evolving toward modeless inference, which abstracts the complexity of model selection from users, allowing the system to automatically choose the most appropriate model for each request based on accuracy and resource requirements. While prior studies have focused on modeless inference within data centers, this paper tackles the pressing need for cost-efficient modeless inference at the edge -- particularly within its unique constraints of limited device memory, volatile network conditions, and restricted power consumption. To overcome these challenges, we propose EdgeSight, a system that provides cost-efficient EdgeSight serving for diverse DNNs at the edge. EdgeSight employs an edge-data center (edge-DC) architecture, utilizing confidence scaling to reduce the number of model options while meeting diverse accuracy requirements. Additionally, it supports lossy inference in volatile network environments. Our experimental results show that EdgeSight outperforms existing systems by up to 1.6x in P99 latency for modeless services. Furthermore, our FPGA prototype demonstrates similar performance at certain accuracy levels, with a power consumption reduction of up to 3.34x.
comment: 12 pages
♻ ☆ On the Surprising Effectiveness of Spectrum Clipping in Learning Stable Linear Dynamics
When learning stable linear dynamical systems from data, three important properties are desirable: i) predictive accuracy, ii) provable stability, and iii) computational efficiency. Unconstrained minimization of reconstruction errors leads to high accuracy and efficiency but cannot guarantee stability. Existing methods to remedy this focus on enforcing stability while also ensuring accuracy, but do so only at the cost of increased computation. In this work, we investigate if a straightforward approach can simultaneously offer all three desiderata of learning stable linear systems. Specifically, we consider a post-hoc approach that manipulates the spectrum of the learned system matrix after it is learned in an unconstrained fashion. We call this approach spectrum clipping (SC) as it involves eigen decomposition and subsequent reconstruction of the system matrix after clipping all of its eigenvalues that are larger than one to one (without altering the eigenvectors). Through detailed experiments involving two different applications and publicly available benchmark datasets, we demonstrate that this simple technique can simultaneously learn highly accurate linear systems that are provably stable. Notably, we demonstrate that SC can achieve similar or better performance than strong baselines while being orders-of-magnitude faster. We also show that SC can be readily combined with Koopman operators to learn stable nonlinear dynamics, such as those underlying complex dexterous manipulation skills involving multi-fingered robotic hands. Further, we find that SC can learn stable robot policies even when the training data includes unsuccessful or truncated demonstrations. Our codes and dataset can be found at https://github.com/GT-STAR-Lab/spec_clip.
comment: Under review by L4DC 2025
♻ ☆ Performance-Barrier Event-Triggered PDE Control of Traffic Flow
For stabilizing stop-and-go oscillations in traffic flow by actuating a variable speed limit (VSL) at a downstream boundary of a freeway segment, we introduce event-triggered PDE backstepping designs employing the recent concept of performance-barrier event-triggered control (P-ETC). Our design is for linearized hyperbolic Aw-Rascle-Zhang (ARZ) PDEs governing traffic velocity and density. Compared to continuous feedback, ETC provides a piecewise-constant VSL commands-more likely to be obeyed by human drivers. Unlike the existing regular ETC (R-ETC), which enforces conservatively a strict decrease of a Lyapunov function, our performance-barrier (P-ETC) approach permits an increase, as long as the Lyapunov function remains below a performance barrier, resulting in fewer control updates than R-ETC. To relieve VSL from continuously monitoring the triggering function, we also develop periodic event-triggered (PETC) and self-triggered (STC) versions of both R-ETC and P-ETC. These are referred to as R/P-PETC and R/P-STC, respectively, and we show that they both guarantee Zeno-free behavior and exponential convergence in the spatial $L^2$ norm. With comparative simulations, we illustrate the benefits of the performance-barrier designs through traffic metrics (driver comfort, safety, travel time, fuel consumption). The proposed algorithms reduce discomfort nearly in half relative to driver behavior without VSL, while tripling the driver safety, measured by the average dwell time, relative to the R-ETC frequent-switching VSL schedule.
♻ ☆ Exploring the 6G Potentials: Immersive, Hyper Reliable, and Low-Latency Communication
The transition towards the sixth-generation (6G) wireless telecommunications networks introduces significant challenges for researchers and industry stakeholders. The 6G technology aims to enhance existing usage scenarios through supporting innovative applications that require stringent key performance indicators (KPIs). In some critical use cases of 6G, multiple KPIs, including immersive throughput, with an envisioned peak data rate of $1$ Tbps, hyper-reliability, in the range of $10^{-5}$ to $10^{-7}$, and hyper low-latency, between $0.1$ and $1$ ms, must be achieved simultaneously to deliver the expected service experience. However, this is challenging due to the conflicting nature of these KPIs. This article proposes a new service class of 6G as immersive, hyper reliable, and low-latency communication (IHRLLC), and introduces a potential network architecture to achieve the associated KPIs. Specifically, enhanced technologies, such as ultra-massive multiple-input multiple-output (umMIMO)-aided terahertz (THz) communications, reconfigurable intelligent surfaces (RIS), and non-terrestrial networks (NTN), are viewed as the key enablers for achieving immersive data rates and hyper reliability. Given the computational complexity involved in employing these technologies, we propose mathematical and computational enabling technologies, such as learn-to-optimize (L2O), generative-AI (GenAI), quantum computing, and network digital twin (NDT), to complement the proposed architecture and optimize the latency.
♻ ☆ Lateral String Stability in Autonomous & Connected Vehicle Platoons
This paper addresses the lateral control of Autonomous and Connected Vehicles (ACVs) in a platoon executing an Emergency Lane Change (ELC) maneuver. These maneuvers are typically triggered by emergency signals from the front or rear of the platoon in response to the need to avoid obstacles or allow other vehicles to pass. The study assumes that ACVs maintain reliable connectivity, enabling each following vehicle to access GPS position traces of both the lead and immediately preceding vehicles in the platoon. We demonstrate that lateral string stability in the ACV platoon can be achieved using communicated information solely from the lead and preceding vehicles. Additionally, we present a lateral control framework for ACVs, which helps track a discretized preview of the trajectory constructed from the communicated data. This framework involves constructing two distinct trajectories based on the preview data from the lead and preceding vehicles, calculating the associated errors and lateral control actions for each, and then integrating these to generate a steering command. Numerical results validate the effectiveness of the proposed lateral control scheme.
comment: 18th IEEE International Conference on Vehicular Electronics and Safety 2024 (ICVES)
Optimization and Control 33
☆ A consensus-based optimization method for nonsmooth nonconvex programs with approximated gradient descent scheme
In this paper, we are interested in finding the global minimizer of a nonsmooth nonconvex unconstrained optimization problem. By combining the discrete consensus-based optimization (CBO) algorithm and the gradient descent method, we develop a novel CBO algorithm with an extra gradient descent scheme evaluated by the forward-difference technique on the function values, where only the objective function values are used in the proposed algorithm. First, we prove that the proposed algorithm can exhibit global consensus in an exponential rate in two senses and possess a unique global consensus point. Second, we evaluate the error estimate between the objective function value on the global consensus point and its global minimum. In particular, as the parameter $\beta$ tends to $\infty$, the error converges to zero and the convergence rate is $\mathcal{O}\left(\frac{\log\beta}{\beta}\right)$. Third, under some suitable assumptions on the objective function, we provide the number of iterations required for the mean square error in expectation to reach the desired accuracy. It is worth underlining that the theoretical analysis in this paper does not use the mean-field limit. Finally, we illustrate the improved efficiency and promising performance of our novel CBO method through some experiments on several nonconvex benchmark problems and the application to train deep neural networks.
☆ PAC Learnability of Scenario Decision-Making Algorithms: Necessary and Sufficient Conditions
We study the PAC property of scenario decision-making algorithms, that is, the ability to make a decision that has an arbitrarily low risk of violating an unknown safety constraint, provided sufficiently many realizations (called scenarios) of the safety constraint are sampled. Sufficient conditions for scenario decision-making algorithms to be PAC are available in the literature, such as finiteness of the VC dimension of its associated classifier and existence of a compression scheme. We study the question of whether these sufficient conditions are also necessary. We show with counterexamples that this is not the case in general. This contrasts with binary classification learning, for which the analogous conditions are sufficient and necessary. Popular scenario decision-making algorithms, such as scenario optimization, enjoy additional properties, such as stability and consistency. We show that even under these additional assumptions the above conclusions hold. Finally, we derive a necessary condition for scenario decision-making algorithms to be PAC, inspired by the VC dimension and the so-called no-free-lunch theorem.
☆ Improved Compression Bounds for Scenario Decision Making
Scenario decision making offers a flexible way of making decision in an uncertain environment while obtaining probabilistic guarantees on the risk of failure of the decision. The idea of this approach is to draw samples of the uncertainty and make a decision based on the samples, called "scenarios". The probabilistic guarantees take the form of a bound on the probability of sampling a set of scenarios that will lead to a decision whose risk of failure is above a given maximum tolerance. This bound can be expressed as a function of the number of sampled scenarios, the maximum tolerated risk, and some intrinsic property of the problem called the "compression size". Several such bounds have been proposed in the literature under various assumptions on the problem. We propose new bounds that improve upon the existing ones without requiring stronger assumptions on the problem.
☆ Markov decision processes: on the convergence of the Monte-Carlo first visit algorithm
We consider the Monte-Carlo first visit algorithm, of which the goal is to find the optimal control in a Markov decision process with finite state space and finite number of possible actions. We show its convergence when the discount factor is smaller than $1/2$.
☆ Nesterov Acceleration for Ensemble Kalman Inversion and Variants
Ensemble Kalman inversion (EKI) is a derivative-free, particle-based optimization method for solving inverse problems. It can be shown that EKI approximates a gradient flow, which allows the application of methods for accelerating gradient descent. Here, we show that Nesterov acceleration is effective in speeding up the reduction of the EKI cost function on a variety of inverse problems. We also implement Nesterov acceleration for two EKI variants, unscented Kalman inversion and ensemble transform Kalman inversion. Our specific implementation takes the form of a particle-level nudge that is demonstrably simple to couple in a black-box fashion with any existing EKI variant algorithms, comes with no additional computational expense, and with no additional tuning hyperparameters. This work shows a pathway for future research to translate advances in gradient-based optimization into advances in gradient-free Kalman optimization.
☆ Major-Minor Mean Field Game of Stopping: An Entropy Regularization Approach
This paper studies a discrete-time major-minor mean field game of stopping where the major player can choose either an optimal control or stopping time. We look for the relaxed equilibrium as a randomized stopping policy, which is formulated as a fixed point of a set-valued mapping, whose existence is challenging by direct arguments. To overcome the difficulties caused by the presence of a major player, we propose to study an auxiliary problem by considering entropy regularization in the major player's problem while formulating the minor players' optimal stopping problems as linear programming over occupation measures. We first show the existence of regularized equilibria as fixed points of some simplified set-valued operator using the Kakutani-Fan-Glicksberg fixed-point theorem. Next, we prove that the regularized equilibrium converges as the regularization parameter $\lambda$ tends to 0, and the limit corresponds to a fixed point of the original operator, thereby confirming the existence of a relaxed equilibrium in the original mean field game problem.
comment: arXiv admin note: text overlap with arXiv:2210.03554 by other authors
☆ Extrapolated Hard Thresholding Algorithms with Finite Length for Composite $\ell_0$ Penalized Problems
For a class of sparse optimization problems with the penalty function of $\|(\cdot)_+\|_0$, we first characterize its local minimizers and then propose an extrapolated hard thresholding algorithm to solve such problems. We show that the iterates generated by the proposed algorithm with $\epsilon>0$ (where $\epsilon$ is the dry friction coefficient) have finite length, without relying on the Kurdyka-{\L}ojasiewicz inequality. Furthermore, we demonstrate that the algorithm converges to an $\epsilon$-local minimizer of this problem. For the special case that $\epsilon=0$, we establish that any accumulation point of the iterates is a local minimizer of the problem. Additionally, we analyze the convergence when an error term is present in the algorithm, showing that the algorithm still converges in the same manner as before, provided that the errors asymptotically approach zero. Finally, we conduct numerical experiments to verify the theoretical results of the proposed algorithm.
☆ Kernel EDMD for data-driven nonlinear Koopman MPC with stability guarantees
Extended dynamic mode decomposition (EDMD) is a popular data-driven method to predict the action of the Koopman operator, i.e., the evolution of an observable function along the flow of a dynamical system. In this paper, we leverage a recently-introduced kernel EDMD method for control systems for data-driven model predictive control. Building upon pointwise error bounds proportional in the state, we rigorously show practical asymptotic stability of the origin w.r.t. the MPC closed loop without stabilizing terminal conditions. The key novelty is that we avoid restrictive invariance conditions. Last, we verify our findings by numerical simulations.
comment: 11 pages, 2 figures
☆ Optimal control of counter-terrorism tactics
This paper presents an optimal control problem to analyze the efficacy of counter-terrorism tactics. We present an algorithm that efficiently combines the Minimum Principle of Pontryagin, the shooting method and the cyclic descent of coordinates. We also present a result that allows us to know a priori the steady state solutions. Using this technique we are able to choose parameters that reach a specific solution, of which there are two. Numerical examples are presented to illustrate the possibilities of the method. Finally, we study the sufficient conditions for optimality and suggest an improvement on the functional which also guarantees local optimality.
☆ Some remarks on practical stabilization via CLF-based control under measurement noise
Practical stabilization of input-affine systems in the presence of measurement errors and input constraints is considered in this brief note. Assuming that a Lyapunov function and a stabilizing control exist for an input-affine system, the required measurement accuracy at each point of the state space is computed. This is done via the Lyapunov function-based decay condition, which describes along with the input constraints a set of admissible controls. Afterwards, the measurement time points are computed based on the system dynamics. It is shown that between these self-triggered measurement time points, the system evolves and converges into the so-called target ball, i.e. a vicinity of the origin, where it remains. Furthermore, it is shown that the approach ensures the existence of a control law, which is admissible for all possible states and it introduces a connection between measurement time points, measurement accuracy, target ball, and decay. The results of the approach are shown in three examples.
comment: 14 pages, 8 figures, DOI 10.1109/ACCESS.2024.3521048
☆ $H^\infty$-control for a class of boundary controlled hyperbolic PDEs
A solution to the suboptimal $H^\infty$-control problem is given for a class of hyperbolic partial differential equations (PDEs). The first result of this manuscript shows that the considered class of PDEs admits an equivalent representation as an infinite-dimensional discrete-time system. Taking advantage of this, this manuscript shows that it is equivalent to solve the suboptimal $H^\infty$-control problem for a finite-dimensional discrete-time system whose matrices are derived from the PDEs. After computing the solution to this much simpler problem, the solution to the original problem can be deduced easily. In particular, the optimal compensator solution to the suboptimal $H^\infty$-control problem is governed by a set of hyperbolic PDEs, actuated and observed at the boundary. We illustrate our results with a boundary controlled and boundary observed vibrating string.
☆ Geometry of Sparsity-Inducing Norms
Sparse optimization seeks an optimal solution with few nonzero entries. To achieve this, it is common to add to the criterion a penalty term proportional to the $\ell_1$-norm, which is recognized as the archetype of sparsity-inducing norms. In this approach, the number of nonzero entries is not controlled a priori. By contrast, in this paper, we focus on finding an optimal solution with at most~$k$ nonzero coordinates (or for short, $k$-sparse vectors), where $k$ is a given sparsity level (or ``sparsity budget''). For this purpose, we study the class of generalized $k$-support norms that arise from a given source norm. When added as a penalty term, we provide conditions under which such generalized $k$-support norms promote $k$-sparse solutions. The result follows from an analysis of the exposed faces of closed convex sets generated by $k$-sparse vectors, and of how primal support identification can be deduced from dual information. Finally, we study some of the geometric properties of the unit balls for the $k$-support norms and their dual norms when the source norm belongs to the family of $\ell_p$-norms.
☆ Differentiable Singular Value Decomposition
Singular value decomposition is widely used in modal analysis, such as proper orthogonal decomposition and resolvent analysis, to extract key features from complex problems. SVD derivatives need to be computed efficiently to enable the large scale design optimization. However, for a general complex matrix, no method can accurately compute this derivative to machine precision and remain scalable with respect to the number of design variables without requiring the all of the singular variables. We propose two algorithms to efficiently compute this derivative based on the adjoint method and reverse automatic differentiation and RAD-based singular value derivative formula. Differentiation results for each method proposed were compared with FD results for one square and one tall rectangular matrix example and matched with the FD results to about 5 to 7 digits. Finally, we demonstrate the scalability of the proposed method by calculating the derivatives of singular values with respect to the snapshot matrix derived from the POD of a large dataset for a laminar-turbulent transitional flow over a flat plate, sourced from the John Hopkins turbulence database.
comment: 52 pages , 4 tables, 2 figures
☆ Estimation-Aware Trajectory Optimization with Set-Valued Measurement Uncertainties
In this paper, we present an optimization-based framework for generating estimation-aware trajectories in scenarios where measurement (output) uncertainties are state-dependent and set-valued. The framework leverages the concept of regularity for set-valued output maps. Specifically, we demonstrate that, for output-regular maps, one can utilize a set-valued observability measure that is concave with respect to finite-horizon state trajectories. By maximizing this measure, optimized estimation-aware trajectories can be designed for a broad class of systems, including those with locally linearized dynamics. To illustrate the effectiveness of the proposed approach, we provide a representative example in the context of trajectory planning for vision-based estimation. We present an estimation-aware trajectory for an uncooperative target-tracking problem that uses a machine learning (ML)-based estimation module on an ego-satellite.
comment: 25 pages, 5 figures
☆ Extended Triangle Inequalities for Nonconvex Box-Constrained Quadratic Programming
Let $\rm{Box}_n = \{x \in \mathbb{R}^n : 0 \leq x \leq e \}$, and let $\rm{QPB}_n$ denote the convex hull of $\{(1, x')'(1, x') : x \in \rm{Box}_n\}$. The quadratic programming problem $\min\{x'Q x + q'x : x \in \rm{Box}_n\}$ where $Q$ is not positive semidefinite (PSD), is equivalent to a linear optimization problem over $\rm{QPB}_n$ and could be efficiently solved if a tractable characterization of $\rm{QPB}_n$ was available. It is known that $\rm{QPB}_2$ can be represented using a PSD constraint combined with constraints generated using the reformulation-linearization technique (RLT). The triangle (TRI) inequalities are also valid for $\rm{QPB}_3$, but the PSD, RLT and TRI constraints together do not fully characterize $\rm{QPB}_3$. In this paper we describe new valid linear inequalities for $\rm{QPB}_n$, $n \geq 3$ based on strengthening the approximation of $\rm{QPB}_3$ given by the PSD, RLT and TRI constraints. These new inequalities are generated in a systematic way using a known disjunctive characterization for $\rm{QPB}_3$. We also describe a conic strengthening of the linear inequalities that incorporates second-order cone constraints. We show computationally that the new inequalities and their conic strengthenings obtain exact solutions for some nonconvex box-constrained instances that are not solved exactly using the PSD, RLT and TRI constraints.
☆ Reducing real-time complexity via sub-control Lyapunov functions: from theory to experiments
The techniques to design control Lyapunov functions (CLF), along with a proper stabilizing feedback, possibly in the presence of constraints, often provide control laws that are too complex for proper implementation online, especially when an optimization problem is involved. In this work, we show how to acquire an alternative, computationally attractive feedback. Given a nominal CLF and a nominal state feedback, we say that a different positive definite function is a Sub-control Lyapunov function (SCLF) if its Lyapunov derivative is negative-definite and bounded above by the Lyapunov derivative of the nominal function with the nominal control. It turns out that if we consider a family of basis functions, then a SCLF can be computed by linear programming, with an infinite number of constraints. The idea is that although the offline computational burden to achieve the new controller and solve the linear program is considerable, the online computational burden is drastically reduced. Comprehensive simulations and experiments on drone control are conducted to demonstrate the effectiveness of the study.
☆ Gradient Descent Converges Linearly to Flatter Minima than Gradient Flow in Shallow Linear Networks
We study the gradient descent (GD) dynamics of a depth-2 linear neural network with a single input and output. We show that GD converges at an explicit linear rate to a global minimum of the training loss, even with a large stepsize -- about $2/\textrm{sharpness}$. It still converges for even larger stepsizes, but may do so very slowly. We also characterize the solution to which GD converges, which has lower norm and sharpness than the gradient flow solution. Our analysis reveals a trade off between the speed of convergence and the magnitude of implicit regularization. This sheds light on the benefits of training at the ``Edge of Stability'', which induces additional regularization by delaying convergence and may have implications for training more complex models.
comment: 23 pages, 3 figures
☆ Least-Squares Problem Over Probability Measure Space
In this work, we investigate the variational problem $$\rho_x^\ast = \text{argmin}_{\rho_x} D(G\#\rho_x, \rho_y)\,, $$ where $D$ quantifies the difference between two probability measures, and ${G}$ is a forward operator that maps a variable $x$ to $y=G(x)$. This problem can be regarded as an analogue of its counterpart in linear spaces (e.g., Euclidean spaces), $\text{argmin}_x \|G(x) - y\|^2$. Similar to how the choice of norm $\|\cdot\|$ influences the optimizer in $\mathbb R^d$ or other linear spaces, the minimizer in the probabilistic variational problem also depends on the choice of $D$. Our findings reveal that using a $\phi$-divergence for $D$ leads to the recovery of a conditional distribution of $\rho_y$, while employing the Wasserstein distance results in the recovery of a marginal distribution.
comment: 5 pages, 0 figures
☆ Stochastic Optimal Control of Prosumers in a District Heating System
We consider a network of residential heating systems in which several prosumers satisfy their heating and hot water demand using solar thermal collectors and services of a central producer. Overproduction of heat can either be stored in a local thermal storage or sold to the network. Our focus is the minimization of the prosumers expected discounted total cost from purchasing and selling thermal energy and running the system. This decision making problem under uncertainty about the future production and consumption of thermal energy is formulated as a stochastic optimal control problem and solved with dynamic programming techniques. We present numerical results for the value function and the optimal control.
☆ The Mathematics of Artificial Intelligence
This overview article highlights the critical role of mathematics in artificial intelligence (AI), emphasizing that mathematics provides tools to better understand and enhance AI systems. Conversely, AI raises new problems and drives the development of new mathematics at the intersection of various fields. This article focuses on the application of analytical and probabilistic tools to model neural network architectures and better understand their optimization. Statistical questions (particularly the generalization capacity of these networks) are intentionally set aside, though they are of crucial importance. We also shed light on the evolution of ideas that have enabled significant advances in AI through architectures tailored to specific tasks, each echoing distinct mathematical techniques. The goal is to encourage more mathematicians to take an interest in and contribute to this exciting field.
♻ ☆ Dynamic Sensor Selection for Biomarker Discovery
Advances in methods of biological data collection are driving the rapid growth of comprehensive datasets across clinical and research settings. These datasets provide the opportunity to monitor biological systems in greater depth and at finer time steps than was achievable in the past. Classically, biomarkers are used to represent and track key aspects of a biological system. Biomarkers retain utility even with the availability of large datasets, since monitoring and interpreting changes in a vast number of molecules remains impractical. However, given the large number of molecules in these datasets, a major challenge is identifying the best biomarkers for a particular setting Here, we apply principles of observability theory to establish a general methodology for biomarker selection. We demonstrate that observability measures effectively identify biologically meaningful sensors in a range of time series transcriptomics data. Motivated by the practical considerations of biological systems, we introduce the method of dynamic sensor selection (DSS) to maximize observability over time, thus enabling observability over regimes where system dynamics themselves are subject to change. This observability framework is flexible, capable of modeling gene expression dynamics and using auxiliary data, including chromosome conformation, to select biomarkers. Additionally, we demonstrate the applicability of this approach beyond genomics by evaluating the observability of neural activity These applications demonstrate the utility of observability-guided biomarker selection for across a wide range of biological systems, from agriculture and biomanufacturing to neural applications and beyond.
comment: 21 pages, 9 figures
♻ ☆ Multi-Objective LQR with Linear Scalarization
The framework of decision-making, modeled as a Markov Decision Process (MDP), typically assumes a single objective. However, practical scenarios often involve tradeoffs between multiple objectives. We address this in the Linear Quadratic Regulator (LQR), a canonical continuous, infinite horizon MDP. First, we establish that the Pareto front for LQR is characterized by linear scalarization: a convex combination of objectives recovers all tradeoff points, making multi-objective LQR reducible to single-objective problems. This highlights an important instance where linear scalarization suffices for a non-convex problem. Second, we show the Pareto front is smooth, in that an $\epsilon$ perturbation of a scalarization parameter yields an $\epsilon$ approximation to the objective. These results inspire a simple algorithm to approximate the Pareto front via grid search over scalarization parameters, where each optimization problem retains the computational efficiency of single-objective LQR. Lastly, we extend the analysis to certainty equivalence, where unknown dynamics are replaced with estimates.
comment: 38 pages, 2 figures
♻ ☆ Separable approximations of optimal value functions under a decaying sensitivity assumption
An efficient approach for the construction of separable approximations of optimal value functions from interconnected optimal control problems is presented. The approach is based on assuming decaying sensitivities between subsystems, enabling a curse-of-dimensionality free approximation, for instance by deep neural networks.
♻ ☆ A Unifying System Theory Framework for Distributed Optimization and Games
This paper introduces a systematic methodological framework to design and analyze distributed algorithms for optimization and games over networks. Starting from a centralized method, we identify an aggregation function involving all the decision variables (e.g., a global cost gradient or constraint) and introduce a distributed consensus-oriented scheme to asymptotically approximate the unavailable information at each agent. Then, we delineate the proper methodology for intertwining the identified building blocks, i.e., the optimization-oriented method and the consensus-oriented one. The key intuition is to interpret the obtained interconnection as a singularly perturbed system. We rely on this interpretation to provide sufficient conditions for the building blocks to be successfully connected into a distributed scheme exhibiting the convergence guarantees of the centralized algorithm. Finally, we show the potential of our approach by developing a new distributed scheme for constraint-coupled problems with a linear convergence rate.
♻ ☆ An Overview of Convergence Rates for Sum of Squares Hierarchies in Polynomial Optimization
In this survey we consider polynomial optimization problems, asking to minimize a polynomial function over a compact semialgebraic set, defined by polynomial inequalities. This models a great variety of (in general, nonlinear nonconvex) optimization problems. Various hierarchies of (lower and upper) bounds have been introduced, having the remarkable property that they converge asymptotically to the global minimum. These bounds exploit algebraic representations of positive polynomials in terms of sums of squares and can be computed using semidefinite optimization. Our focus lies in the performance analysis of these hierarchies of bounds, namely, in how far the bounds are from the global minimum as the degrees of the sums of squares they involve tend to infinity. We present the main state-of-the-art results and offer a gentle introductory overview over the various techniques that have been recently developed to establish them, stemming from the theory of orthogonal polynomials, approximation theory, Fourier analysis, and more.
comment: v2: Made minor change to title. Fixed several typos. Updated caption of Table 2
♻ ☆ Extended convexity and smoothness and their applications in deep learning
This paper introduces an optimization framework aimed at providing a theoretical foundation for a class of composite optimization problems, particularly those encountered in deep learning. In this framework, we introduce $\mathcal{H}(\phi)$-convexity and $\mathcal{H}(\Phi)$-smoothness to generalize the existing concepts of Lipschitz smoothness and strong convexity. Furthermore, we analyze and establish the convergence of both gradient descent and stochastic gradient descent methods for objective functions that are $\mathcal{H}(\Phi)$-smooth. We prove that the optimal convergence rates of these methods depend solely on the homogeneous degree of $\Phi$. Based on these findings, we construct two types of non-convex and non-smooth optimization problems: deterministic composite and stochastic composite optimization problems, which encompass the majority of optimization problems in deep learning. To address these problems, we develop the gradient structure control algorithm and prove that it can locate approximate global optima. This marks a significant departure from traditional non-convex analysis framework, which typically settle for stationary points. Therefore, with the introduction of $\mathcal{H}(\phi)$-convexity and $\mathcal{H}(\Phi)$-smoothness, along with the GSC algorithm, the non-convex optimization mechanisms in deep learning can be theoretically explained and supported. Finally, the effectiveness of the proposed framework is substantiated through empirical experimentation.
♻ ☆ An Accelerated Algorithm for Stochastic Bilevel Optimization under Unbounded Smoothness NeurIPS 2024
This paper investigates a class of stochastic bilevel optimization problems where the upper-level function is nonconvex with potentially unbounded smoothness and the lower-level problem is strongly convex. These problems have significant applications in sequential data learning, such as text classification using recurrent neural networks. The unbounded smoothness is characterized by the smoothness constant of the upper-level function scaling linearly with the gradient norm, lacking a uniform upper bound. Existing state-of-the-art algorithms require $\widetilde{O}(1/\epsilon^4)$ oracle calls of stochastic gradient or Hessian/Jacobian-vector product to find an $\epsilon$-stationary point. However, it remains unclear if we can further improve the convergence rate when the assumptions for the function in the population level also hold for each random realization almost surely. To address this issue, we propose a new Accelerated Bilevel Optimization algorithm named AccBO. The algorithm updates the upper-level variable by normalized stochastic gradient descent with recursive momentum and the lower-level variable by the stochastic Nesterov accelerated gradient descent algorithm with averaging. We prove that our algorithm achieves an oracle complexity of $\widetilde{O}(1/\epsilon^3)$ to find an $\epsilon$-stationary point, when the lower-level stochastic gradient's variance is $O(\epsilon)$. Our proof relies on a novel lemma characterizing the dynamics of stochastic Nesterov accelerated gradient descent algorithm under distribution drift with high probability for the lower-level variable, which is of independent interest and also plays a crucial role in analyzing the hypergradient estimation error over time. Experimental results on various tasks confirm that our proposed algorithm achieves the predicted theoretical acceleration and significantly outperforms baselines in bilevel optimization.
comment: Accepted by NeurIPS 2024. The code is available at https://github.com/MingruiLiu-ML-Lab/Accelerated-Bilevel-Optimization-Unbounded-Smoothness
♻ ☆ Analytic Formulas for Alternating Projection Sequences for the Positive Semidefinite Cone and an Application to Convergence Analysis
We derive analytic formulas for the alternating projection method applied to the cone $\mathbb{S}^n_+$ of positive semidefinite matrices and an affine subspace. More precisely, we find recursive relations on parameters representing a sequence constructed by the alternating projection method. By applying these formulas, we analyze the alternating projection method in detail and show that the upper bound given by the singularity degree is actually tight when the alternating projection method is applied to $\mathbb{S}^3_+$ and a $3$-plane whose intersection is a singleton with singularity degree $2$.
comment: 31 pages, 5 figures
♻ ☆ An accelerated gradient method with adaptive restart for convex multiobjective optimization problems
In this work, based on the continuous time approach, we propose an accelerated gradient method with adaptive residual restart for convex multiobjective optimization problems. For the first, we derive rigorously the continuous limit of the multiobjective accelerated proximal gradient method by Tanabe et al. [Comput. Optim. Appl., 2023]. It is a second-order ordinary differential equation (ODE) that involves a special projection operator and can be viewed as an extension of the ODE by Su et al. [J. Mach. Learn. Res., 2016] for Nesterov's accelerated gradient method. Then, we introduce a novel accelerated multiobjective gradient (AMG) flow with tailored time scaling that adapts automatically to the convex case and the strongly convex case, and the exponential decay rate of a merit function along with the solution trajectory of AMG flow is established via the Lyapunov analysis. After that, we consider an implicit-explicit time discretization and obtain an accelerated multiobjective gradient method with a convex quadratic programming subproblem. The fast sublinear rate and linear rate are proved respectively for convex and strongly convex problems. In addition, we present an efficient residual based adaptive restart technique to overcome the oscillation issue and improve the convergence significantly. Numerical results are provided to validate the practical performance of the proposed method.
♻ ☆ Dual Cone Gradient Descent for Training Physics-Informed Neural Networks
Physics-informed neural networks (PINNs) have emerged as a prominent approach for solving partial differential equations (PDEs) by minimizing a combined loss function that incorporates both boundary loss and PDE residual loss. Despite their remarkable empirical performance in various scientific computing tasks, PINNs often fail to generate reasonable solutions, and such pathological behaviors remain difficult to explain and resolve. In this paper, we identify that PINNs can be adversely trained when gradients of each loss function exhibit a significant imbalance in their magnitudes and present a negative inner product value. To address these issues, we propose a novel optimization framework, Dual Cone Gradient Descent (DCGD), which adjusts the direction of the updated gradient to ensure it falls within a dual cone region. This region is defined as a set of vectors where the inner products with both the gradients of the PDE residual loss and the boundary loss are non-negative. Theoretically, we analyze the convergence properties of DCGD algorithms in a non-convex setting. On a variety of benchmark equations, we demonstrate that DCGD outperforms other optimization algorithms in terms of various evaluation metrics. In particular, DCGD achieves superior predictive accuracy and enhances the stability of training for failure modes of PINNs and complex PDEs, compared to existing optimally tuned models. Moreover, DCGD can be further improved by combining it with popular strategies for PINNs, including learning rate annealing and the Neural Tangent Kernel (NTK).
comment: The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024
♻ ☆ First-Order Methods for Nonsmooth Nonconvex Functional Constrained Optimization with or without Slater Points
Constrained optimization problems where both the objective and constraints may be nonsmooth and nonconvex arise across many learning and data science settings. In this paper, we show for any Lipschitz, weakly convex objectives and constraints, a simple first-order method finds a feasible, $\epsilon$-stationary point at a convergence rate of $O(\epsilon^{-4})$ without relying on compactness or Constraint Qualification (CQ). When CQ holds, this convergence is measured by approximately satisfying the Karush-Kuhn-Tucker conditions. When CQ fails, we guarantee the attainment of weaker Fritz-John conditions. As an illustrative example, our method stably converges on piecewise quadratic SCAD regularized problems despite frequent violations of constraint qualification. The considered algorithm is similar to those of "Quadratically regularized subgradient methods for weakly convex optimization with weakly convex constraints" by Ma et al. and "Stochastic first-order methods for convex and nonconvex functional constrained optimization" by Boob et al. (whose guarantees further assume compactness and CQ), iteratively taking inexact proximal steps, computed via an inner loop applying a switching subgradient method to a strongly convex constrained subproblem. Our non-Lipschitz analysis of the switching subgradient method appears to be new and may be of independent interest.
♻ ☆ Second-order methods for quartically-regularised cubic polynomials, with applications to high-order tensor methods
There has been growing interest in high-order tensor methods for nonconvex optimization, with adaptive regularization, as they possess better/optimal worst-case evaluation complexity globally and faster convergence asymptotically. These algorithms crucially rely on repeatedly minimizing nonconvex multivariate Taylor-based polynomial sub-problems, at least locally. Finding efficient techniques for the solution of these sub-problems, beyond the second-order case, has been an open question. This paper proposes a second-order method, Quadratic Quartic Regularisation (QQR), for efficiently minimizing nonconvex quartically-regularized cubic polynomials, such as the AR$p$ sub-problem [3] with $p=3$. Inspired by [35], QQR approximates the third-order tensor term by a linear combination of quadratic and quartic terms, yielding (possibly nonconvex) local models that are solvable to global optimality. In order to achieve accuracy $\epsilon$ in the first-order criticality of the sub-problem in finitely many iterations, we show that the error in the QQR method decreases either linearly or by at least $\mathcal{O}(\epsilon^{4/3})$ for locally convex iterations, while in the nonconvex case, by at least $\mathcal{O}(\epsilon)$; thus improving, on these types of iterations, the general cubic-regularization bound. Preliminary numerical experiments indicate that two QQR variants perform competitively with state-of-the-art approaches such as ARC (also known as AR$p$ with $p=2$), achieving either a lower objective value or iteration counts.
♻ ☆ Nonsmooth Nonconvex-Nonconcave Minimax Optimization: Primal-Dual Balancing and Iteration Complexity Analysis
Nonconvex-nonconcave minimax optimization has gained widespread interest over the last decade. However, most existing works focus on variants of gradient descent-ascent (GDA) algorithms, which are only applicable to smooth nonconvex-concave settings. To address this limitation, we propose a novel algorithm named smoothed proximal linear descent-ascent (smoothed PLDA), which can effectively handle a broad range of structured nonsmooth nonconvex-nonconcave minimax problems. Specifically, we consider the setting where the primal function has a nonsmooth composite structure and the dual function possesses the Kurdyka-Lojasiewicz (KL) property with exponent $\theta \in [0,1)$. We introduce a novel convergence analysis framework for smoothed PLDA, the key components of which are our newly developed nonsmooth primal error bound and dual error bound. Using this framework, we show that smoothed PLDA can find both $\epsilon$-game-stationary points and $\epsilon$-optimization-stationary points of the problems of interest in $\mathcal{O}(\epsilon^{-2\max\{2\theta,1\}})$ iterations. Furthermore, when $\theta \in [0,\frac{1}{2}]$, smoothed PLDA achieves the optimal iteration complexity of $\mathcal{O}(\epsilon^{-2})$. To further demonstrate the effectiveness and wide applicability of our analysis framework, we show that certain max-structured problem possesses the KL property with exponent $\theta=0$ under mild assumptions. As a by-product, we establish algorithm-independent quantitative relationships among various stationarity concepts, which may be of independent interest.
comment: Accepted for publication in Mathematical Programming
Computer Vision and Pattern Recognition 137
☆ Ouroboros-Diffusion: Exploring Consistent Content Generation in Tuning-free Long Video Diffusion
The first-in-first-out (FIFO) video diffusion, built on a pre-trained text-to-video model, has recently emerged as an effective approach for tuning-free long video generation. This technique maintains a queue of video frames with progressively increasing noise, continuously producing clean frames at the queue's head while Gaussian noise is enqueued at the tail. However, FIFO-Diffusion often struggles to keep long-range temporal consistency in the generated videos due to the lack of correspondence modeling across frames. In this paper, we propose Ouroboros-Diffusion, a novel video denoising framework designed to enhance structural and content (subject) consistency, enabling the generation of consistent videos of arbitrary length. Specifically, we introduce a new latent sampling technique at the queue tail to improve structural consistency, ensuring perceptually smooth transitions among frames. To enhance subject consistency, we devise a Subject-Aware Cross-Frame Attention (SACFA) mechanism, which aligns subjects across frames within short segments to achieve better visual coherence. Furthermore, we introduce self-recurrent guidance. This technique leverages information from all previous cleaner frames at the front of the queue to guide the denoising of noisier frames at the end, fostering rich and contextual global information interaction. Extensive experiments of long video generation on the VBench benchmark demonstrate the superiority of our Ouroboros-Diffusion, particularly in terms of subject consistency, motion smoothness, and temporal consistency.
☆ Multimodal LLMs Can Reason about Aesthetics in Zero-Shot
We present the first study on how Multimodal LLMs' (MLLMs) reasoning ability shall be elicited to evaluate the aesthetics of artworks. To facilitate this investigation, we construct MM-StyleBench, a novel high-quality dataset for benchmarking artistic stylization. We then develop a principled method for human preference modeling and perform a systematic correlation analysis between MLLMs' responses and human preference. Our experiments reveal an inherent hallucination issue of MLLMs in art evaluation, associated with response subjectivity. ArtCoT is proposed, demonstrating that art-specific task decomposition and the use of concrete language boost MLLMs' reasoning ability for aesthetics. Our findings offer valuable insights into MLLMs for art and can benefit a wide range of downstream applications, such as style transfer and artistic image generation. Code available at https://github.com/songrise/MLLM4Art.
comment: WIP, Homepage https://github.com/songrise/MLLM4Art
☆ SimGen: A Diffusion-Based Framework for Simultaneous Surgical Image and Segmentation Mask Generation
Acquiring and annotating surgical data is often resource-intensive, ethical constraining, and requiring significant expert involvement. While generative AI models like text-to-image can alleviate data scarcity, incorporating spatial annotations, such as segmentation masks, is crucial for precision-driven surgical applications, simulation, and education. This study introduces both a novel task and method, SimGen, for Simultaneous Image and Mask Generation. SimGen is a diffusion model based on the DDPM framework and Residual U-Net, designed to jointly generate high-fidelity surgical images and their corresponding segmentation masks. The model leverages cross-correlation priors to capture dependencies between continuous image and discrete mask distributions. Additionally, a Canonical Fibonacci Lattice (CFL) is employed to enhance class separability and uniformity in the RGB space of the masks. SimGen delivers high-fidelity images and accurate segmentation masks, outperforming baselines across six public datasets assessed on image and semantic inception distance metrics. Ablation study shows that the CFL improves mask quality and spatial separation. Downstream experiments suggest generated image-mask pairs are usable if regulations limit human data release for research. This work offers a cost-effective solution for generating paired surgical images and complex labels, advancing surgical AI development by reducing the need for expensive manual annotations.
comment: 12 pages, 17 figures, 4 tables, project page at https://camma-public.github.io/endogen/
☆ Vision Foundation Models for Computed Tomography
Foundation models (FMs) have shown transformative potential in radiology by performing diverse, complex tasks across imaging modalities. Here, we developed CT-FM, a large-scale 3D image-based pre-trained model designed explicitly for various radiological tasks. CT-FM was pre-trained using 148,000 computed tomography (CT) scans from the Imaging Data Commons through label-agnostic contrastive learning. We evaluated CT-FM across four categories of tasks, namely, whole-body and tumor segmentation, head CT triage, medical image retrieval, and semantic understanding, showing superior performance against state-of-the-art models. Beyond quantitative success, CT-FM demonstrated the ability to cluster regions anatomically and identify similar anatomical and structural concepts across scans. Furthermore, it remained robust across test-retest settings and indicated reasonable salient regions attached to its embeddings. This study demonstrates the value of large-scale medical imaging foundation models and by open-sourcing the model weights, code, and data, aims to support more adaptable, reliable, and interpretable AI solutions in radiology.
comment: 6 figures, followed by 9 Extended Data Figures and a Supplementary Information document
☆ RepVideo: Rethinking Cross-Layer Representation for Video Generation
Video generation has achieved remarkable progress with the introduction of diffusion models, which have significantly improved the quality of generated videos. However, recent research has primarily focused on scaling up model training, while offering limited insights into the direct impact of representations on the video generation process. In this paper, we initially investigate the characteristics of features in intermediate layers, finding substantial variations in attention maps across different layers. These variations lead to unstable semantic representations and contribute to cumulative differences between features, which ultimately reduce the similarity between adjacent frames and negatively affect temporal coherence. To address this, we propose RepVideo, an enhanced representation framework for text-to-video diffusion models. By accumulating features from neighboring layers to form enriched representations, this approach captures more stable semantic information. These enhanced representations are then used as inputs to the attention mechanism, thereby improving semantic expressiveness while ensuring feature consistency across adjacent frames. Extensive experiments demonstrate that our RepVideo not only significantly enhances the ability to generate accurate spatial appearances, such as capturing complex spatial relationships between multiple objects, but also improves temporal consistency in video generation.
comment: Project page: https://vchitect.github.io/RepVid-Webpage
☆ CityDreamer4D: Compositional Generative Model of Unbounded 4D Cities
3D scene generation has garnered growing attention in recent years and has made significant progress. Generating 4D cities is more challenging than 3D scenes due to the presence of structurally complex, visually diverse objects like buildings and vehicles, and heightened human sensitivity to distortions in urban environments. To tackle these issues, we propose CityDreamer4D, a compositional generative model specifically tailored for generating unbounded 4D cities. Our main insights are 1) 4D city generation should separate dynamic objects (e.g., vehicles) from static scenes (e.g., buildings and roads), and 2) all objects in the 4D scene should be composed of different types of neural fields for buildings, vehicles, and background stuff. Specifically, we propose Traffic Scenario Generator and Unbounded Layout Generator to produce dynamic traffic scenarios and static city layouts using a highly compact BEV representation. Objects in 4D cities are generated by combining stuff-oriented and instance-oriented neural fields for background stuff, buildings, and vehicles. To suit the distinct characteristics of background stuff and instances, the neural fields employ customized generative hash grids and periodic positional embeddings as scene parameterizations. Furthermore, we offer a comprehensive suite of datasets for city generation, including OSM, GoogleEarth, and CityTopia. The OSM dataset provides a variety of real-world city layouts, while the Google Earth and CityTopia datasets deliver large-scale, high-quality city imagery complete with 3D instance annotations. Leveraging its compositional design, CityDreamer4D supports a range of downstream applications, such as instance editing, city stylization, and urban simulation, while delivering state-of-the-art performance in generating realistic 4D cities.
☆ CityLoc: 6 DoF Localization of Text Descriptions in Large-Scale Scenes with Gaussian Representation
Localizing text descriptions in large-scale 3D scenes is inherently an ambiguous task. This nonetheless arises while describing general concepts, e.g. all traffic lights in a city. To facilitate reasoning based on such concepts, text localization in the form of distribution is required. In this paper, we generate the distribution of the camera poses conditioned upon the textual description. To facilitate such generation, we propose a diffusion-based architecture that conditionally diffuses the noisy 6DoF camera poses to their plausible locations. The conditional signals are derived from the text descriptions, using the pre-trained text encoders. The connection between text descriptions and pose distribution is established through pretrained Vision-Language-Model, i.e. CLIP. Furthermore, we demonstrate that the candidate poses for the distribution can be further refined by rendering potential poses using 3D Gaussian splatting, guiding incorrectly posed samples towards locations that better align with the textual description, through visual reasoning. We demonstrate the effectiveness of our method by comparing it with both standard retrieval methods and learning-based approaches. Our proposed method consistently outperforms these baselines across all five large-scale datasets. Our source code and dataset will be made publicly available.
☆ An analysis of data variation and bias in image-based dermatological datasets for machine learning classification
AI algorithms have become valuable in aiding professionals in healthcare. The increasing confidence obtained by these models is helpful in critical decision demands. In clinical dermatology, classification models can detect malignant lesions on patients' skin using only RGB images as input. However, most learning-based methods employ data acquired from dermoscopic datasets on training, which are large and validated by a gold standard. Clinical models aim to deal with classification on users' smartphone cameras that do not contain the corresponding resolution provided by dermoscopy. Also, clinical applications bring new challenges. It can contain captures from uncontrolled environments, skin tone variations, viewpoint changes, noises in data and labels, and unbalanced classes. A possible alternative would be to use transfer learning to deal with the clinical images. However, as the number of samples is low, it can cause degradations on the model's performance; the source distribution used in training differs from the test set. This work aims to evaluate the gap between dermoscopic and clinical samples and understand how the dataset variations impact training. It assesses the main differences between distributions that disturb the model's prediction. Finally, from experiments on different architectures, we argue how to combine the data from divergent distributions, decreasing the impact on the model's final accuracy.
comment: 10 pages, 1 figure
☆ Visual WetlandBirds Dataset: Bird Species Identification and Behavior Recognition in Videos
The current biodiversity loss crisis makes animal monitoring a relevant field of study. In light of this, data collected through monitoring can provide essential insights, and information for decision-making aimed at preserving global biodiversity. Despite the importance of such data, there is a notable scarcity of datasets featuring videos of birds, and none of the existing datasets offer detailed annotations of bird behaviors in video format. In response to this gap, our study introduces the first fine-grained video dataset specifically designed for bird behavior detection and species classification. This dataset addresses the need for comprehensive bird video datasets and provides detailed data on bird actions, facilitating the development of deep learning models to recognize these, similar to the advancements made in human action recognition. The proposed dataset comprises 178 videos recorded in Spanish wetlands, capturing 13 different bird species performing 7 distinct behavior classes. In addition, we also present baseline results using state of the art models on two tasks: bird behavior recognition and species classification.
☆ Learning Joint Denoising, Demosaicing, and Compression from the Raw Natural Image Noise Dataset
This paper introduces the Raw Natural Image Noise Dataset (RawNIND), a diverse collection of paired raw images designed to support the development of denoising models that generalize across sensors, image development workflows, and styles. Two denoising methods are proposed: one operates directly on raw Bayer data, leveraging computational efficiency, while the other processes linear RGB images for improved generalization to different sensors, with both preserving flexibility for subsequent development. Both methods outperform traditional approaches which rely on developed images. Additionally, the integration of denoising and compression at the raw data level significantly enhances rate-distortion performance and computational efficiency. These findings suggest a paradigm shift toward raw data workflows for efficient and flexible image processing.
☆ Empowering Agricultural Insights: RiceLeafBD - A Novel Dataset and Optimal Model Selection for Rice Leaf Disease Diagnosis through Transfer Learning Technique
The number of people living in this agricultural nation of ours, which is surrounded by lush greenery, is growing on a daily basis. As a result of this, the level of arable land is decreasing, as well as residential houses and industrial factories. The food crisis is becoming the main threat for us in the upcoming days. Because on the one hand, the population is increasing, and on the other hand, the amount of food crop production is decreasing due to the attack of diseases. Rice is one of the most significant cultivated crops since it provides food for more than half of the world's population. Bangladesh is dependent on rice (Oryza sativa) as a vital crop for its agriculture, but it faces a significant problem as a result of the ongoing decline in rice yield brought on by common diseases. Early disease detection is the main difficulty in rice crop cultivation. In this paper, we proposed our own dataset, which was collected from the Bangladesh field, and also applied deep learning and transfer learning models for the evaluation of the datasets. We elaborately explain our dataset and also give direction for further research work to serve society using this dataset. We applied a light CNN model and pre-trained InceptionNet-V2, EfficientNet-V2, and MobileNet-V2 models, which achieved 91.5% performance for the EfficientNet-V2 model of this work. The results obtained assaulted other models and even exceeded approaches that are considered to be part of the state of the art. It has been demonstrated by this study that it is possible to precisely and effectively identify diseases that affect rice leaves using this unbiased datasets. After analysis of the performance of different models, the proposed datasets are significant for the society for research work to provide solutions for decreasing rice leaf disease.
☆ Lights, Camera, Matching: The Role of Image Illumination in Fair Face Recognition
Facial brightness is a key image quality factor impacting face recognition accuracy differentials across demographic groups. In this work, we aim to decrease the accuracy gap between the similarity score distributions for Caucasian and African American female mated image pairs, as measured by d' between distributions. To balance brightness across demographic groups, we conduct three experiments, interpreting brightness in the face skin region either as median pixel value or as the distribution of pixel values. Balancing based on median brightness alone yields up to a 46.8% decrease in d', while balancing based on brightness distribution yields up to a 57.6% decrease. In all three cases, the similarity scores of the individual distributions improve, with mean scores maximally improving 5.9% for Caucasian females and 3.7% for African American females.
comment: 14 pages, 11 figures, Conference submission
☆ Multi-View Transformers for Airway-To-Lung Ratio Inference on Cardiac CT Scans: The C4R Study
The ratio of airway tree lumen to lung size (ALR), assessed at full inspiration on high resolution full-lung computed tomography (CT), is a major risk factor for chronic obstructive pulmonary disease (COPD). There is growing interest to infer ALR from cardiac CT images, which are widely available in epidemiological cohorts, to investigate the relationship of ALR to severe COVID-19 and post-acute sequelae of SARS-CoV-2 infection (PASC). Previously, cardiac scans included approximately 2/3 of the total lung volume with 5-6x greater slice thickness than high-resolution (HR) full-lung (FL) CT. In this study, we present a novel attention-based Multi-view Swin Transformer to infer FL ALR values from segmented cardiac CT scans. For the supervised training we exploit paired full-lung and cardiac CTs acquired in the Multi-Ethnic Study of Atherosclerosis (MESA). Our network significantly outperforms a proxy direct ALR inference on segmented cardiac CT scans and achieves accuracy and reproducibility comparable with a scan-rescan reproducibility of the FL ALR ground-truth.
comment: Accepted to appear in Proceedings of International Symposium on Biomedical Imaging (ISBI), 2025
☆ Enhanced Multi-Scale Cross-Attention for Person Image Generation ECCV2020
In this paper, we propose a novel cross-attention-based generative adversarial network (GAN) for the challenging person image generation task. Cross-attention is a novel and intuitive multi-modal fusion method in which an attention/correlation matrix is calculated between two feature maps of different modalities. Specifically, we propose the novel XingGAN (or CrossingGAN), which consists of two generation branches that capture the person's appearance and shape, respectively. Moreover, we propose two novel cross-attention blocks to effectively transfer and update the person's shape and appearance embeddings for mutual improvement. This has not been considered by any other existing GAN-based image generation work. To further learn the long-range correlations between different person poses at different scales and sub-regions, we propose two novel multi-scale cross-attention blocks. To tackle the issue of independent correlation computations within the cross-attention mechanism leading to noisy and ambiguous attention weights, which hinder performance improvements, we propose a module called enhanced attention (EA). Lastly, we introduce a novel densely connected co-attention module to fuse appearance and shape features at different stages effectively. Extensive experiments on two public datasets demonstrate that the proposed method outperforms current GAN-based methods and performs on par with diffusion-based methods. However, our method is significantly faster than diffusion-based methods in both training and inference.
comment: Accepted to TPAMI, an extended version of a paper published in ECCV2020. arXiv admin note: substantial text overlap with arXiv:2007.09278
☆ Feature-based One-For-All: A Universal Framework for Heterogeneous Knowledge Distillation
Knowledge distillation (KD) involves transferring knowledge from a pre-trained heavy teacher model to a lighter student model, thereby reducing the inference cost while maintaining comparable effectiveness. Prior KD techniques typically assume homogeneity between the teacher and student models. However, as technology advances, a wide variety of architectures have emerged, ranging from initial Convolutional Neural Networks (CNNs) to Vision Transformers (ViTs), and Multi-Level Perceptrons (MLPs). Consequently, developing a universal KD framework compatible with any architecture has become an important research topic. In this paper, we introduce a feature-based one-for-all (FOFA) KD framework to enable feature distillation across diverse architecture. Our framework comprises two key components. First, we design prompt tuning blocks that incorporate student feedback, allowing teacher features to adapt to the student model's learning process. Second, we propose region-aware attention to mitigate the view mismatch problem between heterogeneous architecture. By leveraging these two modules, effective distillation of intermediate features can be achieved across heterogeneous architectures. Extensive experiments on CIFAR, ImageNet, and COCO demonstrate the superiority of the proposed method.
☆ Generative Planning with 3D-vision Language Pre-training for End-to-End Autonomous Driving
Autonomous driving is a challenging task that requires perceiving and understanding the surrounding environment for safe trajectory planning. While existing vision-based end-to-end models have achieved promising results, these methods are still facing the challenges of vision understanding, decision reasoning and scene generalization. To solve these issues, a generative planning with 3D-vision language pre-training model named GPVL is proposed for end-to-end autonomous driving. The proposed paradigm has two significant aspects. On one hand, a 3D-vision language pre-training module is designed to bridge the gap between visual perception and linguistic understanding in the bird's eye view. On the other hand, a cross-modal language model is introduced to generate holistic driving decisions and fine-grained trajectories with perception and navigation information in an auto-regressive manner. Experiments on the challenging nuScenes dataset demonstrate that the proposed scheme achieves excellent performances compared with state-of-the-art methods. Besides, the proposed GPVL presents strong generalization ability and real-time potential when handling high-level commands in various scenarios. It is believed that the effective, robust and efficient performance of GPVL is crucial for the practical application of future autonomous driving systems. Code is available at https://github.com/ltp1995/GPVL
☆ Exploring Task-Level Optimal Prompts for Visual In-Context Learning
With the development of Vision Foundation Models (VFMs) in recent years, Visual In-Context Learning (VICL) has become a better choice compared to modifying models in most scenarios. Different from retraining or fine-tuning model, VICL does not require modifications to the model's weights or architecture, and only needs a prompt with demonstrations to teach VFM how to solve tasks. Currently, significant computational cost for finding optimal prompts for every test sample hinders the deployment of VICL, as determining which demonstrations to use for constructing prompts is very costly. In this paper, however, we find a counterintuitive phenomenon that most test samples actually achieve optimal performance under the same prompts, and searching for sample-level prompts only costs more time but results in completely identical prompts. Therefore, we propose task-level prompting to reduce the cost of searching for prompts during the inference stage and introduce two time-saving yet effective task-level prompt search strategies. Extensive experimental results show that our proposed method can identify near-optimal prompts and reach the best VICL performance with a minimal cost that prior work has never achieved.
☆ MANTA: Diffusion Mamba for Efficient and Effective Stochastic Long-Term Dense Anticipation
Our work addresses the problem of stochastic long-term dense anticipation. The goal of this task is to predict actions and their durations several minutes into the future based on provided video observations. Anticipation over extended horizons introduces high uncertainty, as a single observation can lead to multiple plausible future outcomes. To address this uncertainty, stochastic models are designed to predict several potential future action sequences. Recent work has further proposed to incorporate uncertainty modelling for observed frames by simultaneously predicting per-frame past and future actions in a unified manner. While such joint modelling of actions is beneficial, it requires long-range temporal capabilities to connect events across distant past and future time points. However, the previous work struggles to achieve such a long-range understanding due to its limited and/or sparse receptive field. To alleviate this issue, we propose a novel MANTA (MAmba for ANTicipation) network. Our model enables effective long-term temporal modelling even for very long sequences while maintaining linear complexity in sequence length. We demonstrate that our approach achieves state-of-the-art results on three datasets - Breakfast, 50Salads, and Assembly101 - while also significantly improving computational and memory efficiency.
☆ MMDocIR: Benchmarking Multi-Modal Retrieval for Long Documents
Multi-modal document retrieval is designed to identify and retrieve various forms of multi-modal content, such as figures, tables, charts, and layout information from extensive documents. Despite its significance, there is a notable lack of a robust benchmark to effectively evaluate the performance of systems in multi-modal document retrieval. To address this gap, this work introduces a new benchmark, named as MMDocIR, encompassing two distinct tasks: page-level and layout-level retrieval. The former focuses on localizing the most relevant pages within a long document, while the latter targets the detection of specific layouts, offering a more fine-grained granularity than whole-page analysis. A layout can refer to a variety of elements such as textual paragraphs, equations, figures, tables, or charts. The MMDocIR benchmark comprises a rich dataset featuring expertly annotated labels for 1,685 questions and bootstrapped labels for 173,843 questions, making it a pivotal resource for advancing multi-modal document retrieval for both training and evaluation. Through rigorous experiments, we reveal that (i) visual retrievers significantly outperform their text counterparts, (ii) MMDocIR train set can effectively benefit the training process of multi-modal document retrieval and (iii) text retrievers leveraging on VLM-text perform much better than those using OCR-text. These findings underscores the potential advantages of integrating visual elements for multi-modal document retrieval.
comment: https://huggingface.co/MMDocIR
☆ Boosting Diffusion Guidance via Learning Degradation-Aware Models for Blind Super Resolution WACV 2025
Recently, diffusion-based blind super-resolution (SR) methods have shown great ability to generate high-resolution images with abundant high-frequency detail, but the detail is often achieved at the expense of fidelity. Meanwhile, another line of research focusing on rectifying the reverse process of diffusion models (i.e., diffusion guidance), has demonstrated the power to generate high-fidelity results for non-blind SR. However, these methods rely on known degradation kernels, making them difficult to apply to blind SR. To address these issues, we introduce degradation-aware models that can be integrated into the diffusion guidance framework, eliminating the need to know degradation kernels. Additionally, we propose two novel techniques input perturbation and guidance scalar to further improve our performance. Extensive experimental results show that our proposed method has superior performance over state-of-the-art methods on blind SR benchmarks
comment: To appear in WACV 2025. Code is available at: https://github.com/ryanlu2240/Boosting-Diffusion-Guidance-via-Learning-Degradation-Aware-Models-for-Blind-Super-Resolution
☆ IDEA: Image Description Enhanced CLIP-Adapter
CLIP (Contrastive Language-Image Pre-training) has attained great success in pattern recognition and computer vision. Transferring CLIP to downstream tasks (e.g. zero- or few-shot classification) is a hot topic in multimodal learning. However, current studies primarily focus on either prompt learning for text or adapter tuning for vision, without fully exploiting the complementary information and correlations among image-text pairs. In this paper, we propose an Image Description Enhanced CLIP-Adapter (IDEA) method to adapt CLIP to few-shot image classification tasks. This method captures fine-grained features by leveraging both visual features and textual descriptions of images. IDEA is a training-free method for CLIP, and it can be comparable to or even exceeds state-of-the-art models on multiple tasks. Furthermore, we introduce Trainable-IDEA (T-IDEA), which extends IDEA by adding two lightweight learnable components (i.e., a projector and a learnable latent space), further enhancing the model's performance and achieving SOTA results on 11 datasets. As one important contribution, we employ the Llama model and design a comprehensive pipeline to generate textual descriptions for images of 11 datasets, resulting in a total of 1,637,795 image-text pairs, named "IMD-11". Our code and data are released at https://github.com/FourierAI/IDEA.
☆ Human Pose-Constrained UV Map Estimation
UV map estimation is used in computer vision for detailed analysis of human posture or activity. Previous methods assign pixels to body model vertices by comparing pixel descriptors independently, without enforcing global coherence or plausibility in the UV map. We propose Pose-Constrained Continuous Surface Embeddings (PC-CSE), which integrates estimated 2D human pose into the pixel-to-vertex assignment process. The pose provides global anatomical constraints, ensuring that UV maps remain coherent while preserving local precision. Evaluation on DensePose COCO demonstrates consistent improvement, regardless of the chosen 2D human pose model. Whole-body poses offer better constraints by incorporating additional details about the hands and feet. Conditioning UV maps with human pose reduces invalid mappings and enhances anatomical plausibility. In addition, we highlight inconsistencies in the ground-truth annotations.
☆ Multi-visual modality micro drone-based structural damage detection
Accurate detection and resilience of object detectors in structural damage detection are important in ensuring the continuous use of civil infrastructure. However, achieving robustness in object detectors remains a persistent challenge, impacting their ability to generalize effectively. This study proposes DetectorX, a robust framework for structural damage detection coupled with a micro drone. DetectorX addresses the challenges of object detector robustness by incorporating two innovative modules: a stem block and a spiral pooling technique. The stem block introduces a dynamic visual modality by leveraging the outputs of two Deep Convolutional Neural Network (DCNN) models. The framework employs the proposed event-based reward reinforcement learning to constrain the actions of a parent and child DCNN model leading to a reward. This results in the induction of two dynamic visual modalities alongside the Red, Green, and Blue (RGB) data. This enhancement significantly augments DetectorX's perception and adaptability in diverse environmental situations. Further, a spiral pooling technique, an online image augmentation method, strengthens the framework by increasing feature representations by concatenating spiraled and average/max pooled features. In three extensive experiments: (1) comparative and (2) robustness, which use the Pacific Earthquake Engineering Research Hub ImageNet dataset, and (3) field-experiment, DetectorX performed satisfactorily across varying metrics, including precision (0.88), recall (0.84), average precision (0.91), mean average precision (0.76), and mean average recall (0.73), compared to the competing detectors including You Only Look Once X-medium (YOLOX-m) and others. The study's findings indicate that DetectorX can provide satisfactory results and demonstrate resilience in challenging environments.
☆ Exploring ChatGPT for Face Presentation Attack Detection in Zero and Few-Shot in-Context Learning WACV
This study highlights the potential of ChatGPT (specifically GPT-4o) as a competitive alternative for Face Presentation Attack Detection (PAD), outperforming several PAD models, including commercial solutions, in specific scenarios. Our results show that GPT-4o demonstrates high consistency, particularly in few-shot in-context learning, where its performance improves as more examples are provided (reference data). We also observe that detailed prompts enable the model to provide scores reliably, a behavior not observed with concise prompts. Additionally, explanation-seeking prompts slightly enhance the model's performance by improving its interpretability. Remarkably, the model exhibits emergent reasoning capabilities, correctly predicting the attack type (print or replay) with high accuracy in few-shot scenarios, despite not being explicitly instructed to classify attack types. Despite these strengths, GPT-4o faces challenges in zero-shot tasks, where its performance is limited compared to specialized PAD systems. Experiments were conducted on a subset of the SOTERIA dataset, ensuring compliance with data privacy regulations by using only data from consenting individuals. These findings underscore GPT-4o's promise in PAD applications, laying the groundwork for future research to address broader data privacy concerns and improve cross-dataset generalization. Code available here: https://gitlab.idiap.ch/bob/bob.paper.wacv2025_chatgpt_face_pad
comment: Accepted in WACV workshop 2025
☆ Admitting Ignorance Helps the Video Question Answering Models to Answer
Significant progress has been made in the field of video question answering (VideoQA) thanks to deep learning and large-scale pretraining. Despite the presence of sophisticated model structures and powerful video-text foundation models, most existing methods focus solely on maximizing the correlation between answers and video-question pairs during training. We argue that these models often establish shortcuts, resulting in spurious correlations between questions and answers, especially when the alignment between video and text data is suboptimal. To address these spurious correlations, we propose a novel training framework in which the model is compelled to acknowledge its ignorance when presented with an intervened question, rather than making guesses solely based on superficial question-answer correlations. We introduce methodologies for intervening in questions, utilizing techniques such as displacement and perturbation, and design frameworks for the model to admit its lack of knowledge in both multi-choice VideoQA and open-ended settings. In practice, we integrate a state-of-the-art model into our framework to validate its effectiveness. The results clearly demonstrate that our framework can significantly enhance the performance of VideoQA models with minimal structural modifications.
☆ Few-Shot Learner Generalizes Across AI-Generated Image Detection
Current fake image detectors trained on large synthetic image datasets perform satisfactorily on limited studied generative models. However, they suffer a notable performance decline over unseen models. Besides, collecting adequate training data from online generative models is often expensive or infeasible. To overcome these issues, we propose Few-Shot Detector (FSD), a novel AI-generated image detector which learns a specialized metric space to effectively distinguish unseen fake images by utilizing very few samples. Experiments show FSD achieves state-of-the-art performance by $+7.4\%$ average ACC on GenImage dataset. More importantly, our method is better capable of capturing the intra-category common features in unseen images without further training.
comment: 11 pages, 5 figures
☆ $\texttt{InfoHier}$: Hierarchical Information Extraction via Encoding and Embedding
Analyzing large-scale datasets, especially involving complex and high-dimensional data like images, is particularly challenging. While self-supervised learning (SSL) has proven effective for learning representations from unlabelled data, it typically focuses on flat, non-hierarchical structures, missing the multi-level relationships present in many real-world datasets. Hierarchical clustering (HC) can uncover these relationships by organizing data into a tree-like structure, but it often relies on rigid similarity metrics that struggle to capture the complexity of diverse data types. To address these we envision $\texttt{InfoHier}$, a framework that combines SSL with HC to jointly learn robust latent representations and hierarchical structures. This approach leverages SSL to provide adaptive representations, enhancing HC's ability to capture complex patterns. Simultaneously, it integrates HC loss to refine SSL training, resulting in representations that are more attuned to the underlying information hierarchy. $\texttt{InfoHier}$ has the potential to improve the expressiveness and performance of both clustering and representation learning, offering significant benefits for data analysis, management, and information retrieval.
comment: 10 pages, 4 figures
Self-supervised Transformation Learning for Equivariant Representations NeurIPS 2024
Unsupervised representation learning has significantly advanced various machine learning tasks. In the computer vision domain, state-of-the-art approaches utilize transformations like random crop and color jitter to achieve invariant representations, embedding semantically the same inputs despite transformations. However, this can degrade performance in tasks requiring precise features, such as localization or flower classification. To address this, recent research incorporates equivariant representation learning, which captures transformation-sensitive information. However, current methods depend on transformation labels and thus struggle with interdependency and complex transformations. We propose Self-supervised Transformation Learning (STL), replacing transformation labels with transformation representations derived from image pairs. The proposed method ensures transformation representation is image-invariant and learns corresponding equivariant transformations, enhancing performance without increased batch complexity. We demonstrate the approach's effectiveness across diverse classification and detection tasks, outperforming existing methods in 7 out of 11 benchmarks and excelling in detection. By integrating complex transformations like AugMix, unusable by prior equivariant methods, this approach enhances performance across tasks, underscoring its adaptability and resilience. Additionally, its compatibility with various base models highlights its flexibility and broad applicability. The code is available at https://github.com/jaemyung-u/stl.
comment: 38th Conference on Neural Information Processing Systems (NeurIPS 2024)
☆ RealVVT: Towards Photorealistic Video Virtual Try-on via Spatio-Temporal Consistency
Virtual try-on has emerged as a pivotal task at the intersection of computer vision and fashion, aimed at digitally simulating how clothing items fit on the human body. Despite notable progress in single-image virtual try-on (VTO), current methodologies often struggle to preserve a consistent and authentic appearance of clothing across extended video sequences. This challenge arises from the complexities of capturing dynamic human pose and maintaining target clothing characteristics. We leverage pre-existing video foundation models to introduce RealVVT, a photoRealistic Video Virtual Try-on framework tailored to bolster stability and realism within dynamic video contexts. Our methodology encompasses a Clothing & Temporal Consistency strategy, an Agnostic-guided Attention Focus Loss mechanism to ensure spatial consistency, and a Pose-guided Long Video VTO technique adept at handling extended video sequences.Extensive experiments across various datasets confirms that our approach outperforms existing state-of-the-art models in both single-image and video VTO tasks, offering a viable solution for practical applications within the realms of fashion e-commerce and virtual fitting environments.
comment: 10 pages (8 pages main text, 2 pages references), 5 figures in the main text, and 4 pages supplementary materials with 3 additional figures
☆ FlexiClip: Locality-Preserving Free-Form Character Animation
Animating clipart images with seamless motion while maintaining visual fidelity and temporal coherence presents significant challenges. Existing methods, such as AniClipart, effectively model spatial deformations but often fail to ensure smooth temporal transitions, resulting in artifacts like abrupt motions and geometric distortions. Similarly, text-to-video (T2V) and image-to-video (I2V) models struggle to handle clipart due to the mismatch in statistical properties between natural video and clipart styles. This paper introduces FlexiClip, a novel approach designed to overcome these limitations by addressing the intertwined challenges of temporal consistency and geometric integrity. FlexiClip extends traditional B\'ezier curve-based trajectory modeling with key innovations: temporal Jacobians to correct motion dynamics incrementally, continuous-time modeling via probability flow ODEs (pfODEs) to mitigate temporal noise, and a flow matching loss inspired by GFlowNet principles to optimize smooth motion transitions. These enhancements ensure coherent animations across complex scenarios involving rapid movements and non-rigid deformations. Extensive experiments validate the effectiveness of FlexiClip in generating animations that are not only smooth and natural but also structurally consistent across diverse clipart types, including humans and animals. By integrating spatial and temporal modeling with pre-trained video diffusion models, FlexiClip sets a new standard for high-quality clipart animation, offering robust performance across a wide range of visual content. Project Page: https://creative-gen.github.io/flexiclip.github.io/
comment: 13 pages, 4 figures, 7 tables
☆ GS-LIVO: Real-Time LiDAR, Inertial, and Visual Multi-sensor Fused Odometry with Gaussian Mapping
In recent years, 3D Gaussian splatting (3D-GS) has emerged as a novel scene representation approach. However, existing vision-only 3D-GS methods often rely on hand-crafted heuristics for point-cloud densification and face challenges in handling occlusions and high GPU memory and computation consumption. LiDAR-Inertial-Visual (LIV) sensor configuration has demonstrated superior performance in localization and dense mapping by leveraging complementary sensing characteristics: rich texture information from cameras, precise geometric measurements from LiDAR, and high-frequency motion data from IMU. Inspired by this, we propose a novel real-time Gaussian-based simultaneous localization and mapping (SLAM) system. Our map system comprises a global Gaussian map and a sliding window of Gaussians, along with an IESKF-based odometry. The global Gaussian map consists of hash-indexed voxels organized in a recursive octree, effectively covering sparse spatial volumes while adapting to different levels of detail and scales. The Gaussian map is initialized through multi-sensor fusion and optimized with photometric gradients. Our system incrementally maintains a sliding window of Gaussians, significantly reducing GPU computation and memory consumption by only optimizing the map within the sliding window. Moreover, we implement a tightly coupled multi-sensor fusion odometry with an iterative error state Kalman filter (IESKF), leveraging real-time updating and rendering of the Gaussian map. Our system represents the first real-time Gaussian-based SLAM framework deployable on resource-constrained embedded systems, demonstrated on the NVIDIA Jetson Orin NX platform. The framework achieves real-time performance while maintaining robust multi-sensor fusion capabilities. All implementation algorithms, hardware designs, and CAD models will be publicly available.
☆ TimeFlow: Longitudinal Brain Image Registration and Aging Progression Analysis
Predicting future brain states is crucial for understanding healthy aging and neurodegenerative diseases. Longitudinal brain MRI registration, a cornerstone for such analyses, has long been limited by its inability to forecast future developments, reliance on extensive, dense longitudinal data, and the need to balance registration accuracy with temporal smoothness. In this work, we present \emph{TimeFlow}, a novel framework for longitudinal brain MRI registration that overcomes all these challenges. Leveraging a U-Net architecture with temporal conditioning inspired by diffusion models, TimeFlow enables accurate longitudinal registration and facilitates prospective analyses through future image prediction. Unlike traditional methods that depend on explicit smoothness regularizers and dense sequential data, TimeFlow achieves temporal consistency and continuity without these constraints. Experimental results highlight its superior performance in both future timepoint prediction and registration accuracy compared to state-of-the-art methods. Additionally, TimeFlow supports novel biological brain aging analyses, effectively differentiating neurodegenerative conditions from healthy aging. It eliminates the need for segmentation, thereby avoiding the challenges of non-trivial annotation and inconsistent segmentation errors. TimeFlow paves the way for accurate, data-efficient, and annotation-free prospective analyses of brain aging and chronic diseases.
☆ A Survey on Facial Image Privacy Preservation in Cloud-Based Services
Facial recognition models are increasingly employed by commercial enterprises, government agencies, and cloud service providers for identity verification, consumer services, and surveillance. These models are often trained using vast amounts of facial data processed and stored in cloud-based platforms, raising significant privacy concerns. Users' facial images may be exploited without their consent, leading to potential data breaches and misuse. This survey presents a comprehensive review of current methods aimed at preserving facial image privacy in cloud-based services. We categorize these methods into two primary approaches: image obfuscation-based protection and adversarial perturbation-based protection. We provide an in-depth analysis of both categories, offering qualitative and quantitative comparisons of their effectiveness. Additionally, we highlight unresolved challenges and propose future research directions to improve privacy preservation in cloud computing environments.
☆ Product of Gaussian Mixture Diffusion Model for non-linear MRI Inversion
Diffusion models have recently shown remarkable results in magnetic resonance imaging reconstruction. However, the employed networks typically are black-box estimators of the (smoothed) prior score with tens of millions of parameters, restricting interpretability and increasing reconstruction time. Furthermore, parallel imaging reconstruction algorithms either rely on off-line coil sensitivity estimation, which is prone to misalignment and restricting sampling trajectories, or perform per-coil reconstruction, making the computational cost proportional to the number of coils. To overcome this, we jointly reconstruct the image and the coil sensitivities using the lightweight, parameter-efficient, and interpretable product of Gaussian mixture diffusion model as an image prior and a classical smoothness priors on the coil sensitivities. The proposed method delivers promising results while allowing for fast inference and demonstrating robustness to contrast out-of-distribution data and sampling trajectories, comparable to classical variational penalties such as total variation. Finally, the probabilistic formulation allows the calculation of the posterior expectation and pixel-wise variance.
☆ BRIGHT-VO: Brightness-Guided Hybrid Transformer for Visual Odometry with Multi-modality Refinement Module
Visual odometry (VO) plays a crucial role in autonomous driving, robotic navigation, and other related tasks by estimating the position and orientation of a camera based on visual input. Significant progress has been made in data-driven VO methods, particularly those leveraging deep learning techniques to extract image features and estimate camera poses. However, these methods often struggle in low-light conditions because of the reduced visibility of features and the increased difficulty of matching keypoints. To address this limitation, we introduce BrightVO, a novel VO model based on Transformer architecture, which not only performs front-end visual feature extraction, but also incorporates a multi-modality refinement module in the back-end that integrates Inertial Measurement Unit (IMU) data. Using pose graph optimization, this module iteratively refines pose estimates to reduce errors and improve both accuracy and robustness. Furthermore, we create a synthetic low-light dataset, KiC4R, which includes a variety of lighting conditions to facilitate the training and evaluation of VO frameworks in challenging environments. Experimental results demonstrate that BrightVO achieves state-of-the-art performance on both the KiC4R dataset and the KITTI benchmarks. Specifically, it provides an average improvement of 20% in pose estimation accuracy in normal outdoor environments and 259% in low-light conditions, outperforming existing methods. For widespread use and further development, the research work is fully open-source at https://github.com/Anastasiawd/BrightVO.
comment: 9 pages, 7 figures
☆ StereoGen: High-quality Stereo Image Generation from a Single Image
State-of-the-art supervised stereo matching methods have achieved amazing results on various benchmarks. However, these data-driven methods suffer from generalization to real-world scenarios due to the lack of real-world annotated data. In this paper, we propose StereoGen, a novel pipeline for high-quality stereo image generation. This pipeline utilizes arbitrary single images as left images and pseudo disparities generated by a monocular depth estimation model to synthesize high-quality corresponding right images. Unlike previous methods that fill the occluded area in warped right images using random backgrounds or using convolutions to take nearby pixels selectively, we fine-tune a diffusion inpainting model to recover the background. Images generated by our model possess better details and undamaged semantic structures. Besides, we propose Training-free Confidence Generation and Adaptive Disparity Selection. The former suppresses the negative effect of harmful pseudo ground truth during stereo training, while the latter helps generate a wider disparity distribution and better synthetic images. Experiments show that models trained under our pipeline achieve state-of-the-art zero-shot generalization results among all published methods. The code will be available upon publication of the paper.
☆ Joint Learning of Depth and Appearance for Portrait Image Animation
2D portrait animation has experienced significant advancements in recent years. Much research has utilized the prior knowledge embedded in large generative diffusion models to enhance high-quality image manipulation. However, most methods only focus on generating RGB images as output, and the co-generation of consistent visual plus 3D output remains largely under-explored. In our work, we propose to jointly learn the visual appearance and depth simultaneously in a diffusion-based portrait image generator. Our method embraces the end-to-end diffusion paradigm and introduces a new architecture suitable for learning this conditional joint distribution, consisting of a reference network and a channel-expanded diffusion backbone. Once trained, our framework can be efficiently adapted to various downstream applications, such as facial depth-to-image and image-to-depth generation, portrait relighting, and audio-driven talking head animation with consistent 3D output.
☆ MonSter: Marry Monodepth to Stereo Unleashes Power
Stereo matching recovers depth from image correspondences. Existing methods struggle to handle ill-posed regions with limited matching cues, such as occlusions and textureless areas. To address this, we propose MonSter, a novel method that leverages the complementary strengths of monocular depth estimation and stereo matching. MonSter integrates monocular depth and stereo matching into a dual-branch architecture to iteratively improve each other. Confidence-based guidance adaptively selects reliable stereo cues for monodepth scale-shift recovery. The refined monodepth is in turn guides stereo effectively at ill-posed regions. Such iterative mutual enhancement enables MonSter to evolve monodepth priors from coarse object-level structures to pixel-level geometry, fully unlocking the potential of stereo matching. As shown in Fig.1, MonSter ranks 1st across five most commonly used leaderboards -- SceneFlow, KITTI 2012, KITTI 2015, Middlebury, and ETH3D. Achieving up to 49.5% improvements (Bad 1.0 on ETH3D) over the previous best method. Comprehensive analysis verifies the effectiveness of MonSter in ill-posed regions. In terms of zero-shot generalization, MonSter significantly and consistently outperforms state-of-the-art across the board. The code is publicly available at: https://github.com/Junda24/MonSter.
☆ Detecting Wildfire Flame and Smoke through Edge Computing using Transfer Learning Enhanced Deep Learning Models
Autonomous unmanned aerial vehicles (UAVs) integrated with edge computing capabilities empower real-time data processing directly on the device, dramatically reducing latency in critical scenarios such as wildfire detection. This study underscores Transfer Learning's (TL) significance in boosting the performance of object detectors for identifying wildfire smoke and flames, especially when trained on limited datasets, and investigates the impact TL has on edge computing metrics. With the latter focusing how TL-enhanced You Only Look Once (YOLO) models perform in terms of inference time, power usage, and energy consumption when using edge computing devices. This study utilizes the Aerial Fire and Smoke Essential (AFSE) dataset as the target, with the Flame and Smoke Detection Dataset (FASDD) and the Microsoft Common Objects in Context (COCO) dataset serving as source datasets. We explore a two-stage cascaded TL method, utilizing D-Fire or FASDD as initial stage target datasets and AFSE as the subsequent stage. Through fine-tuning, TL significantly enhances detection precision, achieving up to 79.2% mean Average Precision (mAP@0.5), reduces training time, and increases model generalizability across the AFSE dataset. However, cascaded TL yielded no notable improvements and TL alone did not benefit the edge computing metrics evaluated. Lastly, this work found that YOLOv5n remains a powerful model when lacking hardware acceleration, finding that YOLOv5n can process images nearly twice as fast as its newer counterpart, YOLO11n. Overall, the results affirm TL's role in augmenting the accuracy of object detectors while also illustrating that additional enhancements are needed to improve edge computing performance.
comment: 11 pages, 7 figures
☆ Self-Organizing Edge Computing Distribution Framework for Visual SLAM
Localization within a known environment is a crucial capability for mobile robots. Simultaneous Localization and Mapping (SLAM) is a prominent solution to this problem. SLAM is a framework that consists of a diverse set of computational tasks ranging from real-time tracking to computation-intensive map optimization. This combination can present a challenge for resource-limited mobile robots. Previously, edge-assisted SLAM methods have demonstrated promising real-time execution capabilities by offloading heavy computations while performing real-time tracking onboard. However, the common approach of utilizing a client-server architecture for offloading is sensitive to server and network failures. In this article, we propose a novel edge-assisted SLAM framework capable of self-organizing fully distributed SLAM execution across a network of devices or functioning on a single device without connectivity. The architecture consists of three layers and is designed to be device-agnostic, resilient to network failures, and minimally invasive to the core SLAM system. We have implemented and demonstrated the framework for monocular ORB SLAM3 and evaluated it in both fully distributed and standalone SLAM configurations against the ORB SLAM3. The experiment results demonstrate that the proposed design matches the accuracy and resource utilization of the monolithic approach while enabling collaborative execution.
comment: 8 pages, 5 figures
☆ Computerized Assessment of Motor Imitation for Distinguishing Autism in Video (CAMI-2DNet)
Motor imitation impairments are commonly reported in individuals with autism spectrum conditions (ASCs), suggesting that motor imitation could be used as a phenotype for addressing autism heterogeneity. Traditional methods for assessing motor imitation are subjective, labor-intensive, and require extensive human training. Modern Computerized Assessment of Motor Imitation (CAMI) methods, such as CAMI-3D for motion capture data and CAMI-2D for video data, are less subjective. However, they rely on labor-intensive data normalization and cleaning techniques, and human annotations for algorithm training. To address these challenges, we propose CAMI-2DNet, a scalable and interpretable deep learning-based approach to motor imitation assessment in video data, which eliminates the need for data normalization, cleaning and annotation. CAMI-2DNet uses an encoder-decoder architecture to map a video to a motion encoding that is disentangled from nuisance factors such as body shape and camera views. To learn a disentangled representation, we employ synthetic data generated by motion retargeting of virtual characters through the reshuffling of motion, body shape, and camera views, as well as real participant data. To automatically assess how well an individual imitates an actor, we compute a similarity score between their motion encodings, and use it to discriminate individuals with ASCs from neurotypical (NT) individuals. Our comparative analysis demonstrates that CAMI-2DNet has a strong correlation with human scores while outperforming CAMI-2D in discriminating ASC vs NT children. Moreover, CAMI-2DNet performs comparably to CAMI-3D while offering greater practicality by operating directly on video data and without the need for ad-hoc data normalization and human annotations.
comment: This work has been submitted to the IEEE for possible publication
☆ PACF: Prototype Augmented Compact Features for Improving Domain Adaptive Object Detection
In recent years, there has been significant advancement in object detection. However, applying off-the-shelf detectors to a new domain leads to significant performance drop, caused by the domain gap. These detectors exhibit higher-variance class-conditional distributions in the target domain than that in the source domain, along with mean shift. To address this problem, we propose the Prototype Augmented Compact Features (PACF) framework to regularize the distribution of intra-class features. Specifically, we provide an in-depth theoretical analysis on the lower bound of the target features-related likelihood and derive the prototype cross entropy loss to further calibrate the distribution of target RoI features. Furthermore, a mutual regularization strategy is designed to enable the linear and prototype-based classifiers to learn from each other, promoting feature compactness while enhancing discriminability. Thanks to this PACF framework, we have obtained a more compact cross-domain feature space, within which the variance of the target features' class-conditional distributions has significantly decreased, and the class-mean shift between the two domains has also been further reduced. The results on different adaptation settings are state-of-the-art, which demonstrate the board applicability and effectiveness of the proposed approach.
☆ Watermarking in Diffusion Model: Gaussian Shading with Exact Diffusion Inversion via Coupled Transformations (EDICT)
This paper introduces a novel approach to enhance the performance of Gaussian Shading, a prevalent watermarking technique, by integrating the Exact Diffusion Inversion via Coupled Transformations (EDICT) framework. While Gaussian Shading traditionally embeds watermarks in a noise latent space, followed by iterative denoising for image generation and noise addition for watermark recovery, its inversion process is not exact, leading to potential watermark distortion. We propose to leverage EDICT's ability to derive exact inverse mappings to refine this process. Our method involves duplicating the watermark-infused noisy latent and employing a reciprocal, alternating denoising and noising scheme between the two latents, facilitated by EDICT. This allows for a more precise reconstruction of both the image and the embedded watermark. Empirical evaluation on standard datasets demonstrates that our integrated approach yields a slight, yet statistically significant improvement in watermark recovery fidelity. These results highlight the potential of EDICT to enhance existing diffusion-based watermarking techniques by providing a more accurate and robust inversion mechanism. To the best of our knowledge, this is the first work to explore the synergy between EDICT and Gaussian Shading for digital watermarking, opening new avenues for research in robust and high-fidelity watermark embedding and extraction.
comment: 5 pages
☆ Image-to-Force Estimation for Soft Tissue Interaction in Robotic-Assisted Surgery Using Structured Light
For Minimally Invasive Surgical (MIS) robots, accurate haptic interaction force feedback is essential for ensuring the safety of interacting with soft tissue. However, most existing MIS robotic systems cannot facilitate direct measurement of the interaction force with hardware sensors due to space limitations. This letter introduces an effective vision-based scheme that utilizes a One-Shot structured light projection with a designed pattern on soft tissue coupled with haptic information processing through a trained image-to-force neural network. The images captured from the endoscopic stereo camera are analyzed to reconstruct high-resolution 3D point clouds for soft tissue deformation. Based on this, a modified PointNet-based force estimation method is proposed, which excels in representing the complex mechanical properties of soft tissue. Numerical force interaction experiments are conducted on three silicon materials with different stiffness. The results validate the effectiveness of the proposed scheme.
☆ Densely Connected Parameter-Efficient Tuning for Referring Image Segmentation AAAI2025
In the domain of computer vision, Parameter-Efficient Tuning (PET) is increasingly replacing the traditional paradigm of pre-training followed by full fine-tuning. PET is particularly favored for its effectiveness in large foundation models, as it streamlines transfer learning costs and optimizes hardware utilization. However, the current PET methods are mainly designed for single-modal optimization. While some pioneering studies have undertaken preliminary explorations, they still remain at the level of aligned encoders (e.g., CLIP) and lack exploration of misaligned encoders. These methods show sub-optimal performance with misaligned encoders, as they fail to effectively align the multimodal features during fine-tuning. In this paper, we introduce DETRIS, a parameter-efficient tuning framework designed to enhance low-rank visual feature propagation by establishing dense interconnections between each layer and all preceding layers, which enables effective cross-modal feature interaction and adaptation to misaligned encoders. We also suggest using text adapters to improve textual features. Our simple yet efficient approach greatly surpasses state-of-the-art methods with 0.9% to 1.8% backbone parameter updates, evaluated on challenging benchmarks. Our project is available at \url{https://github.com/jiaqihuang01/DETRIS}.
comment: Accepted by AAAI2025
☆ Scalable and High-Quality Neural Implicit Representation for 3D Reconstruction
Various SDF-based neural implicit surface reconstruction methods have been proposed recently, and have demonstrated remarkable modeling capabilities. However, due to the global nature and limited representation ability of a single network, existing methods still suffer from many drawbacks, such as limited accuracy and scale of the reconstruction. In this paper, we propose a versatile, scalable and high-quality neural implicit representation to address these issues. We integrate a divide-and-conquer approach into the neural SDF-based reconstruction. Specifically, we model the object or scene as a fusion of multiple independent local neural SDFs with overlapping regions. The construction of our representation involves three key steps: (1) constructing the distribution and overlap relationship of the local radiance fields based on object structure or data distribution, (2) relative pose registration for adjacent local SDFs, and (3) SDF blending. Thanks to the independent representation of each local region, our approach can not only achieve high-fidelity surface reconstruction, but also enable scalable scene reconstruction. Extensive experimental results demonstrate the effectiveness and practicality of our proposed method.
☆ GOTLoc: General Outdoor Text-based Localization Using Scene Graph Retrieval with OpenStreetMap
We propose GOTLoc, a robust localization method capable of operating even in outdoor environments where GPS signals are unavailable. The method achieves this robust localization by leveraging comparisons between scene graphs generated from text descriptions and maps. Existing text-based localization studies typically represent maps as point clouds and identify the most similar scenes by comparing embeddings of text and point cloud data. However, point cloud maps have limited scalability as it is impractical to pre-generate maps for all outdoor spaces. Furthermore, their large data size makes it challenging to store and utilize them directly on actual robots. To address these issues, GOTLoc leverages compact data structures, such as scene graphs, to store spatial information, enabling individual robots to carry and utilize large amounts of map data. Additionally, by utilizing publicly available map data, such as OpenStreetMap, which provides global information on outdoor spaces, we eliminate the need for additional effort to create custom map data. For performance evaluation, we utilized the KITTI360Pose dataset in conjunction with corresponding OpenStreetMap data to compare the proposed method with existing approaches. Our results demonstrate that the proposed method achieves accuracy comparable to algorithms relying on point cloud maps. Moreover, in city-scale tests, GOTLoc required significantly less storage compared to point cloud-based methods and completed overall processing within a few seconds, validating its applicability to real-world robotics. Our code is available at https://github.com/donghwijung/GOTLoc.
☆ MIAFEx: An Attention-based Feature Extraction Method for Medical Image Classification
Feature extraction techniques are crucial in medical image classification; however, classical feature extractors in addition to traditional machine learning classifiers often exhibit significant limitations in providing sufficient discriminative information for complex image sets. While Convolutional Neural Networks (CNNs) and Vision Transformer (ViT) have shown promise in feature extraction, they are prone to overfitting due to the inherent characteristics of medical imaging data, including small sample sizes or high intra-class variance. In this work, the Medical Image Attention-based Feature Extractor (MIAFEx) is proposed, a novel method that employs a learnable refinement mechanism to enhance the classification token within the Transformer encoder architecture. This mechanism adjusts the token based on learned weights, improving the extraction of salient features and enhancing the model's adaptability to the challenges presented by medical imaging data. The MIAFEx output features quality is compared against classical feature extractors using traditional and hybrid classifiers. Also, the performance of these features is compared against modern CNN and ViT models in classification tasks, demonstrating its superiority in accuracy and robustness across multiple complex classification medical imaging datasets. This advantage is particularly pronounced in scenarios with limited training data, where traditional and modern models often struggle to generalize effectively. The source code of this proposal can be found at https://github.com/Oscar-RamosS/Medical-Image-Attention-based-Feature-Extractor-MIAFEx
comment: In preparation for Journal Submission
☆ DynamicFace: High-Quality and Consistent Video Face Swapping using Composable 3D Facial Priors
Face swapping transfers the identity of a source face to a target face while retaining the attributes like expression, pose, hair, and background of the target face. Advanced face swapping methods have achieved attractive results. However, these methods often inadvertently transfer identity information from the target face, compromising expression-related details and accurate identity. We propose a novel method DynamicFace that leverages the power of diffusion model and plug-and-play temporal layers for video face swapping. First, we introduce four fine-grained face conditions using 3D facial priors. All conditions are designed to be disentangled from each other for precise and unique control. Then, we adopt Face Former and ReferenceNet for high-level and detailed identity injection. Through experiments on the FF++ dataset, we demonstrate that our method achieves state-of-the-art results in face swapping, showcasing superior image quality, identity preservation, and expression accuracy. Besides, our method could be easily transferred to video domain with temporal attention layer. Our code and results will be available on the project page: https://dynamic-face.github.io/
☆ The Devil is in Temporal Token: High Quality Video Reasoning Segmentation
Existing methods for Video Reasoning Segmentation rely heavily on a single special token to represent the object in the keyframe or the entire video, inadequately capturing spatial complexity and inter-frame motion. To overcome these challenges, we propose VRS-HQ, an end-to-end video reasoning segmentation approach that leverages Multimodal Large Language Models (MLLMs) to inject rich spatiotemporal features into hierarchical tokens.Our key innovations include a Temporal Dynamic Aggregation (TDA) and a Token-driven Keyframe Selection (TKS). Specifically, we design frame-level and temporal-level tokens that utilize MLLM's autoregressive learning to effectively capture both local and global information. Subsequently, we apply a similarity-based weighted fusion and frame selection strategy, then utilize SAM2 to perform keyframe segmentation and propagation. To enhance keyframe localization accuracy, the TKS filters keyframes based on SAM2's occlusion scores during inference. VRS-HQ achieves state-of-the-art performance on ReVOS, surpassing VISA by 5.9%/12.5%/9.1% in J&F scores across the three subsets. These results highlight the strong temporal reasoning and segmentation capabilities of our method. Code and model weights will be released at VRS-HQ.
☆ Comprehensive Subjective and Objective Evaluation Method for Text-generated Video
Recent text-to-video (T2V) technology advancements, as demonstrated by models such as Gen3, Pika, and Sora, have significantly broadened its applicability and popularity. This progress has created a growing demand for accurate quality assessment metrics to evaluate the perceptual quality of text-generated videos and optimize video generation models. However, assessing the quality of text-generated videos remains challenging due to the presence of highly complex distortions, such as unnatural actions and phenomena that defy human cognition. To address these challenges, we constructed a large-scale benchmark dataset for \textbf{T}ext-generated \textbf{V}ideo \textbf{eval}uation, \textbf{T2VEval-Bench}, comprising 148 textual words and 1,783 videos generated by 12 models. During the subjective evaluation, we collected five key scores: overall impression, video quality, aesthetic quality, realness, and text-video consistency. For objective evaluation, we developed the \textbf{T2VEval} model, which assesses videos across three branches: quality, authenticity, and consistency. Using an attention-based fusion module, T2VEval effectively integrates features from each branch and predicts scores with the aid of a large oracle model. Additionally, we implemented a progressive training strategy, enabling each branch to learn targeted knowledge while maintaining synergy with the others. Experimental results demonstrate that T2VEval achieves state-of-the-art performance across multiple metrics. The dataset and code will be open-sourced upon completion of the follow-up work.
☆ Multimodal Fake News Video Explanation Generation
Multi-modal explanation involves the assessment of the veracity of a variety of different content, and relies on multiple information modalities to comprehensively consider the relevance and consistency between modalities. Most existing fake news video detection methods focus on improving accuracy while ignoring the importance of providing explanations. In this paper, we propose a novel problem - Fake News Video Explanation (FNVE) - Given a multimodal news containing both video and caption text, we aim to generate natural language explanations to reveal the truth of predictions. To this end, we develop FakeNVE, a new dataset of explanations for truthfully multimodal posts, where each explanation is a natural language (English) sentence describing the attribution of a news thread. We benchmark FakeNVE by using a multimodal transformer-based architecture. Subsequently, a BART-based autoregressive decoder is used as the generator. Empirical results show compelling results for various baselines (applicable to FNVE) across multiple evaluation metrics. We also perform human evaluation on explanation generation, achieving high scores for both adequacy and fluency.
☆ Exploring the Efficacy of Meta-Learning: Unveiling Superior Data Diversity Utilization of MAML Over Pre-training
Currently, data and model size dominate the narrative in the training of super-large, powerful models. However, there has been a lack of exploration on the effect of other attributes of the training dataset on model performance. We hypothesize that dataset diversity can impact the performance of vision models. Our study shows positive correlations between test set accuracy and data diversity, providing an argument for furthering the research of dataset attributes beyond size. We analyzed pre-training and model-agnostic meta-learning methods on twelve popular visual datasets (e.g., Omniglot, CIFAR-FS, Aircraft) and five model configurations, including MAML variants with different numbers of inner gradient steps and supervised learning. We show moderate to strong positive correlations (R-squared: 0.15-0.42) between accuracy and data diversity and weaker but significant correlations (R-squared: ~0.2) between loss and diversity. These findings support our hypothesis and demonstrate a promising way for a deeper exploration of how formal data diversity influences model performance. This initial study highlights the potential of (Task2Vec) data diversity as a valuable measure in the rapidly evolving field of large-scale learning and emphasizes that understanding the dataset is key to building more powerful and generalizable models.
☆ Yuan: Yielding Unblemished Aesthetics Through A Unified Network for Visual Imperfections Removal in Generated Images
Generative AI presents transformative potential across various domains, from creative arts to scientific visualization. However, the utility of AI-generated imagery is often compromised by visual flaws, including anatomical inaccuracies, improper object placements, and misplaced textual elements. These imperfections pose significant challenges for practical applications. To overcome these limitations, we introduce \textit{Yuan}, a novel framework that autonomously corrects visual imperfections in text-to-image synthesis. \textit{Yuan} uniquely conditions on both the textual prompt and the segmented image, generating precise masks that identify areas in need of refinement without requiring manual intervention -- a common constraint in previous methodologies. Following the automated masking process, an advanced inpainting module seamlessly integrates contextually coherent content into the identified regions, preserving the integrity and fidelity of the original image and associated text prompts. Through extensive experimentation on publicly available datasets such as ImageNet100 and Stanford Dogs, along with a custom-generated dataset, \textit{Yuan} demonstrated superior performance in eliminating visual imperfections. Our approach consistently achieved higher scores in quantitative metrics, including NIQE, BRISQUE, and PI, alongside favorable qualitative evaluations. These results underscore \textit{Yuan}'s potential to significantly enhance the quality and applicability of AI-generated images across diverse fields.
☆ SuperSAM: Crafting a SAM Supernetwork via Structured Pruning and Unstructured Parameter Prioritization
Neural Architecture Search (NAS) is a powerful approach of automating the design of efficient neural architectures. In contrast to traditional NAS methods, recently proposed one-shot NAS methods prove to be more efficient in performing NAS. One-shot NAS works by generating a singular weight-sharing supernetwork that acts as a search space (container) of subnetworks. Despite its achievements, designing the one-shot search space remains a major challenge. In this work we propose a search space design strategy for Vision Transformer (ViT)-based architectures. In particular, we convert the Segment Anything Model (SAM) into a weight-sharing supernetwork called SuperSAM. Our approach involves automating the search space design via layer-wise structured pruning and parameter prioritization. While the structured pruning applies probabilistic removal of certain transformer layers, parameter prioritization performs weight reordering and slicing of MLP-blocks in the remaining layers. We train supernetworks on several datasets using the sandwich rule. For deployment, we enhance subnetwork discovery by utilizing a program autotuner to identify efficient subnetworks within the search space. The resulting subnetworks are 30-70% smaller in size compared to the original pre-trained SAM ViT-B, yet outperform the pretrained model. Our work introduces a new and effective method for ViT NAS search-space design.
☆ Unified Few-shot Crack Segmentation and its Precise 3D Automatic Measurement in Concrete Structures
Visual-Spatial Systems has become increasingly essential in concrete crack inspection. However, existing methods often lacks adaptability to diverse scenarios, exhibits limited robustness in image-based approaches, and struggles with curved or complex geometries. To address these limitations, an innovative framework for two-dimensional (2D) crack detection, three-dimensional (3D) reconstruction, and 3D automatic crack measurement was proposed by integrating computer vision technologies and multi-modal Simultaneous localization and mapping (SLAM) in this study. Firstly, building on a base DeepLabv3+ segmentation model, and incorporating specific refinements utilizing foundation model Segment Anything Model (SAM), we developed a crack segmentation method with strong generalization across unfamiliar scenarios, enabling the generation of precise 2D crack masks. To enhance the accuracy and robustness of 3D reconstruction, Light Detection and Ranging (LiDAR) point clouds were utilized together with image data and segmentation masks. By leveraging both image- and LiDAR-SLAM, we developed a multi-frame and multi-modal fusion framework that produces dense, colorized point clouds, effectively capturing crack semantics at a 3D real-world scale. Furthermore, the crack geometric attributions were measured automatically and directly within 3D dense point cloud space, surpassing the limitations of conventional 2D image-based measurements. This advancement makes the method suitable for structural components with curved and complex 3D geometries. Experimental results across various concrete structures highlight the significant improvements and unique advantages of the proposed method, demonstrating its effectiveness, accuracy, and robustness in real-world applications.
☆ Grounding Text-To-Image Diffusion Models For Controlled High-Quality Image Generation
Large-scale text-to-image (T2I) diffusion models have demonstrated an outstanding performance in synthesizing diverse high-quality visuals from natural language text captions. Multiple layout-to-image models have been developed to control the generation process by utilizing a broad array of layouts such as segmentation maps, edges, and human keypoints. In this work, we present ObjectDiffusion, a model that takes inspirations from the top cutting-edge image generative frameworks to seamlessly condition T2I models with new bounding boxes capabilities. Specifically, we make substantial modifications to the network architecture introduced in ContorlNet to integrate it with the condition processing and injection techniques proposed in GLIGEN. ObjectDiffusion is initialized with pretraining parameters to leverage the generation knowledge obtained from training on large-scale datasets. We fine-tune ObjectDiffusion on the COCO2017 training dataset and evaluate it on the COCO2017 validation dataset. Our model achieves an AP$_{50}$ of 46.6, an AR of 44.5, and a FID of 19.8 outperforming the current SOTA model trained on open-source datasets in all of the three metrics. ObjectDiffusion demonstrates a distinctive capability in synthesizing diverse, high-quality, high-fidelity images that seamlessly conform to the semantic and spatial control layout. Evaluated in qualitative and quantitative tests, ObjectDiffusion exhibits remarkable grounding abilities on closed-set and open-set settings across a wide variety of contexts. The qualitative assessment verifies the ability of ObjectDiffusion to generate multiple objects of different sizes and locations.
☆ Patch-aware Vector Quantized Codebook Learning for Unsupervised Visual Defect Detection ICTAI 2024
Unsupervised visual defect detection is critical in industrial applications, requiring a representation space that captures normal data features while detecting deviations. Achieving a balance between expressiveness and compactness is challenging; an overly expressive space risks inefficiency and mode collapse, impairing detection accuracy. We propose a novel approach using an enhanced VQ-VAE framework optimized for unsupervised defect detection. Our model introduces a patch-aware dynamic code assignment scheme, enabling context-sensitive code allocation to optimize spatial representation. This strategy enhances normal-defect distinction and improves detection accuracy during inference. Experiments on MVTecAD, BTAD, and MTSD datasets show our method achieves state-of-the-art performance.
comment: 7 pages, Accepted to 36th IEEE ICTAI 2024
☆ Cancer-Net PCa-Seg: Benchmarking Deep Learning Models for Prostate Cancer Segmentation Using Synthetic Correlated Diffusion Imaging
Prostate cancer (PCa) is the most prevalent cancer among men in the United States, accounting for nearly 300,000 cases, 29% of all diagnoses and 35,000 total deaths in 2024. Traditional screening methods such as prostate-specific antigen (PSA) testing and magnetic resonance imaging (MRI) have been pivotal in diagnosis, but have faced limitations in specificity and generalizability. In this paper, we explore the potential of enhancing PCa lesion segmentation using a novel MRI modality called synthetic correlated diffusion imaging (CDI$^s$). We employ several state-of-the-art deep learning models, including U-Net, SegResNet, Swin UNETR, Attention U-Net, and LightM-UNet, to segment PCa lesions from a 200 CDI$^s$ patient cohort. We find that SegResNet achieved superior segmentation performance with a Dice-Sorensen coefficient (DSC) of $76.68 \pm 0.8$. Notably, the Attention U-Net, while slightly less accurate (DSC $74.82 \pm 2.0$), offered a favorable balance between accuracy and computational efficiency. Our findings demonstrate the potential of deep learning models in improving PCa lesion segmentation using CDI$^s$ to enhance PCa management and clinical support.
comment: 8 pages, 2 figures, to be published in Studies in Computational Intelligence. This paper introduces Cancer-Net PCa-Seg, a comprehensive evaluation of deep learning models for prostate cancer segmentation using synthetic correlated diffusion imaging (CDI$^s$). We benchmark five state-of-the-art architectures: U-Net, SegResNet, Swin UNETR, Attention U-Net, and LightM-UNet
☆ Embodied Scene Understanding for Vision Language Models via MetaVQA
Vision Language Models (VLMs) demonstrate significant potential as embodied AI agents for various mobility applications. However, a standardized, closed-loop benchmark for evaluating their spatial reasoning and sequential decision-making capabilities is lacking. To address this, we present MetaVQA: a comprehensive benchmark designed to assess and enhance VLMs' understanding of spatial relationships and scene dynamics through Visual Question Answering (VQA) and closed-loop simulations. MetaVQA leverages Set-of-Mark prompting and top-down view ground-truth annotations from nuScenes and Waymo datasets to automatically generate extensive question-answer pairs based on diverse real-world traffic scenarios, ensuring object-centric and context-rich instructions. Our experiments show that fine-tuning VLMs with the MetaVQA dataset significantly improves their spatial reasoning and embodied scene comprehension in safety-critical simulations, evident not only in improved VQA accuracies but also in emerging safety-aware driving maneuvers. In addition, the learning demonstrates strong transferability from simulation to real-world observation. Code and data will be publicly available at https://metadriverse.github.io/metavqa .
comment: for the project webpage, see https://metadriverse.github.io/metavqa
☆ A Vessel Bifurcation Landmark Pair Dataset for Abdominal CT Deformable Image Registration (DIR) Validation
Deformable image registration (DIR) is an enabling technology in many diagnostic and therapeutic tasks. Despite this, DIR algorithms have limited clinical use, largely due to a lack of benchmark datasets for quality assurance during development. To support future algorithm development, here we introduce our first-of-its-kind abdominal CT DIR benchmark dataset, comprising large numbers of highly accurate landmark pairs on matching blood vessel bifurcations. Abdominal CT image pairs of 30 patients were acquired from several public repositories as well as the authors' institution with IRB approval. The two CTs of each pair were originally acquired for the same patient on different days. An image processing workflow was developed and applied to each image pair: 1) Abdominal organs were segmented with a deep learning model, and image intensity within organ masks was overwritten. 2) Matching image patches were manually identified between two CTs of each image pair 3) Vessel bifurcation landmarks were labeled on one image of each image patch pair. 4) Image patches were deformably registered, and landmarks were projected onto the second image. 5) Landmark pair locations were refined manually or with an automated process. This workflow resulted in 1895 total landmark pairs, or 63 per case on average. Estimates of the landmark pair accuracy using digital phantoms were 0.7+/-1.2mm. The data is published in Zenodo at https://doi.org/10.5281/zenodo.14362785. Instructions for use can be found at https://github.com/deshanyang/Abdominal-DIR-QA. This dataset is a first-of-its-kind for abdominal DIR validation. The number, accuracy, and distribution of landmark pairs will allow for robust validation of DIR algorithms with precision beyond what is currently available.
comment: 19 pages, 3 figures
☆ VCRScore: Image captioning metric based on V\&L Transformers, CLIP, and precision-recall
Image captioning has become an essential Vision & Language research task. It is about predicting the most accurate caption given a specific image or video. The research community has achieved impressive results by continuously proposing new models and approaches to improve the overall model's performance. Nevertheless, despite increasing proposals, the performance metrics used to measure their advances have remained practically untouched through the years. A probe of that, nowadays metrics like BLEU, METEOR, CIDEr, and ROUGE are still very used, aside from more sophisticated metrics such as BertScore and ClipScore. Hence, it is essential to adjust how are measure the advances, limitations, and scopes of the new image captioning proposals, as well as to adapt new metrics to these new advanced image captioning approaches. This work proposes a new evaluation metric for the image captioning problem. To do that, first, it was generated a human-labeled dataset to assess to which degree the captions correlate with the image's content. Taking these human scores as ground truth, we propose a new metric, and compare it with several well-known metrics, from classical to newer ones. Outperformed results were also found, and interesting insights were presented and discussed.
comment: 28 pages
☆ Few-Shot Adaptation of Training-Free Foundation Model for 3D Medical Image Segmentation
Vision foundation models have achieved remarkable progress across various image analysis tasks. In the image segmentation task, foundation models like the Segment Anything Model (SAM) enable generalizable zero-shot segmentation through user-provided prompts. However, SAM primarily trained on natural images, lacks the domain-specific expertise of medical imaging. This limitation poses challenges when applying SAM to medical image segmentation, including the need for extensive fine-tuning on specialized medical datasets and a dependency on manual prompts, which are both labor-intensive and require intervention from medical experts. This work introduces the Few-shot Adaptation of Training-frEe SAM (FATE-SAM), a novel method designed to adapt the advanced Segment Anything Model 2 (SAM2) for 3D medical image segmentation. FATE-SAM reassembles pre-trained modules of SAM2 to enable few-shot adaptation, leveraging a small number of support examples to capture anatomical knowledge and perform prompt-free segmentation, without requiring model fine-tuning. To handle the volumetric nature of medical images, we incorporate a Volumetric Consistency mechanism that enhances spatial coherence across 3D slices. We evaluate FATE-SAM on multiple medical imaging datasets and compare it with supervised learning methods, zero-shot SAM approaches, and fine-tuned medical SAM methods. Results show that FATE-SAM delivers robust and accurate segmentation while eliminating the need for large annotated datasets and expert intervention. FATE-SAM provides a practical, efficient solution for medical image segmentation, making it more accessible for clinical applications.
☆ Benchmarking Robustness of Contrastive Learning Models for Medical Image-Report Retrieval AAAI 2025
Medical images and reports offer invaluable insights into patient health. The heterogeneity and complexity of these data hinder effective analysis. To bridge this gap, we investigate contrastive learning models for cross-domain retrieval, which associates medical images with their corresponding clinical reports. This study benchmarks the robustness of four state-of-the-art contrastive learning models: CLIP, CXR-RePaiR, MedCLIP, and CXR-CLIP. We introduce an occlusion retrieval task to evaluate model performance under varying levels of image corruption. Our findings reveal that all evaluated models are highly sensitive to out-of-distribution data, as evidenced by the proportional decrease in performance with increasing occlusion levels. While MedCLIP exhibits slightly more robustness, its overall performance remains significantly behind CXR-CLIP and CXR-RePaiR. CLIP, trained on a general-purpose dataset, struggles with medical image-report retrieval, highlighting the importance of domain-specific training data. The evaluation of this work suggests that more effort needs to be spent on improving the robustness of these models. By addressing these limitations, we can develop more reliable cross-domain retrieval models for medical applications.
comment: This work is accepted to AAAI 2025 Workshop -- the 9th International Workshop on Health Intelligence
☆ Deep Self-Supervised Disturbance Mapping with the OPERA Sentinel-1 Radiometric Terrain Corrected SAR Backscatter Product
Mapping land surface disturbances supports disaster response, resource and ecosystem management, and climate adaptation efforts. Synthetic aperture radar (SAR) is an invaluable tool for disturbance mapping, providing consistent time-series images of the ground regardless of weather or illumination conditions. Despite SAR's potential for disturbance mapping, processing SAR data to an analysis-ready format requires expertise and significant compute resources, particularly for large-scale global analysis. In October 2023, NASA's Observational Products for End-Users from Remote Sensing Analysis (OPERA) project released the near-global Radiometric Terrain Corrected SAR backscatter from Sentinel-1 (RTC-S1) dataset, providing publicly available, analysis-ready SAR imagery. In this work, we utilize this new dataset to systematically analyze land surface disturbances. As labeling SAR data is often prohibitively time-consuming, we train a self-supervised vision transformer - which requires no labels to train - on OPERA RTC-S1 data to estimate a per-pixel distribution from the set of baseline imagery and assess disturbances when there is significant deviation from the modeled distribution. To test our model's capability and generality, we evaluate three different natural disasters - which represent high-intensity, abrupt disturbances - from three different regions of the world. Across events, our approach yields high quality delineations: F1 scores exceeding 0.6 and Areas Under the Precision-Recall Curve exceeding 0.65, consistently outperforming existing SAR disturbance methods. Our findings suggest that a self-supervised vision transformer is well-suited for global disturbance mapping and can be a valuable tool for operational, near-global disturbance monitoring, particularly when labeled data does not exist.
comment: 19 pages, 18 figures, 5 tables. Preprint. Submitted to JSTARS
☆ Deep Distance Map Regression Network with Shape-aware Loss for Imbalanced Medical Image Segmentation
Small object segmentation, like tumor segmentation, is a difficult and critical task in the field of medical image analysis. Although deep learning based methods have achieved promising performance, they are restricted to the use of binary segmentation mask. Inspired by the rigorous mapping between binary segmentation mask and distance map, we adopt distance map as a novel ground truth and employ a network to fulfill the computation of distance map. Specially, we propose a new segmentation framework that incorporates the existing binary segmentation network and a light weight regression network (dubbed as LR-Net). Thus, the LR-Net can convert the distance map computation into a regression task and leverage the rich information of distance maps. Additionally, we derive a shape-aware loss by employing distance maps as penalty map to infer the complete shape of an object. We evaluated our approach on MICCAI 2017 Liver Tumor Segmentation (LiTS) Challenge dataset and a clinical dataset. Experimental results show that our approach outperforms the classification-based methods as well as other existing state-of-the-arts.
comment: Conference
☆ Generative Medical Image Anonymization Based on Latent Code Projection and Optimization
Medical image anonymization aims to protect patient privacy by removing identifying information, while preserving the data utility to solve downstream tasks. In this paper, we address the medical image anonymization problem with a two-stage solution: latent code projection and optimization. In the projection stage, we design a streamlined encoder to project input images into a latent space and propose a co-training scheme to enhance the projection process. In the optimization stage, we refine the latent code using two deep loss functions designed to address the trade-off between identity protection and data utility dedicated to medical images. Through a comprehensive set of qualitative and quantitative experiments, we showcase the effectiveness of our approach on the MIMIC-CXR chest X-ray dataset by generating anonymized synthetic images that can serve as training set for detecting lung pathologies. Source codes are available at https://github.com/Huiyu-Li/GMIA.
comment: Conference
☆ Relation U-Net
Towards clinical interpretations, this paper presents a new ''output-with-confidence'' segmentation neural network with multiple input images and multiple output segmentation maps and their pairwise relations. A confidence score of the test image without ground-truth can be estimated from the difference among the estimated relation maps. We evaluate the method based on the widely used vanilla U-Net for segmentation and our new model is named Relation U-Net which can output segmentation maps of the input images as well as an estimated confidence score of the test image without ground-truth. Experimental results on four public datasets show that Relation U-Net can not only provide better accuracy than vanilla U-Net but also estimate a confidence score which is linearly correlated to the segmentation accuracy on test images.
comment: ISIB 2025
☆ Self Pre-training with Adaptive Mask Autoencoders for Variable-Contrast 3D Medical Imaging
The Masked Autoencoder (MAE) has recently demonstrated effectiveness in pre-training Vision Transformers (ViT) for analyzing natural images. By reconstructing complete images from partially masked inputs, the ViT encoder gathers contextual information to predict the missing regions. This capability to aggregate context is especially important in medical imaging, where anatomical structures are functionally and mechanically linked to surrounding regions. However, current methods do not consider variations in the number of input images, which is typically the case in real-world Magnetic Resonance (MR) studies. To address this limitation, we propose a 3D Adaptive Masked Autoencoders (AMAE) architecture that accommodates a variable number of 3D input contrasts per subject. A magnetic resonance imaging (MRI) dataset of 45,364 subjects was used for pretraining and a subset of 1648 training, 193 validation and 215 test subjects were used for finetuning. The performance demonstrates that self pre-training of this adaptive masked autoencoders can enhance the infarct segmentation performance by 2.8%-3.7% for ViT-based segmentation models.
comment: 5 pages, ISBI 2025 accepted
☆ Salient Information Preserving Adversarial Training Improves Clean and Robust Accuracy
In this work we introduce Salient Information Preserving Adversarial Training (SIP-AT), an intuitive method for relieving the robustness-accuracy trade-off incurred by traditional adversarial training. SIP-AT uses salient image regions to guide the adversarial training process in such a way that fragile features deemed meaningful by an annotator remain unperturbed during training, allowing models to learn highly predictive non-robust features without sacrificing overall robustness. This technique is compatible with both human-based and automatically generated salience estimates, allowing SIP-AT to be used as a part of human-driven model development without forcing SIP-AT to be reliant upon additional human data. We perform experiments across multiple datasets and architectures and demonstrate that SIP-AT is able to boost the clean accuracy of models while maintaining a high degree of robustness against attacks at multiple epsilon levels. We complement our central experiments with an observational study measuring the rate at which human subjects successfully identify perturbed images. This study helps build a more intuitive understanding of adversarial attack strength and demonstrates the heightened importance of low-epsilon robustness. Our results demonstrate the efficacy of SIP-AT and provide valuable insight into the risks posed by adversarial samples of various strengths.
☆ SHYI: Action Support for Contrastive Learning in High-Fidelity Text-to-Image Generation
In this project, we address the issue of infidelity in text-to-image generation, particularly for actions involving multiple objects. For this we build on top of the CONFORM framework which uses Contrastive Learning to improve the accuracy of the generated image for multiple objects. However the depiction of actions which involves multiple different object has still large room for improvement. To improve, we employ semantically hypergraphic contrastive adjacency learning, a comprehension of enhanced contrastive structure and "contrast but link" technique. We further amend Stable Diffusion's understanding of actions by InteractDiffusion. As evaluation metrics we use image-text similarity CLIP and TIFA. In addition, we conducted a user study. Our method shows promising results even with verbs that Stable Diffusion understands mediocrely. We then provide future directions by analyzing the results. Our codebase can be found on polybox under the link: https://polybox.ethz.ch/index.php/s/dJm3SWyRohUrFxn
comment: Main content 4 pages
☆ Empowering Agricultural Insights: RiceLeafBD -- A Novel Dataset and Optimal Model Selection for Rice Leaf Disease Diagnosis through Transfer Learning Technique
The number of people living in this agricultural nation of ours, which is surrounded by lush greenery, is growing on a daily basis. As a result of this, the level of arable land is decreasing, as well as residential houses and industrial factories. The food crisis is becoming the main threat for us in the upcoming days. Because on the one hand, the population is increasing, and on the other hand, the amount of food crop production is decreasing due to the attack of diseases. Rice is one of the most significant cultivated crops since it provides food for more than half of the world's population. Bangladesh is dependent on rice (Oryza sativa) as a vital crop for its agriculture, but it faces a significant problem as a result of the ongoing decline in rice yield brought on by common diseases. Early disease detection is the main difficulty in rice crop cultivation. In this paper, we proposed our own dataset, which was collected from the Bangladesh field, and also applied deep learning and transfer learning models for the evaluation of the datasets. We elaborately explain our dataset and also give direction for further research work to serve society using this dataset. We applied a light CNN model and pre-trained InceptionNet-V2, EfficientNet-V2, and MobileNet-V2 models, which achieved 91.5% performance for the EfficientNet-V2 model of this work. The results obtained assaulted other models and even exceeded approaches that are considered to be part of the state of the art. It has been demonstrated by this study that it is possible to precisely and effectively identify diseases that affect rice leaves using this unbiased datasets. After analysis of the performance of different models, the proposed datasets are significant for the society for research work to provide solutions for decreasing rice leaf disease.
☆ Polyp detection in colonoscopy images using YOLOv11
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers all over the world. It starts as a polyp in the inner lining of the colon. To prevent CRC, early polyp detection is required. Colonosopy is used for the inspection of the colon. Generally, the images taken by the camera placed at the tip of the endoscope are analyzed by the experts manually. Various traditional machine learning models have been used with the rise of machine learning. Recently, deep learning models have shown more effectiveness in polyp detection due to their superiority in generalizing and learning small features. These deep learning models for object detection can be segregated into two different types: single-stage and two-stage. Generally, two stage models have higher accuracy than single stage ones but the single stage models have low inference time. Hence, single stage models are easy to use for quick object detection. YOLO is one of the singlestage models used successfully for polyp detection. It has drawn the attention of researchers because of its lower inference time. The researchers have used Different versions of YOLO so far, and with each newer version, the accuracy of the model is increasing. This paper aims to see the effectiveness of the recently released YOLOv11 to detect polyp. We analyzed the performance for all five models of YOLOv11 (YOLO11n, YOLO11s, YOLO11m, YOLO11l, YOLO11x) with Kvasir dataset for the training and testing. Two different versions of the dataset were used. The first consisted of the original dataset, and the other was created using augmentation techniques. The performance of all the models with these two versions of the dataset have been analysed.
☆ Generating Realistic Synthetic Head Rotation Data for Extended Reality using Deep Learning
Extended Reality is a revolutionary method of delivering multimedia content to users. A large contributor to its popularity is the sense of immersion and interactivity enabled by having real-world motion reflected in the virtual experience accurately and immediately. This user motion, mainly caused by head rotations, induces several technical challenges. For instance, which content is generated and transmitted depends heavily on where the user is looking. Seamless systems, taking user motion into account proactively, will therefore require accurate predictions of upcoming rotations. Training and evaluating such predictors requires vast amounts of orientational input data, which is expensive to gather, as it requires human test subjects. A more feasible approach is to gather a modest dataset through test subjects, and then extend it to a more sizeable set using synthetic data generation methods. In this work, we present a head rotation time series generator based on TimeGAN, an extension of the well-known Generative Adversarial Network, designed specifically for generating time series. This approach is able to extend a dataset of head rotations with new samples closely matching the distribution of the measured time series.
comment: Published and presented at International Conference on Multimedia 2022 (ACMMM), Workshop on Interactive eXtended Reality (IXR)
☆ Dynamic-Aware Spatio-temporal Representation Learning for Dynamic MRI Reconstruction
Dynamic MRI reconstruction, one of inverse problems, has seen a surge by the use of deep learning techniques. Especially, the practical difficulty of obtaining ground truth data has led to the emergence of unsupervised learning approaches. A recent promising method among them is implicit neural representation (INR), which defines the data as a continuous function that maps coordinate values to the corresponding signal values. This allows for filling in missing information only with incomplete measurements and solving the inverse problem effectively. Nevertheless, previous works incorporating this method have faced drawbacks such as long optimization time and the need for extensive hyperparameter tuning. To address these issues, we propose Dynamic-Aware INR (DA-INR), an INR-based model for dynamic MRI reconstruction that captures the spatial and temporal continuity of dynamic MRI data in the image domain and explicitly incorporates the temporal redundancy of the data into the model structure. As a result, DA-INR outperforms other models in reconstruction quality even at extreme undersampling ratios while significantly reducing optimization time and requiring minimal hyperparameter tuning.
☆ Anthropomorphic Features for On-Line Signatures
Many features have been proposed in on-line signature verification. Generally, these features rely on the position of the on-line signature samples and their dynamic properties, as recorded by a tablet. This paper proposes a novel feature space to describe efficiently on-line signatures. Since producing a signature requires a skeletal arm system and its associated muscles, the new feature space is based on characterizing the movement of the shoulder, the elbow and the wrist joints when signing. As this motion is not directly obtained from a digital tablet, the new features are calculated by means of a virtual skeletal arm (VSA) model, which simulates the architecture of a real arm and forearm. Specifically, the VSA motion is described by its 3D joint position and its joint angles. These anthropomorphic features are worked out from both pen position and orientation through the VSA forward and direct kinematic model. The anthropomorphic features' robustness is proved by achieving state-of-the-art performance with several verifiers and multiple benchmarks on third party signature databases, which were collected with different devices and in different languages and scripts.
☆ Learning Hemodynamic Scalar Fields on Coronary Artery Meshes: A Benchmark of Geometric Deep Learning Models
Coronary artery disease, caused by the narrowing of coronary vessels due to atherosclerosis, is the leading cause of death worldwide. The diagnostic gold standard, fractional flow reserve (FFR), measures the trans-stenotic pressure ratio during maximal vasodilation but is invasive and costly. This has driven the development of virtual FFR (vFFR) using computational fluid dynamics (CFD) to simulate coronary flow. Geometric deep learning algorithms have shown promise for learning features on meshes, including cardiovascular research applications. This study empirically analyzes various backends for predicting vFFR fields in coronary arteries as CFD surrogates, comparing six backends for learning hemodynamics on meshes using CFD solutions as ground truth. The study has two parts: i) Using 1,500 synthetic left coronary artery bifurcations, models were trained to predict pressure-related fields for vFFR reconstruction, comparing different learning variables. ii) Using 427 patient-specific CFD simulations, experiments were repeated focusing on the best-performing learning variable from the synthetic dataset. Most backends performed well on the synthetic dataset, especially when predicting pressure drop over the manifold. Transformer-based backends outperformed others when predicting pressure and vFFR fields and were the only models achieving strong performance on patient-specific data, excelling in both average per-point error and vFFR accuracy in stenotic lesions. These results suggest geometric deep learning backends can effectively replace CFD for simple geometries, while transformer-based networks are superior for complex, heterogeneous datasets. Pressure drop was identified as the optimal network output for learning pressure-related fields.
☆ Spatio-Temporal Foundation Models: Vision, Challenges, and Opportunities
Foundation models have revolutionized artificial intelligence, setting new benchmarks in performance and enabling transformative capabilities across a wide range of vision and language tasks. However, despite the prevalence of spatio-temporal data in critical domains such as transportation, public health, and environmental monitoring, spatio-temporal foundation models (STFMs) have not yet achieved comparable success. In this paper, we articulate a vision for the future of STFMs, outlining their essential characteristics and the generalization capabilities necessary for broad applicability. We critically assess the current state of research, identifying gaps relative to these ideal traits, and highlight key challenges that impede their progress. Finally, we explore potential opportunities and directions to advance research towards the aim of effective and broadly applicable STFMs.
☆ TCMM: Token Constraint and Multi-Scale Memory Bank of Contrastive Learning for Unsupervised Person Re-identification
This paper proposes the ViT Token Constraint and Multi-scale Memory bank (TCMM) method to address the patch noises and feature inconsistency in unsupervised person re-identification works. Many excellent methods use ViT features to obtain pseudo labels and clustering prototypes, then train the model with contrastive learning. However, ViT processes images by performing patch embedding, which inevitably introduces noise in patches and may compromise the performance of the re-identification model. On the other hand, previous memory bank based contrastive methods may lead data inconsistency due to the limitation of batch size. Furthermore, existing pseudo label methods often discard outlier samples that are difficult to cluster. It sacrifices the potential value of outlier samples, leading to limited model diversity and robustness. This paper introduces the ViT Token Constraint to mitigate the damage caused by patch noises to the ViT architecture. The proposed Multi-scale Memory enhances the exploration of outlier samples and maintains feature consistency. Experimental results demonstrate that our system achieves state-of-the-art performance on common benchmarks. The project is available at \href{https://github.com/andy412510/TCMM}{https://github.com/andy412510/TCMM}.
☆ CookingDiffusion: Cooking Procedural Image Generation with Stable Diffusion
Recent advancements in text-to-image generation models have excelled in creating diverse and realistic images. This success extends to food imagery, where various conditional inputs like cooking styles, ingredients, and recipes are utilized. However, a yet-unexplored challenge is generating a sequence of procedural images based on cooking steps from a recipe. This could enhance the cooking experience with visual guidance and possibly lead to an intelligent cooking simulation system. To fill this gap, we introduce a novel task called \textbf{cooking procedural image generation}. This task is inherently demanding, as it strives to create photo-realistic images that align with cooking steps while preserving sequential consistency. To collectively tackle these challenges, we present \textbf{CookingDiffusion}, a novel approach that leverages Stable Diffusion and three innovative Memory Nets to model procedural prompts. These prompts encompass text prompts (representing cooking steps), image prompts (corresponding to cooking images), and multi-modal prompts (mixing cooking steps and images), ensuring the consistent generation of cooking procedural images. To validate the effectiveness of our approach, we preprocess the YouCookII dataset, establishing a new benchmark. Our experimental results demonstrate that our model excels at generating high-quality cooking procedural images with remarkable consistency across sequential cooking steps, as measured by both the FID and the proposed Average Procedure Consistency metrics. Furthermore, CookingDiffusion demonstrates the ability to manipulate ingredients and cooking methods in a recipe. We will make our code, models, and dataset publicly accessible.
☆ Generative Visual Commonsense Answering and Explaining with Generative Scene Graph Constructing
Visual Commonsense Reasoning, which is regarded as one challenging task to pursue advanced visual scene comprehension, has been used to diagnose the reasoning ability of AI systems. However, reliable reasoning requires a good grasp of the scene's details. Existing work fails to effectively exploit the real-world object relationship information present within the scene, and instead overly relies on knowledge from training memory. Based on these observations, we propose a novel scene-graph-enhanced visual commonsense reasoning generation method named \textit{\textbf{G2}}, which first utilizes the image patches and LLMs to construct a location-free scene graph, and then answer and explain based on the scene graph's information. We also propose automatic scene graph filtering and selection strategies to absorb valuable scene graph information during training. Extensive experiments are conducted on the tasks and datasets of scene graph constructing and visual commonsense answering and explaining, respectively. Experimental results and ablation analysis demonstrate the effectiveness of our proposed framework.
☆ Pseudolabel guided pixels contrast for domain adaptive semantic segmentation
Semantic segmentation is essential for comprehending images, but the process necessitates a substantial amount of detailed annotations at the pixel level. Acquiring such annotations can be costly in the real-world. Unsupervised domain adaptation (UDA) for semantic segmentation is a technique that uses virtual data with labels to train a model and adapts it to real data without labels. Some recent works use contrastive learning, which is a powerful method for self-supervised learning, to help with this technique. However, these works do not take into account the diversity of features within each class when using contrastive learning, which leads to errors in class prediction. We analyze the limitations of these works and propose a novel framework called Pseudo-label Guided Pixel Contrast (PGPC), which overcomes the disadvantages of previous methods. We also investigate how to use more information from target images without adding noise from pseudo-labels. We test our method on two standard UDA benchmarks and show that it outperforms existing methods. Specifically, we achieve relative improvements of 5.1% mIoU and 4.6% mIoU on the Grand Theft Auto V (GTA5) to Cityscapes and SYNTHIA to Cityscapes tasks based on DAFormer, respectively. Furthermore, our approach can enhance the performance of other UDA approaches without increasing model complexity. Code is available at https://github.com/embar111/pgpc
comment: 24 pages, 5 figures. Code: https://github.com/embar111/pgpc
♻ ☆ T2V-CompBench: A Comprehensive Benchmark for Compositional Text-to-video Generation
Text-to-video (T2V) generative models have advanced significantly, yet their ability to compose different objects, attributes, actions, and motions into a video remains unexplored. Previous text-to-video benchmarks also neglect this important ability for evaluation. In this work, we conduct the first systematic study on compositional text-to-video generation. We propose T2V-CompBench, the first benchmark tailored for compositional text-to-video generation. T2V-CompBench encompasses diverse aspects of compositionality, including consistent attribute binding, dynamic attribute binding, spatial relationships, motion binding, action binding, object interactions, and generative numeracy. We further carefully design evaluation metrics of multimodal large language model (MLLM)-based, detection-based, and tracking-based metrics, which can better reflect the compositional text-to-video generation quality of seven proposed categories with 1400 text prompts. The effectiveness of the proposed metrics is verified by correlation with human evaluations. We also benchmark various text-to-video generative models and conduct in-depth analysis across different models and various compositional categories. We find that compositional text-to-video generation is highly challenging for current models, and we hope our attempt could shed light on future research in this direction.
comment: Project page: https://t2v-compbench-2025.github.io/ Code: https://github.com/KaiyueSun98/T2V-CompBench/tree/V2
♻ ☆ DeblurDiNAT: A Compact Model with Exceptional Generalization and Visual Fidelity on Unseen Domains
Recent deblurring networks have effectively restored clear images from the blurred ones. However, they often struggle with generalization to unknown domains. Moreover, these models typically focus on distortion metrics such as PSNR and SSIM, neglecting the critical aspect of metrics aligned with human perception. To address these limitations, we propose DeblurDiNAT, a deblurring Transformer based on Dilated Neighborhood Attention. First, DeblurDiNAT employs an alternating dilation factor paradigm to capture both local and global blurred patterns, enhancing generalization and perceptual clarity. Second, a local cross-channel learner aids the Transformer block to understand the short-range relationships between adjacent channels. Additionally, we present a linear feed-forward network with a simple while effective design. Finally, a dual-stage feature fusion module is introduced as an alternative to the existing approach, which efficiently process multi-scale visual information across network levels. Compared to state-of-the-art models, our compact DeblurDiNAT demonstrates superior generalization capabilities and achieves remarkable performance in perceptual metrics, while maintaining a favorable model size.
♻ ☆ Click-Calib: A Robust Extrinsic Calibration Method for Surround-View Systems
Surround-View System (SVS) is an essential component in Advanced Driver Assistance System (ADAS) and requires precise calibrations. However, conventional offline extrinsic calibration methods are cumbersome and time-consuming as they rely heavily on physical patterns. Additionally, these methods primarily focus on short-range areas surrounding the vehicle, resulting in lower calibration quality in more distant zones. To address these limitations, we propose Click-Calib, a pattern-free approach for offline SVS extrinsic calibration. Without requiring any special setup, the user only needs to click a few keypoints on the ground in natural scenes. Unlike other offline calibration approaches, Click-Calib optimizes camera poses over a wide range by minimizing reprojection distance errors of keypoints, thereby achieving accurate calibrations at both short and long distances. Furthermore, Click-Calib supports both single-frame and multiple-frame modes, with the latter offering even better results. Evaluations on our in-house dataset and the public WoodScape dataset demonstrate its superior accuracy and robustness compared to baseline methods. Code is available at https://github.com/lwangvaleo/click_calib.
♻ ☆ A General Framework for Inference-time Scaling and Steering of Diffusion Models
Diffusion models produce impressive results in modalities ranging from images and video to protein design and text. However, generating samples with user-specified properties remains a challenge. Recent research proposes fine-tuning models to maximize rewards that capture desired properties, but these methods require expensive training and are prone to mode collapse. In this work, we propose Feynman Kac (FK) steering, an inference-time framework for steering diffusion models with reward functions. FK steering works by sampling a system of multiple interacting diffusion processes, called particles, and resampling particles at intermediate steps based on scores computed using functions called potentials. Potentials are defined using rewards for intermediate states and are selected such that a high value indicates that the particle will yield a high-reward sample. We explore various choices of potentials, intermediate rewards, and samplers. We evaluate FK steering on text-to-image and text diffusion models. For steering text-to-image models with a human preference reward, we find that FK steering a 0.8B parameter model outperforms a 2.6B parameter fine-tuned model on prompt fidelity, with faster sampling and no training. For steering text diffusion models with rewards for text quality and specific text attributes, we find that FK steering generates lower perplexity, more linguistically acceptable outputs and enables gradient-free control of attributes like toxicity. Our results demonstrate that inference-time scaling and steering of diffusion models, even with off-the-shelf rewards, can provide significant sample quality gains and controllability benefits. Code is available at https://github.com/zacharyhorvitz/Fk-Diffusion-Steering .
♻ ☆ SA-MLP: A Low-Power Multiplication-Free Deep Network for 3D Point Cloud Classification in Resource-Constrained Environments
Point cloud classification plays a crucial role in the processing and analysis of data from 3D sensors such as LiDAR, which are commonly used in applications like autonomous vehicles, robotics, and environmental monitoring. However, traditional neural networks, which rely heavily on multiplication operations, often face challenges in terms of high computational costs and energy consumption. This study presents a novel family of efficient MLP-based architectures designed to improve the computational efficiency of point cloud classification tasks in sensor systems. The baseline model, Mul-MLP, utilizes conventional multiplication operations, while Add-MLP and Shift-MLP replace multiplications with addition and shift operations, respectively. These replacements leverage more sensor-friendly operations that can significantly reduce computational overhead, making them particularly suitable for resource-constrained sensor platforms. To further enhance performance, we propose SA-MLP, a hybrid architecture that alternates between shift and adder layers, preserving the network depth while optimizing computational efficiency. Unlike previous approaches such as ShiftAddNet, which increase the layer count and limit representational capacity by freezing shift weights, SA-MLP fully exploits the complementary advantages of shift and adder layers by employing distinct learning rates and optimizers. Experimental results show that Add-MLP and Shift-MLP achieve competitive performance compared to Mul-MLP, while SA-MLP surpasses the baseline, delivering results comparable to state-of-the-art MLP models in terms of both classification accuracy and computational efficiency. This work offers a promising, energy-efficient solution for sensor-driven applications requiring real-time point cloud classification, particularly in environments with limited computational resources.
♻ ☆ A design of Convolutional Neural Network model for the Diagnosis of the COVID-19
With the spread of COVID-19 around the globe over the past year, the usage of artificial intelligence (AI) algorithms and image processing methods to analyze the X-ray images of patients' chest with COVID-19 has become essential. The COVID-19 virus recognition in the lung area of a patient is one of the basic and essential needs of clicical centers and hospitals. Most research in this field has been devoted to papers on the basis of deep learning methods utilizing CNNs (Convolutional Neural Network), which mainly deal with the screening of sick and healthy people.In this study, a new structure of a 19-layer CNN has been recommended for accurately recognition of the COVID-19 from the X-ray pictures of chest. The offered CNN is developed to serve as a precise diagnosis system for a three class (viral pneumonia, Normal, COVID) and a four classclassification (Lung opacity, Normal, COVID-19, and pneumonia). A comparison is conducted among the outcomes of the offered procedure and some popular pretrained networks, including Inception, Alexnet, ResNet50, Squeezenet, and VGG19 and based on Specificity, Accuracy, Precision, Sensitivity, Confusion Matrix, and F1-score. The experimental results of the offered CNN method specify its dominance over the existing published procedures. This method can be a useful tool for clinicians in deciding properly about COVID-19.
comment: Important mistakes found. There's no new version currently. Also contradiction with authorship
♻ ☆ Compression with Global Guidance: Towards Training-free High-Resolution MLLMs Acceleration
Multimodal large language models (MLLMs) have attracted considerable attention due to their exceptional performance in visual content understanding and reasoning. However, their inference efficiency has been a notable concern, as the increasing length of multimodal contexts leads to quadratic complexity. Token compression techniques, which reduce the number of visual tokens, have demonstrated their effectiveness in reducing computational costs. Yet, these approaches have struggled to keep pace with the rapid advancements in MLLMs, especially the AnyRes strategy in the context of high-resolution image understanding. In this paper, we propose a novel token compression method, GlobalCom$^2$, tailored for high-resolution MLLMs that receive both the thumbnail and multiple crops. GlobalCom$^2$ treats the tokens derived from the thumbnail as the "commander" of the entire token compression process, directing the allocation of retention ratios and the specific compression for each crop. In this way, redundant tokens are eliminated while important local details are adaptively preserved to the highest extent feasible. Empirical results across 10 benchmarks reveal that GlobalCom$^2$ achieves an optimal balance between performance and efficiency, and consistently outperforms state-of-the-art token compression methods with LLaVA-NeXT-7B/13B models. Our code is released at https://github.com/xuyang-liu16/GlobalCom2.
comment: Our code is released at \url{https://github.com/xuyang-liu16/GlobalCom2}
♻ ☆ Identifying Spurious Correlations using Counterfactual Alignment
Models driven by spurious correlations often yield poor generalization performance. We propose the counterfactual (CF) alignment method to detect and quantify spurious correlations of black box classifiers. Our methodology is based on counterfactual images generated with respect to one classifier being input into other classifiers to see if they also induce changes in the outputs of these classifiers. The relationship between these responses can be quantified and used to identify specific instances where a spurious correlation exists. This is validated by observing intuitive trends in face-attribute and waterbird classifiers, as well as by fabricating spurious correlations and detecting their presence, both visually and quantitatively. Furthermore, utilizing the CF alignment method, we demonstrate that we can evaluate robust optimization methods (GroupDRO, JTT, and FLAC) by detecting a reduction in spurious correlations.
comment: Accepted to Transactions on Machine Learning Research (TMLR), Code: https://github.com/ieee8023/latentshift
♻ ☆ PACE: Marrying generalization in PArameter-efficient fine-tuning with Consistency rEgularization NeurIPS 2024
Parameter-Efficient Fine-Tuning (PEFT) effectively adapts pre-trained transformers to downstream tasks. However, the optimization of tasks performance often comes at the cost of generalizability in fine-tuned models. To address this issue, we theoretically connect smaller weight gradient norms during training and larger datasets to the improvements in model generalization. Motivated by this connection, we propose reducing gradient norms for enhanced generalization and aligning fine-tuned model with the pre-trained counterpart to retain knowledge from large-scale pre-training data. Yet, naive alignment does not guarantee gradient reduction and can potentially cause gradient explosion, complicating efforts to manage gradients. To address such an issue, we propose PACE, marrying generalization of PArameter-efficient fine-tuning with Consistency rEgularization. We perturb features learned from the adapter with the multiplicative noise and ensure the fine-tuned model remains consistent for same sample under different perturbations. Theoretical analysis shows that PACE not only implicitly regularizes gradients for enhanced generalization, but also implicitly aligns the fine-tuned and pre-trained models to retain knowledge. Experimental evidence supports our theories. PACE surpasses existing PEFT methods in visual adaptation tasks (VTAB-1k, FGVC, few-shot learning, domain adaptation) showcasing its potential for resource-efficient fine-tuning. It also improves LoRA in text classification (GLUE) and mathematical reasoning (GSM-8K). The code is available at https://github.com/MaxwellYaoNi/PACE
comment: Accepted by NeurIPS 2024 as a spotlight
♻ ☆ TextSleuth: Towards Explainable Tampered Text Detection
Recently, tampered text detection has attracted increasing attention due to its essential role in information security. Although existing methods can detect the tampered text region, the interpretation of such detection remains unclear, making the prediction unreliable. To address this problem, we propose to explain the basis of tampered text detection with natural language via large multimodal models. To fill the data gap for this task, we propose a large-scale, comprehensive dataset, ETTD, which contains both pixel-level annotations for tampered text region and natural language annotations describing the anomaly of the tampered text. Multiple methods are employed to improve the quality of the proposed data. For example, elaborate queries are introduced to generate high-quality anomaly descriptions with GPT4o. A fused mask prompt is proposed to reduce confusion when querying GPT4o to generate anomaly descriptions. To automatically filter out low-quality annotations, we also propose to prompt GPT4o to recognize tampered texts before describing the anomaly, and to filter out the responses with low OCR accuracy. To further improve explainable tampered text detection, we propose a simple yet effective model called TextSleuth, which achieves improved fine-grained perception and cross-domain generalization by focusing on the suspected region, with a two-stage analysis paradigm and an auxiliary grounding prompt. Extensive experiments on both the ETTD dataset and the public dataset have verified the effectiveness of the proposed methods. In-depth analysis is also provided to inspire further research. Our dataset and code will be open-source.
comment: The first work for explainable tampered text detection
♻ ☆ A Foundation Language-Image Model of the Retina (FLAIR): Encoding Expert Knowledge in Text Supervision
Foundation vision-language models are currently transforming computer vision, and are on the rise in medical imaging fueled by their very promising generalization capabilities. However, the initial attempts to transfer this new paradigm to medical imaging have shown less impressive performances than those observed in other domains, due to the significant domain shift and the complex, expert domain knowledge inherent to medical-imaging tasks. Motivated by the need for domain-expert foundation models, we present FLAIR, a pre-trained vision-language model for universal retinal fundus image understanding. To this end, we compiled 38 open-access, mostly categorical fundus imaging datasets from various sources, with up to 101 different target conditions and 288,307 images. We integrate the expert's domain knowledge in the form of descriptive textual prompts, during both pre-training and zero-shot inference, enhancing the less-informative categorical supervision of the data. Such a textual expert's knowledge, which we compiled from the relevant clinical literature and community standards, describes the fine-grained features of the pathologies as well as the hierarchies and dependencies between them. We report comprehensive evaluations, which illustrate the benefit of integrating expert knowledge and the strong generalization capabilities of FLAIR under difficult scenarios with domain shifts or unseen categories. When adapted with a lightweight linear probe, FLAIR outperforms fully-trained, dataset-focused models, more so in the few-shot regimes. Interestingly, FLAIR outperforms by a wide margin larger-scale generalist image-language models and retina domain-specific self-supervised networks, which emphasizes the potential of embedding experts' domain knowledge and the limitations of generalist models in medical imaging.
comment: Accepted in Medical Image Analysis. The pre-trained model is available at: https://github.com/jusiro/FLAIR
♻ ☆ MADiff: Text-Guided Fashion Image Editing with Mask Prediction and Attention-Enhanced Diffusion
Text-guided image editing model has achieved great success in general domain. However, directly applying these models to the fashion domain may encounter two issues: (1) Inaccurate localization of editing region; (2) Weak editing magnitude. To address these issues, the MADiff model is proposed. Specifically, to more accurately identify editing region, the MaskNet is proposed, in which the foreground region, densepose and mask prompts from large language model are fed into a lightweight UNet to predict the mask for editing region. To strengthen the editing magnitude, the Attention-Enhanced Diffusion Model is proposed, where the noise map, attention map, and the mask from MaskNet are fed into the proposed Attention Processor to produce a refined noise map. By integrating the refined noise map into the diffusion model, the edited image can better align with the target prompt. Given the absence of benchmarks in fashion image editing, we constructed a dataset named Fashion-E, comprising 28390 image-text pairs in the training set, and 2639 image-text pairs for four types of fashion tasks in the evaluation set. Extensive experiments on Fashion-E demonstrate that our proposed method can accurately predict the mask of editing region and significantly enhance editing magnitude in fashion image editing compared to the state-of-the-art methods.
♻ ☆ Industrial Anomaly Detection and Localization Using Weakly-Supervised Residual Transformers
Recent advancements in industrial anomaly detection (AD) have demonstrated that incorporating a small number of anomalous samples during training can significantly enhance accuracy. However, this improvement often comes at the cost of extensive annotation efforts, which are impractical for many real-world applications. In this paper, we introduce a novel framework, Weak}ly-supervised RESidual Transformer (WeakREST), designed to achieve high anomaly detection accuracy while minimizing the reliance on manual annotations. First, we reformulate the pixel-wise anomaly localization task into a block-wise classification problem. Second, we introduce a residual-based feature representation called Positional Fast Anomaly Residuals (PosFAR) which captures anomalous patterns more effectively. To leverage this feature, we adapt the Swin Transformer for enhanced anomaly detection and localization. Additionally, we propose a weak annotation approach, utilizing bounding boxes and image tags to define anomalous regions. This approach establishes a semi-supervised learning context that reduces the dependency on precise pixel-level labels. To further improve the learning process, we develop a novel ResMixMatch algorithm, capable of handling the interplay between weak labels and residual-based representations. On the benchmark dataset MVTec-AD, our method achieves an Average Precision (AP) of $83.0\%$, surpassing the previous best result of $82.7\%$ in the unsupervised setting. In the supervised AD setting, WeakREST attains an AP of $87.6\%$, outperforming the previous best of $86.0\%$. Notably, even when using weaker annotations such as bounding boxes, WeakREST exceeds the performance of leading methods relying on pixel-wise supervision, achieving an AP of $87.1\%$ compared to the prior best of $86.0\%$ on MVTec-AD.
comment: 13 pages,7 figures
♻ ☆ The Surprising Ineffectiveness of Pre-Trained Visual Representations for Model-Based Reinforcement Learning NeurIPS 2024
Visual Reinforcement Learning (RL) methods often require extensive amounts of data. As opposed to model-free RL, model-based RL (MBRL) offers a potential solution with efficient data utilization through planning. Additionally, RL lacks generalization capabilities for real-world tasks. Prior work has shown that incorporating pre-trained visual representations (PVRs) enhances sample efficiency and generalization. While PVRs have been extensively studied in the context of model-free RL, their potential in MBRL remains largely unexplored. In this paper, we benchmark a set of PVRs on challenging control tasks in a model-based RL setting. We investigate the data efficiency, generalization capabilities, and the impact of different properties of PVRs on the performance of model-based agents. Our results, perhaps surprisingly, reveal that for MBRL current PVRs are not more sample efficient than learning representations from scratch, and that they do not generalize better to out-of-distribution (OOD) settings. To explain this, we analyze the quality of the trained dynamics model. Furthermore, we show that data diversity and network architecture are the most important contributors to OOD generalization performance.
comment: Published at the 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Project page: https://schneimo.com/pvr4mbrl/
♻ ☆ CGCOD: Class-Guided Camouflaged Object Detection
Camouflaged Object Detection (COD) aims to identify objects that blend seamlessly into their surroundings. The inherent visual complexity of camouflaged objects, including their low contrast with the background, diverse textures, and subtle appearance variations, often obscures semantic cues, making accurate segmentation highly challenging. Existing methods primarily rely on visual features, which are insufficient to handle the variability and intricacy of camouflaged objects, leading to unstable object perception and ambiguous segmentation results. To tackle these limitations, we introduce a novel task, class-guided camouflaged object detection (CGCOD), which extends traditional COD task by incorporating object-specific class knowledge to enhance detection robustness and accuracy. To facilitate this task, we present a new dataset, CamoClass, comprising real-world camouflaged objects with class annotations. Furthermore, we propose a multi-stage framework, CGNet, which incorporates a plug-and-play class prompt generator and a simple yet effective class-guided detector. This establishes a new paradigm for COD, bridging the gap between contextual understanding and class-guided detection. Extensive experimental results demonstrate the effectiveness of our flexible framework in improving the performance of proposed and existing detectors by leveraging class-level textual information.
♻ ☆ Evaluation of radiomic feature harmonization techniques for benign and malignant pulmonary nodules
BACKGROUND: Radiomics provides quantitative features of pulmonary nodules (PNs) which could aid lung cancer diagnosis, but medical image acquisition variability is an obstacle to clinical application. Acquisition effects may differ between radiomic features from benign vs. malignant PNs. PURPOSE: We evaluated how to account for differences between benign and malignant PNs when correcting radiomic features' acquisition dependency. METHODS: We used 567 chest CT scans grouped as benign, malignant, or lung cancer screening (mixed benign, malignant). ComBat harmonization was applied to extracted features for variation in 4 acquisition parameters. We compared: harmonizing without distinction, harmonizing with a covariate to preserve distinctions between subgroups, and harmonizing subgroups separately. Significant ($p\le0.05$) Kruskal-Wallis tests showed whether harmonization removed acquisition dependency. A LASSO-SVM pipeline was trained on successfully harmonized features to predict malignancy. To evaluate predictive information in these features, the trained harmonization estimators and predictive model were applied to unseen test sets. Harmonization and predictive performance were assessed for 10 trials of 5-fold cross-validation. RESULTS: An average 2.1% of features (95% CI:1.9-2.4%) were acquisition-independent when harmonized without distinction, 27.3% (95% CI:25.7-28.9%) when harmonized with a covariate, and 90.9% (95% CI:90.4-91.5%) when harmonized separately. Data harmonized separately or with a covariate trained models with higher ROC-AUC for screening scans than data harmonized without distinction between benign and malignant PNs (Delong test, adjusted $p\le0.05$). CONCLUSIONS: Radiomic features of benign and malignant PNs need different corrective transformations to recover acquisition-independent distributions. This can be done by harmonizing separately or with a covariate.
comment: 15 pages, 3 figures, plus supplemental material; updated author list, corrected result in paragraph 3 of Discussion, updated Figure S1
♻ ☆ Structural damage detection via hierarchical damage information with volumetric assessment
Structural health monitoring (SHM) is essential for ensuring the safety and longevity of infrastructure, but complex image environments, noisy labels, and reliance on manual damage assessments often hinder its effectiveness. This study introduces the Guided Detection Network (Guided-DetNet), a framework designed to address these challenges. Guided-DetNet is characterized by a Generative Attention Module (GAM), Hierarchical Elimination Algorithm (HEA), and Volumetric Contour Visual Assessment (VCVA). GAM leverages cross-horizontal and cross-vertical patch merging and cross-foreground-background feature fusion to generate varied features to mitigate complex image environments. HEA addresses noisy labeling using hierarchical relationships among classes to refine instances given an image by eliminating unlikely class instances. VCVA assesses the severity of detected damages via volumetric representation and quantification leveraging the Dirac delta distribution. A comprehensive quantitative study and two robustness tests were conducted using the PEER Hub dataset, and a drone-based application, which involved a field experiment, was conducted to substantiate Guided-DetNet's promising performances. In triple classification tasks, the framework achieved 96% accuracy, surpassing state-of-the-art classifiers by up to 3%. In dual detection tasks, it outperformed competitive detectors with a precision of 94% and a mean average precision (mAP) of 79% while maintaining a frame rate of 57.04fps, suitable for real-time applications. Additionally, robustness tests demonstrated resilience under adverse conditions, with precision scores ranging from 79% to 91%. Guided-DetNet is established as a robust and efficient framework for SHM, offering advancements in automation and precision, with the potential for widespread application in drone-based infrastructure inspections.
♻ ☆ SemTalk: Holistic Co-speech Motion Generation with Frame-level Semantic Emphasis
A good co-speech motion generation cannot be achieved without a careful integration of common rhythmic motion and rare yet essential semantic motion. In this work, we propose SemTalk for holistic co-speech motion generation with frame-level semantic emphasis. Our key insight is to separately learn general motions and sparse motions, and then adaptively fuse them. In particular, rhythmic consistency learning is explored to establish rhythm-related base motion, ensuring a coherent foundation that synchronizes gestures with the speech rhythm. Subsequently, textit{semantic emphasis learning is designed to generate semantic-aware sparse motion, focusing on frame-level semantic cues. Finally, to integrate sparse motion into the base motion and generate semantic-emphasized co-speech gestures, we further leverage a learned semantic score for adaptive synthesis. Qualitative and quantitative comparisons on two public datasets demonstrate that our method outperforms the state-of-the-art, delivering high-quality co-speech motion with enhanced semantic richness over a stable base motion.
comment: 11 pages, 8 figures
♻ ☆ ACE++: Instruction-Based Image Creation and Editing via Context-Aware Content Filling
We report ACE++, an instruction-based diffusion framework that tackles various image generation and editing tasks. Inspired by the input format for the inpainting task proposed by FLUX.1-Fill-dev, we improve the Long-context Condition Unit (LCU) introduced in ACE and extend this input paradigm to any editing and generation tasks. To take full advantage of image generative priors, we develop a two-stage training scheme to minimize the efforts of finetuning powerful text-to-image diffusion models like FLUX.1-dev. In the first stage, we pre-train the model using task data with the 0-ref tasks from the text-to-image model. There are many models in the community based on the post-training of text-to-image foundational models that meet this training paradigm of the first stage. For example, FLUX.1-Fill-dev deals primarily with painting tasks and can be used as an initialization to accelerate the training process. In the second stage, we finetune the above model to support the general instructions using all tasks defined in ACE. To promote the widespread application of ACE++ in different scenarios, we provide a comprehensive set of models that cover both full finetuning and lightweight finetuning, while considering general applicability and applicability in vertical scenarios. The qualitative analysis showcases the superiority of ACE++ in terms of generating image quality and prompt following ability. Code and models will be available on the project page: https://ali-vilab. github.io/ACE_plus_page/.
♻ ☆ Solving Energy-Independent Density for CT Metal Artifact Reduction via Neural Representation
X-ray CT often suffers from shadowing and streaking artifacts in the presence of metallic materials, which severely degrade imaging quality. Physically, the linear attenuation coefficients (LACs) of metals vary significantly with X-ray energy, causing a nonlinear beam hardening effect (BHE) in CT measurements. Reconstructing CT images from metal-corrupted measurements consequently becomes a challenging nonlinear inverse problem. Existing state-of-the-art (SOTA) metal artifact reduction (MAR) algorithms rely on supervised learning with numerous paired CT samples. While promising, these supervised methods often assume that the unknown LACs are energy-independent, ignoring the energy-induced BHE, which results in limited generalization. Moreover, the requirement for large datasets also limits their applications in real-world scenarios. In this work, we propose Density neural representation (Diner), a novel unsupervised MAR method. Our key innovation lies in formulating MAR as an energy-independent density reconstruction problem that strictly adheres to the photon-tissue absorption physical model. This model is inherently nonlinear and complex, making it a rarely considered approach in inverse imaging problems. By introducing the water-equivalent tissues approximation and a new polychromatic model to characterize the nonlinear CT acquisition process, we directly learn the neural representation of the density map from raw measurements without using external training data. This energy-independent density reconstruction framework fundamentally resolves the nonlinear BHE, enabling superior MAR performance across a wide range of scanning scenarios. Extensive experiments on both simulated and real-world datasets demonstrate the superiority of our unsupervised Diner over popular supervised methods in terms of MAR performance and robustness.
comment: 11 pages
♻ ☆ 3VL: Using Trees to Improve Vision-Language Models' Interpretability
Vision-Language models (VLMs) have proven to be effective at aligning image and text representations, producing superior zero-shot results when transferred to many downstream tasks. However, these representations suffer from some key shortcomings in understanding Compositional Language Concepts (CLC), such as recognizing objects' attributes, states, and relations between different objects. Moreover, VLMs typically have poor interpretability, making it challenging to debug and mitigate compositional-understanding failures. In this work, we introduce the architecture and training technique of Tree-augmented Vision-Language (3VL) model accompanied by our proposed Anchor inference method and Differential Relevance (DiRe) interpretability tool. By expanding the text of an arbitrary image-text pair into a hierarchical tree structure using language analysis tools, 3VL allows the induction of this structure into the visual representation learned by the model, enhancing its interpretability and compositional reasoning. Additionally, we show how Anchor, a simple technique for text unification, can be used to filter nuisance factors while increasing CLC understanding performance, e.g., on the fundamental VL-Checklist benchmark. We also show how DiRe, which performs a differential comparison between VLM relevancy maps, enables us to generate compelling visualizations of the reasons for a model's success or failure. Our code is available at: https://github.com/niryellinek/3VL.
comment: accepted to IEEE TIP
♻ ☆ When No-Reference Image Quality Models Meet MAP Estimation in Diffusion Latents
Contemporary no-reference image quality assessment (NR-IQA) models can effectively quantify perceived image quality, often achieving strong correlations with human perceptual scores on standard IQA benchmarks. Yet, limited efforts have been devoted to treating NR-IQA models as natural image priors for real-world image enhancement, and consequently comparing them from a perceptual optimization standpoint. In this work, we show -- for the first time -- that NR-IQA models can be plugged into the maximum a posteriori (MAP) estimation framework for image enhancement. This is achieved by performing gradient ascent in the diffusion latent space rather than in the raw pixel domain, leveraging a pretrained differentiable and bijective diffusion process. Likely, different NR-IQA models lead to different enhanced outputs, which in turn provides a new computational means of comparing them. Unlike conventional correlation-based measures, our comparison method offers complementary insights into the respective strengths and weaknesses of the competing NR-IQA models in perceptual optimization scenarios. Additionally, we aim to improve the best-performing NR-IQA model in diffusion latent MAP estimation by incorporating the advantages of other top-performing methods. The resulting model delivers noticeably better results in enhancing real-world images afflicted by unknown and complex distortions, all preserving a high degree of image fidelity.
♻ ☆ Sports-QA: A Large-Scale Video Question Answering Benchmark for Complex and Professional Sports
Reasoning over sports videos for question answering is an important task with numerous applications, such as player training and information retrieval. However, this task has not been explored due to the lack of relevant datasets and the challenging nature it presents. Most datasets for video question answering (VideoQA) focus mainly on general and coarse-grained understanding of daily-life videos, which is not applicable to sports scenarios requiring professional action understanding and fine-grained motion analysis. In this paper, we introduce the first dataset, named Sports-QA, specifically designed for the sports VideoQA task. The Sports-QA dataset includes various types of questions, such as descriptions, chronologies, causalities, and counterfactual conditions, covering multiple sports. Furthermore, to address the characteristics of the sports VideoQA task, we propose a new Auto-Focus Transformer (AFT) capable of automatically focusing on particular scales of temporal information for question answering. We conduct extensive experiments on Sports-QA, including baseline studies and the evaluation of different methods. The results demonstrate that our AFT achieves state-of-the-art performance.
♻ ☆ Maximizing Uncertainty for Federated learning via Bayesian Optimisation-based Model Poisoning
As we transition from Narrow Artificial Intelligence towards Artificial Super Intelligence, users are increasingly concerned about their privacy and the trustworthiness of machine learning (ML) technology. A common denominator for the metrics of trustworthiness is the quantification of uncertainty inherent in DL algorithms, and specifically in the model parameters, input data, and model predictions. One of the common approaches to address privacy-related issues in DL is to adopt distributed learning such as federated learning (FL), where private raw data is not shared among users. Despite the privacy-preserving mechanisms in FL, it still faces challenges in trustworthiness. Specifically, the malicious users, during training, can systematically create malicious model parameters to compromise the models predictive and generative capabilities, resulting in high uncertainty about their reliability. To demonstrate malicious behaviour, we propose a novel model poisoning attack method named Delphi which aims to maximise the uncertainty of the global model output. We achieve this by taking advantage of the relationship between the uncertainty and the model parameters of the first hidden layer of the local model. Delphi employs two types of optimisation , Bayesian Optimisation and Least Squares Trust Region, to search for the optimal poisoned model parameters, named as Delphi-BO and Delphi-LSTR. We quantify the uncertainty using the KL Divergence to minimise the distance of the predictive probability distribution towards an uncertain distribution of model output. Furthermore, we establish a mathematical proof for the attack effectiveness demonstrated in FL. Numerical results demonstrate that Delphi-BO induces a higher amount of uncertainty than Delphi-LSTR highlighting vulnerability of FL systems to model poisoning attacks.
comment: 14 pages
♻ ☆ MGF: Mixed Gaussian Flow for Diverse Trajectory Prediction
To predict future trajectories, the normalizing flow with a standard Gaussian prior suffers from weak diversity. The ineffectiveness comes from the conflict between the fact of asymmetric and multi-modal distribution of likely outcomes and symmetric and single-modal original distribution and supervision losses. Instead, we propose constructing a mixed Gaussian prior for a normalizing flow model for trajectory prediction. The prior is constructed by analyzing the trajectory patterns in the training samples without requiring extra annotations while showing better expressiveness and being multi-modal and asymmetric. Besides diversity, it also provides better controllability for probabilistic trajectory generation. We name our method Mixed Gaussian Flow (MGF). It achieves state-of-the-art performance in the evaluation of both trajectory alignment and diversity on the popular UCY/ETH and SDD datasets. Code is available at https://github.com/mulplue/MGF.
comment: Accepted by Neurips 2024. Code: https://github.com/mulplue/MGF
♻ ☆ Mask-guided cross-image attention for zero-shot in-silico histopathologic image generation with a diffusion model
Creating in-silico data with generative AI promises a cost-effective alternative to staining, imaging, and annotating whole slide images in computational pathology. Diffusion models are the state-of-the-art solution for generating in-silico images, offering unparalleled fidelity and realism. Using appearance transfer diffusion models allows for zero-shot image generation, facilitating fast application and making model training unnecessary. However current appearance transfer diffusion models are designed for natural images, where the main task is to transfer the foreground object from an origin to a target domain, while the background is of insignificant importance. In computational pathology, specifically in oncology, it is however not straightforward to define which objects in an image should be classified as foreground and background, as all objects in an image may be of critical importance for the detailed understanding the tumor micro-environment. We contribute to the applicability of appearance transfer diffusion models to immunohistochemistry-stained images by modifying the appearance transfer guidance to alternate between class-specific AdaIN feature statistics matchings using existing segmentation masks. The performance of the proposed method is demonstrated on the downstream task of supervised epithelium segmentation, showing that the number of manual annotations required for model training can be reduced by 75%, outperforming the baseline approach. Additionally, we consulted with a certified pathologist to investigate future improvements. We anticipate this work to inspire the application of zero-shot diffusion models in computational pathology, providing an efficient method to generate in-silico images with unmatched fidelity and realism, which prove meaningful for downstream tasks, such as training existing deep learning models or finetuning foundation models.
comment: 5 pages
♻ ☆ RoHan: Robust Hand Detection in Operation Room
Hand-specific localization has garnered significant interest within the computer vision community. Although there are numerous datasets with hand annotations from various angles and settings, domain transfer techniques frequently struggle in surgical environments. This is mainly due to the limited availability of gloved hand instances and the unique challenges of operating rooms (ORs). Thus, hand-detection models tailored to OR settings require extensive training and expensive annotation processes. To overcome these challenges, we present "RoHan" - a novel approach for robust hand detection in the OR, leveraging advanced semi-supervised domain adaptation techniques to tackle the challenges of varying recording conditions, diverse glove colors, and occlusions common in surgical settings. Our methodology encompasses two main stages: (1) data augmentation strategy that utilizes "Artificial Gloves," a method for augmenting publicly available hand datasets with synthetic images of hands-wearing gloves; (2) semi-supervised domain adaptation pipeline that improves detection performance in real-world OR settings through iterative prediction refinement and efficient frame filtering. We evaluate our method using two datasets: simulated enterotomy repair and saphenous vein graft harvesting. "RoHan" substantially reduces the need for extensive labeling and model training, paving the way for the practical implementation of hand detection technologies in medical settings.
comment: 12 pages
♻ ☆ Diffusion-based Unsupervised Audio-visual Speech Enhancement
This paper proposes a new unsupervised audio-visual speech enhancement (AVSE) approach that combines a diffusion-based audio-visual speech generative model with a non-negative matrix factorization (NMF) noise model. First, the diffusion model is pre-trained on clean speech conditioned on corresponding video data to simulate the speech generative distribution. This pre-trained model is then paired with the NMF-based noise model to estimate clean speech iteratively. Specifically, a diffusion-based posterior sampling approach is implemented within the reverse diffusion process, where after each iteration, a speech estimate is obtained and used to update the noise parameters. Experimental results confirm that the proposed AVSE approach not only outperforms its audio-only counterpart but also generalizes better than a recent supervised-generative AVSE method. Additionally, the new inference algorithm offers a better balance between inference speed and performance compared to the previous diffusion-based method. Code and demo available at: https://jeaneudesayilo.github.io/fast_UdiffSE
♻ ☆ Improving Pain Classification using Spatio-Temporal Deep Learning Approaches with Facial Expressions
Pain management and severity detection are crucial for effective treatment, yet traditional self-reporting methods are subjective and may be unsuitable for non-verbal individuals (people with limited speaking skills). To address this limitation, we explore automated pain detection using facial expressions. Our study leverages deep learning techniques to improve pain assessment by analyzing facial images from the Pain Emotion Faces Database (PEMF). We propose two novel approaches1: (1) a hybrid ConvNeXt model combined with Long Short-Term Memory (LSTM) blocks to analyze video frames and predict pain presence, and (2) a Spatio-Temporal Graph Convolution Network (STGCN) integrated with LSTM to process landmarks from facial images for pain detection. Our work represents the first use of the PEMF dataset for binary pain classification and demonstrates the effectiveness of these models through extensive experimentation. The results highlight the potential of combining spatial and temporal features for enhanced pain detection, offering a promising advancement in objective pain assessment methodologies.
comment: 8 pages, 3 figures, 3 tables. Accepted and presented at the 18th International Conference on Machine Vision (ICMV 2024), Edinburgh, UK
♻ ☆ Multispectral Pedestrian Detection with Sparsely Annotated Label AAAI 2025
Although existing Sparsely Annotated Object Detection (SAOD) approches have made progress in handling sparsely annotated environments in multispectral domain, where only some pedestrians are annotated, they still have the following limitations: (i) they lack considerations for improving the quality of pseudo-labels for missing annotations, and (ii) they rely on fixed ground truth annotations, which leads to learning only a limited range of pedestrian visual appearances in the multispectral domain. To address these issues, we propose a novel framework called Sparsely Annotated Multispectral Pedestrian Detection (SAMPD). For limitation (i), we introduce Multispectral Pedestrian-aware Adaptive Weight (MPAW) and Positive Pseudo-label Enhancement (PPE) module. Utilizing multispectral knowledge, these modules ensure the generation of high-quality pseudo-labels and enable effective learning by increasing weights for high-quality pseudo-labels based on modality characteristics. To address limitation (ii), we propose an Adaptive Pedestrian Retrieval Augmentation (APRA) module, which adaptively incorporates pedestrian patches from ground-truth and dynamically integrates high-quality pseudo-labels with the ground-truth, facilitating a more diverse learning pool of pedestrians. Extensive experimental results demonstrate that our SAMPD significantly enhances performance in sparsely annotated environments within the multispectral domain.
comment: Accepted at AAAI 2025
♻ ☆ Approximation properties relative to continuous scale space for hybrid discretizations of Gaussian derivative operators
This paper presents an analysis of properties of two hybrid discretization methods for Gaussian derivatives, based on convolutions with either the normalized sampled Gaussian kernel or the integrated Gaussian kernel followed by central differences. The motivation for studying these discretization methods is that in situations when multiple spatial derivatives of different order are needed at the same scale level, they can be computed significantly more efficiently compared to more direct derivative approximations based on explicit convolutions with either sampled Gaussian kernels or integrated Gaussian kernels. While these computational benefits do also hold for the genuinely discrete approach for computing discrete analogues of Gaussian derivatives, based on convolution with the discrete analogue of the Gaussian kernel followed by central differences, the underlying mathematical primitives for the discrete analogue of the Gaussian kernel, in terms of modified Bessel functions of integer order, may not be available in certain frameworks for image processing, such as when performing deep learning based on scale-parameterized filters in terms of Gaussian derivatives, with learning of the scale levels. In this paper, we present a characterization of the properties of these hybrid discretization methods, in terms of quantitative performance measures concerning the amount of spatial smoothing that they imply, as well as the relative consistency of scale estimates obtained from scale-invariant feature detectors with automatic scale selection, with an emphasis on the behaviour for very small values of the scale parameter, which may differ significantly from corresponding results obtained from the fully continuous scale-space theory, as well as between different types of discretization methods.
comment: 23 pages, 9 figures. arXiv admin note: text overlap with arXiv:2311.11317
♻ ☆ OminiControl: Minimal and Universal Control for Diffusion Transformer
In this paper, we introduce OminiControl, a highly versatile and parameter-efficient framework that integrates image conditions into pre-trained Diffusion Transformer (DiT) models. At its core, OminiControl leverages a parameter reuse mechanism, enabling the DiT to encode image conditions using itself as a powerful backbone and process them with its flexible multi-modal attention processors. Unlike existing methods, which rely heavily on additional encoder modules with complex architectures, OminiControl (1) effectively and efficiently incorporates injected image conditions with only ~0.1% additional parameters, and (2) addresses a wide range of image conditioning tasks in a unified manner, including subject-driven generation and spatially-aligned conditions such as edges, depth, and more. Remarkably, these capabilities are achieved by training on images generated by the DiT itself, which is particularly beneficial for subject-driven generation. Extensive evaluations demonstrate that OminiControl outperforms existing UNet-based and DiT-adapted models in both subject-driven and spatially-aligned conditional generation. Additionally, we release our training dataset, Subjects200K, a diverse collection of over 200,000 identity-consistent images, along with an efficient data synthesis pipeline to advance research in subject-consistent generation.
♻ ☆ CrossFi: A Cross Domain Wi-Fi Sensing Framework Based on Siamese Network
In recent years, Wi-Fi sensing has garnered significant attention due to its numerous benefits, such as privacy protection, low cost, and penetration ability. Extensive research has been conducted in this field, focusing on areas such as gesture recognition, people identification, and fall detection. However, many data-driven methods encounter challenges related to domain shift, where the model fails to perform well in environments different from the training data. One major factor contributing to this issue is the limited availability of Wi-Fi sensing datasets, which makes models learn excessive irrelevant information and over-fit to the training set. Unfortunately, collecting large-scale Wi-Fi sensing datasets across diverse scenarios is a challenging task. To address this problem, we propose CrossFi, a siamese network-based approach that excels in both in-domain scenario and cross-domain scenario, including few-shot, zero-shot scenarios, and even works in few-shot new-class scenario where testing set contains new categories. The core component of CrossFi is a sample-similarity calculation network called CSi-Net, which improves the structure of the siamese network by using an attention mechanism to capture similarity information, instead of simply calculating the distance or cosine similarity. Based on it, we develop an extra Weight-Net that can generate a template for each class, so that our CrossFi can work in different scenarios. Experimental results demonstrate that our CrossFi achieves state-of-the-art performance across various scenarios. In gesture recognition task, our CrossFi achieves an accuracy of 98.17% in in-domain scenario, 91.72% in one-shot cross-domain scenario, 64.81% in zero-shot cross-domain scenario, and 84.75% in one-shot new-class scenario. The code for our model is publicly available at https://github.com/RS2002/CrossFi.
♻ ☆ Multiple Information Prompt Learning for Cloth-Changing Person Re-Identification
Cloth-changing person re-identification is a subject closer to the real world, which focuses on solving the problem of person re-identification after pedestrians change clothes. The primary challenge in this field is to overcome the complex interplay between intra-class and inter-class variations and to identify features that remain unaffected by changes in appearance. Sufficient data collection for model training would significantly aid in addressing this problem. However, it is challenging to gather diverse datasets in practice. Current methods focus on implicitly learning identity information from the original image or introducing additional auxiliary models, which are largely limited by the quality of the image and the performance of the additional model. To address these issues, inspired by prompt learning, we propose a novel multiple information prompt learning (MIPL) scheme for cloth-changing person ReID, which learns identity robust features through the common prompt guidance of multiple messages. Specifically, the clothing information stripping (CIS) module is designed to decouple the clothing information from the original RGB image features to counteract the influence of clothing appearance. The Bio-guided attention (BGA) module is proposed to increase the learning intensity of the model for key information. A dual-length hybrid patch (DHP) module is employed to make the features have diverse coverage to minimize the impact of feature bias. Extensive experiments demonstrate that the proposed method outperforms all state-of-the-art methods on the LTCC, Celeb-reID, Celeb-reID-light, and CSCC datasets, achieving rank-1 scores of 74.8%, 73.3%, 66.0%, and 88.1%, respectively. When compared to AIM (CVPR23), ACID (TIP23), and SCNet (MM23), MIPL achieves rank-1 improvements of 11.3%, 13.8%, and 7.9%, respectively, on the PRCC dataset.
♻ ☆ The Silent Majority: Demystifying Memorization Effect in the Presence of Spurious Correlations
Machine learning models often rely on simple spurious features -- patterns in training data that correlate with targets but are not causally related to them, like image backgrounds in foreground classification. This reliance typically leads to imbalanced test performance across minority and majority groups. In this work, we take a closer look at the fundamental cause of such imbalanced performance through the lens of memorization, which refers to the ability to predict accurately on \textit{atypical} examples (minority groups) in the training set but failing in achieving the same accuracy in the testing set. This paper systematically shows the ubiquitous existence of spurious features in a small set of neurons within the network, providing the first-ever evidence that memorization may contribute to imbalanced group performance. Through three experimental sources of converging empirical evidence, we find the property of a small subset of neurons or channels in memorizing minority group information. Inspired by these findings, we articulate the hypothesis: the imbalanced group performance is a byproduct of ``noisy'' spurious memorization confined to a small set of neurons. To further substantiate this hypothesis, we show that eliminating these unnecessary spurious memorization patterns via a novel framework during training can significantly affect the model performance on minority groups. Our experimental results across various architectures and benchmarks offer new insights on how neural networks encode core and spurious knowledge, laying the groundwork for future research in demystifying robustness to spurious correlation.
♻ ☆ DATransNet: Dynamic Attention Transformer Network for Infrared Small Target Detection
Infrared small target detection (ISTD) is widely used in civilian and military applications. However, ISTD encounters several challenges, including the tendency for small and dim targets to be obscured by complex backgrounds.To address this issue, we propose the Dynamic Attention Transformer Network (DATransNet), which aims to extract and preserve edge information of small targets.DATransNet employs the Dynamic Attention Transformer (DATrans), simulating central difference convolutions (CDC) to extract and integrate gradient features with deeper features.Furthermore, we propose a global feature extraction module (GFEM) that offers a comprehensive perspective to prevent the network from focusing solely on details while neglecting the background information. We compare the network with state-of-the-art (SOTA) approaches, and the results demonstrate that our method performs effectively. Our source code is available at https://github.com/greekinRoma/DATransNet.
♻ ☆ Ultra-High-Definition Image Deblurring via Multi-scale Cubic-Mixer
Currently, transformer-based algorithms are making a splash in the domain of image deblurring. Their achievement depends on the self-attention mechanism with CNN stem to model long range dependencies between tokens. Unfortunately, this ear-pleasing pipeline introduces high computational complexity and makes it difficult to run an ultra-high-definition image on a single GPU in real time. To trade-off accuracy and efficiency, the input degraded image is computed cyclically over three dimensional ($C$, $W$, and $H$) signals without a self-attention mechanism. We term this deep network as Multi-scale Cubic-Mixer, which is acted on both the real and imaginary components after fast Fourier transform to estimate the Fourier coefficients and thus obtain a deblurred image. Furthermore, we combine the multi-scale cubic-mixer with a slicing strategy to generate high-quality results at a much lower computational cost. Experimental results demonstrate that the proposed algorithm performs favorably against the state-of-the-art deblurring approaches on the several benchmarks and a new ultra-high-definition dataset in terms of accuracy and speed.
comment: 9 pages
♻ ☆ Zero-shot Video Restoration and Enhancement Using Pre-Trained Image Diffusion Model AAAI 2025
Diffusion-based zero-shot image restoration and enhancement models have achieved great success in various tasks of image restoration and enhancement. However, directly applying them to video restoration and enhancement results in severe temporal flickering artifacts. In this paper, we propose the first framework for zero-shot video restoration and enhancement based on the pre-trained image diffusion model. By replacing the spatial self-attention layer with the proposed short-long-range (SLR) temporal attention layer, the pre-trained image diffusion model can take advantage of the temporal correlation between frames. We further propose temporal consistency guidance, spatial-temporal noise sharing, and an early stopping sampling strategy to improve temporally consistent sampling. Our method is a plug-and-play module that can be inserted into any diffusion-based image restoration or enhancement methods to further improve their performance. Experimental results demonstrate the superiority of our proposed method. Our code is available at https://github.com/cao-cong/ZVRD.
comment: Accepted by AAAI 2025
♻ ☆ Continuous Concepts Removal in Text-to-image Diffusion Models
Text-to-image diffusion models have shown an impressive ability to generate high-quality images from input textual descriptions. However, concerns have been raised about the potential for these models to create content that infringes on copyrights or depicts disturbing subject matter. Removing specific concepts from these models is a promising potential solution to this problem. However, existing methods for concept removal do not work well in practical but challenging scenarios where concepts need to be continuously removed. Specifically, these methods lead to poor alignment between the text prompts and the generated image after the continuous removal process. To address this issue, we propose a novel approach called CCRT that includes a designed knowledge distillation paradigm. It constrains the text-image alignment behavior during the continuous concept removal process by using a set of text prompts generated through our genetic algorithm, which employs a designed fuzzing strategy. We conduct extensive experiments involving the removal of various concepts. The results evaluated through both algorithmic metrics and human studies demonstrate that our CCRT can effectively remove the targeted concepts in a continuous manner while maintaining the high generation quality (e.g., text-image alignment) of the model.
♻ ☆ Conformal-in-the-Loop for Learning with Imbalanced Noisy Data
Class imbalance and label noise are pervasive in large-scale datasets, yet much of machine learning research assumes well-labeled, balanced data, which rarely reflects real world conditions. Existing approaches typically address either label noise or class imbalance in isolation, leading to suboptimal results when both issues coexist. In this work, we propose Conformal-in-the-Loop (CitL), a novel training framework that addresses both challenges with a conformal prediction-based approach. CitL evaluates sample uncertainty to adjust weights and prune unreliable examples, enhancing model resilience and accuracy with minimal computational cost. Our extensive experiments include a detailed analysis showing how CitL effectively emphasizes impactful data in noisy, imbalanced datasets. Our results show that CitL consistently boosts model performance, achieving up to a 6.1% increase in classification accuracy and a 5.0 mIoU improvement in segmentation. Our code is publicly available: CitL.
comment: Under Review
♻ ☆ Investigating the Effect of Network Pruning on Performance and Interpretability
Deep Neural Networks (DNNs) are often over-parameterized for their tasks and can be compressed quite drastically by removing weights, a process called pruning. We investigate the impact of different pruning techniques on the classification performance and interpretability of GoogLeNet. We systematically apply unstructured and structured pruning, as well as connection sparsity (pruning of input weights) methods to the network and analyze the outcomes regarding the network's performance on the validation set of ImageNet. We also compare different retraining strategies, such as iterative pruning and one-shot pruning. We find that with sufficient retraining epochs, the performance of the networks can approximate the performance of the default GoogLeNet - and even surpass it in some cases. To assess interpretability, we employ the Mechanistic Interpretability Score (MIS) developed by Zimmermann et al. . Our experiments reveal that there is no significant relationship between interpretability and pruning rate when using MIS as a measure. Additionally, we observe that networks with extremely low accuracy can still achieve high MIS scores, suggesting that the MIS may not always align with intuitive notions of interpretability, such as understanding the basis of correct decisions.
comment: 4 pages, 6 figures
♻ ☆ Make-A-Character 2: Animatable 3D Character Generation From a Single Image
This report introduces Make-A-Character 2, an advanced system for generating high-quality 3D characters from single portrait photographs, ideal for game development and digital human applications. Make-A-Character 2 builds upon its predecessor by incorporating several significant improvements for image-based head generation. We utilize the IC-Light method to correct non-ideal illumination in input photos and apply neural network-based color correction to harmonize skin tones between the photos and game engine renders. We also employ the Hierarchical Representation Network to capture high-frequency facial structures and conduct adaptive skeleton calibration for accurate and expressive facial animations. The entire image-to-3D-character generation process takes less than 2 minutes. Furthermore, we leverage transformer architecture to generate co-speech facial and gesture actions, enabling real-time conversation with the generated character. These technologies have been integrated into our conversational AI avatar products.
comment: Technical Report
♻ ☆ Multi-modal and Multi-scale Spatial Environment Understanding for Immersive Visual Text-to-Speech AAAI'2025
Visual Text-to-Speech (VTTS) aims to take the environmental image as the prompt to synthesize the reverberant speech for the spoken content. The challenge of this task lies in understanding the spatial environment from the image. Many attempts have been made to extract global spatial visual information from the RGB space of an spatial image. However, local and depth image information are crucial for understanding the spatial environment, which previous works have ignored. To address the issues, we propose a novel multi-modal and multi-scale spatial environment understanding scheme to achieve immersive VTTS, termed M2SE-VTTS. The multi-modal aims to take both the RGB and Depth spaces of the spatial image to learn more comprehensive spatial information, and the multi-scale seeks to model the local and global spatial knowledge simultaneously. Specifically, we first split the RGB and Depth images into patches and adopt the Gemini-generated environment captions to guide the local spatial understanding. After that, the multi-modal and multi-scale features are integrated by the local-aware global spatial understanding. In this way, M2SE-VTTS effectively models the interactions between local and global spatial contexts in the multi-modal spatial environment. Objective and subjective evaluations suggest that our model outperforms the advanced baselines in environmental speech generation. The code and audio samples are available at: https://github.com/AI-S2-Lab/M2SE-VTTS.
comment: 9 pages,2 figures, Accepted by AAAI'2025
♻ ☆ Multi-Context Temporal Consistent Modeling for Referring Video Object Segmentation ICASSP 2025
Referring video object segmentation aims to segment objects within a video corresponding to a given text description. Existing transformer-based temporal modeling approaches face challenges related to query inconsistency and the limited consideration of context. Query inconsistency produces unstable masks of different objects in the middle of the video. The limited consideration of context leads to the segmentation of incorrect objects by failing to adequately account for the relationship between the given text and instances. To address these issues, we propose the Multi-context Temporal Consistency Module (MTCM), which consists of an Aligner and a Multi-Context Enhancer (MCE). The Aligner removes noise from queries and aligns them to achieve query consistency. The MCE predicts text-relevant queries by considering multi-context. We applied MTCM to four different models, increasing performance across all of them, particularly achieving 47.6 J&F on the MeViS. Code is available at https://github.com/Choi58/MTCM.
comment: Comment: Accepted to ICASSP 2025
♻ ☆ Adaptive Noise-Tolerant Network for Image Segmentation
Unlike image classification and annotation, for which deep network models have achieved dominating superior performances compared to traditional computer vision algorithms, deep learning for automatic image segmentation still faces critical challenges. One of such hurdles is to obtain ground-truth segmentations as the training labels for deep network training. Especially when we study biomedical images, such as histopathological images (histo-images), it is unrealistic to ask for manual segmentation labels as the ground truth for training due to the fine image resolution as well as the large image size and complexity. In this paper, instead of relying on clean segmentation labels, we study whether and how integrating imperfect or noisy segmentation results from off-the-shelf segmentation algorithms may help achieve better segmentation results through a new Adaptive Noise-Tolerant Network (ANTN) model. We extend the noisy label deep learning to image segmentation with two novel aspects: (1) multiple noisy labels can be integrated into one deep learning model; (2) noisy segmentation modeling, including probabilistic parameters, is adaptive, depending on the given testing image appearance. Implementation of the new ANTN model on both the synthetic data and real-world histo-images demonstrates its effectiveness and superiority over off-the-shelf and other existing deep-learning-based image segmentation algorithms.
♻ ☆ Efficient Long Video Tokenization via Coordinate-based Patch Reconstruction
Efficient tokenization of videos remains a challenge in training vision models that can process long videos. One promising direction is to develop a tokenizer that can encode long video clips, as it would enable the tokenizer to leverage the temporal coherence of videos better for tokenization. However, training existing tokenizers on long videos often incurs a huge training cost as they are trained to reconstruct all the frames at once. In this paper, we introduce CoordTok, a video tokenizer that learns a mapping from coordinate-based representations to the corresponding patches of input videos, inspired by recent advances in 3D generative models. In particular, CoordTok encodes a video into factorized triplane representations and reconstructs patches that correspond to randomly sampled $(x,y,t)$ coordinates. This allows for training large tokenizer models directly on long videos without requiring excessive training resources. Our experiments show that CoordTok can drastically reduce the number of tokens for encoding long video clips. For instance, CoordTok can encode a 128-frame video with 128$\times$128 resolution into 1280 tokens, while baselines need 6144 or 8192 tokens to achieve similar reconstruction quality. We further show that this efficient video tokenization enables memory-efficient training of a diffusion transformer that can generate 128 frames at once.
comment: Code is available on the project webpage: https://huiwon-jang.github.io/coordtok/
♻ ☆ A Unifying Information-theoretic Perspective on Evaluating Generative Models
Considering the difficulty of interpreting generative model output, there is significant current research focused on determining meaningful evaluation metrics. Several recent approaches utilize "precision" and "recall," borrowed from the classification domain, to individually quantify the output fidelity (realism) and output diversity (representation of the real data variation), respectively. With the increase in metric proposals, there is a need for a unifying perspective, allowing for easier comparison and clearer explanation of their benefits and drawbacks. To this end, we unify a class of kth-nearest-neighbors (kNN)-based metrics under an information-theoretic lens using approaches from kNN density estimation. Additionally, we propose a tri-dimensional metric composed of Precision Cross-Entropy (PCE), Recall Cross-Entropy (RCE), and Recall Entropy (RE), which separately measure fidelity and two distinct aspects of diversity, inter- and intra-class. Our domain-agnostic metric, derived from the information-theoretic concepts of entropy and cross-entropy, can be dissected for both sample- and mode-level analysis. Our detailed experimental results demonstrate the sensitivity of our metric components to their respective qualities and reveal undesirable behaviors of other metrics.
♻ ☆ Enhancing Skin Disease Diagnosis: Interpretable Visual Concept Discovery with SAM WACV 2025
Current AI-assisted skin image diagnosis has achieved dermatologist-level performance in classifying skin cancer, driven by rapid advancements in deep learning architectures. However, unlike traditional vision tasks, skin images in general present unique challenges due to the limited availability of well-annotated datasets, complex variations in conditions, and the necessity for detailed interpretations to ensure patient safety. Previous segmentation methods have sought to reduce image noise and enhance diagnostic performance, but these techniques require fine-grained, pixel-level ground truth masks for training. In contrast, with the rise of foundation models, the Segment Anything Model (SAM) has been introduced to facilitate promptable segmentation, enabling the automation of the segmentation process with simple yet effective prompts. Efforts applying SAM predominantly focus on dermatoscopy images, which present more easily identifiable lesion boundaries than clinical photos taken with smartphones. This limitation constrains the practicality of these approaches to real-world applications. To overcome the challenges posed by noisy clinical photos acquired via non-standardized protocols and to improve diagnostic accessibility, we propose a novel Cross-Attentive Fusion framework for interpretable skin lesion diagnosis. Our method leverages SAM to generate visual concepts for skin diseases using prompts, integrating local visual concepts with global image features to enhance model performance. Extensive evaluation on two skin disease datasets demonstrates our proposed method's effectiveness on lesion diagnosis and interpretability.
comment: This paper is accepted by WACV 2025
♻ ☆ GauFRe: Gaussian Deformation Fields for Real-time Dynamic Novel View Synthesis WACV 2025
We propose a method that achieves state-of-the-art rendering quality and efficiency on monocular dynamic scene reconstruction using deformable 3D Gaussians. Implicit deformable representations commonly model motion with a canonical space and time-dependent backward-warping deformation field. Our method, GauFRe, uses a forward-warping deformation to explicitly model non-rigid transformations of scene geometry. Specifically, we propose a template set of 3D Gaussians residing in a canonical space, and a time-dependent forward-warping deformation field to model dynamic objects. Additionally, we tailor a 3D Gaussian-specific static component supported by an inductive bias-aware initialization approach which allows the deformation field to focus on moving scene regions, improving the rendering of complex real-world motion. The differentiable pipeline is optimized end-to-end with a self-supervised rendering loss. Experiments show our method achieves competitive results and higher efficiency than both previous state-of-the-art NeRF and Gaussian-based methods. For real-world scenes, GauFRe can train in ~20 mins and offer 96 FPS real-time rendering on an RTX 3090 GPU. Project website: https://lynl7130.github.io/gaufre/index.html
comment: WACV 2025. 11 pages, 8 figures, 5 tables
♻ ☆ Key-Exchange Convolutional Auto-Encoder for Data Augmentation in Early Knee Osteoarthritis Detection
Knee Osteoarthritis (KOA) is a common musculoskeletal condition that significantly affects mobility and quality of life, particularly in elderly populations. However, training deep learning models for early KOA classification is often hampered by the limited availability of annotated medical datasets, owing to the high costs and labour-intensive nature of data labelling. Traditional data augmentation techniques, while useful, rely on simple transformations and fail to introduce sufficient diversity into the dataset. To address these challenges, we propose the Key-Exchange Convolutional Auto-Encoder (KECAE) as an innovative Artificial Intelligence (AI)-based data augmentation strategy for early KOA classification. Our model employs a convolutional autoencoder with a novel key-exchange mechanism that generates synthetic images by selectively exchanging key pathological features between X-ray images, which not only diversifies the dataset but also ensures the clinical validity of the augmented data. A hybrid loss function is introduced to supervise feature learning and reconstruction, integrating multiple components, including reconstruction, supervision, and feature separation losses. Experimental results demonstrate that the KECAE-generated data significantly improve the performance of KOA classification models, with accuracy gains of up to 1.98% across various standard and state-of-the-art architectures. Furthermore, a clinical validation study involving expert radiologists confirms the anatomical plausibility and diagnostic realism of the synthetic outputs. These findings highlight the potential of KECAE as a robust tool for augmenting medical datasets in early KOA detection.
♻ ☆ Human Activity Recognition in an Open World
Managing novelty in perception-based human activity recognition (HAR) is critical in realistic settings to improve task performance over time and ensure solution generalization outside of prior seen samples. Novelty manifests in HAR as unseen samples, activities, objects, environments, and sensor changes, among other ways. Novelty may be task-relevant, such as a new class or new features, or task-irrelevant resulting in nuisance novelty, such as never before seen noise, blur, or distorted video recordings. To perform HAR optimally, algorithmic solutions must be tolerant to nuisance novelty, and learn over time in the face of novelty. This paper 1) formalizes the definition of novelty in HAR building upon the prior definition of novelty in classification tasks, 2) proposes an incremental open world learning (OWL) protocol and applies it to the Kinetics datasets to generate a new benchmark KOWL-718, 3) analyzes the performance of current state-of-the-art HAR models when novelty is introduced over time, 4) provides a containerized and packaged pipeline for reproducing the OWL protocol and for modifying for any future updates to Kinetics. The experimental analysis includes an ablation study of how the different models perform under various conditions as annotated by Kinetics-AVA. The protocol as an algorithm for reproducing experiments using the KOWL-718 benchmark will be publicly released with code and containers at https://github.com/prijatelj/human-activity-recognition-in-an-open-world. The code may be used to analyze different annotations and subsets of the Kinetics datasets in an incremental open world fashion, as well as be extended as further updates to Kinetics are released.
comment: 37 pages, 16 figures, 3 tables. Published in JAIR 81 on Dec 20, 2024. All author affiliations are from during the paper's original funded work. Updated info and current emails are provided in this version's first page
♻ ☆ Confidence-Driven Deep Learning Framework for Early Detection of Knee Osteoarthritis
Knee Osteoarthritis (KOA) is a prevalent musculoskeletal disorder that severely impacts mobility and quality of life, particularly among older adults. Its diagnosis often relies on subjective assessments using the Kellgren-Lawrence (KL) grading system, leading to variability in clinical evaluations. To address these challenges, we propose a confidence-driven deep learning framework for early KOA detection, focusing on distinguishing KL-0 and KL-2 stages. The Siamese-based framework integrates a novel multi-level feature extraction architecture with a hybrid loss strategy. Specifically, multi-level Global Average Pooling (GAP) layers are employed to extract features from varying network depths, ensuring comprehensive feature representation, while the hybrid loss strategy partitions training samples into high-, medium-, and low-confidence subsets. Tailored loss functions are applied to improve model robustness and effectively handle uncertainty in annotations. Experimental results on the Osteoarthritis Initiative (OAI) dataset demonstrate that the proposed framework achieves competitive accuracy, sensitivity, and specificity, comparable to those of expert radiologists. Cohen's kappa values (k > 0.85)) confirm substantial agreement, while McNemar's test (p > 0.05) indicates no statistically significant differences between the model and radiologists. Additionally, Confidence distribution analysis reveals that the model emulates radiologists' decision-making patterns. These findings highlight the potential of the proposed approach to serve as an auxiliary diagnostic tool, enhancing early KOA detection and reducing clinical workload.
♻ ☆ Enhancing Novel Object Detection via Cooperative Foundational Models WACV 2025
In this work, we address the challenging and emergent problem of novel object detection (NOD), focusing on the accurate detection of both known and novel object categories during inference. Traditional object detection algorithms are inherently closed-set, limiting their capability to handle NOD. We present a novel approach to transform existing closed-set detectors into open-set detectors. This transformation is achieved by leveraging the complementary strengths of pre-trained foundational models, specifically CLIP and SAM, through our cooperative mechanism. Furthermore, by integrating this mechanism with state-of-the-art open-set detectors such as GDINO, we establish new benchmarks in object detection performance. Our method achieves 17.42 mAP in novel object detection and 42.08 mAP for known objects on the challenging LVIS dataset. Adapting our approach to the COCO OVD split, we surpass the current state-of-the-art by a margin of 7.2 $ \text{AP}_{50} $ for novel classes. Our code is available at https://rohit901.github.io/coop-foundation-models/ .
comment: Accepted at WACV 2025
♻ ☆ MVTamperBench: Evaluating Robustness of Vision-Language Models
Recent advancements in Vision-Language Models (VLMs) have enabled significant progress in complex video understanding tasks. However, their robustness to real-world manipulations remains underexplored, limiting their reliability in critical applications. To address this gap, we introduce MVTamperBench, a comprehensive benchmark designed to evaluate VLM's resilience to video tampering effects, including rotation, dropping, masking, substitution, and repetition. By systematically assessing state-of-the-art models, MVTamperBench reveals substantial variability in robustness, with models like InternVL2-8B achieving high performance, while others, such as Llama-VILA1.5-8B, exhibit severe vulnerabilities. To foster broader adoption and reproducibility, MVTamperBench is integrated into VLMEvalKit, a modular evaluation toolkit, enabling streamlined testing and facilitating advancements in model robustness. Our benchmark represents a critical step towards developing tamper-resilient VLMs, ensuring their dependability in real-world scenarios. Project Page: https://amitbcp.github.io/MVTamperBench/
♻ ☆ ImageNet-Patch: A Dataset for Benchmarking Machine Learning Robustness against Adversarial Patches
Adversarial patches are optimized contiguous pixel blocks in an input image that cause a machine-learning model to misclassify it. However, their optimization is computationally demanding, and requires careful hyperparameter tuning, potentially leading to suboptimal robustness evaluations. To overcome these issues, we propose ImageNet-Patch, a dataset to benchmark machine-learning models against adversarial patches. It consists of a set of patches, optimized to generalize across different models, and readily applicable to ImageNet data after preprocessing them with affine transformations. This process enables an approximate yet faster robustness evaluation, leveraging the transferability of adversarial perturbations. We showcase the usefulness of this dataset by testing the effectiveness of the computed patches against 127 models. We conclude by discussing how our dataset could be used as a benchmark for robustness, and how our methodology can be generalized to other domains. We open source our dataset and evaluation code at https://github.com/pralab/ImageNet-Patch.
comment: Published in Pattern Recognition. DOI: https://doi.org/10.1016/j.patcog.2022.109064
Information Retrieval 12
☆ Continuous Approach to Phase (Norm) Retrieval Frames
This paper investigates the properties of continuous frames, with a particular focus on phase retrieval and norm retrieval in the context of Hilbert spaces. We introduce the concept of continuous near-Riesz bases and prove their invariance under invertible operators. Some equivalent conditions for phase and norm retrieval property of continuous frames are presented. We study the stability of phase retrieval under perturbations. Furthermore, tensor product frames for separable Hilbert spaces are studied, and we establish the equivalence of phase retrieval and norm retrieval properties between components and their tensor products.
☆ MMDocIR: Benchmarking Multi-Modal Retrieval for Long Documents
Multi-modal document retrieval is designed to identify and retrieve various forms of multi-modal content, such as figures, tables, charts, and layout information from extensive documents. Despite its significance, there is a notable lack of a robust benchmark to effectively evaluate the performance of systems in multi-modal document retrieval. To address this gap, this work introduces a new benchmark, named as MMDocIR, encompassing two distinct tasks: page-level and layout-level retrieval. The former focuses on localizing the most relevant pages within a long document, while the latter targets the detection of specific layouts, offering a more fine-grained granularity than whole-page analysis. A layout can refer to a variety of elements such as textual paragraphs, equations, figures, tables, or charts. The MMDocIR benchmark comprises a rich dataset featuring expertly annotated labels for 1,685 questions and bootstrapped labels for 173,843 questions, making it a pivotal resource for advancing multi-modal document retrieval for both training and evaluation. Through rigorous experiments, we reveal that (i) visual retrievers significantly outperform their text counterparts, (ii) MMDocIR train set can effectively benefit the training process of multi-modal document retrieval and (iii) text retrievers leveraging on VLM-text perform much better than those using OCR-text. These findings underscores the potential advantages of integrating visual elements for multi-modal document retrieval.
comment: https://huggingface.co/MMDocIR
☆ $\texttt{InfoHier}$: Hierarchical Information Extraction via Encoding and Embedding
Analyzing large-scale datasets, especially involving complex and high-dimensional data like images, is particularly challenging. While self-supervised learning (SSL) has proven effective for learning representations from unlabelled data, it typically focuses on flat, non-hierarchical structures, missing the multi-level relationships present in many real-world datasets. Hierarchical clustering (HC) can uncover these relationships by organizing data into a tree-like structure, but it often relies on rigid similarity metrics that struggle to capture the complexity of diverse data types. To address these we envision $\texttt{InfoHier}$, a framework that combines SSL with HC to jointly learn robust latent representations and hierarchical structures. This approach leverages SSL to provide adaptive representations, enhancing HC's ability to capture complex patterns. Simultaneously, it integrates HC loss to refine SSL training, resulting in representations that are more attuned to the underlying information hierarchy. $\texttt{InfoHier}$ has the potential to improve the expressiveness and performance of both clustering and representation learning, offering significant benefits for data analysis, management, and information retrieval.
comment: 10 pages, 4 figures
☆ Real-time Indexing for Large-scale Recommendation by Streaming Vector Quantization Retriever
Retrievers, which form one of the most important recommendation stages, are responsible for efficiently selecting possible positive samples to the later stages under strict latency limitations. Because of this, large-scale systems always rely on approximate calculations and indexes to roughly shrink candidate scale, with a simple ranking model. Considering simple models lack the ability to produce precise predictions, most of the existing methods mainly focus on incorporating complicated ranking models. However, another fundamental problem of index effectiveness remains unresolved, which also bottlenecks complication. In this paper, we propose a novel index structure: streaming Vector Quantization model, as a new generation of retrieval paradigm. Streaming VQ attaches items with indexes in real time, granting it immediacy. Moreover, through meticulous verification of possible variants, it achieves additional benefits like index balancing and reparability, enabling it to support complicated ranking models as existing approaches. As a lightweight and implementation-friendly architecture, streaming VQ has been deployed and replaced all major retrievers in Douyin and Douyin Lite, resulting in remarkable user engagement gain.
☆ Knowledge Graph-based Retrieval-Augmented Generation for Schema Matching
Traditional similarity-based schema matching methods are incapable of resolving semantic ambiguities and conflicts in domain-specific complex mapping scenarios due to missing commonsense and domain-specific knowledge. The hallucination problem of large language models (LLMs) also makes it challenging for LLM-based schema matching to address the above issues. Therefore, we propose a Knowledge Graph-based Retrieval-Augmented Generation model for Schema Matching, referred to as the KG-RAG4SM. In particular, KG-RAG4SM introduces novel vector-based, graph traversal-based, and query-based graph retrievals, as well as a hybrid approach and ranking schemes that identify the most relevant subgraphs from external large knowledge graphs (KGs). We showcase that KG-based retrieval-augmented LLMs are capable of generating more accurate results for complex matching cases without any re-training. Our experimental results show that KG-RAG4SM outperforms the LLM-based state-of-the-art (SOTA) methods (e.g., Jellyfish-8B) by 35.89% and 30.50% in terms of precision and F1 score on the MIMIC dataset, respectively; KG-RAG4SM with GPT-4o-mini outperforms the pre-trained language model (PLM)-based SOTA methods (e.g., SMAT) by 69.20% and 21.97% in terms of precision and F1 score on the Synthea dataset, respectively. The results also demonstrate that our approach is more efficient in end-to-end schema matching, and scales to retrieve from large KGs. Our case studies on the dataset from the real-world schema matching scenario exhibit that the hallucination problem of LLMs for schema matching is well mitigated by our solution.
comment: Under Review
☆ DNMDR: Dynamic Networks and Multi-view Drug Representations for Safe Medication Recommendation
Medication Recommendation (MR) is a promising research topic which booms diverse applications in the healthcare and clinical domains. However, existing methods mainly rely on sequential modeling and static graphs for representation learning, which ignore the dynamic correlations in diverse medical events of a patient's temporal visits, leading to insufficient global structural exploration on nodes. Additionally, mitigating drug-drug interactions (DDIs) is another issue determining the utility of the MR systems. To address the challenges mentioned above, this paper proposes a novel MR method with the integration of dynamic networks and multi-view drug representations (DNMDR). Specifically, weighted snapshot sequences for dynamic heterogeneous networks are constructed based on discrete visits in temporal EHRs, and all the dynamic networks are jointly trained to gain both structural correlations in diverse medical events and temporal dependency in historical health conditions, for achieving comprehensive patient representations with both semantic features and structural relationships. Moreover, combining the drug co-occurrences and adverse drug-drug interactions (DDIs) in internal view of drug molecule structure and interactive view of drug pairs, the safe drug representations are available to obtain high-quality medication combination recommendation. Finally, extensive experiments on real world datasets are conducted for performance evaluation, and the experimental results demonstrate that the proposed DNMDR method outperforms the state-of-the-art baseline models with a large margin on various metrics such as PRAUC, Jaccard, DDI rates and so on.
☆ Guiding Retrieval using LLM-based Listwise Rankers
Large Language Models (LLMs) have shown strong promise as rerankers, especially in ``listwise'' settings where an LLM is prompted to rerank several search results at once. However, this ``cascading'' retrieve-and-rerank approach is limited by the bounded recall problem: relevant documents not retrieved initially are permanently excluded from the final ranking. Adaptive retrieval techniques address this problem, but do not work with listwise rerankers because they assume a document's score is computed independently from other documents. In this paper, we propose an adaptation of an existing adaptive retrieval method that supports the listwise setting and helps guide the retrieval process itself (thereby overcoming the bounded recall problem for LLM rerankers). Specifically, our proposed algorithm merges results both from the initial ranking and feedback documents provided by the most relevant documents seen up to that point. Through extensive experiments across diverse LLM rerankers, first stage retrievers, and feedback sources, we demonstrate that our method can improve nDCG@10 by up to 13.23% and recall by 28.02%--all while keeping the total number of LLM inferences constant and overheads due to the adaptive process minimal. The work opens the door to leveraging LLM-based search in settings where the initial pool of results is limited, e.g., by legacy systems, or by the cost of deploying a semantic first-stage.
comment: 16 pages, 2 figures, 3 tables
☆ Agentic Retrieval-Augmented Generation: A Survey on Agentic RAG
Large Language Models (LLMs) have revolutionized artificial intelligence (AI) by enabling human like text generation and natural language understanding. However, their reliance on static training data limits their ability to respond to dynamic, real time queries, resulting in outdated or inaccurate outputs. Retrieval Augmented Generation (RAG) has emerged as a solution, enhancing LLMs by integrating real time data retrieval to provide contextually relevant and up-to-date responses. Despite its promise, traditional RAG systems are constrained by static workflows and lack the adaptability required for multistep reasoning and complex task management. Agentic Retrieval-Augmented Generation (Agentic RAG) transcends these limitations by embedding autonomous AI agents into the RAG pipeline. These agents leverage agentic design patterns reflection, planning, tool use, and multiagent collaboration to dynamically manage retrieval strategies, iteratively refine contextual understanding, and adapt workflows to meet complex task requirements. This integration enables Agentic RAG systems to deliver unparalleled flexibility, scalability, and context awareness across diverse applications. This survey provides a comprehensive exploration of Agentic RAG, beginning with its foundational principles and the evolution of RAG paradigms. It presents a detailed taxonomy of Agentic RAG architectures, highlights key applications in industries such as healthcare, finance, and education, and examines practical implementation strategies. Additionally, it addresses challenges in scaling these systems, ensuring ethical decision making, and optimizing performance for real-world applications, while providing detailed insights into frameworks and tools for implementing Agentic RAG
☆ Benchmarking Robustness of Contrastive Learning Models for Medical Image-Report Retrieval AAAI 2025
Medical images and reports offer invaluable insights into patient health. The heterogeneity and complexity of these data hinder effective analysis. To bridge this gap, we investigate contrastive learning models for cross-domain retrieval, which associates medical images with their corresponding clinical reports. This study benchmarks the robustness of four state-of-the-art contrastive learning models: CLIP, CXR-RePaiR, MedCLIP, and CXR-CLIP. We introduce an occlusion retrieval task to evaluate model performance under varying levels of image corruption. Our findings reveal that all evaluated models are highly sensitive to out-of-distribution data, as evidenced by the proportional decrease in performance with increasing occlusion levels. While MedCLIP exhibits slightly more robustness, its overall performance remains significantly behind CXR-CLIP and CXR-RePaiR. CLIP, trained on a general-purpose dataset, struggles with medical image-report retrieval, highlighting the importance of domain-specific training data. The evaluation of this work suggests that more effort needs to be spent on improving the robustness of these models. By addressing these limitations, we can develop more reliable cross-domain retrieval models for medical applications.
comment: This work is accepted to AAAI 2025 Workshop -- the 9th International Workshop on Health Intelligence
☆ Off-policy Evaluation for Payments at Adyen RecSys '25
This paper demonstrates the successful application of Off-Policy Evaluation (OPE) to accelerate recommender system development and optimization at Adyen, a global leader in financial payment processing. Facing the limitations of traditional A/B testing, which proved slow, costly, and often inconclusive, we integrated OPE to enable rapid evaluation of new recommender system variants using historical data. Our analysis, conducted on a billion-scale dataset of transactions, reveals a strong correlation between OPE estimates and online A/B test results, projecting an incremental 9--54 million transactions over a six-month period. We explore the practical challenges and trade-offs associated with deploying OPE in a high-volume production environment, including leveraging exploration traffic for data collection, mitigating variance in importance sampling, and ensuring scalability through the use of Apache Spark. By benchmarking various OPE estimators, we provide guidance on their effectiveness and integration into the decision-making systems for large-scale industrial payment systems.
comment: 10 pages, 5 figures, submitted to RecSys '25
♻ ☆ SupplyGraph: A Benchmark Dataset for Supply Chain Planning using Graph Neural Networks AAAI 2024
Graph Neural Networks (GNNs) have gained traction across different domains such as transportation, bio-informatics, language processing, and computer vision. However, there is a noticeable absence of research on applying GNNs to supply chain networks. Supply chain networks are inherently graph-like in structure, making them prime candidates for applying GNN methodologies. This opens up a world of possibilities for optimizing, predicting, and solving even the most complex supply chain problems. A major setback in this approach lies in the absence of real-world benchmark datasets to facilitate the research and resolution of supply chain problems using GNNs. To address the issue, we present a real-world benchmark dataset for temporal tasks, obtained from one of the leading FMCG companies in Bangladesh, focusing on supply chain planning for production purposes. The dataset includes temporal data as node features to enable sales predictions, production planning, and the identification of factory issues. By utilizing this dataset, researchers can employ GNNs to address numerous supply chain problems, thereby advancing the field of supply chain analytics and planning. Source: https://github.com/CIOL-SUST/SupplyGraph
comment: Accepted to 4th workshop on Graphs and more Complex structures for Learning and Reasoning, colocated with AAAI 2024
♻ ☆ Fusion Self-supervised Learning for Recommendation
Recommender systems are widely deployed in various web environments, and self-supervised learning (SSL) has recently attracted significant attention in this field. Contrastive learning (CL) stands out as a major SSL paradigm due to its robust ability to generate self-supervised signals. Mainstream graph contrastive learning (GCL)-based methods typically implement CL by creating contrastive views through various data augmentation techniques. Despite these methods are effective, we argue that there still exist several challenges. i) Data augmentation ($e.g.,$ discarding edges or adding noise) necessitates additional graph convolution (GCN) or modeling operations, which are highly time-consuming and potentially harm the embedding quality. ii) Existing CL-based methods use traditional CL objectives to capture self-supervised signals. However, few studies have explored obtaining CL objectives from more perspectives and have attempted to fuse the varying signals from these CL objectives to enhance recommendation performance. To overcome these challenges, we propose a High-order Fusion Graph Contrastive Learning (HFGCL) framework for recommendation. Specifically, instead of facilitating data augmentations, we use high-order information from GCN process to create contrastive views. Additionally, to integrate self-supervised signals from various CL objectives, we propose an advanced CL objective. By ensuring that positive pairs are distanced from negative samples derived from both contrastive views, we effectively fuse self-supervised signals from distinct CL objectives, thereby enhancing the mutual information between positive pairs. Experimental results on three public datasets demonstrate the superior recommendation performance and efficiency of HFGCL compared to the state-of-the-art baselines.
Machine Learning 178
☆ Towards Fast, Specialized Machine Learning Force Fields: Distilling Foundation Models via Energy Hessians ICLR 2025
The foundation model (FM) paradigm is transforming Machine Learning Force Fields (MLFFs), leveraging general-purpose representations and scalable training to perform a variety of computational chemistry tasks. Although MLFF FMs have begun to close the accuracy gap relative to first-principles methods, there is still a strong need for faster inference speed. Additionally, while research is increasingly focused on general-purpose models which transfer across chemical space, practitioners typically only study a small subset of systems at a given time. This underscores the need for fast, specialized MLFFs relevant to specific downstream applications, which preserve test-time physical soundness while maintaining train-time scalability. In this work, we introduce a method for transferring general-purpose representations from MLFF foundation models to smaller, faster MLFFs specialized to specific regions of chemical space. We formulate our approach as a knowledge distillation procedure, where the smaller "student" MLFF is trained to match the Hessians of the energy predictions of the "teacher" foundation model. Our specialized MLFFs can be up to 20 $\times$ faster than the original foundation model, while retaining, and in some cases exceeding, its performance and that of undistilled models. We also show that distilling from a teacher model with a direct force parameterization into a student model trained with conservative forces (i.e., computed as derivatives of the potential energy) successfully leverages the representations from the large-scale teacher for improved accuracy, while maintaining energy conservation during test-time molecular dynamics simulations. More broadly, our work suggests a new paradigm for MLFF development, in which foundation models are released along with smaller, specialized simulation "engines" for common chemical subsets.
comment: Under Review at ICLR 2025
☆ Improving Stability Estimates in Adversarial Explainable AI through Alternate Search Methods
Advances in the effectiveness of machine learning models have come at the cost of enormous complexity resulting in a poor understanding of how they function. Local surrogate methods have been used to approximate the workings of these complex models, but recent work has revealed their vulnerability to adversarial attacks where the explanation produced is appreciably different while the meaning and structure of the complex model's output remains similar. This prior work has focused on the existence of these weaknesses but not on their magnitude. Here we explore using an alternate search method with the goal of finding minimum viable perturbations, the fewest perturbations necessary to achieve a fixed similarity value between the original and altered text's explanation. Intuitively, a method that requires fewer perturbations to expose a given level of instability is inferior to one which requires more. This nuance allows for superior comparisons of the stability of explainability methods.
comment: 9 pages, 3 figures, 5 tables. arXiv admin note: text overlap with arXiv:2406.15839
☆ CrystalGRW: Generative Modeling of Crystal Structures with Targeted Properties via Geodesic Random Walks
Determining whether a candidate crystalline material is thermodynamically stable depends on identifying its true ground-state structure, a central challenge in computational materials science. We introduce CrystalGRW, a diffusion-based generative model on Riemannian manifolds that proposes novel crystal configurations and can predict stable phases validated by density functional theory. The crystal properties, such as fractional coordinates, atomic types, and lattice matrices, are represented on suitable Riemannian manifolds, ensuring that new predictions generated through the diffusion process preserve the periodicity of crystal structures. We incorporate an equivariant graph neural network to also account for rotational and translational symmetries during the generation process. CrystalGRW demonstrates the ability to generate realistic crystal structures that are close to their ground states with accuracy comparable to existing models, while also enabling conditional control, such as specifying a desired crystallographic point group. These features help accelerate materials discovery and inverse design by offering stable, symmetry-consistent crystal candidates for experimental validation.
comment: 10+12 pages, 10 figures
☆ VECT-GAN: A variationally encoded generative model for overcoming data scarcity in pharmaceutical science
Data scarcity in pharmaceutical research has led to reliance on labour-intensive trial and error approaches for development rather than data driven methods. While Machine Learning offers a solution, existing datasets are often small and noisy, limiting their utility. To address this, we developed a Variationally Encoded Conditional Tabular Generative Adversarial Network (VECT GAN), a novel generative model specifically designed for augmenting small, noisy datasets. We introduce a pipeline where data is augmented before regression model development and demonstrate that this consistently and significantly improves performance over other state of the art tabular generative models. We apply this pipeline across six pharmaceutical datasets, and highlight its real-world applicability by developing novel polymers with medically desirable mucoadhesive properties, which we made and experimentally characterised. Additionally, we pre-train the model on the ChEMBL database of drug-like molecules, leveraging knowledge distillation to enhance its generalisability, making it readily available for use on pharmaceutical datasets containing small molecules, which is an extremely common pharmaceutical task. We demonstrate the power of synthetic data for regularising small tabular datasets, highlighting its potential to become standard practice in pharmaceutical model development, and make our method, including VECT GAN pretrained on ChEMBL available as a pip package.
comment: 30 pages, 6 primary figures, 3 supplementary figures
☆ Trusted Machine Learning Models Unlock Private Inference for Problems Currently Infeasible with Cryptography
We often interact with untrusted parties. Prioritization of privacy can limit the effectiveness of these interactions, as achieving certain goals necessitates sharing private data. Traditionally, addressing this challenge has involved either seeking trusted intermediaries or constructing cryptographic protocols that restrict how much data is revealed, such as multi-party computations or zero-knowledge proofs. While significant advances have been made in scaling cryptographic approaches, they remain limited in terms of the size and complexity of applications they can be used for. In this paper, we argue that capable machine learning models can fulfill the role of a trusted third party, thus enabling secure computations for applications that were previously infeasible. In particular, we describe Trusted Capable Model Environments (TCMEs) as an alternative approach for scaling secure computation, where capable machine learning model(s) interact under input/output constraints, with explicit information flow control and explicit statelessness. This approach aims to achieve a balance between privacy and computational efficiency, enabling private inference where classical cryptographic solutions are currently infeasible. We describe a number of use cases that are enabled by TCME, and show that even some simple classic cryptographic problems can already be solved with TCME. Finally, we outline current limitations and discuss the path forward in implementing them.
☆ Training-Aware Risk Control for Intensity Modulated Radiation Therapies Quality Assurance with Conformal Prediction
Measurement quality assurance (QA) practices play a key role in the safe use of Intensity Modulated Radiation Therapies (IMRT) for cancer treatment. These practices have reduced measurement-based IMRT QA failure below 1%. However, these practices are time and labor intensive which can lead to delays in patient care. In this study, we examine how conformal prediction methodologies can be used to robustly triage plans. We propose a new training-aware conformal risk control method by combining the benefit of conformal risk control and conformal training. We incorporate the decision making thresholds based on the gamma passing rate, along with the risk functions used in clinical evaluation, into the design of the risk control framework. Our method achieves high sensitivity and specificity and significantly reduces the number of plans needing measurement without generating a huge confidence interval. Our results demonstrate the validity and applicability of conformal prediction methods for improving efficiency and reducing the workload of the IMRT QA process.
comment: 2024 Machine Learning for Health Symposium
☆ Kolmogorov-Arnold Networks for Time Series Granger Causality Inference
We introduce Granger Causality Kolmogorov-Arnold Networks (GCKAN), an innovative architecture that extends the recently proposed Kolmogorov-Arnold Networks (KAN) to the domain of causal inference. By extracting base weights from KAN layers and incorporating the sparsity-inducing penalty along with ridge regularization, GCKAN infers the Granger causality from time series while enabling automatic time lag selection. Additionally, we propose an algorithm leveraging time-reversed Granger causality to enhance inference accuracy. The algorithm compares prediction and sparse-inducing losses derived from the original and time-reversed series, automatically selecting the casual relationship with the higher score or integrating the results to mitigate spurious connectivities. Comprehensive experiments conducted on Lorenz-96, gene regulatory networks, fMRI BOLD signals, and VAR datasets demonstrate that the proposed model achieves competitive performance to state-of-the-art methods in inferring Granger causality from nonlinear, high-dimensional, and limited-sample time series.
☆ Computing Approximated Fixpoints via Dampened Mann Iteration
Fixpoints are ubiquitous in computer science and when dealing with quantitative semantics and verification one is commonly led to consider least fixpoints of (higher-dimensional) functions over the nonnegative reals. We show how to approximate the least fixpoint of such functions, focusing on the case in which they are not known precisely, but represented by a sequence of approximating functions that converge to them. We concentrate on monotone and non-expansive functions, for which uniqueness of fixpoints is not guaranteed and standard fixpoint iteration schemes might get stuck at a fixpoint that is not the least. Our main contribution is the identification of an iteration scheme, a variation of Mann iteration with a dampening factor, which, under suitable conditions, is shown to guarantee convergence to the least fixpoint of the function of interest. We then argue that these results are relevant in the context of model-based reinforcement learning for Markov decision processes (MDPs), showing that the proposed iteration scheme instantiates to MDPs and allows us to derive convergence to the optimal expected return. More generally, we show that our results can be used to iterate to the least fixpoint almost surely for systems where the function of interest can be approximated with given probabilistic error bounds, as it happens for probabilistic systems, such as simple stochastic games, that can be explored via sampling.
☆ A Reinforcement Learning Approach to Quiet and Safe UAM Traffic Management
Urban air mobility (UAM) is a transformative system that operates various small aerial vehicles in urban environments to reshape urban transportation. However, integrating UAM into existing urban environments presents a variety of complex challenges. Recent analyses of UAM's operational constraints highlight aircraft noise and system safety as key hurdles to UAM system implementation. Future UAM air traffic management schemes must ensure that the system is both quiet and safe. We propose a multi-agent reinforcement learning approach to manage UAM traffic, aiming at both vertical separation assurance and noise mitigation. Through extensive training, the reinforcement learning agent learns to balance the two primary objectives by employing altitude adjustments in a multi-layer UAM network. The results reveal the tradeoffs among noise impact, traffic congestion, and separation. Overall, our findings demonstrate the potential of reinforcement learning in mitigating UAM's noise impact while maintaining safe separation using altitude adjustments
comment: Paper presented at SciTech 2025
☆ Disentangling Exploration of Large Language Models by Optimal Exploitation
Exploration is a crucial skill for self-improvement and open-ended problem-solving. However, it remains uncertain whether large language models can effectively explore the state-space. Existing evaluations predominantly focus on the trade-off between exploration and exploitation, often assessed in multi-armed bandit problems. In contrast, this work isolates exploration as the sole objective, tasking the agent with delivering information that enhances future returns. For the evaluation, we propose to decompose missing rewards into exploration and exploitation components by measuring the optimal achievable return for the states already explored. Our experiments with various LLMs reveal that most models struggle to sufficiently explore the state-space and that weak exploration is insufficient. We observe a positive correlation between model size and exploration performance, with larger models demonstrating superior capabilities. Furthermore, we show that our decomposition provides insights into differences in behaviors driven by agent instructions during prompt engineering, offering a valuable tool for refining LLM performance in exploratory tasks.
☆ Modeling Melt Pool Features and Spatter Using Symbolic Regression and Machine Learning
Additive manufacturing (AM) is a rapidly evolving technology that has attracted applications across a wide range of fields due to its ability to fabricate complex geometries. However, one of the key challenges in AM is achieving consistent print quality. This inconsistency is often attributed to uncontrolled melt pool dynamics, partly caused by spatter which can lead to defects. Therefore, capturing and controlling the evolution of the melt pool is crucial for enhancing process stability and part quality. In this study, we developed a framework to support decision-making in AM operations, facilitating quality control and minimizing defects via machine learning (ML) and polynomial symbolic regression models. We implemented experimentally validated computational tools as a cost-effective approach to collect large datasets from laser powder bed fusion (LPBF) processes. For a dataset consisting of 281 process conditions, parameters such as melt pool dimensions (length, width, depth), melt pool geometry (area, volume), and volume indicated as spatter were extracted. Using machine learning (ML) and polynomial symbolic regression models, a high R2 of over 95 % was achieved in predicting the melt pool dimensions and geometry features for both the training and testing datasets, with either process conditions (power and velocity) or melt pool dimensions as the model inputs. In the case of volume indicated as spatter, R2 improved after logarithmic transforming the model inputs, which was either the process conditions or the melt pool dimensions. Among the investigated ML models, the ExtraTree model achieved the highest R2 values of 96.7 % and 87.5 %.
☆ GenAI Content Detection Task 3: Cross-Domain Machine-Generated Text Detection Challenge COLING 2025
Recently there have been many shared tasks targeting the detection of generated text from Large Language Models (LLMs). However, these shared tasks tend to focus either on cases where text is limited to one particular domain or cases where text can be from many domains, some of which may not be seen during test time. In this shared task, using the newly released RAID benchmark, we aim to answer whether or not models can detect generated text from a large, yet fixed, number of domains and LLMs, all of which are seen during training. Over the course of three months, our task was attempted by 9 teams with 23 detector submissions. We find that multiple participants were able to obtain accuracies of over 99% on machine-generated text from RAID while maintaining a 5% False Positive Rate -- suggesting that detectors are able to robustly detect text from many domains and models simultaneously. We discuss potential interpretations of this result and provide directions for future research.
comment: COLING 2025
☆ Projection Implicit Q-Learning with Support Constraint for Offline Reinforcement Learning
Offline Reinforcement Learning (RL) faces a critical challenge of extrapolation errors caused by out-of-distribution (OOD) actions. Implicit Q-Learning (IQL) algorithm employs expectile regression to achieve in-sample learning, effectively mitigating the risks associated with OOD actions. However, the fixed hyperparameter in policy evaluation and density-based policy improvement method limit its overall efficiency. In this paper, we propose Proj-IQL, a projective IQL algorithm enhanced with the support constraint. In the policy evaluation phase, Proj-IQL generalizes the one-step approach to a multi-step approach through vector projection, while maintaining in-sample learning and expectile regression framework. In the policy improvement phase, Proj-IQL introduces support constraint that is more aligned with the policy evaluation approach. Furthermore, we theoretically demonstrate that Proj-IQL guarantees monotonic policy improvement and enjoys a progressively more rigorous criterion for superior actions. Empirical results demonstrate the Proj-IQL achieves state-of-the-art performance on D4RL benchmarks, especially in challenging navigation domains.
☆ Multi-View Transformers for Airway-To-Lung Ratio Inference on Cardiac CT Scans: The C4R Study
The ratio of airway tree lumen to lung size (ALR), assessed at full inspiration on high resolution full-lung computed tomography (CT), is a major risk factor for chronic obstructive pulmonary disease (COPD). There is growing interest to infer ALR from cardiac CT images, which are widely available in epidemiological cohorts, to investigate the relationship of ALR to severe COVID-19 and post-acute sequelae of SARS-CoV-2 infection (PASC). Previously, cardiac scans included approximately 2/3 of the total lung volume with 5-6x greater slice thickness than high-resolution (HR) full-lung (FL) CT. In this study, we present a novel attention-based Multi-view Swin Transformer to infer FL ALR values from segmented cardiac CT scans. For the supervised training we exploit paired full-lung and cardiac CTs acquired in the Multi-Ethnic Study of Atherosclerosis (MESA). Our network significantly outperforms a proxy direct ALR inference on segmented cardiac CT scans and achieves accuracy and reproducibility comparable with a scan-rescan reproducibility of the FL ALR ground-truth.
comment: Accepted to appear in Proceedings of International Symposium on Biomedical Imaging (ISBI), 2025
☆ A Two-Stage Pretraining-Finetuning Framework for Treatment Effect Estimation with Unmeasured Confounding KDD 25
Estimating the conditional average treatment effect (CATE) from observational data plays a crucial role in areas such as e-commerce, healthcare, and economics. Existing studies mainly rely on the strong ignorability assumption that there are no unmeasured confounders, whose presence cannot be tested from observational data and can invalidate any causal conclusion. In contrast, data collected from randomized controlled trials (RCT) do not suffer from confounding, but are usually limited by a small sample size. In this paper, we propose a two-stage pretraining-finetuning (TSPF) framework using both large-scale observational data and small-scale RCT data to estimate the CATE in the presence of unmeasured confounding. In the first stage, a foundational representation of covariates is trained to estimate counterfactual outcomes through large-scale observational data. In the second stage, we propose to train an augmented representation of the covariates, which is concatenated to the foundational representation obtained in the first stage to adjust for the unmeasured confounding. To avoid overfitting caused by the small-scale RCT data in the second stage, we further propose a partial parameter initialization approach, rather than training a separate network. The superiority of our approach is validated on two public datasets with extensive experiments. The code is available at https://github.com/zhouchuanCN/KDD25-TSPF.
comment: KDD 25 Research Track
☆ PAC Learnability of Scenario Decision-Making Algorithms: Necessary and Sufficient Conditions
We study the PAC property of scenario decision-making algorithms, that is, the ability to make a decision that has an arbitrarily low risk of violating an unknown safety constraint, provided sufficiently many realizations (called scenarios) of the safety constraint are sampled. Sufficient conditions for scenario decision-making algorithms to be PAC are available in the literature, such as finiteness of the VC dimension of its associated classifier and existence of a compression scheme. We study the question of whether these sufficient conditions are also necessary. We show with counterexamples that this is not the case in general. This contrasts with binary classification learning, for which the analogous conditions are sufficient and necessary. Popular scenario decision-making algorithms, such as scenario optimization, enjoy additional properties, such as stability and consistency. We show that even under these additional assumptions the above conclusions hold. Finally, we derive a necessary condition for scenario decision-making algorithms to be PAC, inspired by the VC dimension and the so-called no-free-lunch theorem.
☆ Improved Compression Bounds for Scenario Decision Making
Scenario decision making offers a flexible way of making decision in an uncertain environment while obtaining probabilistic guarantees on the risk of failure of the decision. The idea of this approach is to draw samples of the uncertainty and make a decision based on the samples, called "scenarios". The probabilistic guarantees take the form of a bound on the probability of sampling a set of scenarios that will lead to a decision whose risk of failure is above a given maximum tolerance. This bound can be expressed as a function of the number of sampled scenarios, the maximum tolerated risk, and some intrinsic property of the problem called the "compression size". Several such bounds have been proposed in the literature under various assumptions on the problem. We propose new bounds that improve upon the existing ones without requiring stronger assumptions on the problem.
☆ Increasing Batch Size Improves Convergence of Stochastic Gradient Descent with Momentum
Stochastic gradient descent with momentum (SGDM), which is defined by adding a momentum term to SGD, has been well studied in both theory and practice. Theoretically investigated results showed that the settings of the learning rate and momentum weight affect the convergence of SGDM. Meanwhile, practical results showed that the setting of batch size strongly depends on the performance of SGDM. In this paper, we focus on mini-batch SGDM with constant learning rate and constant momentum weight, which is frequently used to train deep neural networks in practice. The contribution of this paper is showing theoretically that using a constant batch size does not always minimize the expectation of the full gradient norm of the empirical loss in training a deep neural network, whereas using an increasing batch size definitely minimizes it, that is, increasing batch size improves convergence of mini-batch SGDM. We also provide numerical results supporting our analyses, indicating specifically that mini-batch SGDM with an increasing batch size converges to stationary points faster than with a constant batch size. Python implementations of the optimizers used in the numerical experiments are available at https://anonymous.4open.science/r/momentum-increasing-batch-size-888C/.
comment: 22 pages
☆ Incrementally Learning Multiple Diverse Data Domains via Multi-Source Dynamic Expansion Model
Continual Learning seeks to develop a model capable of incrementally assimilating new information while retaining prior knowledge. However, current research predominantly addresses a straightforward learning context, wherein all data samples originate from a singular data domain. This paper shifts focus to a more complex and realistic learning environment, characterized by data samples sourced from multiple distinct domains. We tackle this intricate learning challenge by introducing a novel methodology, termed the Multi-Source Dynamic Expansion Model (MSDEM), which leverages various pre-trained models as backbones and progressively establishes new experts based on them to adapt to emerging tasks. Additionally, we propose an innovative dynamic expandable attention mechanism designed to selectively harness knowledge from multiple backbones, thereby accelerating the new task learning. Moreover, we introduce a dynamic graph weight router that strategically reuses all previously acquired parameters and representations for new task learning, maximizing the positive knowledge transfer effect, which further improves generalization performance. We conduct a comprehensive series of experiments, and the empirical findings indicate that our proposed approach achieves state-of-the-art performance.
comment: 10 pages, 5 figures
☆ ARMOR: Shielding Unlearnable Examples against Data Augmentation
Private data, when published online, may be collected by unauthorized parties to train deep neural networks (DNNs). To protect privacy, defensive noises can be added to original samples to degrade their learnability by DNNs. Recently, unlearnable examples are proposed to minimize the training loss such that the model learns almost nothing. However, raw data are often pre-processed before being used for training, which may restore the private information of protected data. In this paper, we reveal the data privacy violation induced by data augmentation, a commonly used data pre-processing technique to improve model generalization capability, which is the first of its kind as far as we are concerned. We demonstrate that data augmentation can significantly raise the accuracy of the model trained on unlearnable examples from 21.3% to 66.1%. To address this issue, we propose a defense framework, dubbed ARMOR, to protect data privacy from potential breaches of data augmentation. To overcome the difficulty of having no access to the model training process, we design a non-local module-assisted surrogate model that better captures the effect of data augmentation. In addition, we design a surrogate augmentation selection strategy that maximizes distribution alignment between augmented and non-augmented samples, to choose the optimal augmentation strategy for each class. We also use a dynamic step size adjustment algorithm to enhance the defensive noise generation process. Extensive experiments are conducted on 4 datasets and 5 data augmentation methods to verify the performance of ARMOR. Comparisons with 6 state-of-the-art defense methods have demonstrated that ARMOR can preserve the unlearnability of protected private data under data augmentation. ARMOR reduces the test accuracy of the model trained on augmented protected samples by as much as 60% more than baselines.
☆ Digital Phenotyping for Adolescent Mental Health: A Feasibility Study Employing Machine Learning to Predict Mental Health Risk From Active and Passive Smartphone Data
Background: Adolescents are particularly vulnerable to mental disorders, with over 75% of cases manifesting before the age of 25. Research indicates that only 18 to 34% of young people experiencing high levels of depression or anxiety symptoms seek support. Digital tools leveraging smartphones offer scalable and early intervention opportunities. Objective: Using a novel machine learning framework, this study evaluated the feasibility of integrating active and passive smartphone data to predict mental disorders in non-clinical adolescents. Specifically, we investigated the utility of the Mindcraft app in predicting risks for internalising and externalising disorders, eating disorders, insomnia and suicidal ideation. Methods: Participants (N=103; mean age 16.1 years) were recruited from three London schools. Participants completed the Strengths and Difficulties Questionnaire, the Eating Disorders-15 Questionnaire, Sleep Condition Indicator Questionnaire and indicated the presence/absence of suicidal ideation. They used the Mindcraft app for 14 days, contributing active data via self-reports and passive data from smartphone sensors. A contrastive pretraining phase was applied to enhance user-specific feature stability, followed by supervised fine-tuning. The model evaluation employed leave-one-subject-out cross-validation using balanced accuracy as the primary metric. Results: The integration of active and passive data achieved superior performance compared to individual data sources, with mean balanced accuracies of 0.71 for SDQ-High risk, 0.67 for insomnia, 0.77 for suicidal ideation and 0.70 for eating disorders. The contrastive learning framework stabilised daily behavioural representations, enhancing predictive robustness. This study demonstrates the potential of integrating active and passive smartphone data with advanced machine-learning techniques for predicting mental health risks.
☆ Graph Counterfactual Explainable AI via Latent Space Traversal
Explaining the predictions of a deep neural network is a nontrivial task, yet high-quality explanations for predictions are often a prerequisite for practitioners to trust these models. Counterfactual explanations aim to explain predictions by finding the ''nearest'' in-distribution alternative input whose prediction changes in a pre-specified way. However, it remains an open question how to define this nearest alternative input, whose solution depends on both the domain (e.g. images, graphs, tabular data, etc.) and the specific application considered. For graphs, this problem is complicated i) by their discrete nature, as opposed to the continuous nature of state-of-the-art graph classifiers; and ii) by the node permutation group acting on the graphs. We propose a method to generate counterfactual explanations for any differentiable black-box graph classifier, utilizing a case-specific permutation equivariant graph variational autoencoder. We generate counterfactual explanations in a continuous fashion by traversing the latent space of the autoencoder across the classification boundary of the classifier, allowing for seamless integration of discrete graph structure and continuous graph attributes. We empirically validate the approach on three graph datasets, showing that our model is consistently high-performing and more robust than the baselines.
comment: Published at Northern Lights Deep Learning Conference 2025
☆ RouteNet-Gauss: Hardware-Enhanced Network Modeling with Machine Learning
Network simulation is pivotal in network modeling, assisting with tasks ranging from capacity planning to performance estimation. Traditional approaches such as Discrete Event Simulation (DES) face limitations in terms of computational cost and accuracy. This paper introduces RouteNet-Gauss, a novel integration of a testbed network with a Machine Learning (ML) model to address these challenges. By using the testbed as a hardware accelerator, RouteNet-Gauss generates training datasets rapidly and simulates network scenarios with high fidelity to real-world conditions. Experimental results show that RouteNet-Gauss significantly reduces prediction errors by up to 95% and achieves a 488x speedup in inference time compared to state-of-the-art DES-based methods. RouteNet-Gauss's modular architecture is dynamically constructed based on the specific characteristics of the network scenario, such as topology and routing. This enables it to understand and generalize to different network configurations beyond those seen during training, including networks up to 10x larger. Additionally, it supports Temporal Aggregated Performance Estimation (TAPE), providing configurable temporal granularity and maintaining high accuracy in flow performance metrics. This approach shows promise in improving both simulation efficiency and accuracy, offering a valuable tool for network operators.
comment: 13 pages, 11 figures
☆ Deep Learning Meets Queue-Reactive: A Framework for Realistic Limit Order Book Simulation
The Queue-Reactive model introduced by Huang et al. (2015) has become a standard tool for limit order book modeling, widely adopted by both researchers and practitioners for its simplicity and effectiveness. We present the Multidimensional Deep Queue-Reactive (MDQR) model, which extends this framework in three ways: it relaxes the assumption of queue independence, enriches the state space with market features, and models the distribution of order sizes. Through a neural network architecture, the model learns complex dependencies between different price levels and adapts to varying market conditions, while preserving the interpretable point-process foundation of the original framework. Using data from the Bund futures market, we show that MDQR captures key market properties including the square-root law of market impact, cross-queue correlations, and realistic order size patterns. The model demonstrates particular strength in reproducing both conditional and stationary distributions of order sizes, as well as various stylized facts of market microstructure. The model achieves this while maintaining the computational efficiency needed for practical applications such as strategy development through reinforcement learning or realistic backtesting.
☆ A Closer Look at the Learnability of Out-of-Distribution (OOD) Detection
Machine learning algorithms often encounter different or "out-of-distribution" (OOD) data at deployment time, and OOD detection is frequently employed to detect these examples. While it works reasonably well in practice, existing theoretical results on OOD detection are highly pessimistic. In this work, we take a closer look at this problem, and make a distinction between uniform and non-uniform learnability, following PAC learning theory. We characterize under what conditions OOD detection is uniformly and non-uniformly learnable, and we show that in several cases, non-uniform learnability turns a number of negative results into positive. In all cases where OOD detection is learnable, we provide concrete learning algorithms and a sample-complexity analysis.
☆ IDEA: Image Description Enhanced CLIP-Adapter
CLIP (Contrastive Language-Image Pre-training) has attained great success in pattern recognition and computer vision. Transferring CLIP to downstream tasks (e.g. zero- or few-shot classification) is a hot topic in multimodal learning. However, current studies primarily focus on either prompt learning for text or adapter tuning for vision, without fully exploiting the complementary information and correlations among image-text pairs. In this paper, we propose an Image Description Enhanced CLIP-Adapter (IDEA) method to adapt CLIP to few-shot image classification tasks. This method captures fine-grained features by leveraging both visual features and textual descriptions of images. IDEA is a training-free method for CLIP, and it can be comparable to or even exceeds state-of-the-art models on multiple tasks. Furthermore, we introduce Trainable-IDEA (T-IDEA), which extends IDEA by adding two lightweight learnable components (i.e., a projector and a learnable latent space), further enhancing the model's performance and achieving SOTA results on 11 datasets. As one important contribution, we employ the Llama model and design a comprehensive pipeline to generate textual descriptions for images of 11 datasets, resulting in a total of 1,637,795 image-text pairs, named "IMD-11". Our code and data are released at https://github.com/FourierAI/IDEA.
☆ Deep learning for temporal super-resolution 4D Flow MRI
4D Flow Magnetic Resonance Imaging (4D Flow MRI) is a non-invasive technique for volumetric, time-resolved blood flow quantification. However, apparent trade-offs between acquisition time, image noise, and resolution limit clinical applicability. In particular, in regions of highly transient flow, coarse temporal resolution can hinder accurate capture of physiologically relevant flow variations. To overcome these issues, post-processing techniques using deep learning have shown promising results to enhance resolution post-scan using so-called super-resolution networks. However, while super-resolution has been focusing on spatial upsampling, temporal super-resolution remains largely unexplored. The aim of this study was therefore to implement and evaluate a residual network for temporal super-resolution 4D Flow MRI. To achieve this, an existing spatial network (4DFlowNet) was re-designed for temporal upsampling, adapting input dimensions, and optimizing internal layer structures. Training and testing were performed using synthetic 4D Flow MRI data originating from patient-specific in-silico models, as well as using in-vivo datasets. Overall, excellent performance was achieved with input velocities effectively denoised and temporally upsampled, with a mean absolute error (MAE) of 1.0 cm/s in an unseen in-silico setting, outperforming deterministic alternatives (linear interpolation MAE = 2.3 cm/s, sinc interpolation MAE = 2.6 cm/s). Further, the network synthesized high-resolution temporal information from unseen low-resolution in-vivo data, with strong correlation observed at peak flow frames. As such, our results highlight the potential of utilizing data-driven neural networks for temporal super-resolution 4D Flow MRI, enabling high-frame-rate flow quantification without extending acquisition times beyond clinically acceptable limits.
comment: 12 pages, 8 figures
☆ Nesterov Acceleration for Ensemble Kalman Inversion and Variants
Ensemble Kalman inversion (EKI) is a derivative-free, particle-based optimization method for solving inverse problems. It can be shown that EKI approximates a gradient flow, which allows the application of methods for accelerating gradient descent. Here, we show that Nesterov acceleration is effective in speeding up the reduction of the EKI cost function on a variety of inverse problems. We also implement Nesterov acceleration for two EKI variants, unscented Kalman inversion and ensemble transform Kalman inversion. Our specific implementation takes the form of a particle-level nudge that is demonstrably simple to couple in a black-box fashion with any existing EKI variant algorithms, comes with no additional computational expense, and with no additional tuning hyperparameters. This work shows a pathway for future research to translate advances in gradient-based optimization into advances in gradient-free Kalman optimization.
☆ Networked Agents in the Dark: Team Value Learning under Partial Observability AAMAS 2025
We propose a novel cooperative multi-agent reinforcement learning (MARL) approach for networked agents. In contrast to previous methods that rely on complete state information or joint observations, our agents must learn how to reach shared objectives under partial observability. During training, they collect individual rewards and approximate a team value function through local communication, resulting in cooperative behavior. To describe our problem, we introduce the networked dynamic partially observable Markov game framework, where agents communicate over a switching topology communication network. Our distributed method, DNA-MARL, uses a consensus mechanism for local communication and gradient descent for local computation. DNA-MARL increases the range of the possible applications of networked agents, being well-suited for real world domains that impose privacy and where the messages may not reach their recipients. We evaluate DNA-MARL across benchmark MARL scenarios. Our results highlight the superior performance of DNA-MARL over previous methods.
comment: 18 pages, 7 figures, 5 tables. Accepted as supplemental material at Proceedings of the 24th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2025), Detroit, Michigan, USA, May 19 - 23, 2025, IFAAMAS
☆ Leveraging LLM Agents for Translating Network Configurations
Configuration translation is a critical and frequent task in network operations. When a network device is damaged or outdated, administrators need to replace it to maintain service continuity. The replacement devices may originate from different vendors, necessitating configuration translation to ensure seamless network operation. However, translating configurations manually is a labor-intensive and error-prone process. In this paper, we propose an intent-based framework for translating network configuration with Large Language Model (LLM) Agents. The core of our approach is an Intent-based Retrieval Augmented Generation (IRAG) module that systematically splits a configuration file into fragments, extracts intents, and generates accurate translations. We also design a two-stage verification method to validate the syntax and semantics correctness of the translated configurations. We implement and evaluate the proposed method on real-world network configurations. Experimental results show that our method achieves 97.74% syntax correctness, outperforming state-of-the-art methods in translation accuracy.
☆ MeshMask: Physics-Based Simulations with Masked Graph Neural Networks
We introduce a novel masked pre-training technique for graph neural networks (GNNs) applied to computational fluid dynamics (CFD) problems. By randomly masking up to 40\% of input mesh nodes during pre-training, we force the model to learn robust representations of complex fluid dynamics. We pair this masking strategy with an asymmetric encoder-decoder architecture and gated multi-layer perceptrons to further enhance performance. The proposed method achieves state-of-the-art results on seven CFD datasets, including a new challenging dataset of 3D intracranial aneurysm simulations with over 250,000 nodes per mesh. Moreover, it significantly improves model performance and training efficiency across such diverse range of fluid simulation tasks. We demonstrate improvements of up to 60\% in long-term prediction accuracy compared to previous best models, while maintaining similar computational costs. Notably, our approach enables effective pre-training on multiple datasets simultaneously, significantly reducing the time and data required to achieve high performance on new tasks. Through extensive ablation studies, we provide insights into the optimal masking ratio, architectural choices, and training strategies.
☆ Resource-Constrained Federated Continual Learning: What Does Matter?
Federated Continual Learning (FCL) aims to enable sequentially privacy-preserving model training on streams of incoming data that vary in edge devices by preserving previous knowledge while adapting to new data. Current FCL literature focuses on restricted data privacy and access to previously seen data while imposing no constraints on the training overhead. This is unreasonable for FCL applications in real-world scenarios, where edge devices are primarily constrained by resources such as storage, computational budget, and label rate. We revisit this problem with a large-scale benchmark and analyze the performance of state-of-the-art FCL approaches under different resource-constrained settings. Various typical FCL techniques and six datasets in two incremental learning scenarios (Class-IL and Domain-IL) are involved in our experiments. Through extensive experiments amounting to a total of over 1,000+ GPU hours, we find that, under limited resource-constrained settings, existing FCL approaches, with no exception, fail to achieve the expected performance. Our conclusions are consistent in the sensitivity analysis. This suggests that most existing FCL methods are particularly too resource-dependent for real-world deployment. Moreover, we study the performance of typical FCL techniques with resource constraints and shed light on future research directions in FCL.
comment: arXiv admin note: text overlap with arXiv:2303.11165 by other authors
☆ GRAPPA - A Hybrid Graph Neural Network for Predicting Pure Component Vapor Pressures
Although the pure component vapor pressure is one of the most important properties for designing chemical processes, no broadly applicable, sufficiently accurate, and open-source prediction method has been available. To overcome this, we have developed GRAPPA - a hybrid graph neural network for predicting vapor pressures of pure components. GRAPPA enables the prediction of the vapor pressure curve of basically any organic molecule, requiring only the molecular structure as input. The new model consists of three parts: A graph attention network for the message passing step, a pooling function that captures long-range interactions, and a prediction head that yields the component-specific parameters of the Antoine equation, from which the vapor pressure can readily and consistently be calculated for any temperature. We have trained and evaluated GRAPPA on experimental vapor pressure data of almost 25,000 pure components. We found excellent prediction accuracy for unseen components, outperforming state-of-the-art group contribution methods and other machine learning approaches in applicability and accuracy. The trained model and its code are fully disclosed, and GRAPPA is directly applicable via the interactive website ml-prop.mv.rptu.de.
comment: 38 pages, 12 figures
☆ Transformed Low-rank Adaptation via Tensor Decomposition and Its Applications to Text-to-image Models
Parameter-Efficient Fine-Tuning (PEFT) of text-to-image models has become an increasingly popular technique with many applications. Among the various PEFT methods, Low-Rank Adaptation (LoRA) and its variants have gained significant attention due to their effectiveness, enabling users to fine-tune models with limited computational resources. However, the approximation gap between the low-rank assumption and desired fine-tuning weights prevents the simultaneous acquisition of ultra-parameter-efficiency and better performance. To reduce this gap and further improve the power of LoRA, we propose a new PEFT method that combines two classes of adaptations, namely, transform and residual adaptations. In specific, we first apply a full-rank and dense transform to the pre-trained weight. This learnable transform is expected to align the pre-trained weight as closely as possible to the desired weight, thereby reducing the rank of the residual weight. Then, the residual part can be effectively approximated by more compact and parameter-efficient structures, with a smaller approximation error. To achieve ultra-parameter-efficiency in practice, we design highly flexible and effective tensor decompositions for both the transform and residual adaptations. Additionally, popular PEFT methods such as DoRA can be summarized under this transform plus residual adaptation scheme. Experiments are conducted on fine-tuning Stable Diffusion models in subject-driven and controllable generation. The results manifest that our method can achieve better performances and parameter efficiency compared to LoRA and several baselines.
☆ $\texttt{InfoHier}$: Hierarchical Information Extraction via Encoding and Embedding
Analyzing large-scale datasets, especially involving complex and high-dimensional data like images, is particularly challenging. While self-supervised learning (SSL) has proven effective for learning representations from unlabelled data, it typically focuses on flat, non-hierarchical structures, missing the multi-level relationships present in many real-world datasets. Hierarchical clustering (HC) can uncover these relationships by organizing data into a tree-like structure, but it often relies on rigid similarity metrics that struggle to capture the complexity of diverse data types. To address these we envision $\texttt{InfoHier}$, a framework that combines SSL with HC to jointly learn robust latent representations and hierarchical structures. This approach leverages SSL to provide adaptive representations, enhancing HC's ability to capture complex patterns. Simultaneously, it integrates HC loss to refine SSL training, resulting in representations that are more attuned to the underlying information hierarchy. $\texttt{InfoHier}$ has the potential to improve the expressiveness and performance of both clustering and representation learning, offering significant benefits for data analysis, management, and information retrieval.
comment: 10 pages, 4 figures
Self-supervised Transformation Learning for Equivariant Representations NeurIPS 2024
Unsupervised representation learning has significantly advanced various machine learning tasks. In the computer vision domain, state-of-the-art approaches utilize transformations like random crop and color jitter to achieve invariant representations, embedding semantically the same inputs despite transformations. However, this can degrade performance in tasks requiring precise features, such as localization or flower classification. To address this, recent research incorporates equivariant representation learning, which captures transformation-sensitive information. However, current methods depend on transformation labels and thus struggle with interdependency and complex transformations. We propose Self-supervised Transformation Learning (STL), replacing transformation labels with transformation representations derived from image pairs. The proposed method ensures transformation representation is image-invariant and learns corresponding equivariant transformations, enhancing performance without increased batch complexity. We demonstrate the approach's effectiveness across diverse classification and detection tasks, outperforming existing methods in 7 out of 11 benchmarks and excelling in detection. By integrating complex transformations like AugMix, unusable by prior equivariant methods, this approach enhances performance across tasks, underscoring its adaptability and resilience. Additionally, its compatibility with various base models highlights its flexibility and broad applicability. The code is available at https://github.com/jaemyung-u/stl.
comment: 38th Conference on Neural Information Processing Systems (NeurIPS 2024)
☆ Disentangled Interleaving Variational Encoding
Conflicting objectives present a considerable challenge in interleaving multi-task learning, necessitating the need for meticulous design and balance to ensure effective learning of a representative latent data space across all tasks without mutual negative impact. Drawing inspiration from the concept of marginal and conditional probability distributions in probability theory, we design a principled and well-founded approach to disentangle the original input into marginal and conditional probability distributions in the latent space of a variational autoencoder. Our proposed model, Deep Disentangled Interleaving Variational Encoding (DeepDIVE) learns disentangled features from the original input to form clusters in the embedding space and unifies these features via the cross-attention mechanism in the fusion stage. We theoretically prove that combining the objectives for reconstruction and forecasting fully captures the lower bound and mathematically derive a loss function for disentanglement using Na\"ive Bayes. Under the assumption that the prior is a mixture of log-concave distributions, we also establish that the Kullback-Leibler divergence between the prior and the posterior is upper bounded by a function minimized by the minimizer of the cross entropy loss, informing our adoption of radial basis functions (RBF) and cross entropy with interleaving training for DeepDIVE to provide a justified basis for convergence. Experiments on two public datasets show that DeepDIVE disentangles the original input and yields forecast accuracies better than the original VAE and comparable to existing state-of-the-art baselines.
☆ Diagonal Over-parameterization in Reproducing Kernel Hilbert Spaces as an Adaptive Feature Model: Generalization and Adaptivity
This paper introduces a diagonal adaptive kernel model that dynamically learns kernel eigenvalues and output coefficients simultaneously during training. Unlike fixed-kernel methods tied to the neural tangent kernel theory, the diagonal adaptive kernel model adapts to the structure of the truth function, significantly improving generalization over fixed-kernel methods, especially when the initial kernel is misaligned with the target. Moreover, we show that the adaptivity comes from learning the right eigenvalues during training, showing a feature learning behavior. By extending to deeper parameterization, we further show how extra depth enhances adaptability and generalization. This study combines the insights from feature learning and implicit regularization and provides new perspective into the adaptivity and generalization potential of neural networks beyond the kernel regime.
comment: arXiv admin note: text overlap with arXiv:2409.00894
☆ Investigating Parameter-Efficiency of Hybrid QuGANs Based on Geometric Properties of Generated Sea Route Graphs
The demand for artificially generated data for the development, training and testing of new algorithms is omnipresent. Quantum computing (QC), does offer the hope that its inherent probabilistic functionality can be utilised in this field of generative artificial intelligence. In this study, we use quantum-classical hybrid generative adversarial networks (QuGANs) to artificially generate graphs of shipping routes. We create a training dataset based on real shipping data and investigate to what extent QuGANs are able to learn and reproduce inherent distributions and geometric features of this data. We compare hybrid QuGANs with classical Generative Adversarial Networks (GANs), with a special focus on their parameter efficiency. Our results indicate that QuGANs are indeed able to quickly learn and represent underlying geometric properties and distributions, although they seem to have difficulties in introducing variance into the sampled data. Compared to classical GANs of greater size, measured in the number of parameters used, some QuGANs show similar result quality. Our reference to concrete use cases, such as the generation of shipping data, provides an illustrative example and demonstrate the potential and diversity in which QC can be used.
☆ SPEQ: Stabilization Phases for Efficient Q-Learning in High Update-To-Data Ratio Reinforcement Learning
A key challenge in Deep Reinforcement Learning is sample efficiency, especially in real-world applications where collecting environment interactions is expensive or risky. Recent off-policy algorithms improve sample efficiency by increasing the Update-To-Data (UTD) ratio and performing more gradient updates per environment interaction. While this improves sample efficiency, it significantly increases computational cost due to the higher number of gradient updates required. In this paper we propose a sample-efficient method to improve computational efficiency by separating training into distinct learning phases in order to exploit gradient updates more effectively. Our approach builds on top of the Dropout Q-Functions (DroQ) algorithm and alternates between an online, low UTD ratio training phase, and an offline stabilization phase. During the stabilization phase, we fine-tune the Q-functions without collecting new environment interactions. This process improves the effectiveness of the replay buffer and reduces computational overhead. Our experimental results on continuous control problems show that our method achieves results comparable to state-of-the-art, high UTD ratio algorithms while requiring 56\% fewer gradient updates and 50\% less training time than DroQ. Our approach offers an effective and computationally economical solution while maintaining the same sample efficiency as the more costly, high UTD ratio state-of-the-art.
☆ Product of Gaussian Mixture Diffusion Model for non-linear MRI Inversion
Diffusion models have recently shown remarkable results in magnetic resonance imaging reconstruction. However, the employed networks typically are black-box estimators of the (smoothed) prior score with tens of millions of parameters, restricting interpretability and increasing reconstruction time. Furthermore, parallel imaging reconstruction algorithms either rely on off-line coil sensitivity estimation, which is prone to misalignment and restricting sampling trajectories, or perform per-coil reconstruction, making the computational cost proportional to the number of coils. To overcome this, we jointly reconstruct the image and the coil sensitivities using the lightweight, parameter-efficient, and interpretable product of Gaussian mixture diffusion model as an image prior and a classical smoothness priors on the coil sensitivities. The proposed method delivers promising results while allowing for fast inference and demonstrating robustness to contrast out-of-distribution data and sampling trajectories, comparable to classical variational penalties such as total variation. Finally, the probabilistic formulation allows the calculation of the posterior expectation and pixel-wise variance.
☆ Fine-grained Spatio-temporal Event Prediction with Self-adaptive Anchor Graph SDM'25
Event prediction tasks often handle spatio-temporal data distributed in a large spatial area. Different regions in the area exhibit different characteristics while having latent correlations. This spatial heterogeneity and correlations greatly affect the spatio-temporal distributions of event occurrences, which has not been addressed by state-of-the-art models. Learning spatial dependencies of events in a continuous space is challenging due to its fine granularity and a lack of prior knowledge. In this work, we propose a novel Graph Spatio-Temporal Point Process (GSTPP) model for fine-grained event prediction. It adopts an encoder-decoder architecture that jointly models the state dynamics of spatially localized regions using neural Ordinary Differential Equations (ODEs). The state evolution is built on the foundation of a novel Self-Adaptive Anchor Graph (SAAG) that captures spatial dependencies. By adaptively localizing the anchor nodes in the space and jointly constructing the correlation edges between them, the SAAG enhances the model's ability of learning complex spatial event patterns. The proposed GSTPP model greatly improves the accuracy of fine-grained event prediction. Extensive experimental results show that our method greatly improves the prediction accuracy over existing spatio-temporal event prediction approaches.
comment: Accepted to SIAM International Conference on Data Mining 2025 (SDM'25)
☆ Joint Learning of Depth and Appearance for Portrait Image Animation
2D portrait animation has experienced significant advancements in recent years. Much research has utilized the prior knowledge embedded in large generative diffusion models to enhance high-quality image manipulation. However, most methods only focus on generating RGB images as output, and the co-generation of consistent visual plus 3D output remains largely under-explored. In our work, we propose to jointly learn the visual appearance and depth simultaneously in a diffusion-based portrait image generator. Our method embraces the end-to-end diffusion paradigm and introduces a new architecture suitable for learning this conditional joint distribution, consisting of a reference network and a channel-expanded diffusion backbone. Once trained, our framework can be efficiently adapted to various downstream applications, such as facial depth-to-image and image-to-depth generation, portrait relighting, and audio-driven talking head animation with consistent 3D output.
☆ Quantum Reservoir Computing and Risk Bounds
We propose a way to bound the generalisation errors of several classes of quantum reservoirs using the Rademacher complexity. We give specific, parameter-dependent bounds for two particular quantum reservoir classes. We analyse how the generalisation bounds scale with growing numbers of qubits. Applying our results to classes with polynomial readout functions, we find that the risk bounds converge in the number of training samples. The explicit dependence on the quantum reservoir and readout parameters in our bounds can be used to control the generalisation error to a certain extent. It should be noted that the bounds scale exponentially with the number of qubits $n$. The upper bounds on the Rademacher complexity can be applied to other reservoir classes that fulfill a few hypotheses on the quantum dynamics and the readout function.
☆ SWSC: Shared Weight for Similar Channel in LLM
Large language models (LLMs) have spurred development in multiple industries. However, the growing number of their parameters brings substantial storage and computing burdens, making it essential to explore model compression techniques for parameter reduction and easier deployment. We propose SWSC, an LLM compression method based on the concept of Shared Weight for Similar Channel. It uses the K-Means clustering algorithm to cluster model weights channel-by-channel, generating clusters with highly similar vectors within each. A representative vector from each cluster is selected to approximately replace all vectors in the cluster, significantly reducing the number of model weight parameters. However, approximate restoration will inevitably cause damage to the performance of the model. To tackle this issue, we perform singular value decomposition on the weight error values before and after compression and retain the larger singular values and their corresponding singular vectors to compensate for the accuracy. The experimental results show that our method can effectively ensure the performance of the compressed LLM even under low-precision conditions.
comment: 5pages, 3 figures, work in progress
Transformer-based Multivariate Time Series Anomaly Localization
With the growing complexity of Cyber-Physical Systems (CPS) and the integration of Internet of Things (IoT), the use of sensors for online monitoring generates large volume of multivariate time series (MTS) data. Consequently, the need for robust anomaly diagnosis in MTS is paramount to maintaining system reliability and safety. While significant advancements have been made in anomaly detection, localization remains a largely underexplored area, though crucial for intelligent decision-making. This paper introduces a novel transformer-based model for unsupervised anomaly diagnosis in MTS, with a focus on improving localization performance, through an in-depth analysis of the self-attention mechanism's learning behavior under both normal and anomalous conditions. We formulate the anomaly localization problem as a three-stage process: time-step, window, and segment-based. This leads to the development of the Space-Time Anomaly Score (STAS), a new metric inspired by the connection between transformer latent representations and space-time statistical models. STAS is designed to capture individual anomaly behaviors and inter-series dependencies, delivering enhanced localization performance. Additionally, the Statistical Feature Anomaly Score (SFAS) complements STAS by analyzing statistical features around anomalies, with their combination helping to reduce false alarms. Experiments on real world and synthetic datasets illustrate the model's superiority over state-of-the-art methods in both detection and localization tasks.
☆ A Learning Algorithm That Attains the Human Optimum in a Repeated Human-Machine Interaction Game
When humans interact with learning-based control systems, a common goal is to minimize a cost function known only to the human. For instance, an exoskeleton may adapt its assistance in an effort to minimize the human's metabolic cost-of-transport. Conventional approaches to synthesizing the learning algorithm solve an inverse problem to infer the human's cost. However, these problems can be ill-posed, hard to solve, or sensitive to problem data. Here we show a game-theoretic learning algorithm that works solely by observing human actions to find the cost minimum, avoiding the need to solve an inverse problem. We evaluate the performance of our algorithm in an extensive set of human subjects experiments, demonstrating consistent convergence to the minimum of a prescribed human cost function in scalar and multidimensional instantiations of the game. We conclude by outlining future directions for theoretical and empirical extensions of our results.
☆ CT-PatchTST: Channel-Time Patch Time-Series Transformer for Long-Term Renewable Energy Forecasting
Accurately predicting renewable energy output is crucial for the efficient integration of solar and wind power into modern energy systems. This study develops and evaluates an advanced deep learning model, Channel-Time Patch Time-Series Transformer (CT-PatchTST), to forecast the power output of photovoltaic and wind energy systems using annual offshore wind power, onshore wind power, and solar power generation data from Denmark. While the original Patch Time-Series Transformer(PatchTST) model employs a channel-independent (CI) approach, it tends to overlook inter-channel relationships during training, potentially leading to a loss of critical information. To address this limitation and further leverage the benefits of increased data granularity brought by CI, we propose CT-PatchTST. This enhanced model improves the processing of inter-channel information while maintaining the advantages of the channel-independent approach. The predictive performance of CT-PatchTST is rigorously analyzed, demonstrating its ability to provide precise and reliable energy forecasts. This work contributes to improving the predictability of renewable energy systems, supporting their broader adoption and integration into energy grids.
☆ RLHS: Mitigating Misalignment in RLHF with Hindsight Simulation
Generative AI systems like foundation models (FMs) must align well with human values to ensure their behavior is helpful and trustworthy. While Reinforcement Learning from Human Feedback (RLHF) has shown promise for optimizing model performance using human judgments, existing RLHF pipelines predominantly rely on immediate feedback, which can fail to accurately reflect the downstream impact of an interaction on users' utility. We demonstrate that feedback based on evaluators' foresight estimates of downstream consequences systematically induces Goodhart's Law dynamics, incentivizing misaligned behaviors like sycophancy and deception and ultimately degrading user outcomes. To alleviate this, we propose decoupling evaluation from prediction by refocusing RLHF on hindsight feedback. Our theoretical analysis reveals that conditioning evaluator feedback on downstream observations mitigates misalignment and improves expected human utility, even when these observations are simulated by the AI system itself. To leverage this insight in a practical alignment algorithm, we introduce Reinforcement Learning from Hindsight Simulation (RLHS), which first simulates plausible consequences and then elicits feedback to assess what behaviors were genuinely beneficial in hindsight. We apply RLHS to two widely-employed online and offline preference optimization methods -- Proximal Policy Optimization (PPO) and Direct Preference Optimization (DPO) -- and show empirically that misalignment is significantly reduced with both methods. Through an online human user study, we show that RLHS consistently outperforms RLHF in helping users achieve their goals and earns higher satisfaction ratings, despite being trained solely with simulated hindsight feedback. These results underscore the importance of focusing on long-term consequences, even simulated ones, to mitigate misalignment in RLHF.
☆ Towards Aligned Data Forgetting via Twin Machine Unlearning
Modern privacy regulations have spurred the evolution of machine unlearning, a technique enabling a trained model to efficiently forget specific training data. In prior unlearning methods, the concept of "data forgetting" is often interpreted and implemented as achieving zero classification accuracy on such data. Nevertheless, the authentic aim of machine unlearning is to achieve alignment between the unlearned model and the gold model, i.e., encouraging them to have identical classification accuracy. On the other hand, the gold model often exhibits non-zero classification accuracy due to its generalization ability. To achieve aligned data forgetting, we propose a Twin Machine Unlearning (TMU) approach, where a twin unlearning problem is defined corresponding to the original unlearning problem. Consequently, the generalization-label predictor trained on the twin problem can be transferred to the original problem, facilitating aligned data forgetting. Comprehensive empirical experiments illustrate that our approach significantly enhances the alignment between the unlearned model and the gold model.
comment: arXiv admin note: substantial text overlap with arXiv:2408.11433
☆ Neural Risk-sensitive Satisficing in Contextual Bandits
The contextual bandit problem, which is a type of reinforcement learning tasks, provides an effective framework for solving challenges in recommendation systems, such as satisfying real-time requirements, enabling personalization, addressing cold-start problems. However, contextual bandit algorithms face challenges since they need to handle large state-action spaces sequentially. These challenges include the high costs for learning and balancing exploration and exploitation, as well as large variations in performance that depend on the domain of application. To address these challenges, Tsuboya et~al. proposed the Regional Linear Risk-sensitive Satisficing (RegLinRS) algorithm. RegLinRS switches between exploration and exploitation based on how well the agent has achieved the target. However, the reward expectations in RegLinRS are linearly approximated based on features, which limits its applicability when the relationship between features and reward expectations is non-linear. To handle more complex environments, we proposed Neural Risk-sensitive Satisficing (NeuralRS), which incorporates neural networks into RegLinRS, and demonstrated its utility.
comment: Accepted by AROB-ISBC 2025
☆ OpenMLDB: A Real-Time Relational Data Feature Computation System for Online ML
Efficient and consistent feature computation is crucial for a wide range of online ML applications. Typically, feature computation is divided into two distinct phases, i.e., offline stage for model training and online stage for model serving. These phases often rely on execution engines with different interface languages and function implementations, causing significant inconsistencies. Moreover, many online ML features involve complex time-series computations (e.g., functions over varied-length table windows) that differ from standard streaming and analytical queries. Existing data processing systems (e.g., Spark, Flink, DuckDB) often incur multi-second latencies for these computations, making them unsuitable for real-time online ML applications that demand timely feature updates. This paper presents OpenMLDB, a feature computation system deployed in 4Paradigm's SageOne platform and over 100 real scenarios. Technically, OpenMLDB first employs a unified query plan generator for consistent computation results across the offline and online stages, significantly reducing feature deployment overhead. Second, OpenMLDB provides an online execution engine that resolves performance bottlenecks caused by long window computations (via pre-aggregation) and multi-table window unions (via data self-adjusting). It also provides a high-performance offline execution engine with window parallel optimization and time-aware data skew resolving. Third, OpenMLDB features a compact data format and stream-focused indexing to maximize memory usage and accelerate data access. Evaluations in testing and real workloads reveal significant performance improvements and resource savings compared to the baseline systems. The open community of OpenMLDB now has over 150 contributors and gained 1.6k stars on GitHub.
☆ Molecular Graph Contrastive Learning with Line Graph
Trapped by the label scarcity in molecular property prediction and drug design, graph contrastive learning (GCL) came forward. Leading contrastive learning works show two kinds of view generators, that is, random or learnable data corruption and domain knowledge incorporation. While effective, the two ways also lead to molecular semantics altering and limited generalization capability, respectively. To this end, we relate the \textbf{L}in\textbf{E} graph with \textbf{MO}lecular graph co\textbf{N}trastive learning and propose a novel method termed \textit{LEMON}. Specifically, by contrasting the given graph with the corresponding line graph, the graph encoder can freely encode the molecular semantics without omission. Furthermore, we present a new patch with edge attribute fusion and two local contrastive losses enhance information transmission and tackle hard negative samples. Compared with state-of-the-art (SOTA) methods for view generation, superior performance on molecular property prediction suggests the effectiveness of our proposed framework.
☆ Normalize Then Propagate: Efficient Homophilous Regularization for Few-shot Semi-Supervised Node Classification AAAI 2025
Graph Neural Networks (GNNs) have demonstrated remarkable ability in semi-supervised node classification. However, most existing GNNs rely heavily on a large amount of labeled data for training, which is labor-intensive and requires extensive domain knowledge. In this paper, we first analyze the restrictions of GNNs generalization from the perspective of supervision signals in the context of few-shot semi-supervised node classification. To address these challenges, we propose a novel algorithm named NormProp, which utilizes the homophily assumption of unlabeled nodes to generate additional supervision signals, thereby enhancing the generalization against label scarcity. The key idea is to efficiently capture both the class information and the consistency of aggregation during message passing, via decoupling the direction and Euclidean norm of node representations. Moreover, we conduct a theoretical analysis to determine the upper bound of Euclidean norm, and then propose homophilous regularization to constraint the consistency of unlabeled nodes. Extensive experiments demonstrate that NormProp achieve state-of-the-art performance under low-label rate scenarios with low computational complexity.
comment: Accepted by AAAI 2025
☆ DNMDR: Dynamic Networks and Multi-view Drug Representations for Safe Medication Recommendation
Medication Recommendation (MR) is a promising research topic which booms diverse applications in the healthcare and clinical domains. However, existing methods mainly rely on sequential modeling and static graphs for representation learning, which ignore the dynamic correlations in diverse medical events of a patient's temporal visits, leading to insufficient global structural exploration on nodes. Additionally, mitigating drug-drug interactions (DDIs) is another issue determining the utility of the MR systems. To address the challenges mentioned above, this paper proposes a novel MR method with the integration of dynamic networks and multi-view drug representations (DNMDR). Specifically, weighted snapshot sequences for dynamic heterogeneous networks are constructed based on discrete visits in temporal EHRs, and all the dynamic networks are jointly trained to gain both structural correlations in diverse medical events and temporal dependency in historical health conditions, for achieving comprehensive patient representations with both semantic features and structural relationships. Moreover, combining the drug co-occurrences and adverse drug-drug interactions (DDIs) in internal view of drug molecule structure and interactive view of drug pairs, the safe drug representations are available to obtain high-quality medication combination recommendation. Finally, extensive experiments on real world datasets are conducted for performance evaluation, and the experimental results demonstrate that the proposed DNMDR method outperforms the state-of-the-art baseline models with a large margin on various metrics such as PRAUC, Jaccard, DDI rates and so on.
☆ Adaptive Sampled Softmax with Inverted Multi-Index: Methods, Theory and Applications
The softmax function is a cornerstone of multi-class classification, integral to a wide range of machine learning applications, from large-scale retrieval and ranking models to advanced large language models. However, its computational cost grows linearly with the number of classes, which becomes prohibitively expensive in scenarios with millions or even billions of classes. The sampled softmax, which relies on self-normalized importance sampling, has emerged as a powerful alternative, significantly reducing computational complexity. Yet, its estimator remains unbiased only when the sampling distribution matches the true softmax distribution. To improve both approximation accuracy and sampling efficiency, we propose the MIDX Sampler, a novel adaptive sampling strategy based on an inverted multi-index approach. Concretely, we decompose the softmax probability into several multinomial probabilities, each associated with a specific set of codewords and the last associated with the residual score of queries, thus reducing time complexity to the number of codewords instead of the number of classes. To further boost efficiency, we replace the query-specific residual probability with a simple uniform distribution, simplifying the computation while retaining high performance. Our method is backed by rigorous theoretical analysis, addressing key concerns such as sampling bias, gradient bias, convergence rates, and generalization error bounds. The results demonstrate that a smaller divergence from the ideal softmax distribution leads to faster convergence and improved generalization. Extensive experiments on large-scale language models, sequential recommenders, and extreme multi-class classification tasks confirm that the MIDX-Sampler delivers superior effectiveness and efficiency compared to existing approaches.
comment: 40 pages
☆ MIAFEx: An Attention-based Feature Extraction Method for Medical Image Classification
Feature extraction techniques are crucial in medical image classification; however, classical feature extractors in addition to traditional machine learning classifiers often exhibit significant limitations in providing sufficient discriminative information for complex image sets. While Convolutional Neural Networks (CNNs) and Vision Transformer (ViT) have shown promise in feature extraction, they are prone to overfitting due to the inherent characteristics of medical imaging data, including small sample sizes or high intra-class variance. In this work, the Medical Image Attention-based Feature Extractor (MIAFEx) is proposed, a novel method that employs a learnable refinement mechanism to enhance the classification token within the Transformer encoder architecture. This mechanism adjusts the token based on learned weights, improving the extraction of salient features and enhancing the model's adaptability to the challenges presented by medical imaging data. The MIAFEx output features quality is compared against classical feature extractors using traditional and hybrid classifiers. Also, the performance of these features is compared against modern CNN and ViT models in classification tasks, demonstrating its superiority in accuracy and robustness across multiple complex classification medical imaging datasets. This advantage is particularly pronounced in scenarios with limited training data, where traditional and modern models often struggle to generalize effectively. The source code of this proposal can be found at https://github.com/Oscar-RamosS/Medical-Image-Attention-based-Feature-Extractor-MIAFEx
comment: In preparation for Journal Submission
☆ ANSR-DT: An Adaptive Neuro-Symbolic Learning and Reasoning Framework for Digital Twins
In this paper, we propose an Adaptive Neuro-Symbolic Learning Framework for digital twin technology called ``ANSR-DT." Our approach combines pattern recognition algorithms with reinforcement learning and symbolic reasoning to enable real-time learning and adaptive intelligence. This integration enhances the understanding of the environment and promotes continuous learning, leading to better and more effective decision-making in real-time for applications that require human-machine collaboration. We evaluated the \textit{ANSR-DT} framework for its ability to learn and adapt to dynamic patterns, observing significant improvements in decision accuracy, reliability, and interpretability when compared to existing state-of-the-art methods. However, challenges still exist in extracting and integrating symbolic rules in complex environments, which limits the full potential of our framework in heterogeneous settings. Moreover, our ongoing research aims to address this issue in the future by ensuring seamless integration of neural models at large. In addition, our open-source implementation promotes reproducibility and encourages future research to build on our foundational work.
☆ LAMS: LLM-Driven Automatic Mode Switching for Assistive Teleoperation
Teleoperating high degrees-of-freedom (DoF) robotic manipulators via low-DoF controllers like joysticks often requires frequent switching between control modes, where each mode maps controller movements to specific robot actions. Manually performing this frequent switching can make teleoperation cumbersome and inefficient. On the other hand, existing automatic mode-switching solutions, such as heuristic-based or learning-based methods, are often task-specific and lack generalizability. In this paper, we introduce LLM-Driven Automatic Mode Switching (LAMS), a novel approach that leverages Large Language Models (LLMs) to automatically switch control modes based on task context. Unlike existing methods, LAMS requires no prior task demonstrations and incrementally improves by integrating user-generated mode-switching examples. We validate LAMS through an ablation study and a user study with 10 participants on complex, long-horizon tasks, demonstrating that LAMS effectively reduces manual mode switches, is preferred over alternative methods, and improves performance over time. The project website with supplementary materials is at https://lams-assistance.github.io/.
☆ Reinforcement Learning-Enhanced Procedural Generation for Dynamic Narrative-Driven AR Experiences
Procedural Content Generation (PCG) is widely used to create scalable and diverse environments in games. However, existing methods, such as the Wave Function Collapse (WFC) algorithm, are often limited to static scenarios and lack the adaptability required for dynamic, narrative-driven applications, particularly in augmented reality (AR) games. This paper presents a reinforcement learning-enhanced WFC framework designed for mobile AR environments. By integrating environment-specific rules and dynamic tile weight adjustments informed by reinforcement learning (RL), the proposed method generates maps that are both contextually coherent and responsive to gameplay needs. Comparative evaluations and user studies demonstrate that the framework achieves superior map quality and delivers immersive experiences, making it well-suited for narrative-driven AR games. Additionally, the method holds promise for broader applications in education, simulation training, and immersive extended reality (XR) experiences, where dynamic and adaptive environments are critical.
comment: Number of pages: 13, Number of figures: 4. Accepted for presentation at GRAPP 2025 - 20th International Conference on Computer Graphics Theory and Applications (for additional details on the conference visit https://grapp.scitevents.org). Disclaimer: This preprint may differ from the final version published in the conference proceedings
☆ A Theory of Optimistically Universal Online Learnability for General Concept Classes NeurIPS 2024
We provide a full characterization of the concept classes that are optimistically universally online learnable with $\{0, 1\}$ labels. The notion of optimistically universal online learning was defined in [Hanneke, 2021] in order to understand learnability under minimal assumptions. In this paper, following the philosophy behind that work, we investigate two questions, namely, for every concept class: (1) What are the minimal assumptions on the data process admitting online learnability? (2) Is there a learning algorithm which succeeds under every data process satisfying the minimal assumptions? Such an algorithm is said to be optimistically universal for the given concept class. We resolve both of these questions for all concept classes, and moreover, as part of our solution, we design general learning algorithms for each case. Finally, we extend these algorithms and results to the agnostic case, showing an equivalence between the minimal assumptions on the data process for learnability in the agnostic and realizable cases, for every concept class, as well as the equivalence of optimistically universal learnability.
comment: NeurIPS 2024
☆ OMEGA: A Low-Latency GNN Serving System for Large Graphs
Graph Neural Networks (GNNs) have been widely adopted for their ability to compute expressive node representations in graph datasets. However, serving GNNs on large graphs is challenging due to the high communication, computation, and memory overheads of constructing and executing computation graphs, which represent information flow across large neighborhoods. Existing approximation techniques in training can mitigate the overheads but, in serving, still lead to high latency and/or accuracy loss. To this end, we propose OMEGA, a system that enables low-latency GNN serving for large graphs with minimal accuracy loss through two key ideas. First, OMEGA employs selective recomputation of precomputed embeddings, which allows for reusing precomputed computation subgraphs while selectively recomputing a small fraction to minimize accuracy loss. Second, we develop computation graph parallelism, which reduces communication overhead by parallelizing the creation and execution of computation graphs across machines. Our evaluation with large graph datasets and GNN models shows that OMEGA significantly outperforms state-of-the-art techniques.
☆ Homophily-aware Heterogeneous Graph Contrastive Learning
Heterogeneous graph pre-training (HGP) has demonstrated remarkable performance across various domains. However, the issue of heterophily in real-world heterogeneous graphs (HGs) has been largely overlooked. To bridge this research gap, we proposed a novel heterogeneous graph contrastive learning framework, termed HGMS, which leverages connection strength and multi-view self-expression to learn homophilous node representations. Specifically, we design a heterogeneous edge dropping augmentation strategy that enhances the homophily of augmented views. Moreover, we introduce a multi-view self-expressive learning method to infer the homophily between nodes. In practice, we develop two approaches to solve the self-expressive matrix. The solved self-expressive matrix serves as an additional augmented view to provide homophilous information and is used to identify false negatives in contrastive loss. Extensive experimental results demonstrate the superiority of HGMS across different downstream tasks.
☆ Complexity Control Facilitates Reasoning-Based Compositional Generalization in Transformers
Transformers have demonstrated impressive capabilities across various tasks, yet their performance on compositional problems remains a subject of debate. In this study, we investigate the internal mechanisms underlying Transformers' behavior in compositional tasks. We find that complexity control strategies significantly influence whether the model learns primitive-level rules that generalize out-of-distribution (reasoning-based solutions) or relies solely on memorized mappings (memory-based solutions). By applying masking strategies to the model's information circuits and employing multiple complexity metrics, we reveal distinct internal working mechanisms associated with different solution types. Further analysis reveals that reasoning-based solutions exhibit a lower complexity bias, which aligns with the well-studied neuron condensation phenomenon. This lower complexity bias is hypothesized to be the key factor enabling these solutions to learn reasoning rules. We validate these conclusions across multiple real-world datasets, including image generation and natural language processing tasks, confirming the broad applicability of our findings.
comment: Mistakenly submitted as a replacement to 2405.05409v4
☆ Mitigating Domain Shift in Federated Learning via Intra- and Inter-Domain Prototypes
Federated Learning (FL) has emerged as a decentralized machine learning technique, allowing clients to train a global model collaboratively without sharing private data. However, most FL studies ignore the crucial challenge of heterogeneous domains where each client has a distinct feature distribution, which is common in real-world scenarios. Prototype learning, which leverages the mean feature vectors within the same classes, has become a prominent solution for federated learning under domain skew. However, existing federated prototype learning methods only consider inter-domain prototypes on the server and overlook intra-domain characteristics. In this work, we introduce a novel federated prototype learning method, namely I$^2$PFL, which incorporates $\textbf{I}$ntra-domain and $\textbf{I}$nter-domain $\textbf{P}$rototypes, to mitigate domain shifts and learn a generalized global model across multiple domains in federated learning. To construct intra-domain prototypes, we propose feature alignment with MixUp-based augmented prototypes to capture the diversity of local domains and enhance the generalization of local features. Additionally, we introduce a reweighting mechanism for inter-domain prototypes to generate generalized prototypes to provide inter-domain knowledge and reduce domain skew across multiple clients. Extensive experiments on the Digits, Office-10, and PACS datasets illustrate the superior performance of our method compared to other baselines.
comment: 13 pages, 9 figures, 10 tables
☆ Learning Hyperplane Tree: A Piecewise Linear and Fully Interpretable Decision-making Framework
This paper introduces a novel tree-based model, Learning Hyperplane Tree (LHT), which outperforms state-of-the-art (SOTA) tree models for classification tasks on several public datasets. The structure of LHT is simple and efficient: it partitions the data using several hyperplanes to progressively distinguish between target and non-target class samples. Although the separation is not perfect at each stage, LHT effectively improves the distinction through successive partitions. During testing, a sample is classified by evaluating the hyperplanes defined in the branching blocks and traversing down the tree until it reaches the corresponding leaf block. The class of the test sample is then determined using the piecewise linear membership function defined in the leaf blocks, which is derived through least-squares fitting and fuzzy logic. LHT is highly transparent and interpretable--at each branching block, the contribution of each feature to the classification can be clearly observed.
☆ Score-based 3D molecule generation with neural fields NeurIPS 2024
We introduce a new representation for 3D molecules based on their continuous atomic density fields. Using this representation, we propose a new model based on walk-jump sampling for unconditional 3D molecule generation in the continuous space using neural fields. Our model, FuncMol, encodes molecular fields into latent codes using a conditional neural field, samples noisy codes from a Gaussian-smoothed distribution with Langevin MCMC (walk), denoises these samples in a single step (jump), and finally decodes them into molecular fields. FuncMol performs all-atom generation of 3D molecules without assumptions on the molecular structure and scales well with the size of molecules, unlike most approaches. Our method achieves competitive results on drug-like molecules and easily scales to macro-cyclic peptides, with at least one order of magnitude faster sampling. The code is available at https://github.com/prescient-design/funcmol.
comment: NeurIPS 2024
☆ Exploring the Efficacy of Meta-Learning: Unveiling Superior Data Diversity Utilization of MAML Over Pre-training
Currently, data and model size dominate the narrative in the training of super-large, powerful models. However, there has been a lack of exploration on the effect of other attributes of the training dataset on model performance. We hypothesize that dataset diversity can impact the performance of vision models. Our study shows positive correlations between test set accuracy and data diversity, providing an argument for furthering the research of dataset attributes beyond size. We analyzed pre-training and model-agnostic meta-learning methods on twelve popular visual datasets (e.g., Omniglot, CIFAR-FS, Aircraft) and five model configurations, including MAML variants with different numbers of inner gradient steps and supervised learning. We show moderate to strong positive correlations (R-squared: 0.15-0.42) between accuracy and data diversity and weaker but significant correlations (R-squared: ~0.2) between loss and diversity. These findings support our hypothesis and demonstrate a promising way for a deeper exploration of how formal data diversity influences model performance. This initial study highlights the potential of (Task2Vec) data diversity as a valuable measure in the rapidly evolving field of large-scale learning and emphasizes that understanding the dataset is key to building more powerful and generalizable models.
☆ SuperSAM: Crafting a SAM Supernetwork via Structured Pruning and Unstructured Parameter Prioritization
Neural Architecture Search (NAS) is a powerful approach of automating the design of efficient neural architectures. In contrast to traditional NAS methods, recently proposed one-shot NAS methods prove to be more efficient in performing NAS. One-shot NAS works by generating a singular weight-sharing supernetwork that acts as a search space (container) of subnetworks. Despite its achievements, designing the one-shot search space remains a major challenge. In this work we propose a search space design strategy for Vision Transformer (ViT)-based architectures. In particular, we convert the Segment Anything Model (SAM) into a weight-sharing supernetwork called SuperSAM. Our approach involves automating the search space design via layer-wise structured pruning and parameter prioritization. While the structured pruning applies probabilistic removal of certain transformer layers, parameter prioritization performs weight reordering and slicing of MLP-blocks in the remaining layers. We train supernetworks on several datasets using the sandwich rule. For deployment, we enhance subnetwork discovery by utilizing a program autotuner to identify efficient subnetworks within the search space. The resulting subnetworks are 30-70% smaller in size compared to the original pre-trained SAM ViT-B, yet outperform the pretrained model. Our work introduces a new and effective method for ViT NAS search-space design.
☆ Scalable Bayesian Physics-Informed Kolmogorov-Arnold Networks
Uncertainty quantification (UQ) plays a pivotal role in scientific machine learning, especially when surrogate models are used to approximate complex systems. Although multilayer perceptions (MLPs) are commonly employed as surrogates, they often suffer from overfitting due to their large number of parameters. Kolmogorov-Arnold networks (KANs) offer an alternative solution with fewer parameters. However, gradient-based inference methods, such as Hamiltonian Monte Carlo (HMC), may result in computational inefficiency when applied to KANs, especially for large-scale datasets, due to the high cost of back-propagation.To address these challenges, we propose a novel approach, combining the dropout Tikhonov ensemble Kalman inversion (DTEKI) with Chebyshev KANs. This gradient-free method effectively mitigates overfitting and enhances numerical stability. Additionally, we incorporate the active subspace method to reduce the parameter-space dimensionality, allowing us to improve the accuracy of predictions and obtain more reliable uncertainty estimates.Extensive experiments demonstrate the efficacy of our approach in various test cases, including scenarios with large datasets and high noise levels. Our results show that the new method achieves comparable or better accuracy, much higher efficiency as well as stability compared to HMC, in addition to scalability. Moreover, by leveraging the low-dimensional parameter subspace, our method preserves prediction accuracy while substantially reducing further the computational cost.
☆ Testing Noise Assumptions of Learning Algorithms
We pose a fundamental question in computational learning theory: can we efficiently test whether a training set satisfies the assumptions of a given noise model? This question has remained unaddressed despite decades of research on learning in the presence of noise. In this work, we show that this task is tractable and present the first efficient algorithm to test various noise assumptions on the training data. To model this question, we extend the recently proposed testable learning framework of Rubinfeld and Vasilyan (2023) and require a learner to run an associated test that satisfies the following two conditions: (1) whenever the test accepts, the learner outputs a classifier along with a certificate of optimality, and (2) the test must pass for any dataset drawn according to a specified modeling assumption on both the marginal distribution and the noise model. We then consider the problem of learning halfspaces over Gaussian marginals with Massart noise (where each label can be flipped with probability less than $1/2$ depending on the input features), and give a fully-polynomial time testable learning algorithm. We also show a separation between the classical setting of learning in the presence of structured noise and testable learning. In fact, for the simple case of random classification noise (where each label is flipped with fixed probability $\eta = 1/2$), we show that testable learning requires super-polynomial time while classical learning is trivial.
☆ Patch-aware Vector Quantized Codebook Learning for Unsupervised Visual Defect Detection ICTAI 2024
Unsupervised visual defect detection is critical in industrial applications, requiring a representation space that captures normal data features while detecting deviations. Achieving a balance between expressiveness and compactness is challenging; an overly expressive space risks inefficiency and mode collapse, impairing detection accuracy. We propose a novel approach using an enhanced VQ-VAE framework optimized for unsupervised defect detection. Our model introduces a patch-aware dynamic code assignment scheme, enabling context-sensitive code allocation to optimize spatial representation. This strategy enhances normal-defect distinction and improves detection accuracy during inference. Experiments on MVTecAD, BTAD, and MTSD datasets show our method achieves state-of-the-art performance.
comment: 7 pages, Accepted to 36th IEEE ICTAI 2024
☆ Enhancing Graph Representation Learning with Localized Topological Features
Representation learning on graphs is a fundamental problem that can be crucial in various tasks. Graph neural networks, the dominant approach for graph representation learning, are limited in their representation power. Therefore, it can be beneficial to explicitly extract and incorporate high-order topological and geometric information into these models. In this paper, we propose a principled approach to extract the rich connectivity information of graphs based on the theory of persistent homology. Our method utilizes the topological features to enhance the representation learning of graph neural networks and achieve state-of-the-art performance on various node classification and link prediction benchmarks. We also explore the option of end-to-end learning of the topological features, i.e., treating topological computation as a differentiable operator during learning. Our theoretical analysis and empirical study provide insights and potential guidelines for employing topological features in graph learning tasks.
comment: Accepted in JMLR 2025
☆ Generative AI Takes a Statistics Exam: A Comparison of Performance between ChatGPT3.5, ChatGPT4, and ChatGPT4o-mini
Many believe that use of generative AI as a private tutor has the potential to shrink access and achievement gaps between students and schools with abundant resources versus those with fewer resources. Shrinking the gap is possible only if paid and free versions of the platforms perform with the same accuracy. In this experiment, we investigate the performance of GPT versions 3.5, 4.0, and 4o-mini on the same 16-question statistics exam given to a class of first-year graduate students. While we do not advocate using any generative AI platform to complete an exam, the use of exam questions allows us to explore aspects of ChatGPT's responses to typical questions that students might encounter in a statistics course. Results on accuracy indicate that GPT 3.5 would fail the exam, GPT4 would perform well, and GPT4o-mini would perform somewhere in between. While we acknowledge the existence of other Generative AI/LLMs, our discussion concerns only ChatGPT because it is the most widely used platform on college campuses at this time. We further investigate differences among the AI platforms in the answers for each problem using methods developed for text analytics, such as reading level evaluation and topic modeling. Results indicate that GPT3.5 and 4o-mini have characteristics that are more similar than either of them have with GPT4.
comment: 24 pages, 2 figures, 3 tables. Submitted for publication August, 2024; revision submitted January 2025
☆ Attention is All You Need Until You Need Retention
This work introduces a novel Retention Layer mechanism for Transformer based architectures, addressing their inherent lack of intrinsic retention capabilities. Unlike human cognition, which can encode and dynamically recall symbolic templates, Generative Pretrained Transformers rely solely on fixed pretrained weights and ephemeral context windows, limiting their adaptability. The proposed Retention Layer incorporates a persistent memory module capable of real time data population, dynamic recall, and guided output generation. This enhancement allows models to store, update, and reuse observed patterns across sessions, enabling incremental learning and bridging the gap between static pretraining and dynamic, context sensitive adaptation. The Retention Layer design parallels social learning processes, encompassing attention, retention, reproduction, and motivation stages. Technically, it integrates a memory attention mechanism and episodic buffers to manage memory scalability, mitigate overfitting, and ensure efficient recall. Applications span adaptive personal assistants, real time fraud detection, autonomous robotics, content moderation, and healthcare diagnostics. In each domain, the retention mechanism enables systems to learn incrementally, personalize outputs, and respond to evolving real world challenges effectively. By emulating key aspects of human learning, this retention enhanced architecture fosters a more fluid and responsive AI paradigm, paving the way for dynamic, session aware models that extend the capabilities of traditional Transformers into domains requiring continual adaptation.
☆ Towards Understanding Extrapolation: a Causal Lens NeurIPS 2024
Canonical work handling distribution shifts typically necessitates an entire target distribution that lands inside the training distribution. However, practical scenarios often involve only a handful of target samples, potentially lying outside the training support, which requires the capability of extrapolation. In this work, we aim to provide a theoretical understanding of when extrapolation is possible and offer principled methods to achieve it without requiring an on-support target distribution. To this end, we formulate the extrapolation problem with a latent-variable model that embodies the minimal change principle in causal mechanisms. Under this formulation, we cast the extrapolation problem into a latent-variable identification problem. We provide realistic conditions on shift properties and the estimation objectives that lead to identification even when only one off-support target sample is available, tackling the most challenging scenarios. Our theory reveals the intricate interplay between the underlying manifold's smoothness and the shift properties. We showcase how our theoretical results inform the design of practical adaptation algorithms. Through experiments on both synthetic and real-world data, we validate our theoretical findings and their practical implications.
comment: NeurIPS 2024
☆ AutoLoop: Fast Visual SLAM Fine-tuning through Agentic Curriculum Learning
Current visual SLAM systems face significant challenges in balancing computational efficiency with robust loop closure handling. Traditional approaches require careful manual tuning and incur substantial computational overhead, while learning-based methods either lack explicit loop closure capabilities or implement them through computationally expensive methods. We present AutoLoop, a novel approach that combines automated curriculum learning with efficient fine-tuning for visual SLAM systems. Our method employs a DDPG (Deep Deterministic Policy Gradient) agent to dynamically adjust loop closure weights during training, eliminating the need for manual hyperparameter search while significantly reducing the required training steps. The approach pre-computes potential loop closure pairs offline and leverages them through an agent-guided curriculum, allowing the model to adapt efficiently to new scenarios. Experiments conducted on TartanAir for training and validated across multiple benchmarks including KITTI, EuRoC, ICL-NUIM and TUM RGB-D demonstrate that AutoLoop achieves comparable or superior performance while reducing training time by an order of magnitude compared to traditional approaches. AutoLoop provides a practical solution for rapid adaptation of visual SLAM systems, automating the weight tuning process that traditionally requires multiple manual iterations. Our results show that this automated curriculum strategy not only accelerates training but also maintains or improves the model's performance across diverse environmental conditions.
☆ Towards Federated Multi-Armed Bandit Learning for Content Dissemination using Swarm of UAVs
This paper introduces an Unmanned Aerial Vehicle - enabled content management architecture that is suitable for critical content access in communities of users that are communication-isolated during diverse types of disaster scenarios. The proposed architecture leverages a hybrid network of stationary anchor UAVs and mobile Micro-UAVs for ubiquitous content dissemination. The anchor UAVs are equipped with both vertical and lateral communication links, and they serve local users, while the mobile micro-ferrying UAVs extend coverage across communities with increased mobility. The focus is on developing a content dissemination system that dynamically learns optimal caching policies to maximize content availability. The core innovation is an adaptive content dissemination framework based on distributed Federated Multi-Armed Bandit learning. The goal is to optimize UAV content caching decisions based on geo-temporal content popularity and user demand variations. A Selective Caching Algorithm is also introduced to reduce redundant content replication by incorporating inter-UAV information sharing. This method strategically preserves the uniqueness in user preferences while amalgamating the intelligence across a distributed learning system. This approach improves the learning algorithm's ability to adapt to diverse user preferences. Functional verification and performance evaluation confirm the proposed architecture's utility across different network sizes, UAV swarms, and content popularity patterns.
comment: 25 pages, 11 figures, 1 table, 4 algorithms, journal
☆ Gradient Descent Converges Linearly to Flatter Minima than Gradient Flow in Shallow Linear Networks
We study the gradient descent (GD) dynamics of a depth-2 linear neural network with a single input and output. We show that GD converges at an explicit linear rate to a global minimum of the training loss, even with a large stepsize -- about $2/\textrm{sharpness}$. It still converges for even larger stepsizes, but may do so very slowly. We also characterize the solution to which GD converges, which has lower norm and sharpness than the gradient flow solution. Our analysis reveals a trade off between the speed of convergence and the magnitude of implicit regularization. This sheds light on the benefits of training at the ``Edge of Stability'', which induces additional regularization by delaying convergence and may have implications for training more complex models.
comment: 23 pages, 3 figures
☆ Benchmarking Robustness of Contrastive Learning Models for Medical Image-Report Retrieval AAAI 2025
Medical images and reports offer invaluable insights into patient health. The heterogeneity and complexity of these data hinder effective analysis. To bridge this gap, we investigate contrastive learning models for cross-domain retrieval, which associates medical images with their corresponding clinical reports. This study benchmarks the robustness of four state-of-the-art contrastive learning models: CLIP, CXR-RePaiR, MedCLIP, and CXR-CLIP. We introduce an occlusion retrieval task to evaluate model performance under varying levels of image corruption. Our findings reveal that all evaluated models are highly sensitive to out-of-distribution data, as evidenced by the proportional decrease in performance with increasing occlusion levels. While MedCLIP exhibits slightly more robustness, its overall performance remains significantly behind CXR-CLIP and CXR-RePaiR. CLIP, trained on a general-purpose dataset, struggles with medical image-report retrieval, highlighting the importance of domain-specific training data. The evaluation of this work suggests that more effort needs to be spent on improving the robustness of these models. By addressing these limitations, we can develop more reliable cross-domain retrieval models for medical applications.
comment: This work is accepted to AAAI 2025 Workshop -- the 9th International Workshop on Health Intelligence
☆ Deep Self-Supervised Disturbance Mapping with the OPERA Sentinel-1 Radiometric Terrain Corrected SAR Backscatter Product
Mapping land surface disturbances supports disaster response, resource and ecosystem management, and climate adaptation efforts. Synthetic aperture radar (SAR) is an invaluable tool for disturbance mapping, providing consistent time-series images of the ground regardless of weather or illumination conditions. Despite SAR's potential for disturbance mapping, processing SAR data to an analysis-ready format requires expertise and significant compute resources, particularly for large-scale global analysis. In October 2023, NASA's Observational Products for End-Users from Remote Sensing Analysis (OPERA) project released the near-global Radiometric Terrain Corrected SAR backscatter from Sentinel-1 (RTC-S1) dataset, providing publicly available, analysis-ready SAR imagery. In this work, we utilize this new dataset to systematically analyze land surface disturbances. As labeling SAR data is often prohibitively time-consuming, we train a self-supervised vision transformer - which requires no labels to train - on OPERA RTC-S1 data to estimate a per-pixel distribution from the set of baseline imagery and assess disturbances when there is significant deviation from the modeled distribution. To test our model's capability and generality, we evaluate three different natural disasters - which represent high-intensity, abrupt disturbances - from three different regions of the world. Across events, our approach yields high quality delineations: F1 scores exceeding 0.6 and Areas Under the Precision-Recall Curve exceeding 0.65, consistently outperforming existing SAR disturbance methods. Our findings suggest that a self-supervised vision transformer is well-suited for global disturbance mapping and can be a valuable tool for operational, near-global disturbance monitoring, particularly when labeled data does not exist.
comment: 19 pages, 18 figures, 5 tables. Preprint. Submitted to JSTARS
☆ Augmenting Human-Annotated Training Data with Large Language Model Generation and Distillation in Open-Response Assessment
Large Language Models (LLMs) like GPT-4o can help automate text classification tasks at low cost and scale. However, there are major concerns about the validity and reliability of LLM outputs. By contrast, human coding is generally more reliable but expensive to procure at scale. In this study, we propose a hybrid solution to leverage the strengths of both. We combine human-coded data and synthetic LLM-produced data to fine-tune a classical machine learning classifier, distilling both into a smaller BERT model. We evaluate our method on a human-coded test set as a validity measure for LLM output quality. In three experiments, we systematically vary LLM-generated samples' size, variety, and consistency, informed by best practices in LLM tuning. Our findings indicate that augmenting datasets with synthetic samples improves classifier performance, with optimal results achieved at an 80% synthetic to 20% human-coded data ratio. Lower temperature settings of 0.3, corresponding to less variability in LLM generations, produced more stable improvements but also limited model learning from augmented samples. In contrast, higher temperature settings (0.7 and above) introduced greater variability in performance estimates and, at times, lower performance. Hence, LLMs may produce more uniform output that classifiers overfit to earlier or produce more diverse output that runs the risk of deteriorating model performance through information irrelevant to the prediction task. Filtering out inconsistent synthetic samples did not enhance performance. We conclude that integrating human and LLM-generated data to improve text classification models in assessment offers a scalable solution that leverages both the accuracy of human coding and the variety of LLM outputs.
comment: Manuscript accepted to the Second Workshop on Generative AI for Learning Analytics (GenAI-LA) at LAK25
☆ Multi-Class Traffic Assignment using Multi-View Heterogeneous Graph Attention Networks
Solving traffic assignment problem for large networks is computationally challenging when conventional optimization-based methods are used. In our research, we develop an innovative surrogate model for a traffic assignment when multi-class vehicles are involved. We do so by employing heterogeneous graph neural networks which use a multiple-view graph attention mechanism tailored to different vehicle classes, along with additional links connecting origin-destination pairs. We also integrate the node-based flow conservation law into the loss function. As a result, our model adheres to flow conservation while delivering highly accurate predictions for link flows and utilization ratios. Through numerical experiments conducted on urban transportation networks, we demonstrate that our model surpasses traditional neural network approaches in convergence speed and predictive accuracy in both user equilibrium and system optimal versions of traffic assignment.
comment: 16 pages, 5 figures
☆ Rethinking Post-Training Quantization: Introducing a Statistical Pre-Calibration Approach
As Large Language Models (LLMs) become increasingly computationally complex, developing efficient deployment strategies, such as quantization, becomes crucial. State-of-the-art Post-training Quantization (PTQ) techniques often rely on calibration processes to maintain the accuracy of these models. However, while these calibration techniques can enhance performance in certain domains, they may not be as effective in others. This paper aims to draw attention to robust statistical approaches that can mitigate such issues. We propose a weight-adaptive PTQ method that can be considered a precursor to calibration-based PTQ methods, guiding the quantization process to preserve the distribution of weights by minimizing the Kullback-Leibler divergence between the quantized weights and the originally trained weights. This minimization ensures that the quantized model retains the Shannon information content of the original model to a great extent, guaranteeing robust and efficient deployment across many tasks. As such, our proposed approach can perform on par with most common calibration-based PTQ methods, establishing a new pre-calibration step for further adjusting the quantized weights with calibration. We show that our pre-calibration results achieve the same accuracy as some existing calibration-based PTQ methods on various LLMs.
☆ Similarity-Quantized Relative Difference Learning for Improved Molecular Activity Prediction
Accurate prediction of molecular activities is crucial for efficient drug discovery, yet remains challenging due to limited and noisy datasets. We introduce Similarity-Quantized Relative Learning (SQRL), a learning framework that reformulates molecular activity prediction as relative difference learning between structurally similar pairs of compounds. SQRL uses precomputed molecular similarities to enhance training of graph neural networks and other architectures, and significantly improves accuracy and generalization in low-data regimes common in drug discovery. We demonstrate its broad applicability and real-world potential through benchmarking on public datasets as well as proprietary industry data. Our findings demonstrate that leveraging similarity-aware relative differences provides an effective paradigm for molecular activity prediction.
☆ Tracking the Takes and Trajectories of English-Language News Narratives across Trustworthy and Worrisome Websites USENIX Security
Understanding how misleading and outright false information enters news ecosystems remains a difficult challenge that requires tracking how narratives spread across thousands of fringe and mainstream news websites. To do this, we introduce a system that utilizes encoder-based large language models and zero-shot stance detection to scalably identify and track news narratives and their attitudes across over 4,000 factually unreliable, mixed-reliability, and factually reliable English-language news websites. Running our system over an 18 month period, we track the spread of 146K news stories. Using network-based interference via the NETINF algorithm, we show that the paths of news narratives and the stances of websites toward particular entities can be used to uncover slanted propaganda networks (e.g., anti-vaccine and anti-Ukraine) and to identify the most influential websites in spreading these attitudes in the broader news ecosystem. We hope that increased visibility into our distributed news ecosystem can help with the reporting and fact-checking of propaganda and disinformation.
comment: To appear at USENIX Security Symposium 2025. Keywords: Misinformation, News, Narratives, LLMs, Stance-Detection
☆ Inferring Transition Dynamics from Value Functions AAAI-25
In reinforcement learning, the value function is typically trained to solve the Bellman equation, which connects the current value to future values. This temporal dependency hints that the value function may contain implicit information about the environment's transition dynamics. By rearranging the Bellman equation, we show that a converged value function encodes a model of the underlying dynamics of the environment. We build on this insight to propose a simple method for inferring dynamics models directly from the value function, potentially mitigating the need for explicit model learning. Furthermore, we explore the challenges of next-state identifiability, discussing conditions under which the inferred dynamics model is well-defined. Our work provides a theoretical foundation for leveraging value functions in dynamics modeling and opens a new avenue for bridging model-free and model-based reinforcement learning.
comment: Accepted at the AAAI-25 8th Workshop on Generalization in Planning
☆ Average-Reward Reinforcement Learning with Entropy Regularization AAAI-25
The average-reward formulation of reinforcement learning (RL) has drawn increased interest in recent years due to its ability to solve temporally-extended problems without discounting. Independently, RL algorithms have benefited from entropy-regularization: an approach used to make the optimal policy stochastic, thereby more robust to noise. Despite the distinct benefits of the two approaches, the combination of entropy regularization with an average-reward objective is not well-studied in the literature and there has been limited development of algorithms for this setting. To address this gap in the field, we develop algorithms for solving entropy-regularized average-reward RL problems with function approximation. We experimentally validate our method, comparing it with existing algorithms on standard benchmarks for RL.
comment: Accepted at the AAAI-25 Eighth Workshop on Bridging the Gap Between AI Planning and Reinforcement Learning (PRL)
☆ Generative diffusion model with inverse renormalization group flows
Diffusion models represent a class of generative models that produce data by denoising a sample corrupted by white noise. Despite the success of diffusion models in computer vision, audio synthesis, and point cloud generation, so far they overlook inherent multiscale structures in data and have a slow generation process due to many iteration steps. In physics, the renormalization group offers a fundamental framework for linking different scales and giving an accurate coarse-grained model. Here we introduce a renormalization group-based diffusion model that leverages multiscale nature of data distributions for realizing a high-quality data generation. In the spirit of renormalization group procedures, we define a flow equation that progressively erases data information from fine-scale details to coarse-grained structures. Through reversing the renormalization group flows, our model is able to generate high-quality samples in a coarse-to-fine manner. We validate the versatility of the model through applications to protein structure prediction and image generation. Our model consistently outperforms conventional diffusion models across standard evaluation metrics, enhancing sample quality and/or accelerating sampling speed by an order of magnitude. The proposed method alleviates the need for data-dependent tuning of hyperparameters in the generative diffusion models, showing promise for systematically increasing sample efficiency based on the concept of the renormalization group.
comment: 9+21 pages, 4+11 figures. The code and trained models are available at https://github.com/kantamasuki/RGDM
☆ Continual Test-Time Adaptation for Single Image Defocus Deblurring via Causal Siamese Networks
Single image defocus deblurring (SIDD) aims to restore an all-in-focus image from a defocused one. Distribution shifts in defocused images generally lead to performance degradation of existing methods during out-of-distribution inferences. In this work, we gauge the intrinsic reason behind the performance degradation, which is identified as the heterogeneity of lens-specific point spread functions. Empirical evidence supports this finding, motivating us to employ a continual test-time adaptation (CTTA) paradigm for SIDD. However, traditional CTTA methods, which primarily rely on entropy minimization, cannot sufficiently explore task-dependent information for pixel-level regression tasks like SIDD. To address this issue, we propose a novel Siamese networks-based continual test-time adaptation framework, which adapts source models to continuously changing target domains only requiring unlabeled target data in an online manner. To further mitigate semantically erroneous textures introduced by source SIDD models under severe degradation, we revisit the learning paradigm through a structural causal model and propose Causal Siamese networks (CauSiam). Our method leverages large-scale pre-trained vision-language models to derive discriminative universal semantic priors and integrates these priors into Siamese networks, ensuring causal identifiability between blurry inputs and restored images. Extensive experiments demonstrate that CauSiam effectively improves the generalization performance of existing SIDD methods in continuously changing domains.
☆ Anthropomorphic Features for On-Line Signatures
Many features have been proposed in on-line signature verification. Generally, these features rely on the position of the on-line signature samples and their dynamic properties, as recorded by a tablet. This paper proposes a novel feature space to describe efficiently on-line signatures. Since producing a signature requires a skeletal arm system and its associated muscles, the new feature space is based on characterizing the movement of the shoulder, the elbow and the wrist joints when signing. As this motion is not directly obtained from a digital tablet, the new features are calculated by means of a virtual skeletal arm (VSA) model, which simulates the architecture of a real arm and forearm. Specifically, the VSA motion is described by its 3D joint position and its joint angles. These anthropomorphic features are worked out from both pen position and orientation through the VSA forward and direct kinematic model. The anthropomorphic features' robustness is proved by achieving state-of-the-art performance with several verifiers and multiple benchmarks on third party signature databases, which were collected with different devices and in different languages and scripts.
☆ GRAPPA -- A Hybrid Graph Neural Network for Predicting Pure Component Vapor Pressures
Although the pure component vapor pressure is one of the most important properties for designing chemical processes, no broadly applicable, sufficiently accurate, and open-source prediction method has been available. To overcome this, we have developed GRAPPA - a hybrid graph neural network for predicting vapor pressures of pure components. GRAPPA enables the prediction of the vapor pressure curve of basically any organic molecule, requiring only the molecular structure as input. The new model consists of three parts: A graph attention network for the message passing step, a pooling function that captures long-range interactions, and a prediction head that yields the component-specific parameters of the Antoine equation, from which the vapor pressure can readily and consistently be calculated for any temperature. We have trained and evaluated GRAPPA on experimental vapor pressure data of almost 25,000 pure components. We found excellent prediction accuracy for unseen components, outperforming state-of-the-art group contribution methods and other machine learning approaches in applicability and accuracy. The trained model and its code are fully disclosed, and GRAPPA is directly applicable via the interactive website ml-prop.mv.rptu.de.
comment: 38 pages, 12 figures
☆ Learning Hemodynamic Scalar Fields on Coronary Artery Meshes: A Benchmark of Geometric Deep Learning Models
Coronary artery disease, caused by the narrowing of coronary vessels due to atherosclerosis, is the leading cause of death worldwide. The diagnostic gold standard, fractional flow reserve (FFR), measures the trans-stenotic pressure ratio during maximal vasodilation but is invasive and costly. This has driven the development of virtual FFR (vFFR) using computational fluid dynamics (CFD) to simulate coronary flow. Geometric deep learning algorithms have shown promise for learning features on meshes, including cardiovascular research applications. This study empirically analyzes various backends for predicting vFFR fields in coronary arteries as CFD surrogates, comparing six backends for learning hemodynamics on meshes using CFD solutions as ground truth. The study has two parts: i) Using 1,500 synthetic left coronary artery bifurcations, models were trained to predict pressure-related fields for vFFR reconstruction, comparing different learning variables. ii) Using 427 patient-specific CFD simulations, experiments were repeated focusing on the best-performing learning variable from the synthetic dataset. Most backends performed well on the synthetic dataset, especially when predicting pressure drop over the manifold. Transformer-based backends outperformed others when predicting pressure and vFFR fields and were the only models achieving strong performance on patient-specific data, excelling in both average per-point error and vFFR accuracy in stenotic lesions. These results suggest geometric deep learning backends can effectively replace CFD for simple geometries, while transformer-based networks are superior for complex, heterogeneous datasets. Pressure drop was identified as the optimal network output for learning pressure-related fields.
☆ CookingDiffusion: Cooking Procedural Image Generation with Stable Diffusion
Recent advancements in text-to-image generation models have excelled in creating diverse and realistic images. This success extends to food imagery, where various conditional inputs like cooking styles, ingredients, and recipes are utilized. However, a yet-unexplored challenge is generating a sequence of procedural images based on cooking steps from a recipe. This could enhance the cooking experience with visual guidance and possibly lead to an intelligent cooking simulation system. To fill this gap, we introduce a novel task called \textbf{cooking procedural image generation}. This task is inherently demanding, as it strives to create photo-realistic images that align with cooking steps while preserving sequential consistency. To collectively tackle these challenges, we present \textbf{CookingDiffusion}, a novel approach that leverages Stable Diffusion and three innovative Memory Nets to model procedural prompts. These prompts encompass text prompts (representing cooking steps), image prompts (corresponding to cooking images), and multi-modal prompts (mixing cooking steps and images), ensuring the consistent generation of cooking procedural images. To validate the effectiveness of our approach, we preprocess the YouCookII dataset, establishing a new benchmark. Our experimental results demonstrate that our model excels at generating high-quality cooking procedural images with remarkable consistency across sequential cooking steps, as measured by both the FID and the proposed Average Procedure Consistency metrics. Furthermore, CookingDiffusion demonstrates the ability to manipulate ingredients and cooking methods in a recipe. We will make our code, models, and dataset publicly accessible.
☆ Pseudolabel guided pixels contrast for domain adaptive semantic segmentation
Semantic segmentation is essential for comprehending images, but the process necessitates a substantial amount of detailed annotations at the pixel level. Acquiring such annotations can be costly in the real-world. Unsupervised domain adaptation (UDA) for semantic segmentation is a technique that uses virtual data with labels to train a model and adapts it to real data without labels. Some recent works use contrastive learning, which is a powerful method for self-supervised learning, to help with this technique. However, these works do not take into account the diversity of features within each class when using contrastive learning, which leads to errors in class prediction. We analyze the limitations of these works and propose a novel framework called Pseudo-label Guided Pixel Contrast (PGPC), which overcomes the disadvantages of previous methods. We also investigate how to use more information from target images without adding noise from pseudo-labels. We test our method on two standard UDA benchmarks and show that it outperforms existing methods. Specifically, we achieve relative improvements of 5.1% mIoU and 4.6% mIoU on the Grand Theft Auto V (GTA5) to Cityscapes and SYNTHIA to Cityscapes tasks based on DAFormer, respectively. Furthermore, our approach can enhance the performance of other UDA approaches without increasing model complexity. Code is available at https://github.com/embar111/pgpc
comment: 24 pages, 5 figures. Code: https://github.com/embar111/pgpc
☆ EVAL: EigenVector-based Average-reward Learning AAAI-25
In reinforcement learning, two objective functions have been developed extensively in the literature: discounted and averaged rewards. The generalization to an entropy-regularized setting has led to improved robustness and exploration for both of these objectives. Recently, the entropy-regularized average-reward problem was addressed using tools from large deviation theory in the tabular setting. This method has the advantage of linearity, providing access to both the optimal policy and average reward-rate through properties of a single matrix. In this paper, we extend that framework to more general settings by developing approaches based on function approximation by neural networks. This formulation reveals new theoretical insights into the relationship between different objectives used in RL. Additionally, we combine our algorithm with a posterior policy iteration scheme, showing how our approach can also solve the average-reward RL problem without entropy-regularization. Using classic control benchmarks, we experimentally find that our method compares favorably with other algorithms in terms of stability and rate of convergence.
comment: Accepted at the AAAI-25 8th Workshop on Generalization in Planning. arXiv admin note: text overlap with arXiv:2501.09080
♻ ☆ Delay Sensitive Hierarchical Federated Learning with Stochastic Local Updates
The impact of local averaging on the performance of federated learning (FL) systems is studied in the presence of communication delay between the clients and the parameter server. To minimize the effect of delay, clients are assigned into different groups, each having its own local parameter server (LPS) that aggregates its clients' models. The groups' models are then aggregated at a global parameter server (GPS) that only communicates with the LPSs. Such setting is known as hierarchical FL (HFL). Unlike most works in the literature, the number of local and global communication rounds in our work is randomly determined by the (different) delays experienced by each group of clients. Specifically, the number of local averaging rounds is tied to a wall-clock time period coined the sync time $S$, after which the LPSs synchronize their models by sharing them with the GPS. Such sync time $S$ is then reapplied until a global wall-clock time is exhausted. First, an upper bound on the deviation between the updated model at each LPS with respect to that available at the GPS is derived. This is then used as a tool to derive the convergence analysis of our proposed delay-sensitive HFL algorithm, first at each LPS individually, and then at the GPS. Our theoretical convergence bound showcases the effects of the whole system's parameters, including the number of groups, the number of clients per group, and the value of $S$. Our results show that the value of $S$ should be carefully chosen, especially since it implicitly governs how the delay statistics affect the performance of HFL in situations where training time is restricted.
comment: To appear in the IEEE Transactions on Cognitive Communications and Networking
♻ ☆ Reward Machines for Deep RL in Noisy and Uncertain Environments
Reward Machines provide an automaton-inspired structure for specifying instructions, safety constraints, and other temporally extended reward-worthy behaviour. By exposing the underlying structure of a reward function, they enable the decomposition of an RL task, leading to impressive gains in sample efficiency. Although Reward Machines and similar formal specifications have a rich history of application towards sequential decision-making problems, they critically rely on a ground-truth interpretation of the domain-specific vocabulary that forms the building blocks of the reward function--such ground-truth interpretations are elusive in the real world due in part to partial observability and noisy sensing. In this work, we explore the use of Reward Machines for Deep RL in noisy and uncertain environments. We characterize this problem as a POMDP and propose a suite of RL algorithms that exploit task structure under uncertain interpretation of the domain-specific vocabulary. Through theory and experiments, we expose pitfalls in naive approaches to this problem while simultaneously demonstrating how task structure can be successfully leveraged under noisy interpretations of the vocabulary.
♻ ☆ A General Framework for Inference-time Scaling and Steering of Diffusion Models
Diffusion models produce impressive results in modalities ranging from images and video to protein design and text. However, generating samples with user-specified properties remains a challenge. Recent research proposes fine-tuning models to maximize rewards that capture desired properties, but these methods require expensive training and are prone to mode collapse. In this work, we propose Feynman Kac (FK) steering, an inference-time framework for steering diffusion models with reward functions. FK steering works by sampling a system of multiple interacting diffusion processes, called particles, and resampling particles at intermediate steps based on scores computed using functions called potentials. Potentials are defined using rewards for intermediate states and are selected such that a high value indicates that the particle will yield a high-reward sample. We explore various choices of potentials, intermediate rewards, and samplers. We evaluate FK steering on text-to-image and text diffusion models. For steering text-to-image models with a human preference reward, we find that FK steering a 0.8B parameter model outperforms a 2.6B parameter fine-tuned model on prompt fidelity, with faster sampling and no training. For steering text diffusion models with rewards for text quality and specific text attributes, we find that FK steering generates lower perplexity, more linguistically acceptable outputs and enables gradient-free control of attributes like toxicity. Our results demonstrate that inference-time scaling and steering of diffusion models, even with off-the-shelf rewards, can provide significant sample quality gains and controllability benefits. Code is available at https://github.com/zacharyhorvitz/Fk-Diffusion-Steering .
♻ ☆ Optimal Federated Learning for Functional Mean Estimation under Heterogeneous Privacy Constraints
Federated learning (FL) is a distributed machine learning technique designed to preserve data privacy and security, and it has gained significant importance due to its broad range of applications. This paper addresses the problem of optimal functional mean estimation from discretely sampled data in a federated setting. We consider a heterogeneous framework where the number of individuals, measurements per individual, and privacy parameters vary across one or more servers, under both common and independent design settings. In the common design setting, the same design points are measured for each individual, whereas in the independent design, each individual has their own random collection of design points. Within this framework, we establish minimax upper and lower bounds for the estimation error of the underlying mean function, highlighting the nuanced differences between common and independent designs under distributed privacy constraints. We propose algorithms that achieve the optimal trade-off between privacy and accuracy and provide optimality results that quantify the fundamental limits of private functional mean estimation across diverse distributed settings. These results characterize the cost of privacy and offer practical insights into the potential for privacy-preserving statistical analysis in federated environments.
comment: 54 pages: 25 page article and 29 pages of appendix
♻ ☆ Debiasing Synthetic Data Generated by Deep Generative Models NeurIPS 2024
While synthetic data hold great promise for privacy protection, their statistical analysis poses significant challenges that necessitate innovative solutions. The use of deep generative models (DGMs) for synthetic data generation is known to induce considerable bias and imprecision into synthetic data analyses, compromising their inferential utility as opposed to original data analyses. This bias and uncertainty can be substantial enough to impede statistical convergence rates, even in seemingly straightforward analyses like mean calculation. The standard errors of such estimators then exhibit slower shrinkage with sample size than the typical 1 over root-$n$ rate. This complicates fundamental calculations like p-values and confidence intervals, with no straightforward remedy currently available. In response to these challenges, we propose a new strategy that targets synthetic data created by DGMs for specific data analyses. Drawing insights from debiased and targeted machine learning, our approach accounts for biases, enhances convergence rates, and facilitates the calculation of estimators with easily approximated large sample variances. We exemplify our proposal through a simulation study on toy data and two case studies on real-world data, highlighting the importance of tailoring DGMs for targeted data analysis. This debiasing strategy contributes to advancing the reliability and applicability of synthetic data in statistical inference.
comment: Accepted for the 38th Conference on Neural Information Processing Systems (NeurIPS 2024), joint first authors
♻ ☆ Customizable LLM-Powered Chatbot for Behavioral Science Research
The rapid advancement of Artificial Intelligence has resulted in the advent of Large Language Models (LLMs) with the capacity to produce text that closely resembles human communication. These models have been seamlessly integrated into diverse applications, enabling interactive and responsive communication across multiple platforms. The potential utility of chatbots transcends these traditional applications, particularly in research contexts, wherein they can offer valuable insights and facilitate the design of innovative experiments. In this study, we present a Customizable LLM-Powered Chatbot (CLPC), a web-based chatbot system designed to assist in behavioral science research. The system is meticulously designed to function as an experimental instrument rather than a conventional chatbot, necessitating users to input a username and experiment code upon access. This setup facilitates precise data cross-referencing, thereby augmenting the integrity and applicability of the data collected for research purposes. It can be easily expanded to accommodate new basic events as needed; and it allows researchers to integrate their own logging events without the necessity of implementing a separate logging mechanism. It is worth noting that our system was built to assist primarily behavioral science research but is not limited to it, it can easily be adapted to assist information retrieval research or interacting with chat bot agents in general.
♻ ☆ A Discrete-sequence Dataset for Evaluating Online Unsupervised Anomaly Detection Approaches for Multivariate Time Series
Benchmarking anomaly detection approaches for multivariate time series is challenging due to the lack of high-quality datasets. Current publicly available datasets are too small, not diverse and feature trivial anomalies, which hinders measurable progress in this research area. We propose a solution: a diverse, extensive, and non-trivial dataset generated via state-of-the-art simulation tools that reflects realistic behaviour of an automotive powertrain, including its multivariate, dynamic and variable-state properties. To cater for both unsupervised and semi-supervised anomaly detection settings, as well as time series generation and forecasting, we make different versions of the dataset available, where training and test subsets are offered in contaminated and clean versions, depending on the task. We also provide baseline results from a small selection of approaches based on deterministic and variational autoencoders, as well as a non-parametric approach. As expected, the baseline experimentation shows that the approaches trained on the semi-supervised version of the dataset outperform their unsupervised counterparts, highlighting a need for approaches more robust to contaminated training data.
comment: Submitted to the IEEE Transactions on Reliability journal
♻ ☆ Identifying Spurious Correlations using Counterfactual Alignment
Models driven by spurious correlations often yield poor generalization performance. We propose the counterfactual (CF) alignment method to detect and quantify spurious correlations of black box classifiers. Our methodology is based on counterfactual images generated with respect to one classifier being input into other classifiers to see if they also induce changes in the outputs of these classifiers. The relationship between these responses can be quantified and used to identify specific instances where a spurious correlation exists. This is validated by observing intuitive trends in face-attribute and waterbird classifiers, as well as by fabricating spurious correlations and detecting their presence, both visually and quantitatively. Furthermore, utilizing the CF alignment method, we demonstrate that we can evaluate robust optimization methods (GroupDRO, JTT, and FLAC) by detecting a reduction in spurious correlations.
comment: Accepted to Transactions on Machine Learning Research (TMLR), Code: https://github.com/ieee8023/latentshift
♻ ☆ PACE: Marrying generalization in PArameter-efficient fine-tuning with Consistency rEgularization NeurIPS 2024
Parameter-Efficient Fine-Tuning (PEFT) effectively adapts pre-trained transformers to downstream tasks. However, the optimization of tasks performance often comes at the cost of generalizability in fine-tuned models. To address this issue, we theoretically connect smaller weight gradient norms during training and larger datasets to the improvements in model generalization. Motivated by this connection, we propose reducing gradient norms for enhanced generalization and aligning fine-tuned model with the pre-trained counterpart to retain knowledge from large-scale pre-training data. Yet, naive alignment does not guarantee gradient reduction and can potentially cause gradient explosion, complicating efforts to manage gradients. To address such an issue, we propose PACE, marrying generalization of PArameter-efficient fine-tuning with Consistency rEgularization. We perturb features learned from the adapter with the multiplicative noise and ensure the fine-tuned model remains consistent for same sample under different perturbations. Theoretical analysis shows that PACE not only implicitly regularizes gradients for enhanced generalization, but also implicitly aligns the fine-tuned and pre-trained models to retain knowledge. Experimental evidence supports our theories. PACE surpasses existing PEFT methods in visual adaptation tasks (VTAB-1k, FGVC, few-shot learning, domain adaptation) showcasing its potential for resource-efficient fine-tuning. It also improves LoRA in text classification (GLUE) and mathematical reasoning (GSM-8K). The code is available at https://github.com/MaxwellYaoNi/PACE
comment: Accepted by NeurIPS 2024 as a spotlight
♻ ☆ Supervised Kernel Thinning NeurIPS 2024
The kernel thinning algorithm of Dwivedi & Mackey (2024) provides a better-than-i.i.d. compression of a generic set of points. By generating high-fidelity coresets of size significantly smaller than the input points, KT is known to speed up unsupervised tasks like Monte Carlo integration, uncertainty quantification, and non-parametric hypothesis testing, with minimal loss in statistical accuracy. In this work, we generalize the KT algorithm to speed up supervised learning problems involving kernel methods. Specifically, we combine two classical algorithms--Nadaraya-Watson (NW) regression or kernel smoothing, and kernel ridge regression (KRR)--with KT to provide a quadratic speed-up in both training and inference times. We show how distribution compression with KT in each setting reduces to constructing an appropriate kernel, and introduce the Kernel-Thinned NW and Kernel-Thinned KRR estimators. We prove that KT-based regression estimators enjoy significantly superior computational efficiency over the full-data estimators and improved statistical efficiency over i.i.d. subsampling of the training data. En route, we also provide a novel multiplicative error guarantee for compressing with KT. We validate our design choices with both simulations and real data experiments.
comment: Published at NeurIPS 2024
♻ ☆ Integrating Multi-Physics Simulations and Machine Learning to Define the Spatter Mechanism and Process Window in Laser Powder Bed Fusion
Laser powder bed fusion (LPBF) has shown promise for wide range of applications due to its ability to fabricate freeform geometries and generate a controlled microstructure. However, components generated by LPBF still possess sub-optimal mechanical properties due to the defects that are created during laser-material interactions. In this work, we investigate mechanism of spatter formation, using a high-fidelity modelling tool that was built to simulate the multi-physics phenomena in LPBF. The modelling tool have the capability to capture the 3D resolution of the meltpool and the spatter behavior. To understand spatter behavior and formation, we reveal its properties at ejection and evaluate its variation from the meltpool, the source where it is formed. The dataset of the spatter and the meltpool collected consist of 50 % spatter and 50 % melt pool samples, with features that include position components, velocity components, velocity magnitude, temperature, density and pressure. The relationship between the spatter and the meltpool were evaluated via correlation analysis and machine learning (ML) algorithms for classification tasks. Upon screening different ML algorithms on the dataset, a high accuracy was observed for all the ML models, with ExtraTrees having the highest at 96 % and KNN having the lowest at 94 %.
♻ ☆ Better by Default: Strong Pre-Tuned MLPs and Boosted Trees on Tabular Data NeurIPS 2024
For classification and regression on tabular data, the dominance of gradient-boosted decision trees (GBDTs) has recently been challenged by often much slower deep learning methods with extensive hyperparameter tuning. We address this discrepancy by introducing (a) RealMLP, an improved multilayer perceptron (MLP), and (b) strong meta-tuned default parameters for GBDTs and RealMLP. We tune RealMLP and the default parameters on a meta-train benchmark with 118 datasets and compare them to hyperparameter-optimized versions on a disjoint meta-test benchmark with 90 datasets, as well as the GBDT-friendly benchmark by Grinsztajn et al. (2022). Our benchmark results on medium-to-large tabular datasets (1K--500K samples) show that RealMLP offers a favorable time-accuracy tradeoff compared to other neural baselines and is competitive with GBDTs in terms of benchmark scores. Moreover, a combination of RealMLP and GBDTs with improved default parameters can achieve excellent results without hyperparameter tuning. Finally, we demonstrate that some of RealMLP's improvements can also considerably improve the performance of TabR with default parameters.
comment: NeurIPS 2024. Changes in v3: mention bug in XGBoost results, mention original name of he+5 method. Code is available at github.com/dholzmueller/pytabkit
♻ ☆ Ensemble sampling for linear bandits: small ensembles suffice
We provide the first useful and rigorous analysis of ensemble sampling for the stochastic linear bandit setting. In particular, we show that, under standard assumptions, for a $d$-dimensional stochastic linear bandit with an interaction horizon $T$, ensemble sampling with an ensemble of size of order $d \log T$ incurs regret at most of the order $(d \log T)^{5/2} \sqrt{T}$. Ours is the first result in any structured setting not to require the size of the ensemble to scale linearly with $T$ -- which defeats the purpose of ensemble sampling -- while obtaining near $\smash{\sqrt{T}}$ order regret. Our result is also the first to allow for infinite action sets.
♻ ☆ Inferring stochastic low-rank recurrent neural networks from neural data
A central aim in computational neuroscience is to relate the activity of large populations of neurons to an underlying dynamical system. Models of these neural dynamics should ideally be both interpretable and fit the observed data well. Low-rank recurrent neural networks (RNNs) exhibit such interpretability by having tractable dynamics. However, it is unclear how to best fit low-rank RNNs to data consisting of noisy observations of an underlying stochastic system. Here, we propose to fit stochastic low-rank RNNs with variational sequential Monte Carlo methods. We validate our method on several datasets consisting of both continuous and spiking neural data, where we obtain lower dimensional latent dynamics than current state of the art methods. Additionally, for low-rank models with piecewise linear nonlinearities, we show how to efficiently identify all fixed points in polynomial rather than exponential cost in the number of units, making analysis of the inferred dynamics tractable for large RNNs. Our method both elucidates the dynamical systems underlying experimental recordings and provides a generative model whose trajectories match observed variability.
♻ ☆ Taming the Long Tail in Human Mobility Prediction NeurIPS 2024
With the popularity of location-based services, human mobility prediction plays a key role in enhancing personalized navigation, optimizing recommendation systems, and facilitating urban mobility and planning. This involves predicting a user's next POI (point-of-interest) visit using their past visit history. However, the uneven distribution of visitations over time and space, namely the long-tail problem in spatial distribution, makes it difficult for AI models to predict those POIs that are less visited by humans. In light of this issue, we propose the Long-Tail Adjusted Next POI Prediction (LoTNext) framework for mobility prediction, combining a Long-Tailed Graph Adjustment module to reduce the impact of the long-tailed nodes in the user-POI interaction graph and a novel Long-Tailed Loss Adjustment module to adjust loss by logit score and sample weight adjustment strategy. Also, we employ the auxiliary prediction task to enhance generalization and accuracy. Our experiments with two real-world trajectory datasets demonstrate that LoTNext significantly surpasses existing state-of-the-art works.
comment: Accepted by NeurIPS 2024
♻ ☆ The Surprising Ineffectiveness of Pre-Trained Visual Representations for Model-Based Reinforcement Learning NeurIPS 2024
Visual Reinforcement Learning (RL) methods often require extensive amounts of data. As opposed to model-free RL, model-based RL (MBRL) offers a potential solution with efficient data utilization through planning. Additionally, RL lacks generalization capabilities for real-world tasks. Prior work has shown that incorporating pre-trained visual representations (PVRs) enhances sample efficiency and generalization. While PVRs have been extensively studied in the context of model-free RL, their potential in MBRL remains largely unexplored. In this paper, we benchmark a set of PVRs on challenging control tasks in a model-based RL setting. We investigate the data efficiency, generalization capabilities, and the impact of different properties of PVRs on the performance of model-based agents. Our results, perhaps surprisingly, reveal that for MBRL current PVRs are not more sample efficient than learning representations from scratch, and that they do not generalize better to out-of-distribution (OOD) settings. To explain this, we analyze the quality of the trained dynamics model. Furthermore, we show that data diversity and network architecture are the most important contributors to OOD generalization performance.
comment: Published at the 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Project page: https://schneimo.com/pvr4mbrl/
♻ ☆ CGCOD: Class-Guided Camouflaged Object Detection
Camouflaged Object Detection (COD) aims to identify objects that blend seamlessly into their surroundings. The inherent visual complexity of camouflaged objects, including their low contrast with the background, diverse textures, and subtle appearance variations, often obscures semantic cues, making accurate segmentation highly challenging. Existing methods primarily rely on visual features, which are insufficient to handle the variability and intricacy of camouflaged objects, leading to unstable object perception and ambiguous segmentation results. To tackle these limitations, we introduce a novel task, class-guided camouflaged object detection (CGCOD), which extends traditional COD task by incorporating object-specific class knowledge to enhance detection robustness and accuracy. To facilitate this task, we present a new dataset, CamoClass, comprising real-world camouflaged objects with class annotations. Furthermore, we propose a multi-stage framework, CGNet, which incorporates a plug-and-play class prompt generator and a simple yet effective class-guided detector. This establishes a new paradigm for COD, bridging the gap between contextual understanding and class-guided detection. Extensive experimental results demonstrate the effectiveness of our flexible framework in improving the performance of proposed and existing detectors by leveraging class-level textual information.
♻ ☆ RoME: A Robust Mixed-Effects Bandit Algorithm for Optimizing Mobile Health Interventions
Mobile health leverages personalized and contextually tailored interventions optimized through bandit and reinforcement learning algorithms. In practice, however, challenges such as participant heterogeneity, nonstationarity, and nonlinear relationships hinder algorithm performance. We propose RoME, a Robust Mixed-Effects contextual bandit algorithm that simultaneously addresses these challenges via (1) modeling the differential reward with user- and time-specific random effects, (2) network cohesion penalties, and (3) debiased machine learning for flexible estimation of baseline rewards. We establish a high-probability regret bound that depends solely on the dimension of the differential-reward model, enabling us to achieve robust regret bounds even when the baseline reward is highly complex. We demonstrate the superior performance of the RoME algorithm in a simulation and two off-policy evaluation studies.
♻ ☆ Improved Algorithms for Contextual Dynamic Pricing
In contextual dynamic pricing, a seller sequentially prices goods based on contextual information. Buyers will purchase products only if the prices are below their valuations. The goal of the seller is to design a pricing strategy that collects as much revenue as possible. We focus on two different valuation models. The first assumes that valuations linearly depend on the context and are further distorted by noise. Under minor regularity assumptions, our algorithm achieves an optimal regret bound of $\tilde{\mathcal{O}}(T^{2/3})$, improving the existing results. The second model removes the linearity assumption, requiring only that the expected buyer valuation is $\beta$-H\"older in the context. For this model, our algorithm obtains a regret $\tilde{\mathcal{O}}(T^{d+2\beta/d+3\beta})$, where $d$ is the dimension of the context space.
♻ ☆ PRIMO: Private Regression in Multiple Outcomes
We introduce a new private regression setting we call Private Regression in Multiple Outcomes (PRIMO), inspired by the common situation where a data analyst wants to perform a set of $l$ regressions while preserving privacy, where the features $X$ are shared across all $l$ regressions, and each regression $i \in [l]$ has a different vector of outcomes $y_i$. Naively applying existing private linear regression techniques $l$ times leads to a $\sqrt{l}$ multiplicative increase in error over the standard linear regression setting. We apply a variety of techniques including sufficient statistics perturbation (SSP) and geometric projection-based methods to develop scalable algorithms that outperform this baseline across a range of parameter regimes. In particular, we obtain no dependence on l in the asymptotic error when $l$ is sufficiently large. Empirically, on the task of genomic risk prediction with multiple phenotypes we find that even for values of $l$ far smaller than the theory would predict, our projection-based method improves the accuracy relative to the variant that doesn't use the projection.
♻ ☆ Volterra Accentuated Non-Linear Dynamical Admittance (VANYA) to model Deforestation: An Exemplification from the Amazon Rainforest
Intelligent automation supports us against cyclones, droughts, and seismic events with recent technology advancements. Algorithmic learning has advanced fields like neuroscience, genetics, and human-computer interaction. Time-series data boosts progress. Challenges persist in adopting these approaches in traditional fields. Neural networks face comprehension and bias issues. AI's expansion across scientific areas is due to adaptable descriptors and combinatorial argumentation. This article focuses on modeling Forest loss using the VANYA Model, incorporating Prey Predator Dynamics. VANYA predicts forest cover, demonstrated on Amazon Rainforest data against other forecasters like Long Short-Term Memory, N-BEATS, RCN.
comment: The experimental data used in this article has given wrong practical interpretation. The data has to be updated to improve this
♻ ☆ Learning Optimal Tax Design in Nonatomic Congestion Games NeurIPS
In multiplayer games, self-interested behavior among the players can harm the social welfare. Tax mechanisms are a common method to alleviate this issue and induce socially optimal behavior. In this work, we take the initial step of learning the optimal tax that can maximize social welfare with limited feedback in congestion games. We propose a new type of feedback named \emph{equilibrium feedback}, where the tax designer can only observe the Nash equilibrium after deploying a tax plan. Existing algorithms are not applicable due to the exponentially large tax function space, nonexistence of the gradient, and nonconvexity of the objective. To tackle these challenges, we design a computationally efficient algorithm that leverages several novel components: (1) a piece-wise linear tax to approximate the optimal tax; (2) extra linear terms to guarantee a strongly convex potential function; (3) an efficient subroutine to find the exploratory tax that can provide critical information about the game. The algorithm can find an $\epsilon$-optimal tax with $O(\beta F^2/\epsilon)$ sample complexity, where $\beta$ is the smoothness of the cost function and $F$ is the number of facilities.
comment: 23 pages. Accepted by Conference on Neural Information Processing Systems (NeurIPS) 2024
♻ ☆ Evaluation of Artificial Intelligence Methods for Lead Time Prediction in Non-Cycled Areas of Automotive Production
The present study examines the effectiveness of applying Artificial Intelligence methods in an automotive production environment to predict unknown lead times in a non-cycle-controlled production area. Data structures are analyzed to identify contextual features and then preprocessed using one-hot encoding. Methods selection focuses on supervised machine learning techniques. In supervised learning methods, regression and classification methods are evaluated. Continuous regression based on target size distribution is not feasible. Classification methods analysis shows that Ensemble Learning and Support Vector Machines are the most suitable. Preliminary study results indicate that gradient boosting algorithms LightGBM, XGBoost, and CatBoost yield the best results. After further testing and extensive hyperparameter optimization, the final method choice is the LightGBM algorithm. Depending on feature availability and prediction interval granularity, relative prediction accuracies of up to 90% can be achieved. Further tests highlight the importance of periodic retraining of AI models to accurately represent complex production processes using the database. The research demonstrates that AI methods can be effectively applied to highly variable production data, adding business value by providing an additional metric for various control tasks while outperforming current non AI-based systems.
♻ ☆ Constrained Latent Action Policies for Model-Based Offline Reinforcement Learning NeurIPS 2024
In offline reinforcement learning, a policy is learned using a static dataset in the absence of costly feedback from the environment. In contrast to the online setting, only using static datasets poses additional challenges, such as policies generating out-of-distribution samples. Model-based offline reinforcement learning methods try to overcome these by learning a model of the underlying dynamics of the environment and using it to guide policy search. It is beneficial but, with limited datasets, errors in the model and the issue of value overestimation among out-of-distribution states can worsen performance. Current model-based methods apply some notion of conservatism to the Bellman update, often implemented using uncertainty estimation derived from model ensembles. In this paper, we propose Constrained Latent Action Policies (C-LAP) which learns a generative model of the joint distribution of observations and actions. We cast policy learning as a constrained objective to always stay within the support of the latent action distribution, and use the generative capabilities of the model to impose an implicit constraint on the generated actions. Thereby eliminating the need to use additional uncertainty penalties on the Bellman update and significantly decreasing the number of gradient steps required to learn a policy. We empirically evaluate C-LAP on the D4RL and V-D4RL benchmark, and show that C-LAP is competitive to state-of-the-art methods, especially outperforming on datasets with visual observations.
comment: 38th Conference on Neural Information Processing Systems (NeurIPS 2024)
♻ ☆ Metric Space Magnitude for Evaluating the Diversity of Latent Representations NeurIPS
The magnitude of a metric space is a novel invariant that provides a measure of the 'effective size' of a space across multiple scales, while also capturing numerous geometrical properties, such as curvature, density, or entropy. We develop a family of magnitude-based measures of the intrinsic diversity of latent representations, formalising a novel notion of dissimilarity between magnitude functions of finite metric spaces. Our measures are provably stable under perturbations of the data, can be efficiently calculated, and enable a rigorous multi-scale characterisation and comparison of latent representations. We show their utility and superior performance across different domains and tasks, including (i) the automated estimation of diversity, (ii) the detection of mode collapse, and (iii) the evaluation of generative models for text, image, and graph data.
comment: Accepted at the 38th Conference on Neural Information Processing Systems (NeurIPS) 2024. The code for computing magnitude is available at https://github.com/aidos-lab/magnipy
♻ ☆ Maximizing Uncertainty for Federated learning via Bayesian Optimisation-based Model Poisoning
As we transition from Narrow Artificial Intelligence towards Artificial Super Intelligence, users are increasingly concerned about their privacy and the trustworthiness of machine learning (ML) technology. A common denominator for the metrics of trustworthiness is the quantification of uncertainty inherent in DL algorithms, and specifically in the model parameters, input data, and model predictions. One of the common approaches to address privacy-related issues in DL is to adopt distributed learning such as federated learning (FL), where private raw data is not shared among users. Despite the privacy-preserving mechanisms in FL, it still faces challenges in trustworthiness. Specifically, the malicious users, during training, can systematically create malicious model parameters to compromise the models predictive and generative capabilities, resulting in high uncertainty about their reliability. To demonstrate malicious behaviour, we propose a novel model poisoning attack method named Delphi which aims to maximise the uncertainty of the global model output. We achieve this by taking advantage of the relationship between the uncertainty and the model parameters of the first hidden layer of the local model. Delphi employs two types of optimisation , Bayesian Optimisation and Least Squares Trust Region, to search for the optimal poisoned model parameters, named as Delphi-BO and Delphi-LSTR. We quantify the uncertainty using the KL Divergence to minimise the distance of the predictive probability distribution towards an uncertain distribution of model output. Furthermore, we establish a mathematical proof for the attack effectiveness demonstrated in FL. Numerical results demonstrate that Delphi-BO induces a higher amount of uncertainty than Delphi-LSTR highlighting vulnerability of FL systems to model poisoning attacks.
comment: 14 pages
♻ ☆ Applying the maximum entropy principle to neural networks enhances multi-species distribution models
The rapid expansion of citizen science initiatives has led to a significant growth of biodiversity databases, and particularly presence-only (PO) observations. PO data are invaluable for understanding species distributions and their dynamics, but their use in a Species Distribution Model (SDM) is curtailed by sampling biases and the lack of information on absences. Poisson point processes are widely used for SDMs, with Maxent being one of the most popular methods. Maxent maximises the entropy of a probability distribution across sites as a function of predefined transformations of variables, called features. In contrast, neural networks and deep learning have emerged as a promising technique for automatic feature extraction from complex input variables. Arbitrarily complex transformations of input variables can be learned from the data efficiently through backpropagation and stochastic gradient descent (SGD). In this paper, we propose DeepMaxent, which harnesses neural networks to automatically learn shared features among species, using the maximum entropy principle. To do so, it employs a normalised Poisson loss where for each species, presence probabilities across sites are modelled by a neural network. We evaluate DeepMaxent on a benchmark dataset known for its spatial sampling biases, using PO data for calibration and presence-absence (PA) data for validation across six regions with different biological groups and covariates. Our results indicate that DeepMaxent performs better than Maxent and other leading SDMs across all regions and taxonomic groups. The method performs particularly well in regions of uneven sampling, demonstrating substantial potential to increase SDM performances. In particular, our approach yields more accurate predictions than traditional single-species models, which opens up new possibilities for methodological enhancement.
comment: Submitted to Methods in Ecology and Evolution
♻ ☆ A Closer Look at Deep Learning Methods on Tabular Datasets
Tabular data is prevalent across diverse domains in machine learning. While classical methods like tree-based models have long been effective, Deep Neural Network (DNN)-based methods have recently demonstrated promising performance. However, the diverse characteristics of methods and the inherent heterogeneity of tabular datasets make understanding and interpreting tabular methods both challenging and prone to unstable observations. In this paper, we conduct in-depth evaluations and comprehensive analyses of tabular methods, with a particular focus on DNN-based models, using a benchmark of over 300 tabular datasets spanning a wide range of task types, sizes, and domains. First, we perform an extensive comparison of 32 state-of-the-art deep and tree-based methods, evaluating their average performance across multiple criteria. Although method ranks vary across datasets, we empirically find that top-performing methods tend to concentrate within a small subset of tabular models, regardless of the criteria used. Next, we investigate whether the training dynamics of deep tabular models can be predicted based on dataset properties. This approach not only offers insights into the behavior of deep tabular methods but also identifies a core set of "meta-features" that reflect dataset heterogeneity. The other subset includes datasets where method ranks are consistent with the overall benchmark, acting as a reliable probe for further tabular analysis.
♻ ☆ MambaLRP: Explaining Selective State Space Sequence Models
Recent sequence modeling approaches using selective state space sequence models, referred to as Mamba models, have seen a surge of interest. These models allow efficient processing of long sequences in linear time and are rapidly being adopted in a wide range of applications such as language modeling, demonstrating promising performance. To foster their reliable use in real-world scenarios, it is crucial to augment their transparency. Our work bridges this critical gap by bringing explainability, particularly Layer-wise Relevance Propagation (LRP), to the Mamba architecture. Guided by the axiom of relevance conservation, we identify specific components in the Mamba architecture, which cause unfaithful explanations. To remedy this issue, we propose MambaLRP, a novel algorithm within the LRP framework, which ensures a more stable and reliable relevance propagation through these components. Our proposed method is theoretically sound and excels in achieving state-of-the-art explanation performance across a diverse range of models and datasets. Moreover, MambaLRP facilitates a deeper inspection of Mamba architectures, uncovering various biases and evaluating their significance. It also enables the analysis of previous speculations regarding the long-range capabilities of Mamba models.
♻ ☆ Sparse Low-Ranked Self-Attention Transformer for Remaining Useful Lifetime Prediction of Optical Fiber Amplifiers
Optical fiber amplifiers are key elements in present optical networks. Failures of these components result in high financial loss of income of the network operator as the communication traffic over an affected link is interrupted. Applying Remaining useful lifetime (RUL) prediction in the context of Predictive Maintenance (PdM) to optical fiber amplifiers to predict upcoming system failures at an early stage, so that network outages can be minimized through planning of targeted maintenance actions, ensures reliability and safety. Optical fiber amplifier are complex systems, that work under various operating conditions, which makes correct forecasting a difficult task. Increased monitoring capabilities of systems results in datasets that facilitate the application of data-driven RUL prediction methods. Deep learning models in particular have shown good performance, but generalization based on comparatively small datasets for RUL prediction is difficult. In this paper, we propose Sparse Low-ranked self-Attention Transformer (SLAT) as a novel RUL prediction method. SLAT is based on an encoder-decoder architecture, wherein two parallel working encoders extract features for sensors and time steps. By utilizing the self-attention mechanism, long-term dependencies can be learned from long sequences. The implementation of sparsity in the attention matrix and a low-rank parametrization reduce overfitting and increase generalization. Experimental application to optical fiber amplifiers exemplified on EDFA, as well as a reference dataset from turbofan engines, shows that SLAT outperforms the state-of-the-art methods.
comment: 9 pages, 7 figures
♻ ☆ FADE: Towards Fairness-aware Augmentation for Domain Generalization via Classifier-Guided Score-based Diffusion Models
Fairness-aware domain generalization (FairDG) has emerged as a critical challenge for deploying trustworthy AI systems, particularly in scenarios involving distribution shifts. Traditional methods for addressing fairness have failed in domain generalization due to their lack of consideration for distribution shifts. Although disentanglement has been used to tackle FairDG, it is limited by its strong assumptions. To overcome these limitations, we propose Fairness-aware Classifier-Guided Score-based Diffusion Models (FADE) as a novel approach to effectively address the FairDG issue. Specifically, we first pre-train a score-based diffusion model (SDM) and two classifiers to equip the model with strong generalization capabilities across different domains. Then, we guide the SDM using these pre-trained classifiers to effectively eliminate sensitive information from the generated data. Finally, the generated fair data is used to train downstream classifiers, ensuring robust performance under new data distributions. Extensive experiments on three real-world datasets demonstrate that FADE not only enhances fairness but also improves accuracy in the presence of distribution shifts. Additionally, FADE outperforms existing methods in achieving the best accuracy-fairness trade-offs.
♻ ☆ Parallelizing Linear Transformers with the Delta Rule over Sequence Length
Transformers with linear attention (i.e., linear transformers) and state-space models have recently been suggested as a viable linear-time alternative to transformers with softmax attention. However, these models still underperform transformers especially on tasks that require in-context retrieval. While more expressive variants of linear transformers which replace the additive update in linear transformers with the delta rule (DeltaNet) have been found to be more effective at associative recall, existing algorithms for training such models do not parallelize over sequence length and are thus inefficient to train on modern hardware. This work describes a hardware-efficient algorithm for training linear transformers with the delta rule, which exploits a memory-efficient representation for computing products of Householder matrices. This algorithm allows us to scale up DeltaNet to standard language modeling settings. We train a 1.3B model for 100B tokens and find that it outperforms recent linear-time baselines such as Mamba and GLA in terms of perplexity and zero-shot performance on downstream tasks. We also experiment with two hybrid models which combine DeltaNet layers with (1) sliding-window attention layers every other layer or (2) two global attention layers, and find that these hybrids outperform strong transformer baselines.
comment: Final camera ready
♻ ☆ RoHan: Robust Hand Detection in Operation Room
Hand-specific localization has garnered significant interest within the computer vision community. Although there are numerous datasets with hand annotations from various angles and settings, domain transfer techniques frequently struggle in surgical environments. This is mainly due to the limited availability of gloved hand instances and the unique challenges of operating rooms (ORs). Thus, hand-detection models tailored to OR settings require extensive training and expensive annotation processes. To overcome these challenges, we present "RoHan" - a novel approach for robust hand detection in the OR, leveraging advanced semi-supervised domain adaptation techniques to tackle the challenges of varying recording conditions, diverse glove colors, and occlusions common in surgical settings. Our methodology encompasses two main stages: (1) data augmentation strategy that utilizes "Artificial Gloves," a method for augmenting publicly available hand datasets with synthetic images of hands-wearing gloves; (2) semi-supervised domain adaptation pipeline that improves detection performance in real-world OR settings through iterative prediction refinement and efficient frame filtering. We evaluate our method using two datasets: simulated enterotomy repair and saphenous vein graft harvesting. "RoHan" substantially reduces the need for extensive labeling and model training, paving the way for the practical implementation of hand detection technologies in medical settings.
comment: 12 pages
♻ ☆ Constructing Confidence Intervals for 'the' Generalization Error -- a Comprehensive Benchmark Study
When assessing the quality of prediction models in machine learning, confidence intervals (CIs) for the generalization error, which measures predictive performance, are a crucial tool. Luckily, there exist many methods for computing such CIs and new promising approaches are continuously being proposed. Typically, these methods combine various resampling procedures, most popular among them cross-validation and bootstrapping, with different variance estimation techniques. Unfortunately, however, there is currently no consensus on when any of these combinations may be most reliably employed and how they generally compare. In this work, we conduct a large-scale study comparing CIs for the generalization error, the first one of such size, where we empirically evaluate 13 different CI methods on a total of 19 tabular regression and classification problems, using seven different inducers and a total of eight loss functions. We give an overview of the methodological foundations and inherent challenges of constructing CIs for the generalization error and provide a concise review of all 13 methods in a unified framework. Finally, the CI methods are evaluated in terms of their relative coverage frequency, width, and runtime. Based on these findings, we can identify a subset of methods that we would recommend. We also publish the datasets as a benchmarking suite on OpenML and our code on GitHub to serve as a basis for further studies.
♻ ☆ Extended convexity and smoothness and their applications in deep learning
This paper introduces an optimization framework aimed at providing a theoretical foundation for a class of composite optimization problems, particularly those encountered in deep learning. In this framework, we introduce $\mathcal{H}(\phi)$-convexity and $\mathcal{H}(\Phi)$-smoothness to generalize the existing concepts of Lipschitz smoothness and strong convexity. Furthermore, we analyze and establish the convergence of both gradient descent and stochastic gradient descent methods for objective functions that are $\mathcal{H}(\Phi)$-smooth. We prove that the optimal convergence rates of these methods depend solely on the homogeneous degree of $\Phi$. Based on these findings, we construct two types of non-convex and non-smooth optimization problems: deterministic composite and stochastic composite optimization problems, which encompass the majority of optimization problems in deep learning. To address these problems, we develop the gradient structure control algorithm and prove that it can locate approximate global optima. This marks a significant departure from traditional non-convex analysis framework, which typically settle for stationary points. Therefore, with the introduction of $\mathcal{H}(\phi)$-convexity and $\mathcal{H}(\Phi)$-smoothness, along with the GSC algorithm, the non-convex optimization mechanisms in deep learning can be theoretically explained and supported. Finally, the effectiveness of the proposed framework is substantiated through empirical experimentation.
♻ ☆ Diffusion-based Unsupervised Audio-visual Speech Enhancement
This paper proposes a new unsupervised audio-visual speech enhancement (AVSE) approach that combines a diffusion-based audio-visual speech generative model with a non-negative matrix factorization (NMF) noise model. First, the diffusion model is pre-trained on clean speech conditioned on corresponding video data to simulate the speech generative distribution. This pre-trained model is then paired with the NMF-based noise model to estimate clean speech iteratively. Specifically, a diffusion-based posterior sampling approach is implemented within the reverse diffusion process, where after each iteration, a speech estimate is obtained and used to update the noise parameters. Experimental results confirm that the proposed AVSE approach not only outperforms its audio-only counterpart but also generalizes better than a recent supervised-generative AVSE method. Additionally, the new inference algorithm offers a better balance between inference speed and performance compared to the previous diffusion-based method. Code and demo available at: https://jeaneudesayilo.github.io/fast_UdiffSE
♻ ☆ Interpreting Equivariant Representations ICML 2024
Latent representations are used extensively for downstream tasks, such as visualization, interpolation or feature extraction of deep learning models. Invariant and equivariant neural networks are powerful and well-established models for enforcing inductive biases. In this paper, we demonstrate that the inductive bias imposed on the by an equivariant model must also be taken into account when using latent representations. We show how not accounting for the inductive biases leads to decreased performance on downstream tasks, and vice versa, how accounting for inductive biases can be done effectively by using an invariant projection of the latent representations. We propose principles for how to choose such a projection, and show the impact of using these principles in two common examples: First, we study a permutation equivariant variational auto-encoder trained for molecule graph generation; here we show that invariant projections can be designed that incur no loss of information in the resulting invariant representation. Next, we study a rotation-equivariant representation used for image classification. Here, we illustrate how random invariant projections can be used to obtain an invariant representation with a high degree of retained information. In both cases, the analysis of invariant latent representations proves superior to their equivariant counterparts. Finally, we illustrate that the phenomena documented here for equivariant neural networks have counterparts in standard neural networks where invariance is encouraged via augmentation. Thus, while these ambiguities may be known by experienced developers of equivariant models, we make both the knowledge as well as effective tools to handle the ambiguities available to the broader community.
comment: This paper was updated to reflect the version accepted to ICML 2024
♻ ☆ A Unified Confidence Sequence for Generalized Linear Models, with Applications to Bandits NeurIPS 2024
We present a unified likelihood ratio-based confidence sequence (CS) for any (self-concordant) generalized linear model (GLM) that is guaranteed to be convex and numerically tight. We show that this is on par or improves upon known CSs for various GLMs, including Gaussian, Bernoulli, and Poisson. In particular, for the first time, our CS for Bernoulli has a $\mathrm{poly}(S)$-free radius where $S$ is the norm of the unknown parameter. Our first technical novelty is its derivation, which utilizes a time-uniform PAC-Bayesian bound with a uniform prior/posterior, despite the latter being a rather unpopular choice for deriving CSs. As a direct application of our new CS, we propose a simple and natural optimistic algorithm called OFUGLB, applicable to any generalized linear bandits (GLB; Filippi et al. (2010)). Our analysis shows that the celebrated optimistic approach simultaneously attains state-of-the-art regrets for various self-concordant (not necessarily bounded) GLBs, and even $\mathrm{poly}(S)$-free for bounded GLBs, including logistic bandits. The regret analysis, our second technical novelty, follows from combining our new CS with a new proof technique that completely avoids the previously widely used self-concordant control lemma (Faury et al., 2020, Lemma 9). Numerically, OFUGLB outperforms or is at par with prior algorithms for logistic bandits.
comment: 39 pages, 2 figures, 2 tables; Accepted to the 38th Conference on Neural Information Processing Systems (NeurIPS 2024) (ver3: minor revisions, code refactoring; ver2: major revision, including new experiments, reorganization, fixing typos in the proofs of ver1, etc)
♻ ☆ SupplyGraph: A Benchmark Dataset for Supply Chain Planning using Graph Neural Networks AAAI 2024
Graph Neural Networks (GNNs) have gained traction across different domains such as transportation, bio-informatics, language processing, and computer vision. However, there is a noticeable absence of research on applying GNNs to supply chain networks. Supply chain networks are inherently graph-like in structure, making them prime candidates for applying GNN methodologies. This opens up a world of possibilities for optimizing, predicting, and solving even the most complex supply chain problems. A major setback in this approach lies in the absence of real-world benchmark datasets to facilitate the research and resolution of supply chain problems using GNNs. To address the issue, we present a real-world benchmark dataset for temporal tasks, obtained from one of the leading FMCG companies in Bangladesh, focusing on supply chain planning for production purposes. The dataset includes temporal data as node features to enable sales predictions, production planning, and the identification of factory issues. By utilizing this dataset, researchers can employ GNNs to address numerous supply chain problems, thereby advancing the field of supply chain analytics and planning. Source: https://github.com/CIOL-SUST/SupplyGraph
comment: Accepted to 4th workshop on Graphs and more Complex structures for Learning and Reasoning, colocated with AAAI 2024
♻ ☆ Get Rid of Isolation: A Continuous Multi-task Spatio-Temporal Learning Framework NeurIPS 2024
Spatiotemporal learning has become a pivotal technique to enable urban intelligence. Traditional spatiotemporal models mostly focus on a specific task by assuming a same distribution between training and testing sets. However, given that urban systems are usually dynamic, multi-sourced with imbalanced data distributions, current specific task-specific models fail to generalize to new urban conditions and adapt to new domains without explicitly modeling interdependencies across various dimensions and types of urban data. To this end, we argue that there is an essential to propose a Continuous Multi-task Spatio-Temporal learning framework (CMuST) to empower collective urban intelligence, which reforms the urban spatiotemporal learning from single-domain to cooperatively multi-dimensional and multi-task learning. Specifically, CMuST proposes a new multi-dimensional spatiotemporal interaction network (MSTI) to allow cross-interactions between context and main observations as well as self-interactions within spatial and temporal aspects to be exposed, which is also the core for capturing task-level commonality and personalization. To ensure continuous task learning, a novel Rolling Adaptation training scheme (RoAda) is devised, which not only preserves task uniqueness by constructing data summarization-driven task prompts, but also harnesses correlated patterns among tasks by iterative model behavior modeling. We further establish a benchmark of three cities for multi-task spatiotemporal learning, and empirically demonstrate the superiority of CMuST via extensive evaluations on these datasets. The impressive improvements on both few-shot streaming data and new domain tasks against existing SOAT methods are achieved. Code is available at https://github.com/DILab-USTCSZ/CMuST.
comment: Accepted by NeurIPS 2024
♻ ☆ Fully Distributed, Flexible Compositional Visual Representations via Soft Tensor Products
Since the inception of the classicalist vs. connectionist debate, it has been argued that the ability to systematically combine symbol-like entities into compositional representations is crucial for human intelligence. In connectionist systems, the field of disentanglement has gained prominence for its ability to produce explicitly compositional representations; however, it relies on a fundamentally symbolic, concatenative representation of compositional structure that clashes with the continuous, distributed foundations of deep learning. To resolve this tension, we extend Smolensky's Tensor Product Representation (TPR) and introduce Soft TPR, a representational form that encodes compositional structure in an inherently distributed, flexible manner, along with Soft TPR Autoencoder, a theoretically-principled architecture designed specifically to learn Soft TPRs. Comprehensive evaluations in the visual representation learning domain demonstrate that the Soft TPR framework consistently outperforms conventional disentanglement alternatives -- achieving state-of-the-art disentanglement, boosting representation learner convergence, and delivering superior sample efficiency and low-sample regime performance in downstream tasks. These findings highlight the promise of a distributed and flexible approach to representing compositional structure by potentially enhancing alignment with the core principles of deep learning over the conventional symbolic approach.
comment: Accepted to Neurips 2024. 10 pages + supplementary
♻ ☆ SelectIT: Selective Instruction Tuning for LLMs via Uncertainty-Aware Self-Reflection NeurIPS 2024
Instruction tuning (IT) is crucial to tailoring large language models (LLMs) towards human-centric interactions. Recent advancements have shown that the careful selection of a small, high-quality subset of IT data can significantly enhance the performance of LLMs. Despite this, common approaches often rely on additional models or data, which increases costs and limits widespread adoption. In this work, we propose a novel approach, termed SelectIT, that capitalizes on the foundational capabilities of the LLM itself. Specifically, we exploit the intrinsic uncertainty present in LLMs to more effectively select high-quality IT data, without the need for extra resources. Furthermore, we introduce a curated IT dataset, the Selective Alpaca, created by applying SelectIT to the Alpaca-GPT4 dataset. Empirical results demonstrate that IT using Selective Alpaca leads to substantial model ability enhancement. The robustness of SelectIT has also been corroborated in various foundation models and domain-specific tasks. Our findings suggest that longer and more computationally intensive IT data may serve as superior sources of IT, offering valuable insights for future research in this area. Data, code, and scripts are freely available at https://github.com/Blue-Raincoat/SelectIT.
comment: Accepted to NeurIPS 2024
♻ ☆ An Accelerated Algorithm for Stochastic Bilevel Optimization under Unbounded Smoothness NeurIPS 2024
This paper investigates a class of stochastic bilevel optimization problems where the upper-level function is nonconvex with potentially unbounded smoothness and the lower-level problem is strongly convex. These problems have significant applications in sequential data learning, such as text classification using recurrent neural networks. The unbounded smoothness is characterized by the smoothness constant of the upper-level function scaling linearly with the gradient norm, lacking a uniform upper bound. Existing state-of-the-art algorithms require $\widetilde{O}(1/\epsilon^4)$ oracle calls of stochastic gradient or Hessian/Jacobian-vector product to find an $\epsilon$-stationary point. However, it remains unclear if we can further improve the convergence rate when the assumptions for the function in the population level also hold for each random realization almost surely. To address this issue, we propose a new Accelerated Bilevel Optimization algorithm named AccBO. The algorithm updates the upper-level variable by normalized stochastic gradient descent with recursive momentum and the lower-level variable by the stochastic Nesterov accelerated gradient descent algorithm with averaging. We prove that our algorithm achieves an oracle complexity of $\widetilde{O}(1/\epsilon^3)$ to find an $\epsilon$-stationary point, when the lower-level stochastic gradient's variance is $O(\epsilon)$. Our proof relies on a novel lemma characterizing the dynamics of stochastic Nesterov accelerated gradient descent algorithm under distribution drift with high probability for the lower-level variable, which is of independent interest and also plays a crucial role in analyzing the hypergradient estimation error over time. Experimental results on various tasks confirm that our proposed algorithm achieves the predicted theoretical acceleration and significantly outperforms baselines in bilevel optimization.
comment: Accepted by NeurIPS 2024. The code is available at https://github.com/MingruiLiu-ML-Lab/Accelerated-Bilevel-Optimization-Unbounded-Smoothness
♻ ☆ Making AI Less "Thirsty": Uncovering and Addressing the Secret Water Footprint of AI Models
The growing carbon footprint of artificial intelligence (AI) has been undergoing public scrutiny. Nonetheless, the equally important water (withdrawal and consumption) footprint of AI has largely remained under the radar. For example, training the GPT-3 language model in Microsoft's state-of-the-art U.S. data centers can directly evaporate 700,000 liters of clean freshwater, but such information has been kept a secret. More critically, the global AI demand is projected to account for 4.2-6.6 billion cubic meters of water withdrawal in 2027, which is more than the total annual water withdrawal of 4-6 Denmark or half of the United Kingdom. This is concerning, as freshwater scarcity has become one of the most pressing challenges. To respond to the global water challenges, AI can, and also must, take social responsibility and lead by example by addressing its own water footprint. In this paper, we provide a principled methodology to estimate the water footprint of AI, and also discuss the unique spatial-temporal diversities of AI's runtime water efficiency. Finally, we highlight the necessity of holistically addressing water footprint along with carbon footprint to enable truly sustainable AI.
comment: Accepted by Communications of the ACM. Source codes available at: https://github.com/Ren-Research/Making-AI-Less-Thirsty
♻ ☆ MEMO: Fine-grained Tensor Management For Ultra-long Context LLM Training
Nowadays, Large Language Models (LLMs) have been trained using extended context lengths to foster more creative applications. However, long context training poses great challenges considering the constraint of GPU memory. It not only leads to substantial activation memory consumption during training, but also incurs considerable memory fragmentation. To facilitate long context training, existing frameworks have adopted strategies such as recomputation and various forms of parallelisms. Nevertheless, these techniques rely on redundant computation or extensive communication, resulting in low Model FLOPS Utilization (MFU). In this paper, we propose MEMO, a novel LLM training framework designed for fine-grained activation memory management. Given the quadratic scaling of computation and linear scaling of memory with sequence lengths when using FlashAttention, we offload memory-consuming activations to CPU memory after each layer's forward pass and fetch them during the backward pass. To maximize the swapping of activations without hindering computation, and to avoid exhausting limited CPU memory, we implement a token-wise activation recomputation and swapping mechanism. Furthermore, we tackle the memory fragmentation issue by employing a bi-level Mixed Integer Programming (MIP) approach, optimizing memory reuse across transformer layers. Empirical results demonstrate that MEMO achieves an average of 1.97x and 1.80x MFU compared to Megatron-LM and DeepSpeed, respectively. This improvement is attributed to MEMO's ability to minimize memory fragmentation, reduce recomputation and intensive communication, and circumvent the delays associated with the memory reorganization process due to fragmentation. By leveraging fine-grained activation memory management, MEMO facilitates efficient training of 7B LLM with 1 million sequence length on just 8 A800 GPUs, achieving an MFU of 52.30%.
♻ ☆ Dynamic Localisation of Spatial-Temporal Graph Neural Network KDD'25
Spatial-temporal data, fundamental to many intelligent applications, reveals dependencies indicating causal links between present measurements at specific locations and historical data at the same or other locations. Within this context, adaptive spatial-temporal graph neural networks (ASTGNNs) have emerged as valuable tools for modelling these dependencies, especially through a data-driven approach rather than pre-defined spatial graphs. While this approach offers higher accuracy, it presents increased computational demands. Addressing this challenge, this paper delves into the concept of localisation within ASTGNNs, introducing an innovative perspective that spatial dependencies should be dynamically evolving over time. We introduce \textit{DynAGS}, a localised ASTGNN framework aimed at maximising efficiency and accuracy in distributed deployment. This framework integrates dynamic localisation, time-evolving spatial graphs, and personalised localisation, all orchestrated around the Dynamic Graph Generator, a light-weighted central module leveraging cross attention. The central module can integrate historical information in a node-independent manner to enhance the feature representation of nodes at the current moment. This improved feature representation is then used to generate a dynamic sparse graph without the need for costly data exchanges, and it supports personalised localisation. Performance assessments across two core ASTGNN architectures and nine real-world datasets from various applications reveal that \textit{DynAGS} outshines current benchmarks, underscoring that the dynamic modelling of spatial dependencies can drastically improve model expressibility, flexibility, and system efficiency, especially in distributed settings.
comment: This paper was accepted by KDD'25
♻ ☆ OminiControl: Minimal and Universal Control for Diffusion Transformer
In this paper, we introduce OminiControl, a highly versatile and parameter-efficient framework that integrates image conditions into pre-trained Diffusion Transformer (DiT) models. At its core, OminiControl leverages a parameter reuse mechanism, enabling the DiT to encode image conditions using itself as a powerful backbone and process them with its flexible multi-modal attention processors. Unlike existing methods, which rely heavily on additional encoder modules with complex architectures, OminiControl (1) effectively and efficiently incorporates injected image conditions with only ~0.1% additional parameters, and (2) addresses a wide range of image conditioning tasks in a unified manner, including subject-driven generation and spatially-aligned conditions such as edges, depth, and more. Remarkably, these capabilities are achieved by training on images generated by the DiT itself, which is particularly beneficial for subject-driven generation. Extensive evaluations demonstrate that OminiControl outperforms existing UNet-based and DiT-adapted models in both subject-driven and spatially-aligned conditional generation. Additionally, we release our training dataset, Subjects200K, a diverse collection of over 200,000 identity-consistent images, along with an efficient data synthesis pipeline to advance research in subject-consistent generation.
♻ ☆ Diffusion Models as Network Optimizers: Explorations and Analysis
Network optimization is a fundamental challenge in the Internet of Things (IoT) network, often characterized by complex features that make it difficult to solve these problems. Recently, generative diffusion models (GDMs) have emerged as a promising new approach to network optimization, with the potential to directly address these optimization problems. However, the application of GDMs in this field is still in its early stages, and there is a noticeable lack of theoretical research and empirical findings. In this study, we first explore the intrinsic characteristics of generative models. Next, we provide a concise theoretical proof and intuitive demonstration of the advantages of generative models over discriminative models in network optimization. Based on this exploration, we implement GDMs as optimizers aimed at learning high-quality solution distributions for given inputs, sampling from these distributions during inference to approximate or achieve optimal solutions. Specifically, we utilize denoising diffusion probabilistic models (DDPMs) and employ a classifier-free guidance mechanism to manage conditional guidance based on input parameters. We conduct extensive experiments across three challenging network optimization problems. By investigating various model configurations and the principles of GDMs as optimizers, we demonstrate the ability to overcome prediction errors and validate the convergence of generated solutions to optimal solutions. We provide code and data at https://github.com/qiyu3816/DiffSG.
♻ ☆ CrossFi: A Cross Domain Wi-Fi Sensing Framework Based on Siamese Network
In recent years, Wi-Fi sensing has garnered significant attention due to its numerous benefits, such as privacy protection, low cost, and penetration ability. Extensive research has been conducted in this field, focusing on areas such as gesture recognition, people identification, and fall detection. However, many data-driven methods encounter challenges related to domain shift, where the model fails to perform well in environments different from the training data. One major factor contributing to this issue is the limited availability of Wi-Fi sensing datasets, which makes models learn excessive irrelevant information and over-fit to the training set. Unfortunately, collecting large-scale Wi-Fi sensing datasets across diverse scenarios is a challenging task. To address this problem, we propose CrossFi, a siamese network-based approach that excels in both in-domain scenario and cross-domain scenario, including few-shot, zero-shot scenarios, and even works in few-shot new-class scenario where testing set contains new categories. The core component of CrossFi is a sample-similarity calculation network called CSi-Net, which improves the structure of the siamese network by using an attention mechanism to capture similarity information, instead of simply calculating the distance or cosine similarity. Based on it, we develop an extra Weight-Net that can generate a template for each class, so that our CrossFi can work in different scenarios. Experimental results demonstrate that our CrossFi achieves state-of-the-art performance across various scenarios. In gesture recognition task, our CrossFi achieves an accuracy of 98.17% in in-domain scenario, 91.72% in one-shot cross-domain scenario, 64.81% in zero-shot cross-domain scenario, and 84.75% in one-shot new-class scenario. The code for our model is publicly available at https://github.com/RS2002/CrossFi.
♻ ☆ The Silent Majority: Demystifying Memorization Effect in the Presence of Spurious Correlations
Machine learning models often rely on simple spurious features -- patterns in training data that correlate with targets but are not causally related to them, like image backgrounds in foreground classification. This reliance typically leads to imbalanced test performance across minority and majority groups. In this work, we take a closer look at the fundamental cause of such imbalanced performance through the lens of memorization, which refers to the ability to predict accurately on \textit{atypical} examples (minority groups) in the training set but failing in achieving the same accuracy in the testing set. This paper systematically shows the ubiquitous existence of spurious features in a small set of neurons within the network, providing the first-ever evidence that memorization may contribute to imbalanced group performance. Through three experimental sources of converging empirical evidence, we find the property of a small subset of neurons or channels in memorizing minority group information. Inspired by these findings, we articulate the hypothesis: the imbalanced group performance is a byproduct of ``noisy'' spurious memorization confined to a small set of neurons. To further substantiate this hypothesis, we show that eliminating these unnecessary spurious memorization patterns via a novel framework during training can significantly affect the model performance on minority groups. Our experimental results across various architectures and benchmarks offer new insights on how neural networks encode core and spurious knowledge, laying the groundwork for future research in demystifying robustness to spurious correlation.
♻ ☆ Zero-shot Video Restoration and Enhancement Using Pre-Trained Image Diffusion Model AAAI 2025
Diffusion-based zero-shot image restoration and enhancement models have achieved great success in various tasks of image restoration and enhancement. However, directly applying them to video restoration and enhancement results in severe temporal flickering artifacts. In this paper, we propose the first framework for zero-shot video restoration and enhancement based on the pre-trained image diffusion model. By replacing the spatial self-attention layer with the proposed short-long-range (SLR) temporal attention layer, the pre-trained image diffusion model can take advantage of the temporal correlation between frames. We further propose temporal consistency guidance, spatial-temporal noise sharing, and an early stopping sampling strategy to improve temporally consistent sampling. Our method is a plug-and-play module that can be inserted into any diffusion-based image restoration or enhancement methods to further improve their performance. Experimental results demonstrate the superiority of our proposed method. Our code is available at https://github.com/cao-cong/ZVRD.
comment: Accepted by AAAI 2025
♻ ☆ Machine unlearning through fine-grained model parameters perturbation
Machine unlearning techniques, which involve retracting data records and reducing influence of said data on trained models, help with the user privacy protection objective but incur significant computational costs. Weight perturbation-based unlearning is a general approach, but it typically involves globally modifying the parameters. We propose fine-grained Top-K and Random-k parameters perturbed inexact machine unlearning strategies that address the privacy needs while keeping the computational costs tractable. In order to demonstrate the efficacy of our strategies we also tackle the challenge of evaluating the effectiveness of machine unlearning by considering the model's generalization performance across both unlearning and remaining data. To better assess the unlearning effect and model generalization, we propose novel metrics, namely, the forgetting rate and memory retention rate. However, for inexact machine unlearning, current metrics are inadequate in quantifying the degree of forgetting that occurs after unlearning strategies are applied. To address this, we introduce SPD-GAN, which subtly perturbs the distribution of data targeted for unlearning. Then, we evaluate the degree of unlearning by measuring the performance difference of the models on the perturbed unlearning data before and after the unlearning process. By implementing these innovative techniques and metrics, we achieve computationally efficacious privacy protection in machine learning applications without significant sacrifice of model performance. Furthermore, this approach provides a novel method for evaluating the degree of unlearning.
♻ ☆ Clarify Confused Nodes via Separated Learning
Graph neural networks (GNNs) have achieved remarkable advances in graph-oriented tasks. However, real-world graphs invariably contain a certain proportion of heterophilous nodes, challenging the homophily assumption of traditional GNNs and hindering their performance. Most existing studies continue to design generic models with shared weights between heterophilous and homophilous nodes. Despite the incorporation of high-order messages or multi-channel architectures, these efforts often fall short. A minority of studies attempt to train different node groups separately but suffer from inappropriate separation metrics and low efficiency. In this paper, we first propose a new metric, termed Neighborhood Confusion (NC), to facilitate a more reliable separation of nodes. We observe that node groups with different levels of NC values exhibit certain differences in intra-group accuracy and visualized embeddings. These pave the way for Neighborhood Confusion-guided Graph Convolutional Network (NCGCN), in which nodes are grouped by their NC values and accept intra-group weight sharing and message passing. Extensive experiments on both homophilous and heterophilous benchmarks demonstrate that our framework can effectively separate nodes and yield significant performance improvement compared to the latest methods. The source code will be available in https://github.com/GISec-Team/NCGNN.
comment: Accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence
♻ ☆ STORM: A Spatio-Temporal Factor Model Based on Dual Vector Quantized Variational Autoencoders for Financial Trading
In financial trading, factor models are widely used to price assets and capture excess returns from mispricing. Recently, we have witnessed the rise of variational autoencoder-based latent factor models, which learn latent factors self-adaptively. While these models focus on modeling overall market conditions, they often fail to effectively capture the temporal patterns of individual stocks. Additionally, representing multiple factors as single values simplifies the model but limits its ability to capture complex relationships and dependencies. As a result, the learned factors are of low quality and lack diversity, reducing their effectiveness and robustness across different trading periods. To address these issues, we propose a Spatio-Temporal factOR Model based on dual vector quantized variational autoencoders, named STORM, which extracts features of stocks from temporal and spatial perspectives, then fuses and aligns these features at the fine-grained and semantic level, and represents the factors as multi-dimensional embeddings. The discrete codebooks cluster similar factor embeddings, ensuring orthogonality and diversity, which helps distinguish between different factors and enables factor selection in financial trading. To show the performance of the proposed factor model, we apply it to two downstream experiments: portfolio management on two stock datasets and individual trading tasks on six specific stocks. The extensive experiments demonstrate STORM's flexibility in adapting to downstream tasks and superior performance over baseline models.
♻ ☆ Dual Cone Gradient Descent for Training Physics-Informed Neural Networks
Physics-informed neural networks (PINNs) have emerged as a prominent approach for solving partial differential equations (PDEs) by minimizing a combined loss function that incorporates both boundary loss and PDE residual loss. Despite their remarkable empirical performance in various scientific computing tasks, PINNs often fail to generate reasonable solutions, and such pathological behaviors remain difficult to explain and resolve. In this paper, we identify that PINNs can be adversely trained when gradients of each loss function exhibit a significant imbalance in their magnitudes and present a negative inner product value. To address these issues, we propose a novel optimization framework, Dual Cone Gradient Descent (DCGD), which adjusts the direction of the updated gradient to ensure it falls within a dual cone region. This region is defined as a set of vectors where the inner products with both the gradients of the PDE residual loss and the boundary loss are non-negative. Theoretically, we analyze the convergence properties of DCGD algorithms in a non-convex setting. On a variety of benchmark equations, we demonstrate that DCGD outperforms other optimization algorithms in terms of various evaluation metrics. In particular, DCGD achieves superior predictive accuracy and enhances the stability of training for failure modes of PINNs and complex PDEs, compared to existing optimally tuned models. Moreover, DCGD can be further improved by combining it with popular strategies for PINNs, including learning rate annealing and the Neural Tangent Kernel (NTK).
comment: The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024
♻ ☆ Conformal-in-the-Loop for Learning with Imbalanced Noisy Data
Class imbalance and label noise are pervasive in large-scale datasets, yet much of machine learning research assumes well-labeled, balanced data, which rarely reflects real world conditions. Existing approaches typically address either label noise or class imbalance in isolation, leading to suboptimal results when both issues coexist. In this work, we propose Conformal-in-the-Loop (CitL), a novel training framework that addresses both challenges with a conformal prediction-based approach. CitL evaluates sample uncertainty to adjust weights and prune unreliable examples, enhancing model resilience and accuracy with minimal computational cost. Our extensive experiments include a detailed analysis showing how CitL effectively emphasizes impactful data in noisy, imbalanced datasets. Our results show that CitL consistently boosts model performance, achieving up to a 6.1% increase in classification accuracy and a 5.0 mIoU improvement in segmentation. Our code is publicly available: CitL.
comment: Under Review
♻ ☆ EdgeSight: Enabling Modeless and Cost-Efficient Inference at the Edge
Traditional ML inference is evolving toward modeless inference, which abstracts the complexity of model selection from users, allowing the system to automatically choose the most appropriate model for each request based on accuracy and resource requirements. While prior studies have focused on modeless inference within data centers, this paper tackles the pressing need for cost-efficient modeless inference at the edge -- particularly within its unique constraints of limited device memory, volatile network conditions, and restricted power consumption. To overcome these challenges, we propose EdgeSight, a system that provides cost-efficient EdgeSight serving for diverse DNNs at the edge. EdgeSight employs an edge-data center (edge-DC) architecture, utilizing confidence scaling to reduce the number of model options while meeting diverse accuracy requirements. Additionally, it supports lossy inference in volatile network environments. Our experimental results show that EdgeSight outperforms existing systems by up to 1.6x in P99 latency for modeless services. Furthermore, our FPGA prototype demonstrates similar performance at certain accuracy levels, with a power consumption reduction of up to 3.34x.
comment: 12 pages
♻ ☆ Natural Language Outlines for Code: Literate Programming in the LLM Era
We propose using natural language outlines as a novel modality and interaction surface for providing AI assistance to developers throughout the software development process. An NL outline for a code function comprises multiple statements written in concise prose, which partition the code and summarize its main ideas in the style of literate programming. Crucially, we find that modern LLMs can generate accurate and high-quality NL outlines in practice. Moreover, NL outlines enable a bidirectional sync between code and NL, allowing changes in one to be automatically reflected in the other. We discuss many use cases for NL outlines: they can accelerate understanding and navigation of code and diffs, simplify code maintenance, augment code search, steer code generation, and more. We then propose and compare multiple LLM prompting techniques for generating outlines and ask professional developers to judge outline quality. Finally, we present two case studies applying NL outlines toward code review and malware detection.
♻ ☆ Continual Diffuser (CoD): Mastering Continual Offline Reinforcement Learning with Experience Rehearsal
Artificial neural networks, especially recent diffusion-based models, have shown remarkable superiority in gaming, control, and QA systems, where the training tasks' datasets are usually static. However, in real-world applications, such as robotic control of reinforcement learning (RL), the tasks are changing, and new tasks arise in a sequential order. This situation poses the new challenge of plasticity-stability trade-off for training an agent who can adapt to task changes and retain acquired knowledge. In view of this, we propose a rehearsal-based continual diffusion model, called Continual Diffuser (CoD), to endow the diffuser with the capabilities of quick adaptation (plasticity) and lasting retention (stability). Specifically, we first construct an offline benchmark that contains 90 tasks from multiple domains. Then, we train the CoD on each task with sequential modeling and conditional generation for making decisions. Next, we preserve a small portion of previous datasets as the rehearsal buffer and replay it to retain the acquired knowledge. Extensive experiments on a series of tasks show CoD can achieve a promising plasticity-stability trade-off and outperform existing diffusion-based methods and other representative baselines on most tasks.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ A Multi-Modal AI Copilot for Single-Cell Analysis with Instruction Following
Large language models excel at interpreting complex natural language instructions, enabling them to perform a wide range of tasks. In the life sciences, single-cell RNA sequencing (scRNA-seq) data serves as the "language of cellular biology", capturing intricate gene expression patterns at the single-cell level. However, interacting with this "language" through conventional tools is often inefficient and unintuitive, posing challenges for researchers. To address these limitations, we present InstructCell, a multi-modal AI copilot that leverages natural language as a medium for more direct and flexible single-cell analysis. We construct a comprehensive multi-modal instruction dataset that pairs text-based instructions with scRNA-seq profiles from diverse tissues and species. Building on this, we develop a multi-modal cell language architecture capable of simultaneously interpreting and processing both modalities. InstructCell empowers researchers to accomplish critical tasks-such as cell type annotation, conditional pseudo-cell generation, and drug sensitivity prediction-using straightforward natural language commands. Extensive evaluations demonstrate that InstructCell consistently meets or exceeds the performance of existing single-cell foundation models, while adapting to diverse experimental conditions. More importantly, InstructCell provides an accessible and intuitive tool for exploring complex single-cell data, lowering technical barriers and enabling deeper biological insights.
comment: 37 pages; 13 figures; Code: https://github.com/zjunlp/Instructcell, Models: https://huggingface.co/zjunlp/Instructcell-chat, https://huggingface.co/zjunlp/InstructCell-instruct
♻ ☆ Understanding Emergent Abilities of Language Models from the Loss Perspective NeurIPS 2024
Recent studies have put into question the belief that emergent abilities in language models are exclusive to large models. This skepticism arises from two observations: 1) smaller models can also exhibit high performance on emergent abilities and 2) there is doubt on the discontinuous metrics used to measure these abilities. In this paper, we propose to study emergent abilities in the lens of pre-training loss, instead of model size or training compute. We demonstrate that the Transformer models with the same pre-training loss, but different model and data sizes, generate the same performance on various downstream tasks, with a fixed data corpus, tokenization, and model architecture. We also discover that a model exhibits emergent abilities on certain tasks -- regardless of the continuity of metrics -- when its pre-training loss falls below a specific threshold. Before reaching this threshold, its performance remains at the level of random guessing. This inspires us to redefine emergent abilities as those that manifest in models with lower pre-training losses, highlighting that these abilities cannot be predicted by merely extrapolating the performance trends of models with higher pre-training losses.
comment: 23 pages, 8 figures. Accepted in NeurIPS 2024
♻ ☆ Data-driven inventory management for new products: A warm-start and adjusted Dyna-$Q$ approach
In this paper, we propose a novel reinforcement learning algorithm for inventory management of newly launched products with no or limited historical demand information. The algorithm follows the classic Dyna-$Q$ structure, balancing the model-based and model-free approaches, while accelerating the training process of Dyna-$Q$ and mitigating the model discrepancy generated by the model-based feedback. Warm-start information from the demand data of existing similar products can be incorporated into the algorithm to further stabilize the early-stage training and reduce the variance of the estimated optimal policy. Our approach is validated through a case study of bakery inventory management with real data. The adjusted Dyna-$Q$ shows up to a 23.7% reduction in average daily cost compared with $Q$-learning, and up to a 77.5% reduction in training time within the same horizon compared with classic Dyna-$Q$. By incorporating the warm-start information, it can be found that the adjusted Dyna-$Q$ has the lowest total cost, lowest variance in total cost, and relatively low shortage percentages among all the algorithms under a 30-day testing.
comment: 7 pages, 2 figures
♻ ☆ Unconditional stability of a recurrent neural circuit implementing divisive normalization
Stability in recurrent neural models poses a significant challenge, particularly in developing biologically plausible neurodynamical models that can be seamlessly trained. Traditional cortical circuit models are notoriously difficult to train due to expansive nonlinearities in the dynamical system, leading to an optimization problem with nonlinear stability constraints that are difficult to impose. Conversely, recurrent neural networks (RNNs) excel in tasks involving sequential data but lack biological plausibility and interpretability. In this work, we address these challenges by linking dynamic divisive normalization (DN) to the stability of ORGaNICs, a biologically plausible recurrent cortical circuit model that dynamically achieves DN and that has been shown to simulate a wide range of neurophysiological phenomena. By using the indirect method of Lyapunov, we prove the remarkable property of unconditional local stability for an arbitrary-dimensional ORGaNICs circuit when the recurrent weight matrix is the identity. We thus connect ORGaNICs to a system of coupled damped harmonic oscillators, which enables us to derive the circuit's energy function, providing a normative principle of what the circuit, and individual neurons, aim to accomplish. Further, for a generic recurrent weight matrix, we prove the stability of the 2D model and demonstrate empirically that stability holds in higher dimensions. Finally, we show that ORGaNICs can be trained by backpropagation through time without gradient clipping/scaling, thanks to its intrinsic stability property and adaptive time constants, which address the problems of exploding, vanishing, and oscillating gradients. By evaluating the model's performance on RNN benchmarks, we find that ORGaNICs outperform alternative neurodynamical models on static image classification tasks and perform comparably to LSTMs on sequential tasks.
♻ ☆ Investigating the Effect of Network Pruning on Performance and Interpretability
Deep Neural Networks (DNNs) are often over-parameterized for their tasks and can be compressed quite drastically by removing weights, a process called pruning. We investigate the impact of different pruning techniques on the classification performance and interpretability of GoogLeNet. We systematically apply unstructured and structured pruning, as well as connection sparsity (pruning of input weights) methods to the network and analyze the outcomes regarding the network's performance on the validation set of ImageNet. We also compare different retraining strategies, such as iterative pruning and one-shot pruning. We find that with sufficient retraining epochs, the performance of the networks can approximate the performance of the default GoogLeNet - and even surpass it in some cases. To assess interpretability, we employ the Mechanistic Interpretability Score (MIS) developed by Zimmermann et al. . Our experiments reveal that there is no significant relationship between interpretability and pruning rate when using MIS as a measure. Additionally, we observe that networks with extremely low accuracy can still achieve high MIS scores, suggesting that the MIS may not always align with intuitive notions of interpretability, such as understanding the basis of correct decisions.
comment: 4 pages, 6 figures
♻ ☆ Finite-Sample Bounds for Adaptive Inverse Reinforcement Learning using Passive Langevin Dynamics
This paper provides a finite-sample analysis of a passive stochastic gradient Langevin dynamics (PSGLD) algorithm. This algorithm is designed to achieve adaptive inverse reinforcement learning (IRL). Adaptive IRL aims to estimate the cost function of a forward learner performing a stochastic gradient algorithm (e.g., policy gradient reinforcement learning) by observing their estimates in real-time. The PSGLD algorithm is considered passive because it incorporates noisy gradients provided by an external stochastic gradient algorithm (forward learner), of which it has no control. The PSGLD algorithm acts as a randomized sampler to achieve adaptive IRL by reconstructing the forward learner's cost function nonparametrically from the stationary measure of a Langevin diffusion. This paper analyzes the non-asymptotic (finite-sample) performance; we provide explicit bounds on the 2-Wasserstein distance between PSGLD algorithm sample measure and the stationary measure encoding the cost function, and provide guarantees for a kernel density estimation scheme which reconstructs the cost function from empirical samples. Our analysis uses tools from the study of Markov diffusion operators. The derived bounds have both practical and theoretical significance. They provide finite-time guarantees for an adaptive IRL mechanism, and substantially generalize the analytical framework of a line of research in passive stochastic gradient algorithms.
♻ ☆ Compositional Automata Embeddings for Goal-Conditioned Reinforcement Learning
Goal-conditioned reinforcement learning is a powerful way to control an AI agent's behavior at runtime. That said, popular goal representations, e.g., target states or natural language, are either limited to Markovian tasks or rely on ambiguous task semantics. We propose representing temporal goals using compositions of deterministic finite automata (cDFAs) and use cDFAs to guide RL agents. cDFAs balance the need for formal temporal semantics with ease of interpretation: if one can understand a flow chart, one can understand a cDFA. On the other hand, cDFAs form a countably infinite concept class with Boolean semantics, and subtle changes to the automaton can result in very different tasks, making them difficult to condition agent behavior on. To address this, we observe that all paths through a DFA correspond to a series of reach-avoid tasks and propose pre-training graph neural network embeddings on "reach-avoid derived" DFAs. Through empirical evaluation, we demonstrate that the proposed pre-training method enables zero-shot generalization to various cDFA task classes and accelerated policy specialization without the myopic suboptimality of hierarchical methods.
♻ ☆ 2 OLMo 2 Furious
We present OLMo 2, the next generation of our fully open language models. OLMo 2 includes dense autoregressive models with improved architecture and training recipe, pretraining data mixtures, and instruction tuning recipes. Our modified model architecture and training recipe achieve both better training stability and improved per-token efficiency. Our updated pretraining data mixture introduces a new, specialized data mix called Dolmino Mix 1124, which significantly improves model capabilities across many downstream task benchmarks when introduced via late-stage curriculum training (i.e. specialized data during the annealing phase of pretraining). Finally, we incorporate best practices from T\"ulu 3 to develop OLMo 2-Instruct, focusing on permissive data and extending our final-stage reinforcement learning with verifiable rewards (RLVR). Our OLMo 2 base models sit at the Pareto frontier of performance to compute, often matching or outperforming open-weight only models like Llama 3.1 and Qwen 2.5 while using fewer FLOPs and with fully transparent training data, code, and recipe. Our fully open OLMo 2-Instruct models are competitive with or surpassing open-weight only models of comparable size, including Qwen 2.5, Llama 3.1 and Gemma 2. We release all OLMo 2 artifacts openly -- models at 7B and 13B scales, both pretrained and post-trained, including their full training data, training code and recipes, training logs and thousands of intermediate checkpoints. The final instruction model is available on the Ai2 Playground as a free research demo.
comment: Model demo available at playground.allenai.org
♻ ☆ Learning Cross-Domain Representations for Transferable Drug Perturbations on Single-Cell Transcriptional Responses AAAI
Phenotypic drug discovery has attracted widespread attention because of its potential to identify bioactive molecules. Transcriptomic profiling provides a comprehensive reflection of phenotypic changes in cellular responses to external perturbations. In this paper, we propose XTransferCDR, a novel generative framework designed for feature decoupling and transferable representation learning across domains. Given a pair of perturbed expression profiles, our approach decouples the perturbation representations from basal states through domain separation encoders and then cross-transfers them in the latent space. The transferred representations are then used to reconstruct the corresponding perturbed expression profiles via a shared decoder. This cross-transfer constraint effectively promotes the learning of transferable drug perturbation representations. We conducted extensive evaluations of our model on multiple datasets, including single-cell transcriptional responses to drugs and single- and combinatorial genetic perturbations. The experimental results show that XTransferCDR achieved better performance than current state-of-the-art methods, showcasing its potential to advance phenotypic drug discovery.
comment: Accepted by The 39th Annual AAAI Conference on Artificial Intelligenc (AAAI 2025)
♻ ☆ Efficient Long Video Tokenization via Coordinate-based Patch Reconstruction
Efficient tokenization of videos remains a challenge in training vision models that can process long videos. One promising direction is to develop a tokenizer that can encode long video clips, as it would enable the tokenizer to leverage the temporal coherence of videos better for tokenization. However, training existing tokenizers on long videos often incurs a huge training cost as they are trained to reconstruct all the frames at once. In this paper, we introduce CoordTok, a video tokenizer that learns a mapping from coordinate-based representations to the corresponding patches of input videos, inspired by recent advances in 3D generative models. In particular, CoordTok encodes a video into factorized triplane representations and reconstructs patches that correspond to randomly sampled $(x,y,t)$ coordinates. This allows for training large tokenizer models directly on long videos without requiring excessive training resources. Our experiments show that CoordTok can drastically reduce the number of tokens for encoding long video clips. For instance, CoordTok can encode a 128-frame video with 128$\times$128 resolution into 1280 tokens, while baselines need 6144 or 8192 tokens to achieve similar reconstruction quality. We further show that this efficient video tokenization enables memory-efficient training of a diffusion transformer that can generate 128 frames at once.
comment: Code is available on the project webpage: https://huiwon-jang.github.io/coordtok/
♻ ☆ A Unifying Information-theoretic Perspective on Evaluating Generative Models
Considering the difficulty of interpreting generative model output, there is significant current research focused on determining meaningful evaluation metrics. Several recent approaches utilize "precision" and "recall," borrowed from the classification domain, to individually quantify the output fidelity (realism) and output diversity (representation of the real data variation), respectively. With the increase in metric proposals, there is a need for a unifying perspective, allowing for easier comparison and clearer explanation of their benefits and drawbacks. To this end, we unify a class of kth-nearest-neighbors (kNN)-based metrics under an information-theoretic lens using approaches from kNN density estimation. Additionally, we propose a tri-dimensional metric composed of Precision Cross-Entropy (PCE), Recall Cross-Entropy (RCE), and Recall Entropy (RE), which separately measure fidelity and two distinct aspects of diversity, inter- and intra-class. Our domain-agnostic metric, derived from the information-theoretic concepts of entropy and cross-entropy, can be dissected for both sample- and mode-level analysis. Our detailed experimental results demonstrate the sensitivity of our metric components to their respective qualities and reveal undesirable behaviors of other metrics.
♻ ☆ Predicting Long-Term Student Outcomes from Short-Term EdTech Log Data
Educational stakeholders are often particularly interested in sparse, delayed student outcomes, like end-of-year statewide exams. The rare occurrence of such assessments makes it harder to identify students likely to fail such assessments, as well as making it slow for researchers and educators to be able to assess the effectiveness of particular educational tools. Prior work has primarily focused on using logs from students full usage (e.g. year-long) of an educational product to predict outcomes, or considered predictive accuracy using a few minutes to predict outcomes after a short (e.g. 1 hour) session. In contrast, we investigate machine learning predictors using students' logs during their first few hours of usage can provide useful predictive insight into those students' end-of-school year external assessment. We do this on three diverse datasets: from students in Uganda using a literacy game product, and from students in the US using two mathematics intelligent tutoring systems. We consider various measures of the accuracy of the resulting predictors, including its ability to identify students at different parts along the assessment performance distribution. Our findings suggest that short-term log usage data, from 2-5 hours, can be used to provide valuable signal about students' long-term external performance.
comment: Accepted to the 15th International Learning Analytics and Knowledge Conference (LAK2025)
♻ ☆ A Misclassification Network-Based Method for Comparative Genomic Analysis
Classifying genome sequences based on metadata has been an active area of research in comparative genomics for decades with many important applications across the life sciences. Established methods for classifying genomes can be broadly grouped into sequence alignment-based and alignment-free models. Conventional alignment-based models rely on genome similarity measures calculated based on local sequence alignments or consistent ordering among sequences. However, such methods are computationally expensive when dealing with large ensembles of even moderately sized genomes. In contrast, alignment-free (AF) approaches measure genome similarity based on summary statistics in an unsupervised setting and are efficient enough to analyze large datasets. However, both alignment-based and AF methods typically assume fixed scoring rubrics that lack the flexibility to assign varying importance to different parts of the sequences based on prior knowledge. In this study, we integrate AI and network science approaches to develop a comparative genomic analysis framework that addresses these limitations. Our approach, termed the Genome Misclassification Network Analysis (GMNA), simultaneously leverages misclassified instances, a learned scoring rubric, and label information to classify genomes based on associated metadata and better understand potential drivers of misclassification. We evaluate the utility of the GMNA using Naive Bayes and convolutional neural network models, supplemented by additional experiments with transformer-based models, to construct SARS-CoV-2 sampling location classifiers using over 500,000 viral genome sequences and study the resulting network of misclassifications. We demonstrate the global health potential of the GMNA by leveraging the SARS-CoV-2 genome misclassification networks to investigate the role human mobility played in structuring geographic clustering of SARS-CoV-2.
♻ ☆ FlowDock: Geometric Flow Matching for Generative Protein-Ligand Docking and Affinity Prediction
Powerful generative AI models of protein-ligand structure have recently been proposed, but few of these methods support both flexible protein-ligand docking and affinity estimation. Of those that do, none can directly model multiple binding ligands concurrently or have been rigorously benchmarked on pharmacologically relevant drug targets, hindering their widespread adoption in drug discovery efforts. In this work, we propose FlowDock, the first deep geometric generative model based on conditional flow matching that learns to directly map unbound (apo) structures to their bound (holo) counterparts for an arbitrary number of binding ligands. Furthermore, FlowDock provides predicted structural confidence scores and binding affinity values with each of its generated protein-ligand complex structures, enabling fast virtual screening of new (multi-ligand) drug targets. For the well-known PoseBusters Benchmark dataset, FlowDock outperforms single-sequence AlphaFold 3 with a 51% blind docking success rate using unbound (apo) protein input structures and without any information derived from multiple sequence alignments, and for the challenging new DockGen-E dataset, FlowDock outperforms single-sequence AlphaFold 3 and matches single-sequence Chai-1 for binding pocket generalization. Additionally, in the ligand category of the 16th community-wide Critical Assessment of Techniques for Structure Prediction (CASP16), FlowDock ranked among the top-5 methods for pharmacological binding affinity estimation across 140 protein-ligand complexes, demonstrating the efficacy of its learned representations in virtual screening. Source code, data, and pre-trained models are available at https://github.com/BioinfoMachineLearning/FlowDock.
comment: 10 pages, 2 tables, 2 algorithms, 7 figures. Code, data, pre-trained models, and baseline method predictions are available at https://github.com/BioinfoMachineLearning/FlowDock
♻ ☆ Top-k Multi-Armed Bandit Learning for Content Dissemination in Swarms of Micro-UAVs
This paper presents a Micro-Unmanned Aerial Vehicle (UAV)-enhanced content management system for disaster scenarios where communication infrastructure is generally compromised. Utilizing a hybrid network of stationary and mobile Micro-UAVs, this system aims to provide crucial content access to isolated communities. In the developed architecture, stationary anchor UAVs, equipped with vertical and lateral links, serve users in individual disaster-affected communities. and mobile micro-ferrying UAVs, with enhanced mobility, extend coverage across multiple such communities. The primary goal is to devise a content dissemination system that dynamically learns caching policies to maximize content accessibility to users left without communication infrastructure. The core contribution is an adaptive content dissemination framework that employs a decentralized Top-k Multi-Armed Bandit learning approach for efficient UAV caching decisions. This approach accounts for geo-temporal variations in content popularity and diverse user demands. Additionally, a Selective Caching Algorithm is proposed to minimize redundant content copies by leveraging inter-UAV information sharing. Through functional verification and performance evaluation, the proposed framework demonstrates improved system performance and adaptability across varying network sizes, micro-UAV swarms, and content popularity distributions.
comment: 16 pages, 8 figures, 2 algorithms, 2 tables, journal
♻ ☆ Key-Exchange Convolutional Auto-Encoder for Data Augmentation in Early Knee Osteoarthritis Detection
Knee Osteoarthritis (KOA) is a common musculoskeletal condition that significantly affects mobility and quality of life, particularly in elderly populations. However, training deep learning models for early KOA classification is often hampered by the limited availability of annotated medical datasets, owing to the high costs and labour-intensive nature of data labelling. Traditional data augmentation techniques, while useful, rely on simple transformations and fail to introduce sufficient diversity into the dataset. To address these challenges, we propose the Key-Exchange Convolutional Auto-Encoder (KECAE) as an innovative Artificial Intelligence (AI)-based data augmentation strategy for early KOA classification. Our model employs a convolutional autoencoder with a novel key-exchange mechanism that generates synthetic images by selectively exchanging key pathological features between X-ray images, which not only diversifies the dataset but also ensures the clinical validity of the augmented data. A hybrid loss function is introduced to supervise feature learning and reconstruction, integrating multiple components, including reconstruction, supervision, and feature separation losses. Experimental results demonstrate that the KECAE-generated data significantly improve the performance of KOA classification models, with accuracy gains of up to 1.98% across various standard and state-of-the-art architectures. Furthermore, a clinical validation study involving expert radiologists confirms the anatomical plausibility and diagnostic realism of the synthetic outputs. These findings highlight the potential of KECAE as a robust tool for augmenting medical datasets in early KOA detection.
♻ ☆ Nonsmooth Nonconvex-Nonconcave Minimax Optimization: Primal-Dual Balancing and Iteration Complexity Analysis
Nonconvex-nonconcave minimax optimization has gained widespread interest over the last decade. However, most existing works focus on variants of gradient descent-ascent (GDA) algorithms, which are only applicable to smooth nonconvex-concave settings. To address this limitation, we propose a novel algorithm named smoothed proximal linear descent-ascent (smoothed PLDA), which can effectively handle a broad range of structured nonsmooth nonconvex-nonconcave minimax problems. Specifically, we consider the setting where the primal function has a nonsmooth composite structure and the dual function possesses the Kurdyka-Lojasiewicz (KL) property with exponent $\theta \in [0,1)$. We introduce a novel convergence analysis framework for smoothed PLDA, the key components of which are our newly developed nonsmooth primal error bound and dual error bound. Using this framework, we show that smoothed PLDA can find both $\epsilon$-game-stationary points and $\epsilon$-optimization-stationary points of the problems of interest in $\mathcal{O}(\epsilon^{-2\max\{2\theta,1\}})$ iterations. Furthermore, when $\theta \in [0,\frac{1}{2}]$, smoothed PLDA achieves the optimal iteration complexity of $\mathcal{O}(\epsilon^{-2})$. To further demonstrate the effectiveness and wide applicability of our analysis framework, we show that certain max-structured problem possesses the KL property with exponent $\theta=0$ under mild assumptions. As a by-product, we establish algorithm-independent quantitative relationships among various stationarity concepts, which may be of independent interest.
comment: Accepted for publication in Mathematical Programming
♻ ☆ Surrogate Modeling for Explainable Predictive Time Series Corrections
We introduce a local surrogate approach for explainable time-series forecasting. An initially non-interpretable predictive model to improve the forecast of a classical time-series 'base model' is used. 'Explainability' of the correction is provided by fitting the base model again to the data from which the error prediction is removed (subtracted), yielding a difference in the model parameters which can be interpreted. We provide illustrative examples to demonstrate the potential of the method to discover and explain underlying patterns in the data.
♻ ☆ Enhancing Novel Object Detection via Cooperative Foundational Models WACV 2025
In this work, we address the challenging and emergent problem of novel object detection (NOD), focusing on the accurate detection of both known and novel object categories during inference. Traditional object detection algorithms are inherently closed-set, limiting their capability to handle NOD. We present a novel approach to transform existing closed-set detectors into open-set detectors. This transformation is achieved by leveraging the complementary strengths of pre-trained foundational models, specifically CLIP and SAM, through our cooperative mechanism. Furthermore, by integrating this mechanism with state-of-the-art open-set detectors such as GDINO, we establish new benchmarks in object detection performance. Our method achieves 17.42 mAP in novel object detection and 42.08 mAP for known objects on the challenging LVIS dataset. Adapting our approach to the COCO OVD split, we surpass the current state-of-the-art by a margin of 7.2 $ \text{AP}_{50} $ for novel classes. Our code is available at https://rohit901.github.io/coop-foundation-models/ .
comment: Accepted at WACV 2025
♻ ☆ Towards Scalable and Stable Parallelization of Nonlinear RNNs NeurIPS 2024
Transformers and linear state space models can be evaluated in parallel on modern hardware, but evaluating nonlinear RNNs appears to be an inherently sequential problem. Recently, however, Lim et al. '24 developed an approach called DEER, which evaluates nonlinear RNNs in parallel by posing the states as the solution to a fixed-point problem. They derived a parallel form of Newton's method to solve the fixed-point problem and achieved significant speedups over sequential evaluation. However, the computational complexity of DEER is cubic in the state size, and the algorithm can suffer from numerical instability. We address these limitations with two novel contributions. To reduce the computational complexity, we apply quasi-Newton approximations and show they converge comparably to Newton, use less memory, and are faster. To stabilize DEER, we leverage a connection between the Levenberg-Marquardt algorithm and Kalman smoothing, which we call ELK. This connection allows us to stabilize Newton's method while using efficient parallelized Kalman smoothing algorithms to retain performance. Through several experiments, we show that these innovations allow for parallel evaluation of nonlinear RNNs at larger scales and with greater stability.
comment: 33 pages, 9 figures, NeurIPS 2024
♻ ☆ The Artificial Scientist -- in-transit Machine Learning of Plasma Simulations
Increasing HPC cluster sizes and large-scale simulations that produce petabytes of data per run, create massive IO and storage challenges for analysis. Deep learning-based techniques, in particular, make use of these amounts of domain data to extract patterns that help build scientific understanding. Here, we demonstrate a streaming workflow in which simulation data is streamed directly to a machine-learning (ML) framework, circumventing the file system bottleneck. Data is transformed in transit, asynchronously to the simulation and the training of the model. With the presented workflow, data operations can be performed in common and easy-to-use programming languages, freeing the application user from adapting the application output routines. As a proof-of-concept we consider a GPU accelerated particle-in-cell (PIConGPU) simulation of the Kelvin- Helmholtz instability (KHI). We employ experience replay to avoid catastrophic forgetting in learning from this non-steady process in a continual manner. We detail challenges addressed while porting and scaling to Frontier exascale system.
comment: 12 pages, 9 figures
♻ ☆ Relational Reasoning Networks
Neuro-symbolic methods integrate neural architectures, knowledge representation and reasoning. However, they have been struggling at both dealing with the intrinsic uncertainty of the observations and scaling to real-world applications. This paper presents Relational Reasoning Networks (R2N), a novel end-to-end model that performs relational reasoning in the latent space of a deep learner architecture, where the representations of constants, ground atoms and their manipulations are learned in an integrated fashion. Unlike flat architectures like Knowledge Graph Embedders, which can only represent relations between entities, R2Ns define an additional computational structure, accounting for higher-level relations among the ground atoms. The considered relations can be explicitly known, like the ones defined by logic formulas, or defined as unconstrained correlations among groups of ground atoms. R2Ns can be applied to purely symbolic tasks or as a neuro-symbolic platform to integrate learning and reasoning in heterogeneous problems with both symbolic and feature-based represented entities. The proposed model overtakes the limitations of previous neuro-symbolic methods that have been either limited in terms of scalability or expressivity. The proposed methodology is shown to achieve state-of-the-art results in different experimental settings.
♻ ☆ ImageNet-Patch: A Dataset for Benchmarking Machine Learning Robustness against Adversarial Patches
Adversarial patches are optimized contiguous pixel blocks in an input image that cause a machine-learning model to misclassify it. However, their optimization is computationally demanding, and requires careful hyperparameter tuning, potentially leading to suboptimal robustness evaluations. To overcome these issues, we propose ImageNet-Patch, a dataset to benchmark machine-learning models against adversarial patches. It consists of a set of patches, optimized to generalize across different models, and readily applicable to ImageNet data after preprocessing them with affine transformations. This process enables an approximate yet faster robustness evaluation, leveraging the transferability of adversarial perturbations. We showcase the usefulness of this dataset by testing the effectiveness of the computed patches against 127 models. We conclude by discussing how our dataset could be used as a benchmark for robustness, and how our methodology can be generalized to other domains. We open source our dataset and evaluation code at https://github.com/pralab/ImageNet-Patch.
comment: Published in Pattern Recognition. DOI: https://doi.org/10.1016/j.patcog.2022.109064
Multimedia 3
☆ Multimodal LLMs Can Reason about Aesthetics in Zero-Shot
We present the first study on how Multimodal LLMs' (MLLMs) reasoning ability shall be elicited to evaluate the aesthetics of artworks. To facilitate this investigation, we construct MM-StyleBench, a novel high-quality dataset for benchmarking artistic stylization. We then develop a principled method for human preference modeling and perform a systematic correlation analysis between MLLMs' responses and human preference. Our experiments reveal an inherent hallucination issue of MLLMs in art evaluation, associated with response subjectivity. ArtCoT is proposed, demonstrating that art-specific task decomposition and the use of concrete language boost MLLMs' reasoning ability for aesthetics. Our findings offer valuable insights into MLLMs for art and can benefit a wide range of downstream applications, such as style transfer and artistic image generation. Code available at https://github.com/songrise/MLLM4Art.
comment: WIP, Homepage https://github.com/songrise/MLLM4Art
☆ Multimodal Fake News Video Explanation Generation
Multi-modal explanation involves the assessment of the veracity of a variety of different content, and relies on multiple information modalities to comprehensively consider the relevance and consistency between modalities. Most existing fake news video detection methods focus on improving accuracy while ignoring the importance of providing explanations. In this paper, we propose a novel problem - Fake News Video Explanation (FNVE) - Given a multimodal news containing both video and caption text, we aim to generate natural language explanations to reveal the truth of predictions. To this end, we develop FakeNVE, a new dataset of explanations for truthfully multimodal posts, where each explanation is a natural language (English) sentence describing the attribution of a news thread. We benchmark FakeNVE by using a multimodal transformer-based architecture. Subsequently, a BART-based autoregressive decoder is used as the generator. Empirical results show compelling results for various baselines (applicable to FNVE) across multiple evaluation metrics. We also perform human evaluation on explanation generation, achieving high scores for both adequacy and fluency.
♻ ☆ Multi-modal and Multi-scale Spatial Environment Understanding for Immersive Visual Text-to-Speech AAAI'2025
Visual Text-to-Speech (VTTS) aims to take the environmental image as the prompt to synthesize the reverberant speech for the spoken content. The challenge of this task lies in understanding the spatial environment from the image. Many attempts have been made to extract global spatial visual information from the RGB space of an spatial image. However, local and depth image information are crucial for understanding the spatial environment, which previous works have ignored. To address the issues, we propose a novel multi-modal and multi-scale spatial environment understanding scheme to achieve immersive VTTS, termed M2SE-VTTS. The multi-modal aims to take both the RGB and Depth spaces of the spatial image to learn more comprehensive spatial information, and the multi-scale seeks to model the local and global spatial knowledge simultaneously. Specifically, we first split the RGB and Depth images into patches and adopt the Gemini-generated environment captions to guide the local spatial understanding. After that, the multi-modal and multi-scale features are integrated by the local-aware global spatial understanding. In this way, M2SE-VTTS effectively models the interactions between local and global spatial contexts in the multi-modal spatial environment. Objective and subjective evaluations suggest that our model outperforms the advanced baselines in environmental speech generation. The code and audio samples are available at: https://github.com/AI-S2-Lab/M2SE-VTTS.
comment: 9 pages,2 figures, Accepted by AAAI'2025
Artificial Intelligence 145
☆ How Do Generative Models Draw a Software Engineer? A Case Study on Stable Diffusion Bias
Generative models are nowadays widely used to generate graphical content used for multiple purposes, e.g. web, art, advertisement. However, it has been shown that the images generated by these models could reinforce societal biases already existing in specific contexts. In this paper, we focus on understanding if this is the case when one generates images related to various software engineering tasks. In fact, the Software Engineering (SE) community is not immune from gender and ethnicity disparities, which could be amplified by the use of these models. Hence, if used without consciousness, artificially generated images could reinforce these biases in the SE domain. Specifically, we perform an extensive empirical evaluation of the gender and ethnicity bias exposed by three versions of the Stable Diffusion (SD) model (a very popular open-source text-to-image model) - SD 2, SD XL, and SD 3 - towards SE tasks. We obtain 6,720 images by feeding each model with two sets of prompts describing different software-related tasks: one set includes the Software Engineer keyword, and one set does not include any specification of the person performing the task. Next, we evaluate the gender and ethnicity disparities in the generated images. Results show how all models are significantly biased towards male figures when representing software engineers. On the contrary, while SD 2 and SD XL are strongly biased towards White figures, SD 3 is slightly more biased towards Asian figures. Nevertheless, all models significantly under-represent Black and Arab figures, regardless of the prompt style used. The results of our analysis highlight severe concerns about adopting those models to generate content for SE tasks and open the field for future research on bias mitigation in this context.
☆ Multimodal LLMs Can Reason about Aesthetics in Zero-Shot
We present the first study on how Multimodal LLMs' (MLLMs) reasoning ability shall be elicited to evaluate the aesthetics of artworks. To facilitate this investigation, we construct MM-StyleBench, a novel high-quality dataset for benchmarking artistic stylization. We then develop a principled method for human preference modeling and perform a systematic correlation analysis between MLLMs' responses and human preference. Our experiments reveal an inherent hallucination issue of MLLMs in art evaluation, associated with response subjectivity. ArtCoT is proposed, demonstrating that art-specific task decomposition and the use of concrete language boost MLLMs' reasoning ability for aesthetics. Our findings offer valuable insights into MLLMs for art and can benefit a wide range of downstream applications, such as style transfer and artistic image generation. Code available at https://github.com/songrise/MLLM4Art.
comment: WIP, Homepage https://github.com/songrise/MLLM4Art
☆ AI-RAN: Transforming RAN with AI-driven Computing Infrastructure
The radio access network (RAN) landscape is undergoing a transformative shift from traditional, communication-centric infrastructures towards converged compute-communication platforms. This article introduces AI-RAN which integrates both RAN and artificial intelligence (AI) workloads on the same infrastructure. By doing so, AI-RAN not only meets the performance demands of future networks but also improves asset utilization. We begin by examining how RANs have evolved beyond mobile broadband towards AI-RAN and articulating manifestations of AI-RAN into three forms: AI-for-RAN, AI-on-RAN, and AI-and-RAN. Next, we identify the key requirements and enablers for the convergence of communication and computing in AI-RAN. We then provide a reference architecture for advancing AI-RAN from concept to practice. To illustrate the practical potential of AI-RAN, we present a proof-of-concept that concurrently processes RAN and AI workloads utilizing NVIDIA Grace-Hopper GH200 servers. Finally, we conclude the article by outlining future work directions to guide further developments of AI-RAN.
comment: 7 pages, 5 figures
☆ Personality Modeling for Persuasion of Misinformation using AI Agent
The proliferation of misinformation on social media platforms has highlighted the need to understand how individual personality traits influence susceptibility to and propagation of misinformation. This study employs an innovative agent-based modeling approach to investigate the relationship between personality traits and misinformation dynamics. Using six AI agents embodying different dimensions of the Big Five personality traits (Extraversion, Agreeableness, and Neuroticism), we simulated interactions across six diverse misinformation topics. The experiment, implemented through the AgentScope framework using the GLM-4-Flash model, generated 90 unique interactions, revealing complex patterns in how personality combinations affect persuasion and resistance to misinformation. Our findings demonstrate that analytical and critical personality traits enhance effectiveness in evidence-based discussions, while non-aggressive persuasion strategies show unexpected success in misinformation correction. Notably, agents with critical traits achieved a 59.4% success rate in HIV-related misinformation discussions, while those employing non-aggressive approaches maintained consistent persuasion rates above 40% across different personality combinations. The study also revealed a non-transitive pattern in persuasion effectiveness, challenging conventional assumptions about personality-based influence. These results provide crucial insights for developing personality-aware interventions in digital environments and suggest that effective misinformation countermeasures should prioritize emotional connection and trust-building over confrontational approaches. The findings contribute to both theoretical understanding of personality-misinformation dynamics and practical strategies for combating misinformation in social media contexts.
☆ Development and Validation of the Provider Documentation Summarization Quality Instrument for Large Language Models
As Large Language Models (LLMs) are integrated into electronic health record (EHR) workflows, validated instruments are essential to evaluate their performance before implementation. Existing instruments for provider documentation quality are often unsuitable for the complexities of LLM-generated text and lack validation on real-world data. The Provider Documentation Summarization Quality Instrument (PDSQI-9) was developed to evaluate LLM-generated clinical summaries. Multi-document summaries were generated from real-world EHR data across multiple specialties using several LLMs (GPT-4o, Mixtral 8x7b, and Llama 3-8b). Validation included Pearson correlation for substantive validity, factor analysis and Cronbach's alpha for structural validity, inter-rater reliability (ICC and Krippendorff's alpha) for generalizability, a semi-Delphi process for content validity, and comparisons of high- versus low-quality summaries for discriminant validity. Seven physician raters evaluated 779 summaries and answered 8,329 questions, achieving over 80% power for inter-rater reliability. The PDSQI-9 demonstrated strong internal consistency (Cronbach's alpha = 0.879; 95% CI: 0.867-0.891) and high inter-rater reliability (ICC = 0.867; 95% CI: 0.867-0.868), supporting structural validity and generalizability. Factor analysis identified a 4-factor model explaining 58% of the variance, representing organization, clarity, accuracy, and utility. Substantive validity was supported by correlations between note length and scores for Succinct (rho = -0.200, p = 0.029) and Organized (rho = -0.190, p = 0.037). Discriminant validity distinguished high- from low-quality summaries (p < 0.001). The PDSQI-9 demonstrates robust construct validity, supporting its use in clinical practice to evaluate LLM-generated summaries and facilitate safer integration of LLMs into healthcare workflows.
☆ Trusted Machine Learning Models Unlock Private Inference for Problems Currently Infeasible with Cryptography
We often interact with untrusted parties. Prioritization of privacy can limit the effectiveness of these interactions, as achieving certain goals necessitates sharing private data. Traditionally, addressing this challenge has involved either seeking trusted intermediaries or constructing cryptographic protocols that restrict how much data is revealed, such as multi-party computations or zero-knowledge proofs. While significant advances have been made in scaling cryptographic approaches, they remain limited in terms of the size and complexity of applications they can be used for. In this paper, we argue that capable machine learning models can fulfill the role of a trusted third party, thus enabling secure computations for applications that were previously infeasible. In particular, we describe Trusted Capable Model Environments (TCMEs) as an alternative approach for scaling secure computation, where capable machine learning model(s) interact under input/output constraints, with explicit information flow control and explicit statelessness. This approach aims to achieve a balance between privacy and computational efficiency, enabling private inference where classical cryptographic solutions are currently infeasible. We describe a number of use cases that are enabled by TCME, and show that even some simple classic cryptographic problems can already be solved with TCME. Finally, we outline current limitations and discuss the path forward in implementing them.
☆ An analysis of data variation and bias in image-based dermatological datasets for machine learning classification
AI algorithms have become valuable in aiding professionals in healthcare. The increasing confidence obtained by these models is helpful in critical decision demands. In clinical dermatology, classification models can detect malignant lesions on patients' skin using only RGB images as input. However, most learning-based methods employ data acquired from dermoscopic datasets on training, which are large and validated by a gold standard. Clinical models aim to deal with classification on users' smartphone cameras that do not contain the corresponding resolution provided by dermoscopy. Also, clinical applications bring new challenges. It can contain captures from uncontrolled environments, skin tone variations, viewpoint changes, noises in data and labels, and unbalanced classes. A possible alternative would be to use transfer learning to deal with the clinical images. However, as the number of samples is low, it can cause degradations on the model's performance; the source distribution used in training differs from the test set. This work aims to evaluate the gap between dermoscopic and clinical samples and understand how the dataset variations impact training. It assesses the main differences between distributions that disturb the model's prediction. Finally, from experiments on different architectures, we argue how to combine the data from divergent distributions, decreasing the impact on the model's final accuracy.
comment: 10 pages, 1 figure
☆ Kolmogorov-Arnold Networks for Time Series Granger Causality Inference
We introduce Granger Causality Kolmogorov-Arnold Networks (GCKAN), an innovative architecture that extends the recently proposed Kolmogorov-Arnold Networks (KAN) to the domain of causal inference. By extracting base weights from KAN layers and incorporating the sparsity-inducing penalty along with ridge regularization, GCKAN infers the Granger causality from time series while enabling automatic time lag selection. Additionally, we propose an algorithm leveraging time-reversed Granger causality to enhance inference accuracy. The algorithm compares prediction and sparse-inducing losses derived from the original and time-reversed series, automatically selecting the casual relationship with the higher score or integrating the results to mitigate spurious connectivities. Comprehensive experiments conducted on Lorenz-96, gene regulatory networks, fMRI BOLD signals, and VAR datasets demonstrate that the proposed model achieves competitive performance to state-of-the-art methods in inferring Granger causality from nonlinear, high-dimensional, and limited-sample time series.
☆ Analyzing the Ethical Logic of Six Large Language Models
This study examines the ethical reasoning of six prominent generative large language models: OpenAI GPT-4o, Meta LLaMA 3.1, Perplexity, Anthropic Claude 3.5 Sonnet, Google Gemini, and Mistral 7B. The research explores how these models articulate and apply ethical logic, particularly in response to moral dilemmas such as the Trolley Problem, and Heinz Dilemma. Departing from traditional alignment studies, the study adopts an explainability-transparency framework, prompting models to explain their ethical reasoning. This approach is analyzed through three established ethical typologies: the consequentialist-deontological analytic, Moral Foundations Theory, and the Kohlberg Stages of Moral Development Model. Findings reveal that LLMs exhibit largely convergent ethical logic, marked by a rationalist, consequentialist emphasis, with decisions often prioritizing harm minimization and fairness. Despite similarities in pre-training and model architecture, a mixture of nuanced and significant differences in ethical reasoning emerge across models, reflecting variations in fine-tuning and post-training processes. The models consistently display erudition, caution, and self-awareness, presenting ethical reasoning akin to a graduate-level discourse in moral philosophy. In striking uniformity these systems all describe their ethical reasoning as more sophisticated than what is characteristic of typical human moral logic.
☆ Visual WetlandBirds Dataset: Bird Species Identification and Behavior Recognition in Videos
The current biodiversity loss crisis makes animal monitoring a relevant field of study. In light of this, data collected through monitoring can provide essential insights, and information for decision-making aimed at preserving global biodiversity. Despite the importance of such data, there is a notable scarcity of datasets featuring videos of birds, and none of the existing datasets offer detailed annotations of bird behaviors in video format. In response to this gap, our study introduces the first fine-grained video dataset specifically designed for bird behavior detection and species classification. This dataset addresses the need for comprehensive bird video datasets and provides detailed data on bird actions, facilitating the development of deep learning models to recognize these, similar to the advancements made in human action recognition. The proposed dataset comprises 178 videos recorded in Spanish wetlands, capturing 13 different bird species performing 7 distinct behavior classes. In addition, we also present baseline results using state of the art models on two tasks: bird behavior recognition and species classification.
☆ Disentangling Exploration of Large Language Models by Optimal Exploitation
Exploration is a crucial skill for self-improvement and open-ended problem-solving. However, it remains uncertain whether large language models can effectively explore the state-space. Existing evaluations predominantly focus on the trade-off between exploration and exploitation, often assessed in multi-armed bandit problems. In contrast, this work isolates exploration as the sole objective, tasking the agent with delivering information that enhances future returns. For the evaluation, we propose to decompose missing rewards into exploration and exploitation components by measuring the optimal achievable return for the states already explored. Our experiments with various LLMs reveal that most models struggle to sufficiently explore the state-space and that weak exploration is insufficient. We observe a positive correlation between model size and exploration performance, with larger models demonstrating superior capabilities. Furthermore, we show that our decomposition provides insights into differences in behaviors driven by agent instructions during prompt engineering, offering a valuable tool for refining LLM performance in exploratory tasks.
☆ Modeling Melt Pool Features and Spatter Using Symbolic Regression and Machine Learning
Additive manufacturing (AM) is a rapidly evolving technology that has attracted applications across a wide range of fields due to its ability to fabricate complex geometries. However, one of the key challenges in AM is achieving consistent print quality. This inconsistency is often attributed to uncontrolled melt pool dynamics, partly caused by spatter which can lead to defects. Therefore, capturing and controlling the evolution of the melt pool is crucial for enhancing process stability and part quality. In this study, we developed a framework to support decision-making in AM operations, facilitating quality control and minimizing defects via machine learning (ML) and polynomial symbolic regression models. We implemented experimentally validated computational tools as a cost-effective approach to collect large datasets from laser powder bed fusion (LPBF) processes. For a dataset consisting of 281 process conditions, parameters such as melt pool dimensions (length, width, depth), melt pool geometry (area, volume), and volume indicated as spatter were extracted. Using machine learning (ML) and polynomial symbolic regression models, a high R2 of over 95 % was achieved in predicting the melt pool dimensions and geometry features for both the training and testing datasets, with either process conditions (power and velocity) or melt pool dimensions as the model inputs. In the case of volume indicated as spatter, R2 improved after logarithmic transforming the model inputs, which was either the process conditions or the melt pool dimensions. Among the investigated ML models, the ExtraTree model achieved the highest R2 values of 96.7 % and 87.5 %.
☆ Projection Implicit Q-Learning with Support Constraint for Offline Reinforcement Learning
Offline Reinforcement Learning (RL) faces a critical challenge of extrapolation errors caused by out-of-distribution (OOD) actions. Implicit Q-Learning (IQL) algorithm employs expectile regression to achieve in-sample learning, effectively mitigating the risks associated with OOD actions. However, the fixed hyperparameter in policy evaluation and density-based policy improvement method limit its overall efficiency. In this paper, we propose Proj-IQL, a projective IQL algorithm enhanced with the support constraint. In the policy evaluation phase, Proj-IQL generalizes the one-step approach to a multi-step approach through vector projection, while maintaining in-sample learning and expectile regression framework. In the policy improvement phase, Proj-IQL introduces support constraint that is more aligned with the policy evaluation approach. Furthermore, we theoretically demonstrate that Proj-IQL guarantees monotonic policy improvement and enjoys a progressively more rigorous criterion for superior actions. Empirical results demonstrate the Proj-IQL achieves state-of-the-art performance on D4RL benchmarks, especially in challenging navigation domains.
☆ Computing Game Symmetries and Equilibria That Respect Them AAAI
Strategic interactions can be represented more concisely, and analyzed and solved more efficiently, if we are aware of the symmetries within the multiagent system. Symmetries also have conceptual implications, for example for equilibrium selection. We study the computational complexity of identifying and using symmetries. Using the classical framework of normal-form games, we consider game symmetries that can be across some or all players and/or actions. We find a strong connection between game symmetries and graph automorphisms, yielding graph automorphism and graph isomorphism completeness results for characterizing the symmetries present in a game. On the other hand, we also show that the problem becomes polynomial-time solvable when we restrict the consideration of actions in one of two ways. Next, we investigate when exactly game symmetries can be successfully leveraged for Nash equilibrium computation. We show that finding a Nash equilibrium that respects a given set of symmetries is PPAD- and CLS-complete in general-sum and team games respectively -- that is, exactly as hard as Brouwer fixed point and gradient descent problems. Finally, we present polynomial-time methods for the special cases where we are aware of a vast number of symmetries, or where the game is two-player zero-sum and we do not even know the symmetries.
comment: Long and updated version to the published paper in the Proceedings of the 39th Annual AAAI Conference on Artificial Intelligence (AAAI 2025). 24 pages, 2 figures, 1 table
☆ Leveraging Large Language Models as Knowledge-Driven Agents for Reliable Retrosynthesis Planning
Identifying reliable synthesis pathways in materials chemistry is a complex task, particularly in polymer science, due to the intricate and often non-unique nomenclature of macromolecules. To address this challenge, we propose an agent system that integrates large language models (LLMs) and knowledge graphs (KGs). By leveraging LLMs' powerful capabilities for extracting and recognizing chemical substance names, and storing the extracted data in a structured knowledge graph, our system fully automates the retrieval of relevant literatures, extraction of reaction data, database querying, construction of retrosynthetic pathway trees, further expansion through the retrieval of additional literature and recommendation of optimal reaction pathways. A novel Multi-branched Reaction Pathway Search (MBRPS) algorithm enables the exploration of all pathways, with a particular focus on multi-branched ones, helping LLMs overcome weak reasoning in multi-branched paths. This work represents the first attempt to develop a fully automated retrosynthesis planning agent tailored specially for macromolecules powered by LLMs. Applied to polyimide synthesis, our new approach constructs a retrosynthetic pathway tree with hundreds of pathways and recommends optimized routes, including both known and novel pathways, demonstrating its effectiveness and potential for broader applications.
☆ Karatsuba Matrix Multiplication and its Efficient Custom Hardware Implementations
While the Karatsuba algorithm reduces the complexity of large integer multiplication, the extra additions required minimize its benefits for smaller integers of more commonly-used bitwidths. In this work, we propose the extension of the scalar Karatsuba multiplication algorithm to matrix multiplication, showing how this maintains the reduction in multiplication complexity of the original Karatsuba algorithm while reducing the complexity of the extra additions. Furthermore, we propose new matrix multiplication hardware architectures for efficiently exploiting this extension of the Karatsuba algorithm in custom hardware. We show that the proposed algorithm and hardware architectures can provide real area or execution time improvements for integer matrix multiplication compared to scalar Karatsuba or conventional matrix multiplication algorithms, while also supporting implementation through proven systolic array and conventional multiplier architectures at the core. We provide a complexity analysis of the algorithm and architectures and evaluate the proposed designs both in isolation and in an end-to-end deep learning accelerator system compared to baseline designs and prior state-of-the-art works implemented on the same type of compute platform, demonstrating their ability to increase the performance-per-area of matrix multiplication hardware.
comment: Accepted for publication in IEEE Transactions on Computers; Associated source code available on github at https://github.com/trevorpogue/algebraic-nnhw
☆ Incrementally Learning Multiple Diverse Data Domains via Multi-Source Dynamic Expansion Model
Continual Learning seeks to develop a model capable of incrementally assimilating new information while retaining prior knowledge. However, current research predominantly addresses a straightforward learning context, wherein all data samples originate from a singular data domain. This paper shifts focus to a more complex and realistic learning environment, characterized by data samples sourced from multiple distinct domains. We tackle this intricate learning challenge by introducing a novel methodology, termed the Multi-Source Dynamic Expansion Model (MSDEM), which leverages various pre-trained models as backbones and progressively establishes new experts based on them to adapt to emerging tasks. Additionally, we propose an innovative dynamic expandable attention mechanism designed to selectively harness knowledge from multiple backbones, thereby accelerating the new task learning. Moreover, we introduce a dynamic graph weight router that strategically reuses all previously acquired parameters and representations for new task learning, maximizing the positive knowledge transfer effect, which further improves generalization performance. We conduct a comprehensive series of experiments, and the empirical findings indicate that our proposed approach achieves state-of-the-art performance.
comment: 10 pages, 5 figures
☆ Silent Abandonment in Text-Based Contact Centers: Identifying, Quantifying, and Mitigating its Operational Impacts
In the quest to improve services, companies offer customers the option to interact with agents via texting. Such contact centers face unique challenges compared to traditional call centers, as measuring customer experience proxies like abandonment and patience involves uncertainty. A key source of this uncertainty is silent abandonment, where customers leave without notifying the system, wasting agent time and leaving their status unclear. Silent abandonment also obscures whether a customer was served or left. Our goals are to measure the magnitude of silent abandonment and mitigate its effects. Classification models show that 3%-70% of customers across 17 companies abandon silently. In one study, 71.3% of abandoning customers did so silently, reducing agent efficiency by 3.2% and system capacity by 15.3%, incurring $5,457 in annual costs per agent. We develop an expectation-maximization (EM) algorithm to estimate customer patience under uncertainty and identify influencing covariates. We find that companies should use classification models to estimate abandonment scope and our EM algorithm to assess patience. We suggest strategies to operationally mitigate the impact of silent abandonment by predicting suspected silent-abandonment behavior or changing service design. Specifically, we show that while allowing customers to write while waiting in the queue creates a missing data challenge, it also significantly increases patience and reduces service time, leading to reduced abandonment and lower staffing requirements.
comment: arXiv admin note: text overlap with arXiv:2304.11754
☆ ARMOR: Shielding Unlearnable Examples against Data Augmentation
Private data, when published online, may be collected by unauthorized parties to train deep neural networks (DNNs). To protect privacy, defensive noises can be added to original samples to degrade their learnability by DNNs. Recently, unlearnable examples are proposed to minimize the training loss such that the model learns almost nothing. However, raw data are often pre-processed before being used for training, which may restore the private information of protected data. In this paper, we reveal the data privacy violation induced by data augmentation, a commonly used data pre-processing technique to improve model generalization capability, which is the first of its kind as far as we are concerned. We demonstrate that data augmentation can significantly raise the accuracy of the model trained on unlearnable examples from 21.3% to 66.1%. To address this issue, we propose a defense framework, dubbed ARMOR, to protect data privacy from potential breaches of data augmentation. To overcome the difficulty of having no access to the model training process, we design a non-local module-assisted surrogate model that better captures the effect of data augmentation. In addition, we design a surrogate augmentation selection strategy that maximizes distribution alignment between augmented and non-augmented samples, to choose the optimal augmentation strategy for each class. We also use a dynamic step size adjustment algorithm to enhance the defensive noise generation process. Extensive experiments are conducted on 4 datasets and 5 data augmentation methods to verify the performance of ARMOR. Comparisons with 6 state-of-the-art defense methods have demonstrated that ARMOR can preserve the unlearnability of protected private data under data augmentation. ARMOR reduces the test accuracy of the model trained on augmented protected samples by as much as 60% more than baselines.
☆ Digital Phenotyping for Adolescent Mental Health: A Feasibility Study Employing Machine Learning to Predict Mental Health Risk From Active and Passive Smartphone Data
Background: Adolescents are particularly vulnerable to mental disorders, with over 75% of cases manifesting before the age of 25. Research indicates that only 18 to 34% of young people experiencing high levels of depression or anxiety symptoms seek support. Digital tools leveraging smartphones offer scalable and early intervention opportunities. Objective: Using a novel machine learning framework, this study evaluated the feasibility of integrating active and passive smartphone data to predict mental disorders in non-clinical adolescents. Specifically, we investigated the utility of the Mindcraft app in predicting risks for internalising and externalising disorders, eating disorders, insomnia and suicidal ideation. Methods: Participants (N=103; mean age 16.1 years) were recruited from three London schools. Participants completed the Strengths and Difficulties Questionnaire, the Eating Disorders-15 Questionnaire, Sleep Condition Indicator Questionnaire and indicated the presence/absence of suicidal ideation. They used the Mindcraft app for 14 days, contributing active data via self-reports and passive data from smartphone sensors. A contrastive pretraining phase was applied to enhance user-specific feature stability, followed by supervised fine-tuning. The model evaluation employed leave-one-subject-out cross-validation using balanced accuracy as the primary metric. Results: The integration of active and passive data achieved superior performance compared to individual data sources, with mean balanced accuracies of 0.71 for SDQ-High risk, 0.67 for insomnia, 0.77 for suicidal ideation and 0.70 for eating disorders. The contrastive learning framework stabilised daily behavioural representations, enhancing predictive robustness. This study demonstrates the potential of integrating active and passive smartphone data with advanced machine-learning techniques for predicting mental health risks.
☆ Graph Counterfactual Explainable AI via Latent Space Traversal
Explaining the predictions of a deep neural network is a nontrivial task, yet high-quality explanations for predictions are often a prerequisite for practitioners to trust these models. Counterfactual explanations aim to explain predictions by finding the ''nearest'' in-distribution alternative input whose prediction changes in a pre-specified way. However, it remains an open question how to define this nearest alternative input, whose solution depends on both the domain (e.g. images, graphs, tabular data, etc.) and the specific application considered. For graphs, this problem is complicated i) by their discrete nature, as opposed to the continuous nature of state-of-the-art graph classifiers; and ii) by the node permutation group acting on the graphs. We propose a method to generate counterfactual explanations for any differentiable black-box graph classifier, utilizing a case-specific permutation equivariant graph variational autoencoder. We generate counterfactual explanations in a continuous fashion by traversing the latent space of the autoencoder across the classification boundary of the classifier, allowing for seamless integration of discrete graph structure and continuous graph attributes. We empirically validate the approach on three graph datasets, showing that our model is consistently high-performing and more robust than the baselines.
comment: Published at Northern Lights Deep Learning Conference 2025
☆ RouteNet-Gauss: Hardware-Enhanced Network Modeling with Machine Learning
Network simulation is pivotal in network modeling, assisting with tasks ranging from capacity planning to performance estimation. Traditional approaches such as Discrete Event Simulation (DES) face limitations in terms of computational cost and accuracy. This paper introduces RouteNet-Gauss, a novel integration of a testbed network with a Machine Learning (ML) model to address these challenges. By using the testbed as a hardware accelerator, RouteNet-Gauss generates training datasets rapidly and simulates network scenarios with high fidelity to real-world conditions. Experimental results show that RouteNet-Gauss significantly reduces prediction errors by up to 95% and achieves a 488x speedup in inference time compared to state-of-the-art DES-based methods. RouteNet-Gauss's modular architecture is dynamically constructed based on the specific characteristics of the network scenario, such as topology and routing. This enables it to understand and generalize to different network configurations beyond those seen during training, including networks up to 10x larger. Additionally, it supports Temporal Aggregated Performance Estimation (TAPE), providing configurable temporal granularity and maintaining high accuracy in flow performance metrics. This approach shows promise in improving both simulation efficiency and accuracy, offering a valuable tool for network operators.
comment: 13 pages, 11 figures
☆ Automatic tuning of communication protocols for vehicular ad hoc networks using metaheuristics
The emerging field of vehicular ad hoc networks (VANETs) deals with a set of communicating vehicles which are able to spontaneously interconnect without any pre-existing infrastructure. In such kind of networks, it is crucial to make an optimal configuration of the communication protocols previously to the final network deployment. This way, a human designer can obtain an optimal QoS of the network beforehand. The problem we consider in this work lies in configuring the File Transfer protocol Configuration (FTC) with the aim of optimizing the transmission time, the number of lost packets, and the amount of data transferred in realistic VANET scenarios. We face the FTC with five representative state-of-the-art optimization techniques and compare their performance. These algorithms are: Particle Swarm Optimization (PSO), Differential Evolution (DE), Genetic Algorithm (GA), Evolutionary Strategy (ES), and Simulated Annealing (SA). For our tests, two typical environment instances of VANETs for Urban and Highway scenarios have been defined. The experiments using ns- 2 (a well-known realistic VANET simulator) reveal that PSO outperforms all the compared algorithms for both studied VANET instances.
☆ Exploring Task-Level Optimal Prompts for Visual In-Context Learning
With the development of Vision Foundation Models (VFMs) in recent years, Visual In-Context Learning (VICL) has become a better choice compared to modifying models in most scenarios. Different from retraining or fine-tuning model, VICL does not require modifications to the model's weights or architecture, and only needs a prompt with demonstrations to teach VFM how to solve tasks. Currently, significant computational cost for finding optimal prompts for every test sample hinders the deployment of VICL, as determining which demonstrations to use for constructing prompts is very costly. In this paper, however, we find a counterintuitive phenomenon that most test samples actually achieve optimal performance under the same prompts, and searching for sample-level prompts only costs more time but results in completely identical prompts. Therefore, we propose task-level prompting to reduce the cost of searching for prompts during the inference stage and introduce two time-saving yet effective task-level prompt search strategies. Extensive experimental results show that our proposed method can identify near-optimal prompts and reach the best VICL performance with a minimal cost that prior work has never achieved.
☆ ToMATO: Verbalizing the Mental States of Role-Playing LLMs for Benchmarking Theory of Mind AAAI 2025
Existing Theory of Mind (ToM) benchmarks diverge from real-world scenarios in three aspects: 1) they assess a limited range of mental states such as beliefs, 2) false beliefs are not comprehensively explored, and 3) the diverse personality traits of characters are overlooked. To address these challenges, we introduce ToMATO, a new ToM benchmark formulated as multiple-choice QA over conversations. ToMATO is generated via LLM-LLM conversations featuring information asymmetry. By employing a prompting method that requires role-playing LLMs to verbalize their thoughts before each utterance, we capture both first- and second-order mental states across five categories: belief, intention, desire, emotion, and knowledge. These verbalized thoughts serve as answers to questions designed to assess the mental states of characters within conversations. Furthermore, the information asymmetry introduced by hiding thoughts from others induces the generation of false beliefs about various mental states. Assigning distinct personality traits to LLMs further diversifies both utterances and thoughts. ToMATO consists of 5.4k questions, 753 conversations, and 15 personality trait patterns. Our analysis shows that this dataset construction approach frequently generates false beliefs due to the information asymmetry between role-playing LLMs, and effectively reflects diverse personalities. We evaluate nine LLMs on ToMATO and find that even GPT-4o mini lags behind human performance, especially in understanding false beliefs, and lacks robustness to various personality traits.
comment: Accepted by AAAI 2025
☆ MMDocIR: Benchmarking Multi-Modal Retrieval for Long Documents
Multi-modal document retrieval is designed to identify and retrieve various forms of multi-modal content, such as figures, tables, charts, and layout information from extensive documents. Despite its significance, there is a notable lack of a robust benchmark to effectively evaluate the performance of systems in multi-modal document retrieval. To address this gap, this work introduces a new benchmark, named as MMDocIR, encompassing two distinct tasks: page-level and layout-level retrieval. The former focuses on localizing the most relevant pages within a long document, while the latter targets the detection of specific layouts, offering a more fine-grained granularity than whole-page analysis. A layout can refer to a variety of elements such as textual paragraphs, equations, figures, tables, or charts. The MMDocIR benchmark comprises a rich dataset featuring expertly annotated labels for 1,685 questions and bootstrapped labels for 173,843 questions, making it a pivotal resource for advancing multi-modal document retrieval for both training and evaluation. Through rigorous experiments, we reveal that (i) visual retrievers significantly outperform their text counterparts, (ii) MMDocIR train set can effectively benefit the training process of multi-modal document retrieval and (iii) text retrievers leveraging on VLM-text perform much better than those using OCR-text. These findings underscores the potential advantages of integrating visual elements for multi-modal document retrieval.
comment: https://huggingface.co/MMDocIR
☆ IDEA: Image Description Enhanced CLIP-Adapter
CLIP (Contrastive Language-Image Pre-training) has attained great success in pattern recognition and computer vision. Transferring CLIP to downstream tasks (e.g. zero- or few-shot classification) is a hot topic in multimodal learning. However, current studies primarily focus on either prompt learning for text or adapter tuning for vision, without fully exploiting the complementary information and correlations among image-text pairs. In this paper, we propose an Image Description Enhanced CLIP-Adapter (IDEA) method to adapt CLIP to few-shot image classification tasks. This method captures fine-grained features by leveraging both visual features and textual descriptions of images. IDEA is a training-free method for CLIP, and it can be comparable to or even exceeds state-of-the-art models on multiple tasks. Furthermore, we introduce Trainable-IDEA (T-IDEA), which extends IDEA by adding two lightweight learnable components (i.e., a projector and a learnable latent space), further enhancing the model's performance and achieving SOTA results on 11 datasets. As one important contribution, we employ the Llama model and design a comprehensive pipeline to generate textual descriptions for images of 11 datasets, resulting in a total of 1,637,795 image-text pairs, named "IMD-11". Our code and data are released at https://github.com/FourierAI/IDEA.
☆ SAIF: A Comprehensive Framework for Evaluating the Risks of Generative AI in the Public Sector AAAI
The rapid adoption of generative AI in the public sector, encompassing diverse applications ranging from automated public assistance to welfare services and immigration processes, highlights its transformative potential while underscoring the pressing need for thorough risk assessments. Despite its growing presence, evaluations of risks associated with AI-driven systems in the public sector remain insufficiently explored. Building upon an established taxonomy of AI risks derived from diverse government policies and corporate guidelines, we investigate the critical risks posed by generative AI in the public sector while extending the scope to account for its multimodal capabilities. In addition, we propose a Systematic dAta generatIon Framework for evaluating the risks of generative AI (SAIF). SAIF involves four key stages: breaking down risks, designing scenarios, applying jailbreak methods, and exploring prompt types. It ensures the systematic and consistent generation of prompt data, facilitating a comprehensive evaluation while providing a solid foundation for mitigating the risks. Furthermore, SAIF is designed to accommodate emerging jailbreak methods and evolving prompt types, thereby enabling effective responses to unforeseen risk scenarios. We believe that this study can play a crucial role in fostering the safe and responsible integration of generative AI into the public sector.
comment: 6 pages, 2 figures, 1 tables. AI for Public Missions (AIPM) Workshop at the 39th AAAI Conference on Artificial Intelligence (AAAI 2025)
☆ XMusic: Towards a Generalized and Controllable Symbolic Music Generation Framework
In recent years, remarkable advancements in artificial intelligence-generated content (AIGC) have been achieved in the fields of image synthesis and text generation, generating content comparable to that produced by humans. However, the quality of AI-generated music has not yet reached this standard, primarily due to the challenge of effectively controlling musical emotions and ensuring high-quality outputs. This paper presents a generalized symbolic music generation framework, XMusic, which supports flexible prompts (i.e., images, videos, texts, tags, and humming) to generate emotionally controllable and high-quality symbolic music. XMusic consists of two core components, XProjector and XComposer. XProjector parses the prompts of various modalities into symbolic music elements (i.e., emotions, genres, rhythms and notes) within the projection space to generate matching music. XComposer contains a Generator and a Selector. The Generator generates emotionally controllable and melodious music based on our innovative symbolic music representation, whereas the Selector identifies high-quality symbolic music by constructing a multi-task learning scheme involving quality assessment, emotion recognition, and genre recognition tasks. In addition, we build XMIDI, a large-scale symbolic music dataset that contains 108,023 MIDI files annotated with precise emotion and genre labels. Objective and subjective evaluations show that XMusic significantly outperforms the current state-of-the-art methods with impressive music quality. Our XMusic has been awarded as one of the nine Highlights of Collectibles at WAIC 2023. The project homepage of XMusic is https://xmusic-project.github.io.
comment: accepted by TMM
☆ Networked Agents in the Dark: Team Value Learning under Partial Observability AAMAS 2025
We propose a novel cooperative multi-agent reinforcement learning (MARL) approach for networked agents. In contrast to previous methods that rely on complete state information or joint observations, our agents must learn how to reach shared objectives under partial observability. During training, they collect individual rewards and approximate a team value function through local communication, resulting in cooperative behavior. To describe our problem, we introduce the networked dynamic partially observable Markov game framework, where agents communicate over a switching topology communication network. Our distributed method, DNA-MARL, uses a consensus mechanism for local communication and gradient descent for local computation. DNA-MARL increases the range of the possible applications of networked agents, being well-suited for real world domains that impose privacy and where the messages may not reach their recipients. We evaluate DNA-MARL across benchmark MARL scenarios. Our results highlight the superior performance of DNA-MARL over previous methods.
comment: 18 pages, 7 figures, 5 tables. Accepted as supplemental material at Proceedings of the 24th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2025), Detroit, Michigan, USA, May 19 - 23, 2025, IFAAMAS
☆ How Developers Interact with AI: A Taxonomy of Human-AI Collaboration in Software Engineering
Artificial intelligence (AI), including large language models and generative AI, is emerging as a significant force in software development, offering developers powerful tools that span the entire development lifecycle. Although software engineering research has extensively studied AI tools in software development, the specific types of interactions between developers and these AI-powered tools have only recently begun to receive attention. Understanding and improving these interactions has the potential to improve productivity, trust, and efficiency in AI-driven workflows. In this paper, we propose a taxonomy of interaction types between developers and AI tools, identifying eleven distinct interaction types, such as auto-complete code suggestions, command-driven actions, and conversational assistance. Building on this taxonomy, we outline a research agenda focused on optimizing AI interactions, improving developer control, and addressing trust and usability challenges in AI-assisted development. By establishing a structured foundation for studying developer-AI interactions, this paper aims to stimulate research on creating more effective, adaptive AI tools for software development.
comment: Accepted at 2nd ACM International Conference on AI Foundation Models and Software Engineering (FORGE 2025)
☆ Leveraging LLM Agents for Translating Network Configurations
Configuration translation is a critical and frequent task in network operations. When a network device is damaged or outdated, administrators need to replace it to maintain service continuity. The replacement devices may originate from different vendors, necessitating configuration translation to ensure seamless network operation. However, translating configurations manually is a labor-intensive and error-prone process. In this paper, we propose an intent-based framework for translating network configuration with Large Language Model (LLM) Agents. The core of our approach is an Intent-based Retrieval Augmented Generation (IRAG) module that systematically splits a configuration file into fragments, extracts intents, and generates accurate translations. We also design a two-stage verification method to validate the syntax and semantics correctness of the translated configurations. We implement and evaluate the proposed method on real-world network configurations. Experimental results show that our method achieves 97.74% syntax correctness, outperforming state-of-the-art methods in translation accuracy.
Self-supervised Transformation Learning for Equivariant Representations NeurIPS 2024
Unsupervised representation learning has significantly advanced various machine learning tasks. In the computer vision domain, state-of-the-art approaches utilize transformations like random crop and color jitter to achieve invariant representations, embedding semantically the same inputs despite transformations. However, this can degrade performance in tasks requiring precise features, such as localization or flower classification. To address this, recent research incorporates equivariant representation learning, which captures transformation-sensitive information. However, current methods depend on transformation labels and thus struggle with interdependency and complex transformations. We propose Self-supervised Transformation Learning (STL), replacing transformation labels with transformation representations derived from image pairs. The proposed method ensures transformation representation is image-invariant and learns corresponding equivariant transformations, enhancing performance without increased batch complexity. We demonstrate the approach's effectiveness across diverse classification and detection tasks, outperforming existing methods in 7 out of 11 benchmarks and excelling in detection. By integrating complex transformations like AugMix, unusable by prior equivariant methods, this approach enhances performance across tasks, underscoring its adaptability and resilience. Additionally, its compatibility with various base models highlights its flexibility and broad applicability. The code is available at https://github.com/jaemyung-u/stl.
comment: 38th Conference on Neural Information Processing Systems (NeurIPS 2024)
☆ SPEQ: Stabilization Phases for Efficient Q-Learning in High Update-To-Data Ratio Reinforcement Learning
A key challenge in Deep Reinforcement Learning is sample efficiency, especially in real-world applications where collecting environment interactions is expensive or risky. Recent off-policy algorithms improve sample efficiency by increasing the Update-To-Data (UTD) ratio and performing more gradient updates per environment interaction. While this improves sample efficiency, it significantly increases computational cost due to the higher number of gradient updates required. In this paper we propose a sample-efficient method to improve computational efficiency by separating training into distinct learning phases in order to exploit gradient updates more effectively. Our approach builds on top of the Dropout Q-Functions (DroQ) algorithm and alternates between an online, low UTD ratio training phase, and an offline stabilization phase. During the stabilization phase, we fine-tune the Q-functions without collecting new environment interactions. This process improves the effectiveness of the replay buffer and reduces computational overhead. Our experimental results on continuous control problems show that our method achieves results comparable to state-of-the-art, high UTD ratio algorithms while requiring 56\% fewer gradient updates and 50\% less training time than DroQ. Our approach offers an effective and computationally economical solution while maintaining the same sample efficiency as the more costly, high UTD ratio state-of-the-art.
☆ Application of Deep Reinforcement Learning to UAV Swarming for Ground Surveillance
This paper summarizes in depth the state of the art of aerial swarms, covering both classical and new reinforcement-learning-based approaches for their management. Then, it proposes a hybrid AI system, integrating deep reinforcement learning in a multi-agent centralized swarm architecture. The proposed system is tailored to perform surveillance of a specific area, searching and tracking ground targets, for security and law enforcement applications. The swarm is governed by a central swarm controller responsible for distributing different search and tracking tasks among the cooperating UAVs. Each UAV agent is then controlled by a collection of cooperative sub-agents, whose behaviors have been trained using different deep reinforcement learning models, tailored for the different task types proposed by the swarm controller. More specifically, proximal policy optimization (PPO) algorithms were used to train the agents' behavior. In addition, several metrics to assess the performance of the swarm in this application were defined. The results obtained through simulation show that our system searches the operation area effectively, acquires the targets in a reasonable time, and is capable of tracking them continuously and consistently.
☆ Fine-grained Spatio-temporal Event Prediction with Self-adaptive Anchor Graph SDM'25
Event prediction tasks often handle spatio-temporal data distributed in a large spatial area. Different regions in the area exhibit different characteristics while having latent correlations. This spatial heterogeneity and correlations greatly affect the spatio-temporal distributions of event occurrences, which has not been addressed by state-of-the-art models. Learning spatial dependencies of events in a continuous space is challenging due to its fine granularity and a lack of prior knowledge. In this work, we propose a novel Graph Spatio-Temporal Point Process (GSTPP) model for fine-grained event prediction. It adopts an encoder-decoder architecture that jointly models the state dynamics of spatially localized regions using neural Ordinary Differential Equations (ODEs). The state evolution is built on the foundation of a novel Self-Adaptive Anchor Graph (SAAG) that captures spatial dependencies. By adaptively localizing the anchor nodes in the space and jointly constructing the correlation edges between them, the SAAG enhances the model's ability of learning complex spatial event patterns. The proposed GSTPP model greatly improves the accuracy of fine-grained event prediction. Extensive experimental results show that our method greatly improves the prediction accuracy over existing spatio-temporal event prediction approaches.
comment: Accepted to SIAM International Conference on Data Mining 2025 (SDM'25)
☆ MAGNET: Augmenting Generative Decoders with Representation Learning and Infilling Capabilities
While originally designed for unidirectional generative modeling, decoder-only large language models (LLMs) are increasingly being adapted for bidirectional modeling. However, unidirectional and bidirectional models are typically trained separately with distinct objectives (generation and representation learning, respectively). This separation overlooks the opportunity for developing a more versatile language model and for these objectives to complement each other. In this work, we introduce MAGNET, an adaptation of decoder-only LLMs that enhances their ability to generate robust representations and infill missing text spans, while preserving their knowledge and text generation capabilities. MAGNET employs three self-supervised training objectives and introduces an attention mechanism that combines bidirectional and causal attention, enabling unified training across all objectives. Our results demonstrate that LLMs adapted with MAGNET (1) surpass strong text encoders on token-level and sentence-level representation learning tasks, (2) generate contextually appropriate text infills by leveraging future context, (3) retain the ability for open-ended text generation without exhibiting repetition problem, and (4) preserve the knowledge gained by the LLM during pretraining.
☆ Reassessing the Role of Chain-of-Thought in Sentiment Analysis: Insights and Limitations
The relationship between language and thought remains an unresolved philosophical issue. Existing viewpoints can be broadly categorized into two schools: one asserting their independence, and another arguing that language constrains thought. In the context of large language models, this debate raises a crucial question: Does a language model's grasp of semantic meaning depend on thought processes? To explore this issue, we investigate whether reasoning techniques can facilitate semantic understanding. Specifically, we conceptualize thought as reasoning, employ chain-of-thought prompting as a reasoning technique, and examine its impact on sentiment analysis tasks. The experiments show that chain-of-thought has a minimal impact on sentiment analysis tasks. Both the standard and chain-of-thought prompts focus on aspect terms rather than sentiment in the generated content. Furthermore, counterfactual experiments reveal that the model's handling of sentiment tasks primarily depends on information from demonstrations. The experimental results support the first viewpoint.
☆ ViBidirectionMT-Eval: Machine Translation for Vietnamese-Chinese and Vietnamese-Lao language pair
This paper presents an results of the VLSP 2022-2023 Machine Translation Shared Tasks, focusing on Vietnamese-Chinese and Vietnamese-Lao machine translation. The tasks were organized as part of the 9th, 10th annual workshop on Vietnamese Language and Speech Processing (VLSP 2022, VLSP 2023). The objective of the shared task was to build machine translation systems, specifically targeting Vietnamese-Chinese and Vietnamese-Lao translation (corresponding to 4 translation directions). The submission were evaluated on 1,000 pairs for testing (news and general domains) using established metrics like BLEU [11] and SacreBLEU [12]. Additionally, system outputs also were evaluated with human judgment provided by experts in Chinese and Lao languages. These human assessments played a crucial role in ranking the performance of the machine translation models, ensuring a more comprehensive evaluation.
☆ Disjoint Processing Mechanisms of Hierarchical and Linear Grammars in Large Language Models
All natural languages are structured hierarchically. In humans, this structural restriction is neurologically coded: when two grammars are presented with identical vocabularies, brain areas responsible for language processing are only sensitive to hierarchical grammars. Using large language models (LLMs), we investigate whether such functionally distinct hierarchical processing regions can arise solely from exposure to large-scale language distributions. We generate inputs using English, Italian, Japanese, or nonce words, varying the underlying grammars to conform to either hierarchical or linear/positional rules. Using these grammars, we first observe that language models show distinct behaviors on hierarchical versus linearly structured inputs. Then, we find that the components responsible for processing hierarchical grammars are distinct from those that process linear grammars; we causally verify this in ablation experiments. Finally, we observe that hierarchy-selective components are also active on nonce grammars; this suggests that hierarchy sensitivity is not tied to meaning, nor in-distribution inputs.
☆ RLHS: Mitigating Misalignment in RLHF with Hindsight Simulation
Generative AI systems like foundation models (FMs) must align well with human values to ensure their behavior is helpful and trustworthy. While Reinforcement Learning from Human Feedback (RLHF) has shown promise for optimizing model performance using human judgments, existing RLHF pipelines predominantly rely on immediate feedback, which can fail to accurately reflect the downstream impact of an interaction on users' utility. We demonstrate that feedback based on evaluators' foresight estimates of downstream consequences systematically induces Goodhart's Law dynamics, incentivizing misaligned behaviors like sycophancy and deception and ultimately degrading user outcomes. To alleviate this, we propose decoupling evaluation from prediction by refocusing RLHF on hindsight feedback. Our theoretical analysis reveals that conditioning evaluator feedback on downstream observations mitigates misalignment and improves expected human utility, even when these observations are simulated by the AI system itself. To leverage this insight in a practical alignment algorithm, we introduce Reinforcement Learning from Hindsight Simulation (RLHS), which first simulates plausible consequences and then elicits feedback to assess what behaviors were genuinely beneficial in hindsight. We apply RLHS to two widely-employed online and offline preference optimization methods -- Proximal Policy Optimization (PPO) and Direct Preference Optimization (DPO) -- and show empirically that misalignment is significantly reduced with both methods. Through an online human user study, we show that RLHS consistently outperforms RLHF in helping users achieve their goals and earns higher satisfaction ratings, despite being trained solely with simulated hindsight feedback. These results underscore the importance of focusing on long-term consequences, even simulated ones, to mitigate misalignment in RLHF.
☆ Monte Carlo Tree Search for Comprehensive Exploration in LLM-Based Automatic Heuristic Design
Handcrafting heuristics for solving complex planning tasks (e.g., NP-hard combinatorial optimization (CO) problems) is a common practice but requires extensive domain knowledge. Recently, Large Language Model (LLM)-based automatic heuristics design (AHD) methods have shown promise in generating high-quality heuristics without manual intervention. Existing LLM-based AHD methods employ a population to maintain a fixed number of top-performing LLM-generated heuristics and introduce evolutionary computation (EC) to enhance the population iteratively. However, the population-based procedure brings greedy properties, often resulting in convergence to local optima. Instead, to more comprehensively explore the space of heuristics, we propose using Monte Carlo Tree Search (MCTS) for LLM-based heuristic evolution while preserving all LLM-generated heuristics in a tree structure. With a novel thought-alignment process and an exploration-decay technique, the proposed MCTS-AHD method delivers significantly higher-quality heuristics on various complex tasks. Our code is available at https://github.com/zz1358m/MCTS-AHD-master.
☆ AutoRestTest: A Tool for Automated REST API Testing Using LLMs and MARL ICSE
As REST APIs have become widespread in modern web services, comprehensive testing of these APIs has become increasingly crucial. Due to the vast search space consisting of operations, parameters, and parameter values along with their complex dependencies and constraints, current testing tools suffer from low code coverage, leading to suboptimal fault detection. To address this limitation, we present a novel tool, AutoRestTest, which integrates the Semantic Operation Dependency Graph (SODG) with Multi-Agent Reinforcement Learning (MARL) and large language models (LLMs) for effective REST API testing. AutoRestTest determines operation-dependent parameters using the SODG and employs five specialized agents (operation, parameter, value, dependency, and header) to identify dependencies of operations and generate operation sequences, parameter combinations, and values. AutoRestTest provides a command-line interface and continuous telemetry on successful operation count, unique server errors detected, and time elapsed. Upon completion, AutoRestTest generates a detailed report highlighting errors detected and operations exercised. In this paper, we introduce our tool and present preliminary results.
comment: To be published in the 47th IEEE/ACM International Conference on Software Engineering - Demonstration Track (ICSE-Demo 2025)
☆ LlamaRestTest: Effective REST API Testing with Small Language Models
Modern web services rely heavily on REST APIs, typically documented using the OpenAPI specification. The widespread adoption of this standard has resulted in the development of many black-box testing tools that generate tests based on these specifications. Recent advancements in Natural Language Processing (NLP), particularly with Large Language Models (LLMs), have enhanced REST API testing by extracting actionable rules and generating input values from the human-readable portions of the specification. However, these advancements overlook the potential of continuously refining the identified rules and test inputs based on server responses. To address this limitation, we present LlamaRestTest, a novel approach that employs two custom LLMs to generate realistic test inputs and uncover parameter dependencies during the testing process by incorporating server responses. These LLMs are created by fine-tuning the Llama3-8b model, using mined datasets of REST API example values and inter-parameter dependencies. We evaluated LlamaRestTest on 12 real-world services (including popular services such as Spotify), comparing it against RESTGPT, a GPT-powered specification-enhancement tool, as well as several state-of-the-art REST API testing tools, including RESTler, MoRest, EvoMaster, and ARAT-RL. Our results show that fine-tuning enables smaller LLMs to outperform larger models in detecting actionable rules and generating inputs for REST API testing. We evaluated configurations from the base Llama3-8B to fine-tuned versions and explored 2-bit, 4-bit, and 8-bit quantization for efficiency. LlamaRestTest surpasses state-of-the-art tools in code coverage and error detection, even with RESTGPT-enhanced specifications, and an ablation study highlights the impact of its novel components.
comment: To be published in the ACM International Conference on the Foundations of Software Engineering (FSE 2025)
☆ OpenMLDB: A Real-Time Relational Data Feature Computation System for Online ML
Efficient and consistent feature computation is crucial for a wide range of online ML applications. Typically, feature computation is divided into two distinct phases, i.e., offline stage for model training and online stage for model serving. These phases often rely on execution engines with different interface languages and function implementations, causing significant inconsistencies. Moreover, many online ML features involve complex time-series computations (e.g., functions over varied-length table windows) that differ from standard streaming and analytical queries. Existing data processing systems (e.g., Spark, Flink, DuckDB) often incur multi-second latencies for these computations, making them unsuitable for real-time online ML applications that demand timely feature updates. This paper presents OpenMLDB, a feature computation system deployed in 4Paradigm's SageOne platform and over 100 real scenarios. Technically, OpenMLDB first employs a unified query plan generator for consistent computation results across the offline and online stages, significantly reducing feature deployment overhead. Second, OpenMLDB provides an online execution engine that resolves performance bottlenecks caused by long window computations (via pre-aggregation) and multi-table window unions (via data self-adjusting). It also provides a high-performance offline execution engine with window parallel optimization and time-aware data skew resolving. Third, OpenMLDB features a compact data format and stream-focused indexing to maximize memory usage and accelerate data access. Evaluations in testing and real workloads reveal significant performance improvements and resource savings compared to the baseline systems. The open community of OpenMLDB now has over 150 contributors and gained 1.6k stars on GitHub.
☆ Sound Scene Synthesis at the DCASE 2024 Challenge
This paper presents Task 7 at the DCASE 2024 Challenge: sound scene synthesis. Recent advances in sound synthesis and generative models have enabled the creation of realistic and diverse audio content. We introduce a standardized evaluation framework for comparing different sound scene synthesis systems, incorporating both objective and subjective metrics. The challenge attracted four submissions, which are evaluated using the Fr\'echet Audio Distance (FAD) and human perceptual ratings. Our analysis reveals significant insights into the current capabilities and limitations of sound scene synthesis systems, while also highlighting areas for future improvement in this rapidly evolving field.
☆ Evaluating SAT and SMT Solvers on Large-Scale Sudoku Puzzles
Modern SMT solvers have revolutionized the approach to constraint satisfaction problems by integrating advanced theory reasoning and encoding techniques. In this work, we evaluate the performance of modern SMT solvers in Z3, CVC5 and DPLL(T) against a standard SAT solver in DPLL. By benchmarking these solvers on novel, diverse 25x25 Sudoku puzzles of various difficulty levels created by our improved Sudoku generator, we examine the impact of advanced theory reasoning and encoding techniques. Our findings demonstrate that modern SMT solvers significantly outperform classical SAT solvers. This work highlights the evolution of logical solvers and exemplifies the utility of SMT solvers in addressing large-scale constraint satisfaction problems.
☆ Towards Lightweight and Stable Zero-shot TTS with Self-distilled Representation Disentanglement
Zero-shot Text-To-Speech (TTS) synthesis shows great promise for personalized voice customization through voice cloning. However, current methods for achieving zero-shot TTS heavily rely on large model scales and extensive training datasets to ensure satisfactory performance and generalizability across various speakers. This raises concerns regarding both deployment costs and data security. In this paper, we present a lightweight and stable zero-shot TTS system. We introduce a novel TTS architecture designed to effectively model linguistic content and various speaker attributes from source speech and prompt speech, respectively. Furthermore, we present a two-stage self-distillation framework that constructs parallel data pairs for effectively disentangling linguistic content and speakers from the perspective of training data. Extensive experiments show that our system exhibits excellent performance and superior stability on the zero-shot TTS tasks. Moreover, it shows markedly superior computational efficiency, with RTFs of 0.13 and 0.012 on the CPU and GPU, respectively.
comment: 5 pages,4 figures
☆ DualOpt: A Dual Divide-and-Optimize Algorithm for the Large-scale Traveling Salesman Problem AAAI-25
This paper proposes a dual divide-and-optimize algorithm (DualOpt) for solving the large-scale traveling salesman problem (TSP). DualOpt combines two complementary strategies to improve both solution quality and computational efficiency. The first strategy is a grid-based divide-and-conquer procedure that partitions the TSP into smaller sub-problems, solving them in parallel and iteratively refining the solution by merging nodes and partial routes. The process continues until only one grid remains, yielding a high-quality initial solution. The second strategy involves a path-based divide-and-optimize procedure that further optimizes the solution by dividing it into sub-paths, optimizing each using a neural solver, and merging them back to progressively improve the overall solution. Extensive experiments conducted on two groups of TSP benchmark instances, including randomly generated instances with up to 100,000 nodes and real-world datasets from TSPLIB, demonstrate the effectiveness of DualOpt. The proposed DualOpt achieves highly competitive results compared to 10 state-of-the-art algorithms in the literature. In particular, DualOpt achieves an improvement gap up to 1.40% for the largest instance TSP100K with a remarkable 104x speed-up over the leading heuristic solver LKH3. Additionally, DualOpt demonstrates strong generalization on TSPLIB benchmarks, confirming its capability to tackle diverse real-world TSP applications.
comment: Accepted by AAAI-25, February 2025
☆ ANSR-DT: An Adaptive Neuro-Symbolic Learning and Reasoning Framework for Digital Twins
In this paper, we propose an Adaptive Neuro-Symbolic Learning Framework for digital twin technology called ``ANSR-DT." Our approach combines pattern recognition algorithms with reinforcement learning and symbolic reasoning to enable real-time learning and adaptive intelligence. This integration enhances the understanding of the environment and promotes continuous learning, leading to better and more effective decision-making in real-time for applications that require human-machine collaboration. We evaluated the \textit{ANSR-DT} framework for its ability to learn and adapt to dynamic patterns, observing significant improvements in decision accuracy, reliability, and interpretability when compared to existing state-of-the-art methods. However, challenges still exist in extracting and integrating symbolic rules in complex environments, which limits the full potential of our framework in heterogeneous settings. Moreover, our ongoing research aims to address this issue in the future by ensuring seamless integration of neural models at large. In addition, our open-source implementation promotes reproducibility and encourages future research to build on our foundational work.
☆ LAMS: LLM-Driven Automatic Mode Switching for Assistive Teleoperation
Teleoperating high degrees-of-freedom (DoF) robotic manipulators via low-DoF controllers like joysticks often requires frequent switching between control modes, where each mode maps controller movements to specific robot actions. Manually performing this frequent switching can make teleoperation cumbersome and inefficient. On the other hand, existing automatic mode-switching solutions, such as heuristic-based or learning-based methods, are often task-specific and lack generalizability. In this paper, we introduce LLM-Driven Automatic Mode Switching (LAMS), a novel approach that leverages Large Language Models (LLMs) to automatically switch control modes based on task context. Unlike existing methods, LAMS requires no prior task demonstrations and incrementally improves by integrating user-generated mode-switching examples. We validate LAMS through an ablation study and a user study with 10 participants on complex, long-horizon tasks, demonstrating that LAMS effectively reduces manual mode switches, is preferred over alternative methods, and improves performance over time. The project website with supplementary materials is at https://lams-assistance.github.io/.
☆ Reinforcement Learning-Enhanced Procedural Generation for Dynamic Narrative-Driven AR Experiences
Procedural Content Generation (PCG) is widely used to create scalable and diverse environments in games. However, existing methods, such as the Wave Function Collapse (WFC) algorithm, are often limited to static scenarios and lack the adaptability required for dynamic, narrative-driven applications, particularly in augmented reality (AR) games. This paper presents a reinforcement learning-enhanced WFC framework designed for mobile AR environments. By integrating environment-specific rules and dynamic tile weight adjustments informed by reinforcement learning (RL), the proposed method generates maps that are both contextually coherent and responsive to gameplay needs. Comparative evaluations and user studies demonstrate that the framework achieves superior map quality and delivers immersive experiences, making it well-suited for narrative-driven AR games. Additionally, the method holds promise for broader applications in education, simulation training, and immersive extended reality (XR) experiences, where dynamic and adaptive environments are critical.
comment: Number of pages: 13, Number of figures: 4. Accepted for presentation at GRAPP 2025 - 20th International Conference on Computer Graphics Theory and Applications (for additional details on the conference visit https://grapp.scitevents.org). Disclaimer: This preprint may differ from the final version published in the conference proceedings
☆ The Devil is in Temporal Token: High Quality Video Reasoning Segmentation
Existing methods for Video Reasoning Segmentation rely heavily on a single special token to represent the object in the keyframe or the entire video, inadequately capturing spatial complexity and inter-frame motion. To overcome these challenges, we propose VRS-HQ, an end-to-end video reasoning segmentation approach that leverages Multimodal Large Language Models (MLLMs) to inject rich spatiotemporal features into hierarchical tokens.Our key innovations include a Temporal Dynamic Aggregation (TDA) and a Token-driven Keyframe Selection (TKS). Specifically, we design frame-level and temporal-level tokens that utilize MLLM's autoregressive learning to effectively capture both local and global information. Subsequently, we apply a similarity-based weighted fusion and frame selection strategy, then utilize SAM2 to perform keyframe segmentation and propagation. To enhance keyframe localization accuracy, the TKS filters keyframes based on SAM2's occlusion scores during inference. VRS-HQ achieves state-of-the-art performance on ReVOS, surpassing VISA by 5.9%/12.5%/9.1% in J&F scores across the three subsets. These results highlight the strong temporal reasoning and segmentation capabilities of our method. Code and model weights will be released at VRS-HQ.
☆ Knowledge prompt chaining for semantic modeling
The task of building semantics for structured data such as CSV, JSON, and XML files is highly relevant in the knowledge representation field. Even though we have a vast of structured data on the internet, mapping them to domain ontologies to build semantics for them is still very challenging as it requires the construction model to understand and learn graph-structured knowledge. Otherwise, the task will require human beings' effort and cost. In this paper, we proposed a novel automatic semantic modeling framework: Knowledge Prompt Chaining. It can serialize the graph-structured knowledge and inject it into the LLMs properly in a Prompt Chaining architecture. Through this knowledge injection and prompting chaining, the model in our framework can learn the structure information and latent space of the graph and generate the semantic labels and semantic graphs following the chains' insturction naturally. Based on experimental results, our method achieves better performance than existing leading techniques, despite using reduced structured input data.
☆ Dynamic Portfolio Optimization via Augmented DDPG with Quantum Price Levels-Based Trading Strategy
With the development of deep learning, Dynamic Portfolio Optimization (DPO) problem has received a lot of attention in recent years, not only in the field of finance but also in the field of deep learning. Some advanced research in recent years has proposed the application of Deep Reinforcement Learning (DRL) to the DPO problem, which demonstrated to be more advantageous than supervised learning in solving the DPO problem. However, there are still certain unsolved issues: 1) DRL algorithms usually have the problems of slow learning speed and high sample complexity, which is especially problematic when dealing with complex financial data. 2) researchers use DRL simply for the purpose of obtaining high returns, but pay little attention to the problem of risk control and trading strategy, which will affect the stability of model returns. In order to address these issues, in this study we revamped the intrinsic structure of the model based on the Deep Deterministic Policy Gradient (DDPG) and proposed the Augmented DDPG model. Besides, we also proposed an innovative risk control strategy based on Quantum Price Levels (QPLs) derived from Quantum Finance Theory (QFT). Our experimental results revealed that our model has better profitability as well as risk control ability with less sample complexity in the DPO problem compared to the baseline models.
comment: 8 pages
☆ Doc-Guided Sent2Sent++: A Sent2Sent++ Agent with Doc-Guided memory for Document-level Machine Translation
The field of artificial intelligence has witnessed significant advancements in natural language processing, largely attributed to the capabilities of Large Language Models (LLMs). These models form the backbone of Agents designed to address long-context dependencies, particularly in Document-level Machine Translation (DocMT). DocMT presents unique challenges, with quality, consistency, and fluency being the key metrics for evaluation. Existing approaches, such as Doc2Doc and Doc2Sent, either omit sentences or compromise fluency. This paper introduces Doc-Guided Sent2Sent++, an Agent that employs an incremental sentence-level forced decoding strategy \textbf{to ensure every sentence is translated while enhancing the fluency of adjacent sentences.} Our Agent leverages a Doc-Guided Memory, focusing solely on the summary and its translation, which we find to be an efficient approach to maintaining consistency. Through extensive testing across multiple languages and domains, we demonstrate that Sent2Sent++ outperforms other methods in terms of quality, consistency, and fluency. The results indicate that, our approach has achieved significant improvements in metrics such as s-COMET, d-COMET, LTCR-$1_f$, and document-level perplexity (d-ppl). The contributions of this paper include a detailed analysis of current DocMT research, the introduction of the Sent2Sent++ decoding method, the Doc-Guided Memory mechanism, and validation of its effectiveness across languages and domains.
☆ Mitigating Domain Shift in Federated Learning via Intra- and Inter-Domain Prototypes
Federated Learning (FL) has emerged as a decentralized machine learning technique, allowing clients to train a global model collaboratively without sharing private data. However, most FL studies ignore the crucial challenge of heterogeneous domains where each client has a distinct feature distribution, which is common in real-world scenarios. Prototype learning, which leverages the mean feature vectors within the same classes, has become a prominent solution for federated learning under domain skew. However, existing federated prototype learning methods only consider inter-domain prototypes on the server and overlook intra-domain characteristics. In this work, we introduce a novel federated prototype learning method, namely I$^2$PFL, which incorporates $\textbf{I}$ntra-domain and $\textbf{I}$nter-domain $\textbf{P}$rototypes, to mitigate domain shifts and learn a generalized global model across multiple domains in federated learning. To construct intra-domain prototypes, we propose feature alignment with MixUp-based augmented prototypes to capture the diversity of local domains and enhance the generalization of local features. Additionally, we introduce a reweighting mechanism for inter-domain prototypes to generate generalized prototypes to provide inter-domain knowledge and reduce domain skew across multiple clients. Extensive experiments on the Digits, Office-10, and PACS datasets illustrate the superior performance of our method compared to other baselines.
comment: 13 pages, 9 figures, 10 tables
☆ Easing Seasickness through Attention Redirection with a Mindfulness-Based Brain--Computer Interface
Seasickness is a prevalent issue that adversely impacts both passenger experiences and the operational efficiency of maritime crews. While techniques that redirect attention have proven effective in alleviating motion sickness symptoms in terrestrial environments, applying similar strategies to manage seasickness poses unique challenges due to the prolonged and intense motion environment associated with maritime travel. In this study, we propose a mindfulness brain-computer interface (BCI), specifically designed to redirect attention with the aim of mitigating seasickness symptoms in real-world settings. Our system utilizes a single-channel headband to capture prefrontal EEG signals, which are then wirelessly transmitted to computing devices for the assessment of mindfulness states. The results are transferred into real-time feedback as mindfulness scores and audiovisual stimuli, facilitating a shift in attentional focus from physiological discomfort to mindfulness practices. A total of 43 individuals participated in a real-world maritime experiment consisted of three sessions: a real-feedback mindfulness session, a resting session, and a pseudofeedback mindfulness session. Notably, 81.39% of participants reported that the mindfulness BCI intervention was effective, and there was a significant reduction in the severity of seasickness, as measured by the Misery Scale (MISC). Furthermore, EEG analysis revealed a decrease in the theta/beta ratio, corresponding with the alleviation of seasickness symptoms. A decrease in overall EEG band power during the real-feedback mindfulness session suggests that the mindfulness BCI fosters a more tranquil and downregulated state of brain activity. Together, this study presents a novel nonpharmacological, portable, and effective approach for seasickness intervention, with the potential to enhance the cruising experience for both passengers and crews.
☆ Exploring the Efficacy of Meta-Learning: Unveiling Superior Data Diversity Utilization of MAML Over Pre-training
Currently, data and model size dominate the narrative in the training of super-large, powerful models. However, there has been a lack of exploration on the effect of other attributes of the training dataset on model performance. We hypothesize that dataset diversity can impact the performance of vision models. Our study shows positive correlations between test set accuracy and data diversity, providing an argument for furthering the research of dataset attributes beyond size. We analyzed pre-training and model-agnostic meta-learning methods on twelve popular visual datasets (e.g., Omniglot, CIFAR-FS, Aircraft) and five model configurations, including MAML variants with different numbers of inner gradient steps and supervised learning. We show moderate to strong positive correlations (R-squared: 0.15-0.42) between accuracy and data diversity and weaker but significant correlations (R-squared: ~0.2) between loss and diversity. These findings support our hypothesis and demonstrate a promising way for a deeper exploration of how formal data diversity influences model performance. This initial study highlights the potential of (Task2Vec) data diversity as a valuable measure in the rapidly evolving field of large-scale learning and emphasizes that understanding the dataset is key to building more powerful and generalizable models.
☆ Adapting Whisper for Regional Dialects: Enhancing Public Services for Vulnerable Populations in the United Kingdom
We collect novel data in the public service domain to evaluate the capability of the state-of-the-art automatic speech recognition (ASR) models in capturing regional differences in accents in the United Kingdom (UK), specifically focusing on two accents from Scotland with distinct dialects. This study addresses real-world problems where biased ASR models can lead to miscommunication in public services, disadvantaging individuals with regional accents particularly those in vulnerable populations. We first examine the out-of-the-box performance of the Whisper large-v3 model on a baseline dataset and our data. We then explore the impact of fine-tuning Whisper on the performance in the two UK regions and investigate the effectiveness of existing model evaluation techniques for our real-world application through manual inspection of model errors. We observe that the Whisper model has a higher word error rate (WER) on our test datasets compared to the baseline data and fine-tuning on a given data improves performance on the test dataset with the same domain and accent. The fine-tuned models also appear to show improved performance when applied to the test data outside of the region it was trained on suggesting that fine-tuned models may be transferable within parts of the UK. Our manual analysis of model outputs reveals the benefits and drawbacks of using WER as an evaluation metric and fine-tuning to adapt to regional dialects.
☆ Grounding Text-To-Image Diffusion Models For Controlled High-Quality Image Generation
Large-scale text-to-image (T2I) diffusion models have demonstrated an outstanding performance in synthesizing diverse high-quality visuals from natural language text captions. Multiple layout-to-image models have been developed to control the generation process by utilizing a broad array of layouts such as segmentation maps, edges, and human keypoints. In this work, we present ObjectDiffusion, a model that takes inspirations from the top cutting-edge image generative frameworks to seamlessly condition T2I models with new bounding boxes capabilities. Specifically, we make substantial modifications to the network architecture introduced in ContorlNet to integrate it with the condition processing and injection techniques proposed in GLIGEN. ObjectDiffusion is initialized with pretraining parameters to leverage the generation knowledge obtained from training on large-scale datasets. We fine-tune ObjectDiffusion on the COCO2017 training dataset and evaluate it on the COCO2017 validation dataset. Our model achieves an AP$_{50}$ of 46.6, an AR of 44.5, and a FID of 19.8 outperforming the current SOTA model trained on open-source datasets in all of the three metrics. ObjectDiffusion demonstrates a distinctive capability in synthesizing diverse, high-quality, high-fidelity images that seamlessly conform to the semantic and spatial control layout. Evaluated in qualitative and quantitative tests, ObjectDiffusion exhibits remarkable grounding abilities on closed-set and open-set settings across a wide variety of contexts. The qualitative assessment verifies the ability of ObjectDiffusion to generate multiple objects of different sizes and locations.
☆ Patch-aware Vector Quantized Codebook Learning for Unsupervised Visual Defect Detection ICTAI 2024
Unsupervised visual defect detection is critical in industrial applications, requiring a representation space that captures normal data features while detecting deviations. Achieving a balance between expressiveness and compactness is challenging; an overly expressive space risks inefficiency and mode collapse, impairing detection accuracy. We propose a novel approach using an enhanced VQ-VAE framework optimized for unsupervised defect detection. Our model introduces a patch-aware dynamic code assignment scheme, enabling context-sensitive code allocation to optimize spatial representation. This strategy enhances normal-defect distinction and improves detection accuracy during inference. Experiments on MVTecAD, BTAD, and MTSD datasets show our method achieves state-of-the-art performance.
comment: 7 pages, Accepted to 36th IEEE ICTAI 2024
☆ Guiding Retrieval using LLM-based Listwise Rankers
Large Language Models (LLMs) have shown strong promise as rerankers, especially in ``listwise'' settings where an LLM is prompted to rerank several search results at once. However, this ``cascading'' retrieve-and-rerank approach is limited by the bounded recall problem: relevant documents not retrieved initially are permanently excluded from the final ranking. Adaptive retrieval techniques address this problem, but do not work with listwise rerankers because they assume a document's score is computed independently from other documents. In this paper, we propose an adaptation of an existing adaptive retrieval method that supports the listwise setting and helps guide the retrieval process itself (thereby overcoming the bounded recall problem for LLM rerankers). Specifically, our proposed algorithm merges results both from the initial ranking and feedback documents provided by the most relevant documents seen up to that point. Through extensive experiments across diverse LLM rerankers, first stage retrievers, and feedback sources, we demonstrate that our method can improve nDCG@10 by up to 13.23% and recall by 28.02%--all while keeping the total number of LLM inferences constant and overheads due to the adaptive process minimal. The work opens the door to leveraging LLM-based search in settings where the initial pool of results is limited, e.g., by legacy systems, or by the cost of deploying a semantic first-stage.
comment: 16 pages, 2 figures, 3 tables
☆ A Blockchain-Enabled Approach to Cross-Border Compliance and Trust
As artificial intelligence (AI) systems become increasingly integral to critical infrastructure and global operations, the need for a unified, trustworthy governance framework is more urgent that ever. This paper proposes a novel approach to AI governance, utilizing blockchain and distributed ledger technologies (DLT) to establish a decentralized, globally recognized framework that ensures security, privacy, and trustworthiness of AI systems across borders. The paper presents specific implementation scenarios within the financial sector, outlines a phased deployment timeline over the next decade, and addresses potential challenges with solutions grounded in current research. By synthesizing advancements in blockchain, AI ethics, and cybersecurity, this paper offers a comprehensive roadmap for a decentralized AI governance framework capable of adapting to the complex and evolving landscape of global AI regulation.
comment: This is a preprint of paper that has been accepted for Publication at 2024 IEEE International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications
☆ Attention is All You Need Until You Need Retention
This work introduces a novel Retention Layer mechanism for Transformer based architectures, addressing their inherent lack of intrinsic retention capabilities. Unlike human cognition, which can encode and dynamically recall symbolic templates, Generative Pretrained Transformers rely solely on fixed pretrained weights and ephemeral context windows, limiting their adaptability. The proposed Retention Layer incorporates a persistent memory module capable of real time data population, dynamic recall, and guided output generation. This enhancement allows models to store, update, and reuse observed patterns across sessions, enabling incremental learning and bridging the gap between static pretraining and dynamic, context sensitive adaptation. The Retention Layer design parallels social learning processes, encompassing attention, retention, reproduction, and motivation stages. Technically, it integrates a memory attention mechanism and episodic buffers to manage memory scalability, mitigate overfitting, and ensure efficient recall. Applications span adaptive personal assistants, real time fraud detection, autonomous robotics, content moderation, and healthcare diagnostics. In each domain, the retention mechanism enables systems to learn incrementally, personalize outputs, and respond to evolving real world challenges effectively. By emulating key aspects of human learning, this retention enhanced architecture fosters a more fluid and responsive AI paradigm, paving the way for dynamic, session aware models that extend the capabilities of traditional Transformers into domains requiring continual adaptation.
☆ The Veln(ia)s is in the Details: Evaluating LLM Judgment on Latvian and Lithuanian Short Answer Matching
In this work, we address the challenge of evaluating large language models (LLMs) on the short answer matching task for Latvian and Lithuanian languages. We introduce novel datasets consisting of 502 Latvian and 690 Lithuanian question-answer pairs. For each question-answer pair, we generated matched and non-matched answers using a set of alteration rules specifically designed to introduce small but meaningful changes in the text. These generated answers serve as test cases to assess the ability of LLMs to detect subtle differences in matching of the original answers. A subset of the datasets was manually verified for quality and accuracy. Our results show that while larger LLMs, such as QWEN2.5 72b and LLaMa3.1 70b, demonstrate near-perfect performance in distinguishing matched and non-matched answers, smaller models show more variance. For instance, LLaMa3.1 8b and EuroLLM 9b benefited from few-shot examples, while Mistral Nemo 12b underperformed on detection of subtle text alteration, particularly in Lithuanian, even with additional examples. QWEN2.5 7b and Mistral 7b were able to obtain a strong and comparable performance to the larger 70b models in zero and few shot experiments. Moreover, the performance of Mistral 7b was weaker in few shot experiments.
☆ Towards Understanding Extrapolation: a Causal Lens NeurIPS 2024
Canonical work handling distribution shifts typically necessitates an entire target distribution that lands inside the training distribution. However, practical scenarios often involve only a handful of target samples, potentially lying outside the training support, which requires the capability of extrapolation. In this work, we aim to provide a theoretical understanding of when extrapolation is possible and offer principled methods to achieve it without requiring an on-support target distribution. To this end, we formulate the extrapolation problem with a latent-variable model that embodies the minimal change principle in causal mechanisms. Under this formulation, we cast the extrapolation problem into a latent-variable identification problem. We provide realistic conditions on shift properties and the estimation objectives that lead to identification even when only one off-support target sample is available, tackling the most challenging scenarios. Our theory reveals the intricate interplay between the underlying manifold's smoothness and the shift properties. We showcase how our theoretical results inform the design of practical adaptation algorithms. Through experiments on both synthetic and real-world data, we validate our theoretical findings and their practical implications.
comment: NeurIPS 2024
☆ AutoLoop: Fast Visual SLAM Fine-tuning through Agentic Curriculum Learning
Current visual SLAM systems face significant challenges in balancing computational efficiency with robust loop closure handling. Traditional approaches require careful manual tuning and incur substantial computational overhead, while learning-based methods either lack explicit loop closure capabilities or implement them through computationally expensive methods. We present AutoLoop, a novel approach that combines automated curriculum learning with efficient fine-tuning for visual SLAM systems. Our method employs a DDPG (Deep Deterministic Policy Gradient) agent to dynamically adjust loop closure weights during training, eliminating the need for manual hyperparameter search while significantly reducing the required training steps. The approach pre-computes potential loop closure pairs offline and leverages them through an agent-guided curriculum, allowing the model to adapt efficiently to new scenarios. Experiments conducted on TartanAir for training and validated across multiple benchmarks including KITTI, EuRoC, ICL-NUIM and TUM RGB-D demonstrate that AutoLoop achieves comparable or superior performance while reducing training time by an order of magnitude compared to traditional approaches. AutoLoop provides a practical solution for rapid adaptation of visual SLAM systems, automating the weight tuning process that traditionally requires multiple manual iterations. Our results show that this automated curriculum strategy not only accelerates training but also maintains or improves the model's performance across diverse environmental conditions.
☆ Towards Multilingual LLM Evaluation for Baltic and Nordic languages: A study on Lithuanian History
In this work, we evaluated Lithuanian and general history knowledge of multilingual Large Language Models (LLMs) on a multiple-choice question-answering task. The models were tested on a dataset of Lithuanian national and general history questions translated into Baltic, Nordic, and other languages (English, Ukrainian, Arabic) to assess the knowledge sharing from culturally and historically connected groups. We evaluated GPT-4o, LLaMa3.1 8b and 70b, QWEN2.5 7b and 72b, Mistral Nemo 12b, LLaMa3 8b, Mistral 7b, LLaMa3.2 3b, and Nordic fine-tuned models (GPT-SW3 and LLaMa3 8b). Our results show that GPT-4o consistently outperformed all other models across language groups, with slightly better results for Baltic and Nordic languages. Larger open-source models like QWEN2.5 72b and LLaMa3.1 70b performed well but showed weaker alignment with Baltic languages. Smaller models (Mistral Nemo 12b, LLaMa3.2 3b, QWEN 7B, LLaMa3.1 8B, and LLaMa3 8b) demonstrated gaps with LT-related alignment with Baltic languages while performing better on Nordic and other languages. The Nordic fine-tuned models did not surpass multilingual models, indicating that shared cultural or historical context alone does not guarantee better performance.
☆ Agentic Retrieval-Augmented Generation: A Survey on Agentic RAG
Large Language Models (LLMs) have revolutionized artificial intelligence (AI) by enabling human like text generation and natural language understanding. However, their reliance on static training data limits their ability to respond to dynamic, real time queries, resulting in outdated or inaccurate outputs. Retrieval Augmented Generation (RAG) has emerged as a solution, enhancing LLMs by integrating real time data retrieval to provide contextually relevant and up-to-date responses. Despite its promise, traditional RAG systems are constrained by static workflows and lack the adaptability required for multistep reasoning and complex task management. Agentic Retrieval-Augmented Generation (Agentic RAG) transcends these limitations by embedding autonomous AI agents into the RAG pipeline. These agents leverage agentic design patterns reflection, planning, tool use, and multiagent collaboration to dynamically manage retrieval strategies, iteratively refine contextual understanding, and adapt workflows to meet complex task requirements. This integration enables Agentic RAG systems to deliver unparalleled flexibility, scalability, and context awareness across diverse applications. This survey provides a comprehensive exploration of Agentic RAG, beginning with its foundational principles and the evolution of RAG paradigms. It presents a detailed taxonomy of Agentic RAG architectures, highlights key applications in industries such as healthcare, finance, and education, and examines practical implementation strategies. Additionally, it addresses challenges in scaling these systems, ensuring ethical decision making, and optimizing performance for real-world applications, while providing detailed insights into frameworks and tools for implementing Agentic RAG
☆ Benchmarking Robustness of Contrastive Learning Models for Medical Image-Report Retrieval AAAI 2025
Medical images and reports offer invaluable insights into patient health. The heterogeneity and complexity of these data hinder effective analysis. To bridge this gap, we investigate contrastive learning models for cross-domain retrieval, which associates medical images with their corresponding clinical reports. This study benchmarks the robustness of four state-of-the-art contrastive learning models: CLIP, CXR-RePaiR, MedCLIP, and CXR-CLIP. We introduce an occlusion retrieval task to evaluate model performance under varying levels of image corruption. Our findings reveal that all evaluated models are highly sensitive to out-of-distribution data, as evidenced by the proportional decrease in performance with increasing occlusion levels. While MedCLIP exhibits slightly more robustness, its overall performance remains significantly behind CXR-CLIP and CXR-RePaiR. CLIP, trained on a general-purpose dataset, struggles with medical image-report retrieval, highlighting the importance of domain-specific training data. The evaluation of this work suggests that more effort needs to be spent on improving the robustness of these models. By addressing these limitations, we can develop more reliable cross-domain retrieval models for medical applications.
comment: This work is accepted to AAAI 2025 Workshop -- the 9th International Workshop on Health Intelligence
☆ Generative Medical Image Anonymization Based on Latent Code Projection and Optimization
Medical image anonymization aims to protect patient privacy by removing identifying information, while preserving the data utility to solve downstream tasks. In this paper, we address the medical image anonymization problem with a two-stage solution: latent code projection and optimization. In the projection stage, we design a streamlined encoder to project input images into a latent space and propose a co-training scheme to enhance the projection process. In the optimization stage, we refine the latent code using two deep loss functions designed to address the trade-off between identity protection and data utility dedicated to medical images. Through a comprehensive set of qualitative and quantitative experiments, we showcase the effectiveness of our approach on the MIMIC-CXR chest X-ray dataset by generating anonymized synthetic images that can serve as training set for detecting lung pathologies. Source codes are available at https://github.com/Huiyu-Li/GMIA.
comment: Conference
☆ Mantis Shrimp: Exploring Photometric Band Utilization in Computer Vision Networks for Photometric Redshift Estimation
We present Mantis Shrimp, a multi-survey deep learning model for photometric redshift estimation that fuses ultra-violet (GALEX), optical (PanSTARRS), and infrared (UnWISE) imagery. Machine learning is now an established approach for photometric redshift estimation, with generally acknowledged higher performance in areas with a high density of spectroscopically identified galaxies over template-based methods. Multiple works have shown that image-based convolutional neural networks can outperform tabular-based color/magnitude models. In comparison to tabular models, image models have additional design complexities: it is largely unknown how to fuse inputs from different instruments which have different resolutions or noise properties. The Mantis Shrimp model estimates the conditional density estimate of redshift using cutout images. The density estimates are well calibrated and the point estimates perform well in the distribution of available spectroscopically confirmed galaxies with (bias = 1e-2), scatter (NMAD = 2.44e-2) and catastrophic outlier rate ($\eta$=17.53$\%$). We find that early fusion approaches (e.g., resampling and stacking images from different instruments) match the performance of late fusion approaches (e.g., concatenating latent space representations), so that the design choice ultimately is left to the user. Finally, we study how the models learn to use information across bands, finding evidence that our models successfully incorporates information from all surveys. The applicability of our model to the analysis of large populations of galaxies is limited by the speed of downloading cutouts from external servers; however, our model could be useful in smaller studies such as generating priors over redshift for stellar population synthesis.
☆ A Non-autoregressive Model for Joint STT and TTS
In this paper, we take a step towards jointly modeling automatic speech recognition (STT) and speech synthesis (TTS) in a fully non-autoregressive way. We develop a novel multimodal framework capable of handling the speech and text modalities as input either individually or together. The proposed model can also be trained with unpaired speech or text data owing to its multimodal nature. We further propose an iterative refinement strategy to improve the STT and TTS performance of our model such that the partial hypothesis at the output can be fed back to the input of our model, thus iteratively improving both STT and TTS predictions. We show that our joint model can effectively perform both STT and TTS tasks, outperforming the STT-specific baseline in all tasks and performing competitively with the TTS-specific baseline across a wide range of evaluation metrics.
comment: 5 pages, 3 figures, 3 tables
☆ Tracking the Takes and Trajectories of English-Language News Narratives across Trustworthy and Worrisome Websites USENIX Security
Understanding how misleading and outright false information enters news ecosystems remains a difficult challenge that requires tracking how narratives spread across thousands of fringe and mainstream news websites. To do this, we introduce a system that utilizes encoder-based large language models and zero-shot stance detection to scalably identify and track news narratives and their attitudes across over 4,000 factually unreliable, mixed-reliability, and factually reliable English-language news websites. Running our system over an 18 month period, we track the spread of 146K news stories. Using network-based interference via the NETINF algorithm, we show that the paths of news narratives and the stances of websites toward particular entities can be used to uncover slanted propaganda networks (e.g., anti-vaccine and anti-Ukraine) and to identify the most influential websites in spreading these attitudes in the broader news ecosystem. We hope that increased visibility into our distributed news ecosystem can help with the reporting and fact-checking of propaganda and disinformation.
comment: To appear at USENIX Security Symposium 2025. Keywords: Misinformation, News, Narratives, LLMs, Stance-Detection
☆ SteLLA: A Structured Grading System Using LLMs with RAG
Large Language Models (LLMs) have shown strong general capabilities in many applications. However, how to make them reliable tools for some specific tasks such as automated short answer grading (ASAG) remains a challenge. We present SteLLA (Structured Grading System Using LLMs with RAG) in which a) Retrieval Augmented Generation (RAG) approach is used to empower LLMs specifically on the ASAG task by extracting structured information from the highly relevant and reliable external knowledge based on the instructor-provided reference answer and rubric, b) an LLM performs a structured and question-answering-based evaluation of student answers to provide analytical grades and feedback. A real-world dataset that contains students' answers in an exam was collected from a college-level Biology course. Experiments show that our proposed system can achieve substantial agreement with the human grader while providing break-down grades and feedback on all the knowledge points examined in the problem. A qualitative and error analysis of the feedback generated by GPT4 shows that GPT4 is good at capturing facts while may be prone to inferring too much implication from the given text in the grading task which provides insights into the usage of LLMs in the ASAG system.
☆ Inferring Transition Dynamics from Value Functions AAAI-25
In reinforcement learning, the value function is typically trained to solve the Bellman equation, which connects the current value to future values. This temporal dependency hints that the value function may contain implicit information about the environment's transition dynamics. By rearranging the Bellman equation, we show that a converged value function encodes a model of the underlying dynamics of the environment. We build on this insight to propose a simple method for inferring dynamics models directly from the value function, potentially mitigating the need for explicit model learning. Furthermore, we explore the challenges of next-state identifiability, discussing conditions under which the inferred dynamics model is well-defined. Our work provides a theoretical foundation for leveraging value functions in dynamics modeling and opens a new avenue for bridging model-free and model-based reinforcement learning.
comment: Accepted at the AAAI-25 8th Workshop on Generalization in Planning
☆ Average-Reward Reinforcement Learning with Entropy Regularization AAAI-25
The average-reward formulation of reinforcement learning (RL) has drawn increased interest in recent years due to its ability to solve temporally-extended problems without discounting. Independently, RL algorithms have benefited from entropy-regularization: an approach used to make the optimal policy stochastic, thereby more robust to noise. Despite the distinct benefits of the two approaches, the combination of entropy regularization with an average-reward objective is not well-studied in the literature and there has been limited development of algorithms for this setting. To address this gap in the field, we develop algorithms for solving entropy-regularized average-reward RL problems with function approximation. We experimentally validate our method, comparing it with existing algorithms on standard benchmarks for RL.
comment: Accepted at the AAAI-25 Eighth Workshop on Bridging the Gap Between AI Planning and Reinforcement Learning (PRL)
☆ Decompose-ToM: Enhancing Theory of Mind Reasoning in Large Language Models through Simulation and Task Decomposition COLING 2025
Theory of Mind (ToM) is the ability to understand and reflect on the mental states of others. Although this capability is crucial for human interaction, testing on Large Language Models (LLMs) reveals that they possess only a rudimentary understanding of it. Although the most capable closed-source LLMs have come close to human performance on some ToM tasks, they still perform poorly on complex variations of the task that involve more structured reasoning. In this work, we utilize the concept of "pretend-play", or ``Simulation Theory'' from cognitive psychology to propose ``Decompose-ToM'': an LLM-based inference algorithm that improves model performance on complex ToM tasks. We recursively simulate user perspectives and decompose the ToM task into a simpler set of functions: subject identification, question-reframing, world model updation, and knowledge availability. We test the algorithm on higher-order ToM tasks and a task testing for ToM capabilities in a conversational setting, demonstrating that our approach shows significant improvement across models compared to baseline methods while requiring minimal prompt tuning across tasks and no additional model training.
comment: Accepted to COLING 2025
☆ Polyp detection in colonoscopy images using YOLOv11
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers all over the world. It starts as a polyp in the inner lining of the colon. To prevent CRC, early polyp detection is required. Colonosopy is used for the inspection of the colon. Generally, the images taken by the camera placed at the tip of the endoscope are analyzed by the experts manually. Various traditional machine learning models have been used with the rise of machine learning. Recently, deep learning models have shown more effectiveness in polyp detection due to their superiority in generalizing and learning small features. These deep learning models for object detection can be segregated into two different types: single-stage and two-stage. Generally, two stage models have higher accuracy than single stage ones but the single stage models have low inference time. Hence, single stage models are easy to use for quick object detection. YOLO is one of the singlestage models used successfully for polyp detection. It has drawn the attention of researchers because of its lower inference time. The researchers have used Different versions of YOLO so far, and with each newer version, the accuracy of the model is increasing. This paper aims to see the effectiveness of the recently released YOLOv11 to detect polyp. We analyzed the performance for all five models of YOLOv11 (YOLO11n, YOLO11s, YOLO11m, YOLO11l, YOLO11x) with Kvasir dataset for the training and testing. Two different versions of the dataset were used. The first consisted of the original dataset, and the other was created using augmentation techniques. The performance of all the models with these two versions of the dataset have been analysed.
☆ Generating Realistic Synthetic Head Rotation Data for Extended Reality using Deep Learning
Extended Reality is a revolutionary method of delivering multimedia content to users. A large contributor to its popularity is the sense of immersion and interactivity enabled by having real-world motion reflected in the virtual experience accurately and immediately. This user motion, mainly caused by head rotations, induces several technical challenges. For instance, which content is generated and transmitted depends heavily on where the user is looking. Seamless systems, taking user motion into account proactively, will therefore require accurate predictions of upcoming rotations. Training and evaluating such predictors requires vast amounts of orientational input data, which is expensive to gather, as it requires human test subjects. A more feasible approach is to gather a modest dataset through test subjects, and then extend it to a more sizeable set using synthetic data generation methods. In this work, we present a head rotation time series generator based on TimeGAN, an extension of the well-known Generative Adversarial Network, designed specifically for generating time series. This approach is able to extend a dataset of head rotations with new samples closely matching the distribution of the measured time series.
comment: Published and presented at International Conference on Multimedia 2022 (ACMMM), Workshop on Interactive eXtended Reality (IXR)
☆ Dynamic-Aware Spatio-temporal Representation Learning for Dynamic MRI Reconstruction
Dynamic MRI reconstruction, one of inverse problems, has seen a surge by the use of deep learning techniques. Especially, the practical difficulty of obtaining ground truth data has led to the emergence of unsupervised learning approaches. A recent promising method among them is implicit neural representation (INR), which defines the data as a continuous function that maps coordinate values to the corresponding signal values. This allows for filling in missing information only with incomplete measurements and solving the inverse problem effectively. Nevertheless, previous works incorporating this method have faced drawbacks such as long optimization time and the need for extensive hyperparameter tuning. To address these issues, we propose Dynamic-Aware INR (DA-INR), an INR-based model for dynamic MRI reconstruction that captures the spatial and temporal continuity of dynamic MRI data in the image domain and explicitly incorporates the temporal redundancy of the data into the model structure. As a result, DA-INR outperforms other models in reconstruction quality even at extreme undersampling ratios while significantly reducing optimization time and requiring minimal hyperparameter tuning.
☆ Spatio-Temporal Foundation Models: Vision, Challenges, and Opportunities
Foundation models have revolutionized artificial intelligence, setting new benchmarks in performance and enabling transformative capabilities across a wide range of vision and language tasks. However, despite the prevalence of spatio-temporal data in critical domains such as transportation, public health, and environmental monitoring, spatio-temporal foundation models (STFMs) have not yet achieved comparable success. In this paper, we articulate a vision for the future of STFMs, outlining their essential characteristics and the generalization capabilities necessary for broad applicability. We critically assess the current state of research, identifying gaps relative to these ideal traits, and highlight key challenges that impede their progress. Finally, we explore potential opportunities and directions to advance research towards the aim of effective and broadly applicable STFMs.
☆ TCMM: Token Constraint and Multi-Scale Memory Bank of Contrastive Learning for Unsupervised Person Re-identification
This paper proposes the ViT Token Constraint and Multi-scale Memory bank (TCMM) method to address the patch noises and feature inconsistency in unsupervised person re-identification works. Many excellent methods use ViT features to obtain pseudo labels and clustering prototypes, then train the model with contrastive learning. However, ViT processes images by performing patch embedding, which inevitably introduces noise in patches and may compromise the performance of the re-identification model. On the other hand, previous memory bank based contrastive methods may lead data inconsistency due to the limitation of batch size. Furthermore, existing pseudo label methods often discard outlier samples that are difficult to cluster. It sacrifices the potential value of outlier samples, leading to limited model diversity and robustness. This paper introduces the ViT Token Constraint to mitigate the damage caused by patch noises to the ViT architecture. The proposed Multi-scale Memory enhances the exploration of outlier samples and maintains feature consistency. Experimental results demonstrate that our system achieves state-of-the-art performance on common benchmarks. The project is available at \href{https://github.com/andy412510/TCMM}{https://github.com/andy412510/TCMM}.
☆ EVAL: EigenVector-based Average-reward Learning AAAI-25
In reinforcement learning, two objective functions have been developed extensively in the literature: discounted and averaged rewards. The generalization to an entropy-regularized setting has led to improved robustness and exploration for both of these objectives. Recently, the entropy-regularized average-reward problem was addressed using tools from large deviation theory in the tabular setting. This method has the advantage of linearity, providing access to both the optimal policy and average reward-rate through properties of a single matrix. In this paper, we extend that framework to more general settings by developing approaches based on function approximation by neural networks. This formulation reveals new theoretical insights into the relationship between different objectives used in RL. Additionally, we combine our algorithm with a posterior policy iteration scheme, showing how our approach can also solve the average-reward RL problem without entropy-regularization. Using classic control benchmarks, we experimentally find that our method compares favorably with other algorithms in terms of stability and rate of convergence.
comment: Accepted at the AAAI-25 8th Workshop on Generalization in Planning. arXiv admin note: text overlap with arXiv:2501.09080
♻ ☆ Reward Machines for Deep RL in Noisy and Uncertain Environments
Reward Machines provide an automaton-inspired structure for specifying instructions, safety constraints, and other temporally extended reward-worthy behaviour. By exposing the underlying structure of a reward function, they enable the decomposition of an RL task, leading to impressive gains in sample efficiency. Although Reward Machines and similar formal specifications have a rich history of application towards sequential decision-making problems, they critically rely on a ground-truth interpretation of the domain-specific vocabulary that forms the building blocks of the reward function--such ground-truth interpretations are elusive in the real world due in part to partial observability and noisy sensing. In this work, we explore the use of Reward Machines for Deep RL in noisy and uncertain environments. We characterize this problem as a POMDP and propose a suite of RL algorithms that exploit task structure under uncertain interpretation of the domain-specific vocabulary. Through theory and experiments, we expose pitfalls in naive approaches to this problem while simultaneously demonstrating how task structure can be successfully leveraged under noisy interpretations of the vocabulary.
♻ ☆ Consistency of Responses and Continuations Generated by Large Language Models on Social Media
Large Language Models (LLMs) demonstrate remarkable capabilities in text generation, yet their emotional consistency and semantic coherence in social media contexts remain insufficiently understood. This study investigates how LLMs handle emotional content and maintain semantic relationships through continuation and response tasks using two open-source models: Gemma and Llama. By analyzing climate change discussions from Twitter and Reddit, we examine emotional transitions, intensity patterns, and semantic similarity between human-authored and LLM-generated content. Our findings reveal that while both models maintain high semantic coherence, they exhibit distinct emotional patterns: Gemma shows a tendency toward negative emotion amplification, particularly anger, while maintaining certain positive emotions like optimism. Llama demonstrates superior emotional preservation across a broader spectrum of affects. Both models systematically generate responses with attenuated emotional intensity compared to human-authored content and show a bias toward positive emotions in response tasks. Additionally, both models maintain strong semantic similarity with original texts, though performance varies between continuation and response tasks. These findings provide insights into LLMs' emotional and semantic processing capabilities, with implications for their deployment in social media contexts and human-AI interaction design.
♻ ☆ Learning Low-Dimensional Strain Models of Soft Robots by Looking at the Evolution of Their Shape with Application to Model-Based Control
Obtaining dynamic models of continuum soft robots is central to the analysis and control of soft robots, and researchers have devoted much attention to the challenge of proposing both data-driven and first-principle solutions. Both avenues have, however, shown their limitations; the former lacks structure and performs poorly outside training data, while the latter requires significant simplifications and extensive expert knowledge to be used in practice. This paper introduces a streamlined method for learning low-dimensional, physics-based models that are both accurate and easy to interpret. We start with an algorithm that uses image data (i.e., shape evolutions) to determine the minimal necessary segments for describing a soft robot's movement. Following this, we apply a dynamic regression and strain sparsification algorithm to identify relevant strains and define the model's dynamics. We validate our approach through simulations with various planar soft manipulators, comparing its performance against other learning strategies, showing that our models are both computationally efficient and 25x more accurate on out-of-training distribution inputs. Finally, we demonstrate that thanks to the capability of the method of generating physically compatible models, the learned models can be straightforwardly combined with model-based control policies.
comment: 8 pages, appearing in Proceedings of the 2025 IEEE 8th International Conference on Soft Robotics (RoboSoft)
♻ ☆ A Discrete-sequence Dataset for Evaluating Online Unsupervised Anomaly Detection Approaches for Multivariate Time Series
Benchmarking anomaly detection approaches for multivariate time series is challenging due to the lack of high-quality datasets. Current publicly available datasets are too small, not diverse and feature trivial anomalies, which hinders measurable progress in this research area. We propose a solution: a diverse, extensive, and non-trivial dataset generated via state-of-the-art simulation tools that reflects realistic behaviour of an automotive powertrain, including its multivariate, dynamic and variable-state properties. To cater for both unsupervised and semi-supervised anomaly detection settings, as well as time series generation and forecasting, we make different versions of the dataset available, where training and test subsets are offered in contaminated and clean versions, depending on the task. We also provide baseline results from a small selection of approaches based on deterministic and variational autoencoders, as well as a non-parametric approach. As expected, the baseline experimentation shows that the approaches trained on the semi-supervised version of the dataset outperform their unsupervised counterparts, highlighting a need for approaches more robust to contaminated training data.
comment: Submitted to the IEEE Transactions on Reliability journal
♻ ☆ Identifying Spurious Correlations using Counterfactual Alignment
Models driven by spurious correlations often yield poor generalization performance. We propose the counterfactual (CF) alignment method to detect and quantify spurious correlations of black box classifiers. Our methodology is based on counterfactual images generated with respect to one classifier being input into other classifiers to see if they also induce changes in the outputs of these classifiers. The relationship between these responses can be quantified and used to identify specific instances where a spurious correlation exists. This is validated by observing intuitive trends in face-attribute and waterbird classifiers, as well as by fabricating spurious correlations and detecting their presence, both visually and quantitatively. Furthermore, utilizing the CF alignment method, we demonstrate that we can evaluate robust optimization methods (GroupDRO, JTT, and FLAC) by detecting a reduction in spurious correlations.
comment: Accepted to Transactions on Machine Learning Research (TMLR), Code: https://github.com/ieee8023/latentshift
♻ ☆ Integrated Push-and-Pull Update Model for Goal-Oriented Effective Communication
This paper studies decision-making for goal-oriented effective communication. We consider an end-to-end status update system where a sensing agent (SA) observes a source, generates and transmits updates to an actuation agent (AA), while the AA takes actions to accomplish a goal at the endpoint. We integrate the push- and pull-based update communication models to obtain a push-and-pull model, which allows the transmission controller at the SA to decide to push an update to the AA and the query controller at the AA to pull updates by raising queries at specific time instances. To gauge effectiveness, we utilize a grade of effectiveness (GoE) metric incorporating updates' freshness, usefulness, and timeliness of actions as qualitative attributes. We then derive effect-aware policies to maximize the expected discounted sum of updates' effectiveness subject to induced costs. The effect-aware policy at the SA considers the potential effectiveness of communicated updates at the endpoint, while at the AA, it accounts for the probabilistic evolution of the source and importance of generated updates. Our results show the proposed push-and-pull model outperforms models solely based on push- or pull-based updates both in terms of efficiency and effectiveness. Additionally, using effect-aware policies at both agents enhances effectiveness compared to periodic and/or probabilistic effect-agnostic policies at either or both agents.
comment: Submitted for possible publication
♻ ☆ Taming the Long Tail in Human Mobility Prediction NeurIPS 2024
With the popularity of location-based services, human mobility prediction plays a key role in enhancing personalized navigation, optimizing recommendation systems, and facilitating urban mobility and planning. This involves predicting a user's next POI (point-of-interest) visit using their past visit history. However, the uneven distribution of visitations over time and space, namely the long-tail problem in spatial distribution, makes it difficult for AI models to predict those POIs that are less visited by humans. In light of this issue, we propose the Long-Tail Adjusted Next POI Prediction (LoTNext) framework for mobility prediction, combining a Long-Tailed Graph Adjustment module to reduce the impact of the long-tailed nodes in the user-POI interaction graph and a novel Long-Tailed Loss Adjustment module to adjust loss by logit score and sample weight adjustment strategy. Also, we employ the auxiliary prediction task to enhance generalization and accuracy. Our experiments with two real-world trajectory datasets demonstrate that LoTNext significantly surpasses existing state-of-the-art works.
comment: Accepted by NeurIPS 2024
♻ ☆ The Surprising Ineffectiveness of Pre-Trained Visual Representations for Model-Based Reinforcement Learning NeurIPS 2024
Visual Reinforcement Learning (RL) methods often require extensive amounts of data. As opposed to model-free RL, model-based RL (MBRL) offers a potential solution with efficient data utilization through planning. Additionally, RL lacks generalization capabilities for real-world tasks. Prior work has shown that incorporating pre-trained visual representations (PVRs) enhances sample efficiency and generalization. While PVRs have been extensively studied in the context of model-free RL, their potential in MBRL remains largely unexplored. In this paper, we benchmark a set of PVRs on challenging control tasks in a model-based RL setting. We investigate the data efficiency, generalization capabilities, and the impact of different properties of PVRs on the performance of model-based agents. Our results, perhaps surprisingly, reveal that for MBRL current PVRs are not more sample efficient than learning representations from scratch, and that they do not generalize better to out-of-distribution (OOD) settings. To explain this, we analyze the quality of the trained dynamics model. Furthermore, we show that data diversity and network architecture are the most important contributors to OOD generalization performance.
comment: Published at the 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Project page: https://schneimo.com/pvr4mbrl/
♻ ☆ Learning Optimal Tax Design in Nonatomic Congestion Games NeurIPS
In multiplayer games, self-interested behavior among the players can harm the social welfare. Tax mechanisms are a common method to alleviate this issue and induce socially optimal behavior. In this work, we take the initial step of learning the optimal tax that can maximize social welfare with limited feedback in congestion games. We propose a new type of feedback named \emph{equilibrium feedback}, where the tax designer can only observe the Nash equilibrium after deploying a tax plan. Existing algorithms are not applicable due to the exponentially large tax function space, nonexistence of the gradient, and nonconvexity of the objective. To tackle these challenges, we design a computationally efficient algorithm that leverages several novel components: (1) a piece-wise linear tax to approximate the optimal tax; (2) extra linear terms to guarantee a strongly convex potential function; (3) an efficient subroutine to find the exploratory tax that can provide critical information about the game. The algorithm can find an $\epsilon$-optimal tax with $O(\beta F^2/\epsilon)$ sample complexity, where $\beta$ is the smoothness of the cost function and $F$ is the number of facilities.
comment: 23 pages. Accepted by Conference on Neural Information Processing Systems (NeurIPS) 2024
♻ ☆ Evaluation of Artificial Intelligence Methods for Lead Time Prediction in Non-Cycled Areas of Automotive Production
The present study examines the effectiveness of applying Artificial Intelligence methods in an automotive production environment to predict unknown lead times in a non-cycle-controlled production area. Data structures are analyzed to identify contextual features and then preprocessed using one-hot encoding. Methods selection focuses on supervised machine learning techniques. In supervised learning methods, regression and classification methods are evaluated. Continuous regression based on target size distribution is not feasible. Classification methods analysis shows that Ensemble Learning and Support Vector Machines are the most suitable. Preliminary study results indicate that gradient boosting algorithms LightGBM, XGBoost, and CatBoost yield the best results. After further testing and extensive hyperparameter optimization, the final method choice is the LightGBM algorithm. Depending on feature availability and prediction interval granularity, relative prediction accuracies of up to 90% can be achieved. Further tests highlight the importance of periodic retraining of AI models to accurately represent complex production processes using the database. The research demonstrates that AI methods can be effectively applied to highly variable production data, adding business value by providing an additional metric for various control tasks while outperforming current non AI-based systems.
♻ ☆ Constrained Latent Action Policies for Model-Based Offline Reinforcement Learning NeurIPS 2024
In offline reinforcement learning, a policy is learned using a static dataset in the absence of costly feedback from the environment. In contrast to the online setting, only using static datasets poses additional challenges, such as policies generating out-of-distribution samples. Model-based offline reinforcement learning methods try to overcome these by learning a model of the underlying dynamics of the environment and using it to guide policy search. It is beneficial but, with limited datasets, errors in the model and the issue of value overestimation among out-of-distribution states can worsen performance. Current model-based methods apply some notion of conservatism to the Bellman update, often implemented using uncertainty estimation derived from model ensembles. In this paper, we propose Constrained Latent Action Policies (C-LAP) which learns a generative model of the joint distribution of observations and actions. We cast policy learning as a constrained objective to always stay within the support of the latent action distribution, and use the generative capabilities of the model to impose an implicit constraint on the generated actions. Thereby eliminating the need to use additional uncertainty penalties on the Bellman update and significantly decreasing the number of gradient steps required to learn a policy. We empirically evaluate C-LAP on the D4RL and V-D4RL benchmark, and show that C-LAP is competitive to state-of-the-art methods, especially outperforming on datasets with visual observations.
comment: 38th Conference on Neural Information Processing Systems (NeurIPS 2024)
♻ ☆ Mind the Error! Detection and Localization of Instruction Errors in Vision-and-Language Navigation IROS'24
Vision-and-Language Navigation in Continuous Environments (VLN-CE) is one of the most intuitive yet challenging embodied AI tasks. Agents are tasked to navigate towards a target goal by executing a set of low-level actions, following a series of natural language instructions. All VLN-CE methods in the literature assume that language instructions are exact. However, in practice, instructions given by humans can contain errors when describing a spatial environment due to inaccurate memory or confusion. Current VLN-CE benchmarks do not address this scenario, making the state-of-the-art methods in VLN-CE fragile in the presence of erroneous instructions from human users. For the first time, we propose a novel benchmark dataset that introduces various types of instruction errors considering potential human causes. This benchmark provides valuable insight into the robustness of VLN systems in continuous environments. We observe a noticeable performance drop (up to -25%) in Success Rate when evaluating the state-of-the-art VLN-CE methods on our benchmark. Moreover, we formally define the task of Instruction Error Detection and Localization, and establish an evaluation protocol on top of our benchmark dataset. We also propose an effective method, based on a cross-modal transformer architecture, that achieves the best performance in error detection and localization, compared to baselines. Surprisingly, our proposed method has revealed errors in the validation set of the two commonly used datasets for VLN-CE, i.e., R2R-CE and RxR-CE, demonstrating the utility of our technique in other tasks. Code and dataset available at https://intelligolabs.github.io/R2RIE-CE
comment: 3 figures, 8 pages. Accepted at IROS'24
♻ ☆ Towards a performance characteristic curve for model evaluation: an application in information diffusion prediction
The information diffusion prediction on social networks aims to predict future recipients of a message, with practical applications in marketing and social media. While different prediction models all claim to perform well, general frameworks for performance evaluation remain limited. Here, we aim to identify a performance characteristic curve for a model, which captures its performance on tasks of different complexity. We propose a metric based on information entropy to quantify the randomness in diffusion data. We then identify a scaling pattern between the randomness and the prediction accuracy of the model. By properly adjusting the variables, data points by different sequence lengths, system sizes, and randomness can all collapse into a single curve. The curve captures a model's inherent capability of making correct predictions against increased uncertainty, which we regard as the performance characteristic curve of the model. The validity of the curve is tested by three prediction models in the same family, reaching conclusions in line with existing studies. In addition, we apply the curve to successfully assess the performance of eight state-of-the-art models, providing a clear and comprehensive evaluation even for models that are challenging to differentiate with conventional metrics. Our work reveals a pattern underlying the data randomness and prediction accuracy. The performance characteristic curve provides a new way to evaluate models' performance systematically, and sheds light on future studies on other frameworks for model evaluation.
♻ ☆ Unseen Horizons: Unveiling the Real Capability of LLM Code Generation Beyond the Familiar ICSE 2025
Recently, large language models (LLMs) have shown strong potential in code generation tasks. However, there are still gaps before they can be fully applied in actual software development processes. Accurately assessing the code generation capabilities of large language models has become an important basis for evaluating and improving the models. Some existing works have constructed datasets to evaluate the capabilities of these models. However, the current evaluation process may encounter the illusion of "Specialist in Familiarity", primarily due to three gaps: the exposure of target code, case timeliness, and dependency availability. The fundamental reason for these gaps is that the code in current datasets may have been extensively exposed and exercised during the training phase, and due to the continuous training and development of LLM, their timeliness has been severely compromised. The key to solve the problem is to, as much as possible, evaluate the LLMs using code that they have not encountered before. Thus, the fundamental idea in this paper is to draw on the concept of code obfuscation, changing code at different levels while ensuring the functionality and output. To this end, we build a code-obfuscation based benchmark OBFUSEVAL. We first collect 1,354 raw cases from five real-world projects, including function description and code. Then we use three-level strategy (symbol, structure and semantic) to obfuscate descriptions, code and context dependencies. We evaluate four LLMs on OBFU- SEVAL and compared the effectiveness of different obfuscation strategy. We use official test suites of these projects to evaluate the generated code. The results show that after obfuscation, the average decrease ratio of test pass rate can up to 62.5%.
comment: Accepted by the 47th International Conference on Software Engineering (ICSE 2025)
♻ ☆ Maximizing Uncertainty for Federated learning via Bayesian Optimisation-based Model Poisoning
As we transition from Narrow Artificial Intelligence towards Artificial Super Intelligence, users are increasingly concerned about their privacy and the trustworthiness of machine learning (ML) technology. A common denominator for the metrics of trustworthiness is the quantification of uncertainty inherent in DL algorithms, and specifically in the model parameters, input data, and model predictions. One of the common approaches to address privacy-related issues in DL is to adopt distributed learning such as federated learning (FL), where private raw data is not shared among users. Despite the privacy-preserving mechanisms in FL, it still faces challenges in trustworthiness. Specifically, the malicious users, during training, can systematically create malicious model parameters to compromise the models predictive and generative capabilities, resulting in high uncertainty about their reliability. To demonstrate malicious behaviour, we propose a novel model poisoning attack method named Delphi which aims to maximise the uncertainty of the global model output. We achieve this by taking advantage of the relationship between the uncertainty and the model parameters of the first hidden layer of the local model. Delphi employs two types of optimisation , Bayesian Optimisation and Least Squares Trust Region, to search for the optimal poisoned model parameters, named as Delphi-BO and Delphi-LSTR. We quantify the uncertainty using the KL Divergence to minimise the distance of the predictive probability distribution towards an uncertain distribution of model output. Furthermore, we establish a mathematical proof for the attack effectiveness demonstrated in FL. Numerical results demonstrate that Delphi-BO induces a higher amount of uncertainty than Delphi-LSTR highlighting vulnerability of FL systems to model poisoning attacks.
comment: 14 pages
♻ ☆ MambaLRP: Explaining Selective State Space Sequence Models
Recent sequence modeling approaches using selective state space sequence models, referred to as Mamba models, have seen a surge of interest. These models allow efficient processing of long sequences in linear time and are rapidly being adopted in a wide range of applications such as language modeling, demonstrating promising performance. To foster their reliable use in real-world scenarios, it is crucial to augment their transparency. Our work bridges this critical gap by bringing explainability, particularly Layer-wise Relevance Propagation (LRP), to the Mamba architecture. Guided by the axiom of relevance conservation, we identify specific components in the Mamba architecture, which cause unfaithful explanations. To remedy this issue, we propose MambaLRP, a novel algorithm within the LRP framework, which ensures a more stable and reliable relevance propagation through these components. Our proposed method is theoretically sound and excels in achieving state-of-the-art explanation performance across a diverse range of models and datasets. Moreover, MambaLRP facilitates a deeper inspection of Mamba architectures, uncovering various biases and evaluating their significance. It also enables the analysis of previous speculations regarding the long-range capabilities of Mamba models.
♻ ☆ Sparse Low-Ranked Self-Attention Transformer for Remaining Useful Lifetime Prediction of Optical Fiber Amplifiers
Optical fiber amplifiers are key elements in present optical networks. Failures of these components result in high financial loss of income of the network operator as the communication traffic over an affected link is interrupted. Applying Remaining useful lifetime (RUL) prediction in the context of Predictive Maintenance (PdM) to optical fiber amplifiers to predict upcoming system failures at an early stage, so that network outages can be minimized through planning of targeted maintenance actions, ensures reliability and safety. Optical fiber amplifier are complex systems, that work under various operating conditions, which makes correct forecasting a difficult task. Increased monitoring capabilities of systems results in datasets that facilitate the application of data-driven RUL prediction methods. Deep learning models in particular have shown good performance, but generalization based on comparatively small datasets for RUL prediction is difficult. In this paper, we propose Sparse Low-ranked self-Attention Transformer (SLAT) as a novel RUL prediction method. SLAT is based on an encoder-decoder architecture, wherein two parallel working encoders extract features for sensors and time steps. By utilizing the self-attention mechanism, long-term dependencies can be learned from long sequences. The implementation of sparsity in the attention matrix and a low-rank parametrization reduce overfitting and increase generalization. Experimental application to optical fiber amplifiers exemplified on EDFA, as well as a reference dataset from turbofan engines, shows that SLAT outperforms the state-of-the-art methods.
comment: 9 pages, 7 figures
♻ ☆ FADE: Towards Fairness-aware Augmentation for Domain Generalization via Classifier-Guided Score-based Diffusion Models
Fairness-aware domain generalization (FairDG) has emerged as a critical challenge for deploying trustworthy AI systems, particularly in scenarios involving distribution shifts. Traditional methods for addressing fairness have failed in domain generalization due to their lack of consideration for distribution shifts. Although disentanglement has been used to tackle FairDG, it is limited by its strong assumptions. To overcome these limitations, we propose Fairness-aware Classifier-Guided Score-based Diffusion Models (FADE) as a novel approach to effectively address the FairDG issue. Specifically, we first pre-train a score-based diffusion model (SDM) and two classifiers to equip the model with strong generalization capabilities across different domains. Then, we guide the SDM using these pre-trained classifiers to effectively eliminate sensitive information from the generated data. Finally, the generated fair data is used to train downstream classifiers, ensuring robust performance under new data distributions. Extensive experiments on three real-world datasets demonstrate that FADE not only enhances fairness but also improves accuracy in the presence of distribution shifts. Additionally, FADE outperforms existing methods in achieving the best accuracy-fairness trade-offs.
♻ ☆ Let Network Decide What to Learn: Symbolic Music Understanding Model Based on Large-scale Adversarial Pre-training
As a crucial aspect of Music Information Retrieval (MIR), Symbolic Music Understanding (SMU) has garnered significant attention for its potential to assist both musicians and enthusiasts in learning and creating music. Recently, pre-trained language models have been widely adopted in SMU due to the substantial similarities between symbolic music and natural language, as well as the ability of these models to leverage limited music data effectively. However, some studies have shown the common pre-trained methods like Mask Language Model (MLM) may introduce bias issues like racism discrimination in Natural Language Process (NLP) and affects the performance of downstream tasks, which also happens in SMU. This bias often arises when masked tokens cannot be inferred from their context, forcing the model to overfit the training set instead of generalizing. To address this challenge, we propose Adversarial-MidiBERT for SMU, which adaptively determines what to mask during MLM via a masker network, rather than employing random masking. By avoiding the masking of tokens that are difficult to infer from context, our model is better equipped to capture contextual structures and relationships, rather than merely conforming to the training data distribution. We evaluate our method across four SMU tasks, and our approach demonstrates excellent performance in all cases. The code for our model is publicly available at https://github.com/RS2002/Adversarial-MidiBERT.
♻ ☆ Trustworthy, Responsible, and Safe AI: A Comprehensive Architectural Framework for AI Safety with Challenges and Mitigations
AI Safety is an emerging area of critical importance to the safe adoption and deployment of AI systems. With the rapid proliferation of AI and especially with the recent advancement of Generative AI (or GAI), the technology ecosystem behind the design, development, adoption, and deployment of AI systems has drastically changed, broadening the scope of AI Safety to address impacts on public safety and national security. In this paper, we propose a novel architectural framework for understanding and analyzing AI Safety; defining its characteristics from three perspectives: Trustworthy AI, Responsible AI, and Safe AI. We provide an extensive review of current research and advancements in AI safety from these perspectives, highlighting their key challenges and mitigation approaches. Through examples from state-of-the-art technologies, particularly Large Language Models (LLMs), we present innovative mechanism, methodologies, and techniques for designing and testing AI safety. Our goal is to promote advancement in AI safety research, and ultimately enhance people's trust in digital transformation.
♻ ☆ Diffusion-based Unsupervised Audio-visual Speech Enhancement
This paper proposes a new unsupervised audio-visual speech enhancement (AVSE) approach that combines a diffusion-based audio-visual speech generative model with a non-negative matrix factorization (NMF) noise model. First, the diffusion model is pre-trained on clean speech conditioned on corresponding video data to simulate the speech generative distribution. This pre-trained model is then paired with the NMF-based noise model to estimate clean speech iteratively. Specifically, a diffusion-based posterior sampling approach is implemented within the reverse diffusion process, where after each iteration, a speech estimate is obtained and used to update the noise parameters. Experimental results confirm that the proposed AVSE approach not only outperforms its audio-only counterpart but also generalizes better than a recent supervised-generative AVSE method. Additionally, the new inference algorithm offers a better balance between inference speed and performance compared to the previous diffusion-based method. Code and demo available at: https://jeaneudesayilo.github.io/fast_UdiffSE
♻ ☆ Improving Pain Classification using Spatio-Temporal Deep Learning Approaches with Facial Expressions
Pain management and severity detection are crucial for effective treatment, yet traditional self-reporting methods are subjective and may be unsuitable for non-verbal individuals (people with limited speaking skills). To address this limitation, we explore automated pain detection using facial expressions. Our study leverages deep learning techniques to improve pain assessment by analyzing facial images from the Pain Emotion Faces Database (PEMF). We propose two novel approaches1: (1) a hybrid ConvNeXt model combined with Long Short-Term Memory (LSTM) blocks to analyze video frames and predict pain presence, and (2) a Spatio-Temporal Graph Convolution Network (STGCN) integrated with LSTM to process landmarks from facial images for pain detection. Our work represents the first use of the PEMF dataset for binary pain classification and demonstrates the effectiveness of these models through extensive experimentation. The results highlight the potential of combining spatial and temporal features for enhanced pain detection, offering a promising advancement in objective pain assessment methodologies.
comment: 8 pages, 3 figures, 3 tables. Accepted and presented at the 18th International Conference on Machine Vision (ICMV 2024), Edinburgh, UK
♻ ☆ SupplyGraph: A Benchmark Dataset for Supply Chain Planning using Graph Neural Networks AAAI 2024
Graph Neural Networks (GNNs) have gained traction across different domains such as transportation, bio-informatics, language processing, and computer vision. However, there is a noticeable absence of research on applying GNNs to supply chain networks. Supply chain networks are inherently graph-like in structure, making them prime candidates for applying GNN methodologies. This opens up a world of possibilities for optimizing, predicting, and solving even the most complex supply chain problems. A major setback in this approach lies in the absence of real-world benchmark datasets to facilitate the research and resolution of supply chain problems using GNNs. To address the issue, we present a real-world benchmark dataset for temporal tasks, obtained from one of the leading FMCG companies in Bangladesh, focusing on supply chain planning for production purposes. The dataset includes temporal data as node features to enable sales predictions, production planning, and the identification of factory issues. By utilizing this dataset, researchers can employ GNNs to address numerous supply chain problems, thereby advancing the field of supply chain analytics and planning. Source: https://github.com/CIOL-SUST/SupplyGraph
comment: Accepted to 4th workshop on Graphs and more Complex structures for Learning and Reasoning, colocated with AAAI 2024
♻ ☆ Get Rid of Isolation: A Continuous Multi-task Spatio-Temporal Learning Framework NeurIPS 2024
Spatiotemporal learning has become a pivotal technique to enable urban intelligence. Traditional spatiotemporal models mostly focus on a specific task by assuming a same distribution between training and testing sets. However, given that urban systems are usually dynamic, multi-sourced with imbalanced data distributions, current specific task-specific models fail to generalize to new urban conditions and adapt to new domains without explicitly modeling interdependencies across various dimensions and types of urban data. To this end, we argue that there is an essential to propose a Continuous Multi-task Spatio-Temporal learning framework (CMuST) to empower collective urban intelligence, which reforms the urban spatiotemporal learning from single-domain to cooperatively multi-dimensional and multi-task learning. Specifically, CMuST proposes a new multi-dimensional spatiotemporal interaction network (MSTI) to allow cross-interactions between context and main observations as well as self-interactions within spatial and temporal aspects to be exposed, which is also the core for capturing task-level commonality and personalization. To ensure continuous task learning, a novel Rolling Adaptation training scheme (RoAda) is devised, which not only preserves task uniqueness by constructing data summarization-driven task prompts, but also harnesses correlated patterns among tasks by iterative model behavior modeling. We further establish a benchmark of three cities for multi-task spatiotemporal learning, and empirically demonstrate the superiority of CMuST via extensive evaluations on these datasets. The impressive improvements on both few-shot streaming data and new domain tasks against existing SOAT methods are achieved. Code is available at https://github.com/DILab-USTCSZ/CMuST.
comment: Accepted by NeurIPS 2024
♻ ☆ Toward Automated Simulation Research Workflow through LLM Prompt Engineering Design
The advent of Large Language Models (LLMs) has created new opportunities for the automation of scientific research spanning both experimental processes and computational simulations. This study explores the feasibility of constructing an autonomous simulation agent (ASA) powered by LLMs through prompt engineering and automated program design to automate the entire simulation research process according to a human-provided research plan. This process includes experimental design, remote upload and simulation execution, data analysis, and report compilation. Using a well-studied simulation problem of polymer chain conformations as a test case, we assessed the long-task completion and reliability of ASAs powered by different LLMs, including GPT-4o, Claude-3.5, etc. Our findings revealed that ASA-GPT-4o achieved near-flawless execution on designated research missions, underscoring the potential of methods like ASA to achieve automation in simulation research processes to enhance research efficiency. The outlined automation can be iteratively performed for up to 20 cycles without human intervention, illustrating the potential of ASA for long-task workflow automation. Additionally, we discussed the intrinsic traits of ASA in managing extensive tasks, focusing on self-validation mechanisms, and the balance between local attention and global oversight.
comment: The source code and example results of ASA can be found at https://github.com/zokaraa/autonomous_simulation_agent
♻ ☆ Fully Distributed, Flexible Compositional Visual Representations via Soft Tensor Products
Since the inception of the classicalist vs. connectionist debate, it has been argued that the ability to systematically combine symbol-like entities into compositional representations is crucial for human intelligence. In connectionist systems, the field of disentanglement has gained prominence for its ability to produce explicitly compositional representations; however, it relies on a fundamentally symbolic, concatenative representation of compositional structure that clashes with the continuous, distributed foundations of deep learning. To resolve this tension, we extend Smolensky's Tensor Product Representation (TPR) and introduce Soft TPR, a representational form that encodes compositional structure in an inherently distributed, flexible manner, along with Soft TPR Autoencoder, a theoretically-principled architecture designed specifically to learn Soft TPRs. Comprehensive evaluations in the visual representation learning domain demonstrate that the Soft TPR framework consistently outperforms conventional disentanglement alternatives -- achieving state-of-the-art disentanglement, boosting representation learner convergence, and delivering superior sample efficiency and low-sample regime performance in downstream tasks. These findings highlight the promise of a distributed and flexible approach to representing compositional structure by potentially enhancing alignment with the core principles of deep learning over the conventional symbolic approach.
comment: Accepted to Neurips 2024. 10 pages + supplementary
♻ ☆ SelectIT: Selective Instruction Tuning for LLMs via Uncertainty-Aware Self-Reflection NeurIPS 2024
Instruction tuning (IT) is crucial to tailoring large language models (LLMs) towards human-centric interactions. Recent advancements have shown that the careful selection of a small, high-quality subset of IT data can significantly enhance the performance of LLMs. Despite this, common approaches often rely on additional models or data, which increases costs and limits widespread adoption. In this work, we propose a novel approach, termed SelectIT, that capitalizes on the foundational capabilities of the LLM itself. Specifically, we exploit the intrinsic uncertainty present in LLMs to more effectively select high-quality IT data, without the need for extra resources. Furthermore, we introduce a curated IT dataset, the Selective Alpaca, created by applying SelectIT to the Alpaca-GPT4 dataset. Empirical results demonstrate that IT using Selective Alpaca leads to substantial model ability enhancement. The robustness of SelectIT has also been corroborated in various foundation models and domain-specific tasks. Our findings suggest that longer and more computationally intensive IT data may serve as superior sources of IT, offering valuable insights for future research in this area. Data, code, and scripts are freely available at https://github.com/Blue-Raincoat/SelectIT.
comment: Accepted to NeurIPS 2024
♻ ☆ Making AI Less "Thirsty": Uncovering and Addressing the Secret Water Footprint of AI Models
The growing carbon footprint of artificial intelligence (AI) has been undergoing public scrutiny. Nonetheless, the equally important water (withdrawal and consumption) footprint of AI has largely remained under the radar. For example, training the GPT-3 language model in Microsoft's state-of-the-art U.S. data centers can directly evaporate 700,000 liters of clean freshwater, but such information has been kept a secret. More critically, the global AI demand is projected to account for 4.2-6.6 billion cubic meters of water withdrawal in 2027, which is more than the total annual water withdrawal of 4-6 Denmark or half of the United Kingdom. This is concerning, as freshwater scarcity has become one of the most pressing challenges. To respond to the global water challenges, AI can, and also must, take social responsibility and lead by example by addressing its own water footprint. In this paper, we provide a principled methodology to estimate the water footprint of AI, and also discuss the unique spatial-temporal diversities of AI's runtime water efficiency. Finally, we highlight the necessity of holistically addressing water footprint along with carbon footprint to enable truly sustainable AI.
comment: Accepted by Communications of the ACM. Source codes available at: https://github.com/Ren-Research/Making-AI-Less-Thirsty
♻ ☆ Mitigating Knowledge Conflicts in Language Model-Driven Question Answering
In the context of knowledge-driven seq-to-seq generation tasks, such as document-based question answering and document summarization systems, two fundamental knowledge sources play crucial roles: the inherent knowledge embedded within model parameters and the external knowledge obtained through context. Recent studies revealed a significant challenge: when there exists a misalignment between the model's inherent knowledge and the ground truth answers in training data, the system may exhibit problematic behaviors during inference, such as ignoring input context, or generating unfaithful content. Our investigation proposes a strategy to minimize hallucination by building explicit connection between source inputs and generated outputs. We specifically target a common hallucination pattern in question answering, examining how the correspondence between entities and their contexts during model training influences the system's performance at inference time.
comment: revised version, more figures
♻ ☆ OminiControl: Minimal and Universal Control for Diffusion Transformer
In this paper, we introduce OminiControl, a highly versatile and parameter-efficient framework that integrates image conditions into pre-trained Diffusion Transformer (DiT) models. At its core, OminiControl leverages a parameter reuse mechanism, enabling the DiT to encode image conditions using itself as a powerful backbone and process them with its flexible multi-modal attention processors. Unlike existing methods, which rely heavily on additional encoder modules with complex architectures, OminiControl (1) effectively and efficiently incorporates injected image conditions with only ~0.1% additional parameters, and (2) addresses a wide range of image conditioning tasks in a unified manner, including subject-driven generation and spatially-aligned conditions such as edges, depth, and more. Remarkably, these capabilities are achieved by training on images generated by the DiT itself, which is particularly beneficial for subject-driven generation. Extensive evaluations demonstrate that OminiControl outperforms existing UNet-based and DiT-adapted models in both subject-driven and spatially-aligned conditional generation. Additionally, we release our training dataset, Subjects200K, a diverse collection of over 200,000 identity-consistent images, along with an efficient data synthesis pipeline to advance research in subject-consistent generation.
♻ ☆ CrossFi: A Cross Domain Wi-Fi Sensing Framework Based on Siamese Network
In recent years, Wi-Fi sensing has garnered significant attention due to its numerous benefits, such as privacy protection, low cost, and penetration ability. Extensive research has been conducted in this field, focusing on areas such as gesture recognition, people identification, and fall detection. However, many data-driven methods encounter challenges related to domain shift, where the model fails to perform well in environments different from the training data. One major factor contributing to this issue is the limited availability of Wi-Fi sensing datasets, which makes models learn excessive irrelevant information and over-fit to the training set. Unfortunately, collecting large-scale Wi-Fi sensing datasets across diverse scenarios is a challenging task. To address this problem, we propose CrossFi, a siamese network-based approach that excels in both in-domain scenario and cross-domain scenario, including few-shot, zero-shot scenarios, and even works in few-shot new-class scenario where testing set contains new categories. The core component of CrossFi is a sample-similarity calculation network called CSi-Net, which improves the structure of the siamese network by using an attention mechanism to capture similarity information, instead of simply calculating the distance or cosine similarity. Based on it, we develop an extra Weight-Net that can generate a template for each class, so that our CrossFi can work in different scenarios. Experimental results demonstrate that our CrossFi achieves state-of-the-art performance across various scenarios. In gesture recognition task, our CrossFi achieves an accuracy of 98.17% in in-domain scenario, 91.72% in one-shot cross-domain scenario, 64.81% in zero-shot cross-domain scenario, and 84.75% in one-shot new-class scenario. The code for our model is publicly available at https://github.com/RS2002/CrossFi.
♻ ☆ The Silent Majority: Demystifying Memorization Effect in the Presence of Spurious Correlations
Machine learning models often rely on simple spurious features -- patterns in training data that correlate with targets but are not causally related to them, like image backgrounds in foreground classification. This reliance typically leads to imbalanced test performance across minority and majority groups. In this work, we take a closer look at the fundamental cause of such imbalanced performance through the lens of memorization, which refers to the ability to predict accurately on \textit{atypical} examples (minority groups) in the training set but failing in achieving the same accuracy in the testing set. This paper systematically shows the ubiquitous existence of spurious features in a small set of neurons within the network, providing the first-ever evidence that memorization may contribute to imbalanced group performance. Through three experimental sources of converging empirical evidence, we find the property of a small subset of neurons or channels in memorizing minority group information. Inspired by these findings, we articulate the hypothesis: the imbalanced group performance is a byproduct of ``noisy'' spurious memorization confined to a small set of neurons. To further substantiate this hypothesis, we show that eliminating these unnecessary spurious memorization patterns via a novel framework during training can significantly affect the model performance on minority groups. Our experimental results across various architectures and benchmarks offer new insights on how neural networks encode core and spurious knowledge, laying the groundwork for future research in demystifying robustness to spurious correlation.
♻ ☆ Noise-powered Multi-modal Knowledge Graph Representation Framework COLING 2025
The rise of Multi-modal Pre-training highlights the necessity for a unified Multi-Modal Knowledge Graph (MMKG) representation learning framework. Such a framework is essential for embedding structured knowledge into multi-modal Large Language Models effectively, alleviating issues like knowledge misconceptions and multi-modal hallucinations. In this work, we explore the efficacy of models in accurately embedding entities within MMKGs through two pivotal tasks: Multi-modal Knowledge Graph Completion (MKGC) and Multi-modal Entity Alignment (MMEA). Building on this foundation, we propose a novel SNAG method that utilizes a Transformer-based architecture equipped with modality-level noise masking to robustly integrate multi-modal entity features in KGs. By incorporating specific training objectives for both MKGC and MMEA, our approach achieves SOTA performance across a total of ten datasets, demonstrating its versatility. Moreover, SNAG can not only function as a standalone model but also enhance other existing methods, providing stable performance improvements. Code and data are available at https://github.com/zjukg/SNAG.
comment: COLING 2025 Accepted, Repo is available at https://github.com/zjukg/SNAG
♻ ☆ Machine unlearning through fine-grained model parameters perturbation
Machine unlearning techniques, which involve retracting data records and reducing influence of said data on trained models, help with the user privacy protection objective but incur significant computational costs. Weight perturbation-based unlearning is a general approach, but it typically involves globally modifying the parameters. We propose fine-grained Top-K and Random-k parameters perturbed inexact machine unlearning strategies that address the privacy needs while keeping the computational costs tractable. In order to demonstrate the efficacy of our strategies we also tackle the challenge of evaluating the effectiveness of machine unlearning by considering the model's generalization performance across both unlearning and remaining data. To better assess the unlearning effect and model generalization, we propose novel metrics, namely, the forgetting rate and memory retention rate. However, for inexact machine unlearning, current metrics are inadequate in quantifying the degree of forgetting that occurs after unlearning strategies are applied. To address this, we introduce SPD-GAN, which subtly perturbs the distribution of data targeted for unlearning. Then, we evaluate the degree of unlearning by measuring the performance difference of the models on the perturbed unlearning data before and after the unlearning process. By implementing these innovative techniques and metrics, we achieve computationally efficacious privacy protection in machine learning applications without significant sacrifice of model performance. Furthermore, this approach provides a novel method for evaluating the degree of unlearning.
♻ ☆ STORM: A Spatio-Temporal Factor Model Based on Dual Vector Quantized Variational Autoencoders for Financial Trading
In financial trading, factor models are widely used to price assets and capture excess returns from mispricing. Recently, we have witnessed the rise of variational autoencoder-based latent factor models, which learn latent factors self-adaptively. While these models focus on modeling overall market conditions, they often fail to effectively capture the temporal patterns of individual stocks. Additionally, representing multiple factors as single values simplifies the model but limits its ability to capture complex relationships and dependencies. As a result, the learned factors are of low quality and lack diversity, reducing their effectiveness and robustness across different trading periods. To address these issues, we propose a Spatio-Temporal factOR Model based on dual vector quantized variational autoencoders, named STORM, which extracts features of stocks from temporal and spatial perspectives, then fuses and aligns these features at the fine-grained and semantic level, and represents the factors as multi-dimensional embeddings. The discrete codebooks cluster similar factor embeddings, ensuring orthogonality and diversity, which helps distinguish between different factors and enables factor selection in financial trading. To show the performance of the proposed factor model, we apply it to two downstream experiments: portfolio management on two stock datasets and individual trading tasks on six specific stocks. The extensive experiments demonstrate STORM's flexibility in adapting to downstream tasks and superior performance over baseline models.
♻ ☆ Do Large Language Models Mirror Cognitive Language Processing?
Large Language Models (LLMs) have demonstrated remarkable abilities in text comprehension and logical reasoning, indicating that the text representations learned by LLMs can facilitate their language processing capabilities. In neuroscience, brain cognitive processing signals are typically utilized to study human language processing. Therefore, it is natural to ask how well the text embeddings from LLMs align with the brain cognitive processing signals, and how training strategies affect the LLM-brain alignment? In this paper, we employ Representational Similarity Analysis (RSA) to measure the alignment between 23 mainstream LLMs and fMRI signals of the brain to evaluate how effectively LLMs simulate cognitive language processing. We empirically investigate the impact of various factors (e.g., pre-training data size, model scaling, alignment training, and prompts) on such LLM-brain alignment. Experimental results indicate that pre-training data size and model scaling are positively correlated with LLM-brain similarity, and alignment training can significantly improve LLM-brain similarity. Explicit prompts contribute to the consistency of LLMs with brain cognitive language processing, while nonsensical noisy prompts may attenuate such alignment. Additionally, the performance of a wide range of LLM evaluations (e.g., MMLU, Chatbot Arena) is highly correlated with the LLM-brain similarity.
♻ ☆ EdgeSight: Enabling Modeless and Cost-Efficient Inference at the Edge
Traditional ML inference is evolving toward modeless inference, which abstracts the complexity of model selection from users, allowing the system to automatically choose the most appropriate model for each request based on accuracy and resource requirements. While prior studies have focused on modeless inference within data centers, this paper tackles the pressing need for cost-efficient modeless inference at the edge -- particularly within its unique constraints of limited device memory, volatile network conditions, and restricted power consumption. To overcome these challenges, we propose EdgeSight, a system that provides cost-efficient EdgeSight serving for diverse DNNs at the edge. EdgeSight employs an edge-data center (edge-DC) architecture, utilizing confidence scaling to reduce the number of model options while meeting diverse accuracy requirements. Additionally, it supports lossy inference in volatile network environments. Our experimental results show that EdgeSight outperforms existing systems by up to 1.6x in P99 latency for modeless services. Furthermore, our FPGA prototype demonstrates similar performance at certain accuracy levels, with a power consumption reduction of up to 3.34x.
comment: 12 pages
♻ ☆ Natural Language Outlines for Code: Literate Programming in the LLM Era
We propose using natural language outlines as a novel modality and interaction surface for providing AI assistance to developers throughout the software development process. An NL outline for a code function comprises multiple statements written in concise prose, which partition the code and summarize its main ideas in the style of literate programming. Crucially, we find that modern LLMs can generate accurate and high-quality NL outlines in practice. Moreover, NL outlines enable a bidirectional sync between code and NL, allowing changes in one to be automatically reflected in the other. We discuss many use cases for NL outlines: they can accelerate understanding and navigation of code and diffs, simplify code maintenance, augment code search, steer code generation, and more. We then propose and compare multiple LLM prompting techniques for generating outlines and ask professional developers to judge outline quality. Finally, we present two case studies applying NL outlines toward code review and malware detection.
♻ ☆ Continual Diffuser (CoD): Mastering Continual Offline Reinforcement Learning with Experience Rehearsal
Artificial neural networks, especially recent diffusion-based models, have shown remarkable superiority in gaming, control, and QA systems, where the training tasks' datasets are usually static. However, in real-world applications, such as robotic control of reinforcement learning (RL), the tasks are changing, and new tasks arise in a sequential order. This situation poses the new challenge of plasticity-stability trade-off for training an agent who can adapt to task changes and retain acquired knowledge. In view of this, we propose a rehearsal-based continual diffusion model, called Continual Diffuser (CoD), to endow the diffuser with the capabilities of quick adaptation (plasticity) and lasting retention (stability). Specifically, we first construct an offline benchmark that contains 90 tasks from multiple domains. Then, we train the CoD on each task with sequential modeling and conditional generation for making decisions. Next, we preserve a small portion of previous datasets as the rehearsal buffer and replay it to retain the acquired knowledge. Extensive experiments on a series of tasks show CoD can achieve a promising plasticity-stability trade-off and outperform existing diffusion-based methods and other representative baselines on most tasks.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ A Multi-Modal AI Copilot for Single-Cell Analysis with Instruction Following
Large language models excel at interpreting complex natural language instructions, enabling them to perform a wide range of tasks. In the life sciences, single-cell RNA sequencing (scRNA-seq) data serves as the "language of cellular biology", capturing intricate gene expression patterns at the single-cell level. However, interacting with this "language" through conventional tools is often inefficient and unintuitive, posing challenges for researchers. To address these limitations, we present InstructCell, a multi-modal AI copilot that leverages natural language as a medium for more direct and flexible single-cell analysis. We construct a comprehensive multi-modal instruction dataset that pairs text-based instructions with scRNA-seq profiles from diverse tissues and species. Building on this, we develop a multi-modal cell language architecture capable of simultaneously interpreting and processing both modalities. InstructCell empowers researchers to accomplish critical tasks-such as cell type annotation, conditional pseudo-cell generation, and drug sensitivity prediction-using straightforward natural language commands. Extensive evaluations demonstrate that InstructCell consistently meets or exceeds the performance of existing single-cell foundation models, while adapting to diverse experimental conditions. More importantly, InstructCell provides an accessible and intuitive tool for exploring complex single-cell data, lowering technical barriers and enabling deeper biological insights.
comment: 37 pages; 13 figures; Code: https://github.com/zjunlp/Instructcell, Models: https://huggingface.co/zjunlp/Instructcell-chat, https://huggingface.co/zjunlp/InstructCell-instruct
♻ ☆ Understanding Emergent Abilities of Language Models from the Loss Perspective NeurIPS 2024
Recent studies have put into question the belief that emergent abilities in language models are exclusive to large models. This skepticism arises from two observations: 1) smaller models can also exhibit high performance on emergent abilities and 2) there is doubt on the discontinuous metrics used to measure these abilities. In this paper, we propose to study emergent abilities in the lens of pre-training loss, instead of model size or training compute. We demonstrate that the Transformer models with the same pre-training loss, but different model and data sizes, generate the same performance on various downstream tasks, with a fixed data corpus, tokenization, and model architecture. We also discover that a model exhibits emergent abilities on certain tasks -- regardless of the continuity of metrics -- when its pre-training loss falls below a specific threshold. Before reaching this threshold, its performance remains at the level of random guessing. This inspires us to redefine emergent abilities as those that manifest in models with lower pre-training losses, highlighting that these abilities cannot be predicted by merely extrapolating the performance trends of models with higher pre-training losses.
comment: 23 pages, 8 figures. Accepted in NeurIPS 2024
♻ ☆ Data-driven inventory management for new products: A warm-start and adjusted Dyna-$Q$ approach
In this paper, we propose a novel reinforcement learning algorithm for inventory management of newly launched products with no or limited historical demand information. The algorithm follows the classic Dyna-$Q$ structure, balancing the model-based and model-free approaches, while accelerating the training process of Dyna-$Q$ and mitigating the model discrepancy generated by the model-based feedback. Warm-start information from the demand data of existing similar products can be incorporated into the algorithm to further stabilize the early-stage training and reduce the variance of the estimated optimal policy. Our approach is validated through a case study of bakery inventory management with real data. The adjusted Dyna-$Q$ shows up to a 23.7% reduction in average daily cost compared with $Q$-learning, and up to a 77.5% reduction in training time within the same horizon compared with classic Dyna-$Q$. By incorporating the warm-start information, it can be found that the adjusted Dyna-$Q$ has the lowest total cost, lowest variance in total cost, and relatively low shortage percentages among all the algorithms under a 30-day testing.
comment: 7 pages, 2 figures
♻ ☆ CSL-L2M: Controllable Song-Level Lyric-to-Melody Generation Based on Conditional Transformer with Fine-Grained Lyric and Musical Controls AAAI-25
Lyric-to-melody generation is a highly challenging task in the field of AI music generation. Due to the difficulty of learning strict yet weak correlations between lyrics and melodies, previous methods have suffered from weak controllability, low-quality and poorly structured generation. To address these challenges, we propose CSL-L2M, a controllable song-level lyric-to-melody generation method based on an in-attention Transformer decoder with fine-grained lyric and musical controls, which is able to generate full-song melodies matched with the given lyrics and user-specified musical attributes. Specifically, we first introduce REMI-Aligned, a novel music representation that incorporates strict syllable- and sentence-level alignments between lyrics and melodies, facilitating precise alignment modeling. Subsequently, sentence-level semantic lyric embeddings independently extracted from a sentence-wise Transformer encoder are combined with word-level part-of-speech embeddings and syllable-level tone embeddings as fine-grained controls to enhance the controllability of lyrics over melody generation. Then we introduce human-labeled musical tags, sentence-level statistical musical attributes, and learned musical features extracted from a pre-trained VQ-VAE as coarse-grained, fine-grained and high-fidelity controls, respectively, to the generation process, thereby enabling user control over melody generation. Finally, an in-attention Transformer decoder technique is leveraged to exert fine-grained control over the full-song melody generation with the aforementioned lyric and musical conditions. Experimental results demonstrate that our proposed CSL-L2M outperforms the state-of-the-art models, generating melodies with higher quality, better controllability and enhanced structure. Demos and source code are available at https://lichaiustc.github.io/CSL-L2M/.
comment: Accepted at AAAI-25
♻ ☆ Unconditional stability of a recurrent neural circuit implementing divisive normalization
Stability in recurrent neural models poses a significant challenge, particularly in developing biologically plausible neurodynamical models that can be seamlessly trained. Traditional cortical circuit models are notoriously difficult to train due to expansive nonlinearities in the dynamical system, leading to an optimization problem with nonlinear stability constraints that are difficult to impose. Conversely, recurrent neural networks (RNNs) excel in tasks involving sequential data but lack biological plausibility and interpretability. In this work, we address these challenges by linking dynamic divisive normalization (DN) to the stability of ORGaNICs, a biologically plausible recurrent cortical circuit model that dynamically achieves DN and that has been shown to simulate a wide range of neurophysiological phenomena. By using the indirect method of Lyapunov, we prove the remarkable property of unconditional local stability for an arbitrary-dimensional ORGaNICs circuit when the recurrent weight matrix is the identity. We thus connect ORGaNICs to a system of coupled damped harmonic oscillators, which enables us to derive the circuit's energy function, providing a normative principle of what the circuit, and individual neurons, aim to accomplish. Further, for a generic recurrent weight matrix, we prove the stability of the 2D model and demonstrate empirically that stability holds in higher dimensions. Finally, we show that ORGaNICs can be trained by backpropagation through time without gradient clipping/scaling, thanks to its intrinsic stability property and adaptive time constants, which address the problems of exploding, vanishing, and oscillating gradients. By evaluating the model's performance on RNN benchmarks, we find that ORGaNICs outperform alternative neurodynamical models on static image classification tasks and perform comparably to LSTMs on sequential tasks.
♻ ☆ AI Consciousness is Inevitable: A Theoretical Computer Science Perspective
We look at consciousness through the lens of Theoretical Computer Science, a branch of mathematics that studies computation under resource limitations. From this perspective, we develop a formal machine model for consciousness. The model is inspired by Alan Turing's simple yet powerful model of computation and Bernard Baars' theater model of consciousness. Though extremely simple, the model (1) aligns at a high level with many of the major scientific theories of human and animal consciousness, (2) provides explanations at a high level for many phenomena associated with consciousness, and (3) gives insight into how a machine can have subjective consciousness. This combination supports our claim that machine consciousness is not only plausible but inevitable.
♻ ☆ Multi-modal and Multi-scale Spatial Environment Understanding for Immersive Visual Text-to-Speech AAAI'2025
Visual Text-to-Speech (VTTS) aims to take the environmental image as the prompt to synthesize the reverberant speech for the spoken content. The challenge of this task lies in understanding the spatial environment from the image. Many attempts have been made to extract global spatial visual information from the RGB space of an spatial image. However, local and depth image information are crucial for understanding the spatial environment, which previous works have ignored. To address the issues, we propose a novel multi-modal and multi-scale spatial environment understanding scheme to achieve immersive VTTS, termed M2SE-VTTS. The multi-modal aims to take both the RGB and Depth spaces of the spatial image to learn more comprehensive spatial information, and the multi-scale seeks to model the local and global spatial knowledge simultaneously. Specifically, we first split the RGB and Depth images into patches and adopt the Gemini-generated environment captions to guide the local spatial understanding. After that, the multi-modal and multi-scale features are integrated by the local-aware global spatial understanding. In this way, M2SE-VTTS effectively models the interactions between local and global spatial contexts in the multi-modal spatial environment. Objective and subjective evaluations suggest that our model outperforms the advanced baselines in environmental speech generation. The code and audio samples are available at: https://github.com/AI-S2-Lab/M2SE-VTTS.
comment: 9 pages,2 figures, Accepted by AAAI'2025
♻ ☆ Compositional Automata Embeddings for Goal-Conditioned Reinforcement Learning
Goal-conditioned reinforcement learning is a powerful way to control an AI agent's behavior at runtime. That said, popular goal representations, e.g., target states or natural language, are either limited to Markovian tasks or rely on ambiguous task semantics. We propose representing temporal goals using compositions of deterministic finite automata (cDFAs) and use cDFAs to guide RL agents. cDFAs balance the need for formal temporal semantics with ease of interpretation: if one can understand a flow chart, one can understand a cDFA. On the other hand, cDFAs form a countably infinite concept class with Boolean semantics, and subtle changes to the automaton can result in very different tasks, making them difficult to condition agent behavior on. To address this, we observe that all paths through a DFA correspond to a series of reach-avoid tasks and propose pre-training graph neural network embeddings on "reach-avoid derived" DFAs. Through empirical evaluation, we demonstrate that the proposed pre-training method enables zero-shot generalization to various cDFA task classes and accelerated policy specialization without the myopic suboptimality of hierarchical methods.
♻ ☆ LoL-PIM: Long-Context LLM Decoding with Scalable DRAM-PIM System
The expansion of large language models (LLMs) with hundreds of billions of parameters presents significant challenges to computational resources, particularly data movement and memory bandwidth. Long-context LLMs, which process sequences of tens of thousands of tokens, further increase the demand on the memory system as the complexity in attention layers and key-value cache sizes is proportional to the context length. Processing-in-Memory (PIM) maximizes memory bandwidth by moving compute to the data and can address the memory bandwidth challenges; however, PIM is not necessarily scalable to accelerate long-context LLM because of limited per-module memory capacity and the inflexibility of fixed-functional unit PIM architecture and static memory management. In this work, we propose LoL-PIM which is a multi-node PIM architecture that accelerates long context LLM through hardware-software co-design. In particular, we propose how pipeline parallelism can be exploited across a multi-PIM module while a direct PIM access (DPA) controller (or DMA for PIM) is proposed that enables dynamic PIM memory management and results in efficient PIM utilization across a diverse range of context length. We developed an MLIR-based compiler for LoL-PIM extending a commercial PIM-based compiler where the software modifications were implemented and evaluated, while the hardware changes were modeled in the simulator. Our evaluations demonstrate that LoL-PIM significantly improves throughput and reduces latency for long-context LLM inference, outperforming both multi-GPU and GPU-PIM systems (up to 8.54x and 16.0x speedup, respectively), thereby enabling more efficient deployment of LLMs in real-world applications.
comment: 15 pages, 12 figures
♻ ☆ Learning Cross-Domain Representations for Transferable Drug Perturbations on Single-Cell Transcriptional Responses AAAI
Phenotypic drug discovery has attracted widespread attention because of its potential to identify bioactive molecules. Transcriptomic profiling provides a comprehensive reflection of phenotypic changes in cellular responses to external perturbations. In this paper, we propose XTransferCDR, a novel generative framework designed for feature decoupling and transferable representation learning across domains. Given a pair of perturbed expression profiles, our approach decouples the perturbation representations from basal states through domain separation encoders and then cross-transfers them in the latent space. The transferred representations are then used to reconstruct the corresponding perturbed expression profiles via a shared decoder. This cross-transfer constraint effectively promotes the learning of transferable drug perturbation representations. We conducted extensive evaluations of our model on multiple datasets, including single-cell transcriptional responses to drugs and single- and combinatorial genetic perturbations. The experimental results show that XTransferCDR achieved better performance than current state-of-the-art methods, showcasing its potential to advance phenotypic drug discovery.
comment: Accepted by The 39th Annual AAAI Conference on Artificial Intelligenc (AAAI 2025)
♻ ☆ Efficient Long Video Tokenization via Coordinate-based Patch Reconstruction
Efficient tokenization of videos remains a challenge in training vision models that can process long videos. One promising direction is to develop a tokenizer that can encode long video clips, as it would enable the tokenizer to leverage the temporal coherence of videos better for tokenization. However, training existing tokenizers on long videos often incurs a huge training cost as they are trained to reconstruct all the frames at once. In this paper, we introduce CoordTok, a video tokenizer that learns a mapping from coordinate-based representations to the corresponding patches of input videos, inspired by recent advances in 3D generative models. In particular, CoordTok encodes a video into factorized triplane representations and reconstructs patches that correspond to randomly sampled $(x,y,t)$ coordinates. This allows for training large tokenizer models directly on long videos without requiring excessive training resources. Our experiments show that CoordTok can drastically reduce the number of tokens for encoding long video clips. For instance, CoordTok can encode a 128-frame video with 128$\times$128 resolution into 1280 tokens, while baselines need 6144 or 8192 tokens to achieve similar reconstruction quality. We further show that this efficient video tokenization enables memory-efficient training of a diffusion transformer that can generate 128 frames at once.
comment: Code is available on the project webpage: https://huiwon-jang.github.io/coordtok/
♻ ☆ Automated Review Generation Method Based on Large Language Models
Literature research, vital for scientific work, faces the challenge of surging information volumes exceeding researchers' processing capabilities. We present an automated review generation method based on large language models (LLMs) to overcome efficiency bottlenecks and reduce cognitive load. Our statistically validated evaluation framework demonstrates that the generated reviews match or exceed manual quality, offering broad applicability across research fields without requiring users' domain knowledge. Applied to propane dehydrogenation (PDH) catalysts, our method swiftly analyzed 343 articles, averaging seconds per article per LLM account, producing comprehensive reviews spanning 35 topics, with extended analysis of 1041 articles providing insights into catalysts' properties. Through multi-layered quality control, we effectively mitigated LLMs' hallucinations, with expert verification confirming accuracy and citation integrity while demonstrating hallucination risks reduced to below 0.5\% with 95\% confidence. Released Windows application enables one-click review generation, enhancing research productivity and literature recommendation efficiency while setting the stage for broader scientific explorations.
comment: 21 pages, 5 figures, 1 tables Code: https://github.com/TJU-ECAT-AI/AutomaticReviewGeneration Data: https://github.com/TJU-ECAT-AI/AutomaticReviewGenerationData This research has been invited for a Short Oral presentation at the 18th ICC - International Congress on Catalysis, taking place in Lyon, France from July 14-19, 2024
♻ ☆ A Unifying Information-theoretic Perspective on Evaluating Generative Models
Considering the difficulty of interpreting generative model output, there is significant current research focused on determining meaningful evaluation metrics. Several recent approaches utilize "precision" and "recall," borrowed from the classification domain, to individually quantify the output fidelity (realism) and output diversity (representation of the real data variation), respectively. With the increase in metric proposals, there is a need for a unifying perspective, allowing for easier comparison and clearer explanation of their benefits and drawbacks. To this end, we unify a class of kth-nearest-neighbors (kNN)-based metrics under an information-theoretic lens using approaches from kNN density estimation. Additionally, we propose a tri-dimensional metric composed of Precision Cross-Entropy (PCE), Recall Cross-Entropy (RCE), and Recall Entropy (RE), which separately measure fidelity and two distinct aspects of diversity, inter- and intra-class. Our domain-agnostic metric, derived from the information-theoretic concepts of entropy and cross-entropy, can be dissected for both sample- and mode-level analysis. Our detailed experimental results demonstrate the sensitivity of our metric components to their respective qualities and reveal undesirable behaviors of other metrics.
♻ ☆ Enhancing Skin Disease Diagnosis: Interpretable Visual Concept Discovery with SAM WACV 2025
Current AI-assisted skin image diagnosis has achieved dermatologist-level performance in classifying skin cancer, driven by rapid advancements in deep learning architectures. However, unlike traditional vision tasks, skin images in general present unique challenges due to the limited availability of well-annotated datasets, complex variations in conditions, and the necessity for detailed interpretations to ensure patient safety. Previous segmentation methods have sought to reduce image noise and enhance diagnostic performance, but these techniques require fine-grained, pixel-level ground truth masks for training. In contrast, with the rise of foundation models, the Segment Anything Model (SAM) has been introduced to facilitate promptable segmentation, enabling the automation of the segmentation process with simple yet effective prompts. Efforts applying SAM predominantly focus on dermatoscopy images, which present more easily identifiable lesion boundaries than clinical photos taken with smartphones. This limitation constrains the practicality of these approaches to real-world applications. To overcome the challenges posed by noisy clinical photos acquired via non-standardized protocols and to improve diagnostic accessibility, we propose a novel Cross-Attentive Fusion framework for interpretable skin lesion diagnosis. Our method leverages SAM to generate visual concepts for skin diseases using prompts, integrating local visual concepts with global image features to enhance model performance. Extensive evaluation on two skin disease datasets demonstrates our proposed method's effectiveness on lesion diagnosis and interpretability.
comment: This paper is accepted by WACV 2025
♻ ☆ FlowDock: Geometric Flow Matching for Generative Protein-Ligand Docking and Affinity Prediction
Powerful generative AI models of protein-ligand structure have recently been proposed, but few of these methods support both flexible protein-ligand docking and affinity estimation. Of those that do, none can directly model multiple binding ligands concurrently or have been rigorously benchmarked on pharmacologically relevant drug targets, hindering their widespread adoption in drug discovery efforts. In this work, we propose FlowDock, the first deep geometric generative model based on conditional flow matching that learns to directly map unbound (apo) structures to their bound (holo) counterparts for an arbitrary number of binding ligands. Furthermore, FlowDock provides predicted structural confidence scores and binding affinity values with each of its generated protein-ligand complex structures, enabling fast virtual screening of new (multi-ligand) drug targets. For the well-known PoseBusters Benchmark dataset, FlowDock outperforms single-sequence AlphaFold 3 with a 51% blind docking success rate using unbound (apo) protein input structures and without any information derived from multiple sequence alignments, and for the challenging new DockGen-E dataset, FlowDock outperforms single-sequence AlphaFold 3 and matches single-sequence Chai-1 for binding pocket generalization. Additionally, in the ligand category of the 16th community-wide Critical Assessment of Techniques for Structure Prediction (CASP16), FlowDock ranked among the top-5 methods for pharmacological binding affinity estimation across 140 protein-ligand complexes, demonstrating the efficacy of its learned representations in virtual screening. Source code, data, and pre-trained models are available at https://github.com/BioinfoMachineLearning/FlowDock.
comment: 10 pages, 2 tables, 2 algorithms, 7 figures. Code, data, pre-trained models, and baseline method predictions are available at https://github.com/BioinfoMachineLearning/FlowDock
♻ ☆ Multimodal-to-Text Prompt Engineering in Large Language Models Using Feature Embeddings for GNSS Interference Characterization
Large language models (LLMs) are advanced AI systems applied across various domains, including NLP, information retrieval, and recommendation systems. Despite their adaptability and efficiency, LLMs have not been extensively explored for signal processing tasks, particularly in the domain of global navigation satellite system (GNSS) interference monitoring. GNSS interference monitoring is essential to ensure the reliability of vehicle localization on roads, a critical requirement for numerous applications. However, GNSS-based positioning is vulnerable to interference from jamming devices, which can compromise its accuracy. The primary objective is to identify, classify, and mitigate these interferences. Interpreting GNSS snapshots and the associated interferences presents significant challenges due to the inherent complexity, including multipath effects, diverse interference types, varying sensor characteristics, and satellite constellations. In this paper, we extract features from a large GNSS dataset and employ LLaVA to retrieve relevant information from an extensive knowledge base. We employ prompt engineering to interpret the interferences and environmental factors, and utilize t-SNE to analyze the feature embeddings. Our findings demonstrate that the proposed method is capable of visual and logical reasoning within the GNSS context. Furthermore, our pipeline outperforms state-of-the-art machine learning models in interference classification tasks.
♻ ☆ PASS: Presentation Automation for Slide Generation and Speech
In today's fast-paced world, effective presentations have become an essential tool for communication in both online and offline meetings. The crafting of a compelling presentation requires significant time and effort, from gathering key insights to designing slides that convey information clearly and concisely. However, despite the wealth of resources available, people often find themselves manually extracting crucial points, analyzing data, and organizing content in a way that ensures clarity and impact. Furthermore, a successful presentation goes beyond just the slides; it demands rehearsal and the ability to weave a captivating narrative to fully engage the audience. Although there has been some exploration of automating document-to-slide generation, existing research is largely centered on converting research papers. In addition, automation of the delivery of these presentations has yet to be addressed. We introduce PASS, a pipeline used to generate slides from general Word documents, going beyond just research papers, which also automates the oral delivery of the generated slides. PASS analyzes user documents to create a dynamic, engaging presentation with an AI-generated voice. Additionally, we developed an LLM-based evaluation metric to assess our pipeline across three critical dimensions of presentations: relevance, coherence, and redundancy. The data and codes are available at https://github.com/AggarwalTushar/PASS.
♻ ☆ Enhancing Novel Object Detection via Cooperative Foundational Models WACV 2025
In this work, we address the challenging and emergent problem of novel object detection (NOD), focusing on the accurate detection of both known and novel object categories during inference. Traditional object detection algorithms are inherently closed-set, limiting their capability to handle NOD. We present a novel approach to transform existing closed-set detectors into open-set detectors. This transformation is achieved by leveraging the complementary strengths of pre-trained foundational models, specifically CLIP and SAM, through our cooperative mechanism. Furthermore, by integrating this mechanism with state-of-the-art open-set detectors such as GDINO, we establish new benchmarks in object detection performance. Our method achieves 17.42 mAP in novel object detection and 42.08 mAP for known objects on the challenging LVIS dataset. Adapting our approach to the COCO OVD split, we surpass the current state-of-the-art by a margin of 7.2 $ \text{AP}_{50} $ for novel classes. Our code is available at https://rohit901.github.io/coop-foundation-models/ .
comment: Accepted at WACV 2025
♻ ☆ Contextual Evaluation of Large Language Models for Classifying Tropical and Infectious Diseases NeurIPS 2024
While large language models (LLMs) have shown promise for medical question answering, there is limited work focused on tropical and infectious disease-specific exploration. We build on an opensource tropical and infectious diseases (TRINDs) dataset, expanding it to include demographic and semantic clinical and consumer augmentations yielding 11000+ prompts. We evaluate LLM performance on these, comparing generalist and medical LLMs, as well as LLM outcomes to human experts. We demonstrate through systematic experimentation, the benefit of contextual information such as demographics, location, gender, risk factors for optimal LLM response. Finally we develop a prototype of TRINDs-LM, a research tool that provides a playground to navigate how context impacts LLM outputs for health.
comment: Accepted at 2 NeurIPS 2024 workshops: Generative AI for Health Workshop and Workshop on Advancements In Medical Foundation Models: Explainability, Robustness, Security, and Beyond
♻ ☆ Relational Reasoning Networks
Neuro-symbolic methods integrate neural architectures, knowledge representation and reasoning. However, they have been struggling at both dealing with the intrinsic uncertainty of the observations and scaling to real-world applications. This paper presents Relational Reasoning Networks (R2N), a novel end-to-end model that performs relational reasoning in the latent space of a deep learner architecture, where the representations of constants, ground atoms and their manipulations are learned in an integrated fashion. Unlike flat architectures like Knowledge Graph Embedders, which can only represent relations between entities, R2Ns define an additional computational structure, accounting for higher-level relations among the ground atoms. The considered relations can be explicitly known, like the ones defined by logic formulas, or defined as unconstrained correlations among groups of ground atoms. R2Ns can be applied to purely symbolic tasks or as a neuro-symbolic platform to integrate learning and reasoning in heterogeneous problems with both symbolic and feature-based represented entities. The proposed model overtakes the limitations of previous neuro-symbolic methods that have been either limited in terms of scalability or expressivity. The proposed methodology is shown to achieve state-of-the-art results in different experimental settings.
♻ ☆ Experimental Study on The Effect of Multi-step Deep Reinforcement Learning in POMDPs
Deep Reinforcement Learning (DRL) has made tremendous advances in both simulated and real-world robot control tasks in recent years. This is particularly the case for tasks that can be carefully engineered with a full state representation, and which can then be formulated as a Markov Decision Process (MDP). However, applying DRL strategies designed for MDPs to novel robot control tasks can be challenging, because the available observations may be a partial representation of the state, resulting in a Partially Observable Markov Decision Process (POMDP). This paper considers three popular DRL algorithms, namely Proximal Policy Optimization (PPO), Twin Delayed Deep Deterministic Policy Gradient (TD3), and Soft Actor-Critic (SAC), invented for MDPs, and studies their performance in POMDP scenarios. While prior work has found that SAC and TD3 typically outperform PPO across a broad range of tasks that can be represented as MDPs, we show that this is not always the case, using three representative POMDP environments. Empirical studies show that this is related to multi-step bootstrapping, where multi-step immediate rewards, instead of one-step immediate reward, are used to calculate the target value estimation of an observation and action pair. We identify this by observing that the inclusion of multi-step bootstrapping in TD3 (MTD3) and SAC (MSAC) results in improved robustness in POMDP settings.
Robotics 30
☆ VINGS-Mono: Visual-Inertial Gaussian Splatting Monocular SLAM in Large Scenes
VINGS-Mono is a monocular (inertial) Gaussian Splatting (GS) SLAM framework designed for large scenes. The framework comprises four main components: VIO Front End, 2D Gaussian Map, NVS Loop Closure, and Dynamic Eraser. In the VIO Front End, RGB frames are processed through dense bundle adjustment and uncertainty estimation to extract scene geometry and poses. Based on this output, the mapping module incrementally constructs and maintains a 2D Gaussian map. Key components of the 2D Gaussian Map include a Sample-based Rasterizer, Score Manager, and Pose Refinement, which collectively improve mapping speed and localization accuracy. This enables the SLAM system to handle large-scale urban environments with up to 50 million Gaussian ellipsoids. To ensure global consistency in large-scale scenes, we design a Loop Closure module, which innovatively leverages the Novel View Synthesis (NVS) capabilities of Gaussian Splatting for loop closure detection and correction of the Gaussian map. Additionally, we propose a Dynamic Eraser to address the inevitable presence of dynamic objects in real-world outdoor scenes. Extensive evaluations in indoor and outdoor environments demonstrate that our approach achieves localization performance on par with Visual-Inertial Odometry while surpassing recent GS/NeRF SLAM methods. It also significantly outperforms all existing methods in terms of mapping and rendering quality. Furthermore, we developed a mobile app and verified that our framework can generate high-quality Gaussian maps in real time using only a smartphone camera and a low-frequency IMU sensor. To the best of our knowledge, VINGS-Mono is the first monocular Gaussian SLAM method capable of operating in outdoor environments and supporting kilometer-scale large scenes.
☆ FDPP: Fine-tune Diffusion Policy with Human Preference
Imitation learning from human demonstrations enables robots to perform complex manipulation tasks and has recently witnessed huge success. However, these techniques often struggle to adapt behavior to new preferences or changes in the environment. To address these limitations, we propose Fine-tuning Diffusion Policy with Human Preference (FDPP). FDPP learns a reward function through preference-based learning. This reward is then used to fine-tune the pre-trained policy with reinforcement learning (RL), resulting in alignment of pre-trained policy with new human preferences while still solving the original task. Our experiments across various robotic tasks and preferences demonstrate that FDPP effectively customizes policy behavior without compromising performance. Additionally, we show that incorporating Kullback-Leibler (KL) regularization during fine-tuning prevents over-fitting and helps maintain the competencies of the initial policy.
☆ Data-driven Spatial Classification using Multi-Arm Bandits for Monitoring with Energy-Constrained Mobile Robots
We consider the spatial classification problem for monitoring using data collected by a coordinated team of mobile robots. Such classification problems arise in several applications including search-and-rescue and precision agriculture. Specifically, we want to classify the regions of a search environment into interesting and uninteresting as quickly as possible using a team of mobile sensors and mobile charging stations. We develop a data-driven strategy that accommodates the noise in sensed data and the limited energy capacity of the sensors, and generates collision-free motion plans for the team. We propose a bi-level approach, where a high-level planner leverages a multi-armed bandit framework to determine the potential regions of interest for the drones to visit next based on the data collected online. Then, a low-level path planner based on integer programming coordinates the paths for the team to visit the target regions subject to the physical constraints. We characterize several theoretical properties of the proposed approach, including anytime guarantees and task completion time. We show the efficacy of our approach in simulation, and further validate these observations in physical experiments using mobile robots.
comment: 8 pages, 6 figures. See https://www.youtube.com/watch?v=gzulpOcVYzg for an overview of the approach along with videos of the hardware experiments
☆ Hybrid Action Based Reinforcement Learning for Multi-Objective Compatible Autonomous Driving
Reinforcement Learning (RL) has shown excellent performance in solving decision-making and control problems of autonomous driving, which is increasingly applied in diverse driving scenarios. However, driving is a multi-attribute problem, leading to challenges in achieving multi-objective compatibility for current RL methods, especially in both policy execution and policy iteration. On the one hand, the common action space structure with single action type limits driving flexibility or results in large behavior fluctuations during policy execution. On the other hand, the multi-attribute weighted single reward function result in the agent's disproportionate attention to certain objectives during policy iterations. To this end, we propose a Multi-objective Ensemble-Critic reinforcement learning method with Hybrid Parametrized Action for multi-objective compatible autonomous driving. Specifically, a parameterized action space is constructed to generate hybrid driving actions, combining both abstract guidance and concrete control commands. A multi-objective critics architecture is constructed considering multiple attribute rewards, to ensure simultaneously focusing on different driving objectives. Additionally, uncertainty-based exploration strategy is introduced to help the agent faster approach viable driving policy. The experimental results in both the simulated traffic environment and the HighD dataset demonstrate that our method can achieve multi-objective compatible autonomous driving in terms of driving efficiency, action consistency, and safety. It enhances the general performance of the driving while significantly increasing training efficiency.
comment: 12 pages, 9 figures, 5 tables
☆ HydroelasticTouch: Simulation of Tactile Sensors with Hydroelastic Contact Surfaces
Thanks to recent advancements in the development of inexpensive, high-resolution tactile sensors, touch sensing has become popular in contact-rich robotic manipulation tasks. With the surge of data-driven methods and their requirement for substantial datasets, several methods of simulating tactile sensors have emerged in the tactile research community to overcome real-world data collection limitations. These simulation approaches can be split into two main categories: fast but inaccurate (soft) point-contact models and slow but accurate finite element modeling. In this work, we present a novel approach to simulating pressure-based tactile sensors using the hydroelastic contact model, which provides a high degree of physical realism at a reasonable computational cost. This model produces smooth contact forces for soft-to-soft and soft-to-rigid contacts along even non-convex contact surfaces. Pressure values are approximated at each point of the contact surface and can be integrated to calculate sensor outputs. We validate our models' capacity to synthesize real-world tactile data by conducting zero-shot sim-to-real transfer of a model for object state estimation. Our simulation is available as a plug-in to our open-source, MuJoCo-based simulator.
☆ CHEQ-ing the Box: Safe Variable Impedance Learning for Robotic Polishing
Robotic systems are increasingly employed for industrial automation, with contact-rich tasks like polishing requiring dexterity and compliant behaviour. These tasks are difficult to model, making classical control challenging. Deep reinforcement learning (RL) offers a promising solution by enabling the learning of models and control policies directly from data. However, its application to real-world problems is limited by data inefficiency and unsafe exploration. Adaptive hybrid RL methods blend classical control and RL adaptively, combining the strengths of both: structure from control and learning from RL. This has led to improvements in data efficiency and exploration safety. However, their potential for hardware applications remains underexplored, with no evaluations on physical systems to date. Such evaluations are critical to fully assess the practicality and effectiveness of these methods in real-world settings. This work presents an experimental demonstration of the hybrid RL algorithm CHEQ for robotic polishing with variable impedance, a task requiring precise force and velocity tracking. In simulation, we show that variable impedance enhances polishing performance. We compare standalone RL with adaptive hybrid RL, demonstrating that CHEQ achieves effective learning while adhering to safety constraints. On hardware, CHEQ achieves effective polishing behaviour, requiring only eight hours of training and incurring just five failures. These results highlight the potential of adaptive hybrid RL for real-world, contact-rich tasks trained directly on hardware.
☆ AI Guide Dog: Egocentric Path Prediction on Smartphone
This paper introduces AI Guide Dog (AIGD), a lightweight egocentric navigation assistance system for visually impaired individuals, designed for real-time deployment on smartphones. AIGD addresses key challenges in blind navigation by employing a vision-only, multi-label classification approach to predict directional commands, ensuring safe traversal across diverse environments. We propose a novel technique to enable goal-based outdoor navigation by integrating GPS signals and high-level directions, while also addressing uncertain multi-path predictions for destination-free indoor navigation. Our generalized model is the first navigation assistance system to handle both goal-oriented and exploratory navigation scenarios across indoor and outdoor settings, establishing a new state-of-the-art in blind navigation. We present methods, datasets, evaluations, and deployment insights to encourage further innovations in assistive navigation systems.
☆ Low-Contact Grasping of Soft Tissue with Complex Geometry using a Vortex Gripper
Soft tissue manipulation is an integral aspect of most surgical procedures; however, the vast majority of surgical graspers used today are made of hard materials, such as metals or hard plastics. Furthermore, these graspers predominately function by pinching tissue between two hard objects as a method for tissue manipulation. As such, the potential to apply too much force during contact, and thus damage tissue, is inherently high. As an alternative approach, gaspers developed using a pneumatic vortex could potentially levitate soft tissue, enabling manipulation with low or even no contact force. In this paper, we present the design and well as a full factorial study of the force characteristics of the vortex gripper grasping soft surfaces with four common shapes, with convex and concave curvature, and ranging over 10 different radii of curvature, for a total of 40 unique surfaces. By changing the parameters of the nozzle elements in the design of the gripper, it was possible to investigate the influence of the mass flow parameters of the vortex gripper on the lifting force for all of these different soft surfaces. An $\pmb{ex}$ $\pmb{vivo}$ experiment was conducted on grasping biological tissues and soft balls of various shapes to show the advantages and disadvantages of the proposed technology. The obtained results allowed us to find limitations in the use of vortex technology and the following stages of its improvement for medical use.
comment: Submitted to T-MRB
☆ Electrostatic Clutches Enable High-Force Mechanical Multiplexing: Demonstrating Single-Motor Full-Actuation of a 4-DoF Hand
This paper introduces a novel mechanical multiplexing system powered by electrostatic capstan clutches, enabling high-force, single-motor control of multiple degrees of freedom (DoF). The system is capable of both bidirectional single-input single-output time-division and single-input multiple-output multiplexing to actuate a commercial 4-DoF robotic hand with a single motor. Our mechanical multiplexer is also capable of powerless position holding owing to its use of a leadscrew nut acting as the output. Experimental results demonstrate the effectiveness of this approach, achieving individual and simultaneous actuation. This innovation offers a scalable solution for high-DoF robotic systems, providing a path to efficient actuation in robotic platforms.
☆ Toward Zero-Shot User Intent Recognition in Shared Autonomy
A fundamental challenge of shared autonomy is to use high-DoF robots to assist, rather than hinder, humans by first inferring user intent and then empowering the user to achieve their intent. Although successful, prior methods either rely heavily on a priori knowledge of all possible human intents or require many demonstrations and interactions with the human to learn these intents before being able to assist the user. We propose and study a zero-shot, vision-only shared autonomy (VOSA) framework designed to allow robots to use end-effector vision to estimate zero-shot human intents in conjunction with blended control to help humans accomplish manipulation tasks with unknown and dynamically changing object locations. To demonstrate the effectiveness of our VOSA framework, we instantiate a simple version of VOSA on a Kinova Gen3 manipulator and evaluate our system by conducting a user study on three tabletop manipulation tasks. The performance of VOSA matches that of an oracle baseline model that receives privileged knowledge of possible human intents while also requiring significantly less effort than unassisted teleoperation. In more realistic settings, where the set of possible human intents is fully or partially unknown, we demonstrate that VOSA requires less human effort and time than baseline approaches while being preferred by a majority of the participants. Our results demonstrate the efficacy and efficiency of using off-the-shelf vision algorithms to enable flexible and beneficial shared control of a robot manipulator. Code and videos available here: https://sites.google.com/view/zeroshot-sharedautonomy/home.
comment: 10 pages, 6 figures, Accepted to IEEE/ACM International Conference on Human-Robot Interaction (HRI), 2025. Equal Contribution from the first three authors
☆ A Predictive Cooperative Collision Avoidance for Multi-Robot Systems Using Control Barrier Function
Control barrier function (CBF)-based methods provide the minimum modification necessary to formally guarantee safety in the context of quadratic programming, and strict safety guarantee for safety critical systems. However, most CBF-related derivatives myopically focus on present safety at each time step, a reasoning over a look-ahead horizon is exactly missing. In this paper, a predictive safety matrix is constructed. We then consolidate the safety condition based on the smallest eigenvalue of the proposed safety matrix. A predefined deconfliction strategy of motion paths is embedded into the trajectory tracking module to manage deadlock conflicts, which computes the deadlock escape velocity with the minimum attitude angle. Comparison results show that the introduction of the predictive term is robust for measurement uncertainty and is immune to oscillations. The proposed deadlock avoidance method avoids a large detour, without obvious stagnation.
♻ ☆ FaVoR: Features via Voxel Rendering for Camera Relocalization WACV
Camera relocalization methods range from dense image alignment to direct camera pose regression from a query image. Among these, sparse feature matching stands out as an efficient, versatile, and generally lightweight approach with numerous applications. However, feature-based methods often struggle with significant viewpoint and appearance changes, leading to matching failures and inaccurate pose estimates. To overcome this limitation, we propose a novel approach that leverages a globally sparse yet locally dense 3D representation of 2D features. By tracking and triangulating landmarks over a sequence of frames, we construct a sparse voxel map optimized to render image patch descriptors observed during tracking. Given an initial pose estimate, we first synthesize descriptors from the voxels using volumetric rendering and then perform feature matching to estimate the camera pose. This methodology enables the generation of descriptors for unseen views, enhancing robustness to view changes. We extensively evaluate our method on the 7-Scenes and Cambridge Landmarks datasets. Our results show that our method significantly outperforms existing state-of-the-art feature representation techniques in indoor environments, achieving up to a 39% improvement in median translation error. Additionally, our approach yields comparable results to other methods for outdoor scenarios while maintaining lower memory and computational costs.
comment: Accepted to the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Tucson, Arizona, US, Feb 28-Mar 4, 2025
♻ ☆ Vid2Sim: Realistic and Interactive Simulation from Video for Urban Navigation
Sim-to-real gap has long posed a significant challenge for robot learning in simulation, preventing the deployment of learned models in the real world. Previous work has primarily focused on domain randomization and system identification to mitigate this gap. However, these methods are often limited by the inherent constraints of the simulation and graphics engines. In this work, we propose Vid2Sim, a novel framework that effectively bridges the sim2real gap through a scalable and cost-efficient real2sim pipeline for neural 3D scene reconstruction and simulation. Given a monocular video as input, Vid2Sim can generate photorealistic and physically interactable 3D simulation environments to enable the reinforcement learning of visual navigation agents in complex urban environments. Extensive experiments demonstrate that Vid2Sim significantly improves the performance of urban navigation in the digital twins and real world by 31.2% and 68.3% in success rate compared with agents trained with prior simulation methods.
comment: Project page: https://metadriverse.github.io/vid2sim/
♻ ☆ Virtual Reflections on a Dynamic 2D Eye Model Improve Spatial Reference Identification
The visible orientation of human eyes creates some transparency about people's spatial attention and other mental states. This leads to a dual role for the eyes as a means of sensing and communication. Accordingly, artificial eye models are being explored as communication media in human-machine interaction scenarios. One challenge in the use of eye models for communication consists of resolving spatial reference ambiguities, especially for screen-based models. Here, we introduce an approach for overcoming this challenge through the introduction of reflection-like features that are contingent on artificial eye movements. We conducted a user study with 30 participants in which participants had to use spatial references provided by dynamic eye models to advance in a fast-paced group interaction task. Compared to a non-reflective eye model and a pure reflection mode, their combination in the new approach resulted in a higher identification accuracy and user experience, suggesting a synergistic benefit.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ GenSafe: A Generalizable Safety Enhancer for Safe Reinforcement Learning Algorithms Based on Reduced Order Markov Decision Process Model
Safe Reinforcement Learning (SRL) aims to realize a safe learning process for Deep Reinforcement Learning (DRL) algorithms by incorporating safety constraints. However, the efficacy of SRL approaches often relies on accurate function approximations, which are notably challenging to achieve in the early learning stages due to data insufficiency. To address this issue, we introduce in this work a novel Generalizable Safety enhancer (GenSafe) that is able to overcome the challenge of data insufficiency and enhance the performance of SRL approaches. Leveraging model order reduction techniques, we first propose an innovative method to construct a Reduced Order Markov Decision Process (ROMDP) as a low-dimensional approximator of the original safety constraints. Then, by solving the reformulated ROMDP-based constraints, GenSafe refines the actions of the agent to increase the possibility of constraint satisfaction. Essentially, GenSafe acts as an additional safety layer for SRL algorithms. We evaluate GenSafe on multiple SRL approaches and benchmark problems. The results demonstrate its capability to improve safety performance, especially in the early learning phases, while maintaining satisfactory task performance. Our proposed GenSafe not only offers a novel measure to augment existing SRL methods but also shows broad compatibility with various SRL algorithms, making it applicable to a wide range of systems and SRL problems.
♻ ☆ Perception Matters: Enhancing Embodied AI with Uncertainty-Aware Semantic Segmentation
Embodied AI has made significant progress acting in unexplored environments. However, tasks such as object search have largely focused on efficient policy learning. In this work, we identify several gaps in current search methods: They largely focus on dated perception models, neglect temporal aggregation, and transfer from ground truth directly to noisy perception at test time, without accounting for the resulting overconfidence in the perceived state. We address the identified problems through calibrated perception probabilities and uncertainty across aggregation and found decisions, thereby adapting the models for sequential tasks. The resulting methods can be directly integrated with pretrained models across a wide family of existing search approaches at no additional training cost. We perform extensive evaluations of aggregation methods across both different semantic perception models and policies, confirming the importance of calibrated uncertainties in both the aggregation and found decisions. We make the code and trained models available at https://semantic-search.cs.uni-freiburg.de.
♻ ☆ DIDLM: A SLAM Dataset for Difficult Scenarios Featuring Infrared, Depth Cameras, LIDAR, 4D Radar, and Others under Adverse Weather, Low Light Conditions, and Rough Roads
Adverse weather conditions, low-light environments, and bumpy road surfaces pose significant challenges to SLAM in robotic navigation and autonomous driving. Existing datasets in this field predominantly rely on single sensors or combinations of LiDAR, cameras, and IMUs. However, 4D millimeter-wave radar demonstrates robustness in adverse weather, infrared cameras excel in capturing details under low-light conditions, and depth images provide richer spatial information. Multi-sensor fusion methods also show potential for better adaptation to bumpy roads. Despite some SLAM studies incorporating these sensors and conditions, there remains a lack of comprehensive datasets addressing low-light environments and bumpy road conditions, or featuring a sufficiently diverse range of sensor data. In this study, we introduce a multi-sensor dataset covering challenging scenarios such as snowy weather, rainy weather, nighttime conditions, speed bumps, and rough terrains. The dataset includes rarely utilized sensors for extreme conditions, such as 4D millimeter-wave radar, infrared cameras, and depth cameras, alongside 3D LiDAR, RGB cameras, GPS, and IMU. It supports both autonomous driving and ground robot applications and provides reliable GPS/INS ground truth data, covering structured and semi-structured terrains. We evaluated various SLAM algorithms using this dataset, including RGB images, infrared images, depth images, LiDAR, and 4D millimeter-wave radar. The dataset spans a total of 18.5 km, 69 minutes, and approximately 660 GB, offering a valuable resource for advancing SLAM research under complex and extreme conditions. Our dataset is available at https://github.com/GongWeiSheng/DIDLM.
♻ ☆ Evaluation of Artificial Intelligence Methods for Lead Time Prediction in Non-Cycled Areas of Automotive Production
The present study examines the effectiveness of applying Artificial Intelligence methods in an automotive production environment to predict unknown lead times in a non-cycle-controlled production area. Data structures are analyzed to identify contextual features and then preprocessed using one-hot encoding. Methods selection focuses on supervised machine learning techniques. In supervised learning methods, regression and classification methods are evaluated. Continuous regression based on target size distribution is not feasible. Classification methods analysis shows that Ensemble Learning and Support Vector Machines are the most suitable. Preliminary study results indicate that gradient boosting algorithms LightGBM, XGBoost, and CatBoost yield the best results. After further testing and extensive hyperparameter optimization, the final method choice is the LightGBM algorithm. Depending on feature availability and prediction interval granularity, relative prediction accuracies of up to 90% can be achieved. Further tests highlight the importance of periodic retraining of AI models to accurately represent complex production processes using the database. The research demonstrates that AI methods can be effectively applied to highly variable production data, adding business value by providing an additional metric for various control tasks while outperforming current non AI-based systems.
♻ ☆ GazeGrasp: DNN-Driven Robotic Grasping with Wearable Eye-Gaze Interface
We present GazeGrasp, a gaze-based manipulation system enabling individuals with motor impairments to control collaborative robots using eye-gaze. The system employs an ESP32 CAM for eye tracking, MediaPipe for gaze detection, and YOLOv8 for object localization, integrated with a Universal Robot UR10 for manipulation tasks. After user-specific calibration, the system allows intuitive object selection with a magnetic snapping effect and robot control via eye gestures. Experimental evaluation involving 13 participants demonstrated that the magnetic snapping effect significantly reduced gaze alignment time, improving task efficiency by 31%. GazeGrasp provides a robust, hands-free interface for assistive robotics, enhancing accessibility and autonomy for users.
comment: Accepted to: IEEE/ACM International Conference on Human-Robot Interaction (HRI 2025)
♻ ☆ Cooperative Aerial Robot Inspection Challenge: A Benchmark for Heterogeneous Multi-UAV Planning and Lessons Learned
We propose the Cooperative Aerial Robot Inspection Challenge (CARIC), a simulation-based benchmark for motion planning algorithms in heterogeneous multi-UAV systems. CARIC features UAV teams with complementary sensors, realistic constraints, and evaluation metrics prioritizing inspection quality and efficiency. It offers a ready-to-use perception-control software stack and diverse scenarios to support the development and evaluation of task allocation and motion planning algorithms. Competitions using CARIC were held at IEEE CDC 2023 and the IROS 2024 Workshop on Multi-Robot Perception and Navigation, attracting innovative solutions from research teams worldwide. This paper examines the top three teams from CDC 2023, analyzing their exploration, inspection, and task allocation strategies while drawing insights into their performance across scenarios. The results highlight the task's complexity and suggest promising directions for future research in cooperative multi-UAV systems.
comment: Please find our website at https://ntu-aris.github.io/caric
♻ ☆ Analyzing Infrastructure LiDAR Placement with Realistic LiDAR Simulation Library ICRA'23
Recently, Vehicle-to-Everything(V2X) cooperative perception has attracted increasing attention. Infrastructure sensors play a critical role in this research field; however, how to find the optimal placement of infrastructure sensors is rarely studied. In this paper, we investigate the problem of infrastructure sensor placement and propose a pipeline that can efficiently and effectively find optimal installation positions for infrastructure sensors in a realistic simulated environment. To better simulate and evaluate LiDAR placement, we establish a Realistic LiDAR Simulation library that can simulate the unique characteristics of different popular LiDARs and produce high-fidelity LiDAR point clouds in the CARLA simulator. Through simulating point cloud data in different LiDAR placements, we can evaluate the perception accuracy of these placements using multiple detection models. Then, we analyze the correlation between the point cloud distribution and perception accuracy by calculating the density and uniformity of regions of interest. Experiments show that when using the same number and type of LiDAR, the placement scheme optimized by our proposed method improves the average precision by 15%, compared with the conventional placement scheme in the standard lane scene. We also analyze the correlation between perception performance in the region of interest and LiDAR point cloud distribution and validate that density and uniformity can be indicators of performance. Both the RLS Library and related code will be released at https://github.com/PJLab-ADG/PCSim.
comment: 7 pages, 6 figures, accepted to the IEEE International Conference on Robotics and Automation (ICRA'23)
♻ ☆ Cost-Effective Robotic Handwriting System with AI Integration
This paper introduces a cost-effective robotic handwriting system designed to replicate human-like handwriting with high precision. Combining a Raspberry Pi Pico microcontroller, 3D-printed components, and a machine learning-based handwriting generation model implemented via TensorFlow, the system converts user-supplied text into realistic stroke trajectories. By leveraging lightweight 3D-printed materials and efficient mechanical designs, the system achieves a total hardware cost of approximately \$56, significantly undercutting commercial alternatives. Experimental evaluations demonstrate handwriting precision within $\pm$0.3 millimeters and a writing speed of approximately 200 mm/min, positioning the system as a viable solution for educational, research, and assistive applications. This study seeks to lower the barriers to personalized handwriting technologies, making them accessible to a broader audience.
comment: This is an updated version of a paper originally presented at the 2024 IEEE Long Island Systems, Applications and Technology Conference (LISAT)
♻ ☆ Tactile-based Exploration, Mapping and Navigation with Collision-Resilient Aerial Vehicles
This article introduces XPLORER, a passive deformable UAV with a spring-augmented chassis and proprioceptive state awareness, designed to endure collisions and maintain smooth contact. We develop a fast-converging external force estimation algorithm for XPLORER that leverages onboard sensors and proprioceptive data for contact and collision detection. Using this force information, we propose four motion primitives, including three novel tactile-based primitives: tactile-traversal, tactile-turning, and ricocheting-to aid XPLORER in navigating unknown environments. These primitives are synthesized autonomously in real-time to enable efficient exploration and navigation by leveraging collisions and contacts. Experimental results demonstrate the effectiveness of our approach, highlighting the potential of passive deformable UAVs for contact-rich real-world tasks such as non-destructive inspection, surveillance and mapping, and pursuit/evasion.
♻ ☆ Safety Implications of Explainable Artificial Intelligence in End-to-End Autonomous Driving
The end-to-end learning pipeline is gradually creating a paradigm shift in the ongoing development of highly autonomous vehicles, largely due to advances in deep learning, the availability of large-scale training datasets, and improvements in integrated sensor devices. However, a lack of explainability in real-time decisions with contemporary learning methods impedes user trust and attenuates the widespread deployment and commercialization of such vehicles. Moreover, the issue is exacerbated when these cars are involved in or cause traffic accidents. Consequently, explainability in end-to-end autonomous driving is essential to build trust in vehicular automation. With that said, automotive researchers have not yet rigorously explored safety benefits and consequences of explanations in end-to-end autonomous driving. This paper aims to bridge the gaps between these topics and seeks to answer the following research question: What are safety implications of explanations in end-to-end autonomous driving? In this regard, we first revisit established safety and explainability concepts in end-to-end driving. Furthermore, we present three critical case studies and show the pivotal role of explanations in enhancing self-driving safety. Finally, we describe insights from empirical studies and reveal potential value, limitations, and caveats of practical explainable AI methods with respect to their safety assurance in end-to-end driving.
♻ ☆ Cooperative and Asynchronous Transformer-based Mission Planning for Heterogeneous Teams of Mobile Robots
Cooperative mission planning for heterogeneous teams of mobile robots presents a unique set of challenges, particularly when operating under communication constraints and limited computational resources. To address these challenges, we propose the Cooperative and Asynchronous Transformer-based Mission Planning (CATMiP) framework, which leverages multi-agent reinforcement learning (MARL) to coordinate distributed decision making among agents with diverse sensing, motion, and actuation capabilities, operating under sporadic ad hoc communication. A Class-based Macro-Action Decentralized Partially Observable Markov Decision Process (CMacDec-POMDP) is also formulated to effectively model asynchronous decision-making for heterogeneous teams of agents. The framework utilizes an asynchronous centralized training and distributed execution scheme that is developed based on the Multi-Agent Transformer (MAT) architecture. This design allows a single trained model to generalize to larger environments and accommodate varying team sizes and compositions. We evaluate CATMiP in a 2D grid-world simulation environment and compare its performance against planning-based exploration methods. Results demonstrate CATMiP's superior efficiency, scalability, and robustness to communication dropouts, highlighting its potential for real-world heterogeneous mobile robot systems. The code is available at https://github.com/mylad13/CATMiP.
comment: 27 pages, 8 figures, this work has been submitted to Elsevier for possible publication
♻ ☆ A Signal Temporal Logic Approach for Task-Based Coordination of Multi-Aerial Systems: a Wind Turbine Inspection Case Study
The paper addresses task assignment and trajectory generation for collaborative inspection missions using a fleet of multi-rotors, focusing on the wind turbine inspection scenario. The proposed solution enables safe and feasible trajectories while accommodating heterogeneous time-bound constraints and vehicle physical limits. An optimization problem is formulated to meet mission objectives and temporal requirements encoded as Signal Temporal Logic (STL) specifications. Additionally, an event-triggered replanner is introduced to address unforeseen events and compensate for lost time. Furthermore, a generalized robustness scoring method is employed to reflect user preferences and mitigate task conflicts. The effectiveness of the proposed approach is demonstrated through MATLAB and Gazebo simulations, as well as field multi-robot experiments in a mock-up scenario.
comment: \c{opyright}2025 Elsevier. This work has been accepted to "Robotics and Autonomous Systems" for possible publication. Personal use of this material is permitted. Permission from Elsevier must be obtained for all other uses
♻ ☆ Beyond Sight: Finetuning Generalist Robot Policies with Heterogeneous Sensors via Language Grounding
Interacting with the world is a multi-sensory experience: achieving effective general-purpose interaction requires making use of all available modalities -- including vision, touch, and audio -- to fill in gaps from partial observation. For example, when vision is occluded reaching into a bag, a robot should rely on its senses of touch and sound. However, state-of-the-art generalist robot policies are typically trained on large datasets to predict robot actions solely from visual and proprioceptive observations. In this work, we propose FuSe, a novel approach that enables finetuning visuomotor generalist policies on heterogeneous sensor modalities for which large datasets are not readily available by leveraging natural language as a common cross-modal grounding. We combine a multimodal contrastive loss with a sensory-grounded language generation loss to encode high-level semantics. In the context of robot manipulation, we show that FuSe enables performing challenging tasks that require reasoning jointly over modalities such as vision, touch, and sound in a zero-shot setting, such as multimodal prompting, compositional cross-modal prompting, and descriptions of objects it interacts with. We show that the same recipe is applicable to widely different generalist policies, including both diffusion-based generalist policies and large vision-language-action (VLA) models. Extensive experiments in the real world show that FuSeis able to increase success rates by over 20% compared to all considered baselines.
♻ ☆ Resilient Distributed Optimization for Multi-Agent Cyberphysical Systems
This work focuses on the problem of distributed optimization in multi-agent cyberphysical systems, where a legitimate agent's iterates are influenced both by the values it receives from potentially malicious neighboring agents, and by its own self-serving target function. We develop a new algorithmic and analytical framework to achieve resilience for the class of problems where stochastic values of trust between agents exist and can be exploited. In this case, we show that convergence to the true global optimal point can be recovered, both in mean and almost surely, even in the presence of malicious agents. Furthermore, we provide expected convergence rate guarantees in the form of upper bounds on the expected squared distance to the optimal value. Finally, numerical results are presented that validate our analytical convergence guarantees even when the malicious agents compose the majority of agents in the network and where existing methods fail to converge to the optimal nominal points.
comment: Accepted for publication in the IEEE Transactions on Automatic Control
♻ ☆ SYNAPSE: SYmbolic Neural-Aided Preference Synthesis Engine AAAI 25
This paper addresses the problem of preference learning, which aims to align robot behaviors through learning user specific preferences (e.g. "good pull-over location") from visual demonstrations. Despite its similarity to learning factual concepts (e.g. "red door"), preference learning is a fundamentally harder problem due to its subjective nature and the paucity of person-specific training data. We address this problem using a novel framework called SYNAPSE, which is a neuro-symbolic approach designed to efficiently learn preferential concepts from limited data. SYNAPSE represents preferences as neuro-symbolic programs, facilitating inspection of individual parts for alignment, in a domain-specific language (DSL) that operates over images and leverages a novel combination of visual parsing, large language models, and program synthesis to learn programs representing individual preferences. We perform extensive evaluations on various preferential concepts as well as user case studies demonstrating its ability to align well with dissimilar user preferences. Our method significantly outperforms baselines, especially when it comes to out of distribution generalization. We show the importance of the design choices in the framework through multiple ablation studies. Code, additional results, and supplementary material can be found on the website: https://amrl.cs.utexas.edu/synapse
comment: Accepted (oral) at AAAI 25
♻ ☆ GestLLM: Advanced Hand Gesture Interpretation via Large Language Models for Human-Robot Interaction
This paper introduces GestLLM, an advanced system for human-robot interaction that enables intuitive robot control through hand gestures. Unlike conventional systems, which rely on a limited set of predefined gestures, GestLLM leverages large language models and feature extraction via MediaPipe to interpret a diverse range of gestures. This integration addresses key limitations in existing systems, such as restricted gesture flexibility and the inability to recognize complex or unconventional gestures commonly used in human communication. By combining state-of-the-art feature extraction and language model capabilities, GestLLM achieves performance comparable to leading vision-language models while supporting gestures underrepresented in traditional datasets. For example, this includes gestures from popular culture, such as the ``Vulcan salute" from Star Trek, without any additional pretraining, prompt engineering, etc. This flexibility enhances the naturalness and inclusivity of robot control, making interactions more intuitive and user-friendly. GestLLM provides a significant step forward in gesture-based interaction, enabling robots to understand and respond to a wide variety of hand gestures effectively. This paper outlines its design, implementation, and evaluation, demonstrating its potential applications in advanced human-robot collaboration, assistive robotics, and interactive entertainment.
Systems and Control 30
☆ A Novel Method for Detecting Dust Accumulation in Photovoltaic Systems: Evaluating Visible Sunlight Obstruction in Different Dust Levels and AI-based Bird Droppings Detection
This paper presents an innovative method for automatically detecting dust accumulation on a PV system and notifying the user to clean it instantly. The accumulation of dust, bird, or insect droppings on the surface of photovoltaic (PV) panels creates a barrier between the solar energy and the panel's surface to receive sufficient energy to generate electricity. The study investigates the effects of dust on PV panel output and visible sunlight (VSL) block amounts to utilize the necessity of cleaning and detection. The amount of blocked visible sunlight while passing through glass due to dust determines the accumulated dust level. Visible sunlight can easily pass through the clean, transparent glass but reflects when something like dust obstructs it. Based on those concepts, a system is designed with a light sensor that is simple, effective, easy to install, hassle-free, and can spread the technology. The study also explores the effectiveness of the detection system developed by using image processing and machine learning algorithms to identify dust levels and bird or insect droppings accurately. The experimental setup in Gazipur, Bangladesh, found that excessive dust can block up to 55% of visible sunlight, wasting 55% of solar energy in the visible spectrum, and cleaning can recover 3% of power weekly. The data from the dust detection system is correlated with the 400W capacity solar panels' naturally lost efficiency data to validate the system. This research measured visible sunlight obstruction and loss due to dust. However, the addition of an infrared radiation sensor can draw the entire scenario of energy loss by doing more research.
☆ Nonlinear Cruise Controllers with Bidirectional Sensing for a String of Vehicles
We introduce a nonlinear cruise controller that is fully decentralized (by vehicle) and uses spacing and speed measurements from the preceding and following vehicles to decide on the appropriate control action (acceleration) for each vehicle. The proposed cruise controller is studied on both a ring-road and an open road and guarantees that there are no collisions between vehicles, while their speeds are always positive and never exceed the road speed limits. For both cases of the open road and the ring-road, we rigorously prove that the set of equilibrium points is globally asymptotically stable and provide KL estimates that guarantee uniform convergence to the said set. Moreover, we show that for the ring-road, and under certain conditions, there is a single equilibrium point which is exponentially attractive.
comment: 33 pages
☆ Economic Model Predictive Control for Periodic Operation: A Quadratic Programming Approach
Periodic dynamical systems, distinguished by their repetitive behavior over time, are prevalent across various engineering disciplines. In numerous applications, particularly within industrial contexts, the implementation of model predictive control (MPC) schemes tailored to optimize specific economic criteria was shown to offer substantial advantages. However, the real-time implementation of these schemes is often infeasible due to limited computational resources. To tackle this problem, we propose a resource-efficient economic model predictive control scheme for periodic systems, leveraging existing single-layer MPC techniques. Our method relies on a single quadratic optimization problem, which ensures high computational efficiency for real-time control in dynamic settings. We prove feasibility, stability and convergence to optimum of the proposed approach, and validate the effectiveness through numerical experiments.
☆ A Comparative Analysis of Transformer-less Inverter Topologies for Grid-Connected PV Systems: Minimizing Leakage Current and THD
The integration of distributed energy resources (DERs), particularly photovoltaic (PV) systems, into power grids has gained major attention due to their environmental and economic benefits. Although traditional transformer-based grid-connected PV inverters provide galvanic isolation for leakage current, they suffer from major drawbacks of high cost, lower efficiency, and increased size. Transformer-less grid-connected PV inverters (TLGI) have emerged as a prominent alternative, as they achieve higher efficiency, compact design, and lower cost. However, due to a lack of galvanic isolation, TLGIs are highly affected by leakage current caused by the fluctuation of common-mode voltage (CMV). This paper investigates three topologies H4, H5, and HERIC with comparisons between their CMV, differential-mode voltage (DMV), total harmonic distortion (THD), and leakage current. A simulation was conducted for each topology in MATLAB/Simulink R2023a, and the results demonstrate that the H5 topology achieves a balance between low leakage current, reduced THD, and optimal operational efficiency, making it suitable for practical application.
comment: 17 pages
☆ Range-Only Dynamic Output Feedback Controller for Safe and Secure Target Circumnavigation
The safety and security of robotic systems are paramount when navigating around a hostile target. This paper addresses the problem of circumnavigating an unknown target by a unicycle robot while ensuring it maintains a desired safe distance and remains within the sensing region around the target throughout its motion. The proposed control design methodology is based on the construction of a joint Lyapunov function that incorporates: (i) a quadratic potential function characterizing the desired target-circumnavigation objective, and (ii) a barrier Lyapunov function-based potential term to enforce safety and sensing constraints on the robot's motion. A notable feature of the proposed control design is its reliance exclusively on local range measurements between the robot and the target, realized using a dynamic output feedback controller that treats the range as the only observable output for feedback. Using the Lyapunov stability theory, we show that the desired equilibrium of the closed-loop system is asymptotically stable, and the prescribed safety and security constraints are met under the proposed controllers. We also obtain restrictive bounds on the post-design signals and provide both simulation and experimental results to validate the theoretical contributions.
☆ Analysis of Power Losses and the Efficacy of Power Minimization Strategies in Multichannel Electrical Stimulation Systems
Neuroprosthetic devices require multichannel stimulator systems with an increasing number of channels. However, there are inherent power losses in typical multichannel stimulation circuits caused by a mismatch between the power supply voltage and the voltage required at each electrode to successfully stimulate tissue. This imposes a bottleneck towards high-channel-count devices, which is particularly severe in wirelessly-powered devices. Hence, advances in the power efficiency of stimulation systems are critical. To support these advances, this paper presents a methodology to identify and quantify power losses associated with different power supply scaling strategies in multichannel stimulation systems. The proposed methodology utilizes distributions of stimulation amplitudes and electrode impedances to calculate power losses in multichannel systems. Experimental data from previously published studies spanning various stimulation applications were analyzed to evaluate the performance of fixed, global, and stepped supply scaling methods, focusing on their impact on power dissipation and efficiency. Variability in output conditions results in low power efficiency in multichannel stimulation systems across all applications. Stepped voltage scaling demonstrated substantial efficiency improvements, achieving an increase of 67 % to 146 %, particularly in high-channel-count applications with significant variability in tissue impedance. Global scaling, by contrast, was more advantageous for systems with fewer channels. The findings highlight the importance of tailoring power management strategies to specific applications to optimize efficiency while minimizing system complexity. The proposed methodology offers a framework for evaluating efficiency-complexity trade-offs, advancing the design of scalable neurostimulation systems.
comment: 22 pages, 9 figures
☆ MMAPs to model complex multi-state systems with vacation policies in the repair facility
Two complex multi-state systems subject to multiple events are built in an algorithmic and computational way by considering phase-type distributions and Markovian arrival processes with marked arrivals. The internal performance of the system is composed of different degradation levels and internal repairable and non-repairable failures can occur. Also, the system is subject to external shocks that may provoke repairable or non-repairable failure. A multiple vacation policy is introduced in the system for the repairperson. Preventive maintenance is included in the system to improve the behaviour. Two types of task may be performed by the repairperson; corrective repair and preventive maintenance. The systems are modelled, the transient and stationary distributions are built and different performance measures are calculated in a matrix-algorithmic form. Cost and rewards are included in the model in a vector matrix way. Several economic measures are worked out and the net reward per unit of time is used to optimize the system. A numerical example shows that the system can be optimized according to the existence of preventive maintenance and the distribution of vacation time. The results have been implemented computationally with Matlab and R (packages: expm, optim).
☆ A resource management approach for concurrent operation of RF functionalities
Future multifunction RF systems will be able to not only perform various different radar, communication and electronic warfare functionalities but also to perform them simultaneously on the same aperture. This ability of concurrent operations requires new, cognitive approaches of resource management compared to classical methods. This paper presents such a new approach using a combination of quality of service based resource management and Monte Carlo tree search.
comment: 6 pages, 9 figures, presented at 2024 International Radar Conference (RADAR2024)
☆ An Open Source Validation System for Continuous Arterial Blood Pressure Measuring Sensors
Measuring the blood pressure waveform is becoming a more frequently studied area. The development of sensor technologies opens many new ways to be able to measure high-quality signals. The development of such an aim-specific sensor can be time-consuming, expensive, and difficult to test or validate with known and consistent waveforms. In this paper, we present an open source blood pressure waveform simulator with an open source Python validation package to reduce development costs for early-stage sensor development and research. The simulator mainly consists of 3D printed parts which technology has become a widely available and cheap solution. The core part of the simulator is a 3D printed cam that can be generated based on real blood pressure waveforms. The validation framework can create a detailed comparison between the signal waveform used to design the cam and the measured time series from the sensor being validated. The presented simulator proved to be robust and accurate in short- and long-term use, as it produced the signal waveform consistently and accurately. To validate this solution, a 3D force sensor was used, which was proven earlier to be able to measure high-quality blood pressure waveforms on the radial artery at the wrist. The results showed high similarity between the measured and the nominal waveforms, meaning that comparing the normalized signals, the RMSE value ranged from $0.0276 \pm 0.0047$ to $0.0212 \pm 0.0023$, and the Pearson correlation ranged from $0.9933 \pm 0.0027$ to $0.9978 \pm 0.0005$. Our validation framework is available at https://github.com/repat8/cam-bpw-sim. Our hardware framework, which allows reproduction of the presented solution, is available at https://github.com/repat8/cam-bpw-sim-hardware. The entire design is an open source project and was developed using free software.
comment: 8 pages, 5 figures. For associated repositories see https://github.com/repat8/cam-bpw-sim-hardware and https://github.com/repat8/cam-bpw-sim . Submitted to IEEE Transactions on Instrumentation and Measurement
☆ Synchronization of Kuramoto oscillators via HEOL, and a discussion on AI
Artificial neural networks and their applications in deep learning have recently made an incursion into the field of control. Deep learning techniques in control are often related to optimal control, which relies on Pontryagin maximum principle or the Hamilton-Jacobi-Bellman equation. They imply control schemes that are tedious to implement. We show here that the new HEOL setting, resulting from the fusion of the two established approaches, namely differential flatness and model-free control, provides a solution to control problems that is more sober in terms of computational resources. This communication is devoted to the synchronization of the popular Kuramoto's coupled oscillators, which was already considered via artificial neural networks (B\"ottcher et al., Nature Communications 2022), where, contrarily to this communication, only the single control variable is examined. One establishes the flatness of Kuramoto's coupled oscillator model with multiplicative control and develops the resulting HEOL control. Unlike many exemples, this system reveals singularities that are avoided by a clever generation of phase angle trajectories. The results obtained, verified in simulation, show that it is not only possible to synchronize these oscillators in finite time, and even to follow angular frequency profiles, but also to exhibit robustness concerning model mismatches. To the best of our knowledge this has never been done before. Concluding remarks advocate a viewpoint, which might be traced back to Wiener's cybernetics: control theory belongs to AI.
comment: MATHMOD 2025 (11th Vienna International Conference on Mathematical Modelling, 19-21 February 2025, Vienna, Austria)
☆ Prediction Interval Construction Method for Electricity Prices
Accurate prediction of electricity prices plays an essential role in the electricity market. To reflect the uncertainty of electricity prices, price intervals are predicted. This paper proposes a novel prediction interval construction method. A conditional generative adversarial network is first presented to generate electricity price scenarios, with which the prediction intervals can be constructed. Then, different generated scenarios are stacked to obtain the probability densities, which can be applied to accurately reflect the uncertainty of electricity prices. Furthermore, a reinforced prediction mechanism based on the volatility level of weather factors is introduced to address the spikes or volatile prices. A case study is conducted to verify the effectiveness of the proposed novel prediction interval construction method. The method can also provide the probability density of each price scenario within the prediction interval and has the superiority to address the volatile prices and price spikes with a reinforced prediction mechanism.
☆ Energy Storage Arbitrage Under Price Uncertainty: Market Risks and Opportunities
We investigate the profitability and risk of energy storage arbitrage in electricity markets under price uncertainty, exploring both robust and chance-constrained optimization approaches. We analyze various uncertainty representations, including polyhedral, ellipsoidal uncertainty sets and probabilistic approximations, to model price fluctuations and construct efficient frontiers that highlight the tradeoff between risk and profit. Using historical electricity price data, we quantify the impact of uncertainty on arbitrage strategies and compare their performance under distinct market conditions. The results reveal that arbitrage strategies under uncertainties can effectively secure expected profits, and robust strategies perform better in risk management across varying levels of conservativeness, especially under highly volatile market conditions. This work provides insights into storage arbitrage strategy selection for market participants with differing risk preferences, emphasizing the adaptability of efficient frontiers to the electricity market.
☆ Electrostatic Clutches Enable High-Force Mechanical Multiplexing: Demonstrating Single-Motor Full-Actuation of a 4-DoF Hand
This paper introduces a novel mechanical multiplexing system powered by electrostatic capstan clutches, enabling high-force, single-motor control of multiple degrees of freedom (DoF). The system is capable of both bidirectional single-input single-output time-division and single-input multiple-output multiplexing to actuate a commercial 4-DoF robotic hand with a single motor. Our mechanical multiplexer is also capable of powerless position holding owing to its use of a leadscrew nut acting as the output. Experimental results demonstrate the effectiveness of this approach, achieving individual and simultaneous actuation. This innovation offers a scalable solution for high-DoF robotic systems, providing a path to efficient actuation in robotic platforms.
☆ Nonlinear Modeling of a PEM Fuel Cell System; a Practical Study with Experimental Validation
In this paper, a nonlinear six order model is proposed for a proton exchange membrane fuel cell (PEMFC) as a control-oriented electrochemical model. Its validation is performed on a specific single cell PEMFC with effective dimension of 5 cm5 cm. This model is described in the nonlinear state space form with 6 state variables. Load current and DC voltage are considered as measurable disturbance and control input respectively. Besides, the model includes fuel cell stack and its auxiliary components as well. In this survey, a nonlinear state space representation is derived by arranging nonlinear equations and combining them with auxiliary components model. The proposed model can be successfully used to design nonlinear controller and nonlinear observer systems. The analyzed PEMFC system consists of air compressor motor dynamic equations, air and fuel supply subsystems, a perfect air humidifier and a fuel cell stack. An experimentally validated nonlinear model that reproduces the most typical features of a laboratory PEMFC system is presented. This model is derived based on physics law in stack, including system gases dynamics. The objective of this paper is to introduce a fully analytical model which has been fully validated on a fuel cell system and its auxiliary components. The proposed method can be used as a general modeling guideline for control-oriented purposes. Moreover, it can be successfully implemented in composing a dynamic subsystem, like hydrogen subsystem, as part of the whole nonlinear model.
comment: 1272-1296
☆ CVaR-Based Variational Quantum Optimization for User Association in Handoff-Aware Vehicular Networks
Efficient resource allocation is essential for optimizing various tasks in wireless networks, which are usually formulated as generalized assignment problems (GAP). GAP, as a generalized version of the linear sum assignment problem, involves both equality and inequality constraints that add computational challenges. In this work, we present a novel Conditional Value at Risk (CVaR)-based Variational Quantum Eigensolver (VQE) framework to address GAP in vehicular networks (VNets). Our approach leverages a hybrid quantum-classical structure, integrating a tailored cost function that balances both objective and constraint-specific penalties to improve solution quality and stability. Using the CVaR-VQE model, we handle the GAP efficiently by focusing optimization on the lower tail of the solution space, enhancing both convergence and resilience on noisy intermediate-scale quantum (NISQ) devices. We apply this framework to a user-association problem in VNets, where our method achieves 23.5% improvement compared to the deep neural network (DNN) approach.
comment: Accepted in IEEE International Conference on Communications (ICC 2025)
☆ A Predictive Cooperative Collision Avoidance for Multi-Robot Systems Using Control Barrier Function
Control barrier function (CBF)-based methods provide the minimum modification necessary to formally guarantee safety in the context of quadratic programming, and strict safety guarantee for safety critical systems. However, most CBF-related derivatives myopically focus on present safety at each time step, a reasoning over a look-ahead horizon is exactly missing. In this paper, a predictive safety matrix is constructed. We then consolidate the safety condition based on the smallest eigenvalue of the proposed safety matrix. A predefined deconfliction strategy of motion paths is embedded into the trajectory tracking module to manage deadlock conflicts, which computes the deadlock escape velocity with the minimum attitude angle. Comparison results show that the introduction of the predictive term is robust for measurement uncertainty and is immune to oscillations. The proposed deadlock avoidance method avoids a large detour, without obvious stagnation.
☆ Optimizing a multi-state cold-standby system with multiple vacations in the repair and loss of units
A complex multi-state redundant system with preventive maintenance subject to multiple events is considered. The online unit can undergo several types of failures: internal and those provoked by external shocks. Multiple degradation levels are assumed so as internal and external. Degradation levels are observed by random inspections and if they are major, the unit goes to repair facility where preventive maintenance is carried out. This repair facility is composed of a single repairperson governed by a multiple vacation policy. This policy is set up according to the operational number of units. Two types of task can be performed by the repairperson, corrective repair and preventive maintenance. The times embedded in the system are phase type distributed and the model is built by using Markovian Arrival Processes with marked arrivals. Multiple performance measures besides of the transient and stationary distribution are worked out through matrix-analytic methods. This methodology enables us to express the main results and the global development in a matrix-algorithmic form. To optimize the model costs and rewards are included. A numerical example shows the versatility of the model.
♻ ☆ Enforcing contraction via data
We present data-based conditions for enforcing contractivity via feedback control and obtain desired asymptotic properties of the closed-loop system. We focus on unknown nonlinear control systems whose vector fields are expressible via a dictionary of functions and derive data-dependent semidefinite programs whose solution returns the controller that guarantees contractivity. When data are perturbed by disturbances that are linear combinations of sinusoids of known frequencies (but unknown amplitude and phase) and constants, we remarkably obtain conditions for contractivity that do not depend on the magnitude of the disturbances, with imaginable positive consequences for the synthesis of the controller. Finally, we show how to design from data an integral controller for nonlinear systems that achieves constant reference tracking and constant disturbance rejection.
♻ ☆ GenSafe: A Generalizable Safety Enhancer for Safe Reinforcement Learning Algorithms Based on Reduced Order Markov Decision Process Model
Safe Reinforcement Learning (SRL) aims to realize a safe learning process for Deep Reinforcement Learning (DRL) algorithms by incorporating safety constraints. However, the efficacy of SRL approaches often relies on accurate function approximations, which are notably challenging to achieve in the early learning stages due to data insufficiency. To address this issue, we introduce in this work a novel Generalizable Safety enhancer (GenSafe) that is able to overcome the challenge of data insufficiency and enhance the performance of SRL approaches. Leveraging model order reduction techniques, we first propose an innovative method to construct a Reduced Order Markov Decision Process (ROMDP) as a low-dimensional approximator of the original safety constraints. Then, by solving the reformulated ROMDP-based constraints, GenSafe refines the actions of the agent to increase the possibility of constraint satisfaction. Essentially, GenSafe acts as an additional safety layer for SRL algorithms. We evaluate GenSafe on multiple SRL approaches and benchmark problems. The results demonstrate its capability to improve safety performance, especially in the early learning phases, while maintaining satisfactory task performance. Our proposed GenSafe not only offers a novel measure to augment existing SRL methods but also shows broad compatibility with various SRL algorithms, making it applicable to a wide range of systems and SRL problems.
♻ ☆ Layer-Adaptive State Pruning for Deep State Space Models NeurIPS 2024
Due to the lack of state dimension optimization methods, deep state space models (SSMs) have sacrificed model capacity, training search space, or stability to alleviate computational costs caused by high state dimensions. In this work, we provide a structured pruning method for SSMs, Layer-Adaptive STate pruning (LAST), which reduces the state dimension of each layer in minimizing model-level output energy loss by extending modal truncation for a single system. LAST scores are evaluated using the $\mathcal{H}_{\infty}$ norms of subsystems and layer-wise energy normalization. The scores serve as global pruning criteria, enabling cross-layer comparison of states and layer-adaptive pruning. Across various sequence benchmarks, LAST optimizes previous SSMs, revealing the redundancy and compressibility of their state spaces. Notably, we demonstrate that, on average, pruning 33% of states still maintains performance with 0.52% accuracy loss in multi-input multi-output SSMs without retraining. Code is available at https://github.com/msgwak/LAST.
comment: NeurIPS 2024
♻ ☆ Cooperative Aerial Robot Inspection Challenge: A Benchmark for Heterogeneous Multi-UAV Planning and Lessons Learned
We propose the Cooperative Aerial Robot Inspection Challenge (CARIC), a simulation-based benchmark for motion planning algorithms in heterogeneous multi-UAV systems. CARIC features UAV teams with complementary sensors, realistic constraints, and evaluation metrics prioritizing inspection quality and efficiency. It offers a ready-to-use perception-control software stack and diverse scenarios to support the development and evaluation of task allocation and motion planning algorithms. Competitions using CARIC were held at IEEE CDC 2023 and the IROS 2024 Workshop on Multi-Robot Perception and Navigation, attracting innovative solutions from research teams worldwide. This paper examines the top three teams from CDC 2023, analyzing their exploration, inspection, and task allocation strategies while drawing insights into their performance across scenarios. The results highlight the task's complexity and suggest promising directions for future research in cooperative multi-UAV systems.
comment: Please find our website at https://ntu-aris.github.io/caric
♻ ☆ Age of Computing: A Metric of Computation Freshness in Communication and Computation Cooperative Networks
In communication and computation cooperative networks (3CNs), timely computation is crucial but not always guaranteed. There is a strong demand for a computational task to be completed within a given deadline. The time taken involves both processing time, communication time, and the impact of the deadline. However, a measure of such timeliness in 3CNs is lacking. In this paper, we introduce the novel concept, Age of Computing (AoC), to capture computation freshness in 3CNs. We analyze AoC in a line topology consisting of a source, a transmitter, a receiver, and a computational node. Tasks generated by the source are immediately available at the transmitter, where they enter a communication queue. These tasks then pass to the receiver and subsequently to a computation queue at the computational node for processing. Each task has a deadline, requiring completion within this timeframe. AoC is evaluated under two types of deadlines: (i) soft deadline, tasks can be fed back to the source if delayed beyond the deadline, but with additional latency; (ii) hard deadline, tasks delayed beyond the deadline are discarded. Under both deadlines, we derive the AoC formula and a general expression for the time-average AoC. For the first-come, first-serve discipline, we obtain a closed-form expression for the average AoC under the soft deadline and an approximation for the hard deadline. In addition to freshness, we define computation throughput, providing a general expression and an approximation. To explore the relationship between freshness and throughput, we construct an optimization problem and prove that the objective pair is a weakly Pareto-optimal point. Numerical results validate all the theoretical findings. Additionally, they reveal that under the hard deadline, the computation throughput serves as a reliable proxy for the average AoC.
♻ ☆ Promoting Shared Energy Storage Aggregation among High Price-Tolerance Prosumer: An Incentive Deposit and Withdrawal Service
Many residential prosumers exhibit a high price-tolerance for household electricity bills and a low response to price incentives. This is because the household electricity bills are not inherently high, and the potential for saving on electricity bills through participation in conventional Shared Energy Storage (SES) is limited, which diminishes their motivation to actively engage in SES. Additionally, existing SES models often require prosumers to take additional actions, such as optimizing rental capacity and bidding prices, which happen to be capabilities that typical household prosumers do not possess. To incentivize these high price-tolerance residential prosumers to participate in SES, a novel SES aggregation framework is proposed, which does not require prosumers to take additional actions and allows them to maintain existing energy storage patterns. Compared to conventional long-term operation of SES, the proposed framework introduces an additional short-term construction step during which the energy service provider (ESP) acquires control of the energy storage systems (ESS) and offers electricity deposit and withdrawal services (DWS) with dynamic coefficients, enabling prosumers to withdraw more electricity than they deposit without additional actions. Additionally, a matching mechanism is proposed to align prosumers' electricity consumption behaviors with ESP's optimization strategies. Finally, the dynamic coefficients in DWS and trading strategies are optimized by an improved deep reinforcement learning (DRL) algorithm. Case studies are conducted to verify the effectiveness of the proposed SES aggregation framework with DWS and the matching mechanism.
♻ ☆ Cost-Effective Robotic Handwriting System with AI Integration
This paper introduces a cost-effective robotic handwriting system designed to replicate human-like handwriting with high precision. Combining a Raspberry Pi Pico microcontroller, 3D-printed components, and a machine learning-based handwriting generation model implemented via TensorFlow, the system converts user-supplied text into realistic stroke trajectories. By leveraging lightweight 3D-printed materials and efficient mechanical designs, the system achieves a total hardware cost of approximately \$56, significantly undercutting commercial alternatives. Experimental evaluations demonstrate handwriting precision within $\pm$0.3 millimeters and a writing speed of approximately 200 mm/min, positioning the system as a viable solution for educational, research, and assistive applications. This study seeks to lower the barriers to personalized handwriting technologies, making them accessible to a broader audience.
comment: This is an updated version of a paper originally presented at the 2024 IEEE Long Island Systems, Applications and Technology Conference (LISAT)
♻ ☆ Tactile-based Exploration, Mapping and Navigation with Collision-Resilient Aerial Vehicles
This article introduces XPLORER, a passive deformable UAV with a spring-augmented chassis and proprioceptive state awareness, designed to endure collisions and maintain smooth contact. We develop a fast-converging external force estimation algorithm for XPLORER that leverages onboard sensors and proprioceptive data for contact and collision detection. Using this force information, we propose four motion primitives, including three novel tactile-based primitives: tactile-traversal, tactile-turning, and ricocheting-to aid XPLORER in navigating unknown environments. These primitives are synthesized autonomously in real-time to enable efficient exploration and navigation by leveraging collisions and contacts. Experimental results demonstrate the effectiveness of our approach, highlighting the potential of passive deformable UAVs for contact-rich real-world tasks such as non-destructive inspection, surveillance and mapping, and pursuit/evasion.
♻ ☆ Invariance Proximity: Closed-Form Error Bounds for Finite-Dimensional Koopman-Based Models
A popular way to approximate the Koopman operator's action on a finite-dimensional subspace of functions is via orthogonal projections. The quality of the projected model directly depends on the selected subspace, specifically on how close it is to being invariant under the Koopman operator. The notion of invariance proximity provides a tight upper bound on the worst-case relative prediction error of the finite-dimensional model. However, its direct calculation is computationally challenging. This paper leverages the geometric structure behind the definition of invariance proximity to provide a closed-form expression in terms of Jordan principal angles on general inner product spaces. Unveiling this connection allows us to exploit specific isomorphisms to circumvent the computational challenges associated with spaces of functions and enables the use of existing efficient numerical routines to compute invariance proximity.
comment: 14 pages
♻ ☆ The improvement in transmission resilience metrics from reduced outages or faster restoration can be calculated by rerunning historical outage data
Transmission utilities routinely collect detailed outage data, including resilience events in which outages bunch up due to weather. The resilience events and their resilience metrics can readily be extracted from this historical outage data. Improvements such as grid hardening or investments in restoration lead to reduced outages or faster restoration. We show how to rerun this history with the effects of the reduced outages or faster restoration included to find the resulting improvement in resilience metrics, thus quantifying the benefits of these investments. This is demonstrated with case studies for specific events (a derecho and a hurricane), and all large events or large thunderstorms in the Midwest USA. Instead of predicting future extreme events with models, which is very challenging, the historical rerun readily quantifies the benefits that a resilience investment would have had if it had been made in the past. The historical rerun is particularly vivid in making the case for resilience investments to stakeholders because it quantifies the benefits for events actually experienced by those stakeholders, rather than for future events predicted with uncertainty.
♻ ☆ Observer-based Periodic Event-triggered and Self-triggered Boundary Control of a Class of Parabolic PDEs
This paper introduces the first observer-based periodic event-triggered control (PETC) and self-triggered control (STC) for boundary control of a class of parabolic PDEs using PDE backstepping control. We introduce techniques to convert a certain class of continuous-time event-triggered control into PETC and STC, eliminating the need for continuous monitoring of the event-triggering function. For the PETC, the event-triggering function requires only periodic evaluations to detect events, while the STC proactively computes the time of the next event right at the current event time using the system model and the continuously available measurements. For both strategies, the control input is updated exclusively at events and is maintained using a zero-order hold between events. We demonstrate that the closed-loop system is Zeno-free. We offer criteria for selecting an appropriate sampling period for the PETC and for determining the time until the next event under the STC. We prove the system's global exponential convergence to zero in the spatial $L^2$ norm for both anti-collocated and collocated sensing and actuation under the PETC. For the STC, local exponential convergence to zero in the spatial $L^2$ norm for collocated sensing and actuation is proven. Simulations are provided to illustrate the theoretical claims.
♻ ☆ Performance-Barrier Event-Triggered Control of a Class of Reaction-Diffusion PDEs
We employ the recent performance-barrier event-triggered control (P-ETC) for achieving global exponential convergence of a class of reaction-diffusion PDEs via PDE backstepping control. Rather than insisting on a strictly monotonic decrease of the Lyapunov function for the closed-loop system, P-ETC allows the Lyapunov function to increase as long as it remains below an acceptable performance-barrier. This approach integrates a performance residual, the difference between the value of the performance-barrier and the Lyapunov function, into the triggering mechanism. The integration adds flexibility and results in fewer control updates than with regular ETC (R-ETC) that demands a monotonic decrease of the Lyapunov function. Our P-ETC PDE backstepping design ensures global exponential convergence of the closed-loop system in the spatial L^2 norm, without encountering Zeno phenomenon. To avoid continuous monitoring of the triggering function that generates events, we develop periodic event-triggered and self-triggered variants (P-PETC and P-STC, respectively) of the P-ETC. The P-PETC only requires periodic evaluation of the triggering function whereas the P-STC preemptively computes the time of the next event at the current event time using the system model and continuously available system states. The P-PETC and P-STC also ensure a Zeno-free behavior and deliver performance equivalent to that of the continuous-time P-ETC which requires continuous evaluation of the triggering function, in addition to the continuous sensing of the state. We provide numerical simulations to illustrate the proposed technique and to compare it with R-ETC associated with strictly decreasing Lyapunov functions.
♻ ☆ Resilient Distributed Optimization for Multi-Agent Cyberphysical Systems
This work focuses on the problem of distributed optimization in multi-agent cyberphysical systems, where a legitimate agent's iterates are influenced both by the values it receives from potentially malicious neighboring agents, and by its own self-serving target function. We develop a new algorithmic and analytical framework to achieve resilience for the class of problems where stochastic values of trust between agents exist and can be exploited. In this case, we show that convergence to the true global optimal point can be recovered, both in mean and almost surely, even in the presence of malicious agents. Furthermore, we provide expected convergence rate guarantees in the form of upper bounds on the expected squared distance to the optimal value. Finally, numerical results are presented that validate our analytical convergence guarantees even when the malicious agents compose the majority of agents in the network and where existing methods fail to converge to the optimal nominal points.
comment: Accepted for publication in the IEEE Transactions on Automatic Control
Optimization and Control 43
☆ Gradient Equilibrium in Online Learning: Theory and Applications
We present a new perspective on online learning that we refer to as gradient equilibrium: a sequence of iterates achieves gradient equilibrium if the average of gradients of losses along the sequence converges to zero. In general, this condition is not implied by nor implies sublinear regret. It turns out that gradient equilibrium is achievable by standard online learning methods such as gradient descent and mirror descent with constant step sizes (rather than decaying step sizes, as is usually required for no regret). Further, as we show through examples, gradient equilibrium translates into an interpretable and meaningful property in online prediction problems spanning regression, classification, quantile estimation, and others. Notably, we show that the gradient equilibrium framework can be used to develop a debiasing scheme for black-box predictions under arbitrary distribution shift, based on simple post hoc online descent updates. We also show that post hoc gradient updates can be used to calibrate predicted quantiles under distribution shift, and that the framework leads to unbiased Elo scores for pairwise preference prediction.
comment: Code available at https://github.com/aangelopoulos/gradient-equilibrium/
☆ A Similarity Measure Between Functions with Applications to Statistical Learning and Optimization
In this note, we present a novel measure of similarity between two functions. It quantifies how the sub-optimality gaps of two functions convert to each other, and unifies several existing notions of functional similarity. We show that it has convenient operation rules, and illustrate its use in empirical risk minimization and non-stationary online optimization.
comment: 9 pages
☆ A GPU-Accelerated Distributed Algorithm for Optimal Power Flow in Distribution Systems
We propose a GPU-accelerated distributed optimization algorithm for controlling multi-phase optimal power flow in active distribution systems with dynamically changing topologies. To handle varying network configurations and enable adaptable decomposition, we advocate a componentwise decomposition strategy. However, this approach can lead to a prolonged computation time mainly due to the excessive iterations required for achieving consensus among a large number of fine-grained components. To overcome this, we introduce a technique that segregates equality constraints from inequality constraints, enabling GPU parallelism to reduce per-iteration time by orders of magnitude, thereby significantly accelerating the overall computation. Numerical experiments on IEEE test systems ranging from 13 to 8500 buses demonstrate the superior scalability of the proposed approach compared to its CPU-based counterparts.
☆ Multiplayer Federated Learning: Reaching Equilibrium with Less Communication
Traditional Federated Learning (FL) approaches assume collaborative clients with aligned objectives working towards a shared global model. However, in many real-world scenarios, clients act as rational players with individual objectives and strategic behaviors, a concept that existing FL frameworks are not equipped to adequately address. To bridge this gap, we introduce Multiplayer Federated Learning (MpFL), a novel framework that models the clients in the FL environment as players in a game-theoretic context, aiming to reach an equilibrium. In this scenario, each player tries to optimize their own utility function, which may not align with the collective goal. Within MpFL, we propose Per-Player Local Stochastic Gradient Descent (PEARL-SGD), an algorithm in which each player/client performs local updates independently and periodically communicates with other players. We theoretically analyze PEARL-SGD and prove that it reaches a neighborhood of equilibrium with less communication in the stochastic setup compared to its non-local counterpart. Finally, we verify our theoretical findings through numerical experiments.
comment: 43 pages, 5 figures
☆ Convergence of projected stochastic approximation algorithm
We study the Robbins-Monro stochastic approximation algorithm with projections on a hyperrectangle and prove its convergence. This work fills a gap in the convergence proof of the classic book by Kushner and Yin. Using the ODE method, we show that the algorithm converges to stationary points of a related projected ODE. Our results provide a better theoretical foundation for stochastic optimization techniques, including stochastic gradient descent and its proximal version. These results extend the algorithm's applicability and relax some assumptions of previous research.
☆ Nonlinear Cruise Controllers with Bidirectional Sensing for a String of Vehicles
We introduce a nonlinear cruise controller that is fully decentralized (by vehicle) and uses spacing and speed measurements from the preceding and following vehicles to decide on the appropriate control action (acceleration) for each vehicle. The proposed cruise controller is studied on both a ring-road and an open road and guarantees that there are no collisions between vehicles, while their speeds are always positive and never exceed the road speed limits. For both cases of the open road and the ring-road, we rigorously prove that the set of equilibrium points is globally asymptotically stable and provide KL estimates that guarantee uniform convergence to the said set. Moreover, we show that for the ring-road, and under certain conditions, there is a single equilibrium point which is exponentially attractive.
comment: 33 pages
☆ Economic Model Predictive Control for Periodic Operation: A Quadratic Programming Approach
Periodic dynamical systems, distinguished by their repetitive behavior over time, are prevalent across various engineering disciplines. In numerous applications, particularly within industrial contexts, the implementation of model predictive control (MPC) schemes tailored to optimize specific economic criteria was shown to offer substantial advantages. However, the real-time implementation of these schemes is often infeasible due to limited computational resources. To tackle this problem, we propose a resource-efficient economic model predictive control scheme for periodic systems, leveraging existing single-layer MPC techniques. Our method relies on a single quadratic optimization problem, which ensures high computational efficiency for real-time control in dynamic settings. We prove feasibility, stability and convergence to optimum of the proposed approach, and validate the effectiveness through numerical experiments.
☆ Proximal Flow Inspired Multi-Step Methods
We investigate a family of approximate multi-step proximal point methods, framed as implicit linear discretizations of gradient flow. The resulting methods are multi-step proximal point methods, with similar computational cost in each update as the proximal point method. We explore several optimization methods where applying an approximate multistep proximal points method results in improved convergence behavior. We also include convergence analysis for the proposed method in several problem settings: quadratic problems, general problems that are strongly or weakly (non)convex, and accelerated results for alternating projections.
☆ A Time- and Space-Efficient Heuristic Approach for Late Train-Crew Rescheduling
In this paper, we reschedule the duties of train drivers one day before the operation. Due to absent drivers (e.g., because of sick leave), some trains have no driver. Thus, duties need to be rescheduled for the day of operation. We start with a feasible crew schedule for each of the remaining operating drivers, a set of unassigned tasks originally assigned to the absent drivers, and a group of standby drivers with fixed start time, end time, start depot, and end depot. Our aim is to generate a crew schedule with as few canceled or changed tasks as possible. We present a tabu-search-based approach for crew rescheduling. We also adapt a column-generation approach with the same objective function and equivalent restrictions as the benchmark for comparing the results, computational time, and space usage. Our tabu-search-based approach needs both less computation time and space than the column-generation approach to compute an acceptable result. We further test the performance of our approach under different settings. The data used in the experiments originated from a regional passenger-train system around Stockholm, Sweden and was provided by M\"alart\r{a}g.
☆ On Subdifferentials Via a Generalized Conjugation Scheme: An Application to DC Problems and Optimality Conditions
This paper studies properties of a subdifferential defined using a generalized conjugation scheme. We relate this subdifferential together with the domain of an appropriate conjugate function and the {\epsilon}-directional derivative. In addition, we also present necessary conditions for {\epsilon}-optimality and global optimality in optimization problems involving the difference of two convex functions. These conditions will be written via this generalized notion of subdifferential studied in the first sections of the paper.
☆ On Fenchel c-conjugate dual problems for DC optimization: characterizing weak, strong and stable strong duality
In this paper we present two Fenchel-type dual problems for a DC (difference of convex functions) optimization primal one. They have been built by means of the c-conjugation scheme, a pattern of conjugation which has been shown to be suitable for evenly convex functions. We study characterizations of weak, strong and stable strong duality for both pairs of primal-dual problems. We also give conditions which relate the existence of strong and stable strong duality for both pairs.
☆ Synchronization of Kuramoto oscillators via HEOL, and a discussion on AI
Artificial neural networks and their applications in deep learning have recently made an incursion into the field of control. Deep learning techniques in control are often related to optimal control, which relies on Pontryagin maximum principle or the Hamilton-Jacobi-Bellman equation. They imply control schemes that are tedious to implement. We show here that the new HEOL setting, resulting from the fusion of the two established approaches, namely differential flatness and model-free control, provides a solution to control problems that is more sober in terms of computational resources. This communication is devoted to the synchronization of the popular Kuramoto's coupled oscillators, which was already considered via artificial neural networks (B\"ottcher et al., Nature Communications 2022), where, contrarily to this communication, only the single control variable is examined. One establishes the flatness of Kuramoto's coupled oscillator model with multiplicative control and develops the resulting HEOL control. Unlike many exemples, this system reveals singularities that are avoided by a clever generation of phase angle trajectories. The results obtained, verified in simulation, show that it is not only possible to synchronize these oscillators in finite time, and even to follow angular frequency profiles, but also to exhibit robustness concerning model mismatches. To the best of our knowledge this has never been done before. Concluding remarks advocate a viewpoint, which might be traced back to Wiener's cybernetics: control theory belongs to AI.
comment: MATHMOD 2025 (11th Vienna International Conference on Mathematical Modelling, 19-21 February 2025, Vienna, Austria)
☆ A class of matrix splitting-based fixed-point iteration method for the vertical nonlinear complementarity problem
In this paper, we propose a class of matrix splitting-based fixed-point iteration (FPI) methods for solving the vertical nonlinear complementarity problem (VNCP). Under appropriate conditions, we present two convergence results obtained using different techniques and estimate the number of iterations required for the FPI method. Additionally, through numerical experiments, we demonstrated that the FPI method surpasses other methods in computational efficiency.
comment: 14 pages, 3 figures
☆ An accelerated gradient method with adaptive restart for convex multiobjective optimization problems
In this work, based on the continuous time approach, we propose an accelerated gradient method with adaptive residual restart for convex multiobjective optimization problems. For the first, we derive rigorously the continuous limit of the multiobjective accelerated proximal gradient method by Tanabe et al. [arXiv:2022.10994, 2022]. It is a second-order ordinary differential equation (ODE) that involves a special projection operator and can be viewed as an extension of the ODE by Su et al. [J. Mach. Learn. Res., 2016] for Nesterov's accelerated gradient method. Based on this, we introduce a novel accelerated multiobjective gradient (AMG) flow with tailored time scaling that adapts automatically to the convex case and the strongly convex case, and the exponential decay rate of a merit function along with the solution trajectory of AMG flow is established via the Lyapunov analysis. After that, we consider an implicit-explicit time discretization and obtain an accelerated multiobjective gradient method with a convex quadratic programming subproblem. The fast sublinear rate and linear rate are proved respectively for convex and strongly convex problems. In addition, we present an efficient residual based adaptive restart technique to overcome the oscillation issue and improve the convergence significantly. Numerical results are provided to validate the practical performance of the proposed method.
☆ Peaceman-Rachford Splitting Method Converges Ergodically for Solving Convex Optimization Problems
In this paper, we prove that the ergodic sequence generated by the Peaceman-Rachford (PR) splitting method with semi-proximal terms converges for convex optimization problems (COPs). Numerical experiments on the linear programming benchmark dataset further demonstrate that, with a restart strategy, the ergodic sequence of the PR splitting method with semi-proximal terms consistently outperforms both the point-wise and ergodic sequences of the Douglas-Rachford (DR) splitting method. These findings indicate that the restarted ergodic PR splitting method is a more effective choice for tackling large-scale COPs compared to its DR counterparts.
☆ Existence and uniqueness of control sets with a nonempty interior for linear control systems on solvable groups
In this paper, we obtain weak conditions for the existence of a control set with a nonempty interior for a linear control system on a solvable Lie group. We show that the Lie algebra rank condition together with the compactness of the nilpotent part of the generalized kernel of the drift are enough to assure the existence of such a control set. Moreover, this control set is unique and contains the whole generalized kernel in its closure.
☆ Energy Storage Arbitrage Under Price Uncertainty: Market Risks and Opportunities
We investigate the profitability and risk of energy storage arbitrage in electricity markets under price uncertainty, exploring both robust and chance-constrained optimization approaches. We analyze various uncertainty representations, including polyhedral, ellipsoidal uncertainty sets and probabilistic approximations, to model price fluctuations and construct efficient frontiers that highlight the tradeoff between risk and profit. Using historical electricity price data, we quantify the impact of uncertainty on arbitrage strategies and compare their performance under distinct market conditions. The results reveal that arbitrage strategies under uncertainties can effectively secure expected profits, and robust strategies perform better in risk management across varying levels of conservativeness, especially under highly volatile market conditions. This work provides insights into storage arbitrage strategy selection for market participants with differing risk preferences, emphasizing the adaptability of efficient frontiers to the electricity market.
☆ Revisiting Continuous p-Hub Location Problems with the L1 Metric
Motivated by emerging urban applications in commercial, public sector, and humanitarian logistics, we revisit continuous $p$-hub location problems in which several facilities must be located in a continuous space such that the expected minimum Manhattan travel distance from a random service provider to a random customer through exactly one hub facility is minimized. In this paper, we begin by deriving closed-form results for a one-dimensional case and two-dimensional cases with up to two hubs. Subsequently, a simulation-based approximation method is proposed for more complex two-dimensional scenarios with more than two hubs. Moreover, an extended problem with multiple service providers is analyzed to reflect real-life service settings. Finally, we apply our model and approximation method using publicly available data as a case study to optimize the deployment of public-access automated external defibrillators in Virginia Beach.
☆ OptiChat: Bridging Optimization Models and Practitioners with Large Language Models
Optimization models have been applied to solve a wide variety of decision-making problems. These models are usually developed by optimization experts but are used by practitioners without optimization expertise in various application domains. As a result, practitioners often struggle to interact with and draw useful conclusions from optimization models independently. To fill this gap, we introduce OptiChat, a natural language dialogue system designed to help practitioners interpret model formulation, diagnose infeasibility, analyze sensitivity, retrieve information, evaluate modifications, and provide counterfactual explanations. By augmenting large language models (LLMs) with functional calls and code generation tailored for optimization models, we enable seamless interaction and minimize the risk of hallucinations in OptiChat. We develop a new dataset to evaluate OptiChat's performance in explaining optimization models. Experiments demonstrate that OptiChat effectively bridges the gap between optimization models and practitioners, delivering autonomous, accurate, and instant responses.
☆ Discrete time stochastic impulse control with delay
We study a class of infinite-horizon impulse control problems with execution delay in discrete time. Using probabilistic methods, particularly the notion of the Snell envelope of processes, we construct an optimal strategy among all admissible strategies for both risk-neutral and risk-sensitive utility functions. Furthermore, we establish the existence of bounded $\epsilon$-optimal strategies. This framework provides a robust approach to handling execution delays in discrete-time stochastic systems.
♻ ☆ Sensitivity Analysis for Binary Outcome Misclassification in Randomization Tests via Integer Programming
Conducting a randomization test is a common method for testing causal null hypotheses in randomized experiments. The popularity of randomization tests is largely because their statistical validity only depends on the randomization design, and no distributional or modeling assumption on the outcome variable is needed. However, randomization tests may still suffer from other sources of bias, among which outcome misclassification is a significant one. We propose a model-free and finite-population sensitivity analysis approach for binary outcome misclassification in randomization tests. A central quantity in our framework is ``warning accuracy," defined as the threshold such that a randomization test result based on the measured outcomes may differ from that based on the true outcomes if the outcome measurement accuracy did not surpass that threshold. We show how learning the warning accuracy and related concepts can amplify analyses of randomization tests subject to outcome misclassification without adding additional assumptions. We show that the warning accuracy can be computed efficiently for large data sets by adaptively reformulating a large-scale integer program with respect to the randomization design. We apply the proposed approach to the Prostate Cancer Prevention Trial (PCPT). We also developed an open-source R package for implementation of our approach.
♻ ☆ Learning-based Attitude Estimation with Noisy Measurements and Unknown Gyro Bias
This paper introduces a learning-based, data-driven attitude estimator, called the retrospective cost attitude estimator (RCAE), for the SO(3) attitude representation. RCAE is motivated by the multiplicative extended Kalman filter (MEKF). However, unlike MEKF, which requires computing a Jacobian to compute the correction signal, RCAC uses retrospective cost optimization that depends only on the measured data. Moreover, due to the structure of the correction signal, RCAE does not require explicit estimation of gyro bias. The performance of RCAE is verified and compared with MEKF through both numerical simulations and physical experiments.
♻ ☆ Breaking barriers in two-party quantum cryptography via stochastic semidefinite programming
In the last two decades, there has been much effort in finding secure protocols for two-party cryptographic tasks. It has since been discovered that even with quantum mechanics, many such protocols are limited in their security promises. In this work, we use stochastic selection, an idea from stochastic programming, to circumvent such limitations. For example, we find a way to switch between bit commitment, weak coin flipping, and oblivious transfer protocols to improve their security. We also use stochastic selection to turn trash into treasure yielding the first quantum protocol for Rabin oblivious transfer.
comment: 42 pages, 2 figures
♻ ☆ Barrier Function for Bilevel Optimization with Coupled Lower-Level Constraints: Formulation, Approximation and Algorithms
In this paper, we consider bilevel optimization problem where the lower-level has coupled constraints, i.e. the constraints depend both on the upper- and lower-level variables. In particular, we consider two settings for the lower-level problem. The first is when the objective is strongly convex and the constraints are convex with respect to the lower-level variable; The second is when the lower-level is a linear program. We propose to utilize a barrier function reformulation to translate the problem into an unconstrained problem. By developing a series of new techniques, we proved that both the hyperfunction value and hypergradient of the barrier reformulated problem (uniformly) converge to those of the original problem under minimal assumptions. Further, to overcome the non-Lipschitz smoothness of hyperfunction and lower-level problem for barrier reformulated problems, we design an adaptive algorithm that ensures a non-asymptotic convergence guarantee. We also design an algorithm that converges to the stationary point of the original problem asymptotically under certain assumptions. The proposed algorithms require minimal assumptions, and to our knowledge, they are the first with convergence guarantees when the lower-level problem is a linear program. Numerical experiments are conducted to show the effectiveness of the proposed method.
♻ ☆ Beyond discounted returns: Robust Markov decision processes with average and Blackwell optimality
Robust Markov Decision Processes (RMDPs) are a widely used framework for sequential decision-making under parameter uncertainty. RMDPs have been extensively studied when the objective is to maximize the discounted return, but little is known for average optimality (optimizing the long-run average of the rewards obtained over time) and Blackwell optimality (remaining discount optimal for all discount factors sufficiently close to ). In this paper, we prove several foundational results for RMDPs beyond the discounted return. We show that average optimal policies can be chosen stationary and deterministic for sa-rectangular RMDPs but, perhaps surprisingly, we show that for s-rectangular RMDPs average optimal policies may not exist, and if they exist, may need to be history-dependent (Markovian). We also study Blackwell optimality for sa-rectangular RMDPs, where we show that $\epsilon$-Blackwell optimal policies always exist, although Blackwell optimal policies may not exist. We also provide a sufficient condition for their existence, which encompasses virtually any examples from the literature. We then discuss the connection between average and Blackwell optimality, and we describe several algorithms to compute the optimal average return. Interestingly, our approach leverages the connections between RMDPs and stochastic games. Overall, our paper emphasizes the superior practical properties of distance-based sa-rectangular models over s-rectangular models for average and Blackwell optimality.
♻ ☆ Isoperimetric inequalities for the fractional composite membrane problem
In this article, we investigate some isoperimetric-type inequalities related to the first eigenvalue of the fractional composite membrane problem. First, we establish an analogue of the renowned Faber-Krahn inequality for the fractional composite membrane problem. Next, we investigate an isoperimetric inequality for the first eigenvalue of the fractional composite membrane problem on the intersection of two domains-a problem that was first studied by Lieb [23] for the Laplacian. Similar results in the local case were previously obtained by Cupini-Vecchi [9] for the composite membrane problem. Our findings provide further insights into the fractional setting, offering a new perspective on these classical inequalities.
comment: 10 pages
♻ ☆ Decoupled Functional Central Limit Theorems for Two-Time-Scale Stochastic Approximation
In two-time-scale stochastic approximation (SA), two iterates are updated at different rates, governed by distinct step sizes, with each update influencing the other. Previous studies have demonstrated that the convergence rates of the error terms for these updates depend solely on their respective step sizes, a property known as decoupled convergence. However, a functional version of this decoupled convergence has not been explored. Our work fills this gap by establishing decoupled functional central limit theorems for two-time-scale SA, offering a more precise characterization of its asymptotic behavior. To achieve these results, we leverage the martingale problem approach and establish tightness as a crucial intermediate step. Furthermore, to address the interdependence between different time scales, we introduce an innovative auxiliary sequence to eliminate the primary influence of the fast-time-scale update on the slow-time-scale update.
♻ ☆ Parallel Inexact Levenberg-Marquardt Method for Nearly-Separable Nonlinear Least Squares
Motivated by localization problems such as cadastral maps refinements, we consider a generic Nonlinear Least Squares (NLS) problem of minimizing an aggregate squared fit across all nonlinear equations (measurements) with respect to the set of unknowns, e.g., coordinates of the unknown points' locations. In a number of scenarios, NLS problems exhibit a nearly-separable structure: the set of measurements can be partitioned into disjoint groups (blocks), such that the unknowns that correspond to different blocks are only loosely coupled. We propose an efficient parallel method, termed Parallel Inexact Levenberg Marquardt (PILM), to solve such generic large scale NLS problems. PILM builds upon the classical Levenberg-Marquard (LM) method, with a main novelty in that the nearly-block separable structure is leveraged in order to obtain a scalable parallel method. Therein, the problem-wide system of linear equations that needs to be solved at every LM iteration is tackled iteratively. At each (inner) iteration, the block-wise systems of linear equations are solved in parallel, while the problem-wide system is then handled via sparse, inexpensive inter-block communication. We establish strong convergence guarantees of PILM that are analogous to those of the classical LM; provide PILM implementation in a master-worker parallel compute environment; and demonstrate its efficiency on huge scale cadastral map refinement problems.
♻ ☆ McCormick envelopes in mixed-integer PDE-constrained optimization
McCormick envelopes are a standard tool for deriving convex relaxations of optimization problems that involve polynomial terms. Such McCormick relaxations provide lower bounds, for example, in branch-and-bound procedures for mixed-integer nonlinear programs but have not gained much attention in PDE-constrained optimization so far. This lack of attention may be due to the distributed nature of such problems, which on the one hand leads to infinitely many linear constraints (generally state constraints that may be difficult to handle) in addition to the state equation for a pointwise formulation of the McCormick envelopes and renders bound-tightening procedures that successively improve the resulting convex relaxations computationally intractable. We analyze McCormick envelopes for a problem class that is governed by a semilinear PDE involving a bilinearity and integrality constraints. We approximate the nonlinearity by averaging the involved terms over the cells of a partition of the computational domain on which the PDE is defined. This yields convex relaxations that underestimate the original problem up to an a priori error estimate that depends on the mesh size of the discretization. These approximate McCormick relaxations can be improved by means of an optimization-based bound-tightening procedure. We show that their minimizers converge to minimizers to a limit problem with a pointwise formulation of the McCormick envelopes when driving the mesh size to zero. We provide a computational example, for which we certify all of our imposed assumptions. The results point to both the potential of the methodology and the gaps in the research that need to be closed.
♻ ☆ Existence of an optimal shape for the first eigenvalue of polyharmonic operators
We prove the existence of an open set minimizing the first eigenvalue of the Dirichlet polylaplacian of order $m\geq1$ under volume constraint. Moreover, the corresponding eigenfunction is shown to enjoy $C^{m-1,\alpha}$ H\"older regularity. This is performed for dimension $2\leq d\leq 4m$. In particular, our analysis answers the question of the existence of an optimal shape for the clamped plate up to dimension $8$.
comment: 18 pages, no figure; Lemma 15 added
♻ ☆ Distributed Inexact Newton Method with Adaptive Step Sizes
We consider two formulations for distributed optimization wherein $N$ agents in a generic connected network solve a problem of common interest: distributed personalized optimization and consensus optimization. A new method termed DINAS (Distributed Inexact Newton method with Adaptive Stepsize) is proposed. DINAS employs large adaptively computed step-sizes, requires a reduced global parameters knowledge with respect to existing alternatives, and can operate without any local Hessian inverse calculations nor Hessian communications. When solving personalized distributed learning formulations, DINAS achieves quadratic convergence with respect to computational cost and linear convergence with respect to communication cost, the latter rate being independent of the local functions condition numbers or of the network topology. When solving consensus optimization problems, DINAS is shown to converge to the global solution. Extensive numerical experiments demonstrate significant improvements of DINAS over existing alternatives. As a result of independent interest, we provide for the first time convergence analysis of the Newton method with the adaptive Polyak's step-size when the Newton direction is computed inexactly in centralized environment.
♻ ☆ Grand-Canonical Optimal Transport
We study a generalization of the multi-marginal optimal transport problem, which has no fixed number of marginals $N$ and is inspired of statistical mechanics. It consists in optimizing a linear combination of the costs for all the possible $N$'s, while fixing a certain linear combination of the corresponding marginals.
comment: Final version, to appear in Arch. Rat. Mech. Anal
♻ ☆ Analytically Tractable Models for Decision Making under Present Bias
Time-inconsistency is a characteristic of human behavior in which people plan for long-term benefits but take actions that differ from the plan due to conflicts with short-term benefits. Such time-inconsistent behavior is believed to be caused by present bias, a tendency to overestimate immediate rewards and underestimate future rewards. It is essential in behavioral economics to investigate the relationship between present bias and time-inconsistency. In this paper, we propose a model for analyzing agent behavior with present bias in tasks to make progress toward a goal over a specific period. Unlike previous models, the state sequence of the agent can be described analytically in our model. Based on this property, we analyze three crucial problems related to agents under present bias: task abandonment, optimal goal setting, and optimal reward scheduling. Extensive analysis reveals how present bias affects the condition under which task abandonment occurs and optimal intervention strategies. Our findings are meaningful for preventing task abandonment and intervening through incentives in the real world.
♻ ☆ Homotopy trust-region method for phase-field approximations in perimeter-regularized binary optimal control
We consider optimal control problems that have binary-valued control input functions and a perimeter regularization. We develop and analyze a trust-region algorithm that solves a sequence of subproblems in which the regularization term and the binarity constraint are relaxed by a non-convex energy functional. We show how the parameter that controls the distinctiveness of the resulting phase field can be coupled to the trust-region radius updates and be driven to zero over the course of the iterations in order to obtain convergence to stationary points of the limit problem under suitable regularity assumptions. Finally, we highlight and discuss the assumptions and restrictions of our approach and provide the first computational results for a motivating application in the field of control of acoustic waves in dissipative media.
♻ ☆ On structural contraction of biological interaction networks
Biological networks are customarily described as structurally robust. This means that they often function extremely well under large forms of perturbations affecting both the concentrations and the kinetic parameters. In order to explain this property, various mathematical notions have been proposed in the literature. In this paper, we propose the notion of structural contractivity, building on the previous work of the authors. That previous work characterized the long-term dynamics of classes of Biological Interaction Networks (BINs), based on "rate-dependent Lyapunov functions". Here, we show that stronger notions of convergence can be established by proving structural contractivity with respect to non-standard polyhedral $\ell_\infty$-norms. In particular, we show that such networks are nonexpansive. With additional verifiable conditions, we show that they are strictly contractive over arbitrary positive compact sets. In addition, we show that such networks entrain to periodic inputs. We illustrate our theory with examples drawn from the modeling of intracellular signaling pathways.
♻ ☆ Statistical inference of convex order by Wasserstein projection
Ranking distributions according to a stochastic order has wide applications in diverse areas. Although stochastic dominance has received much attention, convex order, particularly in general dimensions, has yet to be investigated from a statistical point of view. This article addresses this gap by introducing a simple statistical test for convex order based on the Wasserstein projection distance. This projection distance not only encodes whether two distributions are indeed in convex order, but also quantifies the deviation from the desired convex order and produces an optimal convex order approximation. Lipschitz stability of the backward and forward Wasserstein projection distance is proved, which leads to elegant consistency and concentration results of the estimator we employ as our test statistic. Combining these with state of the art results regarding the convergence rate of empirical distributions, we also derive upper bounds for the $p$-value and type I error of our test statistic, as well as upper bounds on the type II error for an appropriate class of strict alternatives. With proper choices of families of distributions, we further attain that the power of the proposed test increases to one as the number of samples grows to infinity. Lastly, we provide an efficient numerical scheme for our test statistic, by way of an entropic Frank-Wolfe algorithm. Experiments based on synthetic data sets illuminate the success of our approach.
comment: 31 pages, 3 figures, Add previous literature about the Wasserstein projection (Aurelien Alfonsi, Jacopo Corbetta and Benjamin Jourdain (2020)), and the stability of the projection measure in one dimension (Benjamin Jourdain, William Margheriti and Gudmund Pammer(2023))
♻ ☆ Randomized Nyström Preconditioned Interior Point-Proximal Method of Multipliers
We present a new algorithm for convex separable quadratic programming (QP) called Nys-IP-PMM, a regularized interior-point solver that uses low-rank structure to accelerate solution of the Newton system. The algorithm combines the interior point proximal method of multipliers (IP-PMM) with the randomized Nystr\"om preconditioned conjugate gradient method as the inner linear system solver. Our algorithm is matrix-free: it accesses the input matrices solely through matrix-vector products, as opposed to methods involving matrix factorization. It works particularly well for separable QP instances with dense constraint matrices. We establish convergence of Nys-IP-PMM. Numerical experiments demonstrate its superior performance in terms of wallclock time compared to previous matrix-free IPM-based approaches.
♻ ☆ Invariance Proximity: Closed-Form Error Bounds for Finite-Dimensional Koopman-Based Models
A popular way to approximate the Koopman operator's action on a finite-dimensional subspace of functions is via orthogonal projections. The quality of the projected model directly depends on the selected subspace, specifically on how close it is to being invariant under the Koopman operator. The notion of invariance proximity provides a tight upper bound on the worst-case relative prediction error of the finite-dimensional model. However, its direct calculation is computationally challenging. This paper leverages the geometric structure behind the definition of invariance proximity to provide a closed-form expression in terms of Jordan principal angles on general inner product spaces. Unveiling this connection allows us to exploit specific isomorphisms to circumvent the computational challenges associated with spaces of functions and enables the use of existing efficient numerical routines to compute invariance proximity.
comment: 14 pages
♻ ☆ Observer-based Periodic Event-triggered and Self-triggered Boundary Control of a Class of Parabolic PDEs
This paper introduces the first observer-based periodic event-triggered control (PETC) and self-triggered control (STC) for boundary control of a class of parabolic PDEs using PDE backstepping control. We introduce techniques to convert a certain class of continuous-time event-triggered control into PETC and STC, eliminating the need for continuous monitoring of the event-triggering function. For the PETC, the event-triggering function requires only periodic evaluations to detect events, while the STC proactively computes the time of the next event right at the current event time using the system model and the continuously available measurements. For both strategies, the control input is updated exclusively at events and is maintained using a zero-order hold between events. We demonstrate that the closed-loop system is Zeno-free. We offer criteria for selecting an appropriate sampling period for the PETC and for determining the time until the next event under the STC. We prove the system's global exponential convergence to zero in the spatial $L^2$ norm for both anti-collocated and collocated sensing and actuation under the PETC. For the STC, local exponential convergence to zero in the spatial $L^2$ norm for collocated sensing and actuation is proven. Simulations are provided to illustrate the theoretical claims.
♻ ☆ Performance-Barrier Event-Triggered Control of a Class of Reaction-Diffusion PDEs
We employ the recent performance-barrier event-triggered control (P-ETC) for achieving global exponential convergence of a class of reaction-diffusion PDEs via PDE backstepping control. Rather than insisting on a strictly monotonic decrease of the Lyapunov function for the closed-loop system, P-ETC allows the Lyapunov function to increase as long as it remains below an acceptable performance-barrier. This approach integrates a performance residual, the difference between the value of the performance-barrier and the Lyapunov function, into the triggering mechanism. The integration adds flexibility and results in fewer control updates than with regular ETC (R-ETC) that demands a monotonic decrease of the Lyapunov function. Our P-ETC PDE backstepping design ensures global exponential convergence of the closed-loop system in the spatial L^2 norm, without encountering Zeno phenomenon. To avoid continuous monitoring of the triggering function that generates events, we develop periodic event-triggered and self-triggered variants (P-PETC and P-STC, respectively) of the P-ETC. The P-PETC only requires periodic evaluation of the triggering function whereas the P-STC preemptively computes the time of the next event at the current event time using the system model and continuously available system states. The P-PETC and P-STC also ensure a Zeno-free behavior and deliver performance equivalent to that of the continuous-time P-ETC which requires continuous evaluation of the triggering function, in addition to the continuous sensing of the state. We provide numerical simulations to illustrate the proposed technique and to compare it with R-ETC associated with strictly decreasing Lyapunov functions.
♻ ☆ Quadratic-form Optimal Transport
We introduce the framework of quadratic-form optimal transport (QOT), whose transport cost has the form $\iint c\,\mathrm{d}\pi \otimes\mathrm{d}\pi$ for some coupling $\pi$ between two marginals. Interesting examples of quadratic-form transport cost and their optimization include inequality measurement, the variance of a bivariate function, covariance, Kendall's tau, the Gromov--Wasserstein distance, quadratic assignment problems, and quadratic regularization of classic optimal transport. QOT leads to substantially different mathematical structures compared to classic transport problems and many technical challenges. We illustrate the fundamental properties of QOT, provide several cases where explicit solutions are obtained, and give general lower bounds of the optimal transport costs. For a wide class of cost functions, including the rectangular cost functions, the QOT problem is solved by a new coupling called the diamond transport, whose copula is supported on a diamond in the unit square.
comment: 41 pages, 5 figures
♻ ☆ Stable Set Polytopes with Rank $|V(G)|/3$ for the Lovász--Schrijver SDP Operator
We study the lift-and-project rank of the stable set polytope of graphs with respect to the Lov\'{a}sz--Schrijver SDP operator $\text{LS}_+$ applied to the fractional stable set polytope. In particular, we show that for every positive integer $\ell$, the smallest possible graph with $\text{LS}_+$-rank $\ell$ contains $3\ell$ vertices. This result is sharp and settles a conjecture posed by Lipt\'{a}k and the second author in 2003, as well as answers a generalization of a problem posed by Knuth in 1994. We also show that for every positive integer $\ell$ there exists a vertex-transitive graph on $4\ell+12$ vertices with $\text{LS}_+$-rank at least $\ell$.
♻ ☆ Relaxed Indexability and Index Policy for Partially Observable Restless Bandits
This paper addresses an important class of restless multi-armed bandit (RMAB) problems that finds broad application in operations research, stochastic optimization, and reinforcement learning. There are $N$ independent Markov processes that may be operated, observed and offer rewards. Due to the resource constraint, we can only choose a subset of $M~(M
Computer Vision and Pattern Recognition 153
☆ DAViD: Modeling Dynamic Affordance of 3D Objects using Pre-trained Video Diffusion Models
Understanding the ability of humans to use objects is crucial for AI to improve daily life. Existing studies for learning such ability focus on human-object patterns (e.g., contact, spatial relation, orientation) in static situations, and learning Human-Object Interaction (HOI) patterns over time (i.e., movement of human and object) is relatively less explored. In this paper, we introduce a novel type of affordance named Dynamic Affordance. For a given input 3D object mesh, we learn dynamic affordance which models the distribution of both (1) human motion and (2) human-guided object pose during interactions. As a core idea, we present a method to learn the 3D dynamic affordance from synthetically generated 2D videos, leveraging a pre-trained video diffusion model. Specifically, we propose a pipeline that first generates 2D HOI videos from the 3D object and then lifts them into 3D to generate 4D HOI samples. Once we generate diverse 4D HOI samples on various target objects, we train our DAViD, where we present a method based on the Low-Rank Adaptation (LoRA) module for pre-trained human motion diffusion model (MDM) and an object pose diffusion model with human pose guidance. Our motion diffusion model is extended for multi-object interactions, demonstrating the advantage of our pipeline with LoRA for combining the concepts of object usage. Through extensive experiments, we demonstrate our DAViD outperforms the baselines in generating human motion with HOIs.
comment: Project Page: https://snuvclab.github.io/david/
☆ MangaNinja: Line Art Colorization with Precise Reference Following
Derived from diffusion models, MangaNinjia specializes in the task of reference-guided line art colorization. We incorporate two thoughtful designs to ensure precise character detail transcription, including a patch shuffling module to facilitate correspondence learning between the reference color image and the target line art, and a point-driven control scheme to enable fine-grained color matching. Experiments on a self-collected benchmark demonstrate the superiority of our model over current solutions in terms of precise colorization. We further showcase the potential of the proposed interactive point control in handling challenging cases, cross-character colorization, multi-reference harmonization, beyond the reach of existing algorithms.
comment: Project page and code: https://johanan528.github.io/MangaNinjia/
☆ Go-with-the-Flow: Motion-Controllable Video Diffusion Models Using Real-Time Warped Noise
Generative modeling aims to transform random noise into structured outputs. In this work, we enhance video diffusion models by allowing motion control via structured latent noise sampling. This is achieved by just a change in data: we pre-process training videos to yield structured noise. Consequently, our method is agnostic to diffusion model design, requiring no changes to model architectures or training pipelines. Specifically, we propose a novel noise warping algorithm, fast enough to run in real time, that replaces random temporal Gaussianity with correlated warped noise derived from optical flow fields, while preserving the spatial Gaussianity. The efficiency of our algorithm enables us to fine-tune modern video diffusion base models using warped noise with minimal overhead, and provide a one-stop solution for a wide range of user-friendly motion control: local object motion control, global camera movement control, and motion transfer. The harmonization between temporal coherence and spatial Gaussianity in our warped noise leads to effective motion control while maintaining per-frame pixel quality. Extensive experiments and user studies demonstrate the advantages of our method, making it a robust and scalable approach for controlling motion in video diffusion models. Video results are available on our webpage: https://vgenai-netflix-eyeline-research.github.io/Go-with-the-Flow/; source code and model checkpoints are available on GitHub: https://github.com/VGenAI-Netflix-Eyeline-Research/Go-with-the-Flow.
☆ Predicting 4D Hand Trajectory from Monocular Videos
We present HaPTIC, an approach that infers coherent 4D hand trajectories from monocular videos. Current video-based hand pose reconstruction methods primarily focus on improving frame-wise 3D pose using adjacent frames rather than studying consistent 4D hand trajectories in space. Despite the additional temporal cues, they generally underperform compared to image-based methods due to the scarcity of annotated video data. To address these issues, we repurpose a state-of-the-art image-based transformer to take in multiple frames and directly predict a coherent trajectory. We introduce two types of lightweight attention layers: cross-view self-attention to fuse temporal information, and global cross-attention to bring in larger spatial context. Our method infers 4D hand trajectories similar to the ground truth while maintaining strong 2D reprojection alignment. We apply the method to both egocentric and allocentric videos. It significantly outperforms existing methods in global trajectory accuracy while being comparable to the state-of-the-art in single-image pose estimation. Project website: https://judyye.github.io/haptic-www
☆ Omni-RGPT: Unifying Image and Video Region-level Understanding via Token Marks
We present Omni-RGPT, a multimodal large language model designed to facilitate region-level comprehension for both images and videos. To achieve consistent region representation across spatio-temporal dimensions, we introduce Token Mark, a set of tokens highlighting the target regions within the visual feature space. These tokens are directly embedded into spatial regions using region prompts (e.g., boxes or masks) and simultaneously incorporated into the text prompt to specify the target, establishing a direct connection between visual and text tokens. To further support robust video understanding without requiring tracklets, we introduce an auxiliary task that guides Token Mark by leveraging the consistency of the tokens, enabling stable region interpretation across the video. Additionally, we introduce a large-scale region-level video instruction dataset (RegVID-300k). Omni-RGPT achieves state-of-the-art results on image and video-based commonsense reasoning benchmarks while showing strong performance in captioning and referring expression comprehension tasks.
comment: Project page: https://miranheo.github.io/omni-rgpt/
☆ GameFactory: Creating New Games with Generative Interactive Videos
Generative game engines have the potential to revolutionize game development by autonomously creating new content and reducing manual workload. However, existing video-based game generation methods fail to address the critical challenge of scene generalization, limiting their applicability to existing games with fixed styles and scenes. In this paper, we present GameFactory, a framework focused on exploring scene generalization in game video generation. To enable the creation of entirely new and diverse games, we leverage pre-trained video diffusion models trained on open-domain video data. To bridge the domain gap between open-domain priors and small-scale game dataset, we propose a multi-phase training strategy that decouples game style learning from action control, preserving open-domain generalization while achieving action controllability. Using Minecraft as our data source, we release GF-Minecraft, a high-quality and diversity action-annotated video dataset for research. Furthermore, we extend our framework to enable autoregressive action-controllable game video generation, allowing the production of unlimited-length interactive game videos. Experimental results demonstrate that GameFactory effectively generates open-domain, diverse, and action-controllable game videos, representing a significant step forward in AI-driven game generation. Our dataset and project page are publicly available at \url{https://vvictoryuki.github.io/gamefactory/}.
☆ Diffusion Adversarial Post-Training for One-Step Video Generation
The diffusion models are widely used for image and video generation, but their iterative generation process is slow and expansive. While existing distillation approaches have demonstrated the potential for one-step generation in the image domain, they still suffer from significant quality degradation. In this work, we propose Adversarial Post-Training (APT) against real data following diffusion pre-training for one-step video generation. To improve the training stability and quality, we introduce several improvements to the model architecture and training procedures, along with an approximated R1 regularization objective. Empirically, our experiments show that our adversarial post-trained model, Seaweed-APT, can generate 2-second, 1280x720, 24fps videos in real time using a single forward evaluation step. Additionally, our model is capable of generating 1024px images in a single step, achieving quality comparable to state-of-the-art methods.
☆ MiniMax-01: Scaling Foundation Models with Lightning Attention
We introduce MiniMax-01 series, including MiniMax-Text-01 and MiniMax-VL-01, which are comparable to top-tier models while offering superior capabilities in processing longer contexts. The core lies in lightning attention and its efficient scaling. To maximize computational capacity, we integrate it with Mixture of Experts (MoE), creating a model with 32 experts and 456 billion total parameters, of which 45.9 billion are activated for each token. We develop an optimized parallel strategy and highly efficient computation-communication overlap techniques for MoE and lightning attention. This approach enables us to conduct efficient training and inference on models with hundreds of billions of parameters across contexts spanning millions of tokens. The context window of MiniMax-Text-01 can reach up to 1 million tokens during training and extrapolate to 4 million tokens during inference at an affordable cost. Our vision-language model, MiniMax-VL-01 is built through continued training with 512 billion vision-language tokens. Experiments on both standard and in-house benchmarks show that our models match the performance of state-of-the-art models like GPT-4o and Claude-3.5-Sonnet while offering 20-32 times longer context window. We publicly release MiniMax-01 at https://github.com/MiniMax-AI.
comment: A technical report from MiniMax. The authors are listed in alphabetical order. We open-sourced our MiniMax-01 at https://github.com/MiniMax-AI
☆ Advancing Semantic Future Prediction through Multimodal Visual Sequence Transformers
Semantic future prediction is important for autonomous systems navigating dynamic environments. This paper introduces FUTURIST, a method for multimodal future semantic prediction that uses a unified and efficient visual sequence transformer architecture. Our approach incorporates a multimodal masked visual modeling objective and a novel masking mechanism designed for multimodal training. This allows the model to effectively integrate visible information from various modalities, improving prediction accuracy. Additionally, we propose a VAE-free hierarchical tokenization process, which reduces computational complexity, streamlines the training pipeline, and enables end-to-end training with high-resolution, multimodal inputs. We validate FUTURIST on the Cityscapes dataset, demonstrating state-of-the-art performance in future semantic segmentation for both short- and mid-term forecasting. We provide the implementation code at https://github.com/Sta8is/FUTURIST .
☆ LayerAnimate: Layer-specific Control for Animation
Animated video separates foreground and background elements into layers, with distinct processes for sketching, refining, coloring, and in-betweening. Existing video generation methods typically treat animation as a monolithic data domain, lacking fine-grained control over individual layers. In this paper, we introduce LayerAnimate, a novel architectural approach that enhances fine-grained control over individual animation layers within a video diffusion model, allowing users to independently manipulate foreground and background elements in distinct layers. To address the challenge of limited layer-specific data, we propose a data curation pipeline that features automated element segmentation, motion-state hierarchical merging, and motion coherence refinement. Through quantitative and qualitative comparisons, and user study, we demonstrate that LayerAnimate outperforms current methods in terms of animation quality, control precision, and usability, making it an ideal tool for both professional animators and amateur enthusiasts. This framework opens up new possibilities for layer-specific animation applications and creative flexibility. Our code is available at https://layeranimate.github.io.
comment: Project page: https://layeranimate.github.io
☆ VINGS-Mono: Visual-Inertial Gaussian Splatting Monocular SLAM in Large Scenes
VINGS-Mono is a monocular (inertial) Gaussian Splatting (GS) SLAM framework designed for large scenes. The framework comprises four main components: VIO Front End, 2D Gaussian Map, NVS Loop Closure, and Dynamic Eraser. In the VIO Front End, RGB frames are processed through dense bundle adjustment and uncertainty estimation to extract scene geometry and poses. Based on this output, the mapping module incrementally constructs and maintains a 2D Gaussian map. Key components of the 2D Gaussian Map include a Sample-based Rasterizer, Score Manager, and Pose Refinement, which collectively improve mapping speed and localization accuracy. This enables the SLAM system to handle large-scale urban environments with up to 50 million Gaussian ellipsoids. To ensure global consistency in large-scale scenes, we design a Loop Closure module, which innovatively leverages the Novel View Synthesis (NVS) capabilities of Gaussian Splatting for loop closure detection and correction of the Gaussian map. Additionally, we propose a Dynamic Eraser to address the inevitable presence of dynamic objects in real-world outdoor scenes. Extensive evaluations in indoor and outdoor environments demonstrate that our approach achieves localization performance on par with Visual-Inertial Odometry while surpassing recent GS/NeRF SLAM methods. It also significantly outperforms all existing methods in terms of mapping and rendering quality. Furthermore, we developed a mobile app and verified that our framework can generate high-quality Gaussian maps in real time using only a smartphone camera and a low-frequency IMU sensor. To the best of our knowledge, VINGS-Mono is the first monocular Gaussian SLAM method capable of operating in outdoor environments and supporting kilometer-scale large scenes.
☆ Can Bayesian Neural Networks Explicitly Model Input Uncertainty?
Inputs to machine learning models can have associated noise or uncertainties, but they are often ignored and not modelled. It is unknown if Bayesian Neural Networks and their approximations are able to consider uncertainty in their inputs. In this paper we build a two input Bayesian Neural Network (mean and standard deviation) and evaluate its capabilities for input uncertainty estimation across different methods like Ensembles, MC-Dropout, and Flipout. Our results indicate that only some uncertainty estimation methods for approximate Bayesian NNs can model input uncertainty, in particular Ensembles and Flipout.
comment: 12 pages, 11 figures, VISAPP 2025 camera ready
☆ LLaVA-ST: A Multimodal Large Language Model for Fine-Grained Spatial-Temporal Understanding
Recent advancements in multimodal large language models (MLLMs) have shown promising results, yet existing approaches struggle to effectively handle both temporal and spatial localization simultaneously. This challenge stems from two key issues: first, incorporating spatial-temporal localization introduces a vast number of coordinate combinations, complicating the alignment of linguistic and visual coordinate representations; second, encoding fine-grained temporal and spatial information during video feature compression is inherently difficult. To address these issues, we propose LLaVA-ST, a MLLM for fine-grained spatial-temporal multimodal understanding. In LLaVA-ST, we propose Language-Aligned Positional Embedding, which embeds the textual coordinate special token into the visual space, simplifying the alignment of fine-grained spatial-temporal correspondences. Additionally, we design the Spatial-Temporal Packer, which decouples the feature compression of temporal and spatial resolutions into two distinct point-to-region attention processing streams. Furthermore, we propose ST-Align dataset with 4.3M training samples for fine-grained spatial-temporal multimodal understanding. With ST-align, we present a progressive training pipeline that aligns the visual and textual feature through sequential coarse-to-fine stages.Additionally, we introduce an ST-Align benchmark to evaluate spatial-temporal interleaved fine-grained understanding tasks, which include Spatial-Temporal Video Grounding (STVG) , Event Localization and Captioning (ELC) and Spatial Video Grounding (SVG). LLaVA-ST achieves outstanding performance on 11 benchmarks requiring fine-grained temporal, spatial, or spatial-temporal interleaving multimodal understanding. Our code, data and benchmark will be released at Our code, data and benchmark will be released at https://github.com/appletea233/LLaVA-ST .
☆ SmartEraser: Remove Anything from Images using Masked-Region Guidance
Object removal has so far been dominated by the mask-and-inpaint paradigm, where the masked region is excluded from the input, leaving models relying on unmasked areas to inpaint the missing region. However, this approach lacks contextual information for the masked area, often resulting in unstable performance. In this work, we introduce SmartEraser, built with a new removing paradigm called Masked-Region Guidance. This paradigm retains the masked region in the input, using it as guidance for the removal process. It offers several distinct advantages: (a) it guides the model to accurately identify the object to be removed, preventing its regeneration in the output; (b) since the user mask often extends beyond the object itself, it aids in preserving the surrounding context in the final result. Leveraging this new paradigm, we present Syn4Removal, a large-scale object removal dataset, where instance segmentation data is used to copy and paste objects onto images as removal targets, with the original images serving as ground truths. Experimental results demonstrate that SmartEraser significantly outperforms existing methods, achieving superior performance in object removal, especially in complex scenes with intricate compositions.
comment: Project at: https://longtaojiang.github.io/smarteraser.github.io/
☆ AI Driven Water Segmentation with deep learning models for Enhanced Flood Monitoring
Flooding is a major natural hazard causing significant fatalities and economic losses annually, with increasing frequency due to climate change. Rapid and accurate flood detection and monitoring are crucial for mitigating these impacts. This study compares the performance of three deep learning models UNet, ResNet, and DeepLabv3 for pixelwise water segmentation to aid in flood detection, utilizing images from drones, in field observations, and social media. This study involves creating a new dataset that augments wellknown benchmark datasets with flood-specific images, enhancing the robustness of the models. The UNet, ResNet, and DeepLab v3 architectures are tested to determine their effectiveness in various environmental conditions and geographical locations, and the strengths and limitations of each model are also discussed here, providing insights into their applicability in different scenarios by predicting image segmentation masks. This fully automated approach allows these models to isolate flooded areas in images, significantly reducing processing time compared to traditional semi-automated methods. The outcome of this study is to predict segmented masks for each image effected by a flood disaster and the validation accuracy of these models. This methodology facilitates timely and continuous flood monitoring, providing vital data for emergency response teams to reduce loss of life and economic damages. It offers a significant reduction in the time required to generate flood maps, cutting down the manual processing time. Additionally, we present avenues for future research, including the integration of multimodal data sources and the development of robust deep learning architectures tailored specifically for flood detection tasks. Overall, our work contributes to the advancement of flood management strategies through innovative use of deep learning technologies.
comment: 8 pages, 6 figures
☆ Towards an End-to-End (E2E) Adversarial Learning and Application in the Physical World
The traditional learning process of patch-based adversarial attacks, conducted in the digital domain and then applied in the physical domain (e.g., via printed stickers), may suffer from reduced performance due to adversarial patches' limited transferability from the digital domain to the physical domain. Given that previous studies have considered using projectors to apply adversarial attacks, we raise the following question: can adversarial learning (i.e., patch generation) be performed entirely in the physical domain with a projector? In this work, we propose the Physical-domain Adversarial Patch Learning Augmentation (PAPLA) framework, a novel end-to-end (E2E) framework that converts adversarial learning from the digital domain to the physical domain using a projector. We evaluate PAPLA across multiple scenarios, including controlled laboratory settings and realistic outdoor environments, demonstrating its ability to ensure attack success compared to conventional digital learning-physical application (DL-PA) methods. We also analyze the impact of environmental factors, such as projection surface color, projector strength, ambient light, distance, and angle of the target object relative to the camera, on the effectiveness of projected patches. Finally, we demonstrate the feasibility of the attack against a parked car and a stop sign in a real-world outdoor environment. Our results show that under specific conditions, E2E adversarial learning in the physical domain eliminates the transferability issue and ensures evasion by object detectors. Finally, we provide insights into the challenges and opportunities of applying adversarial learning in the physical domain and explain where such an approach is more effective than using a sticker.
☆ Continual Deep Active Learning for Medical Imaging: Replay-Base Architecture for Context Adaptation
Deep Learning for medical imaging faces challenges in adapting and generalizing to new contexts. Additionally, it often lacks sufficient labeled data for specific tasks requiring significant annotation effort. Continual Learning (CL) tackles adaptability and generalizability by enabling lifelong learning from a data stream while mitigating forgetting of previously learned knowledge. Active Learning (AL) reduces the number of required annotations for effective training. This work explores both approaches (CAL) to develop a novel framework for robust medical image analysis. Based on the automatic recognition of shifts in image characteristics, Replay-Base Architecture for Context Adaptation (RBACA) employs a CL rehearsal method to continually learn from diverse contexts, and an AL component to select the most informative instances for annotation. A novel approach to evaluate CAL methods is established using a defined metric denominated IL-Score, which allows for the simultaneous assessment of transfer learning, forgetting, and final model performance. We show that RBACA works in domain and class-incremental learning scenarios, by assessing its IL-Score on the segmentation and diagnosis of cardiac images. The results show that RBACA outperforms a baseline framework without CAL, and a state-of-the-art CAL method across various memory sizes and annotation budgets. Our code is available in https://github.com/RuiDaniel/RBACA .
☆ A Feature-Level Ensemble Model for COVID-19 Identification in CXR Images using Choquet Integral and Differential Evolution Optimization
The COVID-19 pandemic has profoundly impacted billions globally. It challenges public health and healthcare systems due to its rapid spread and severe respiratory effects. An effective strategy to mitigate the COVID-19 pandemic involves integrating testing to identify infected individuals. While RT-PCR is considered the gold standard for diagnosing COVID-19, it has some limitations such as the risk of false negatives. To address this problem, this paper introduces a novel Deep Learning Diagnosis System that integrates pre-trained Deep Convolutional Neural Networks (DCNNs) within an ensemble learning framework to achieve precise identification of COVID-19 cases from Chest X-ray (CXR) images. We combine feature vectors from the final hidden layers of pre-trained DCNNs using the Choquet integral to capture interactions between different DCNNs that a linear approach cannot. We employed Sugeno-$\lambda$ measure theory to derive fuzzy measures for subsets of networks to enable aggregation. We utilized Differential Evolution to estimate fuzzy densities. We developed a TensorFlow-based layer for Choquet operation to facilitate efficient aggregation, due to the intricacies involved in aggregating feature vectors. Experimental results on the COVIDx dataset show that our ensemble model achieved 98\% accuracy in three-class classification and 99.50\% in binary classification, outperforming its components-DenseNet-201 (97\% for three-class, 98.75\% for binary), Inception-v3 (96.25\% for three-class, 98.50\% for binary), and Xception (94.50\% for three-class, 98\% for binary)-and surpassing many previous methods.
☆ Efficient Deep Learning-based Forward Solvers for Brain Tumor Growth Models
Glioblastoma, a highly aggressive brain tumor, poses major challenges due to its poor prognosis and high morbidity rates. Partial differential equation-based models offer promising potential to enhance therapeutic outcomes by simulating patient-specific tumor behavior for improved radiotherapy planning. However, model calibration remains a bottleneck due to the high computational demands of optimization methods like Monte Carlo sampling and evolutionary algorithms. To address this, we recently introduced an approach leveraging a neural forward solver with gradient-based optimization to significantly reduce calibration time. This approach requires a highly accurate and fully differentiable forward model. We investigate multiple architectures, including (i) an enhanced TumorSurrogate, (ii) a modified nnU-Net, and (iii) a 3D Vision Transformer (ViT). The optimized TumorSurrogate achieved the best overall results, excelling in both tumor outline matching and voxel-level prediction of tumor cell concentration. It halved the MSE relative to the baseline model and achieved the highest Dice score across all tumor cell concentration thresholds. Our study demonstrates significant enhancement in forward solver performance and outlines important future research directions.
☆ FramePainter: Endowing Interactive Image Editing with Video Diffusion Priors
Interactive image editing allows users to modify images through visual interaction operations such as drawing, clicking, and dragging. Existing methods construct such supervision signals from videos, as they capture how objects change with various physical interactions. However, these models are usually built upon text-to-image diffusion models, so necessitate (i) massive training samples and (ii) an additional reference encoder to learn real-world dynamics and visual consistency. In this paper, we reformulate this task as an image-to-video generation problem, so that inherit powerful video diffusion priors to reduce training costs and ensure temporal consistency. Specifically, we introduce FramePainter as an efficient instantiation of this formulation. Initialized with Stable Video Diffusion, it only uses a lightweight sparse control encoder to inject editing signals. Considering the limitations of temporal attention in handling large motion between two frames, we further propose matching attention to enlarge the receptive field while encouraging dense correspondence between edited and source image tokens. We highlight the effectiveness and efficiency of FramePainter across various of editing signals: it domainantly outperforms previous state-of-the-art methods with far less training data, achieving highly seamless and coherent editing of images, \eg, automatically adjust the reflection of the cup. Moreover, FramePainter also exhibits exceptional generalization in scenarios not present in real-world videos, \eg, transform the clownfish into shark-like shape. Our code will be available at https://github.com/YBYBZhang/FramePainter.
comment: Code: https://github.com/YBYBZhang/FramePainter
☆ EmoNeXt: an Adapted ConvNeXt for Facial Emotion Recognition SP
Facial expressions play a crucial role in human communication serving as a powerful and impactful means to express a wide range of emotions. With advancements in artificial intelligence and computer vision, deep neural networks have emerged as effective tools for facial emotion recognition. In this paper, we propose EmoNeXt, a novel deep learning framework for facial expression recognition based on an adapted ConvNeXt architecture network. We integrate a Spatial Transformer Network (STN) to focus on feature-rich regions of the face and Squeeze-and-Excitation blocks to capture channel-wise dependencies. Moreover, we introduce a self-attention regularization term, encouraging the model to generate compact feature vectors. We demonstrate the superiority of our model over existing state-of-the-art deep learning models on the FER2013 dataset regarding emotion classification accuracy.
comment: 6 pages, 5 figures and 2 tables. 2023 IEEE 25th International Workshop on Multimedia Signal Processing (MMSP), Poitiers, France
Self-supervised Deep Hyperspectral Inpainting with the Plug and Play and Deep Image Prior Models
Hyperspectral images are typically composed of hundreds of narrow and contiguous spectral bands, each containing information regarding the material composition of the imaged scene. However, these images can be affected by various sources of noise, distortions, or data loss, which can significantly degrade their quality and usefulness. This paper introduces a convergent guaranteed algorithm, LRS-PnP-DIP(1-Lip), which successfully addresses the instability issue of DHP that has been reported before. The proposed algorithm extends the successful joint low-rank and sparse model to further exploit the underlying data structures beyond the conventional and sometimes restrictive unions of subspace models. A stability analysis guarantees the convergence of the proposed algorithm under mild assumptions , which is crucial for its application in real-world scenarios. Extensive experiments demonstrate that the proposed solution consistently delivers visually and quantitatively superior inpainting results, establishing state-of-the-art performance.
comment: 31 pages, 9 Figures, 7 Tables. arXiv admin note: text overlap with arXiv:2306.08128
☆ A Critical Synthesis of Uncertainty Quantification and Foundation Models in Monocular Depth Estimation
While recent foundation models have enabled significant breakthroughs in monocular depth estimation, a clear path towards safe and reliable deployment in the real-world remains elusive. Metric depth estimation, which involves predicting absolute distances, poses particular challenges, as even the most advanced foundation models remain prone to critical errors. Since quantifying the uncertainty has emerged as a promising endeavor to address these limitations and enable trustworthy deployment, we fuse five different uncertainty quantification methods with the current state-of-the-art DepthAnythingV2 foundation model. To cover a wide range of metric depth domains, we evaluate their performance on four diverse datasets. Our findings identify fine-tuning with the Gaussian Negative Log-Likelihood Loss (GNLL) as a particularly promising approach, offering reliable uncertainty estimates while maintaining predictive performance and computational efficiency on par with the baseline, encompassing both training and inference time. By fusing uncertainty quantification and foundation models within the context of monocular depth estimation, this paper lays a critical foundation for future research aimed at improving not only model performance but also its explainability. Extending this critical synthesis of uncertainty quantification and foundation models into other crucial tasks, such as semantic segmentation and pose estimation, presents exciting opportunities for safer and more reliable machine vision systems.
☆ CG-MER: A Card Game-based Multimodal dataset for Emotion Recognition
The field of affective computing has seen significant advancements in exploring the relationship between emotions and emerging technologies. This paper presents a novel and valuable contribution to this field with the introduction of a comprehensive French multimodal dataset designed specifically for emotion recognition. The dataset encompasses three primary modalities: facial expressions, speech, and gestures, providing a holistic perspective on emotions. Moreover, the dataset has the potential to incorporate additional modalities, such as Natural Language Processing (NLP) to expand the scope of emotion recognition research. The dataset was curated through engaging participants in card game sessions, where they were prompted to express a range of emotions while responding to diverse questions. The study included 10 sessions with 20 participants (9 females and 11 males). The dataset serves as a valuable resource for furthering research in emotion recognition and provides an avenue for exploring the intricate connections between human emotions and digital technologies.
comment: 8 pages, 2 figures and 4 tables. Sixteenth International Conference on Machine Vision (ICMV 2023), Yerevan, Armenia
☆ D$^2$-DPM: Dual Denoising for Quantized Diffusion Probabilistic Models AAAI2025
Diffusion models have achieved cutting-edge performance in image generation. However, their lengthy denoising process and computationally intensive score estimation network impede their scalability in low-latency and resource-constrained scenarios. Post-training quantization (PTQ) compresses and accelerates diffusion models without retraining, but it inevitably introduces additional quantization noise, resulting in mean and variance deviations. In this work, we propose D2-DPM, a dual denoising mechanism aimed at precisely mitigating the adverse effects of quantization noise on the noise estimation network. Specifically, we first unravel the impact of quantization noise on the sampling equation into two components: the mean deviation and the variance deviation. The mean deviation alters the drift coefficient of the sampling equation, influencing the trajectory trend, while the variance deviation magnifies the diffusion coefficient, impacting the convergence of the sampling trajectory. The proposed D2-DPM is thus devised to denoise the quantization noise at each time step, and then denoise the noisy sample through the inverse diffusion iterations. Experimental results demonstrate that D2-DPM achieves superior generation quality, yielding a 1.42 lower FID than the full-precision model while achieving 3.99x compression and 11.67x bit-operation acceleration.
comment: 9 pages, 4 figures, acceptted by AAAI2025
☆ Object-Centric 2D Gaussian Splatting: Background Removal and Occlusion-Aware Pruning for Compact Object Models ICPR
Current Gaussian Splatting approaches are effective for reconstructing entire scenes but lack the option to target specific objects, making them computationally expensive and unsuitable for object-specific applications. We propose a novel approach that leverages object masks to enable targeted reconstruction, resulting in object-centric models. Additionally, we introduce an occlusion-aware pruning strategy to minimize the number of Gaussians without compromising quality. Our method reconstructs compact object models, yielding object-centric Gaussian and mesh representations that are up to 96\% smaller and up to 71\% faster to train compared to the baseline while retaining competitive quality. These representations are immediately usable for downstream applications such as appearance editing and physics simulation without additional processing.
comment: Accepted at ICPRAM 2025 (https://icpram.scitevents.org/Home.aspx)
☆ Benchmarking Multimodal Models for Fine-Grained Image Analysis: A Comparative Study Across Diverse Visual Features
This article introduces a benchmark designed to evaluate the capabilities of multimodal models in analyzing and interpreting images. The benchmark focuses on seven key visual aspects: main object, additional objects, background, detail, dominant colors, style, and viewpoint. A dataset of 14,580 images, generated from diverse text prompts, was used to assess the performance of seven leading multimodal models. These models were evaluated on their ability to accurately identify and describe each visual aspect, providing insights into their strengths and weaknesses for comprehensive image understanding. The findings of this benchmark have significant implications for the development and selection of multimodal models for various image analysis tasks.
comment: 6 pages, 2 tables, 2 charts
☆ Revolutionizing Communication with Deep Learning and XAI for Enhanced Arabic Sign Language Recognition
This study introduces an integrated approach to recognizing Arabic Sign Language (ArSL) using state-of-the-art deep learning models such as MobileNetV3, ResNet50, and EfficientNet-B2. These models are further enhanced by explainable AI (XAI) techniques to boost interpretability. The ArSL2018 and RGB Arabic Alphabets Sign Language (AASL) datasets are employed, with EfficientNet-B2 achieving peak accuracies of 99.48\% and 98.99\%, respectively. Key innovations include sophisticated data augmentation methods to mitigate class imbalance, implementation of stratified 5-fold cross-validation for better generalization, and the use of Grad-CAM for clear model decision transparency. The proposed system not only sets new benchmarks in recognition accuracy but also emphasizes interpretability, making it suitable for applications in healthcare, education, and inclusive communication technologies.
comment: 13 pages, 25 figures, 16 tables
☆ DM-Mamba: Dual-domain Multi-scale Mamba for MRI reconstruction
The accelerated MRI reconstruction poses a challenging ill-posed inverse problem due to the significant undersampling in k-space. Deep neural networks, such as CNNs and ViT, have shown substantial performance improvements for this task while encountering the dilemma between global receptive fields and efficient computation. To this end, this paper pioneers exploring Mamba, a new paradigm for long-range dependency modeling with linear complexity, for efficient and effective MRI reconstruction. However, directly applying Mamba to MRI reconstruction faces three significant issues: (1) Mamba's row-wise and column-wise scanning disrupts k-space's unique spectrum, leaving its potential in k-space learning unexplored. (2) Existing Mamba methods unfold feature maps with multiple lengthy scanning paths, leading to long-range forgetting and high computational burden. (3) Mamba struggles with spatially-varying contents, resulting in limited diversity of local representations. To address these, we propose a dual-domain multi-scale Mamba for MRI reconstruction from the following perspectives: (1) We pioneer vision Mamba in k-space learning. A circular scanning is customized for spectrum unfolding, benefiting the global modeling of k-space. (2) We propose a multi-scale Mamba with an efficient scanning strategy in both image and k-space domains. It mitigates long-range forgetting and achieves a better trade-off between efficiency and performance. (3) We develop a local diversity enhancement module to improve the spatially-varying representation of Mamba. Extensive experiments are conducted on three public datasets for MRI reconstruction under various undersampling patterns. Comprehensive results demonstrate that our method significantly outperforms state-of-the-art methods with lower computational cost. Implementation code will be available at https://github.com/XiaoMengLiLiLi/DM-Mamba.
☆ Energy Backdoor Attack to Deep Neural Networks
The rise of deep learning (DL) has increased computing complexity and energy use, prompting the adoption of application specific integrated circuits (ASICs) for energy-efficient edge and mobile deployment. However, recent studies have demonstrated the vulnerability of these accelerators to energy attacks. Despite the development of various inference time energy attacks in prior research, backdoor energy attacks remain unexplored. In this paper, we design an innovative energy backdoor attack against deep neural networks (DNNs) operating on sparsity-based accelerators. Our attack is carried out in two distinct phases: backdoor injection and backdoor stealthiness. Experimental results using ResNet-18 and MobileNet-V2 models trained on CIFAR-10 and Tiny ImageNet datasets show the effectiveness of our proposed attack in increasing energy consumption on trigger samples while preserving the model's performance for clean/regular inputs. This demonstrates the vulnerability of DNNs to energy backdoor attacks. The source code of our attack is available at: https://github.com/hbrachemi/energy_backdoor.
☆ Bootstrapping Corner Cases: High-Resolution Inpainting for Safety Critical Detect and Avoid for Automated Flying
Modern machine learning techniques have shown tremendous potential, especially for object detection on camera images. For this reason, they are also used to enable safety-critical automated processes such as autonomous drone flights. We present a study on object detection for Detect and Avoid, a safety critical function for drones that detects air traffic during automated flights for safety reasons. An ill-posed problem is the generation of good and especially large data sets, since detection itself is the corner case. Most models suffer from limited ground truth in raw data, \eg recorded air traffic or frontal flight with a small aircraft. It often leads to poor and critical detection rates. We overcome this problem by using inpainting methods to bootstrap the dataset such that it explicitly contains the corner cases of the raw data. We provide an overview of inpainting methods and generative models and present an example pipeline given a small annotated dataset. We validate our method by generating a high-resolution dataset, which we make publicly available and present it to an independent object detector that was fully trained on real data.
☆ Audio-visual Deepfake Detection With Local Temporal Inconsistencies ICASSP 2025
This paper proposes an audio-visual deepfake detection approach that aims to capture fine-grained temporal inconsistencies between audio and visual modalities. To achieve this, both architectural and data synthesis strategies are introduced. From an architectural perspective, a temporal distance map, coupled with an attention mechanism, is designed to capture these inconsistencies while minimizing the impact of irrelevant temporal subsequences. Moreover, we explore novel pseudo-fake generation techniques to synthesize local inconsistencies. Our approach is evaluated against state-of-the-art methods using the DFDC and FakeAVCeleb datasets, demonstrating its effectiveness in detecting audio-visual deepfakes.
comment: Accepted in ICASSP 2025
☆ SAR Strikes Back: A New Hope for RSVQA
Remote sensing visual question answering (RSVQA) is a task that automatically extracts information from satellite images and processes a question to predict the answer from the images in textual form, helping with the interpretation of the image. While different methods have been proposed to extract information from optical images with different spectral bands and resolutions, no method has been proposed to answer questions from Synthetic Aperture Radar (SAR) images. SAR images capture electromagnetic information from the scene, and are less affected by atmospheric conditions, such as clouds. In this work, our objective is to introduce SAR in the RSVQA task, finding the best way to use this modality. In our research, we carry out a study on different pipelines for the task of RSVQA taking into account information from both SAR and optical data. To this purpose, we also present a dataset that allows for the introduction of SAR images in the RSVQA framework. We propose two different models to include the SAR modality. The first one is an end-to-end method in which we add an additional encoder for the SAR modality. In the second approach, we build on a two-stage framework. First, relevant information is extracted from SAR and, optionally, optical data. This information is then translated into natural language to be used in the second step which only relies on a language model to provide the answer. We find that the second pipeline allows us to obtain good results with SAR images alone. We then try various types of fusion methods to use SAR and optical images together, finding that a fusion at the decision level achieves the best results on the proposed dataset. We show that SAR data offers additional information when fused with the optical modality, particularly for questions related to specific land cover classes, such as water areas.
comment: 26 pages, 6 figures
☆ Revisiting Birds Eye View Perception Models with Frozen Foundation Models: DINOv2 and Metric3Dv2
Birds Eye View perception models require extensive data to perform and generalize effectively. While traditional datasets often provide abundant driving scenes from diverse locations, this is not always the case. It is crucial to maximize the utility of the available training data. With the advent of large foundation models such as DINOv2 and Metric3Dv2, a pertinent question arises: can these models be integrated into existing model architectures to not only reduce the required training data but surpass the performance of current models? We choose two model architectures in the vehicle segmentation domain to alter: Lift-Splat-Shoot, and Simple-BEV. For Lift-Splat-Shoot, we explore the implementation of frozen DINOv2 for feature extraction and Metric3Dv2 for depth estimation, where we greatly exceed the baseline results by 7.4 IoU while utilizing only half the training data and iterations. Furthermore, we introduce an innovative application of Metric3Dv2's depth information as a PseudoLiDAR point cloud incorporated into the Simple-BEV architecture, replacing traditional LiDAR. This integration results in a +3 IoU improvement compared to the Camera-only model.
comment: Accepted for publication at the Electronic Imaging - Autonomous Vehicles and Machines Connference 2025
☆ RoHan: Robust Hand Detection in Operation Room
Hand-specific localization has garnered significant interest within the computer vision community. Although there are numerous datasets with hand annotations from various angles and settings, domain transfer techniques frequently struggle in surgical environments. This is mainly due to the limited availability of gloved hand instances and the unique challenges of operating rooms (ORs). Thus, hand-detection models tailored to OR settings require extensive training and expensive annotation processes. To overcome these challenges, we present "RoHan" - a novel approach for robust hand detection in the OR, leveraging advanced semi-supervised domain adaptation techniques to tackle the challenges of varying recording conditions, diverse glove colors, and occlusions common in surgical settings. Our methodology encompasses two main stages: (1) data augmentation strategy that utilizes "Artificial Gloves," a method for augmenting publicly available hand datasets with synthetic images of hands-wearing gloves; (2) semi-supervised domain adaptation pipeline that improves detection performance in real-world OR settings through iterative prediction refinement and efficient frame filtering. We evaluate our method using two datasets: simulated enterotomy repair and saphenous vein graft harvesting. "RoHan" substantially reduces the need for extensive labeling and model training, paving the way for the practical implementation of hand detection technologies in medical settings.
comment: 12 pages
☆ Change Captioning in Remote Sensing: Evolution to SAT-Cap -- A Single-Stage Transformer Approach
Change captioning has become essential for accurately describing changes in multi-temporal remote sensing data, providing an intuitive way to monitor Earth's dynamics through natural language. However, existing change captioning methods face two key challenges: high computational demands due to multistage fusion strategy, and insufficient detail in object descriptions due to limited semantic extraction from individual images. To solve these challenges, we propose SAT-Cap based on the transformers model with a single-stage feature fusion for remote sensing change captioning. In particular, SAT-Cap integrates a Spatial-Channel Attention Encoder, a Difference-Guided Fusion module, and a Caption Decoder. Compared to typical models that require multi-stage fusion in transformer encoder and fusion module, SAT-Cap uses only a simple cosine similarity-based fusion module for information integration, reducing the complexity of the model architecture. By jointly modeling spatial and channel information in Spatial-Channel Attention Encoder, our approach significantly enhances the model's ability to extract semantic information from objects in multi-temporal remote sensing images. Extensive experiments validate the effectiveness of SAT-Cap, achieving CIDEr scores of 140.23% on the LEVIR-CC dataset and 97.74% on the DUBAI-CC dataset, surpassing current state-of-the-art methods. The code and pre-trained models will be available online.
EarthView: A Large Scale Remote Sensing Dataset for Self-Supervision
This paper presents EarthView, a comprehensive dataset specifically designed for self-supervision on remote sensing data, intended to enhance deep learning applications on Earth monitoring tasks. The dataset spans 15 tera pixels of global remote-sensing data, combining imagery from a diverse range of sources, including NEON, Sentinel, and a novel release of 1m spatial resolution data from Satellogic. Our dataset provides a wide spectrum of image data with varying resolutions, harnessed from different sensors and organized coherently into an accessible HuggingFace dataset in parquet format. This data spans five years, from 2017 to 2022. Accompanying the dataset, we introduce EarthMAE, a tailored Masked Autoencoder, developed to tackle the distinct challenges of remote sensing data. Trained in a self-supervised fashion, EarthMAE effectively processes different data modalities such as hyperspectral, multispectral, topographical data, segmentation maps, and temporal structure. This model helps us show that pre-training on Satellogic data improves performance on downstream tasks. While there is still a gap to fill in MAE for heterogeneous data, we regard this innovative combination of an expansive, diverse dataset and a versatile model adapted for self-supervised learning as a stride forward in deep learning for Earth monitoring.
comment: 2nd Workshop on Computer Vision for Earth Observation (CV4EO) Applications
☆ Guiding the classification of hepatocellular carcinoma on 3D CT-scans using deep and handcrafted radiological features
Hepatocellular carcinoma is the most spread primary liver cancer across the world ($\sim$80\% of the liver tumors). The gold standard for HCC diagnosis is liver biopsy. However, in the clinical routine, expert radiologists provide a visual diagnosis by interpreting hepatic CT-scans according to a standardized protocol, the LI-RADS, which uses five radiological criteria with an associated decision tree. In this paper, we propose an automatic approach to predict histology-proven HCC from CT images in order to reduce radiologists' inter-variability. We first show that standard deep learning methods fail to accurately predict HCC from CT-scans on a challenging database, and propose a two-step approach inspired by the LI-RADS system to improve the performance. We achieve improvements from 6 to 18 points of AUC with respect to deep learning baselines trained with different architectures. We also provide clinical validation of our method, achieving results that outperform non-expert radiologists and are on par with expert ones.
comment: IEEE ISBI 2025
☆ CellOMaps: A Compact Representation for Robust Classification of Lung Adenocarcinoma Growth Patterns
Lung adenocarcinoma (LUAD) is a morphologically heterogeneous disease, characterized by five primary histological growth patterns. The classification of such patterns is crucial due to their direct relation to prognosis but the high subjectivity and observer variability pose a major challenge. Although several studies have developed machine learning methods for growth pattern classification, they either only report the predominant pattern per slide or lack proper evaluation. We propose a generalizable machine learning pipeline capable of classifying lung tissue into one of the five patterns or as non-tumor. The proposed pipeline's strength lies in a novel compact Cell Organization Maps (cellOMaps) representation that captures the cellular spatial patterns from Hematoxylin and Eosin whole slide images (WSIs). The proposed pipeline provides state-of-the-art performance on LUAD growth pattern classification when evaluated on both internal unseen slides and external datasets, significantly outperforming the current approaches. In addition, our preliminary results show that the model's outputs can be used to predict patients Tumor Mutational Burden (TMB) levels.
☆ AgentPose: Progressive Distribution Alignment via Feature Agent for Human Pose Distillation
Pose distillation is widely adopted to reduce model size in human pose estimation. However, existing methods primarily emphasize the transfer of teacher knowledge while often neglecting the performance degradation resulted from the curse of capacity gap between teacher and student. To address this issue, we propose AgentPose, a novel pose distillation method that integrates a feature agent to model the distribution of teacher features and progressively aligns the distribution of student features with that of the teacher feature, effectively overcoming the capacity gap and enhancing the ability of knowledge transfer. Our comprehensive experiments conducted on the COCO dataset substantiate the effectiveness of our method in knowledge transfer, particularly in scenarios with a high capacity gap.
comment: 5 pages, 1 figures
☆ Benchmarking Vision Foundation Models for Input Monitoring in Autonomous Driving
Deep neural networks (DNNs) remain challenged by distribution shifts in complex open-world domains like automated driving (AD): Absolute robustness against yet unknown novel objects (semantic shift) or styles like lighting conditions (covariate shift) cannot be guaranteed. Hence, reliable operation-time monitors for identification of out-of-training-data-distribution (OOD) scenarios are imperative. Current approaches for OOD classification are untested for complex domains like AD, are limited in the kinds of shifts they detect, or even require supervision with OOD samples. To prepare for unanticipated shifts, we instead establish a framework around a principled, unsupervised, and model-agnostic method that unifies detection of all kinds of shifts: Find a full model of the training data's feature distribution, to then use its density at new points as in-distribution (ID) score. To implement this, we propose to combine the newly available Vision Foundation Models (VFM) as feature extractors with one of four alternative density modeling techniques. In an extensive benchmark of 4 VFMs against 20 baselines, we show the superior performance of VFM feature encodings compared to shift-specific OOD monitors. Additionally, we find that sophisticated architectures outperform larger latent space dimensionality; and our method identifies samples with higher risk of errors on downstream tasks, despite being model-agnostic. This suggests that VFMs are promising to realize model-agnostic, unsupervised, reliable safety monitors in complex vision tasks.
☆ Skeleton and Font Generation Network for Zero-shot Chinese Character Generation
Automatic font generation remains a challenging research issue, primarily due to the vast number of Chinese characters, each with unique and intricate structures. Our investigation of previous studies reveals inherent bias capable of causing structural changes in characters. Specifically, when generating a Chinese character similar to, but different from, those in the training samples, the bias is prone to either correcting or ignoring these subtle variations. To address this concern, we propose a novel Skeleton and Font Generation Network (SFGN) to achieve a more robust Chinese character font generation. Our approach includes a skeleton builder and font generator. The skeleton builder synthesizes content features using low-resource text input, enabling our technique to realize font generation independently of content image inputs. Unlike previous font generation methods that treat font style as a global embedding, we introduce a font generator to align content and style features on the radical level, which is a brand-new perspective for font generation. Except for common characters, we also conduct experiments on misspelled characters, a substantial portion of which slightly differs from the common ones. Our approach visually demonstrates the efficacy of generated images and outperforms current state-of-the-art font generation methods. Moreover, we believe that misspelled character generation have significant pedagogical implications and verify such supposition through experiments. We used generated misspelled characters as data augmentation in Chinese character error correction tasks, simulating the scenario where students learn handwritten Chinese characters with the help of misspelled characters. The significantly improved performance of error correction tasks demonstrates the effectiveness of our proposed approach and the value of misspelled character generation.
comment: 36 pages, 10 figures
☆ Self-Attentive Spatio-Temporal Calibration for Precise Intermediate Layer Matching in ANN-to-SNN Distillation
Spiking Neural Networks (SNNs) are promising for low-power computation due to their event-driven mechanism but often suffer from lower accuracy compared to Artificial Neural Networks (ANNs). ANN-to-SNN knowledge distillation can improve SNN performance, but previous methods either focus solely on label information, missing valuable intermediate layer features, or use a layer-wise approach that neglects spatial and temporal semantic inconsistencies, leading to performance degradation.To address these limitations, we propose a novel method called self-attentive spatio-temporal calibration (SASTC). SASTC uses self-attention to identify semantically aligned layer pairs between ANN and SNN, both spatially and temporally. This enables the autonomous transfer of relevant semantic information. Extensive experiments show that SASTC outperforms existing methods, effectively solving the mismatching problem. Superior accuracy results include 95.12% on CIFAR-10, 79.40% on CIFAR-100 with 2 time steps, and 68.69% on ImageNet with 4 time steps for static datasets, and 97.92% on DVS-Gesture and 83.60% on DVS-CIFAR10 for neuromorphic datasets. This marks the first time SNNs have outperformed ANNs on both CIFAR-10 and CIFAR-100, shedding the new light on the potential applications of SNNs.
☆ Exploring visual language models as a powerful tool in the diagnosis of Ewing Sarcoma
Ewing's sarcoma (ES), characterized by a high density of small round blue cells without structural organization, presents a significant health concern, particularly among adolescents aged 10 to 19. Artificial intelligence-based systems for automated analysis of histopathological images are promising to contribute to an accurate diagnosis of ES. In this context, this study explores the feature extraction ability of different pre-training strategies for distinguishing ES from other soft tissue or bone sarcomas with similar morphology in digitized tissue microarrays for the first time, as far as we know. Vision-language supervision (VLS) is compared to fully-supervised ImageNet pre-training within a multiple instance learning paradigm. Our findings indicate a substantial improvement in diagnostic accuracy with the adaption of VLS using an in-domain dataset. Notably, these models not only enhance the accuracy of predicted classes but also drastically reduce the number of trainable parameters and computational costs.
comment: 11 pages, 5 figures, 2 tables. Oral presentation at KES-InMed 2024 held in Madeira, Portugal
☆ Robust Low-Light Human Pose Estimation through Illumination-Texture Modulation
As critical visual details become obscured, the low visibility and high ISO noise in extremely low-light images pose a significant challenge to human pose estimation. Current methods fail to provide high-quality representations due to reliance on pixel-level enhancements that compromise semantics and the inability to effectively handle extreme low-light conditions for robust feature learning. In this work, we propose a frequency-based framework for low-light human pose estimation, rooted in the "divide-and-conquer" principle. Instead of uniformly enhancing the entire image, our method focuses on task-relevant information. By applying dynamic illumination correction to the low-frequency components and low-rank denoising to the high-frequency components, we effectively enhance both the semantic and texture information essential for accurate pose estimation. As a result, this targeted enhancement method results in robust, high-quality representations, significantly improving pose estimation performance. Extensive experiments demonstrating its superiority over state-of-the-art methods in various challenging low-light scenarios.
comment: 5 pages, 2 figures, conference
☆ DisCoPatch: Batch Statistics Are All You Need For OOD Detection, But Only If You Can Trust Them
Out-of-distribution (OOD) detection holds significant importance across many applications. While semantic and domain-shift OOD problems are well-studied, this work focuses on covariate shifts - subtle variations in the data distribution that can degrade machine learning performance. We hypothesize that detecting these subtle shifts can improve our understanding of in-distribution boundaries, ultimately improving OOD detection. In adversarial discriminators trained with Batch Normalization (BN), real and adversarial samples form distinct domains with unique batch statistics - a property we exploit for OOD detection. We introduce DisCoPatch, an unsupervised Adversarial Variational Autoencoder (VAE) framework that harnesses this mechanism. During inference, batches consist of patches from the same image, ensuring a consistent data distribution that allows the model to rely on batch statistics. DisCoPatch uses the VAE's suboptimal outputs (generated and reconstructed) as negative samples to train the discriminator, thereby improving its ability to delineate the boundary between in-distribution samples and covariate shifts. By tightening this boundary, DisCoPatch achieves state-of-the-art results in public OOD detection benchmarks. The proposed model not only excels in detecting covariate shifts, achieving 95.5% AUROC on ImageNet-1K(-C) but also outperforms all prior methods on public Near-OOD (95.0%) benchmarks. With a compact model size of 25MB, it achieves high OOD detection performance at notably lower latency than existing methods, making it an efficient and practical solution for real-world OOD detection applications. The code will be made publicly available
☆ Maximizing Uncertainty for Federated learning via Bayesian Optimisation-based Model Poisoning
As we transition from Narrow Artificial Intelligence towards Artificial Super Intelligence, users are increasingly concerned about their privacy and the trustworthiness of machine learning (ML) technology. A common denominator for the metrics of trustworthiness is the quantification of uncertainty inherent in DL algorithms, and specifically in the model parameters, input data, and model predictions. One of the common approaches to address privacy-related issues in DL is to adopt distributed learning such as federated learning (FL), where private raw data is not shared among users. Despite the privacy-preserving mechanisms in FL, it still faces challenges in trustworthiness. Specifically, the malicious users, during training, can systematically create malicious model parameters to compromise the models predictive and generative capabilities, resulting in high uncertainty about their reliability. To demonstrate malicious behaviour, we propose a novel model poisoning attack method named Delphi which aims to maximise the uncertainty of the global model output. We achieve this by taking advantage of the relationship between the uncertainty and the model parameters of the first hidden layer of the local model. Delphi employs two types of optimisation , Bayesian Optimisation and Least Squares Trust Region, to search for the optimal poisoned model parameters, named as Delphi-BO and Delphi-LSTR. We quantify the uncertainty using the KL Divergence to minimise the distance of the predictive probability distribution towards an uncertain distribution of model output. Furthermore, we establish a mathematical proof for the attack effectiveness demonstrated in FL. Numerical results demonstrate that Delphi-BO induces a higher amount of uncertainty than Delphi-LSTR highlighting vulnerability of FL systems to model poisoning attacks.
comment: 14 pages
☆ Combining imaging and shape features for prediction tasks of Alzheimer's disease classification and brain age regression
We investigate combining imaging and shape features extracted from MRI for the clinically relevant tasks of brain age prediction and Alzheimer's disease classification. Our proposed model fuses ResNet-extracted image embeddings with shape embeddings from a bespoke graph neural network. The shape embeddings are derived from surface meshes of 15 brain structures, capturing detailed geometric information. Combined with the appearance features from T1-weighted images, we observe improvements in the prediction performance on both tasks, with substantial gains for classification. We evaluate the model using public datasets, including CamCAN, IXI, and OASIS3, demonstrating the effectiveness of fusing imaging and shape features for brain analysis.
☆ GAC-Net_Geometric and attention-based Network for Depth Completion
Depth completion is a key task in autonomous driving, aiming to complete sparse LiDAR depth measurements into high-quality dense depth maps through image guidance. However, existing methods usually treat depth maps as an additional channel of color images, or directly perform convolution on sparse data, failing to fully exploit the 3D geometric information in depth maps, especially with limited performance in complex boundaries and sparse areas. To address these issues, this paper proposes a depth completion network combining channel attention mechanism and 3D global feature perception (CGA-Net). The main innovations include: 1) Utilizing PointNet++ to extract global 3D geometric features from sparse depth maps, enhancing the scene perception ability of low-line LiDAR data; 2) Designing a channel-attention-based multimodal feature fusion module to efficiently integrate sparse depth, RGB images, and 3D geometric features; 3) Combining residual learning with CSPN++ to optimize the depth refinement stage, further improving the completion quality in edge areas and complex scenes. Experiments on the KITTI depth completion dataset show that CGA-Net can significantly improve the prediction accuracy of dense depth maps, achieving a new state-of-the-art (SOTA), and demonstrating strong robustness to sparse and complex scenes.
comment: 13pages,4 figures, 2 tables
☆ Threshold Attention Network for Semantic Segmentation of Remote Sensing Images
Semantic segmentation of remote sensing images is essential for various applications, including vegetation monitoring, disaster management, and urban planning. Previous studies have demonstrated that the self-attention mechanism (SA) is an effective approach for designing segmentation networks that can capture long-range pixel dependencies. SA enables the network to model the global dependencies between the input features, resulting in improved segmentation outcomes. However, the high density of attentional feature maps used in this mechanism causes exponential increases in computational complexity. Additionally, it introduces redundant information that negatively impacts the feature representation. Inspired by traditional threshold segmentation algorithms, we propose a novel threshold attention mechanism (TAM). This mechanism significantly reduces computational effort while also better modeling the correlation between different regions of the feature map. Based on TAM, we present a threshold attention network (TANet) for semantic segmentation. TANet consists of an attentional feature enhancement module (AFEM) for global feature enhancement of shallow features and a threshold attention pyramid pooling module (TAPP) for acquiring feature information at different scales for deep features. We have conducted extensive experiments on the ISPRS Vaihingen and Potsdam datasets. The results demonstrate the validity and superiority of our proposed TANet compared to the most state-of-the-art models.
☆ V-Trans4Style: Visual Transition Recommendation for Video Production Style Adaptation
We introduce V-Trans4Style, an innovative algorithm tailored for dynamic video content editing needs. It is designed to adapt videos to different production styles like documentaries, dramas, feature films, or a specific YouTube channel's video-making technique. Our algorithm recommends optimal visual transitions to help achieve this flexibility using a more bottom-up approach. We first employ a transformer-based encoder-decoder network to learn recommending temporally consistent and visually seamless sequences of visual transitions using only the input videos. We then introduce a style conditioning module that leverages this model to iteratively adjust the visual transitions obtained from the decoder through activation maximization. We demonstrate the efficacy of our method through experiments conducted on our newly introduced AutoTransition++ dataset. It is a 6k video version of AutoTransition Dataset that additionally categorizes its videos into different production style categories. Our encoder-decoder model outperforms the state-of-the-art transition recommendation method, achieving improvements of 10% to 80% in Recall@K and mean rank values over baseline. Our style conditioning module results in visual transitions that improve the capture of the desired video production style characteristics by an average of around 12% in comparison to other methods when measured with similarity metrics. We hope that our work serves as a foundation for exploring and understanding video production styles further.
☆ Facial Dynamics in Video: Instruction Tuning for Improved Facial Expression Perception and Contextual Awareness
Facial expression captioning has found widespread application across various domains. Recently, the emergence of video Multimodal Large Language Models (MLLMs) has shown promise in general video understanding tasks. However, describing facial expressions within videos poses two major challenges for these models: (1) the lack of adequate datasets and benchmarks, and (2) the limited visual token capacity of video MLLMs. To address these issues, this paper introduces a new instruction-following dataset tailored for dynamic facial expression caption. The dataset comprises 5,033 high-quality video clips annotated manually, containing over 700,000 tokens. Its purpose is to improve the capability of video MLLMs to discern subtle facial nuances. Furthermore, we propose FaceTrack-MM, which leverages a limited number of tokens to encode the main character's face. This model demonstrates superior performance in tracking faces and focusing on the facial expressions of the main characters, even in intricate multi-person scenarios. Additionally, we introduce a novel evaluation metric combining event extraction, relation classification, and the longest common subsequence (LCS) algorithm to assess the content consistency and temporal sequence consistency of generated text. Moreover, we present FEC-Bench, a benchmark designed to assess the performance of existing video MLLMs in this specific task. All data and source code will be made publicly available.
☆ Zero-shot Video Moment Retrieval via Off-the-shelf Multimodal Large Language Models AAAI 2025
The target of video moment retrieval (VMR) is predicting temporal spans within a video that semantically match a given linguistic query. Existing VMR methods based on multimodal large language models (MLLMs) overly rely on expensive high-quality datasets and time-consuming fine-tuning. Although some recent studies introduce a zero-shot setting to avoid fine-tuning, they overlook inherent language bias in the query, leading to erroneous localization. To tackle the aforementioned challenges, this paper proposes Moment-GPT, a tuning-free pipeline for zero-shot VMR utilizing frozen MLLMs. Specifically, we first employ LLaMA-3 to correct and rephrase the query to mitigate language bias. Subsequently, we design a span generator combined with MiniGPT-v2 to produce candidate spans adaptively. Finally, to leverage the video comprehension capabilities of MLLMs, we apply VideoChatGPT and span scorer to select the most appropriate spans. Our proposed method substantially outperforms the state-ofthe-art MLLM-based and zero-shot models on several public datasets, including QVHighlights, ActivityNet-Captions, and Charades-STA.
comment: Accepted by AAAI 2025
☆ SkipClick: Combining Quick Responses and Low-Level Features for Interactive Segmentation in Winter Sports Contexts
In this paper, we present a novel architecture for interactive segmentation in winter sports contexts. The field of interactive segmentation deals with the prediction of high-quality segmentation masks by informing the network about the objects position with the help of user guidance. In our case the guidance consists of click prompts. For this task, we first present a baseline architecture which is specifically geared towards quickly responding after each click. Afterwards, we motivate and describe a number of architectural modifications which improve the performance when tasked with segmenting winter sports equipment on the WSESeg dataset. With regards to the average NoC@85 metric on the WSESeg classes, we outperform SAM and HQ-SAM by 2.336 and 7.946 clicks, respectively. When applied to the HQSeg-44k dataset, our system delivers state-of-the-art results with a NoC@90 of 6.00 and NoC@95 of 9.89. In addition to that, we test our model on a novel dataset containing masks for humans during skiing.
comment: 4 figures, 6 tables, 12 pages
☆ AI Guide Dog: Egocentric Path Prediction on Smartphone
This paper introduces AI Guide Dog (AIGD), a lightweight egocentric navigation assistance system for visually impaired individuals, designed for real-time deployment on smartphones. AIGD addresses key challenges in blind navigation by employing a vision-only, multi-label classification approach to predict directional commands, ensuring safe traversal across diverse environments. We propose a novel technique to enable goal-based outdoor navigation by integrating GPS signals and high-level directions, while also addressing uncertain multi-path predictions for destination-free indoor navigation. Our generalized model is the first navigation assistance system to handle both goal-oriented and exploratory navigation scenarios across indoor and outdoor settings, establishing a new state-of-the-art in blind navigation. We present methods, datasets, evaluations, and deployment insights to encourage further innovations in assistive navigation systems.
☆ Robust Hyperspectral Image Panshapring via Sparse Spatial-Spectral Representation
High-resolution hyperspectral imaging plays a crucial role in various remote sensing applications, yet its acquisition often faces fundamental limitations due to hardware constraints. This paper introduces S$^{3}$RNet, a novel framework for hyperspectral image pansharpening that effectively combines low-resolution hyperspectral images (LRHSI) with high-resolution multispectral images (HRMSI) through sparse spatial-spectral representation. The core of S$^{3}$RNet is the Multi-Branch Fusion Network (MBFN), which employs parallel branches to capture complementary features at different spatial and spectral scales. Unlike traditional approaches that treat all features equally, our Spatial-Spectral Attention Weight Block (SSAWB) dynamically adjusts feature weights to maintain sparse representation while suppressing noise and redundancy. To enhance feature propagation, we incorporate the Dense Feature Aggregation Block (DFAB), which efficiently aggregates inputted features through dense connectivity patterns. This integrated design enables S$^{3}$RNet to selectively emphasize the most informative features from differnt scale while maintaining computational efficiency. Comprehensive experiments demonstrate that S$^{3}$RNet achieves state-of-the-art performance across multiple evaluation metrics, showing particular strength in maintaining high reconstruction quality even under challenging noise conditions. The code will be made publicly available.
comment: Submitted to IGARSS 2025
☆ Early prediction of the transferability of bovine embryos from videomicroscopy
Videomicroscopy is a promising tool combined with machine learning for studying the early development of in vitro fertilized bovine embryos and assessing its transferability as soon as possible. We aim to predict the embryo transferability within four days at most, taking 2D time-lapse microscopy videos as input. We formulate this problem as a supervised binary classification problem for the classes transferable and not transferable. The challenges are three-fold: 1) poorly discriminating appearance and motion, 2) class ambiguity, 3) small amount of annotated data. We propose a 3D convolutional neural network involving three pathways, which makes it multi-scale in time and able to handle appearance and motion in different ways. For training, we retain the focal loss. Our model, named SFR, compares favorably to other methods. Experiments demonstrate its effectiveness and accuracy for our challenging biological task.
comment: Accepted at the 2024 IEEE International Conference on Image Processing
☆ VENOM: Text-driven Unrestricted Adversarial Example Generation with Diffusion Models
Adversarial attacks have proven effective in deceiving machine learning models by subtly altering input images, motivating extensive research in recent years. Traditional methods constrain perturbations within $l_p$-norm bounds, but advancements in Unrestricted Adversarial Examples (UAEs) allow for more complex, generative-model-based manipulations. Diffusion models now lead UAE generation due to superior stability and image quality over GANs. However, existing diffusion-based UAE methods are limited to using reference images and face challenges in generating Natural Adversarial Examples (NAEs) directly from random noise, often producing uncontrolled or distorted outputs. In this work, we introduce VENOM, the first text-driven framework for high-quality unrestricted adversarial examples generation through diffusion models. VENOM unifies image content generation and adversarial synthesis into a single reverse diffusion process, enabling high-fidelity adversarial examples without sacrificing attack success rate (ASR). To stabilize this process, we incorporate an adaptive adversarial guidance strategy with momentum, ensuring that the generated adversarial examples $x^*$ align with the distribution $p(x)$ of natural images. Extensive experiments demonstrate that VENOM achieves superior ASR and image quality compared to prior methods, marking a significant advancement in adversarial example generation and providing insights into model vulnerabilities for improved defense development.
☆ Cloud Removal With PolSAR-Optical Data Fusion Using A Two-Flow Residual Network
Optical remote sensing images play a crucial role in the observation of the Earth's surface. However, obtaining complete optical remote sensing images is challenging due to cloud cover. Reconstructing cloud-free optical images has become a major task in recent years. This paper presents a two-flow Polarimetric Synthetic Aperture Radar (PolSAR)-Optical data fusion cloud removal algorithm (PODF-CR), which achieves the reconstruction of missing optical images. PODF-CR consists of an encoding module and a decoding module. The encoding module includes two parallel branches that extract PolSAR image features and optical image features. To address speckle noise in PolSAR images, we introduce dynamic filters in the PolSAR branch for image denoising. To better facilitate the fusion between multimodal optical images and PolSAR images, we propose fusion blocks based on cross-skip connections to enable interaction of multimodal data information. The obtained fusion features are refined through an attention mechanism to provide better conditions for the subsequent decoding of the fused images. In the decoding module, multi-scale convolution is introduced to obtain multi-scale information. Additionally, to better utilize comprehensive scattering information and polarization characteristics to assist in the restoration of optical images, we use a dataset for cloud restoration called OPT-BCFSAR-PFSAR, which includes backscatter coefficient feature images and polarization feature images obtained from PoLSAR data and optical images. Experimental results demonstrate that this method outperforms existing methods in both qualitative and quantitative evaluations.
☆ Demographic Variability in Face Image Quality Measures
Face image quality assessment (FIQA) algorithms are being integrated into online identity management applications. These applications allow users to upload a face image as part of their document issuance process, where the image is then run through a quality assessment process to make sure it meets the quality and compliance requirements. Concerns about demographic bias have been raised about biometric systems, given the societal implications this may cause. It is therefore important that demographic variability in FIQA algorithms is assessed such that mitigation measures can be created. In this work, we study the demographic variability of all face image quality measures included in the ISO/IEC 29794-5 international standard across three demographic variables: age, gender, and skin tone. The results are rather promising and show no clear bias toward any specific demographic group for most measures. Only two quality measures are found to have considerable variations in their outcomes for different groups on the skin tone variable.
☆ Tarsier2: Advancing Large Vision-Language Models from Detailed Video Description to Comprehensive Video Understanding
We introduce Tarsier2, a state-of-the-art large vision-language model (LVLM) designed for generating detailed and accurate video descriptions, while also exhibiting superior general video understanding capabilities. Tarsier2 achieves significant advancements through three key upgrades: (1) Scaling pre-training data from 11M to 40M video-text pairs, enriching both volume and diversity; (2) Performing fine-grained temporal alignment during supervised fine-tuning; (3) Using model-based sampling to automatically construct preference data and applying DPO training for optimization. Extensive experiments show that Tarsier2-7B consistently outperforms leading proprietary models, including GPT-4o and Gemini 1.5 Pro, in detailed video description tasks. On the DREAM-1K benchmark, Tarsier2-7B improves F1 by 2.8\% over GPT-4o and 5.8\% over Gemini-1.5-Pro. In human side-by-side evaluations, Tarsier2-7B shows a +8.6\% performance advantage over GPT-4o and +24.9\% over Gemini-1.5-Pro. Tarsier2-7B also sets new state-of-the-art results across 15 public benchmarks, spanning tasks such as video question-answering, video grounding, hallucination test, and embodied question-answering, demonstrating its versatility as a robust generalist vision-language model.
☆ Mitigating Algorithmic Bias in Multiclass CNN Classifications Using Causal Modeling
This study describes a procedure for applying causal modeling to detect and mitigate algorithmic bias in a multiclass classification problem. The dataset was derived from the FairFace dataset, supplemented with emotional labels generated by the DeepFace pre-trained model. A custom Convolutional Neural Network (CNN) was developed, consisting of four convolutional blocks, followed by fully connected layers and dropout layers to mitigate overfitting. Gender bias was identified in the CNN model's classifications: Females were more likely to be classified as "happy" or "sad," while males were more likely to be classified as "neutral." To address this, the one-vs-all (OvA) technique was applied. A causal model was constructed for each emotion class to adjust the CNN model's predicted class probabilities. The adjusted probabilities for the various classes were then aggregated by selecting the class with the highest probability. The resulting debiased classifications demonstrated enhanced gender fairness across all classes, with negligible impact--or even a slight improvement--on overall accuracy. This study highlights that algorithmic fairness and accuracy are not necessarily trade-offs. All data and code for this study are publicly available for download.
comment: 7 pages; 6 figures
☆ Make-A-Character 2: Animatable 3D Character Generation From a Single Image
This report introduces Make-A-Character 2, an advanced system for generating high-quality 3D characters from single portrait photographs, ideal for game development and digital human applications. Make-A-Character 2 builds upon its predecessor by incorporating several significant improvements for image-based head generation. We utilize the IC-Light method to correct non-ideal illumination in input photos and apply neural network-based color correction to harmonize skin tones between the photos and game engine renders. We also employ the Hierarchical Representation Network to capture high-frequency facial structures and conduct adaptive skeleton calibration for accurate and expressive facial animations. The entire image-to-3D-character generation process takes less than 2 minutes. Furthermore, we leverage transformer architecture to generate co-speech facial and gesture actions, enabling real-time conversation with the generated character. These technologies have been integrated into our conversational AI avatar products.
comment: Technical Report
☆ deepTerra -- AI Land Classification Made Easy
deepTerra is a comprehensive platform designed to facilitate the classification of land surface features using machine learning and satellite imagery. The platform includes modules for data collection, image augmentation, training, testing, and prediction, streamlining the entire workflow for image classification tasks. This paper presents a detailed overview of the capabilities of deepTerra, shows how it has been applied to various research areas, and discusses the future directions it might take.
☆ State-of-the-Art Transformer Models for Image Super-Resolution: Techniques, Challenges, and Applications
Image Super-Resolution (SR) aims to recover a high-resolution image from its low-resolution counterpart, which has been affected by a specific degradation process. This is achieved by enhancing detail and visual quality. Recent advancements in transformer-based methods have remolded image super-resolution by enabling high-quality reconstructions surpassing previous deep-learning approaches like CNN and GAN-based. This effectively addresses the limitations of previous methods, such as limited receptive fields, poor global context capture, and challenges in high-frequency detail recovery. Additionally, the paper reviews recent trends and advancements in transformer-based SR models, exploring various innovative techniques and architectures that combine transformers with traditional networks to balance global and local contexts. These neoteric methods are critically analyzed, revealing promising yet unexplored gaps and potential directions for future research. Several visualizations of models and techniques are included to foster a holistic understanding of recent trends. This work seeks to offer a structured roadmap for researchers at the forefront of deep learning, specifically exploring the impact of transformers on super-resolution techniques.
comment: 8 pages
☆ An Intra- and Cross-frame Topological Consistency Scheme for Semi-supervised Atherosclerotic Coronary Plaque Segmentation ICASSP 2025
Enhancing the precision of segmenting coronary atherosclerotic plaques from CT Angiography (CTA) images is pivotal for advanced Coronary Atherosclerosis Analysis (CAA), which distinctively relies on the analysis of vessel cross-section images reconstructed via Curved Planar Reformation. This task presents significant challenges due to the indistinct boundaries and structures of plaques and blood vessels, leading to the inadequate performance of current deep learning models, compounded by the inherent difficulty in annotating such complex data. To address these issues, we propose a novel dual-consistency semi-supervised framework that integrates Intra-frame Topological Consistency (ITC) and Cross-frame Topological Consistency (CTC) to leverage labeled and unlabeled data. ITC employs a dual-task network for simultaneous segmentation mask and Skeleton-aware Distance Transform (SDT) prediction, achieving similar prediction of topology structure through consistency constraint without additional annotations. Meanwhile, CTC utilizes an unsupervised estimator for analyzing pixel flow between skeletons and boundaries of adjacent frames, ensuring spatial continuity. Experiments on two CTA datasets show that our method surpasses existing semi-supervised methods and approaches the performance of supervised methods on CAA. In addition, our method also performs better than other methods on the ACDC dataset, demonstrating its generalization.
comment: Accepted by ICASSP 2025
☆ 3UR-LLM: An End-to-End Multimodal Large Language Model for 3D Scene Understanding
Multi-modal Large Language Models (MLLMs) exhibit impressive capabilities in 2D tasks, yet encounter challenges in discerning the spatial positions, interrelations, and causal logic in scenes when transitioning from 2D to 3D representations. We find that the limitations mainly lie in: i) the high annotation cost restricting the scale-up of volumes of 3D scene data, and ii) the lack of a straightforward and effective way to perceive 3D information which results in prolonged training durations and complicates the streamlined framework. To this end, we develop pipeline based on open-source 2D MLLMs and LLMs to generate high-quality 3D-text pairs and construct 3DS-160K , to enhance the pre-training process. Leveraging this high-quality pre-training data, we introduce the 3UR-LLM model, an end-to-end 3D MLLM designed for precise interpretation of 3D scenes, showcasing exceptional capability in navigating the complexities of the physical world. 3UR-LLM directly receives 3D point cloud as input and project 3D features fused with text instructions into a manageable set of tokens. Considering the computation burden derived from these hybrid tokens, we design a 3D compressor module to cohesively compress the 3D spatial cues and textual narrative. 3UR-LLM achieves promising performance with respect to the previous SOTAs, for instance, 3UR-LLM exceeds its counterparts by 7.1\% CIDEr on ScanQA, while utilizing fewer training resources. The code and model weights for 3UR-LLM and the 3DS-160K benchmark are available at 3UR-LLM.
comment: Accepted to IEEE Transactions on Multimedia (TMM)
☆ AVS-Mamba: Exploring Temporal and Multi-modal Mamba for Audio-Visual Segmentation
The essence of audio-visual segmentation (AVS) lies in locating and delineating sound-emitting objects within a video stream. While Transformer-based methods have shown promise, their handling of long-range dependencies struggles due to quadratic computational costs, presenting a bottleneck in complex scenarios. To overcome this limitation and facilitate complex multi-modal comprehension with linear complexity, we introduce AVS-Mamba, a selective state space model to address the AVS task. Our framework incorporates two key components for video understanding and cross-modal learning: Temporal Mamba Block for sequential video processing and Vision-to-Audio Fusion Block for advanced audio-vision integration. Building on this, we develop the Multi-scale Temporal Encoder, aimed at enhancing the learning of visual features across scales, facilitating the perception of intra- and inter-frame information. To perform multi-modal fusion, we propose the Modality Aggregation Decoder, leveraging the Vision-to-Audio Fusion Block to integrate visual features into audio features across both frame and temporal levels. Further, we adopt the Contextual Integration Pyramid to perform audio-to-vision spatial-temporal context collaboration. Through these innovative contributions, our approach achieves new state-of-the-art results on the AVSBench-object and AVSBench-semantic datasets. Our source code and model weights are available at AVS-Mamba.
comment: Accepted to IEEE Transactions on Multimedia (TMM)
☆ A Low-cost and Ultra-lightweight Binary Neural Network for Traffic Signal Recognition
The deployment of neural networks in vehicle platforms and wearable Artificial Intelligence-of-Things (AIOT) scenarios has become a research area that has attracted much attention. With the continuous evolution of deep learning technology, many image classification models are committed to improving recognition accuracy, but this is often accompanied by problems such as large model resource usage, complex structure, and high power consumption, which makes it challenging to deploy on resource-constrained platforms. Herein, we propose an ultra-lightweight binary neural network (BNN) model designed for hardware deployment, and conduct image classification research based on the German Traffic Sign Recognition Benchmark (GTSRB) dataset. In addition, we also verify it on the Chinese Traffic Sign (CTS) and Belgian Traffic Sign (BTS) datasets. The proposed model shows excellent recognition performance with an accuracy of up to 97.64%, making it one of the best performing BNN models in the GTSRB dataset. Compared with the full-precision model, the accuracy loss is controlled within 1%, and the parameter storage overhead of the model is only 10% of that of the full-precision model. More importantly, our network model only relies on logical operations and low-bit width fixed-point addition and subtraction operations during the inference phase, which greatly simplifies the design complexity of the processing element (PE). Our research shows the great potential of BNN in the hardware deployment of computer vision models, especially in the field of computer vision tasks related to autonomous driving.
☆ Learning Motion and Temporal Cues for Unsupervised Video Object Segmentation
In this paper, we address the challenges in unsupervised video object segmentation (UVOS) by proposing an efficient algorithm, termed MTNet, which concurrently exploits motion and temporal cues. Unlike previous methods that focus solely on integrating appearance with motion or on modeling temporal relations, our method combines both aspects by integrating them within a unified framework. MTNet is devised by effectively merging appearance and motion features during the feature extraction process within encoders, promoting a more complementary representation. To capture the intricate long-range contextual dynamics and information embedded within videos, a temporal transformer module is introduced, facilitating efficacious inter-frame interactions throughout a video clip. Furthermore, we employ a cascade of decoders all feature levels across all feature levels to optimally exploit the derived features, aiming to generate increasingly precise segmentation masks. As a result, MTNet provides a strong and compact framework that explores both temporal and cross-modality knowledge to robustly localize and track the primary object accurately in various challenging scenarios efficiently. Extensive experiments across diverse benchmarks conclusively show that our method not only attains state-of-the-art performance in unsupervised video object segmentation but also delivers competitive results in video salient object detection. These findings highlight the method's robust versatility and its adeptness in adapting to a range of segmentation tasks. Source code is available on https://github.com/hy0523/MTNet.
comment: Accepted to IEEE Transactions on Neural Networks and Learning Systems (TNNLS)
☆ Balance Divergence for Knowledge Distillation
Knowledge distillation has been widely adopted in computer vision task processing, since it can effectively enhance the performance of lightweight student networks by leveraging the knowledge transferred from cumbersome teacher networks. Most existing knowledge distillation methods utilize Kullback-Leibler divergence to mimic the logit output probabilities between the teacher network and the student network. Nonetheless, these methods may neglect the negative parts of the teacher's ''dark knowledge'' because the divergence calculations may ignore the effect of the minute probabilities from the teacher's logit output. This deficiency may lead to suboptimal performance in logit mimicry during the distillation process and result in an imbalance of information acquired by the student network. In this paper, we investigate the impact of this imbalance and propose a novel method, named Balance Divergence Distillation. By introducing a compensatory operation using reverse Kullback-Leibler divergence, our method can improve the modeling of the extremely small values in the negative from the teacher and preserve the learning capacity for the positive. Furthermore, we test the impact of different temperature coefficients adjustments, which may conducted to further balance for knowledge transferring. We evaluate the proposed method on several computer vision tasks, including image classification and semantic segmentation. The evaluation results show that our method achieves an accuracy improvement of 1%~3% for lightweight students on both CIFAR-100 and ImageNet dataset, and a 4.55% improvement in mIoU for PSP-ResNet18 on the Cityscapes dataset. The experiments show that our method is a simple yet highly effective solution that can be smoothly applied to different knowledge distillation methods.
☆ BioPose: Biomechanically-accurate 3D Pose Estimation from Monocular Videos
Recent advancements in 3D human pose estimation from single-camera images and videos have relied on parametric models, like SMPL. However, these models oversimplify anatomical structures, limiting their accuracy in capturing true joint locations and movements, which reduces their applicability in biomechanics, healthcare, and robotics. Biomechanically accurate pose estimation, on the other hand, typically requires costly marker-based motion capture systems and optimization techniques in specialized labs. To bridge this gap, we propose BioPose, a novel learning-based framework for predicting biomechanically accurate 3D human pose directly from monocular videos. BioPose includes three key components: a Multi-Query Human Mesh Recovery model (MQ-HMR), a Neural Inverse Kinematics (NeurIK) model, and a 2D-informed pose refinement technique. MQ-HMR leverages a multi-query deformable transformer to extract multi-scale fine-grained image features, enabling precise human mesh recovery. NeurIK treats the mesh vertices as virtual markers, applying a spatial-temporal network to regress biomechanically accurate 3D poses under anatomical constraints. To further improve 3D pose estimations, a 2D-informed refinement step optimizes the query tokens during inference by aligning the 3D structure with 2D pose observations. Experiments on benchmark datasets demonstrate that BioPose significantly outperforms state-of-the-art methods. Project website: \url{https://m-usamasaleem.github.io/publication/BioPose/BioPose.html}.
☆ Parameter-Inverted Image Pyramid Networks for Visual Perception and Multimodal Understanding
Image pyramids are widely adopted in top-performing methods to obtain multi-scale features for precise visual perception and understanding. However, current image pyramids use the same large-scale model to process multiple resolutions of images, leading to significant computational cost. To address this challenge, we propose a novel network architecture, called Parameter-Inverted Image Pyramid Networks (PIIP). Specifically, PIIP uses pretrained models (ViTs or CNNs) as branches to process multi-scale images, where images of higher resolutions are processed by smaller network branches to balance computational cost and performance. To integrate information from different spatial scales, we further propose a novel cross-branch feature interaction mechanism. To validate PIIP, we apply it to various perception models and a representative multimodal large language model called LLaVA, and conduct extensive experiments on various tasks such as object detection, segmentation, image classification and multimodal understanding. PIIP achieves superior performance compared to single-branch and existing multi-resolution approaches with lower computational cost. When applied to InternViT-6B, a large-scale vision foundation model, PIIP can improve its performance by 1%-2% on detection and segmentation with only 40%-60% of the original computation, finally achieving 60.0 box AP on MS COCO and 59.7 mIoU on ADE20K. For multimodal understanding, our PIIP-LLaVA achieves 73.0% accuracy on TextVQA and 74.5% on MMBench with only 2.8M training data. Our code is released at https://github.com/OpenGVLab/PIIP.
☆ BMIP: Bi-directional Modality Interaction Prompt Learning for VLM
Vision-language models (VLMs) have exhibited remarkable generalization capabilities, and prompt learning for VLMs has attracted great attention for the ability to adapt pre-trained VLMs to specific downstream tasks. However, existing studies mainly focus on single-modal prompts or uni-directional modality interaction, overlooking the powerful alignment effects resulting from the interaction between the vision and language modalities. To this end, we propose a novel prompt learning method called $\underline{\textbf{B}}i-directional \underline{\textbf{M}}odality \underline{\textbf{I}}nteraction \underline{\textbf{P}}rompt (BMIP)$, which dynamically weights bi-modal information through learning the information of the attention layer, enhancing trainability and inter-modal consistency compared to simple information aggregation methods. To evaluate the effectiveness of prompt learning methods, we propose a more realistic evaluation paradigm called open-world generalization complementing the widely adopted cross-dataset transfer and domain generalization tasks. Comprehensive experiments on various datasets reveal that BMIP not only outperforms current state-of-the-art methods across all three evaluation paradigms but is also flexible enough to be combined with other prompt-based methods for consistent performance enhancement.
☆ PSReg: Prior-guided Sparse Mixture of Experts for Point Cloud Registration AAAI 2025
The discriminative feature is crucial for point cloud registration. Recent methods improve the feature discriminative by distinguishing between non-overlapping and overlapping region points. However, they still face challenges in distinguishing the ambiguous structures in the overlapping regions. Therefore, the ambiguous features they extracted resulted in a significant number of outlier matches from overlapping regions. To solve this problem, we propose a prior-guided SMoE-based registration method to improve the feature distinctiveness by dispatching the potential correspondences to the same experts. Specifically, we propose a prior-guided SMoE module by fusing prior overlap and potential correspondence embeddings for routing, assigning tokens to the most suitable experts for processing. In addition, we propose a registration framework by a specific combination of Transformer layer and prior-guided SMoE module. The proposed method not only pays attention to the importance of locating the overlapping areas of point clouds, but also commits to finding more accurate correspondences in overlapping areas. Our extensive experiments demonstrate the effectiveness of our method, achieving state-of-the-art registration recall (95.7\%/79.3\%) on the 3DMatch/3DLoMatch benchmark. Moreover, we also test the performance on ModelNet40 and demonstrate excellent performance.
comment: Accepted by AAAI 2025
☆ Automotive Elevation Mapping with Interferometric Synthetic Aperture Radar
Radar is a low-cost and ubiquitous automotive sensor, but is limited by array resolution and sensitivity when performing direction of arrival analysis. Synthetic Aperture Radar (SAR) is a class of techniques to improve azimuth resolution and sensitivity for radar. Interferometric SAR (InSAR) can be used to extract elevation from the variations in phase measurements in SAR images. Utilizing InSAR we show that a typical, low-resolution radar array mounted on a vehicle can be used to accurately localize detections in 3D space for both urban and agricultural environments. We generate point clouds in each environment by combining InSAR with a signal processing scheme tailored to automotive driving. This low-compute approach allows radar to be used as a primary sensor to map fine details in complex driving environments, and be used to make autonomous perception decisions.
comment: 9 pages, 6 figures
☆ FLAVARS: A Multimodal Foundational Language and Vision Alignment Model for Remote Sensing
Remote sensing imagery is dense with objects and contextual visual information. There is a recent trend to combine paired satellite images and text captions for pretraining performant encoders for downstream tasks. However, while contrastive image-text methods like CLIP enable vision-language alignment and zero-shot classification ability, vision-only downstream performance tends to degrade compared to image-only pretraining, such as MAE. In this paper, we propose FLAVARS, a pretraining method that combines the best of both contrastive learning and masked modeling, along with geospatial alignment via contrastive location encoding. We find that FLAVARS significantly outperforms a baseline of SkyCLIP for vision-only tasks such as KNN classification and semantic segmentation, +6\% mIOU on SpaceNet1, while retaining the ability to perform zero-shot classification, unlike MAE pretrained methods.
☆ Benchmarking Classical, Deep, and Generative Models for Human Activity Recognition
Human Activity Recognition (HAR) has gained significant importance with the growing use of sensor-equipped devices and large datasets. This paper evaluates the performance of three categories of models : classical machine learning, deep learning architectures, and Restricted Boltzmann Machines (RBMs) using five key benchmark datasets of HAR (UCI-HAR, OPPORTUNITY, PAMAP2, WISDM, and Berkeley MHAD). We assess various models, including Decision Trees, Random Forests, Convolutional Neural Networks (CNN), and Deep Belief Networks (DBNs), using metrics such as accuracy, precision, recall, and F1-score for a comprehensive comparison. The results show that CNN models offer superior performance across all datasets, especially on the Berkeley MHAD. Classical models like Random Forest do well on smaller datasets but face challenges with larger, more complex data. RBM-based models also show notable potential, particularly for feature learning. This paper offers a detailed comparison to help researchers choose the most suitable model for HAR tasks.
comment: 48 pages, 21 Figures
☆ Detecting Contextual Anomalies by Discovering Consistent Spatial Regions
We describe a method for modeling spatial context to enable video anomaly detection. The main idea is to discover regions that share similar object-level activities by clustering joint object attributes using Gaussian mixture models. We demonstrate that this straightforward approach, using orders of magnitude fewer parameters than competing models, achieves state-of-the-art performance in the challenging spatial-context-dependent Street Scene dataset. As a side benefit, the high-resolution discovered regions learned by the model also provide explainable normalcy maps for human operators without the need for any pre-trained segmentation model.
☆ Predicting Performance of Object Detection Models in Electron Microscopy Using Random Forests
Quantifying prediction uncertainty when applying object detection models to new, unlabeled datasets is critical in applied machine learning. This study introduces an approach to estimate the performance of deep learning-based object detection models for quantifying defects in transmission electron microscopy (TEM) images, focusing on detecting irradiation-induced cavities in TEM images of metal alloys. We developed a random forest regression model that predicts the object detection F1 score, a statistical metric used to evaluate the ability to accurately locate and classify objects of interest. The random forest model uses features extracted from the predictions of the object detection model whose uncertainty is being quantified, enabling fast prediction on new, unlabeled images. The mean absolute error (MAE) for predicting F1 of the trained model on test data is 0.09, and the $R^2$ score is 0.77, indicating there is a significant correlation between the random forest regression model predicted and true defect detection F1 scores. The approach is shown to be robust across three distinct TEM image datasets with varying imaging and material domains. Our approach enables users to estimate the reliability of a defect detection and segmentation model predictions and assess the applicability of the model to their specific datasets, providing valuable information about possible domain shifts and whether the model needs to be fine-tuned or trained on additional data to be maximally effective for the desired use case.
comment: 14 pages, 9 figures, 3 tables
☆ Towards Zero-Shot & Explainable Video Description by Reasoning over Graphs of Events in Space and Time
In the current era of Machine Learning, Transformers have become the de facto approach across a variety of domains, such as computer vision and natural language processing. Transformer-based solutions are the backbone of current state-of-the-art methods for language generation, image and video classification, segmentation, action and object recognition, among many others. Interestingly enough, while these state-of-the-art methods produce impressive results in their respective domains, the problem of understanding the relationship between vision and language is still beyond our reach. In this work, we propose a common ground between vision and language based on events in space and time in an explainable and programmatic way, to connect learning-based vision and language state of the art models and provide a solution to the long standing problem of describing videos in natural language. We validate that our algorithmic approach is able to generate coherent, rich and relevant textual descriptions on videos collected from a variety of datasets, using both standard metrics (e.g. Bleu, ROUGE) and the modern LLM-as-a-Jury approach.
☆ RWKV-UNet: Improving UNet with Long-Range Cooperation for Effective Medical Image Segmentation
In recent years, there have been significant advancements in deep learning for medical image analysis, especially with convolutional neural networks (CNNs) and transformer models. However, CNNs face limitations in capturing long-range dependencies while transformers suffer high computational complexities. To address this, we propose RWKV-UNet, a novel model that integrates the RWKV (Receptance Weighted Key Value) structure into the U-Net architecture. This integration enhances the model's ability to capture long-range dependencies and improve contextual understanding, which is crucial for accurate medical image segmentation. We build a strong encoder with developed inverted residual RWKV (IR-RWKV) blocks combining CNNs and RWKVs. We also propose a Cross-Channel Mix (CCM) module to improve skip connections with multi-scale feature fusion, achieving global channel information integration. Experiments on benchmark datasets, including Synapse, ACDC, BUSI, CVC-ClinicDB, CVC-ColonDB, Kvasir-SEG, ISIC 2017 and GLAS show that RWKV-UNet achieves state-of-the-art performance on various types of medical image segmentation. Additionally, smaller variants, RWKV-UNet-S and RWKV-UNet-T, balance accuracy and computational efficiency, making them suitable for broader clinical applications.
☆ Vchitect-2.0: Parallel Transformer for Scaling Up Video Diffusion Models
We present Vchitect-2.0, a parallel transformer architecture designed to scale up video diffusion models for large-scale text-to-video generation. The overall Vchitect-2.0 system has several key designs. (1) By introducing a novel Multimodal Diffusion Block, our approach achieves consistent alignment between text descriptions and generated video frames, while maintaining temporal coherence across sequences. (2) To overcome memory and computational bottlenecks, we propose a Memory-efficient Training framework that incorporates hybrid parallelism and other memory reduction techniques, enabling efficient training of long video sequences on distributed systems. (3) Additionally, our enhanced data processing pipeline ensures the creation of Vchitect T2V DataVerse, a high-quality million-scale training dataset through rigorous annotation and aesthetic evaluation. Extensive benchmarking demonstrates that Vchitect-2.0 outperforms existing methods in video quality, training efficiency, and scalability, serving as a suitable base for high-fidelity video generation.
☆ Poseidon: A ViT-based Architecture for Multi-Frame Pose Estimation with Adaptive Frame Weighting and Multi-Scale Feature Fusion
Human pose estimation, a vital task in computer vision, involves detecting and localising human joints in images and videos. While single-frame pose estimation has seen significant progress, it often fails to capture the temporal dynamics for understanding complex, continuous movements. We propose Poseidon, a novel multi-frame pose estimation architecture that extends the ViTPose model by integrating temporal information for enhanced accuracy and robustness to address these limitations. Poseidon introduces key innovations: (1) an Adaptive Frame Weighting (AFW) mechanism that dynamically prioritises frames based on their relevance, ensuring that the model focuses on the most informative data; (2) a Multi-Scale Feature Fusion (MSFF) module that aggregates features from different backbone layers to capture both fine-grained details and high-level semantics; and (3) a Cross-Attention module for effective information exchange between central and contextual frames, enhancing the model's temporal coherence. The proposed architecture improves performance in complex video scenarios and offers scalability and computational efficiency suitable for real-world applications. Our approach achieves state-of-the-art performance on the PoseTrack21 and PoseTrack18 datasets, achieving mAP scores of 88.3 and 87.8, respectively, outperforming existing methods.
☆ FARE: A Deep Learning-Based Framework for Radar-based Face Recognition and Out-of-distribution Detection ICASSP 2025
In this work, we propose a novel pipeline for face recognition and out-of-distribution (OOD) detection using short-range FMCW radar. The proposed system utilizes Range-Doppler and micro Range-Doppler Images. The architecture features a primary path (PP) responsible for the classification of in-distribution (ID) faces, complemented by intermediate paths (IPs) dedicated to OOD detection. The network is trained in two stages: first, the PP is trained using triplet loss to optimize ID face classification. In the second stage, the PP is frozen, and the IPs-comprising simple linear autoencoder networks-are trained specifically for OOD detection. Using our dataset generated with a 60 GHz FMCW radar, our method achieves an ID classification accuracy of 99.30% and an OOD detection AUROC of 96.91%.
comment: Accepted at ICASSP 2025
☆ Cross-Modal Transferable Image-to-Video Attack on Video Quality Metrics
Recent studies have revealed that modern image and video quality assessment (IQA/VQA) metrics are vulnerable to adversarial attacks. An attacker can manipulate a video through preprocessing to artificially increase its quality score according to a certain metric, despite no actual improvement in visual quality. Most of the attacks studied in the literature are white-box attacks, while black-box attacks in the context of VQA have received less attention. Moreover, some research indicates a lack of transferability of adversarial examples generated for one model to another when applied to VQA. In this paper, we propose a cross-modal attack method, IC2VQA, aimed at exploring the vulnerabilities of modern VQA models. This approach is motivated by the observation that the low-level feature spaces of images and videos are similar. We investigate the transferability of adversarial perturbations across different modalities; specifically, we analyze how adversarial perturbations generated on a white-box IQA model with an additional CLIP module can effectively target a VQA model. The addition of the CLIP module serves as a valuable aid in increasing transferability, as the CLIP model is known for its effective capture of low-level semantics. Extensive experiments demonstrate that IC2VQA achieves a high success rate in attacking three black-box VQA models. We compare our method with existing black-box attack strategies, highlighting its superiority in terms of attack success within the same number of iterations and levels of attack strength. We believe that the proposed method will contribute to the deeper analysis of robust VQA metrics.
comment: Accepted for VISAPP 2025
☆ BiDepth Multimodal Neural Network: Bidirectional Depth Deep Learning Arcitecture for Spatial-Temporal Prediction
Accurate prediction of spatial-temporal (ST) information in dynamic systems, such as urban mobility and weather patterns, is a crucial yet challenging problem. The complexity stems from the intricate interplay between spatial proximity and temporal relevance, where both long-term trends and short-term fluctuations are present in convoluted patterns. Existing approaches, including traditional statistical methods and conventional neural networks, may provide inaccurate results due to the lack of an effective mechanism that simultaneously incorporates information at variable temporal depths while maintaining spatial context, resulting in a trade-off between comprehensive long-term historical analysis and responsiveness to short-term new information. To bridge this gap, this paper proposes the BiDepth Multimodal Neural Network (BDMNN) with bidirectional depth modulation that enables a comprehensive understanding of both long-term seasonality and short-term fluctuations, adapting to the complex ST context. Case studies with real-world public data demonstrate significant improvements in prediction accuracy, with a 12% reduction in Mean Squared Error for urban traffic prediction and a 15% improvement in rain precipitation forecasting compared to state-of-the-art benchmarks, without demanding extra computational resources.
comment: This paper has been submitted to Applied Intelligence for review
☆ Leveraging 2D Masked Reconstruction for Domain Adaptation of 3D Pose Estimation
RGB-based 3D pose estimation methods have been successful with the development of deep learning and the emergence of high-quality 3D pose datasets. However, most existing methods do not operate well for testing images whose distribution is far from that of training data. However, most existing methods do not operate well for testing images whose distribution is far from that of training data. This problem might be alleviated by involving diverse data during training, however it is non-trivial to collect such diverse data with corresponding labels (i.e. 3D pose). In this paper, we introduced an unsupervised domain adaptation framework for 3D pose estimation that utilizes the unlabeled data in addition to labeled data via masked image modeling (MIM) framework. Foreground-centric reconstruction and attention regularization are further proposed to increase the effectiveness of unlabeled data usage. Experiments are conducted on the various datasets in human and hand pose estimation tasks, especially using the cross-domain scenario. We demonstrated the effectiveness of ours by achieving the state-of-the-art accuracy on all datasets.
comment: 16 pages, 7 figures
☆ 3D Gaussian Splatting with Normal Information for Mesh Extraction and Improved Rendering ICASSP 2025
Differentiable 3D Gaussian splatting has emerged as an efficient and flexible rendering technique for representing complex scenes from a collection of 2D views and enabling high-quality real-time novel-view synthesis. However, its reliance on photometric losses can lead to imprecisely reconstructed geometry and extracted meshes, especially in regions with high curvature or fine detail. We propose a novel regularization method using the gradients of a signed distance function estimated from the Gaussians, to improve the quality of rendering while also extracting a surface mesh. The regularizing normal supervision facilitates better rendering and mesh reconstruction, which is crucial for downstream applications in video generation, animation, AR-VR and gaming. We demonstrate the effectiveness of our approach on datasets such as Mip-NeRF360, Tanks and Temples, and Deep-Blending. Our method scores higher on photorealism metrics compared to other mesh extracting rendering methods without compromising mesh quality.
comment: ICASSP 2025: Workshop on Generative Data Augmentation for Real-World Signal Processing Applications
☆ Weight Averaging for Out-of-Distribution Generalization and Few-Shot Domain Adaptation
Empirical risk minimization (ERM) is not robust to changes in the distribution of data. When the distribution of test data is different from that of training data, the problem is known as out-of-distribution generalization. Recently, two techniques have been developed for addressing out-of-distribution generalization in computer vision: weight averaging (WA) and sharpness-aware minimization (SAM). WA involves training multiple models with different hyperparameters and then averaging the weights of these models, which can significantly improve out-of-distribution generalization performance. SAM optimizes a neural network to find minima in flat regions, which have been proven to perform well under distribution shifts. While these techniques have made great progress, there is still room for improvement and further exploration. In this thesis, we propose increasing the model diversity in WA explicitly by introducing gradient similarity as a loss regularizer to further improve out-of-distribution generalization performance. We also propose combining WA and SAM to solve the problem of few-shot domain adaptation. Our extensive experiments on digits datasets (MNIST, SVHN, USPS, MNIST-M) and other domain adaptation datasets (VLCS, PACS) show that combining WA and SAM leads to improved out-of-distribution generalization performance and significantly increases few-shot domain adaptation accuracy.
comment: Master Thesis
☆ Do generative video models learn physical principles from watching videos?
AI video generation is undergoing a revolution, with quality and realism advancing rapidly. These advances have led to a passionate scientific debate: Do video models learn ``world models'' that discover laws of physics -- or, alternatively, are they merely sophisticated pixel predictors that achieve visual realism without understanding the physical principles of reality? We address this question by developing Physics-IQ, a comprehensive benchmark dataset that can only be solved by acquiring a deep understanding of various physical principles, like fluid dynamics, optics, solid mechanics, magnetism and thermodynamics. We find that across a range of current models (Sora, Runway, Pika, Lumiere, Stable Video Diffusion, and VideoPoet), physical understanding is severely limited, and unrelated to visual realism. At the same time, some test cases can already be successfully solved. This indicates that acquiring certain physical principles from observation alone may be possible, but significant challenges remain. While we expect rapid advances ahead, our work demonstrates that visual realism does not imply physical understanding. Our project page is at https://physics-iq.github.io; code at https://github.com/google-deepmind/physics-IQ-benchmark.
Rate-In: Information-Driven Adaptive Dropout Rates for Improved Inference-Time Uncertainty Estimation
Accurate uncertainty estimation is crucial for deploying neural networks in risk-sensitive applications such as medical diagnosis. Monte Carlo Dropout is a widely used technique for approximating predictive uncertainty by performing stochastic forward passes with dropout during inference. However, using static dropout rates across all layers and inputs can lead to suboptimal uncertainty estimates, as it fails to adapt to the varying characteristics of individual inputs and network layers. Existing approaches optimize dropout rates during training using labeled data, resulting in fixed inference-time parameters that cannot adjust to new data distributions, compromising uncertainty estimates in Monte Carlo simulations. In this paper, we propose Rate-In, an algorithm that dynamically adjusts dropout rates during inference by quantifying the information loss induced by dropout in each layer's feature maps. By treating dropout as controlled noise injection and leveraging information-theoretic principles, Rate-In adapts dropout rates per layer and per input instance without requiring ground truth labels. By quantifying the functional information loss in feature maps, we adaptively tune dropout rates to maintain perceptual quality across diverse medical imaging tasks and architectural configurations. Our extensive empirical study on synthetic data and real-world medical imaging tasks demonstrates that Rate-In improves calibration and sharpens uncertainty estimates compared to fixed or heuristic dropout rates without compromising predictive performance. Rate-In offers a practical, unsupervised, inference-time approach to optimizing dropout for more reliable predictive uncertainty estimation in critical applications.
comment: Updated author affiliation
♻ ☆ Gaussian Eigen Models for Human Heads
Current personalized neural head avatars face a trade-off: lightweight models lack detail and realism, while high-quality, animatable avatars require significant computational resources, making them unsuitable for commodity devices. To address this gap, we introduce Gaussian Eigen Models (GEM), which provide high-quality, lightweight, and easily controllable head avatars. GEM utilizes 3D Gaussian primitives for representing the appearance combined with Gaussian splatting for rendering. Building on the success of mesh-based 3D morphable face models (3DMM), we define GEM as an ensemble of linear eigenbases for representing the head appearance of a specific subject. In particular, we construct linear bases to represent the position, scale, rotation, and opacity of the 3D Gaussians. This allows us to efficiently generate Gaussian primitives of a specific head shape by a linear combination of the basis vectors, only requiring a low-dimensional parameter vector that contains the respective coefficients. We propose to construct these linear bases (GEM) by distilling high-quality compute-intense CNN-based Gaussian avatar models that can generate expression-dependent appearance changes like wrinkles. These high-quality models are trained on multi-view videos of a subject and are distilled using a series of principal component analyses. Once we have obtained the bases that represent the animatable appearance space of a specific human, we learn a regressor that takes a single RGB image as input and predicts the low-dimensional parameter vector that corresponds to the shown facial expression. In a series of experiments, we compare GEM's self-reenactment and cross-person reenactment results to state-of-the-art 3D avatar methods, demonstrating GEM's higher visual quality and better generalization to new expressions.
comment: https://zielon.github.io/gem/
♻ ☆ A Multi-Modal Approach for Face Anti-Spoofing in Non-Calibrated Systems using Disparity Maps
Face recognition technologies are increasingly used in various applications, yet they are vulnerable to face spoofing attacks. These spoofing attacks often involve unique 3D structures, such as printed papers or mobile device screens. Although stereo-depth cameras can detect such attacks effectively, their high-cost limits their widespread adoption. Conversely, two-sensor systems without extrinsic calibration offer a cost-effective alternative but are unable to calculate depth using stereo techniques. In this work, we propose a method to overcome this challenge by leveraging facial attributes to derive disparity information and estimate relative depth for anti-spoofing purposes, using non-calibrated systems. We introduce a multi-modal anti-spoofing model, coined Disparity Model, that incorporates created disparity maps as a third modality alongside the two original sensor modalities. We demonstrate the effectiveness of the Disparity Model in countering various spoof attacks using a comprehensive dataset collected from the Intel RealSense ID Solution F455. Our method outperformed existing methods in the literature, achieving an Equal Error Rate (EER) of 1.71% and a False Negative Rate (FNR) of 2.77% at a False Positive Rate (FPR) of 1%. These errors are lower by 2.45% and 7.94% than the errors of the best comparison method, respectively. Additionally, we introduce a model ensemble that addresses 3D spoof attacks as well, achieving an EER of 2.04% and an FNR of 3.83% at an FPR of 1%. Overall, our work provides a state-of-the-art solution for the challenging task of anti-spoofing in non-calibrated systems that lack depth information.
♻ ☆ RMem: Restricted Memory Banks Improve Video Object Segmentation CVPR 2024
With recent video object segmentation (VOS) benchmarks evolving to challenging scenarios, we revisit a simple but overlooked strategy: restricting the size of memory banks. This diverges from the prevalent practice of expanding memory banks to accommodate extensive historical information. Our specially designed "memory deciphering" study offers a pivotal insight underpinning such a strategy: expanding memory banks, while seemingly beneficial, actually increases the difficulty for VOS modules to decode relevant features due to the confusion from redundant information. By restricting memory banks to a limited number of essential frames, we achieve a notable improvement in VOS accuracy. This process balances the importance and freshness of frames to maintain an informative memory bank within a bounded capacity. Additionally, restricted memory banks reduce the training-inference discrepancy in memory lengths compared with continuous expansion. This fosters new opportunities in temporal reasoning and enables us to introduce the previously overlooked "temporal positional embedding." Finally, our insights are embodied in "RMem" ("R" for restricted), a simple yet effective VOS modification that excels at challenging VOS scenarios and establishes new state of the art for object state changes (on the VOST dataset) and long videos (on the Long Videos dataset). Our code and demo are available at https://restricted-memory.github.io/.
comment: CVPR 2024, Project Page: https://restricted-memory.github.io/
♻ ☆ FaVoR: Features via Voxel Rendering for Camera Relocalization WACV
Camera relocalization methods range from dense image alignment to direct camera pose regression from a query image. Among these, sparse feature matching stands out as an efficient, versatile, and generally lightweight approach with numerous applications. However, feature-based methods often struggle with significant viewpoint and appearance changes, leading to matching failures and inaccurate pose estimates. To overcome this limitation, we propose a novel approach that leverages a globally sparse yet locally dense 3D representation of 2D features. By tracking and triangulating landmarks over a sequence of frames, we construct a sparse voxel map optimized to render image patch descriptors observed during tracking. Given an initial pose estimate, we first synthesize descriptors from the voxels using volumetric rendering and then perform feature matching to estimate the camera pose. This methodology enables the generation of descriptors for unseen views, enhancing robustness to view changes. We extensively evaluate our method on the 7-Scenes and Cambridge Landmarks datasets. Our results show that our method significantly outperforms existing state-of-the-art feature representation techniques in indoor environments, achieving up to a 39% improvement in median translation error. Additionally, our approach yields comparable results to other methods for outdoor scenarios while maintaining lower memory and computational costs.
comment: Accepted to the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Tucson, Arizona, US, Feb 28-Mar 4, 2025
♻ ☆ Vid2Sim: Realistic and Interactive Simulation from Video for Urban Navigation
Sim-to-real gap has long posed a significant challenge for robot learning in simulation, preventing the deployment of learned models in the real world. Previous work has primarily focused on domain randomization and system identification to mitigate this gap. However, these methods are often limited by the inherent constraints of the simulation and graphics engines. In this work, we propose Vid2Sim, a novel framework that effectively bridges the sim2real gap through a scalable and cost-efficient real2sim pipeline for neural 3D scene reconstruction and simulation. Given a monocular video as input, Vid2Sim can generate photorealistic and physically interactable 3D simulation environments to enable the reinforcement learning of visual navigation agents in complex urban environments. Extensive experiments demonstrate that Vid2Sim significantly improves the performance of urban navigation in the digital twins and real world by 31.2% and 68.3% in success rate compared with agents trained with prior simulation methods.
comment: Project page: https://metadriverse.github.io/vid2sim/
♻ ☆ Deep Compression Autoencoder for Efficient High-Resolution Diffusion Models
We present Deep Compression Autoencoder (DC-AE), a new family of autoencoder models for accelerating high-resolution diffusion models. Existing autoencoder models have demonstrated impressive results at a moderate spatial compression ratio (e.g., 8x), but fail to maintain satisfactory reconstruction accuracy for high spatial compression ratios (e.g., 64x). We address this challenge by introducing two key techniques: (1) Residual Autoencoding, where we design our models to learn residuals based on the space-to-channel transformed features to alleviate the optimization difficulty of high spatial-compression autoencoders; (2) Decoupled High-Resolution Adaptation, an efficient decoupled three-phases training strategy for mitigating the generalization penalty of high spatial-compression autoencoders. With these designs, we improve the autoencoder's spatial compression ratio up to 128 while maintaining the reconstruction quality. Applying our DC-AE to latent diffusion models, we achieve significant speedup without accuracy drop. For example, on ImageNet 512x512, our DC-AE provides 19.1x inference speedup and 17.9x training speedup on H100 GPU for UViT-H while achieving a better FID, compared with the widely used SD-VAE-f8 autoencoder. Our code is available at https://github.com/mit-han-lab/efficientvit.
comment: Preprint. First two authors contributed equally to this work. Update: add USiT (UViT+SiT sampler) results
♻ ☆ Scaling White-Box Transformers for Vision
CRATE, a white-box transformer architecture designed to learn compressed and sparse representations, offers an intriguing alternative to standard vision transformers (ViTs) due to its inherent mathematical interpretability. Despite extensive investigations into the scaling behaviors of language and vision transformers, the scalability of CRATE remains an open question which this paper aims to address. Specifically, we propose CRATE-$\alpha$, featuring strategic yet minimal modifications to the sparse coding block in the CRATE architecture design, and a light training recipe designed to improve the scalability of CRATE. Through extensive experiments, we demonstrate that CRATE-$\alpha$ can effectively scale with larger model sizes and datasets. For example, our CRATE-$\alpha$-B substantially outperforms the prior best CRATE-B model accuracy on ImageNet classification by 3.7%, achieving an accuracy of 83.2%. Meanwhile, when scaling further, our CRATE-$\alpha$-L obtains an ImageNet classification accuracy of 85.1%. More notably, these model performance improvements are achieved while preserving, and potentially even enhancing the interpretability of learned CRATE models, as we demonstrate through showing that the learned token representations of increasingly larger trained CRATE-$\alpha$ models yield increasingly higher-quality unsupervised object segmentation of images. The project page is https://rayjryang.github.io/CRATE-alpha/.
comment: project page: https://rayjryang.github.io/CRATE-alpha/
♻ ☆ A Comprehensive Survey of Foundation Models in Medicine
Foundation models (FMs) are large-scale deep learning models that are developed using large datasets and self-supervised learning methods. These models serve as a base for different downstream tasks, including healthcare. FMs have been adopted with great success across various domains within healthcare. Existing healthcare-based surveys have not yet included all of these domains. Therefore, we provide a detailed survey of FMs in healthcare. We focus on the history, learning strategies, flagship models, applications, and challenges of FMs. We explore how FMs such as the BERT and GPT families are reshaping various healthcare domains, including clinical large language models, medical image analysis, and omics. Furthermore, we provide a detailed taxonomy of healthcare applications facilitated by FMs, such as clinical NLP, medical computer vision, graph learning, and other biology-related tasks. Despite the promising opportunities FMs provide, they also have several associated challenges, which are explained in detail. We also outline open research issues and potential lessons learned to provide researchers and practitioners with insights into the capabilities of FMs in healthcare to advance their deployment and mitigate associated risks.
comment: Currently under review in IEEE REVIEWS IN BIOMEDICAL ENGINEERING
♻ ☆ Text-guided Image Restoration and Semantic Enhancement for Text-to-Image Person Retrieval
The goal of Text-to-Image Person Retrieval (TIPR) is to retrieve specific person images according to the given textual descriptions. A primary challenge in this task is bridging the substantial representational gap between visual and textual modalities. The prevailing methods map texts and images into unified embedding space for matching, while the intricate semantic correspondences between texts and images are still not effectively constructed. To address this issue, we propose a novel TIPR framework to build fine-grained interactions and alignment between person images and the corresponding texts. Specifically, via fine-tuning the Contrastive Language-Image Pre-training (CLIP) model, a visual-textual dual encoder is firstly constructed, to preliminarily align the image and text features. Secondly, a Text-guided Image Restoration (TIR) auxiliary task is proposed to map abstract textual entities to specific image regions, improving the alignment between local textual and visual embeddings. Additionally, a cross-modal triplet loss is presented to handle hard samples, and further enhance the model's discriminability for minor differences. Moreover, a pruning-based text data augmentation approach is proposed to enhance focus on essential elements in descriptions, thereby avoiding excessive model attention to less significant information. The experimental results show our proposed method outperforms state-of-the-art methods on three popular benchmark datasets, and the code will be made publicly available at https://github.com/Delong-liu-bupt/SEN.
comment: The paper was withdrawn due to a dispute among the authors regarding the content of the article
♻ ☆ Relaxed Rotational Equivariance via $G$-Biases in Vision
Group Equivariant Convolution (GConv) can capture rotational equivariance from original data. It assumes uniform and strict rotational equivariance across all features as the transformations under the specific group. However, the presentation or distribution of real-world data rarely conforms to strict rotational equivariance, commonly referred to as Rotational Symmetry-Breaking (RSB) in the system or dataset, making GConv unable to adapt effectively to this phenomenon. Motivated by this, we propose a simple but highly effective method to address this problem, which utilizes a set of learnable biases called $G$-Biases under the group order to break strict group constraints and then achieve a Relaxed Rotational Equivariant Convolution (RREConv). To validate the efficiency of RREConv, we conduct extensive ablation experiments on the discrete rotational group $\mathcal{C}_n$. Experiments demonstrate that the proposed RREConv-based methods achieve excellent performance compared to existing GConv-based methods in both classification and 2D object detection tasks on the natural image datasets.
♻ ☆ Feedback-driven object detection and iterative model improvement
Automated object detection has become increasingly valuable across diverse applications, yet efficient, high-quality annotation remains a persistent challenge. In this paper, we present the development and evaluation of a platform designed to interactively improve object detection models. The platform allows uploading and annotating images as well as fine-tuning object detection models. Users can then manually review and refine annotations, further creating improved snapshots that are used for automatic object detection on subsequent image uploads - a process we refer to as semi-automatic annotation resulting in a significant gain in annotation efficiency. Whereas iterative refinement of model results to speed up annotation has become common practice, we are the first to quantitatively evaluate its benefits with respect to time, effort, and interaction savings. Our experimental results show clear evidence for a significant time reduction of up to 53% for semi-automatic compared to manual annotation. Importantly, these efficiency gains did not compromise annotation quality, while matching or occasionally even exceeding the accuracy of manual annotations. These findings demonstrate the potential of our lightweight annotation platform for creating high-quality object detection datasets and provide best practices to guide future development of annotation platforms. The platform is open-source, with the frontend and backend repositories available on GitHub (https://github.com/ml-lab-htw/iterative-annotate). To support the understanding of our labeling process, we have created an explanatory video demonstrating the methodology using microscopy images of E. coli bacteria as an example. The video is available on YouTube (https://www.youtube.com/watch?v=CM9uhE8NN5E).
comment: AI4EA24
♻ ☆ ORFormer: Occlusion-Robust Transformer for Accurate Facial Landmark Detection WACV 2025
Although facial landmark detection (FLD) has gained significant progress, existing FLD methods still suffer from performance drops on partially non-visible faces, such as faces with occlusions or under extreme lighting conditions or poses. To address this issue, we introduce ORFormer, a novel transformer-based method that can detect non-visible regions and recover their missing features from visible parts. Specifically, ORFormer associates each image patch token with one additional learnable token called the messenger token. The messenger token aggregates features from all but its patch. This way, the consensus between a patch and other patches can be assessed by referring to the similarity between its regular and messenger embeddings, enabling non-visible region identification. Our method then recovers occluded patches with features aggregated by the messenger tokens. Leveraging the recovered features, ORFormer compiles high-quality heatmaps for the downstream FLD task. Extensive experiments show that our method generates heatmaps resilient to partial occlusions. By integrating the resultant heatmaps into existing FLD methods, our method performs favorably against the state of the arts on challenging datasets such as WFLW and COFW.
comment: WACV 2025 Project Link: https://ben0919.github.io/ORFormer/
♻ ☆ Diversified Augmentation with Domain Adaptation for Debiased Video Temporal Grounding ICASSP 2025
Temporal sentence grounding in videos (TSGV) faces challenges due to public TSGV datasets containing significant temporal biases, which are attributed to the uneven temporal distributions of target moments. Existing methods generate augmented videos, where target moments are forced to have varying temporal locations. However, since the video lengths of the given datasets have small variations, only changing the temporal locations results in poor generalization ability in videos with varying lengths. In this paper, we propose a novel training framework complemented by diversified data augmentation and a domain discriminator. The data augmentation generates videos with various lengths and target moment locations to diversify temporal distributions. However, augmented videos inevitably exhibit distinct feature distributions which may introduce noise. To address this, we design a domain adaptation auxiliary task to diminish feature discrepancies between original and augmented videos. We also encourage the model to produce distinct predictions for videos with the same text queries but different moment locations to promote debiased training. Experiments on Charades-CD and ActivityNet-CD datasets demonstrate the effectiveness and generalization abilities of our method in multiple grounding structures, achieving state-of-the-art results.
comment: Accepted by ICASSP 2025
♻ ☆ MSCViT: A Small-size ViT architecture with Multi-Scale Self-Attention Mechanism for Tiny Datasets
Vision Transformer (ViT) has demonstrated significant potential in various vision tasks due to its strong ability in modelling long-range dependencies. However, such success is largely fueled by training on massive samples. In real applications, the large-scale datasets are not always available, and ViT performs worse than Convolutional Neural Networks (CNNs) if it is only trained on small scale dataset (called tiny dataset), since it requires large amount of training data to ensure its representational capacity. In this paper, a small-size ViT architecture with multi-scale self-attention mechanism and convolution blocks is presented (dubbed MSCViT) to model different scales of attention at each layer. Firstly, we introduced wavelet convolution, which selectively combines the high-frequency components obtained by frequency division with our convolution channel to extract local features. Then, a lightweight multi-head attention module is developed to reduce the number of tokens and computational costs. Finally, the positional encoding (PE) in the backbone is replaced by a local feature extraction module. Compared with the original ViT, it is parameter-efficient and is particularly suitable for tiny datasets. Extensive experiments have been conducted on tiny datasets, in which our model achieves an accuracy of 84.68% on CIFAR-100 with 14.0M parameters and 2.5 GFLOPs, without pre-training on large datasets.
♻ ☆ WINE: Wavelet-Guided GAN Inversion and Editing for High-Fidelity Refinement
Recent advanced GAN inversion models aim to convey high-fidelity information from original images to generators through methods using generator tuning or high-dimensional feature learning. Despite these efforts, accurately reconstructing image-specific details remains as a challenge due to the inherent limitations both in terms of training and structural aspects, leading to a bias towards low-frequency information. In this paper, we look into the widely used pixel loss in GAN inversion, revealing its predominant focus on the reconstruction of low-frequency features. We then propose WINE, a Wavelet-guided GAN Inversion aNd Editing model, which transfers the high-frequency information through wavelet coefficients via newly proposed wavelet loss and wavelet fusion scheme. Notably, WINE is the first attempt to interpret GAN inversion in the frequency domain. Our experimental results showcase the precision of WINE in preserving high-frequency details and enhancing image quality. Even in editing scenarios, WINE outperforms existing state-of-the-art GAN inversion models with a fine balance between editability and reconstruction quality.
♻ ☆ Generalized and Efficient 2D Gaussian Splatting for Arbitrary-scale Super-Resolution
Equipped with the continuous representation capability of Multi-Layer Perceptron (MLP), Implicit Neural Representation (INR) has been successfully employed for Arbitrary-scale Super-Resolution (ASR). However, the limited receptive field of the linear layers in MLP restricts the representation capability of INR, while it is computationally expensive to query the MLP numerous times to render each pixel. Recently, Gaussian Splatting (GS) has shown its advantages over INR in both visual quality and rendering speed in 3D tasks, which motivates us to explore whether GS can be employed for the ASR task. However, directly applying GS to ASR is exceptionally challenging because the original GS is an optimization-based method through overfitting each single scene, while in ASR we aim to learn a single model that can generalize to different images and scaling factors. We overcome these challenges by developing two novel techniques. Firstly, to generalize GS for ASR, we elaborately design an architecture to predict the corresponding image-conditioned Gaussians of the input low-resolution image in a feed-forward manner. Secondly, we implement an efficient differentiable 2D GPU/CUDA-based scale-aware rasterization to render super-resolved images by sampling discrete RGB values from the predicted contiguous Gaussians. Via end-to-end training, our optimized network, namely GSASR, can perform ASR for any image and unseen scaling factors. Extensive experiments validate the effectiveness of our proposed method. The project page can be found at \url{https://mt-cly.github.io/GSASR.github.io/}.
♻ ☆ Dynamic Sub-graph Distillation for Robust Semi-supervised Continual Learning
Continual learning (CL) has shown promising results and comparable performance to learning at once in a fully supervised manner. However, CL strategies typically require a large number of labeled samples, making their real-life deployment challenging. In this work, we focus on semi-supervised continual learning (SSCL), where the model progressively learns from partially labeled data with unknown categories. We provide a comprehensive analysis of SSCL and demonstrate that unreliable distributions of unlabeled data lead to unstable training and refinement of the progressing stages. This problem severely impacts the performance of SSCL. To address the limitations, we propose a novel approach called Dynamic Sub-Graph Distillation (DSGD) for semi-supervised continual learning, which leverages both semantic and structural information to achieve more stable knowledge distillation on unlabeled data and exhibit robustness against distribution bias. Firstly, we formalize a general model of structural distillation and design a dynamic graph construction for the continual learning progress. Next, we define a structure distillation vector and design a dynamic sub-graph distillation algorithm, which enables end-to-end training and adaptability to scale up tasks. The entire proposed method is adaptable to various CL methods and supervision settings. Finally, experiments conducted on three datasets CIFAR10, CIFAR100, and ImageNet-100, with varying supervision ratios, demonstrate the effectiveness of our proposed approach in mitigating the catastrophic forgetting problem in semi-supervised continual learning scenarios.
♻ ☆ Less is More: The Influence of Pruning on the Explainability of CNNs
Over the last century, deep learning models have become the state-of-the-art for solving complex computer vision problems. These modern computer vision models have millions of parameters, which presents two major challenges: (1) the increased computational requirements hamper the deployment in resource-constrained environments, such as mobile or IoT devices, and (2) explaining the complex decisions of such networks to humans is challenging. Network pruning is a technical approach to reduce the complexity of models, where less important parameters are removed. The work presented in this paper investigates whether this reduction in technical complexity also helps with perceived explainability. To do so, we conducted a pre-study and two human-grounded experiments, assessing the effects of different pruning ratios on explainability. Overall, we evaluate four different compression rates (i.e., 2, 4, 8, and 32) with 37 500 tasks on Mechanical Turk. Results indicate that lower compression rates have a positive influence on explainability, while higher compression rates show negative effects. Furthermore, we were able to identify sweet spots that increase both the perceived explainability and the model's performance.
♻ ☆ Spurious Feature Eraser: Stabilizing Test-Time Adaptation for Vision-Language Foundation Model
Vision-language foundation models have exhibited remarkable success across a multitude of downstream tasks due to their scalability on extensive image-text paired data. However, these models also display significant limitations when applied to downstream tasks, such as fine-grained image classification, as a result of ``decision shortcuts'' that hinder their generalization capabilities. In this work, we find that the CLIP model possesses a rich set of features, encompassing both \textit{desired invariant causal features} and \textit{undesired decision shortcuts}. Moreover, the underperformance of CLIP on downstream tasks originates from its inability to effectively utilize pre-trained features in accordance with specific task requirements. To address this challenge, we propose a simple yet effective method, Spurious Feature Eraser (SEraser), to alleviate the decision shortcuts by erasing the spurious features. Specifically, we introduce a test-time prompt tuning paradigm that optimizes a learnable prompt, thereby compelling the model to exploit invariant features while disregarding decision shortcuts during the inference phase. The proposed method effectively alleviates excessive dependence on potentially misleading spurious information. We conduct comparative analysis of the proposed method against various approaches which validates the significant superiority.
♻ ☆ ImagiNet: A Multi-Content Benchmark for Synthetic Image Detection AAAI 2025
Recent generative models produce images with a level of authenticity that makes them nearly indistinguishable from real photos and artwork. Potential harmful use cases of these models, necessitate the creation of robust synthetic image detectors. However, current datasets in the field contain generated images with questionable quality or have examples from one predominant content type which leads to poor generalizability of the underlying detectors. We find that the curation of a balanced amount of high-resolution generated images across various content types is crucial for the generalizability of detectors, and introduce ImagiNet, a dataset of 200K examples, spanning four categories: photos, paintings, faces, and miscellaneous. Synthetic images in ImagiNet are produced with both open-source and proprietary generators, whereas real counterparts for each content type are collected from public datasets. The structure of ImagiNet allows for a two-track evaluation system: i) classification as real or synthetic and ii) identification of the generative model. To establish a strong baseline, we train a ResNet-50 model using a self-supervised contrastive objective (SelfCon) for each track which achieves evaluation AUC of up to 0.99 and balanced accuracy ranging from 86% to 95%, even under conditions that involve compression and resizing. The provided model is generalizable enough to achieve zero-shot state-of-the-art performance on previous synthetic detection benchmarks. We provide ablations to demonstrate the importance of content types and publish code and data.
comment: Workshop on Datasets and Evaluators of AI Safety, AAAI 2025
♻ ☆ Digi2Real: Bridging the Realism Gap in Synthetic Data Face Recognition via Foundation Models WACV 2025
The accuracy of face recognition systems has improved significantly in the past few years, thanks to the large amount of data collected and advancements in neural network architectures. However, these large-scale datasets are often collected without explicit consent, raising ethical and privacy concerns. To address this, there have been proposals to use synthetic datasets for training face recognition models. Yet, such models still rely on real data to train the generative models and generally exhibit inferior performance compared to those trained on real datasets. One of these datasets, DigiFace, uses a graphics pipeline to generate different identities and intra-class variations without using real data in model training. However, the performance of this approach is poor on face recognition benchmarks, possibly due to the lack of realism in the images generated by the graphics pipeline. In this work, we introduce a novel framework for realism transfer aimed at enhancing the realism of synthetically generated face images. Our method leverages the large-scale face foundation model, and we adapt the pipeline for realism enhancement. By integrating the controllable aspects of the graphics pipeline with our realism enhancement technique, we generate a large amount of realistic variations, combining the advantages of both approaches. Our empirical evaluations demonstrate that models trained using our enhanced dataset significantly improve the performance of face recognition systems over the baseline. The source code and dataset will be publicly accessible at the following link: https://www.idiap.ch/paper/digi2real
comment: The dataset would be available here: https://www.idiap.ch/paper/digi2real Accepted for Publication in WACV 2025
♻ ☆ MambaTalk: Efficient Holistic Gesture Synthesis with Selective State Space Models
Gesture synthesis is a vital realm of human-computer interaction, with wide-ranging applications across various fields like film, robotics, and virtual reality. Recent advancements have utilized the diffusion model and attention mechanisms to improve gesture synthesis. However, due to the high computational complexity of these techniques, generating long and diverse sequences with low latency remains a challenge. We explore the potential of state space models (SSMs) to address the challenge, implementing a two-stage modeling strategy with discrete motion priors to enhance the quality of gestures. Leveraging the foundational Mamba block, we introduce MambaTalk, enhancing gesture diversity and rhythm through multimodal integration. Extensive experiments demonstrate that our method matches or exceeds the performance of state-of-the-art models.
comment: NeurlPS 2024, Camera Ready
♻ ☆ Audio-Agent: Leveraging LLMs For Audio Generation, Editing and Composition
We introduce Audio-Agent, a multimodal framework for audio generation, editing and composition based on text or video inputs. Conventional approaches for text-to-audio (TTA) tasks often make single-pass inferences from text descriptions. While straightforward, this design struggles to produce high-quality audio when given complex text conditions. In our method, we utilize a pre-trained TTA diffusion network as the audio generation agent to work in tandem with GPT-4, which decomposes the text condition into atomic, specific instructions and calls the agent for audio generation. In doing so, Audio-Agent can generate high-quality audio that is closely aligned with the provided text or video exhibiting complex and multiple events, while supporting variable-length and variable-volume generation. For video-to-audio (VTA) tasks, most existing methods require training a timestamp detector to synchronize video events with the generated audio, a process that can be tedious and time-consuming. Instead, we propose a simpler approach by fine-tuning a pre-trained Large Language Model (LLM), e.g., Gemma2-2B-it, to obtain both semantic and temporal conditions that bridge the video and audio modality. Consequently, our framework contributes a comprehensive solution for both TTA and VTA tasks without substantial computational overhead in training.
♻ ☆ EventHallusion: Diagnosing Event Hallucinations in Video LLMs
Recently, Multimodal Large Language Models (MLLMs) have made significant progress in the video comprehension field. Despite remarkable content reasoning and instruction following capabilities they demonstrated, the hallucination problem of these VideoLLMs is less explored compared with its counterpart in the image domain. To mitigate this gap, we propose EventHallusion, a novel benchmark that focuses on assessing the VideoLLMs' hallucination toward event, the crux of video analysis. From a hallucination attribution perspective, our EventHallusion benchmark is curated to assess a VideoLLM's susceptibility toward language priors and vision-language biases. On the other hand, we also propose a simple yet effective method, called Temporal Contrastive Decoding (TCD), to tackle the hallucination problems of VideoLLMs. The proposed TCD method rectifies the model's bias toward its priors during the decoding stage by comparing the original video with a modified version, in which temporal cues are disrupted. Through comprehensive evaluation of eight open-source and two closed-source VideoLLMs on the proposed EventHallusion benchmark, we observe that the open-source models suffer significantly from hallucination problems, whereas the closed-source ones perform markedly better. By further equipping open-source VideoLLMs with the proposed TCD approach, evident performance improvements are achieved across most metrics in the EventHallusion benchmark. Our codes and benchmark data are available at https://github.com/Stevetich/EventHallusion.
♻ ☆ Fast, Scale-Adaptive, and Uncertainty-Aware Downscaling of Earth System Model Fields with Generative Machine Learning
Accurate and high-resolution Earth system model (ESM) simulations are essential to assess the ecological and socio-economic impacts of anthropogenic climate change, but are computationally too expensive to be run at sufficiently high spatial resolution. Recent machine learning approaches have shown promising results in downscaling ESM simulations, outperforming state-of-the-art statistical approaches. However, existing methods require computationally costly retraining for each ESM and extrapolate poorly to climates unseen during training. We address these shortcomings by learning a consistency model (CM) that efficiently and accurately downscales arbitrary ESM simulations without retraining in a zero-shot manner. Our approach yields probabilistic downscaled fields at a resolution only limited by the observational reference data. We show that the CM outperforms state-of-the-art diffusion models at a fraction of computational cost while maintaining high controllability on the downscaling task. Further, our method generalizes to climate states unseen during training without explicitly formulated physical constraints.
♻ ☆ Learning Symmetries via Weight-Sharing with Doubly Stochastic Tensors
Group equivariance has emerged as a valuable inductive bias in deep learning, enhancing generalization, data efficiency, and robustness. Classically, group equivariant methods require the groups of interest to be known beforehand, which may not be realistic for real-world data. Additionally, baking in fixed group equivariance may impose overly restrictive constraints on model architecture. This highlights the need for methods that can dynamically discover and apply symmetries as soft constraints. For neural network architectures, equivariance is commonly achieved through group transformations of a canonical weight tensor, resulting in weight sharing over a given group $G$. In this work, we propose to learn such a weight-sharing scheme by defining a collection of learnable doubly stochastic matrices that act as soft permutation matrices on canonical weight tensors, which can take regular group representations as a special case. This yields learnable kernel transformations that are jointly optimized with downstream tasks. We show that when the dataset exhibits strong symmetries, the permutation matrices will converge to regular group representations and our weight-sharing networks effectively become regular group convolutions. Additionally, the flexibility of the method enables it to effectively pick up on partial symmetries.
comment: 19 pages, 14 figures, 4 tables
♻ ☆ TextureCrop: Enhancing Synthetic Image Detection through Texture-based Cropping
Generative AI technologies produce increasingly realistic imagery, which, despite its potential for creative applications, can also be misused to produce misleading and harmful content. This renders Synthetic Image Detection (SID) methods essential for identifying AI-generated content online. State-of-the-art SID methods typically resize or center-crop input images due to architectural or computational constraints, which hampers the detection of artifacts that appear in high-resolution images. To address this limitation, we propose TextureCrop, an image pre-processing component that can be plugged in any pre-trained SID model to improve its performance. By focusing on high-frequency image parts where generative artifacts are prevalent, TextureCrop enhances SID performance with manageable memory requirements. Experimental results demonstrate a consistent improvement in AUC across various detectors by 6.1% compared to center cropping and by 15% compared to resizing, across high-resolution images from the Forensynths, Synthbuster and TWIGMA datasets. Code available at https : //github.com/mever-team/texture-crop.
comment: 10 pages, 7 images
♻ ☆ Transformers and Large Language Models for Efficient Intrusion Detection Systems: A Comprehensive Survey
With significant advancements in Transformers LLMs, NLP has extended its reach into many research fields due to its enhanced capabilities in text generation and user interaction. One field benefiting greatly from these advancements is cybersecurity. In cybersecurity, many parameters that need to be protected and exchanged between senders and receivers are in the form of text and tabular data, making NLP a valuable tool in enhancing the security measures of communication protocols. This survey paper provides a comprehensive analysis of the utilization of Transformers and LLMs in cyber-threat detection systems. The methodology of paper selection and bibliometric analysis is outlined to establish a rigorous framework for evaluating existing research. The fundamentals of Transformers are discussed, including background information on various cyber-attacks and datasets commonly used in this field. The survey explores the application of Transformers in IDSs, focusing on different architectures such as Attention-based models, LLMs like BERT and GPT, CNN/LSTM-Transformer hybrids, emerging approaches like ViTs, among others. Furthermore, it explores the diverse environments and applications where Transformers and LLMs-based IDS have been implemented, including computer networks, IoT devices, critical infrastructure protection, cloud computing, SDN, as well as in autonomous vehicles. The paper also addresses research challenges and future directions in this area, identifying key issues such as interpretability, scalability, and adaptability to evolving threats, and more. Finally, the conclusion summarizes the findings and highlights the significance of Transformers and LLMs in enhancing cyber-threat detection capabilities, while also outlining potential avenues for further research and development.
comment: arXiv admin note: text overlap with arXiv:2405.04760 by other authors
♻ ☆ Rethinking Decoders for Transformer-based Semantic Segmentation: A Compression Perspective NeurIPS2024
State-of-the-art methods for Transformer-based semantic segmentation typically adopt Transformer decoders that are used to extract additional embeddings from image embeddings via cross-attention, refine either or both types of embeddings via self-attention, and project image embeddings onto the additional embeddings via dot-product. Despite their remarkable success, these empirical designs still lack theoretical justifications or interpretations, thus hindering potentially principled improvements. In this paper, we argue that there are fundamental connections between semantic segmentation and compression, especially between the Transformer decoders and Principal Component Analysis (PCA). From such a perspective, we derive a white-box, fully attentional DEcoder for PrIncipled semantiC segemenTation (DEPICT), with the interpretations as follows: 1) the self-attention operator refines image embeddings to construct an ideal principal subspace that aligns with the supervision and retains most information; 2) the cross-attention operator seeks to find a low-rank approximation of the refined image embeddings, which is expected to be a set of orthonormal bases of the principal subspace and corresponds to the predefined classes; 3) the dot-product operation yields compact representation for image embeddings as segmentation masks. Experiments conducted on dataset ADE20K find that DEPICT consistently outperforms its black-box counterpart, Segmenter, and it is light weight and more robust.
comment: NeurIPS2024. Code:https://github.com/QishuaiWen/DEPICT/
♻ ☆ Enhanced Masked Image Modeling to Avoid Model Collapse on Multi-modal MRI Datasets
Multi-modal magnetic resonance imaging (MRI) provides information of lesions for computer-aided diagnosis from different views. Deep learning algorithms are suitable for identifying specific anatomical structures, segmenting lesions, and classifying diseases. Manual labels are limited due to the high expense, which hinders further improvement of accuracy. Self-supervised learning, particularly masked image modeling (MIM), has shown promise in utilizing unlabeled data. However, we spot model collapse when applying MIM to multi-modal MRI datasets. The performance of downstream tasks does not see any improvement following the collapsed model. To solve model collapse, we analyze and address it in two types: complete collapse and dimensional collapse. We find complete collapse occurs because the collapsed loss value in multi-modal MRI datasets falls below the normally converged loss value. Based on this, the hybrid mask pattern (HMP) masking strategy is introduced to elevate the collapsed loss above the normally converged loss value and avoid complete collapse. Additionally, we reveal that dimensional collapse stems from insufficient feature uniformity in MIM. We mitigate dimensional collapse by introducing the pyramid barlow twins (PBT) module as an explicit regularization method. Overall, we construct the enhanced MIM (E-MIM) with HMP and PBT module to avoid model collapse multi-modal MRI. Experiments are conducted on three multi-modal MRI datasets to validate the effectiveness of our approach in preventing both types of model collapse. By preventing model collapse, the training of the model becomes more stable, resulting in a decent improvement in performance for segmentation and classification tasks. The code is available at https://github.com/LinxuanHan/E-MIM.
♻ ☆ Perception Matters: Enhancing Embodied AI with Uncertainty-Aware Semantic Segmentation
Embodied AI has made significant progress acting in unexplored environments. However, tasks such as object search have largely focused on efficient policy learning. In this work, we identify several gaps in current search methods: They largely focus on dated perception models, neglect temporal aggregation, and transfer from ground truth directly to noisy perception at test time, without accounting for the resulting overconfidence in the perceived state. We address the identified problems through calibrated perception probabilities and uncertainty across aggregation and found decisions, thereby adapting the models for sequential tasks. The resulting methods can be directly integrated with pretrained models across a wide family of existing search approaches at no additional training cost. We perform extensive evaluations of aggregation methods across both different semantic perception models and policies, confirming the importance of calibrated uncertainties in both the aggregation and found decisions. We make the code and trained models available at https://semantic-search.cs.uni-freiburg.de.
♻ ☆ TextureDiffusion: Target Prompt Disentangled Editing for Various Texture Transfer
Recently, text-guided image editing has achieved significant success. However, existing methods can only apply simple textures like wood or gold when changing the texture of an object. Complex textures such as cloud or fire pose a challenge. This limitation stems from that the target prompt needs to contain both the input image content and , restricting the texture representation. In this paper, we propose TextureDiffusion, a tuning-free image editing method applied to various texture transfer. Initially, the target prompt is directly set to "", making the texture disentangled from the input image content to enhance texture representation. Subsequently, query features in self-attention and features in residual blocks are utilized to preserve the structure of the input image. Finally, to maintain the background, we introduce an edit localization technique which blends the self-attention results and the intermediate latents. Comprehensive experiments demonstrate that TextureDiffusion can harmoniously transfer various textures with excellent structure and background preservation. Code is publicly available at https://github.com/THU-CVML/TextureDiffusion
♻ ☆ ONER: Online Experience Replay for Incremental Anomaly Detection
Incremental anomaly detection sequentially recognizes abnormal regions in novel categories for dynamic industrial scenarios. This remains highly challenging due to knowledge overwriting and feature conflicts, leading to catastrophic forgetting. In this work, we propose ONER, an end-to-end ONline Experience Replay method, which efficiently mitigates catastrophic forgetting while adapting to new tasks with minimal cost. Specifically, our framework utilizes two types of experiences from past tasks: decomposed prompts and semantic prototypes, addressing both model parameter updates and feature optimization. The decomposed prompts consist of learnable components that assemble to produce attention-conditioned prompts. These prompts reuse previously learned knowledge, enabling model to learn novel tasks effectively. The semantic prototypes operate at both pixel and image levels, performing regularization in the latent feature space to prevent forgetting across various tasks. Extensive experiments demonstrate that our method achieves state-of-the-art performance in incremental anomaly detection with significantly reduced forgetting, as well as efficiently adapting to new categories with minimal costs. These results confirm the efficiency and stability of ONER, making it a powerful solution for real-world applications.
♻ ☆ HyFusion: Enhanced Reception Field Transformer for Hyperspectral Image Fusion
Hyperspectral image (HSI) fusion addresses the challenge of reconstructing High-Resolution HSIs (HR-HSIs) from High-Resolution Multispectral images (HR-MSIs) and Low-Resolution HSIs (LR-HSIs), a critical task given the high costs and hardware limitations associated with acquiring high-quality HSIs. While existing methods leverage spatial and spectral relationships, they often suffer from limited receptive fields and insufficient feature utilization, leading to suboptimal performance. Furthermore, the scarcity of high-quality HSI data highlights the importance of efficient data utilization to maximize reconstruction quality. To address these issues, we propose HyFusion, a novel Dual-Coupled Network (DCN) framework designed to enhance cross-domain feature extraction and enable effective feature map reusing. The framework first processes HR-MSI and LR-HSI inputs through specialized subnetworks that mutually enhance each other during feature extraction, preserving complementary spatial and spectral details. At its core, HyFusion utilizes an Enhanced Reception Field Block (ERFB), which combines shifting-window attention and dense connections to expand the receptive field, effectively capturing long-range dependencies while minimizing information loss. Extensive experiments demonstrate that HyFusion achieves state-of-the-art performance in HR-MSI/LR-HSI fusion, significantly improving reconstruction quality while maintaining a compact model size and computational efficiency. By integrating enhanced receptive fields and feature map reusing into a coupled network architecture, HyFusion provides a practical and effective solution for HSI fusion in resource-constrained scenarios, setting a new benchmark in hyperspectral imaging. Our code will be publicly available.
comment: Submitted to IGARSS 2025
♻ ☆ Knowledge-Guided Prompt Learning for Deepfake Facial Image Detection ICASSP 2025
Recent generative models demonstrate impressive performance on synthesizing photographic images, which makes humans hardly to distinguish them from pristine ones, especially on realistic-looking synthetic facial images. Previous works mostly focus on mining discriminative artifacts from vast amount of visual data. However, they usually lack the exploration of prior knowledge and rarely pay attention to the domain shift between training categories (e.g., natural and indoor objects) and testing ones (e.g., fine-grained human facial images), resulting in unsatisfactory detection performance. To address these issues, we propose a novel knowledge-guided prompt learning method for deepfake facial image detection. Specifically, we retrieve forgery-related prompts from large language models as expert knowledge to guide the optimization of learnable prompts. Besides, we elaborate test-time prompt tuning to alleviate the domain shift, achieving significant performance improvement and boosting the application in real-world scenarios. Extensive experiments on DeepFakeFaceForensics dataset show that our proposed approach notably outperforms state-of-the-art methods.
comment: Accepted by ICASSP 2025
♻ ☆ PastNet: Introducing Physical Inductive Biases for Spatio-temporal Video Prediction
In this paper, we investigate the challenge of spatio-temporal video prediction task, which involves generating future video frames based on historical spatio-temporal observation streams. Existing approaches typically utilize external information such as semantic maps to improve video prediction accuracy, which often neglect the inherent physical knowledge embedded within videos. Worse still, their high computational costs could impede their applications for high-resolution videos. To address these constraints, we introduce a novel framework called \underline{P}hysics-\underline{a}ssisted \underline{S}patio-\underline{t}emporal \underline{Net}work (PastNet) for high-quality video prediction. The core of PastNet lies in incorporating a spectral convolution operator in the Fourier domain, which efficiently introduces inductive biases from the underlying physical laws. Additionally, we employ a memory bank with the estimated intrinsic dimensionality to discretize local features during the processing of complex spatio-temporal signals, thereby reducing computational costs and facilitating efficient high-resolution video prediction. Extensive experiments on various widely-used spatio-temporal video benchmarks demonstrate the effectiveness and efficiency of the proposed PastNet compared with a range of state-of-the-art methods, particularly in high-resolution scenarios.
comment: 11
♻ ☆ DehazeGS: Seeing Through Fog with 3D Gaussian Splatting
Current novel view synthesis tasks primarily rely on high-quality and clear images. However, in foggy scenes, scattering and attenuation can significantly degrade the reconstruction and rendering quality. Although NeRF-based dehazing reconstruction algorithms have been developed, their use of deep fully connected neural networks and per-ray sampling strategies leads to high computational costs. Moreover, NeRF's implicit representation struggles to recover fine details from hazy scenes. In contrast, recent advancements in 3D Gaussian Splatting achieve high-quality 3D scene reconstruction by explicitly modeling point clouds into 3D Gaussians. In this paper, we propose leveraging the explicit Gaussian representation to explain the foggy image formation process through a physically accurate forward rendering process. We introduce DehazeGS, a method capable of decomposing and rendering a fog-free background from participating media using only muti-view foggy images as input. We model the transmission within each Gaussian distribution to simulate the formation of fog. During this process, we jointly learn the atmospheric light and scattering coefficient while optimizing the Gaussian representation of the hazy scene. In the inference stage, we eliminate the effects of scattering and attenuation on the Gaussians and directly project them onto a 2D plane to obtain a clear view. Experiments on both synthetic and real-world foggy datasets demonstrate that DehazeGS achieves state-of-the-art performance in terms of both rendering quality and computational efficiency.
comment: 9 pages,4 figures
♻ ☆ Spacewalker: Traversing Representation Spaces for Fast Interactive Exploration and Annotation of Unstructured Data
In industries such as healthcare, finance, and manufacturing, analysis of unstructured textual data presents significant challenges for analysis and decision making. Uncovering patterns within large-scale corpora and understanding their semantic impact is critical, but depends on domain experts or resource-intensive manual reviews. In response, we introduce Spacewalker in this system demonstration paper, an interactive tool designed to analyze, explore, and annotate data across multiple modalities. It allows users to extract data representations, visualize them in low-dimensional spaces and traverse large datasets either exploratory or by querying regions of interest. We evaluated Spacewalker through extensive experiments and annotation studies, assessing its efficacy in improving data integrity verification and annotation. We show that Spacewalker reduces time and effort compared to traditional methods. The code of this work is open-source and can be found at: https://github.com/code-lukas/Spacewalker
♻ ☆ Knowledge Transfer and Domain Adaptation for Fine-Grained Remote Sensing Image Segmentation
Fine-grained remote sensing image segmentation is essential for accurately identifying detailed objects in remote sensing images. Recently, vision transformer models (VTMs) pre-trained on large-scale datasets have demonstrated strong zero-shot generalization. However, directly applying them to specific tasks may lead to domain shift. We introduce a novel end-to-end learning paradigm combining knowledge guidance with domain refinement to enhance performance. We present two key components: the Feature Alignment Module (FAM) and the Feature Modulation Module (FMM). FAM aligns features from a CNN-based backbone with those from the pretrained VTM's encoder using channel transformation and spatial interpolation, and transfers knowledge via KL divergence and L2 normalization constraint. FMM further adapts the knowledge to the specific domain to address domain shift. We also introduce a fine-grained grass segmentation dataset and demonstrate, through experiments on two datasets, that our method achieves a significant improvement of 2.57 mIoU on the grass dataset and 3.73 mIoU on the cloud dataset. The results highlight the potential of combining knowledge transfer and domain adaptation to overcome domain-related challenges and data limitations. The project page is available at https://xavierjiezou.github.io/KTDA/.
comment: 6 pages, 3 figures, 6 tables
♻ ☆ Edicho: Consistent Image Editing in the Wild
As a verified need, consistent editing across in-the-wild images remains a technical challenge arising from various unmanageable factors, like object poses, lighting conditions, and photography environments. Edicho steps in with a training-free solution based on diffusion models, featuring a fundamental design principle of using explicit image correspondence to direct editing. Specifically, the key components include an attention manipulation module and a carefully refined classifier-free guidance (CFG) denoising strategy, both of which take into account the pre-estimated correspondence. Such an inference-time algorithm enjoys a plug-and-play nature and is compatible to most diffusion-based editing methods, such as ControlNet and BrushNet. Extensive results demonstrate the efficacy of Edicho in consistent cross-image editing under diverse settings. We will release the code to facilitate future studies.
comment: Project page: https://ant-research.github.io/edicho/
♻ ☆ MoPE: Mixture of Prompt Experts for Parameter-Efficient and Scalable Multimodal Fusion
Despite the demonstrated parameter efficiency of prompt-based multimodal fusion methods, their limited adaptivity and expressiveness often result in suboptimal performance compared to other tuning approaches. In this paper, we introduce the Mixture of Prompt Experts (MoPE), the first technique designed to overcome these limitations by decomposing standard prompts to capture instance-level features adaptively. Building on this decomposition, MoPE enhances prompt fusion's expressiveness by leveraging multimodal pairing priors to route the most effective prompt for each instance dynamically. Compared to vanilla prompting, our MoPE-based fusion method exhibits greater expressiveness, scaling more effectively with the training data and the overall number of trainable parameters. We also investigate regularization terms for expert routing, which lead to emergent expert specialization with enhanced adaptiveness and interpretablity. Extensive experiments across six multimodal datasets spanning four modalities demonstrate state-of-the-art performance for prompt fusion, matching or even surpassing the performance of fine-tuning while requiring only 0.8% of the trainable parameters. Project homepage: https://github.com/songrise/MoPE
comment: Under Review, Extended version of arxiv:2312.03734
♻ ☆ BIOMEDICA: An Open Biomedical Image-Caption Archive, Dataset, and Vision-Language Models Derived from Scientific Literature
The development of vision-language models (VLMs) is driven by large-scale and diverse multimodal datasets. However, progress toward generalist biomedical VLMs is limited by the lack of annotated, publicly accessible datasets across biology and medicine. Existing efforts are restricted to narrow domains, missing the full diversity of biomedical knowledge encoded in scientific literature. To address this gap, we introduce BIOMEDICA, a scalable, open-source framework to extract, annotate, and serialize the entirety of the PubMed Central Open Access subset into an easy-to-use, publicly accessible dataset. Our framework produces a comprehensive archive with over 24 million unique image-text pairs from over 6 million articles. Metadata and expert-guided annotations are also provided. We demonstrate the utility and accessibility of our resource by releasing BMCA-CLIP, a suite of CLIP-style models continuously pre-trained on the BIOMEDICA dataset via streaming, eliminating the need to download 27 TB of data locally. On average, our models achieve state-of-the-art performance across 40 tasks - spanning pathology, radiology, ophthalmology, dermatology, surgery, molecular biology, parasitology, and cell biology - excelling in zero-shot classification with a 6.56% average improvement (as high as 29.8% and 17.5% in dermatology and ophthalmology, respectively), and stronger image-text retrieval, all while using 10x less compute. To foster reproducibility and collaboration, we release our codebase and dataset for the broader research community.
♻ ☆ Recognizing Artistic Style of Archaeological Image Fragments Using Deep Style Extrapolation
Ancient artworks obtained in archaeological excavations usually suffer from a certain degree of fragmentation and physical degradation. Often, fragments of multiple artifacts from different periods or artistic styles could be found on the same site. With each fragment containing only partial information about its source, and pieces from different objects being mixed, categorizing broken artifacts based on their visual cues could be a challenging task, even for professionals. As classification is a common function of many machine learning models, the power of modern architectures can be harnessed for efficient and accurate fragment classification. In this work, we present a generalized deep-learning framework for predicting the artistic style of image fragments, achieving state-of-the-art results for pieces with varying styles and geometries.
comment: To be published in the 27th International Conference on Human-Computer Interaction (HCII 2025)
♻ ☆ Flash Window Attention: speedup the attention computation for Swin Transformer
To address the high resolution of image pixels, the Swin Transformer introduces window attention. This mechanism divides an image into non-overlapping windows and restricts attention computation to within each window, significantly enhancing computational efficiency. To further optimize this process, one might consider replacing standard attention with flash attention, which has proven to be more efficient in language models. However, a direct substitution is ineffective. Flash attention is designed for long sequences, whereas window attention deals with shorter sequences but must handle numerous of them in parallel. In this report, we present an optimized solution called Flash Window Attention, tailored specifically for window attention. Flash Window Attention improves attention computation efficiency by up to 300% and enhances end-to-end runtime efficiency by up to 30%. Our code is available online.
♻ ☆ Analyzing Infrastructure LiDAR Placement with Realistic LiDAR Simulation Library ICRA'23
Recently, Vehicle-to-Everything(V2X) cooperative perception has attracted increasing attention. Infrastructure sensors play a critical role in this research field; however, how to find the optimal placement of infrastructure sensors is rarely studied. In this paper, we investigate the problem of infrastructure sensor placement and propose a pipeline that can efficiently and effectively find optimal installation positions for infrastructure sensors in a realistic simulated environment. To better simulate and evaluate LiDAR placement, we establish a Realistic LiDAR Simulation library that can simulate the unique characteristics of different popular LiDARs and produce high-fidelity LiDAR point clouds in the CARLA simulator. Through simulating point cloud data in different LiDAR placements, we can evaluate the perception accuracy of these placements using multiple detection models. Then, we analyze the correlation between the point cloud distribution and perception accuracy by calculating the density and uniformity of regions of interest. Experiments show that when using the same number and type of LiDAR, the placement scheme optimized by our proposed method improves the average precision by 15%, compared with the conventional placement scheme in the standard lane scene. We also analyze the correlation between perception performance in the region of interest and LiDAR point cloud distribution and validate that density and uniformity can be indicators of performance. Both the RLS Library and related code will be released at https://github.com/PJLab-ADG/PCSim.
comment: 7 pages, 6 figures, accepted to the IEEE International Conference on Robotics and Automation (ICRA'23)
♻ ☆ A Cascaded Dilated Convolution Approach for Mpox Lesion Classification
The global outbreak of the Mpox virus, classified as a Public Health Emergency of International Concern (PHEIC) by the World Health Organization, presents significant diagnostic challenges due to its visual similarity to other skin lesion diseases. Traditional diagnostic methods for Mpox, which rely on clinical symptoms and laboratory tests, are slow and labor intensive. Deep learning-based approaches for skin lesion classification offer a promising alternative. However, developing a model that balances efficiency with accuracy is crucial to ensure reliable and timely diagnosis without compromising performance. This study introduces the Cascaded Atrous Group Attention (CAGA) framework to address these challenges, combining the Cascaded Atrous Attention module and the Cascaded Group Attention mechanism. The Cascaded Atrous Attention module utilizes dilated convolutions and cascades the outputs to enhance multi-scale representation. This is integrated into the Cascaded Group Attention mechanism, which reduces redundancy in Multi-Head Self-Attention. By integrating the Cascaded Atrous Group Attention module with EfficientViT-L1 as the backbone architecture, this approach achieves state-of-the-art performance, reaching an accuracy of 98% on the Mpox Close Skin Image (MCSI) dataset while reducing model parameters by 37.5% compared to the original EfficientViT-L1. The model's robustness is demonstrated through extensive validation on two additional benchmark datasets, where it consistently outperforms existing approaches.
comment: 8 pages, 4 figures, Submitted to Medical Imaging with Deep Learning
♻ ☆ Implicit Neural Representations with Fourier Kolmogorov-Arnold Networks ICASSP 2025
Implicit neural representations (INRs) use neural networks to provide continuous and resolution-independent representations of complex signals with a small number of parameters. However, existing INR models often fail to capture important frequency components specific to each task. To address this issue, in this paper, we propose a Fourier Kolmogorov Arnold network (FKAN) for INRs. The proposed FKAN utilizes learnable activation functions modeled as Fourier series in the first layer to effectively control and learn the task-specific frequency components. In addition, the activation functions with learnable Fourier coefficients improve the ability of the network to capture complex patterns and details, which is beneficial for high-resolution and high-dimensional data. Experimental results show that our proposed FKAN model outperforms three state-of-the-art baseline schemes, and improves the peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) for the image representation task and intersection over union (IoU) for the 3D occupancy volume representation task, respectively. The code is available at github.com/Ali-Meh619/FKAN.
comment: Accepted for publication in Proc. IEEE ICASSP 2025
♻ ☆ Gradient descent with generalized Newton's method
We propose the generalized Newton's method (GeN) -- a Hessian-informed approach that applies to any optimizer such as SGD and Adam, and covers the Newton-Raphson method as a sub-case. Our method automatically and dynamically selects the learning rate that accelerates the convergence, without the intensive tuning of the learning rate scheduler. In practice, our method is easily implementable, since it only requires additional forward passes with almost zero computational overhead (in terms of training time and memory cost), if the overhead is amortized over many iterations. We present extensive experiments on language and vision tasks (e.g. GPT and ResNet) to showcase that GeN optimizers match the state-of-the-art performance, which was achieved with carefully tuned learning rate schedulers.
♻ ☆ MambaTrack: Exploiting Dual-Enhancement for Night UAV Tracking
Night unmanned aerial vehicle (UAV) tracking is impeded by the challenges of poor illumination, with previous daylight-optimized methods demonstrating suboptimal performance in low-light conditions, limiting the utility of UAV applications. To this end, we propose an efficient mamba-based tracker, leveraging dual enhancement techniques to boost night UAV tracking. The mamba-based low-light enhancer, equipped with an illumination estimator and a damage restorer, achieves global image enhancement while preserving the details and structure of low-light images. Additionally, we advance a cross-modal mamba network to achieve efficient interactive learning between vision and language modalities. Extensive experiments showcase that our method achieves advanced performance and exhibits significantly improved computation and memory efficiency. For instance, our method is 2.8$\times$ faster than CiteTracker and reduces 50.2$\%$ GPU memory. Our codes are available at \url{https://github.com/983632847/Awesome-Multimodal-Object-Tracking}.
comment: Preprint
♻ ☆ Dissecting Query-Key Interaction in Vision Transformers
Self-attention in vision transformers is often thought to perform perceptual grouping where tokens attend to other tokens with similar embeddings, which could correspond to semantically similar features of an object. However, attending to dissimilar tokens can be beneficial by providing contextual information. We propose to analyze the query-key interaction by the singular value decomposition of the interaction matrix (i.e. ${\textbf{W}_q}^\top\textbf{W}_k$). We find that in many ViTs, especially those with classification training objectives, early layers attend more to similar tokens, while late layers show increased attention to dissimilar tokens, providing evidence corresponding to perceptual grouping and contextualization, respectively. Many of these interactions between features represented by singular vectors are interpretable and semantic, such as attention between relevant objects, between parts of an object, or between the foreground and background. This offers a novel perspective on interpreting the attention mechanism, which contributes to understanding how transformer models utilize context and salient features when processing images.
♻ ☆ Smartphone-based Eye Tracking System using Edge Intelligence and Model Optimisation
A significant limitation of current smartphone-based eye-tracking algorithms is their low accuracy when applied to video-type visual stimuli, as they are typically trained on static images. Also, the increasing demand for real-time interactive applications like games, VR, and AR on smartphones requires overcoming the limitations posed by resource constraints such as limited computational power, battery life, and network bandwidth. Therefore, we developed two new smartphone eye-tracking techniques for video-type visuals by combining Convolutional Neural Networks (CNN) with two different Recurrent Neural Networks (RNN), namely Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU). Our CNN+LSTM and CNN+GRU models achieved an average Root Mean Square Error of 0.955 cm and 1.091 cm, respectively. To address the computational constraints of smartphones, we developed an edge intelligence architecture to enhance the performance of smartphone-based eye tracking. We applied various optimisation methods like quantisation and pruning to deep learning models for better energy, CPU, and memory usage on edge devices, focusing on real-time processing. Using model quantisation, the model inference time in the CNN+LSTM and CNN+GRU models was reduced by 21.72% and 19.50%, respectively, on edge devices.
comment: I have included the three papers as reference, which are closely related. We have expanded the future work section to provide a more thorough discussion of the concepts of "varying lighting conditions" and "dynamic user environments." We have added a note below Table 4 to clarify the abbreviations' meaning. Elaborated the role of the Domain Expert within the presentation layer in Section 4.1
♻ ☆ The Collection of a Human Robot Collaboration Dataset for Cooperative Assembly in Glovebox Environments
Industry 4.0 introduced AI as a transformative solution for modernizing manufacturing processes. Its successor, Industry 5.0, envisions humans as collaborators and experts guiding these AI-driven manufacturing solutions. Developing these techniques necessitates algorithms capable of safe, real-time identification of human positions in a scene, particularly their hands, during collaborative assembly. Although substantial efforts have curated datasets for hand segmentation, most focus on residential or commercial domains. Existing datasets targeting industrial settings predominantly rely on synthetic data, which we demonstrate does not effectively transfer to real-world operations. Moreover, these datasets lack uncertainty estimations critical for safe collaboration. Addressing these gaps, we present HAGS: Hand and Glove Segmentation Dataset. This dataset provides challenging examples to build applications toward hand and glove segmentation in industrial human-robot collaboration scenarios as well as assess out-of-distribution images, constructed via green screen augmentations, to determine ML-classifier robustness. We study state-of-the-art, real-time segmentation models to evaluate existing methods. Our dataset and baselines are publicly available.
comment: draft paper to be submitted to IJRR
♻ ☆ A systematic review of the use of Deep Learning in Satellite Imagery for Agriculture
Agricultural research is essential for increasing food production to meet the requirements of an increasing population in the coming decades. Recently, satellite technology has been improving rapidly and deep learning has seen much success in generic computer vision tasks and many application areas which presents an important opportunity to improve analysis of agricultural land. Here we present a systematic review of 150 studies to find the current uses of deep learning on satellite imagery for agricultural research. Although we identify 5 categories of agricultural monitoring tasks, the majority of the research interest is in crop segmentation and yield prediction. We found that, when used, modern deep learning methods consistently outperformed traditional machine learning across most tasks; the only exception was that Long Short-Term Memory (LSTM) Recurrent Neural Networks did not consistently outperform Random Forests (RF) for yield prediction. The reviewed studies have largely adopted methodologies from generic computer vision, except for one major omission: benchmark datasets are not utilised to evaluate models across studies, making it difficult to compare results. Additionally, some studies have specifically utilised the extra spectral resolution available in satellite imagery, but other divergent properties of satellite images - such as the hugely different scales of spatial patterns - are not being taken advantage of in the reviewed studies.
comment: 23 pages, 5 figures and 10 tables in main paper. Final version, as submitted and accepted at JSTARS
♻ ☆ Zero-shot 3D Segmentation of Abdominal Organs in CT Scans Using Segment Anything Model 2: Adapting Video Tracking Capabilities for 3D Medical Imaging
Objectives: To evaluate the zero-shot performance of Segment Anything Model 2 (SAM 2) in 3D segmentation of abdominal organs in CT scans, and to investigate the effects of prompt settings on segmentation results. Materials and Methods: In this retrospective study, we used a subset of the TotalSegmentator CT dataset from eight institutions to assess SAM 2's ability to segment eight abdominal organs. Segmentation was initiated from three different z-coordinate levels (caudal, mid, and cranial levels) of each organ. Performance was measured using the Dice similarity coefficient (DSC). We also analyzed the impact of "negative prompts," which explicitly exclude certain regions from the segmentation process, on accuracy. Results: 123 patients (mean age, 60.7 \pm 15.5 years; 63 men, 60 women) were evaluated. As a zero-shot approach, larger organs with clear boundaries demonstrated high segmentation performance, with mean DSCs as follows: liver 0.821 \pm 0.192, right kidney 0.862 \pm 0.212, left kidney 0.870 \pm 0.154, and spleen 0.891 \pm 0.131. Smaller organs showed lower performance: gallbladder 0.531 \pm 0.291, pancreas 0.361 \pm 0.197, and adrenal glands, right 0.203 \pm 0.222, left 0.308 \pm 0.234. The initial slice for segmentation and the use of negative prompts significantly influenced the results. By removing negative prompts from the input, the DSCs significantly decreased for six organs. Conclusion: SAM 2 demonstrated promising zero-shot performance in segmenting certain abdominal organs in CT scans, particularly larger organs. Performance was significantly influenced by input negative prompts and initial slice selection, highlighting the importance of optimizing these factors.
comment: 20 pages, 7 figures (including 2 supplemental figure), 4 tables
♻ ☆ XVertNet: Unsupervised Contrast Enhancement of Vertebral Structures with Dynamic Self-Tuning Guidance and Multi-Stage Analysis
Chest X-rays remain the primary diagnostic tool in emergency medicine, yet their limited ability to capture fine anatomical details can result in missed or delayed diagnoses. To address this, we introduce XVertNet, a novel deep-learning framework designed to enhance vertebral structure visualization in X-ray images significantly. Our framework introduces two key innovations: (1) An unsupervised learning architecture that eliminates reliance on manually labeled training data a persistent bottleneck in medical imaging, and (2) a dynamic self-tuned internal guidance mechanism featuring an adaptive feedback loop for real-time image optimization. Extensive validation across four major public datasets revealed that XVertNet outperforms state-of-the-art enhancement methods, as demonstrated by improvements in entropy scores, Tenengrad criterion values, the local phase coherence sharpness index (LPC-SI), and thetone mapped image quality index (TMQI). Furthermore, clinical validation conducted with two board-certified radiologists confirmed that the enhanced images enabled more sensitive detection of subtle vertebral fractures and degenerative changes. The unsupervised nature of XVertNet facilitates immediate clinical deployment without requiring additional training overhead. This innovation represents a transformative advancement in emergency radiology, providing a scalable and time-efficient solution to enhance diagnostic accuracy in high-pressure clinical environments.
comment: 13 pages
♻ ☆ Expressive Text-to-Image Generation with Rich Text
Plain text has become a prevalent interface for text-to-image synthesis. However, its limited customization options hinder users from accurately describing desired outputs. For example, plain text makes it hard to specify continuous quantities, such as the precise RGB color value or importance of each word. Furthermore, creating detailed text prompts for complex scenes is tedious for humans to write and challenging for text encoders to interpret. To address these challenges, we propose using a rich-text editor supporting formats such as font style, size, color, and footnote. We extract each word's attributes from rich text to enable local style control, explicit token reweighting, precise color rendering, and detailed region synthesis. We achieve these capabilities through a region-based diffusion process. We first obtain each word's region based on attention maps of a diffusion process using plain text. For each region, we enforce its text attributes by creating region-specific detailed prompts and applying region-specific guidance, and maintain its fidelity against plain-text generation through region-based injections. We present various examples of image generation from rich text and demonstrate that our method outperforms strong baselines with quantitative evaluations.
comment: Project webpage: https://rich-text-to-image.github.io/
♻ ☆ UrbanIR: Large-Scale Urban Scene Inverse Rendering from a Single Video
We present UrbanIR (Urban Scene Inverse Rendering), a new inverse graphics model that enables realistic, free-viewpoint renderings of scenes under various lighting conditions with a single video. It accurately infers shape, albedo, visibility, and sun and sky illumination from wide-baseline videos, such as those from car-mounted cameras, differing from NeRF's dense view settings. In this context, standard methods often yield subpar geometry and material estimates, such as inaccurate roof representations and numerous 'floaters'. UrbanIR addresses these issues with novel losses that reduce errors in inverse graphics inference and rendering artifacts. Its techniques allow for precise shadow volume estimation in the original scene. The model's outputs support controllable editing, enabling photorealistic free-viewpoint renderings of night simulations, relit scenes, and inserted objects, marking a significant improvement over existing state-of-the-art methods.
comment: https://urbaninverserendering.github.io/
♻ ☆ SYNAPSE: SYmbolic Neural-Aided Preference Synthesis Engine AAAI 25
This paper addresses the problem of preference learning, which aims to align robot behaviors through learning user specific preferences (e.g. "good pull-over location") from visual demonstrations. Despite its similarity to learning factual concepts (e.g. "red door"), preference learning is a fundamentally harder problem due to its subjective nature and the paucity of person-specific training data. We address this problem using a novel framework called SYNAPSE, which is a neuro-symbolic approach designed to efficiently learn preferential concepts from limited data. SYNAPSE represents preferences as neuro-symbolic programs, facilitating inspection of individual parts for alignment, in a domain-specific language (DSL) that operates over images and leverages a novel combination of visual parsing, large language models, and program synthesis to learn programs representing individual preferences. We perform extensive evaluations on various preferential concepts as well as user case studies demonstrating its ability to align well with dissimilar user preferences. Our method significantly outperforms baselines, especially when it comes to out of distribution generalization. We show the importance of the design choices in the framework through multiple ablation studies. Code, additional results, and supplementary material can be found on the website: https://amrl.cs.utexas.edu/synapse
comment: Accepted (oral) at AAAI 25
♻ ☆ Enhancing Performance of Point Cloud Completion Networks with Consistency Loss
Point cloud completion networks are conventionally trained to minimize the disparities between the completed point cloud and the ground-truth counterpart. However, an incomplete object-level point cloud can have multiple valid completion solutions when it is examined in isolation. This one-to-many mapping issue can cause contradictory supervision signals to the network because the loss function may produce different values for identical input-output pairs of the network. In many cases, this issue could adversely affect the network optimization process. In this work, we propose to enhance the conventional learning objective using a novel completion consistency loss to mitigate the one-to-many mapping problem. Specifically, the proposed consistency loss ensure that a point cloud completion network generates a coherent completion solution for incomplete objects originating from the same source point cloud. Experimental results across multiple well-established datasets and benchmarks demonstrated the proposed completion consistency loss have excellent capability to enhance the completion performance of various existing networks without any modification to the design of the networks. The proposed consistency loss enhances the performance of the point completion network without affecting the inference speed, thereby increasing the accuracy of point cloud completion. Notably, a state-of-the-art point completion network trained with the proposed consistency loss can achieve state-of-the-art accuracy on the challenging new MVP dataset. The code and result of experiment various point completion models using proposed consistency loss will be available at: https://github.com/kaist-avelab/ConsistencyLoss .
comment: First version of Paper "Enhancing Performance of Point Cloud Completion Networks with Consistency Loss" by Kevin Tirta Wijaya and Christofel Rio Goenawan. In process submission to Neurocomputing Journal 2024
♻ ☆ SplatMAP: Online Dense Monocular SLAM with 3D Gaussian Splatting
Achieving high-fidelity 3D reconstruction from monocular video remains challenging due to the inherent limitations of traditional methods like Structure-from-Motion (SfM) and monocular SLAM in accurately capturing scene details. While differentiable rendering techniques such as Neural Radiance Fields (NeRF) address some of these challenges, their high computational costs make them unsuitable for real-time applications. Additionally, existing 3D Gaussian Splatting (3DGS) methods often focus on photometric consistency, neglecting geometric accuracy and failing to exploit SLAM's dynamic depth and pose updates for scene refinement. We propose a framework integrating dense SLAM with 3DGS for real-time, high-fidelity dense reconstruction. Our approach introduces SLAM-Informed Adaptive Densification, which dynamically updates and densifies the Gaussian model by leveraging dense point clouds from SLAM. Additionally, we incorporate Geometry-Guided Optimization, which combines edge-aware geometric constraints and photometric consistency to jointly optimize the appearance and geometry of the 3DGS scene representation, enabling detailed and accurate SLAM mapping reconstruction. Experiments on the Replica and TUM-RGBD datasets demonstrate the effectiveness of our approach, achieving state-of-the-art results among monocular systems. Specifically, our method achieves a PSNR of 36.864, SSIM of 0.985, and LPIPS of 0.040 on Replica, representing improvements of 10.7%, 6.4%, and 49.4%, respectively, over the previous SOTA. On TUM-RGBD, our method outperforms the closest baseline by 10.2%, 6.6%, and 34.7% in the same metrics. These results highlight the potential of our framework in bridging the gap between photometric and geometric dense 3D scene representations, paving the way for practical and efficient monocular dense reconstruction.
♻ ☆ On the Geometry of Deep Learning
In this paper, we overview one promising avenue of progress at the mathematical foundation of deep learning: the connection between deep networks and function approximation by affine splines (continuous piecewise linear functions in multiple dimensions). In particular, we will overview work over the past decade on understanding certain geometrical properties of a deep network's affine spline mapping, in particular how it tessellates its input space. As we will see, the affine spline connection and geometrical viewpoint provide a powerful portal through which to view, analyze, and improve the inner workings of a deep network.
comment: Accepted for publication at 'Notices of the American Mathematical Society'
Information Retrieval 5
☆ TriMod Fusion for Multimodal Named Entity Recognition in Social Media SC
Social media platforms serve as invaluable sources of user-generated content, offering insights into various aspects of human behavior. Named Entity Recognition (NER) plays a crucial role in analyzing such content by identifying and categorizing named entities into predefined classes. However, traditional NER models often struggle with the informal, contextually sparse, and ambiguous nature of social media language. To address these challenges, recent research has focused on multimodal approaches that leverage both textual and visual cues for enhanced entity recognition. Despite advances, existing methods face limitations in capturing nuanced mappings between visual objects and textual entities and addressing distributional disparities between modalities. In this paper, we propose a novel approach that integrates textual, visual, and hashtag features (TriMod), utilizing Transformer-attention for effective modality fusion. The improvements exhibited by our model suggest that named entities can greatly benefit from the auxiliary context provided by multiple modalities, enabling more accurate recognition. Through the experiments on a multimodal social media dataset, we demonstrate the superiority of our approach over existing state-of-the-art methods, achieving significant improvements in precision, recall, and F1 score.
comment: Accepted at CASCON
☆ Eliciting In-context Retrieval and Reasoning for Long-context Large Language Models
Recent advancements in long-context language models (LCLMs) promise to transform Retrieval-Augmented Generation (RAG) by simplifying pipelines. With their expanded context windows, LCLMs can process entire knowledge bases and perform retrieval and reasoning directly -- a capability we define as In-Context Retrieval and Reasoning (ICR^2). However, existing benchmarks like LOFT often overestimate LCLM performance by providing overly simplified contexts. To address this, we introduce ICR^2, a benchmark that evaluates LCLMs in more realistic scenarios by including confounding passages retrieved with strong retrievers. We then propose three methods to enhance LCLM performance: (1) retrieve-then-generate fine-tuning, (2) retrieval-attention-probing, which uses attention heads to filter and de-noise long contexts during decoding, and (3) joint retrieval head training alongside the generation head. Our evaluation of five well-known LCLMs on LOFT and ICR^2 demonstrates significant gains with our best approach applied to Mistral-7B: +17 and +15 points by Exact Match on LOFT, and +13 and +2 points on ICR^2, compared to vanilla RAG and supervised fine-tuning, respectively. It even outperforms GPT-4-Turbo on most tasks despite being a much smaller model.
☆ Unsupervised Query Routing for Retrieval Augmented Generation
Query routing for retrieval-augmented generation aims to assign an input query to the most suitable search engine. Existing works rely heavily on supervised datasets that require extensive manual annotation, resulting in high costs and limited scalability, as well as poor generalization to out-of-distribution scenarios. To address these challenges, we introduce a novel unsupervised method that constructs the "upper-bound" response to evaluate the quality of retrieval-augmented responses. This evaluation enables the decision of the most suitable search engine for a given query. By eliminating manual annotations, our approach can automatically process large-scale real user queries and create training data. We conduct extensive experiments across five datasets, demonstrating that our method significantly enhances scalability and generalization capabilities.
♻ ☆ Mathematical Information Retrieval: Search and Question Answering
Mathematical information is essential for technical work, but its creation, interpretation, and search are challenging. To help address these challenges, researchers have developed multimodal search engines and mathematical question answering systems. This book begins with a simple framework characterizing the information tasks that people and systems perform as we work to answer math-related questions. The framework is used to organize and relate the other core topics of the book, including interactions between people and systems, representing math formulas in sources, and evaluation. We close by addressing some key questions and presenting directions for future work. This book is intended for students, instructors, and researchers interested in systems that help us find and use mathematical information.
comment: [DRAFT] Revised (3rd) draft
♻ ☆ Spacewalker: Traversing Representation Spaces for Fast Interactive Exploration and Annotation of Unstructured Data
In industries such as healthcare, finance, and manufacturing, analysis of unstructured textual data presents significant challenges for analysis and decision making. Uncovering patterns within large-scale corpora and understanding their semantic impact is critical, but depends on domain experts or resource-intensive manual reviews. In response, we introduce Spacewalker in this system demonstration paper, an interactive tool designed to analyze, explore, and annotate data across multiple modalities. It allows users to extract data representations, visualize them in low-dimensional spaces and traverse large datasets either exploratory or by querying regions of interest. We evaluated Spacewalker through extensive experiments and annotation studies, assessing its efficacy in improving data integrity verification and annotation. We show that Spacewalker reduces time and effort compared to traditional methods. The code of this work is open-source and can be found at: https://github.com/code-lukas/Spacewalker
Machine Learning 193
☆ Gradient Equilibrium in Online Learning: Theory and Applications
We present a new perspective on online learning that we refer to as gradient equilibrium: a sequence of iterates achieves gradient equilibrium if the average of gradients of losses along the sequence converges to zero. In general, this condition is not implied by nor implies sublinear regret. It turns out that gradient equilibrium is achievable by standard online learning methods such as gradient descent and mirror descent with constant step sizes (rather than decaying step sizes, as is usually required for no regret). Further, as we show through examples, gradient equilibrium translates into an interpretable and meaningful property in online prediction problems spanning regression, classification, quantile estimation, and others. Notably, we show that the gradient equilibrium framework can be used to develop a debiasing scheme for black-box predictions under arbitrary distribution shift, based on simple post hoc online descent updates. We also show that post hoc gradient updates can be used to calibrate predicted quantiles under distribution shift, and that the framework leads to unbiased Elo scores for pairwise preference prediction.
comment: Code available at https://github.com/aangelopoulos/gradient-equilibrium/
☆ A Similarity Measure Between Functions with Applications to Statistical Learning and Optimization
In this note, we present a novel measure of similarity between two functions. It quantifies how the sub-optimality gaps of two functions convert to each other, and unifies several existing notions of functional similarity. We show that it has convenient operation rules, and illustrate its use in empirical risk minimization and non-stationary online optimization.
comment: 9 pages
☆ Diffusion Adversarial Post-Training for One-Step Video Generation
The diffusion models are widely used for image and video generation, but their iterative generation process is slow and expansive. While existing distillation approaches have demonstrated the potential for one-step generation in the image domain, they still suffer from significant quality degradation. In this work, we propose Adversarial Post-Training (APT) against real data following diffusion pre-training for one-step video generation. To improve the training stability and quality, we introduce several improvements to the model architecture and training procedures, along with an approximated R1 regularization objective. Empirically, our experiments show that our adversarial post-trained model, Seaweed-APT, can generate 2-second, 1280x720, 24fps videos in real time using a single forward evaluation step. Additionally, our model is capable of generating 1024px images in a single step, achieving quality comparable to state-of-the-art methods.
☆ Path Loss Prediction Using Machine Learning with Extended Features
Wireless communications rely on path loss modeling, which is most effective when it includes the physical details of the propagation environment. Acquiring this data has historically been challenging, but geographic information system data is becoming increasingly available with higher resolution and accuracy. Access to such details enables propagation models to more accurately predict coverage and minimize interference in wireless deployments. Machine learning-based modeling can significantly support this effort, with feature-based approaches allowing for accurate, efficient, and scalable propagation modeling. Building on previous work, we introduce an extended set of features that improves prediction accuracy while, most importantly, maintaining model generalization across a broad range of environments.
comment: 4 pages, 4 figures, conference paper
☆ Benchmarking Graph Representations and Graph Neural Networks for Multivariate Time Series Classification
Multivariate Time Series Classification (MTSC) enables the analysis if complex temporal data, and thus serves as a cornerstone in various real-world applications, ranging from healthcare to finance. Since the relationship among variables in MTS usually contain crucial cues, a large number of graph-based MTSC approaches have been proposed, as the graph topology and edges can explicitly represent relationships among variables (channels), where not only various MTS graph representation learning strategies but also different Graph Neural Networks (GNNs) have been explored. Despite such progresses, there is no comprehensive study that fairly benchmarks and investigates the performances of existing widely-used graph representation learning strategies/GNN classifiers in the application of different MTSC tasks. In this paper, we present the first benchmark which systematically investigates the effectiveness of the widely-used three node feature definition strategies, four edge feature learning strategies and five GNN architecture, resulting in 60 different variants for graph-based MTSC. These variants are developed and evaluated with a standardized data pipeline and training/validation/testing strategy on 26 widely-used suspensor MTSC datasets. Our experiments highlight that node features significantly influence MTSC performance, while the visualization of edge features illustrates why adaptive edge learning outperforms other edge feature learning methods. The code of the proposed benchmark is publicly available at \url{https://github.com/CVI-yangwn/Benchmark-GNN-for-Multivariate-Time-Series-Classification}.
☆ Polynomial Threshold Functions of Bounded Tree-Width: Some Explainability and Complexity Aspects
The tree-width of a multivariate polynomial is the tree-width of the hypergraph with hyperedges corresponding to its terms. Multivariate polynomials of bounded tree-width have been studied by Makowsky and Meer as a new sparsity condition that allows for polynomial solvability of problems which are intractable in general. We consider a variation on this theme for Boolean variables. A representation of a Boolean function as the sign of a polynomial is called a polynomial threshold representation. We discuss Boolean functions representable as polynomial threshold functions of bounded tree-width and present two applications to Bayesian network classifiers, a probabilistic graphical model. Both applications are in Explainable Artificial Intelligence (XAI), the research area dealing with the black-box nature of many recent machine learning models. We also give a separation result between the representational power of positive and general polynomial threshold functions.
comment: 22 pages, 3 figures. To be published in Festschrift in honor of Johann A. Makowsky
☆ Avoiding subtraction and division of stochastic signals using normalizing flows: NFdeconvolve
Across the scientific realm, we find ourselves subtracting or dividing stochastic signals. For instance, consider a stochastic realization, $x$, generated from the addition or multiplication of two stochastic signals $a$ and $b$, namely $x=a+b$ or $x = ab$. For the $x=a+b$ example, $a$ can be fluorescence background and $b$ the signal of interest whose statistics are to be learned from the measured $x$. Similarly, when writing $x=ab$, $a$ can be thought of as the illumination intensity and $b$ the density of fluorescent molecules of interest. Yet dividing or subtracting stochastic signals amplifies noise, and we ask instead whether, using the statistics of $a$ and the measurement of $x$ as input, we can recover the statistics of $b$. Here, we show how normalizing flows can generate an approximation of the probability distribution over $b$, thereby avoiding subtraction or division altogether. This method is implemented in our software package, NFdeconvolve, available on GitHub with a tutorial linked in the main text.
☆ Can Bayesian Neural Networks Explicitly Model Input Uncertainty?
Inputs to machine learning models can have associated noise or uncertainties, but they are often ignored and not modelled. It is unknown if Bayesian Neural Networks and their approximations are able to consider uncertainty in their inputs. In this paper we build a two input Bayesian Neural Network (mean and standard deviation) and evaluate its capabilities for input uncertainty estimation across different methods like Ensembles, MC-Dropout, and Flipout. Our results indicate that only some uncertainty estimation methods for approximate Bayesian NNs can model input uncertainty, in particular Ensembles and Flipout.
comment: 12 pages, 11 figures, VISAPP 2025 camera ready
☆ Decoding Interpretable Logic Rules from Neural Networks
As deep neural networks continue to excel across various domains, their black-box nature has raised concerns about transparency and trust. In particular, interpretability has become increasingly essential for applications that demand high safety and knowledge rigor, such as drug discovery, autonomous driving, and genomics. However, progress in understanding even the simplest deep neural networks - such as fully connected networks - has been limited, despite their role as foundational elements in state-of-the-art models like ResNet and Transformer. In this paper, we address this challenge by introducing NeuroLogic, a novel approach for decoding interpretable logic rules from neural networks. NeuroLogic leverages neural activation patterns to capture the model's critical decision-making processes, translating them into logical rules represented by hidden predicates. Thanks to its flexible design in the grounding phase, NeuroLogic can be adapted to a wide range of neural networks. For simple fully connected neural networks, hidden predicates can be grounded in certain split patterns of original input features to derive decision-tree-like rules. For large, complex vision neural networks, NeuroLogic grounds hidden predicates into high-level visual concepts that are understandable to humans. Our empirical study demonstrates that NeuroLogic can extract global and interpretable rules from state-of-the-art models such as ResNet, a task at which existing work struggles. We believe NeuroLogic can help pave the way for understanding the black-box nature of neural networks.
comment: 23 pages, 7 figures
☆ AI Driven Water Segmentation with deep learning models for Enhanced Flood Monitoring
Flooding is a major natural hazard causing significant fatalities and economic losses annually, with increasing frequency due to climate change. Rapid and accurate flood detection and monitoring are crucial for mitigating these impacts. This study compares the performance of three deep learning models UNet, ResNet, and DeepLabv3 for pixelwise water segmentation to aid in flood detection, utilizing images from drones, in field observations, and social media. This study involves creating a new dataset that augments wellknown benchmark datasets with flood-specific images, enhancing the robustness of the models. The UNet, ResNet, and DeepLab v3 architectures are tested to determine their effectiveness in various environmental conditions and geographical locations, and the strengths and limitations of each model are also discussed here, providing insights into their applicability in different scenarios by predicting image segmentation masks. This fully automated approach allows these models to isolate flooded areas in images, significantly reducing processing time compared to traditional semi-automated methods. The outcome of this study is to predict segmented masks for each image effected by a flood disaster and the validation accuracy of these models. This methodology facilitates timely and continuous flood monitoring, providing vital data for emergency response teams to reduce loss of life and economic damages. It offers a significant reduction in the time required to generate flood maps, cutting down the manual processing time. Additionally, we present avenues for future research, including the integration of multimodal data sources and the development of robust deep learning architectures tailored specifically for flood detection tasks. Overall, our work contributes to the advancement of flood management strategies through innovative use of deep learning technologies.
comment: 8 pages, 6 figures
☆ Multiplayer Federated Learning: Reaching Equilibrium with Less Communication
Traditional Federated Learning (FL) approaches assume collaborative clients with aligned objectives working towards a shared global model. However, in many real-world scenarios, clients act as rational players with individual objectives and strategic behaviors, a concept that existing FL frameworks are not equipped to adequately address. To bridge this gap, we introduce Multiplayer Federated Learning (MpFL), a novel framework that models the clients in the FL environment as players in a game-theoretic context, aiming to reach an equilibrium. In this scenario, each player tries to optimize their own utility function, which may not align with the collective goal. Within MpFL, we propose Per-Player Local Stochastic Gradient Descent (PEARL-SGD), an algorithm in which each player/client performs local updates independently and periodically communicates with other players. We theoretically analyze PEARL-SGD and prove that it reaches a neighborhood of equilibrium with less communication in the stochastic setup compared to its non-local counterpart. Finally, we verify our theoretical findings through numerical experiments.
comment: 43 pages, 5 figures
☆ FDPP: Fine-tune Diffusion Policy with Human Preference
Imitation learning from human demonstrations enables robots to perform complex manipulation tasks and has recently witnessed huge success. However, these techniques often struggle to adapt behavior to new preferences or changes in the environment. To address these limitations, we propose Fine-tuning Diffusion Policy with Human Preference (FDPP). FDPP learns a reward function through preference-based learning. This reward is then used to fine-tune the pre-trained policy with reinforcement learning (RL), resulting in alignment of pre-trained policy with new human preferences while still solving the original task. Our experiments across various robotic tasks and preferences demonstrate that FDPP effectively customizes policy behavior without compromising performance. Additionally, we show that incorporating Kullback-Leibler (KL) regularization during fine-tuning prevents over-fitting and helps maintain the competencies of the initial policy.
☆ Eliciting In-context Retrieval and Reasoning for Long-context Large Language Models
Recent advancements in long-context language models (LCLMs) promise to transform Retrieval-Augmented Generation (RAG) by simplifying pipelines. With their expanded context windows, LCLMs can process entire knowledge bases and perform retrieval and reasoning directly -- a capability we define as In-Context Retrieval and Reasoning (ICR^2). However, existing benchmarks like LOFT often overestimate LCLM performance by providing overly simplified contexts. To address this, we introduce ICR^2, a benchmark that evaluates LCLMs in more realistic scenarios by including confounding passages retrieved with strong retrievers. We then propose three methods to enhance LCLM performance: (1) retrieve-then-generate fine-tuning, (2) retrieval-attention-probing, which uses attention heads to filter and de-noise long contexts during decoding, and (3) joint retrieval head training alongside the generation head. Our evaluation of five well-known LCLMs on LOFT and ICR^2 demonstrates significant gains with our best approach applied to Mistral-7B: +17 and +15 points by Exact Match on LOFT, and +13 and +2 points on ICR^2, compared to vanilla RAG and supervised fine-tuning, respectively. It even outperforms GPT-4-Turbo on most tasks despite being a much smaller model.
☆ Text-Diffusion Red-Teaming of Large Language Models: Unveiling Harmful Behaviors with Proximity Constraints AAAI 25
Recent work has proposed automated red-teaming methods for testing the vulnerabilities of a given target large language model (LLM). These methods use red-teaming LLMs to uncover inputs that induce harmful behavior in a target LLM. In this paper, we study red-teaming strategies that enable a targeted security assessment. We propose an optimization framework for red-teaming with proximity constraints, where the discovered prompts must be similar to reference prompts from a given dataset. This dataset serves as a template for the discovered prompts, anchoring the search for test-cases to specific topics, writing styles, or types of harmful behavior. We show that established auto-regressive model architectures do not perform well in this setting. We therefore introduce a black-box red-teaming method inspired by text-diffusion models: Diffusion for Auditing and Red-Teaming (DART). DART modifies the reference prompt by perturbing it in the embedding space, directly controlling the amount of change introduced. We systematically evaluate our method by comparing its effectiveness with established methods based on model fine-tuning and zero- and few-shot prompting. Our results show that DART is significantly more effective at discovering harmful inputs in close proximity to the reference prompt.
comment: This is an extended version of a paper published at AAAI 25
☆ Continual Deep Active Learning for Medical Imaging: Replay-Base Architecture for Context Adaptation
Deep Learning for medical imaging faces challenges in adapting and generalizing to new contexts. Additionally, it often lacks sufficient labeled data for specific tasks requiring significant annotation effort. Continual Learning (CL) tackles adaptability and generalizability by enabling lifelong learning from a data stream while mitigating forgetting of previously learned knowledge. Active Learning (AL) reduces the number of required annotations for effective training. This work explores both approaches (CAL) to develop a novel framework for robust medical image analysis. Based on the automatic recognition of shifts in image characteristics, Replay-Base Architecture for Context Adaptation (RBACA) employs a CL rehearsal method to continually learn from diverse contexts, and an AL component to select the most informative instances for annotation. A novel approach to evaluate CAL methods is established using a defined metric denominated IL-Score, which allows for the simultaneous assessment of transfer learning, forgetting, and final model performance. We show that RBACA works in domain and class-incremental learning scenarios, by assessing its IL-Score on the segmentation and diagnosis of cardiac images. The results show that RBACA outperforms a baseline framework without CAL, and a state-of-the-art CAL method across various memory sizes and annotation budgets. Our code is available in https://github.com/RuiDaniel/RBACA .
☆ Engineering LLM Powered Multi-agent Framework for Autonomous CloudOps ICSE 2025
Cloud Operations (CloudOps) is a rapidly growing field focused on the automated management and optimization of cloud infrastructure which is essential for organizations navigating increasingly complex cloud environments. MontyCloud Inc. is one of the major companies in the CloudOps domain that leverages autonomous bots to manage cloud compliance, security, and continuous operations. To make the platform more accessible and effective to the customers, we leveraged the use of GenAI. Developing a GenAI-based solution for autonomous CloudOps for the existing MontyCloud system presented us with various challenges such as i) diverse data sources; ii) orchestration of multiple processes; and iii) handling complex workflows to automate routine tasks. To this end, we developed MOYA, a multi-agent framework that leverages GenAI and balances autonomy with the necessary human control. This framework integrates various internal and external systems and is optimized for factors like task orchestration, security, and error mitigation while producing accurate, reliable, and relevant insights by utilizing Retrieval Augmented Generation (RAG). Evaluations of our multi-agent system with the help of practitioners as well as using automated checks demonstrate enhanced accuracy, responsiveness, and effectiveness over non-agentic approaches across complex workflows.
comment: The paper has been accepted as full paper to CAIN 2025 (https://conf.researchr.org/home/cain-2025), co-located with ICSE 2025 (https://conf.researchr.org/home/icse-2025). The paper was submitted to CAIN for review on 9 November 2024
☆ A Feature-Level Ensemble Model for COVID-19 Identification in CXR Images using Choquet Integral and Differential Evolution Optimization
The COVID-19 pandemic has profoundly impacted billions globally. It challenges public health and healthcare systems due to its rapid spread and severe respiratory effects. An effective strategy to mitigate the COVID-19 pandemic involves integrating testing to identify infected individuals. While RT-PCR is considered the gold standard for diagnosing COVID-19, it has some limitations such as the risk of false negatives. To address this problem, this paper introduces a novel Deep Learning Diagnosis System that integrates pre-trained Deep Convolutional Neural Networks (DCNNs) within an ensemble learning framework to achieve precise identification of COVID-19 cases from Chest X-ray (CXR) images. We combine feature vectors from the final hidden layers of pre-trained DCNNs using the Choquet integral to capture interactions between different DCNNs that a linear approach cannot. We employed Sugeno-$\lambda$ measure theory to derive fuzzy measures for subsets of networks to enable aggregation. We utilized Differential Evolution to estimate fuzzy densities. We developed a TensorFlow-based layer for Choquet operation to facilitate efficient aggregation, due to the intricacies involved in aggregating feature vectors. Experimental results on the COVIDx dataset show that our ensemble model achieved 98\% accuracy in three-class classification and 99.50\% in binary classification, outperforming its components-DenseNet-201 (97\% for three-class, 98.75\% for binary), Inception-v3 (96.25\% for three-class, 98.50\% for binary), and Xception (94.50\% for three-class, 98\% for binary)-and surpassing many previous methods.
☆ Privacy-Preserving Model and Preprocessing Verification for Machine Learning
This paper presents a framework for privacy-preserving verification of machine learning models, focusing on models trained on sensitive data. Integrating Local Differential Privacy (LDP) with model explanations from LIME and SHAP, our framework enables robust verification without compromising individual privacy. It addresses two key tasks: binary classification, to verify if a target model was trained correctly by applying the appropriate preprocessing steps, and multi-class classification, to identify specific preprocessing errors. Evaluations on three real-world datasets-Diabetes, Adult, and Student Record-demonstrate that while the ML-based approach is particularly effective in binary tasks, the threshold-based method performs comparably in multi-class tasks. Results indicate that although verification accuracy varies across datasets and noise levels, the framework provides effective detection of preprocessing errors, strong privacy guarantees, and practical applicability for safeguarding sensitive data.
☆ Dynamic Pricing in High-Speed Railways Using Multi-Agent Reinforcement Learning
This paper addresses a critical challenge in the high-speed passenger railway industry: designing effective dynamic pricing strategies in the context of competing and cooperating operators. To address this, a multi-agent reinforcement learning (MARL) framework based on a non-zero-sum Markov game is proposed, incorporating random utility models to capture passenger decision making. Unlike prior studies in areas such as energy, airlines, and mobile networks, dynamic pricing for railway systems using deep reinforcement learning has received limited attention. A key contribution of this paper is a parametrisable and versatile reinforcement learning simulator designed to model a variety of railway network configurations and demand patterns while enabling realistic, microscopic modelling of user behaviour, called RailPricing-RL. This environment supports the proposed MARL framework, which models heterogeneous agents competing to maximise individual profits while fostering cooperative behaviour to synchronise connecting services. Experimental results validate the framework, demonstrating how user preferences affect MARL performance and how pricing policies influence passenger choices, utility, and overall system dynamics. This study provides a foundation for advancing dynamic pricing strategies in railway systems, aligning profitability with system-wide efficiency, and supporting future research on optimising pricing policies.
comment: 37 pages, 5 figures
☆ Efficient Deep Learning-based Forward Solvers for Brain Tumor Growth Models
Glioblastoma, a highly aggressive brain tumor, poses major challenges due to its poor prognosis and high morbidity rates. Partial differential equation-based models offer promising potential to enhance therapeutic outcomes by simulating patient-specific tumor behavior for improved radiotherapy planning. However, model calibration remains a bottleneck due to the high computational demands of optimization methods like Monte Carlo sampling and evolutionary algorithms. To address this, we recently introduced an approach leveraging a neural forward solver with gradient-based optimization to significantly reduce calibration time. This approach requires a highly accurate and fully differentiable forward model. We investigate multiple architectures, including (i) an enhanced TumorSurrogate, (ii) a modified nnU-Net, and (iii) a 3D Vision Transformer (ViT). The optimized TumorSurrogate achieved the best overall results, excelling in both tumor outline matching and voxel-level prediction of tumor cell concentration. It halved the MSE relative to the baseline model and achieved the highest Dice score across all tumor cell concentration thresholds. Our study demonstrates significant enhancement in forward solver performance and outlines important future research directions.
☆ Big Batch Bayesian Active Learning by Considering Predictive Probabilities NeurIPS
We observe that BatchBALD, a popular acquisition function for batch Bayesian active learning for classification, can conflate epistemic and aleatoric uncertainty, leading to suboptimal performance. Motivated by this observation, we propose to focus on the predictive probabilities, which only exhibit epistemic uncertainty. The result is an acquisition function that not only performs better, but is also faster to evaluate, allowing for larger batches than before.
comment: 7 pages, 2 figures; presented as a lightning talk at the NeurIPS Workshop on Bayesian Decision-making and Uncertainty (BDU; 2024)
☆ Investigating Energy Efficiency and Performance Trade-offs in LLM Inference Across Tasks and DVFS Settings
Large language models (LLMs) have shown significant improvements in many natural language processing (NLP) tasks, accelerating their rapid adoption across many industries. These models are resource-intensive, requiring extensive computational resources both during training and inference, leading to increased energy consumption and negative environmental impact. As their adoption accelerates, the sustainability of LLMs has become a critical issue, necessitating strategies to optimize their runtime efficiency without compromising performance. Hence, it is imperative to identify the parameters that significantly influence the performance and energy efficiency of LLMs. To that end, in this work, we investigate the effect of important parameters on the performance and energy efficiency of LLMs during inference and examine their trade-offs. First, we analyze how different types of models with varying numbers of parameters and architectures perform on tasks like text generation, question answering, and summarization by benchmarking LLMs such as Falcon-7B, Mistral-7B-v0.1, T5-3B, GPT-2, GPT-J-6B, and GPT-Neo-2.7B. Second, we study input and output sequence characteristics such as sequence length concerning energy consumption, performance, and throughput. Finally, we explore the impact of hardware-based power-saving techniques, i.e., Dynamic Voltage Frequency Scaling (DVFS), on the models' latency and energy efficiency. Our extensive benchmarking and statistical analysis reveal many interesting findings, uncovering how specific optimizations can reduce energy consumption while maintaining throughput and accuracy. This study provides actionable insights for researchers and practitioners to design energy-efficient LLM inference systems.
☆ Modeling Feature Maps for Quantum Machine Learning
Quantum Machine Learning (QML) offers significant potential for complex tasks like genome sequence classification, but quantum noise on Noisy Intermediate-Scale Quantum (NISQ) devices poses practical challenges. This study systematically evaluates how various quantum noise models including dephasing, amplitude damping, depolarizing, thermal noise, bit-flip, and phase-flip affect key QML algorithms (QSVC, Peg-QSVC, QNN, VQC) and feature mapping techniques (ZFeatureMap, ZZFeatureMap, and PauliFeatureMap). Results indicate that QSVC is notably robust under noise, whereas Peg-QSVC and QNN are more sensitive, particularly to depolarizing and amplitude-damping noise. The PauliFeatureMap is especially vulnerable, highlighting difficulties in maintaining accurate classification under noisy conditions. These findings underscore the critical importance of feature map selection and noise mitigation strategies in optimizing QML for genomic classification, with promising implications for personalized medicine.
☆ Data-driven system identification using quadratic embeddings of nonlinear dynamics
We propose a novel data-driven method called QENDy (Quadratic Embedding of Nonlinear Dynamics) that not only allows us to learn quadratic representations of highly nonlinear dynamical systems, but also to identify the governing equations. The approach is based on an embedding of the system into a higher-dimensional feature space in which the dynamics become quadratic. Just like SINDy (Sparse Identification of Nonlinear Dynamics), our method requires trajectory data, time derivatives for the training data points, which can also be estimated using finite difference approximations, and a set of preselected basis functions, called dictionary. We illustrate the efficacy and accuracy of QENDy with the aid of various benchmark problems and compare its performance with SINDy and a deep learning method for identifying quadratic embeddings. Furthermore, we analyze the convergence of QENDy and SINDy in the infinite data limit, highlight their similarities and main differences, and compare the quadratic embedding with linearization techniques based on the Koopman operator.
☆ Globally Convergent Variational Inference NeurIPS 2024
In variational inference (VI), an approximation of the posterior distribution is selected from a family of distributions through numerical optimization. With the most common variational objective function, known as the evidence lower bound (ELBO), only convergence to a local optimum can be guaranteed. In this work, we instead establish the global convergence of a particular VI method. This VI method, which may be considered an instance of neural posterior estimation (NPE), minimizes an expectation of the inclusive (forward) KL divergence to fit a variational distribution that is parameterized by a neural network. Our convergence result relies on the neural tangent kernel (NTK) to characterize the gradient dynamics that arise from considering the variational objective in function space. In the asymptotic regime of a fixed, positive-definite neural tangent kernel, we establish conditions under which the variational objective admits a unique solution in a reproducing kernel Hilbert space (RKHS). Then, we show that the gradient descent dynamics in function space converge to this unique function. In ablation studies and practical problems, we demonstrate that our results explain the behavior of NPE in non-asymptotic finite-neuron settings, and show that NPE outperforms ELBO-based optimization, which often converges to shallow local optima.
comment: Accepted to the 38th Conference on Neural Information Processing Systems (NeurIPS 2024)
☆ CWEval: Outcome-driven Evaluation on Functionality and Security of LLM Code Generation
Large Language Models (LLMs) have significantly aided developers by generating or assisting in code writing, enhancing productivity across various tasks. While identifying incorrect code is often straightforward, detecting vulnerabilities in functionally correct code is more challenging, especially for developers with limited security knowledge, which poses considerable security risks of using LLM-generated code and underscores the need for robust evaluation benchmarks that assess both functional correctness and security. Current benchmarks like CyberSecEval and SecurityEval attempt to solve it but are hindered by unclear and impractical specifications, failing to assess both functionality and security accurately. To tackle these deficiencies, we introduce CWEval, a novel outcome-driven evaluation framework designed to enhance the evaluation of secure code generation by LLMs. This framework not only assesses code functionality but also its security simultaneously with high-quality task specifications and outcome-driven test oracles which provides high accuracy. Coupled with CWEval-bench, a multilingual, security-critical coding benchmark, CWEval provides a rigorous empirical security evaluation on LLM-generated code, overcoming previous benchmarks' shortcomings. Through our evaluations, CWEval reveals a notable portion of functional but insecure code produced by LLMs, and shows a serious inaccuracy of previous evaluations, ultimately contributing significantly to the field of secure code generation. We open-source our artifact at: https://github.com/Co1lin/CWEval .
comment: to be published in LLM4Code 2025
Self-supervised Deep Hyperspectral Inpainting with the Plug and Play and Deep Image Prior Models
Hyperspectral images are typically composed of hundreds of narrow and contiguous spectral bands, each containing information regarding the material composition of the imaged scene. However, these images can be affected by various sources of noise, distortions, or data loss, which can significantly degrade their quality and usefulness. This paper introduces a convergent guaranteed algorithm, LRS-PnP-DIP(1-Lip), which successfully addresses the instability issue of DHP that has been reported before. The proposed algorithm extends the successful joint low-rank and sparse model to further exploit the underlying data structures beyond the conventional and sometimes restrictive unions of subspace models. A stability analysis guarantees the convergence of the proposed algorithm under mild assumptions , which is crucial for its application in real-world scenarios. Extensive experiments demonstrate that the proposed solution consistently delivers visually and quantitatively superior inpainting results, establishing state-of-the-art performance.
comment: 31 pages, 9 Figures, 7 Tables. arXiv admin note: text overlap with arXiv:2306.08128
☆ Modeling Quantum Machine Learning for Genomic Data Analysis
Quantum Machine Learning (QML) continues to evolve, unlocking new opportunities for diverse applications. In this study, we investigate and evaluate the applicability of QML models for binary classification of genome sequence data by employing various feature mapping techniques. We present an open-source, independent Qiskit-based implementation to conduct experiments on a benchmark genomic dataset. Our simulations reveal that the interplay between feature mapping techniques and QML algorithms significantly influences performance. Notably, the Pegasos Quantum Support Vector Classifier (Pegasos-QSVC) exhibits high sensitivity, particularly excelling in recall metrics, while Quantum Neural Networks (QNN) achieve the highest training accuracy across all feature maps. However, the pronounced variability in classifier performance, dependent on feature mapping, highlights the risk of overfitting to localized output distributions in certain scenarios. This work underscores the transformative potential of QML for genomic data classification while emphasizing the need for continued advancements to enhance the robustness and accuracy of these methodologies.
☆ A Critical Synthesis of Uncertainty Quantification and Foundation Models in Monocular Depth Estimation
While recent foundation models have enabled significant breakthroughs in monocular depth estimation, a clear path towards safe and reliable deployment in the real-world remains elusive. Metric depth estimation, which involves predicting absolute distances, poses particular challenges, as even the most advanced foundation models remain prone to critical errors. Since quantifying the uncertainty has emerged as a promising endeavor to address these limitations and enable trustworthy deployment, we fuse five different uncertainty quantification methods with the current state-of-the-art DepthAnythingV2 foundation model. To cover a wide range of metric depth domains, we evaluate their performance on four diverse datasets. Our findings identify fine-tuning with the Gaussian Negative Log-Likelihood Loss (GNLL) as a particularly promising approach, offering reliable uncertainty estimates while maintaining predictive performance and computational efficiency on par with the baseline, encompassing both training and inference time. By fusing uncertainty quantification and foundation models within the context of monocular depth estimation, this paper lays a critical foundation for future research aimed at improving not only model performance but also its explainability. Extending this critical synthesis of uncertainty quantification and foundation models into other crucial tasks, such as semantic segmentation and pose estimation, presents exciting opportunities for safer and more reliable machine vision systems.
☆ A Multi-Modal AI Copilot for Single-Cell Analysis with Instruction Following
Large language models excel at interpreting complex natural language instructions, enabling them to perform a wide range of tasks. In the life sciences, single-cell RNA sequencing (scRNA-seq) data serves as the "language of cellular biology", capturing intricate gene expression patterns at the single-cell level. However, interacting with this "language" through conventional tools is often inefficient and unintuitive, posing challenges for researchers. To address these limitations, we present InstructCell, a multi-modal AI copilot that leverages natural language as a medium for more direct and flexible single-cell analysis. We construct a comprehensive multi-modal instruction dataset that pairs text-based instructions with scRNA-seq profiles from diverse tissues and species. Building on this, we develop a multi-modal cell language architecture capable of simultaneously interpreting and processing both modalities. InstructCell empowers researchers to accomplish critical tasks-such as cell type annotation, conditional pseudo-cell generation, and drug sensitivity prediction-using straightforward natural language commands. Extensive evaluations demonstrate that InstructCell consistently meets or exceeds the performance of existing single-cell foundation models, while adapting to diverse experimental conditions. More importantly, InstructCell provides an accessible and intuitive tool for exploring complex single-cell data, lowering technical barriers and enabling deeper biological insights.
comment: 37 pages; 13 figures; Code: https://github.com/zjunlp/Instructcell; Models: https://huggingface.co/zjunlp/Instructcell-chat, https://huggingface.co/zjunlp/InstructCell-instruct
☆ D$^2$-DPM: Dual Denoising for Quantized Diffusion Probabilistic Models AAAI2025
Diffusion models have achieved cutting-edge performance in image generation. However, their lengthy denoising process and computationally intensive score estimation network impede their scalability in low-latency and resource-constrained scenarios. Post-training quantization (PTQ) compresses and accelerates diffusion models without retraining, but it inevitably introduces additional quantization noise, resulting in mean and variance deviations. In this work, we propose D2-DPM, a dual denoising mechanism aimed at precisely mitigating the adverse effects of quantization noise on the noise estimation network. Specifically, we first unravel the impact of quantization noise on the sampling equation into two components: the mean deviation and the variance deviation. The mean deviation alters the drift coefficient of the sampling equation, influencing the trajectory trend, while the variance deviation magnifies the diffusion coefficient, impacting the convergence of the sampling trajectory. The proposed D2-DPM is thus devised to denoise the quantization noise at each time step, and then denoise the noisy sample through the inverse diffusion iterations. Experimental results demonstrate that D2-DPM achieves superior generation quality, yielding a 1.42 lower FID than the full-precision model while achieving 3.99x compression and 11.67x bit-operation acceleration.
comment: 9 pages, 4 figures, acceptted by AAAI2025
☆ Revolutionizing Communication with Deep Learning and XAI for Enhanced Arabic Sign Language Recognition
This study introduces an integrated approach to recognizing Arabic Sign Language (ArSL) using state-of-the-art deep learning models such as MobileNetV3, ResNet50, and EfficientNet-B2. These models are further enhanced by explainable AI (XAI) techniques to boost interpretability. The ArSL2018 and RGB Arabic Alphabets Sign Language (AASL) datasets are employed, with EfficientNet-B2 achieving peak accuracies of 99.48\% and 98.99\%, respectively. Key innovations include sophisticated data augmentation methods to mitigate class imbalance, implementation of stratified 5-fold cross-validation for better generalization, and the use of Grad-CAM for clear model decision transparency. The proposed system not only sets new benchmarks in recognition accuracy but also emphasizes interpretability, making it suitable for applications in healthcare, education, and inclusive communication technologies.
comment: 13 pages, 25 figures, 16 tables
☆ Inference-Time-Compute: More Faithful? A Research Note
Models trained specifically to generate long Chains of Thought (CoTs) have recently achieved impressive results. We refer to these models as Inference-Time-Compute (ITC) models. Are the CoTs of ITC models more faithful compared to traditional non-ITC models? We evaluate two ITC models (based on Qwen-2.5 and Gemini-2) on an existing test of faithful CoT To measure faithfulness, we test if models articulate cues in their prompt that influence their answers to MMLU questions. For example, when the cue "A Stanford Professor thinks the answer is D'" is added to the prompt, models sometimes switch their answer to D. In such cases, the Gemini ITC model articulates the cue 54% of the time, compared to 14% for the non-ITC Gemini. We evaluate 7 types of cue, such as misleading few-shot examples and anchoring on past responses. ITC models articulate cues that influence them much more reliably than all the 6 non-ITC models tested, such as Claude-3.5-Sonnet and GPT-4o, which often articulate close to 0% of the time. However, our study has important limitations. We evaluate only two ITC models -- we cannot evaluate OpenAI's SOTA o1 model. We also lack details about the training of these ITC models, making it hard to attribute our findings to specific processes. We think faithfulness of CoT is an important property for AI Safety. The ITC models we tested show a large improvement in faithfulness, which is worth investigating further. To speed up this investigation, we release these early results as a research note.
comment: 7 pages, 5 figures
☆ FairTTTS: A Tree Test Time Simulation Method for Fairness-Aware Classification
Algorithmic decision-making has become deeply ingrained in many domains, yet biases in machine learning models can still produce discriminatory outcomes, often harming unprivileged groups. Achieving fair classification is inherently challenging, requiring a careful balance between predictive performance and ethical considerations. We present FairTTTS, a novel post-processing bias mitigation method inspired by the Tree Test Time Simulation (TTTS) method. Originally developed to enhance accuracy and robustness against adversarial inputs through probabilistic decision-path adjustments, TTTS serves as the foundation for FairTTTS. By building on this accuracy-enhancing technique, FairTTTS mitigates bias and improves predictive performance. FairTTTS uses a distance-based heuristic to adjust decisions at protected attribute nodes, ensuring fairness for unprivileged samples. This fairness-oriented adjustment occurs as a post-processing step, allowing FairTTTS to be applied to pre-trained models, diverse datasets, and various fairness metrics without retraining. Extensive evaluation on seven benchmark datasets shows that FairTTTS outperforms traditional methods in fairness improvement, achieving a 20.96% average increase over the baseline compared to 18.78% for related work, and further enhances accuracy by 0.55%. In contrast, competing methods typically reduce accuracy by 0.42%. These results confirm that FairTTTS effectively promotes more equitable decision-making while simultaneously improving predictive performance.
☆ Multiple-Input Variational Auto-Encoder for Anomaly Detection in Heterogeneous Data
Anomaly detection (AD) plays a pivotal role in AI applications, e.g., in classification, and intrusion/threat detection in cybersecurity. However, most existing methods face challenges of heterogeneity amongst feature subsets posed by non-independent and identically distributed (non-IID) data. We propose a novel neural network model called Multiple-Input Auto-Encoder for AD (MIAEAD) to address this. MIAEAD assigns an anomaly score to each feature subset of a data sample to indicate its likelihood of being an anomaly. This is done by using the reconstruction error of its sub-encoder as the anomaly score. All sub-encoders are then simultaneously trained using unsupervised learning to determine the anomaly scores of feature subsets. The final AUC of MIAEAD is calculated for each sub-dataset, and the maximum AUC obtained among the sub-datasets is selected. To leverage the modelling of the distribution of normal data to identify anomalies of the generative models, we develop a novel neural network architecture/model called Multiple-Input Variational Auto-Encoder (MIVAE). MIVAE can process feature subsets through its sub-encoders before learning distribution of normal data in the latent space. This allows MIVAE to identify anomalies that deviate from the learned distribution. We theoretically prove that the difference in the average anomaly score between normal samples and anomalies obtained by the proposed MIVAE is greater than that of the Variational Auto-Encoder (VAEAD), resulting in a higher AUC for MIVAE. Extensive experiments on eight real-world anomaly datasets demonstrate the superior performance of MIAEAD and MIVAE over conventional methods and the state-of-the-art unsupervised models, by up to 6% in terms of AUC score. Alternatively, MIAEAD and MIVAE have a high AUC when applied to feature subsets with low heterogeneity based on the coefficient of variation (CV) score.
comment: 16 pages
☆ Bootstrapping Corner Cases: High-Resolution Inpainting for Safety Critical Detect and Avoid for Automated Flying
Modern machine learning techniques have shown tremendous potential, especially for object detection on camera images. For this reason, they are also used to enable safety-critical automated processes such as autonomous drone flights. We present a study on object detection for Detect and Avoid, a safety critical function for drones that detects air traffic during automated flights for safety reasons. An ill-posed problem is the generation of good and especially large data sets, since detection itself is the corner case. Most models suffer from limited ground truth in raw data, \eg recorded air traffic or frontal flight with a small aircraft. It often leads to poor and critical detection rates. We overcome this problem by using inpainting methods to bootstrap the dataset such that it explicitly contains the corner cases of the raw data. We provide an overview of inpainting methods and generative models and present an example pipeline given a small annotated dataset. We validate our method by generating a high-resolution dataset, which we make publicly available and present it to an independent object detector that was fully trained on real data.
☆ EEG-ReMinD: Enhancing Neurodegenerative EEG Decoding through Self-Supervised State Reconstruction-Primed Riemannian Dynamics
The development of EEG decoding algorithms confronts challenges such as data sparsity, subject variability, and the need for precise annotations, all of which are vital for advancing brain-computer interfaces and enhancing the diagnosis of diseases. To address these issues, we propose a novel two-stage approach named Self-Supervised State Reconstruction-Primed Riemannian Dynamics (EEG-ReMinD) , which mitigates reliance on supervised learning and integrates inherent geometric features. This approach efficiently handles EEG data corruptions and reduces the dependency on labels. EEG-ReMinD utilizes self-supervised and geometric learning techniques, along with an attention mechanism, to analyze the temporal dynamics of EEG features within the framework of Riemannian geometry, referred to as Riemannian dynamics. Comparative analyses on both intact and corrupted datasets from two different neurodegenerative disorders underscore the enhanced performance of EEG-ReMinD.
☆ An Empirical Wall-Pressure Spectrum Model for Aeroacoustic Predictions Based on Symbolic Regression
Fast-turn around methods to predict airfoil trailing-edge noise are crucial for incorporating noise limitations into design optimization loops of several applications. Among these aeroacoustic predictive models, Amiet's theory offers the best balance between accuracy and simplicity. The accuracy of the model relies heavily on precise wall-pressure spectrum predictions, which are often based on single-equation formulations with adjustable parameters. These parameters are calibrated for particular airfoils and flow conditions and consequently tend to fail when applied outside their calibration range. This paper introduces a new wall-pressure spectrum empirical model designed to enhance the robustness and accuracy of current state-of-the-art predictions while widening the range of applicability of the model to different airfoils and flow conditions. The model is developed using AI-based symbolic regression via a genetic-algorithm-based approach, and applied to a dataset of wall-pressure fluctuations measured on NACA 0008 and NACA 63018 airfoils at multiple angles of attack and inflow velocities, covering turbulent boundary layers with both adverse and favorable pressure gradients. Validation against experimental data (outside the training dataset) demonstrates the robustness of the model compared to well-accepted semi-empirical models. Finally, the model is integrated with Amiet's theory to predict the aeroacoustic noise of a full-scale wind turbine, showing good agreement with experimental measurements.
☆ RoHan: Robust Hand Detection in Operation Room
Hand-specific localization has garnered significant interest within the computer vision community. Although there are numerous datasets with hand annotations from various angles and settings, domain transfer techniques frequently struggle in surgical environments. This is mainly due to the limited availability of gloved hand instances and the unique challenges of operating rooms (ORs). Thus, hand-detection models tailored to OR settings require extensive training and expensive annotation processes. To overcome these challenges, we present "RoHan" - a novel approach for robust hand detection in the OR, leveraging advanced semi-supervised domain adaptation techniques to tackle the challenges of varying recording conditions, diverse glove colors, and occlusions common in surgical settings. Our methodology encompasses two main stages: (1) data augmentation strategy that utilizes "Artificial Gloves," a method for augmenting publicly available hand datasets with synthetic images of hands-wearing gloves; (2) semi-supervised domain adaptation pipeline that improves detection performance in real-world OR settings through iterative prediction refinement and efficient frame filtering. We evaluate our method using two datasets: simulated enterotomy repair and saphenous vein graft harvesting. "RoHan" substantially reduces the need for extensive labeling and model training, paving the way for the practical implementation of hand detection technologies in medical settings.
comment: 12 pages
☆ Data-driven inventory management for new products: A warm-start and adjusted Dyna-$Q$ approach
In this paper, we propose a novel reinforcement learning algorithm for inventory management of newly launched products with no or limited historical demand information. The algorithm follows the classic Dyna-$Q$ structure, balancing the model-based and model-free approaches, while accelerating the training process of Dyna-$Q$ and mitigating the model discrepancy generated by the model-based feedback. Warm-start information from the demand data of existing similar products can be incorporated into the algorithm to further stabilize the early-stage training and reduce the variance of the estimated optimal policy. Our approach is validated through a case study of bakery inventory management with real data. The adjusted Dyna-$Q$ shows up to a 23.7\% reduction in average daily cost compared with $Q$-learning, and up to a 77.5\% reduction in training time within the same horizon compared with classic Dyna-$Q$. By incorporating the warm-start information, it can be found that the adjusted Dyna-$Q$ has the lowest total cost, lowest variance in total cost, and relatively low shortage percentages among all the algorithms under a 30-day testing.
comment: 7 pages, 2 figures
☆ Smooth Handovers via Smoothed Online Learning
With users demanding seamless connectivity, handovers (HOs) have become a fundamental element of cellular networks. However, optimizing HOs is a challenging problem, further exacerbated by the growing complexity of mobile networks. This paper presents the first countrywide study of HO optimization, through the prism of Smoothed Online Learning (SOL). We first analyze an extensive dataset from a commercial mobile network operator (MNO) in Europe with more than 40M users, to understand and reveal important features and performance impacts on HOs. Our findings highlight a correlation between HO failures/delays, and the characteristics of radio cells and end-user devices, showcasing the impact of heterogeneity in mobile networks nowadays. We subsequently model UE-cell associations as dynamic decisions and propose a realistic system model for smooth and accurate HOs that extends existing approaches by (i) incorporating device and cell features on HO optimization, and (ii) eliminating (prior) strong assumptions about requiring future signal measurements and knowledge of end-user mobility. Our algorithm, aligned with the O-RAN paradigm, provides robust dynamic regret guarantees, even in challenging environments, and shows superior performance in multiple scenarios with real-world and synthetic data.
☆ Hybrid Action Based Reinforcement Learning for Multi-Objective Compatible Autonomous Driving
Reinforcement Learning (RL) has shown excellent performance in solving decision-making and control problems of autonomous driving, which is increasingly applied in diverse driving scenarios. However, driving is a multi-attribute problem, leading to challenges in achieving multi-objective compatibility for current RL methods, especially in both policy execution and policy iteration. On the one hand, the common action space structure with single action type limits driving flexibility or results in large behavior fluctuations during policy execution. On the other hand, the multi-attribute weighted single reward function result in the agent's disproportionate attention to certain objectives during policy iterations. To this end, we propose a Multi-objective Ensemble-Critic reinforcement learning method with Hybrid Parametrized Action for multi-objective compatible autonomous driving. Specifically, a parameterized action space is constructed to generate hybrid driving actions, combining both abstract guidance and concrete control commands. A multi-objective critics architecture is constructed considering multiple attribute rewards, to ensure simultaneously focusing on different driving objectives. Additionally, uncertainty-based exploration strategy is introduced to help the agent faster approach viable driving policy. The experimental results in both the simulated traffic environment and the HighD dataset demonstrate that our method can achieve multi-objective compatible autonomous driving in terms of driving efficiency, action consistency, and safety. It enhances the general performance of the driving while significantly increasing training efficiency.
comment: 12 pages, 9 figures, 5 tables
☆ Dynamic Multimodal Sentiment Analysis: Leveraging Cross-Modal Attention for Enabled Classification
This paper explores the development of a multimodal sentiment analysis model that integrates text, audio, and visual data to enhance sentiment classification. The goal is to improve emotion detection by capturing the complex interactions between these modalities, thereby enabling more accurate and nuanced sentiment interpretation. The study evaluates three feature fusion strategies -- late stage fusion, early stage fusion, and multi-headed attention -- within a transformer-based architecture. Experiments were conducted using the CMU-MOSEI dataset, which includes synchronized text, audio, and visual inputs labeled with sentiment scores. Results show that early stage fusion significantly outperforms late stage fusion, achieving an accuracy of 71.87\%, while the multi-headed attention approach offers marginal improvement, reaching 72.39\%. The findings suggest that integrating modalities early in the process enhances sentiment classification, while attention mechanisms may have limited impact within the current framework. Future work will focus on refining feature fusion techniques, incorporating temporal data, and exploring dynamic feature weighting to further improve model performance.
☆ CuAsmRL: Optimizing GPU SASS Schedules via Deep Reinforcement Learning
Large language models (LLMs) are remarked by their substantial computational requirements. To mitigate the cost, researchers develop specialized CUDA kernels, which often fuse several tensor operations to maximize the utilization of GPUs as much as possible. However, those specialized kernels may still leave performance on the table as CUDA assembly experts show that manual optimization of GPU SASS schedules can lead to better performance, and trial-and-error is largely employed to manually find the best GPU SASS schedules. In this work, we employ an automatic approach to optimize GPU SASS schedules, which thus can be integrated into existing compiler frameworks. The key to automatic optimization is training an RL agent to mimic how human experts perform manual scheduling. To this end, we formulate an assembly game, where RL agents can play to find the best GPU SASS schedules. The assembly game starts from a \textit{-O3} optimized SASS schedule, and the RL agents can iteratively apply actions to mutate the current schedules. Positive rewards are generated if the mutated schedules get higher throughput by executing on GPUs. Experiments show that CuAsmRL can further improve the performance of existing specialized CUDA kernels transparently by up to $26\%$, and on average $9\%$. Moreover, it is used as a tool to reveal potential optimization moves learned automatically.
comment: cgo 2025
☆ Optimal Policy Adaptation under Covariate Shift
Transfer learning of prediction models has been extensively studied, while the corresponding policy learning approaches are rarely discussed. In this paper, we propose principled approaches for learning the optimal policy in the target domain by leveraging two datasets: one with full information from the source domain and the other from the target domain with only covariates. First, under the setting of covariate shift, we formulate the problem from a perspective of causality and present the identifiability assumptions for the reward induced by a given policy. Then, we derive the efficient influence function and the semiparametric efficiency bound for the reward. Based on this, we construct a doubly robust and semiparametric efficient estimator for the reward and then learn the optimal policy by optimizing the estimated reward. Moreover, we theoretically analyze the bias and the generalization error bound for the learned policy. Furthermore, in the presence of both covariate and concept shifts, we propose a novel sensitivity analysis method to evaluate the robustness of the proposed policy learning approach. Extensive experiments demonstrate that the approach not only estimates the reward more accurately but also yields a policy that closely approximates the theoretically optimal policy.
☆ On the use of Statistical Learning Theory for model selection in Structural Health Monitoring
Whenever data-based systems are employed in engineering applications, defining an optimal statistical representation is subject to the problem of model selection. This paper focusses on how well models can generalise in Structural Health Monitoring (SHM). Although statistical model validation in this field is often performed heuristically, it is possible to estimate generalisation more rigorously using the bounds provided by Statistical Learning Theory (SLT). Therefore, this paper explores the selection process of a kernel smoother for modelling the impulse response of a linear oscillator from the perspective of SLT. It is demonstrated that incorporating domain knowledge into the regression problem yields a lower guaranteed risk, thereby enhancing generalisation.
☆ Self-Attentive Spatio-Temporal Calibration for Precise Intermediate Layer Matching in ANN-to-SNN Distillation
Spiking Neural Networks (SNNs) are promising for low-power computation due to their event-driven mechanism but often suffer from lower accuracy compared to Artificial Neural Networks (ANNs). ANN-to-SNN knowledge distillation can improve SNN performance, but previous methods either focus solely on label information, missing valuable intermediate layer features, or use a layer-wise approach that neglects spatial and temporal semantic inconsistencies, leading to performance degradation.To address these limitations, we propose a novel method called self-attentive spatio-temporal calibration (SASTC). SASTC uses self-attention to identify semantically aligned layer pairs between ANN and SNN, both spatially and temporally. This enables the autonomous transfer of relevant semantic information. Extensive experiments show that SASTC outperforms existing methods, effectively solving the mismatching problem. Superior accuracy results include 95.12% on CIFAR-10, 79.40% on CIFAR-100 with 2 time steps, and 68.69% on ImageNet with 4 time steps for static datasets, and 97.92% on DVS-Gesture and 83.60% on DVS-CIFAR10 for neuromorphic datasets. This marks the first time SNNs have outperformed ANNs on both CIFAR-10 and CIFAR-100, shedding the new light on the potential applications of SNNs.
☆ Gen-A: Generalizing Ambisonics Neural Encoding to Unseen Microphone Arrays
Using deep neural networks (DNNs) for encoding of microphone array (MA) signals to the Ambisonics spatial audio format can surpass certain limitations of established conventional methods, but existing DNN-based methods need to be trained separately for each MA. This paper proposes a DNN-based method for Ambisonics encoding that can generalize to arbitrary MA geometries unseen during training. The method takes as inputs the MA geometry and MA signals and uses a multi-level encoder consisting of separate paths for geometry and signal data, where geometry features inform the signal encoder at each level. The method is validated in simulated anechoic and reverberant conditions with one and two sources. The results indicate improvement over conventional encoding across the whole frequency range for dry scenes, while for reverberant scenes the improvement is frequency-dependent.
comment: Accepted for publication in Proceedings of the 2025 IEEE International Conference on Acoustics, Speech and Signal Processing
☆ UFGraphFR: An attempt at a federated recommendation system based on user text characteristics
Federated learning has become an important research area in 'private computing' due to the 'useable invisibility' of data during training. Inspired by Federated learning, the federated recommendation system has gradually become a new recommendation service architecture that can protect users' privacy. The use of user diagrams to enhance federated recommendations is a promising topic. How to use user diagrams to enhance federated recommendations is a promising research topic. However, it's a great challenge to construct a user diagram without compromising privacy in a federated learning scenario. Inspired by the simple idea that similar users often have the same attribute characteristics, we propose a personalized federated recommendation algorithm based on the user relationship graph constructed by the user text characteristics(Graph Federation Recommendation System based on User Text description Features, UFGraphFR). The method uses the embedding layer weight of the user's text feature description to construct the user relationship graph. It introduces the Transformer mechanism to capture the sequence modeling of the user's historical interaction sequence. Without access to user history interactions and specific user attributes, the federal learning privacy protection of data 'useable invisibility' is embodied. Preliminary experiments on some benchmark datasets demonstrate the superior performance of UFGraphFR. Our experiments show that this model can protect user privacy to some extent without affecting the performance of the recommendation system. The code will be easily available on https://github.com/trueWangSyutung/UFGraphFR.
☆ PolyLUT: Ultra-low Latency Polynomial Inference with Hardware-Aware Structured Pruning
Standard deep neural network inference involves the computation of interleaved linear maps and nonlinear activation functions. Prior work for ultra-low latency implementations has hardcoded these operations inside FPGA lookup tables (LUTs). However, FPGA LUTs can implement a much greater variety of functions. In this paper, we propose a novel approach to training DNNs for FPGA deployment using multivariate polynomials as the basic building block. Our method takes advantage of the flexibility offered by the soft logic, hiding the polynomial evaluation inside the LUTs with minimal overhead. By using polynomial building blocks, we achieve the same accuracy using considerably fewer layers of soft logic than by using linear functions, leading to significant latency and area improvements. LUT-based implementations also face a significant challenge: the LUT size grows exponentially with the number of inputs. Prior work relies on a priori fixed sparsity, with results heavily dependent on seed selection. To address this, we propose a structured pruning strategy using a bespoke hardware-aware group regularizer that encourages a particular sparsity pattern that leads to a small number of inputs per neuron. We demonstrate the effectiveness of PolyLUT on three tasks: network intrusion detection, jet identification at the CERN Large Hadron Collider, and MNIST.
comment: arXiv admin note: text overlap with arXiv:2309.02334
☆ Convergence Analysis of Real-time Recurrent Learning (RTRL) for a class of Recurrent Neural Networks
Recurrent neural networks (RNNs) are commonly trained with the truncated backpropagation-through-time (TBPTT) algorithm. For the purposes of computational tractability, the TBPTT algorithm truncates the chain rule and calculates the gradient on a finite block of the overall data sequence. Such approximation could lead to significant inaccuracies, as the block length for the truncated backpropagation is typically limited to be much smaller than the overall sequence length. In contrast, Real-time recurrent learning (RTRL) is an online optimization algorithm which asymptotically follows the true gradient of the loss on the data sequence as the number of sequence time steps $t \rightarrow \infty$. RTRL forward propagates the derivatives of the RNN hidden/memory units with respect to the parameters and, using the forward derivatives, performs online updates of the parameters at each time step in the data sequence. RTRL's online forward propagation allows for exact optimization over extremely long data sequences, although it can be computationally costly for models with large numbers of parameters. We prove convergence of the RTRL algorithm for a class of RNNs. The convergence analysis establishes a fixed point for the joint distribution of the data sequence, RNN hidden layer, and the RNN hidden layer forward derivatives as the number of data samples from the sequence and the number of training steps tend to infinity. We prove convergence of the RTRL algorithm to a stationary point of the loss. Numerical studies illustrate our theoretical results. One potential application area for RTRL is the analysis of financial data, which typically involve long time series and models with small to medium numbers of parameters. This makes RTRL computationally tractable and a potentially appealing optimization method for training models. Thus, we include an example of RTRL applied to limit order book data.
☆ Enhanced SPS Velocity-adaptive Scheme: Access Fariness in 5G NR V2I Networks SP
Vehicle-to-Infrastructure (V2I) technology enables information exchange between vehicles and road infrastructure. Specifically, when a vehicle approaches a roadside unit (RSU), it can exchange information with the RSU to obtain accurate data that assists in driving. With the release of the 3rd Generation Partnership Project (3GPP) Release 16, which includes the 5G New Radio (NR) Vehicle-to-Everything (V2X) standards, vehicles typically adopt mode-2 communication using sensing-based semi-persistent scheduling (SPS) for resource allocation. In this approach, vehicles identify candidate resources within a selection window and exclude ineligible resources based on information from a sensing window. However, vehicles often drive at different speeds, resulting in varying amounts of data transmission with RSUs as they pass by, which leads to unfair access. Therefore, it is essential to design an access scheme that accounts for different vehicle speeds to achieve fair access across the network. This paper formulates an optimization problem for vehicular networks and proposes a multi-objective optimization scheme to address it by adjusting the selection window in the SPS mechanism of 5G NR V2I mode-2. Simulation results demonstrate the effectiveness of the proposed scheme
comment: This paper has been submitted to IEEE Journal. The source code has been released at: https://github.com/qiongwu86/Enhanced-SPS-Velocity-adaptiveScheme-Access-Fariness-in-5G-NR-V2I-Networks
☆ An AI-driven framework for rapid and localized optimizations of urban open spaces
As urbanization accelerates, open spaces are increasingly recognized for their role in enhancing sustainability and well-being, yet they remain underexplored compared to built spaces. This study introduces an AI-driven framework that integrates machine learning models (MLMs) and explainable AI techniques to optimize Sky View Factor (SVF) and visibility, key spatial metrics influencing thermal comfort and perceived safety in urban spaces. Unlike global optimization methods, which are computationally intensive and impractical for localized adjustments, this framework supports incremental design improvements with lower computational costs and greater flexibility. The framework employs SHapley Adaptive Explanations (SHAP) to analyze feature importance and Counterfactual Explanations (CFXs) to propose minimal design changes. Simulations tested five MLMs, identifying XGBoost as the most accurate, with building width, park area, and heights of surrounding buildings as critical for SVF, and distances from southern buildings as key for visibility. Compared to Genetic Algorithms, which required approximately 15/30 minutes across 3/4 generations to converge, the tested CFX approach achieved optimized results in 1 minute with a 5% RMSE error, demonstrating significantly faster performance and suitability for scalable retrofitting strategies. This interpretable and computationally efficient framework advances urban performance optimization, providing data-driven insights and practical retrofitting solutions for enhancing usability and environmental quality across diverse urban contexts.
comment: 36 pages
☆ Maximizing Uncertainty for Federated learning via Bayesian Optimisation-based Model Poisoning
As we transition from Narrow Artificial Intelligence towards Artificial Super Intelligence, users are increasingly concerned about their privacy and the trustworthiness of machine learning (ML) technology. A common denominator for the metrics of trustworthiness is the quantification of uncertainty inherent in DL algorithms, and specifically in the model parameters, input data, and model predictions. One of the common approaches to address privacy-related issues in DL is to adopt distributed learning such as federated learning (FL), where private raw data is not shared among users. Despite the privacy-preserving mechanisms in FL, it still faces challenges in trustworthiness. Specifically, the malicious users, during training, can systematically create malicious model parameters to compromise the models predictive and generative capabilities, resulting in high uncertainty about their reliability. To demonstrate malicious behaviour, we propose a novel model poisoning attack method named Delphi which aims to maximise the uncertainty of the global model output. We achieve this by taking advantage of the relationship between the uncertainty and the model parameters of the first hidden layer of the local model. Delphi employs two types of optimisation , Bayesian Optimisation and Least Squares Trust Region, to search for the optimal poisoned model parameters, named as Delphi-BO and Delphi-LSTR. We quantify the uncertainty using the KL Divergence to minimise the distance of the predictive probability distribution towards an uncertain distribution of model output. Furthermore, we establish a mathematical proof for the attack effectiveness demonstrated in FL. Numerical results demonstrate that Delphi-BO induces a higher amount of uncertainty than Delphi-LSTR highlighting vulnerability of FL systems to model poisoning attacks.
comment: 14 pages
☆ Unsupervised Feature Construction for Anomaly Detection in Time Series -- An Evaluation
To detect anomalies with precision and without prior knowledge in time series, is it better to build a detector from the initial temporal representation, or to compute a new (tabular) representation using an existing automatic variable construction library? In this article, we address this question by conducting an in-depth experimental study for two popular detectors (Isolation Forest and Local Outlier Factor). The obtained results, for 5 different datasets, show that the new representation, computed using the tsfresh library, allows Isolation Forest to significantly improve its performance.
comment: 7
☆ Reward Compatibility: A Framework for Inverse RL
We provide an original theoretical study of Inverse Reinforcement Learning (IRL) through the lens of reward compatibility, a novel framework to quantify the compatibility of a reward with the given expert's demonstrations. Intuitively, a reward is more compatible with the demonstrations the closer the performance of the expert's policy computed with that reward is to the optimal performance for that reward. This generalizes the notion of feasible reward set, the most common framework in the theoretical IRL literature, for which a reward is either compatible or not compatible. The grayscale introduced by the reward compatibility is the key to extend the realm of provably efficient IRL far beyond what is attainable with the feasible reward set: from tabular to large-scale MDPs. We analyze the IRL problem across various settings, including optimal and suboptimal expert's demonstrations and both online and offline data collection. For all of these dimensions, we provide a tractable algorithm and corresponding sample complexity analysis, as well as various insights on reward compatibility and how the framework can pave the way to yet more general problem settings.
☆ Combining imaging and shape features for prediction tasks of Alzheimer's disease classification and brain age regression
We investigate combining imaging and shape features extracted from MRI for the clinically relevant tasks of brain age prediction and Alzheimer's disease classification. Our proposed model fuses ResNet-extracted image embeddings with shape embeddings from a bespoke graph neural network. The shape embeddings are derived from surface meshes of 15 brain structures, capturing detailed geometric information. Combined with the appearance features from T1-weighted images, we observe improvements in the prediction performance on both tasks, with substantial gains for classification. We evaluate the model using public datasets, including CamCAN, IXI, and OASIS3, demonstrating the effectiveness of fusing imaging and shape features for brain analysis.
☆ CHEQ-ing the Box: Safe Variable Impedance Learning for Robotic Polishing
Robotic systems are increasingly employed for industrial automation, with contact-rich tasks like polishing requiring dexterity and compliant behaviour. These tasks are difficult to model, making classical control challenging. Deep reinforcement learning (RL) offers a promising solution by enabling the learning of models and control policies directly from data. However, its application to real-world problems is limited by data inefficiency and unsafe exploration. Adaptive hybrid RL methods blend classical control and RL adaptively, combining the strengths of both: structure from control and learning from RL. This has led to improvements in data efficiency and exploration safety. However, their potential for hardware applications remains underexplored, with no evaluations on physical systems to date. Such evaluations are critical to fully assess the practicality and effectiveness of these methods in real-world settings. This work presents an experimental demonstration of the hybrid RL algorithm CHEQ for robotic polishing with variable impedance, a task requiring precise force and velocity tracking. In simulation, we show that variable impedance enhances polishing performance. We compare standalone RL with adaptive hybrid RL, demonstrating that CHEQ achieves effective learning while adhering to safety constraints. On hardware, CHEQ achieves effective polishing behaviour, requiring only eight hours of training and incurring just five failures. These results highlight the potential of adaptive hybrid RL for real-world, contact-rich tasks trained directly on hardware.
☆ Derivation of Output Correlation Inferences for Multi-Output (aka Multi-Task) Gaussian Process
Gaussian process (GP) is arguably one of the most widely used machine learning algorithms in practice. One of its prominent applications is Bayesian optimization (BO). Although the vanilla GP itself is already a powerful tool for BO, it is often beneficial to be able to consider the dependencies of multiple outputs. To do so, Multi-task GP (MTGP) is formulated, but it is not trivial to fully understand the derivations of its formulations and their gradients from the previous literature. This paper serves friendly derivations of the MTGP formulations and their gradients.
☆ AI Guide Dog: Egocentric Path Prediction on Smartphone
This paper introduces AI Guide Dog (AIGD), a lightweight egocentric navigation assistance system for visually impaired individuals, designed for real-time deployment on smartphones. AIGD addresses key challenges in blind navigation by employing a vision-only, multi-label classification approach to predict directional commands, ensuring safe traversal across diverse environments. We propose a novel technique to enable goal-based outdoor navigation by integrating GPS signals and high-level directions, while also addressing uncertain multi-path predictions for destination-free indoor navigation. Our generalized model is the first navigation assistance system to handle both goal-oriented and exploratory navigation scenarios across indoor and outdoor settings, establishing a new state-of-the-art in blind navigation. We present methods, datasets, evaluations, and deployment insights to encourage further innovations in assistive navigation systems.
☆ Gandalf the Red: Adaptive Security for LLMs
Current evaluations of defenses against prompt attacks in large language model (LLM) applications often overlook two critical factors: the dynamic nature of adversarial behavior and the usability penalties imposed on legitimate users by restrictive defenses. We propose D-SEC (Dynamic Security Utility Threat Model), which explicitly separates attackers from legitimate users, models multi-step interactions, and rigorously expresses the security-utility in an optimizable form. We further address the shortcomings in existing evaluations by introducing Gandalf, a crowd-sourced, gamified red-teaming platform designed to generate realistic, adaptive attack datasets. Using Gandalf, we collect and release a dataset of 279k prompt attacks. Complemented by benign user data, our analysis reveals the interplay between security and utility, showing that defenses integrated in the LLM (e.g., system prompts) can degrade usability even without blocking requests. We demonstrate that restricted application domains, defense-in-depth, and adaptive defenses are effective strategies for building secure and useful LLM applications. Code is available at \href{https://github.com/lakeraai/dsec-gandalf}{\texttt{https://github.com/lakeraai/dsec-gandalf}}.
comment: Niklas Pfister, V\'aclav Volhejn and Manuel Knott contributed equally
☆ Phase of Flight Classification in Aviation Safety using LSTM, GRU, and BiLSTM: A Case Study with ASN Dataset
Safety is the main concern in the aviation industry, where even minor operational issues can lead to serious consequences. This study addresses the need for comprehensive aviation accident analysis by leveraging natural language processing (NLP) and advanced AI models to classify the phase of flight from unstructured aviation accident analysis narratives. The research aims to determine whether the phase of flight can be inferred from narratives of post-accident events using NLP techniques. The classification performance of various deep learning models was evaluated. For single RNN-based models, LSTM achieved an accuracy of 63%, precision 60%, and recall 61%. BiLSTM recorded an accuracy of 64%, precision 63%, and a recall of 64%. GRU exhibited balanced performance with an accuracy and recall of 60% and a precision of 63%. Joint RNN-based models further enhanced predictive capabilities. GRU-LSTM, LSTM-BiLSTM, and GRU-BiLSTM demonstrated accuracy rates of 62%, 67%, and 60%, respectively, showcasing the benefits of combining these architectures. To provide a comprehensive overview of model performance, single and combined models were compared in terms of the various metrics. These results underscore the models' capacity to classify the phase of flight from raw text narratives, equipping aviation industry stakeholders with valuable insights for proactive decision-making. Therefore, this research signifies a substantial advancement in the application of NLP and deep learning models to enhance aviation safety.
comment: Aviation Safety, Deep learning algorithms, Flight phase, NLP, ASN, and Classification
☆ Aviation Safety Enhancement via NLP & Deep Learning: Classifying Flight Phases in ATSB Safety Reports
Aviation safety is paramount, demanding precise analysis of safety occurrences during different flight phases. This study employs Natural Language Processing (NLP) and Deep Learning models, including LSTM, CNN, Bidirectional LSTM (BLSTM), and simple Recurrent Neural Networks (sRNN), to classify flight phases in safety reports from the Australian Transport Safety Bureau (ATSB). The models exhibited high accuracy, precision, recall, and F1 scores, with LSTM achieving the highest performance of 87%, 88%, 87%, and 88%, respectively. This performance highlights their effectiveness in automating safety occurrence analysis. The integration of NLP and Deep Learning technologies promises transformative enhancements in aviation safety analysis, enabling targeted safety measures and streamlined report handling.
comment: NLP, Aviation Safety, ATSB, Deep learning, Flight phase. arXiv admin note: substantial text overlap with arXiv:2501.01694
☆ Logarithmic Memory Networks (LMNs): Efficient Long-Range Sequence Modeling for Resource-Constrained Environments
Long-range sequence modeling is a crucial aspect of natural language processing and time series analysis. However, traditional models like Recurrent Neural Networks (RNNs) and Transformers suffer from computational and memory inefficiencies, especially when dealing with long sequences. This paper introduces Logarithmic Memory Networks (LMNs), a novel architecture that leverages a hierarchical logarithmic tree structure to efficiently store and retrieve past information. LMNs dynamically summarize historical context, significantly reducing the memory footprint and computational complexity of attention mechanisms from O(n2) to O(log(n)). The model employs a single-vector, targeted attention mechanism to access stored information, and the memory block construction worker (summarizer) layer operates in two modes: a parallel execution mode during training for efficient processing of hierarchical tree structures and a sequential execution mode during inference, which acts as a memory management system. It also implicitly encodes positional information, eliminating the need for explicit positional encodings. These features make LMNs a robust and scalable solution for processing long-range sequences in resource-constrained environments, offering practical improvements in efficiency and scalability. The code is publicly available under the MIT License on GitHub: https://github.com/AhmedBoin/LogarithmicMemory.
comment: 18 pages, 10 figures
☆ Optimal Classification Trees for Continuous Feature Data Using Dynamic Programming with Branch-and-Bound AAAI-25
Computing an optimal classification tree that provably maximizes training performance within a given size limit, is NP-hard, and in practice, most state-of-the-art methods do not scale beyond computing optimal trees of depth three. Therefore, most methods rely on a coarse binarization of continuous features to maintain scalability. We propose a novel algorithm that optimizes trees directly on the continuous feature data using dynamic programming with branch-and-bound. We develop new pruning techniques that eliminate many sub-optimal splits in the search when similar to previously computed splits and we provide an efficient subroutine for computing optimal depth-two trees. Our experiments demonstrate that these techniques improve runtime by one or more orders of magnitude over state-of-the-art optimal methods and improve test accuracy by 5% over greedy heuristics.
comment: In the proceedings of AAAI-25
☆ Iterative Label Refinement Matters More than Preference Optimization under Weak Supervision
Language model (LM) post-training relies on two stages of human supervision: task demonstrations for supervised finetuning (SFT), followed by preference comparisons for reinforcement learning from human feedback (RLHF). As LMs become more capable, the tasks they are given become harder to supervise. Will post-training remain effective under unreliable supervision? To test this, we simulate unreliable demonstrations and comparison feedback using small LMs and time-constrained humans. We find that in the presence of unreliable supervision, SFT still retains some effectiveness, but DPO (a common RLHF algorithm) fails to improve the model beyond SFT. To address this, we propose iterative label refinement (ILR) as an alternative to RLHF. ILR improves the SFT data by using comparison feedback to decide whether human demonstrations should be replaced by model-generated alternatives, then retrains the model via SFT on the updated data. SFT+ILR outperforms SFT+DPO on several tasks with unreliable supervision (math, coding, and safe instruction-following). Our findings suggest that as LMs are used for complex tasks where human supervision is unreliable, RLHF may no longer be the best use of human comparison feedback; instead, it is better to direct feedback towards improving the training data rather than continually training the model. Our code and data are available at https://github.com/helloelwin/iterative-label-refinement.
comment: 22 pages, 10 figures
☆ Mitigating Algorithmic Bias in Multiclass CNN Classifications Using Causal Modeling
This study describes a procedure for applying causal modeling to detect and mitigate algorithmic bias in a multiclass classification problem. The dataset was derived from the FairFace dataset, supplemented with emotional labels generated by the DeepFace pre-trained model. A custom Convolutional Neural Network (CNN) was developed, consisting of four convolutional blocks, followed by fully connected layers and dropout layers to mitigate overfitting. Gender bias was identified in the CNN model's classifications: Females were more likely to be classified as "happy" or "sad," while males were more likely to be classified as "neutral." To address this, the one-vs-all (OvA) technique was applied. A causal model was constructed for each emotion class to adjust the CNN model's predicted class probabilities. The adjusted probabilities for the various classes were then aggregated by selecting the class with the highest probability. The resulting debiased classifications demonstrated enhanced gender fairness across all classes, with negligible impact--or even a slight improvement--on overall accuracy. This study highlights that algorithmic fairness and accuracy are not necessarily trade-offs. All data and code for this study are publicly available for download.
comment: 7 pages; 6 figures
☆ MD-Syn: Synergistic drug combination prediction based on the multidimensional feature fusion method and attention mechanisms
Drug combination therapies have shown promising therapeutic efficacy in complex diseases and have demonstrated the potential to reduce drug resistance. However, the huge number of possible drug combinations makes it difficult to screen them all in traditional experiments. In this study, we proposed MD-Syn, a computational framework, which is based on the multidimensional feature fusion method and multi-head attention mechanisms. Given drug pair-cell line triplets, MD-Syn considers one-dimensional and two-dimensional feature spaces simultaneously. It consists of a one-dimensional feature embedding module (1D-FEM), a two-dimensional feature embedding module (2D-FEM), and a deep neural network-based classifier for synergistic drug combination prediction. MD-Syn achieved the AUROC of 0.919 in 5-fold cross-validation, outperforming the state-of-the-art methods. Further, MD-Syn showed comparable results over two independent datasets. In addition, the multi-head attention mechanisms not only learn embeddings from different feature aspects but also focus on essential interactive feature elements, improving the interpretability of MD-Syn. In summary, MD-Syn is an interpretable framework to prioritize synergistic drug combination pairs with chemicals and cancer cell line gene expression profiles. To facilitate broader community access to this model, we have developed a web portal (https://labyeh104-2.life.nthu.edu.tw/) that enables customized predictions of drug combination synergy effects based on user-specified compounds.
☆ Distributed Nonparametric Estimation: from Sparse to Dense Samples per Terminal
Consider the communication-constrained problem of nonparametric function estimation, in which each distributed terminal holds multiple i.i.d. samples. Under certain regularity assumptions, we characterize the minimax optimal rates for all regimes, and identify phase transitions of the optimal rates as the samples per terminal vary from sparse to dense. This fully solves the problem left open by previous works, whose scopes are limited to regimes with either dense samples or a single sample per terminal. To achieve the optimal rates, we design a layered estimation protocol by exploiting protocols for the parametric density estimation problem. We show the optimality of the protocol using information-theoretic methods and strong data processing inequalities, and incorporating the classic balls and bins model. The optimal rates are immediate for various special cases such as density estimation, Gaussian, binary, Poisson and heteroskedastic regression models.
☆ deepTerra -- AI Land Classification Made Easy
deepTerra is a comprehensive platform designed to facilitate the classification of land surface features using machine learning and satellite imagery. The platform includes modules for data collection, image augmentation, training, testing, and prediction, streamlining the entire workflow for image classification tasks. This paper presents a detailed overview of the capabilities of deepTerra, shows how it has been applied to various research areas, and discusses the future directions it might take.
☆ State-of-the-Art Transformer Models for Image Super-Resolution: Techniques, Challenges, and Applications
Image Super-Resolution (SR) aims to recover a high-resolution image from its low-resolution counterpart, which has been affected by a specific degradation process. This is achieved by enhancing detail and visual quality. Recent advancements in transformer-based methods have remolded image super-resolution by enabling high-quality reconstructions surpassing previous deep-learning approaches like CNN and GAN-based. This effectively addresses the limitations of previous methods, such as limited receptive fields, poor global context capture, and challenges in high-frequency detail recovery. Additionally, the paper reviews recent trends and advancements in transformer-based SR models, exploring various innovative techniques and architectures that combine transformers with traditional networks to balance global and local contexts. These neoteric methods are critically analyzed, revealing promising yet unexplored gaps and potential directions for future research. Several visualizations of models and techniques are included to foster a holistic understanding of recent trends. This work seeks to offer a structured roadmap for researchers at the forefront of deep learning, specifically exploring the impact of transformers on super-resolution techniques.
comment: 8 pages
☆ An Intra- and Cross-frame Topological Consistency Scheme for Semi-supervised Atherosclerotic Coronary Plaque Segmentation ICASSP 2025
Enhancing the precision of segmenting coronary atherosclerotic plaques from CT Angiography (CTA) images is pivotal for advanced Coronary Atherosclerosis Analysis (CAA), which distinctively relies on the analysis of vessel cross-section images reconstructed via Curved Planar Reformation. This task presents significant challenges due to the indistinct boundaries and structures of plaques and blood vessels, leading to the inadequate performance of current deep learning models, compounded by the inherent difficulty in annotating such complex data. To address these issues, we propose a novel dual-consistency semi-supervised framework that integrates Intra-frame Topological Consistency (ITC) and Cross-frame Topological Consistency (CTC) to leverage labeled and unlabeled data. ITC employs a dual-task network for simultaneous segmentation mask and Skeleton-aware Distance Transform (SDT) prediction, achieving similar prediction of topology structure through consistency constraint without additional annotations. Meanwhile, CTC utilizes an unsupervised estimator for analyzing pixel flow between skeletons and boundaries of adjacent frames, ensuring spatial continuity. Experiments on two CTA datasets show that our method surpasses existing semi-supervised methods and approaches the performance of supervised methods on CAA. In addition, our method also performs better than other methods on the ACDC dataset, demonstrating its generalization.
comment: Accepted by ICASSP 2025
☆ Flow: A Modular Approach to Automated Agentic Workflow Generation
Multi-agent frameworks powered by large language models (LLMs) have demonstrated great success in automated planning and task execution. However, the effective adjustment of Agentic workflows during execution has not been well-studied. A effective workflow adjustment is crucial, as in many real-world scenarios, the initial plan must adjust to unforeseen challenges and changing conditions in real-time to ensure the efficient execution of complex tasks. In this paper, we define workflows as an activity-on-vertex (AOV) graphs. We continuously refine the workflow by dynamically adjusting task allocations based on historical performance and previous AOV with LLM agents. To further enhance system performance, we emphasize modularity in workflow design based on measuring parallelism and dependence complexity. Our proposed multi-agent framework achieved efficient sub-task concurrent execution, goal achievement, and error tolerance. Empirical results across different practical tasks demonstrate dramatic improvements in the efficiency of multi-agent frameworks through dynamic workflow updating and modularization.
☆ Prediction Interval Construction Method for Electricity Prices
Accurate prediction of electricity prices plays an essential role in the electricity market. To reflect the uncertainty of electricity prices, price intervals are predicted. This paper proposes a novel prediction interval construction method. A conditional generative adversarial network is first presented to generate electricity price scenarios, with which the prediction intervals can be constructed. Then, different generated scenarios are stacked to obtain the probability densities, which can be applied to accurately reflect the uncertainty of electricity prices. Furthermore, a reinforced prediction mechanism based on the volatility level of weather factors is introduced to address the spikes or volatile prices. A case study is conducted to verify the effectiveness of the proposed novel prediction interval construction method. The method can also provide the probability density of each price scenario within the prediction interval and has the superiority to address the volatile prices and price spikes with a reinforced prediction mechanism.
☆ Real-time Verification and Refinement of Language Model Text Generation
Large language models (LLMs) have shown remarkable performance across a wide range of natural language tasks. However, a critical challenge remains in that they sometimes generate factually incorrect answers. To address this, while many previous work has focused on identifying errors in their generation and further refining them, they are slow in deployment since they are designed to verify the response from LLMs only after their entire generation (from the first to last tokens) is done. Further, we observe that once LLMs generate incorrect tokens early on, there is a higher likelihood that subsequent tokens will also be factually incorrect. To this end, in this work, we propose Streaming-VR (Streaming Verification and Refinement), a novel approach designed to enhance the efficiency of verification and refinement of LLM outputs. Specifically, the proposed Streaming-VR enables on-the-fly verification and correction of tokens as they are being generated, similar to a streaming process, ensuring that each subset of tokens is checked and refined in real-time by another LLM as the LLM constructs its response. Through comprehensive evaluations on multiple datasets, we demonstrate that our approach not only enhances the factual accuracy of LLMs, but also offers a more efficient solution compared to prior refinement methods.
comment: Preprint
☆ A Multi-Encoder Frozen-Decoder Approach for Fine-Tuning Large Language Models
Among parameter-efficient fine-tuning methods, freezing has emerged as a popular strategy for speeding up training, reducing catastrophic forgetting, and improving downstream performance. We investigate the impact of freezing the decoder in a multi-task setup comprising diverse natural language tasks, aiming to reduce deployment overhead and enhance portability to novel tasks. Our experiments, conducted by fine-tuning both individual and multi-task setups on the AlexaTM model, reveal that freezing decoders is highly effective for tasks with natural language outputs and mitigates catastrophic forgetting in multilingual tasks. However, we find that pairing frozen decoders with a larger model can effectively maintain or even enhance performance in structured and QA tasks, making it a viable strategy for a broader range of task types.
☆ STTS-EAD: Improving Spatio-Temporal Learning Based Time Series Prediction via
Handling anomalies is a critical preprocessing step in multivariate time series prediction. However, existing approaches that separate anomaly preprocessing from model training for multivariate time series prediction encounter significant limitations. Specifically, these methods fail to utilize auxiliary information crucial for identifying latent anomalies associated with spatiotemporal factors during the preprocessing stage. Instead, they rely solely on data distribution for anomaly detection, which can result in the incorrect processing of numerous samples that could otherwise contribute positively to model training. To address this, we propose STTS-EAD, an end-to-end method that seamlessly integrates anomaly detection into the training process of multivariate time series forecasting and aims to improve Spatio-Temporal learning based Time Series prediction via Embedded Anomaly Detection. Our proposed STTS-EAD leverages spatio-temporal information for forecasting and anomaly detection, with the two parts alternately executed and optimized for each other. To the best of our knowledge, STTS-EAD is the first to integrate anomaly detection and forecasting tasks in the training phase for improving the accuracy of multivariate time series forecasting. Extensive experiments on a public stock dataset and two real-world sales datasets from a renowned coffee chain enterprise show that our proposed method can effectively process detected anomalies in the training stage to improve forecasting performance in the inference stage and significantly outperform baselines.
comment: 11 pages
☆ Conformal mapping Coordinates Physics-Informed Neural Networks (CoCo-PINNs): learning neural networks for designing neutral inclusions
We focus on designing and solving the neutral inclusion problem via neural networks. The neutral inclusion problem has a long history in the theory of composite materials, and it is exceedingly challenging to identify the precise condition that precipitates a general-shaped inclusion into a neutral inclusion. Physics-informed neural networks (PINNs) have recently become a highly successful approach to addressing both forward and inverse problems associated with partial differential equations. We found that traditional PINNs perform inadequately when applied to the inverse problem of designing neutral inclusions with arbitrary shapes. In this study, we introduce a novel approach, Conformal mapping Coordinates Physics-Informed Neural Networks (CoCo-PINNs), which integrates complex analysis techniques into PINNs. This method exhibits strong performance in solving forward-inverse problems to construct neutral inclusions of arbitrary shapes in two dimensions, where the imperfect interface condition on the inclusion's boundary is modeled by training neural networks. Notably, we mathematically prove that training with a single linear field is sufficient to achieve neutrality for untrained linear fields in arbitrary directions, given a minor assumption. We demonstrate that CoCo-PINNs offer enhanced performances in terms of credibility, consistency, and stability.
☆ BioPose: Biomechanically-accurate 3D Pose Estimation from Monocular Videos
Recent advancements in 3D human pose estimation from single-camera images and videos have relied on parametric models, like SMPL. However, these models oversimplify anatomical structures, limiting their accuracy in capturing true joint locations and movements, which reduces their applicability in biomechanics, healthcare, and robotics. Biomechanically accurate pose estimation, on the other hand, typically requires costly marker-based motion capture systems and optimization techniques in specialized labs. To bridge this gap, we propose BioPose, a novel learning-based framework for predicting biomechanically accurate 3D human pose directly from monocular videos. BioPose includes three key components: a Multi-Query Human Mesh Recovery model (MQ-HMR), a Neural Inverse Kinematics (NeurIK) model, and a 2D-informed pose refinement technique. MQ-HMR leverages a multi-query deformable transformer to extract multi-scale fine-grained image features, enabling precise human mesh recovery. NeurIK treats the mesh vertices as virtual markers, applying a spatial-temporal network to regress biomechanically accurate 3D poses under anatomical constraints. To further improve 3D pose estimations, a 2D-informed refinement step optimizes the query tokens during inference by aligning the 3D structure with 2D pose observations. Experiments on benchmark datasets demonstrate that BioPose significantly outperforms state-of-the-art methods. Project website: \url{https://m-usamasaleem.github.io/publication/BioPose/BioPose.html}.
☆ Linearly Convergent Mixup Learning
Learning in the reproducing kernel Hilbert space (RKHS) such as the support vector machine has been recognized as a promising technique. It continues to be highly effective and competitive in numerous prediction tasks, particularly in settings where there is a shortage of training data or computational limitations exist. These methods are especially valued for their ability to work with small datasets and their interpretability. To address the issue of limited training data, mixup data augmentation, widely used in deep learning, has remained challenging to apply to learning in RKHS due to the generation of intermediate class labels. Although gradient descent methods handle these labels effectively, dual optimization approaches are typically not directly applicable. In this study, we present two novel algorithms that extend to a broader range of binary classification models. Unlike gradient-based approaches, our algorithms do not require hyperparameters like learning rates, simplifying their implementation and optimization. Both the number of iterations to converge and the computational cost per iteration scale linearly with respect to the dataset size. The numerical experiments demonstrate that our algorithms achieve faster convergence to the optimal solution compared to gradient descent approaches, and that mixup data augmentation consistently improves the predictive performance across various loss functions.
comment: none
☆ Transforming Indoor Localization: Advanced Transformer Architecture for NLOS Dominated Wireless Environments with Distributed Sensors
Indoor localization in challenging non-line-of-sight (NLOS) environments often leads to mediocre accuracy with traditional approaches. Deep learning (DL) has been applied to tackle these challenges; however, many DL approaches overlook computational complexity, especially for floating-point operations (FLOPs), making them unsuitable for resource-limited devices. Transformer-based models have achieved remarkable success in natural language processing (NLP) and computer vision (CV) tasks, motivating their use in wireless applications. However, their use in indoor localization remains nascent, and directly applying Transformers for indoor localization can be both computationally intensive and exhibit limitations in accuracy. To address these challenges, in this work, we introduce a novel tokenization approach, referred to as Sensor Snapshot Tokenization (SST), which preserves variable-specific representations of power delay profile (PDP) and enhances attention mechanisms by effectively capturing multi-variate correlation. Complementing this, we propose a lightweight Swish-Gated Linear Unit-based Transformer (L-SwiGLU Transformer) model, designed to reduce computational complexity without compromising localization accuracy. Together, these contributions mitigate the computational burden and dependency on large datasets, making Transformer models more efficient and suitable for resource-constrained scenarios. The proposed tokenization method enables the Vanilla Transformer to achieve a 90th percentile positioning error of 0.388 m in a highly NLOS indoor factory, surpassing conventional tokenization methods. The L-SwiGLU ViT further reduces the error to 0.355 m, achieving an 8.51% improvement. Additionally, the proposed model outperforms a 14.1 times larger model with a 46.13% improvement, underscoring its computational efficiency.
comment: The paper has been submitted to IEEE Transactions on Machine Learning in Communications and Networking
☆ Symmetry-Aware Generative Modeling through Learned Canonicalization
Generative modeling of symmetric densities has a range of applications in AI for science, from drug discovery to physics simulations. The existing generative modeling paradigm for invariant densities combines an invariant prior with an equivariant generative process. However, we observe that this technique is not necessary and has several drawbacks resulting from the limitations of equivariant networks. Instead, we propose to model a learned slice of the density so that only one representative element per orbit is learned. To accomplish this, we learn a group-equivariant canonicalization network that maps training samples to a canonical pose and train a non-equivariant generative model over these canonicalized samples. We implement this idea in the context of diffusion models. Our preliminary experimental results on molecular modeling are promising, demonstrating improved sample quality and faster inference time.
comment: NeurReps 2024 Workshop Version
☆ BMIP: Bi-directional Modality Interaction Prompt Learning for VLM
Vision-language models (VLMs) have exhibited remarkable generalization capabilities, and prompt learning for VLMs has attracted great attention for the ability to adapt pre-trained VLMs to specific downstream tasks. However, existing studies mainly focus on single-modal prompts or uni-directional modality interaction, overlooking the powerful alignment effects resulting from the interaction between the vision and language modalities. To this end, we propose a novel prompt learning method called $\underline{\textbf{B}}i-directional \underline{\textbf{M}}odality \underline{\textbf{I}}nteraction \underline{\textbf{P}}rompt (BMIP)$, which dynamically weights bi-modal information through learning the information of the attention layer, enhancing trainability and inter-modal consistency compared to simple information aggregation methods. To evaluate the effectiveness of prompt learning methods, we propose a more realistic evaluation paradigm called open-world generalization complementing the widely adopted cross-dataset transfer and domain generalization tasks. Comprehensive experiments on various datasets reveal that BMIP not only outperforms current state-of-the-art methods across all three evaluation paradigms but is also flexible enough to be combined with other prompt-based methods for consistent performance enhancement.
☆ PINN-FEM: A Hybrid Approach for Enforcing Dirichlet Boundary Conditions in Physics-Informed Neural Networks
Physics-Informed Neural Networks (PINNs) solve partial differential equations (PDEs) by embedding governing equations and boundary/initial conditions into the loss function. However, enforcing Dirichlet boundary conditions accurately remains challenging, often leading to soft enforcement that compromises convergence and reliability in complex domains. We propose a hybrid approach, PINN-FEM, which combines PINNs with finite element methods (FEM) to impose strong Dirichlet boundary conditions via domain decomposition. This method incorporates FEM-based representations near the boundary, ensuring exact enforcement without compromising convergence. Through six experiments of increasing complexity, PINN-FEM outperforms standard PINN models, showcasing superior accuracy and robustness. While distance functions and similar techniques have been proposed for boundary condition enforcement, they lack generality for real-world applications. PINN-FEM bridges this gap by leveraging FEM near boundaries, making it well-suited for industrial and scientific problems.
comment: 22 pages
☆ Deep Learning for Disease Outbreak Prediction: A Robust Early Warning Signal for Transcritical Bifurcations
Early Warning Signals (EWSs) are vital for implementing preventive measures before a disease turns into a pandemic. While new diseases exhibit unique behaviors, they often share fundamental characteristics from a dynamical systems perspective. Moreover, measurements during disease outbreaks are often corrupted by different noise sources, posing challenges for Time Series Classification (TSC) tasks. In this study, we address the problem of having a robust EWS for disease outbreak prediction using a best-performing deep learning model in the domain of TSC. We employed two simulated datasets to train the model: one representing generated dynamical systems with randomly selected polynomial terms to model new disease behaviors, and another simulating noise-induced disease dynamics to account for noisy measurements. The model's performance was analyzed using both simulated data from different disease models and real-world data, including influenza and COVID-19. Results demonstrate that the proposed model outperforms previous models, effectively providing EWSs of impending outbreaks across various scenarios. This study bridges advancements in deep learning with the ability to provide robust early warning signals in noisy environments, making it highly applicable to real-world crises involving emerging disease outbreaks.
comment: 14 pages, 1 figure, 5 tables
☆ On the Statistical Capacity of Deep Generative Models
Deep generative models are routinely used in generating samples from complex, high-dimensional distributions. Despite their apparent successes, their statistical properties are not well understood. A common assumption is that with enough training data and sufficiently large neural networks, deep generative model samples will have arbitrarily small errors in sampling from any continuous target distribution. We set up a unifying framework that debunks this belief. We demonstrate that broad classes of deep generative models, including variational autoencoders and generative adversarial networks, are not universal generators. Under the predominant case of Gaussian latent variables, these models can only generate concentrated samples that exhibit light tails. Using tools from concentration of measure and convex geometry, we give analogous results for more general log-concave and strongly log-concave latent variable distributions. We extend our results to diffusion models via a reduction argument. We use the Gromov--Levy inequality to give similar guarantees when the latent variables lie on manifolds with positive Ricci curvature. These results shed light on the limited capacity of common deep generative models to handle heavy tails. We illustrate the empirical relevance of our work with simulations and financial data.
☆ Impatient Bandits: Optimizing for the Long-Term Without Delay
Increasingly, recommender systems are tasked with improving users' long-term satisfaction. In this context, we study a content exploration task, which we formalize as a bandit problem with delayed rewards. There is an apparent trade-off in choosing the learning signal: waiting for the full reward to become available might take several weeks, slowing the rate of learning, whereas using short-term proxy rewards reflects the actual long-term goal only imperfectly. First, we develop a predictive model of delayed rewards that incorporates all information obtained to date. Rewards as well as shorter-term surrogate outcomes are combined through a Bayesian filter to obtain a probabilistic belief. Second, we devise a bandit algorithm that quickly learns to identify content aligned with long-term success using this new predictive model. We prove a regret bound for our algorithm that depends on the \textit{Value of Progressive Feedback}, an information theoretic metric that captures the quality of short-term leading indicators that are observed prior to the long-term reward. We apply our approach to a podcast recommendation problem, where we seek to recommend shows that users engage with repeatedly over two months. We empirically validate that our approach significantly outperforms methods that optimize for short-term proxies or rely solely on delayed rewards, as demonstrated by an A/B test in a recommendation system that serves hundreds of millions of users.
☆ Quantifying the Importance of Data Alignment in Downstream Model Performance
Contrary to the conventional emphasis on dataset size, we explore the role of data alignment -- an often overlooked aspect of data quality -- in training capable Large Language Models (LLMs). To do so, we use the Task2Vec-based alignment coefficient, a quantitative measure of the similarity between two datasets, to quantify the impact of alignment between training data and evaluation data on downstream performance. In particular, we conduct controlled \textit{interventional} experiments for two settings: 1. the impact of increased alignment coefficients between various pre-training (pt) against evaluation datasets, and 2. the impact of increased alignment coefficients between domain specific fine-tuning (ft) against domain specific evaluation. The domain specific task we explore is Autoformalization -- the machine translation task between natural language and code for formal verification. In both settings, we find a strong, predictable negative correlation between the alignment coefficient of a model's training and evaluation data and the model's loss/perplexity on the respective downstream task. These findings suggest a re-evaluation of LLM training approaches, demonstrating the relevance of data alignment compared to data quantity, especially in specialized downstream tasks such as Autoformalization.
☆ FLAVARS: A Multimodal Foundational Language and Vision Alignment Model for Remote Sensing
Remote sensing imagery is dense with objects and contextual visual information. There is a recent trend to combine paired satellite images and text captions for pretraining performant encoders for downstream tasks. However, while contrastive image-text methods like CLIP enable vision-language alignment and zero-shot classification ability, vision-only downstream performance tends to degrade compared to image-only pretraining, such as MAE. In this paper, we propose FLAVARS, a pretraining method that combines the best of both contrastive learning and masked modeling, along with geospatial alignment via contrastive location encoding. We find that FLAVARS significantly outperforms a baseline of SkyCLIP for vision-only tasks such as KNN classification and semantic segmentation, +6\% mIOU on SpaceNet1, while retaining the ability to perform zero-shot classification, unlike MAE pretrained methods.
☆ Time series forecasting for multidimensional telemetry data using GAN and BiLSTM in a Digital Twin
The research related to digital twins has been increasing in recent years. Besides the mirroring of the physical word into the digital, there is the need of providing services related to the data collected and transferred to the virtual world. One of these services is the forecasting of physical part future behavior, that could lead to applications, like preventing harmful events or designing improvements to get better performance. One strategy used to predict any system operation it is the use of time series models like ARIMA or LSTM, and improvements were implemented using these algorithms. Recently, deep learning techniques based on generative models such as Generative Adversarial Networks (GANs) have been proposed to create time series and the use of LSTM has gained more relevance in time series forecasting, but both have limitations that restrict the forecasting results. Another issue found in the literature is the challenge of handling multivariate environments/applications in time series generation. Therefore, new methods need to be studied in order to fill these gaps and, consequently, provide better resources for creating useful digital twins. In this proposal, it is going to be studied the integration of a BiLSTM layer with a time series obtained by GAN in order to improve the forecasting of all the features provided by the dataset in terms of accuracy and, consequently, improving behaviour prediction.
☆ Head Motion Degrades Machine Learning Classification of Alzheimer's Disease from Positron Emission Tomography
Brain positron emission tomography (PET) imaging is broadly used in research and clinical routines to study, diagnose, and stage Alzheimer's disease (AD). However, its potential cannot be fully exploited yet due to the lack of portable motion correction solutions, especially in clinical settings. Head motion during data acquisition has indeed been shown to degrade image quality and induces tracer uptake quantification error. In this study, we demonstrate that it also biases machine learning-based AD classification. We start by proposing a binary classification algorithm solely based on PET images. We find that it reaches a high accuracy in classifying motion corrected images into cognitive normal or AD. We demonstrate that the classification accuracy substantially decreases when images lack motion correction, thereby limiting the algorithm's effectiveness and biasing image interpretation. We validate these findings in cohorts of 128 $^{11}$C-UCB-J and 173 $^{18}$F-FDG scans, two tracers highly relevant to the study of AD. Classification accuracies decreased by 10% and 5% on 20 $^{18}$F-FDG and 20 $^{11}$C-UCB-J testing cases, respectively. Our findings underscore the critical need for efficient motion correction methods to make the most of the diagnostic capabilities of PET-based machine learning.
comment: 5 pages
☆ Large Language Models For Text Classification: Case Study And Comprehensive Review
Unlocking the potential of Large Language Models (LLMs) in data classification represents a promising frontier in natural language processing. In this work, we evaluate the performance of different LLMs in comparison with state-of-the-art deep-learning and machine-learning models, in two different classification scenarios: i) the classification of employees' working locations based on job reviews posted online (multiclass classification), and 2) the classification of news articles as fake or not (binary classification). Our analysis encompasses a diverse range of language models differentiating in size, quantization, and architecture. We explore the impact of alternative prompting techniques and evaluate the models based on the weighted F1-score. Also, we examine the trade-off between performance (F1-score) and time (inference response time) for each language model to provide a more nuanced understanding of each model's practical applicability. Our work reveals significant variations in model responses based on the prompting strategies. We find that LLMs, particularly Llama3 and GPT-4, can outperform traditional methods in complex classification tasks, such as multiclass classification, though at the cost of longer inference times. In contrast, simpler ML models offer better performance-to-time trade-offs in simpler binary classification tasks.
☆ Keras Sig: Efficient Path Signature Computation on GPU in Keras 3
In this paper we introduce Keras Sig a high-performance pythonic library designed to compute path signature for deep learning applications. Entirely built in Keras 3, \textit{Keras Sig} leverages the seamless integration with the mostly used deep learning backends such as PyTorch, JAX and TensorFlow. Inspired by Kidger and Lyons (2021),we proposed a novel approach reshaping signature calculations to leverage GPU parallelism. This adjustment allows us to reduce the training time by 55\% and 5 to 10-fold improvements in direct signature computation compared to existing methods, while maintaining similar CPU performance. Relying on high-level tensor operations instead of low-level C++ code, Keras Sig significantly reduces the versioning and compatibility issues commonly encountered in deep learning libraries, while delivering superior or comparable performance across various hardware configurations. We demonstrate through extensive benchmarking that our approach scales efficiently with the length of input sequences and maintains competitive performance across various signature parameters, though bounded by memory constraints for very large signature dimensions.
☆ Vchitect-2.0: Parallel Transformer for Scaling Up Video Diffusion Models
We present Vchitect-2.0, a parallel transformer architecture designed to scale up video diffusion models for large-scale text-to-video generation. The overall Vchitect-2.0 system has several key designs. (1) By introducing a novel Multimodal Diffusion Block, our approach achieves consistent alignment between text descriptions and generated video frames, while maintaining temporal coherence across sequences. (2) To overcome memory and computational bottlenecks, we propose a Memory-efficient Training framework that incorporates hybrid parallelism and other memory reduction techniques, enabling efficient training of long video sequences on distributed systems. (3) Additionally, our enhanced data processing pipeline ensures the creation of Vchitect T2V DataVerse, a high-quality million-scale training dataset through rigorous annotation and aesthetic evaluation. Extensive benchmarking demonstrates that Vchitect-2.0 outperforms existing methods in video quality, training efficiency, and scalability, serving as a suitable base for high-fidelity video generation.
☆ FARE: A Deep Learning-Based Framework for Radar-based Face Recognition and Out-of-distribution Detection ICASSP 2025
In this work, we propose a novel pipeline for face recognition and out-of-distribution (OOD) detection using short-range FMCW radar. The proposed system utilizes Range-Doppler and micro Range-Doppler Images. The architecture features a primary path (PP) responsible for the classification of in-distribution (ID) faces, complemented by intermediate paths (IPs) dedicated to OOD detection. The network is trained in two stages: first, the PP is trained using triplet loss to optimize ID face classification. In the second stage, the PP is frozen, and the IPs-comprising simple linear autoencoder networks-are trained specifically for OOD detection. Using our dataset generated with a 60 GHz FMCW radar, our method achieves an ID classification accuracy of 99.30% and an OOD detection AUROC of 96.91%.
comment: Accepted at ICASSP 2025
☆ Physics-informed neural networks for phase-resolved data assimilation and prediction of nonlinear ocean waves
The assimilation and prediction of phase-resolved surface gravity waves are critical challenges in ocean science and engineering. Potential flow theory (PFT) has been widely employed to develop wave models and numerical techniques for wave prediction. However, traditional wave prediction methods are often limited. For example, most simplified wave models have a limited ability to capture strong wave nonlinearity, while fully nonlinear PFT solvers often fail to meet the speed requirements of engineering applications. This computational inefficiency also hinders the development of effective data assimilation techniques, which are required to reconstruct spatial wave information from sparse measurements to initialize the wave prediction. To address these challenges, we propose a novel solver method that leverages physics-informed neural networks (PINNs) that parameterize PFT solutions as neural networks. This provides a computationally inexpensive way to assimilate and predict wave data. The proposed PINN framework is validated through comparisons with analytical linear PFT solutions and experimental data collected in a laboratory wave flume. The results demonstrate that our approach accurately captures and predicts irregular, nonlinear, and dispersive wave surface dynamics. Moreover, the PINN can infer the fully nonlinear velocity potential throughout the entire fluid volume solely from surface elevation measurements, enabling the calculation of fluid velocities that are difficult to measure experimentally.
comment: 22 pages, 12 Figures, preprint
☆ Physics-Informed Latent Neural Operator for Real-time Predictions of Complex Physical Systems
Deep operator network (DeepONet) has shown great promise as a surrogate model for systems governed by partial differential equations (PDEs), learning mappings between infinite-dimensional function spaces with high accuracy. However, achieving low generalization errors often requires highly overparameterized networks, posing significant challenges for large-scale, complex systems. To address these challenges, latent DeepONet was proposed, introducing a two-step approach: first, a reduced-order model is used to learn a low-dimensional latent space, followed by operator learning on this latent space. While effective, this method is inherently data-driven, relying on large datasets and making it difficult to incorporate governing physics into the framework. Additionally, the decoupled nature of these steps prevents end-to-end optimization and the ability to handle data scarcity. This work introduces PI-Latent-NO, a physics-informed latent operator learning framework that overcomes these limitations. Our architecture employs two coupled DeepONets in an end-to-end training scheme: the first, termed Latent-DeepONet, identifies and learns the low-dimensional latent space, while the second, Reconstruction-DeepONet, maps the latent representations back to the original physical space. By integrating governing physics directly into the training process, our approach requires significantly fewer data samples while achieving high accuracy. Furthermore, the framework is computationally and memory efficient, exhibiting nearly constant scaling behavior on a single GPU and demonstrating the potential for further efficiency gains with distributed training. We validate the proposed method on high-dimensional parametric PDEs, demonstrating its effectiveness as a proof of concept and its potential scalability for large-scale systems.
☆ Causal vs. Anticausal merging of predictors NeurIPS 2024
We study the differences arising from merging predictors in the causal and anticausal directions using the same data. In particular we study the asymmetries that arise in a simple model where we merge the predictors using one binary variable as target and two continuous variables as predictors. We use Causal Maximum Entropy (CMAXENT) as inductive bias to merge the predictors, however, we expect similar differences to hold also when we use other merging methods that take into account asymmetries between cause and effect. We show that if we observe all bivariate distributions, the CMAXENT solution reduces to a logistic regression in the causal direction and Linear Discriminant Analysis (LDA) in the anticausal direction. Furthermore, we study how the decision boundaries of these two solutions differ whenever we observe only some of the bivariate distributions implications for Out-Of-Variable (OOV) generalisation.
comment: Presented at the 38th Conference on Neural Information Processing Systems (NeurIPS 2024)
☆ Is Stochastic Gradient Descent Effective? A PDE Perspective on Machine Learning processes
In this paper we analyze the behaviour of the stochastic gradient descent (SGD), a widely used method in supervised learning for optimizing neural network weights via a minimization of non-convex loss functions. Since the pioneering work of E, Li and Tai (2017), the underlying structure of such processes can be understood via parabolic PDEs of Fokker-Planck type, which are at the core of our analysis. Even if Fokker-Planck equations have a long history and a extensive literature, almost nothing is known when the potential is non-convex or when the diffusion matrix is degenerate, and this is the main difficulty that we face in our analysis. We identify two different regimes: in the initial phase of SGD, the loss function drives the weights to concentrate around the nearest local minimum. We refer to this phase as the drift regime and we provide quantitative estimates on this concentration phenomenon. Next, we introduce the diffusion regime, where stochastic fluctuations help the learning process to escape suboptimal local minima. We analyze the Mean Exit Time (MET) and prove upper and lower bounds of the MET. Finally, we address the asymptotic convergence of SGD, for a non-convex cost function and a degenerate diffusion matrix, that do not allow to use the standard approaches, and require new techniques. For this purpose, we exploit two different methods: duality and entropy methods. We provide new results about the dynamics and effectiveness of SGD, offering a deep connection between stochastic optimization and PDE theory, and some answers and insights to basic questions in the Machine Learning processes: How long does SGD take to escape from a bad minimum? Do neural network parameters converge using SGD? How do parameters evolve in the first stage of training with SGD?
☆ A Constant Velocity Latent Dynamics Approach for Accelerating Simulation of Stiff Nonlinear Systems
Solving stiff ordinary differential equations (StODEs) requires sophisticated numerical solvers, which are often computationally expensive. In particular, StODE's often cannot be solved with traditional explicit time integration schemes and one must resort to costly implicit methods to compute solutions. On the other hand, state-of-the-art machine learning (ML) based methods such as Neural ODE (NODE) poorly handle the timescale separation of various elements of the solutions to StODEs and require expensive implicit solvers for integration at inference time. In this work, we embark on a different path which involves learning a latent dynamics for StODEs, in which one completely avoids numerical integration. To that end, we consider a constant velocity latent dynamical system whose solution is a sequence of straight lines. Given the initial condition and parameters of the ODE, the encoder networks learn the slope (i.e the constant velocity) and the initial condition for the latent dynamics. In other words, the solution of the original dynamics is encoded into a sequence of straight lines which can be decoded back to retrieve the actual solution as and when required. Another key idea in our approach is a nonlinear transformation of time, which allows for the "stretching/squeezing" of time in the latent space, thereby allowing for varying levels of attention to different temporal regions in the solution. Additionally, we provide a simple universal-approximation-type proof showing that our approach can approximate the solution of stiff nonlinear system on a compact set to any degree of accuracy, {\epsilon}. We show that the dimension of the latent dynamical system in our approach is independent of {\epsilon}. Numerical investigation on prototype StODEs suggest that our method outperforms state-of-the art machine learning approaches for handling StODEs.
☆ SEAL: Speaker Error Correction using Acoustic-conditioned Large Language Models ICASSP 2025
Speaker Diarization (SD) is a crucial component of modern end-to-end ASR pipelines. Traditional SD systems, which are typically audio-based and operate independently of ASR, often introduce speaker errors, particularly during speaker transitions and overlapping speech. Recently, language models including fine-tuned large language models (LLMs) have shown to be effective as a second-pass speaker error corrector by leveraging lexical context in the transcribed output. In this work, we introduce a novel acoustic conditioning approach to provide more fine-grained information from the acoustic diarizer to the LLM. We also show that a simpler constrained decoding strategy reduces LLM hallucinations, while avoiding complicated post-processing. Our approach significantly reduces the speaker error rates by 24-43% across Fisher, Callhome, and RT03-CTS datasets, compared to the first-pass Acoustic SD.
comment: Accepted at ICASSP 2025
☆ CVaR-Based Variational Quantum Optimization for User Association in Handoff-Aware Vehicular Networks
Efficient resource allocation is essential for optimizing various tasks in wireless networks, which are usually formulated as generalized assignment problems (GAP). GAP, as a generalized version of the linear sum assignment problem, involves both equality and inequality constraints that add computational challenges. In this work, we present a novel Conditional Value at Risk (CVaR)-based Variational Quantum Eigensolver (VQE) framework to address GAP in vehicular networks (VNets). Our approach leverages a hybrid quantum-classical structure, integrating a tailored cost function that balances both objective and constraint-specific penalties to improve solution quality and stability. Using the CVaR-VQE model, we handle the GAP efficiently by focusing optimization on the lower tail of the solution space, enhancing both convergence and resilience on noisy intermediate-scale quantum (NISQ) devices. We apply this framework to a user-association problem in VNets, where our method achieves 23.5% improvement compared to the deep neural network (DNN) approach.
comment: Accepted in IEEE International Conference on Communications (ICC 2025)
☆ BiDepth Multimodal Neural Network: Bidirectional Depth Deep Learning Arcitecture for Spatial-Temporal Prediction
Accurate prediction of spatial-temporal (ST) information in dynamic systems, such as urban mobility and weather patterns, is a crucial yet challenging problem. The complexity stems from the intricate interplay between spatial proximity and temporal relevance, where both long-term trends and short-term fluctuations are present in convoluted patterns. Existing approaches, including traditional statistical methods and conventional neural networks, may provide inaccurate results due to the lack of an effective mechanism that simultaneously incorporates information at variable temporal depths while maintaining spatial context, resulting in a trade-off between comprehensive long-term historical analysis and responsiveness to short-term new information. To bridge this gap, this paper proposes the BiDepth Multimodal Neural Network (BDMNN) with bidirectional depth modulation that enables a comprehensive understanding of both long-term seasonality and short-term fluctuations, adapting to the complex ST context. Case studies with real-world public data demonstrate significant improvements in prediction accuracy, with a 12% reduction in Mean Squared Error for urban traffic prediction and a 15% improvement in rain precipitation forecasting compared to state-of-the-art benchmarks, without demanding extra computational resources.
comment: This paper has been submitted to Applied Intelligence for review
☆ Leveraging 2D Masked Reconstruction for Domain Adaptation of 3D Pose Estimation
RGB-based 3D pose estimation methods have been successful with the development of deep learning and the emergence of high-quality 3D pose datasets. However, most existing methods do not operate well for testing images whose distribution is far from that of training data. However, most existing methods do not operate well for testing images whose distribution is far from that of training data. This problem might be alleviated by involving diverse data during training, however it is non-trivial to collect such diverse data with corresponding labels (i.e. 3D pose). In this paper, we introduced an unsupervised domain adaptation framework for 3D pose estimation that utilizes the unlabeled data in addition to labeled data via masked image modeling (MIM) framework. Foreground-centric reconstruction and attention regularization are further proposed to increase the effectiveness of unlabeled data usage. Experiments are conducted on the various datasets in human and hand pose estimation tasks, especially using the cross-domain scenario. We demonstrated the effectiveness of ours by achieving the state-of-the-art accuracy on all datasets.
comment: 16 pages, 7 figures
☆ OptiChat: Bridging Optimization Models and Practitioners with Large Language Models
Optimization models have been applied to solve a wide variety of decision-making problems. These models are usually developed by optimization experts but are used by practitioners without optimization expertise in various application domains. As a result, practitioners often struggle to interact with and draw useful conclusions from optimization models independently. To fill this gap, we introduce OptiChat, a natural language dialogue system designed to help practitioners interpret model formulation, diagnose infeasibility, analyze sensitivity, retrieve information, evaluate modifications, and provide counterfactual explanations. By augmenting large language models (LLMs) with functional calls and code generation tailored for optimization models, we enable seamless interaction and minimize the risk of hallucinations in OptiChat. We develop a new dataset to evaluate OptiChat's performance in explaining optimization models. Experiments demonstrate that OptiChat effectively bridges the gap between optimization models and practitioners, delivering autonomous, accurate, and instant responses.
☆ Predict Confidently, Predict Right: Abstention in Dynamic Graph Learning
Many real-world systems can be modeled as dynamic graphs, where nodes and edges evolve over time, requiring specialized models to capture their evolving dynamics in risk-sensitive applications effectively. Temporal graph neural networks (GNNs) are one such category of specialized models. For the first time, our approach integrates a reject option strategy within the framework of GNNs for continuous-time dynamic graphs. This allows the model to strategically abstain from making predictions when the uncertainty is high and confidence is low, thus minimizing the risk of critical misclassification and enhancing the results and reliability. We propose a coverage-based abstention prediction model to implement the reject option that maximizes prediction within a specified coverage. It improves the prediction score for link prediction and node classification tasks. Temporal GNNs deal with extremely skewed datasets for the next state prediction or node classification task. In the case of class imbalance, our method can be further tuned to provide a higher weightage to the minority class. Exhaustive experiments are presented on four datasets for dynamic link prediction and two datasets for dynamic node classification tasks. This demonstrates the effectiveness of our approach in improving the reliability and area under the curve (AUC)/ average precision (AP) scores for predictions in dynamic graph scenarios. The results highlight our model's ability to efficiently handle the trade-offs between prediction confidence and coverage, making it a dependable solution for applications requiring high precision in dynamic and uncertain environments.
☆ Empathetic Conversational Agents: Utilizing Neural and Physiological Signals for Enhanced Empathetic Interactions
Conversational agents (CAs) are revolutionizing human-computer interaction by evolving from text-based chatbots to empathetic digital humans (DHs) capable of rich emotional expressions. This paper explores the integration of neural and physiological signals into the perception module of CAs to enhance empathetic interactions. By leveraging these cues, the study aims to detect emotions in real-time and generate empathetic responses and expressions. We conducted a user study where participants engaged in conversations with a DH about emotional topics. The DH responded and displayed expressions by mirroring detected emotions in real-time using neural and physiological cues. The results indicate that participants experienced stronger emotions and greater engagement during interactions with the Empathetic DH, demonstrating the effectiveness of incorporating neural and physiological signals for real-time emotion recognition. However, several challenges were identified, including recognition accuracy, emotional transition speeds, individual personality effects, and limitations in voice tone modulation. Addressing these challenges is crucial for further refining Empathetic DHs and fostering meaningful connections between humans and artificial entities. Overall, this research advances human-agent interaction and highlights the potential of real-time neural and physiological emotion recognition in creating empathetic DHs.
☆ Towards Best Practices for Open Datasets for LLM Training
Many AI companies are training their large language models (LLMs) on data without the permission of the copyright owners. The permissibility of doing so varies by jurisdiction: in countries like the EU and Japan, this is allowed under certain restrictions, while in the United States, the legal landscape is more ambiguous. Regardless of the legal status, concerns from creative producers have led to several high-profile copyright lawsuits, and the threat of litigation is commonly cited as a reason for the recent trend towards minimizing the information shared about training datasets by both corporate and public interest actors. This trend in limiting data information causes harm by hindering transparency, accountability, and innovation in the broader ecosystem by denying researchers, auditors, and impacted individuals access to the information needed to understand AI models. While this could be mitigated by training language models on open access and public domain data, at the time of writing, there are no such models (trained at a meaningful scale) due to the substantial technical and sociological challenges in assembling the necessary corpus. These challenges include incomplete and unreliable metadata, the cost and complexity of digitizing physical records, and the diverse set of legal and technical skills required to ensure relevance and responsibility in a quickly changing landscape. Building towards a future where AI systems can be trained on openly licensed data that is responsibly curated and governed requires collaboration across legal, technical, and policy domains, along with investments in metadata standards, digitization, and fostering a culture of openness.
☆ Weight Averaging for Out-of-Distribution Generalization and Few-Shot Domain Adaptation
Empirical risk minimization (ERM) is not robust to changes in the distribution of data. When the distribution of test data is different from that of training data, the problem is known as out-of-distribution generalization. Recently, two techniques have been developed for addressing out-of-distribution generalization in computer vision: weight averaging (WA) and sharpness-aware minimization (SAM). WA involves training multiple models with different hyperparameters and then averaging the weights of these models, which can significantly improve out-of-distribution generalization performance. SAM optimizes a neural network to find minima in flat regions, which have been proven to perform well under distribution shifts. While these techniques have made great progress, there is still room for improvement and further exploration. In this thesis, we propose increasing the model diversity in WA explicitly by introducing gradient similarity as a loss regularizer to further improve out-of-distribution generalization performance. We also propose combining WA and SAM to solve the problem of few-shot domain adaptation. Our extensive experiments on digits datasets (MNIST, SVHN, USPS, MNIST-M) and other domain adaptation datasets (VLCS, PACS) show that combining WA and SAM leads to improved out-of-distribution generalization performance and significantly increases few-shot domain adaptation accuracy.
comment: Master Thesis
Rate-In: Information-Driven Adaptive Dropout Rates for Improved Inference-Time Uncertainty Estimation
Accurate uncertainty estimation is crucial for deploying neural networks in risk-sensitive applications such as medical diagnosis. Monte Carlo Dropout is a widely used technique for approximating predictive uncertainty by performing stochastic forward passes with dropout during inference. However, using static dropout rates across all layers and inputs can lead to suboptimal uncertainty estimates, as it fails to adapt to the varying characteristics of individual inputs and network layers. Existing approaches optimize dropout rates during training using labeled data, resulting in fixed inference-time parameters that cannot adjust to new data distributions, compromising uncertainty estimates in Monte Carlo simulations. In this paper, we propose Rate-In, an algorithm that dynamically adjusts dropout rates during inference by quantifying the information loss induced by dropout in each layer's feature maps. By treating dropout as controlled noise injection and leveraging information-theoretic principles, Rate-In adapts dropout rates per layer and per input instance without requiring ground truth labels. By quantifying the functional information loss in feature maps, we adaptively tune dropout rates to maintain perceptual quality across diverse medical imaging tasks and architectural configurations. Our extensive empirical study on synthetic data and real-world medical imaging tasks demonstrates that Rate-In improves calibration and sharpens uncertainty estimates compared to fixed or heuristic dropout rates without compromising predictive performance. Rate-In offers a practical, unsupervised, inference-time approach to optimizing dropout for more reliable predictive uncertainty estimation in critical applications.
comment: Updated author affiliation
♻ ☆ Efficient Distribution Matching of Representations via Noise-Injected Deep InfoMax
Deep InfoMax (DIM) is a well-established method for self-supervised representation learning (SSRL) based on maximization of the mutual information between the input and the output of a deep neural network encoder. Despite the DIM and contrastive SSRL in general being well-explored, the task of learning representations conforming to a specific distribution (i.e., distribution matching, DM) is still under-addressed. Motivated by the importance of DM to several downstream tasks (including generative modeling, disentanglement, outliers detection and other), we enhance DIM to enable automatic matching of learned representations to a selected prior distribution. To achieve this, we propose injecting an independent noise into the normalized outputs of the encoder, while keeping the same InfoMax training objective. We show that such modification allows for learning uniformly and normally distributed representations, as well as representations of other absolutely continuous distributions. Our approach is tested on various downstream tasks. The results indicate a moderate trade-off between the performance on the downstream tasks and quality of DM.
comment: 25 pages, 7 fugures
♻ ☆ CriSPO: Multi-Aspect Critique-Suggestion-guided Automatic Prompt Optimization for Text Generation AAAI-2025
Existing automatic prompt engineering methods are typically designed for discriminative tasks, where new task prompts are iteratively refined with limited feedback from a single metric reflecting a single aspect. However, these approaches are suboptimal for generative tasks, which require more nuanced guidance beyond a single numeric metric to improve the prompt and optimize multiple aspects of the generated text. To address these challenges, we propose a novel multi-aspect Critique-Suggestion-guided automatic Prompt Optimization (CriSPO) approach. CriSPO introduces a critique-suggestion module as its core component. This module spontaneously discovers aspects, and compares generated and reference texts across these aspects, providing specific suggestions for prompt modification. These clear critiques and actionable suggestions guide a receptive optimizer module to make more substantial changes, exploring a broader and more effective search space. To further improve CriSPO with multi-metric optimization, we introduce an Automatic Suffix Tuning (AST) extension to enhance the performance of task prompts across multiple metrics. We evaluate CriSPO on 4 state-of-the-art LLMs across 4 summarization and 5 QA datasets. Extensive experiments show 3-4% ROUGE score improvement on summarization and substantial improvement of various metrics on QA. Code available at https://github.com/amazon-science/crispo
comment: Accepted to AAAI-2025
♻ ☆ Automated Detection and Analysis of Minor Deformations in Flat Walls Due to Railway Vibrations Using LiDAR and Machine Learning
This study introduces an advanced methodology for automatically identifying minor deformations in flat walls caused by vibrations from nearby railway tracks. It leverages high-density Terrestrial Laser Scanner (TLS) LiDAR surveys and AI/ML techniques to collect and analyze data. The scan data is processed into a detailed point cloud, which is segmented to distinguish ground points, trees, buildings, and other objects. The analysis focuses on identifying sections along flat walls and estimating their deformations relative to the ground orientation. Findings from the study, conducted at the RGIPT campus, reveal significant deformations in walls close to the railway corridor, with the highest deformations ranging from 7 to 8 cm and an average of 3 to 4 cm. In contrast, walls further from the corridor show negligible deformations. The developed automated process for feature extraction and deformation monitoring demonstrates potential for structural health monitoring. By integrating LiDAR data with machine learning, the methodology provides an efficient system for identifying and analyzing structural deformations, highlighting the importance of continuous monitoring for ensuring structural integrity and public safety in urban infrastructure. This approach represents a substantial advancement in automated feature extraction and deformation analysis, contributing to more effective management of urban infrastructure.
comment: I am requesting the withdrawal of my paper due to the need for significant revisions to ensure the accuracy and integrity of the presented findings
♻ ☆ Language-Agnostic Modeling of Source Reliability on Wikipedia
Over the last few years, content verification through reliable sources has become a fundamental need to combat disinformation. Here, we present a language-agnostic model designed to assess the reliability of sources across multiple language editions of Wikipedia. Utilizing editorial activity data, the model evaluates source reliability within different articles of varying controversiality such as Climate Change, COVID-19, History, Media, and Biology topics. Crafting features that express domain usage across articles, the model effectively predicts source reliability, achieving an F1 Macro score of approximately 0.80 for English and other high-resource languages. For mid-resource languages, we achieve 0.65 while the performance of low-resource languages varies; in all cases, the time the domain remains present in the articles (which we dub as permanence) is one of the most predictive features. We highlight the challenge of maintaining consistent model performance across languages of varying resource levels and demonstrate that adapting models from higher-resource languages can improve performance. This work contributes not only to Wikipedia's efforts in ensuring content verifiability but in ensuring reliability across diverse user-generated content in various language communities.
♻ ☆ A Comprehensive Survey of Foundation Models in Medicine
Foundation models (FMs) are large-scale deep learning models that are developed using large datasets and self-supervised learning methods. These models serve as a base for different downstream tasks, including healthcare. FMs have been adopted with great success across various domains within healthcare. Existing healthcare-based surveys have not yet included all of these domains. Therefore, we provide a detailed survey of FMs in healthcare. We focus on the history, learning strategies, flagship models, applications, and challenges of FMs. We explore how FMs such as the BERT and GPT families are reshaping various healthcare domains, including clinical large language models, medical image analysis, and omics. Furthermore, we provide a detailed taxonomy of healthcare applications facilitated by FMs, such as clinical NLP, medical computer vision, graph learning, and other biology-related tasks. Despite the promising opportunities FMs provide, they also have several associated challenges, which are explained in detail. We also outline open research issues and potential lessons learned to provide researchers and practitioners with insights into the capabilities of FMs in healthcare to advance their deployment and mitigate associated risks.
comment: Currently under review in IEEE REVIEWS IN BIOMEDICAL ENGINEERING
♻ ☆ Pareto Set Learning for Multi-Objective Reinforcement Learning AAAI 2025
Multi-objective decision-making problems have emerged in numerous real-world scenarios, such as video games, navigation and robotics. Considering the clear advantages of Reinforcement Learning (RL) in optimizing decision-making processes, researchers have delved into the development of Multi-Objective RL (MORL) methods for solving multi-objective decision problems. However, previous methods either cannot obtain the entire Pareto front, or employ only a single policy network for all the preferences over multiple objectives, which may not produce personalized solutions for each preference. To address these limitations, we propose a novel decomposition-based framework for MORL, Pareto Set Learning for MORL (PSL-MORL), that harnesses the generation capability of hypernetwork to produce the parameters of the policy network for each decomposition weight, generating relatively distinct policies for various scalarized subproblems with high efficiency. PSL-MORL is a general framework, which is compatible for any RL algorithm. The theoretical result guarantees the superiority of the model capacity of PSL-MORL and the optimality of the obtained policy network. Through extensive experiments on diverse benchmarks, we demonstrate the effectiveness of PSL-MORL in achieving dense coverage of the Pareto front, significantly outperforming state-of-the-art MORL methods in the hypervolume and sparsity indicators.
comment: AAAI 2025 Accept
♻ ☆ Feedback-driven object detection and iterative model improvement
Automated object detection has become increasingly valuable across diverse applications, yet efficient, high-quality annotation remains a persistent challenge. In this paper, we present the development and evaluation of a platform designed to interactively improve object detection models. The platform allows uploading and annotating images as well as fine-tuning object detection models. Users can then manually review and refine annotations, further creating improved snapshots that are used for automatic object detection on subsequent image uploads - a process we refer to as semi-automatic annotation resulting in a significant gain in annotation efficiency. Whereas iterative refinement of model results to speed up annotation has become common practice, we are the first to quantitatively evaluate its benefits with respect to time, effort, and interaction savings. Our experimental results show clear evidence for a significant time reduction of up to 53% for semi-automatic compared to manual annotation. Importantly, these efficiency gains did not compromise annotation quality, while matching or occasionally even exceeding the accuracy of manual annotations. These findings demonstrate the potential of our lightweight annotation platform for creating high-quality object detection datasets and provide best practices to guide future development of annotation platforms. The platform is open-source, with the frontend and backend repositories available on GitHub (https://github.com/ml-lab-htw/iterative-annotate). To support the understanding of our labeling process, we have created an explanatory video demonstrating the methodology using microscopy images of E. coli bacteria as an example. The video is available on YouTube (https://www.youtube.com/watch?v=CM9uhE8NN5E).
comment: AI4EA24
♻ ☆ ORFormer: Occlusion-Robust Transformer for Accurate Facial Landmark Detection WACV 2025
Although facial landmark detection (FLD) has gained significant progress, existing FLD methods still suffer from performance drops on partially non-visible faces, such as faces with occlusions or under extreme lighting conditions or poses. To address this issue, we introduce ORFormer, a novel transformer-based method that can detect non-visible regions and recover their missing features from visible parts. Specifically, ORFormer associates each image patch token with one additional learnable token called the messenger token. The messenger token aggregates features from all but its patch. This way, the consensus between a patch and other patches can be assessed by referring to the similarity between its regular and messenger embeddings, enabling non-visible region identification. Our method then recovers occluded patches with features aggregated by the messenger tokens. Leveraging the recovered features, ORFormer compiles high-quality heatmaps for the downstream FLD task. Extensive experiments show that our method generates heatmaps resilient to partial occlusions. By integrating the resultant heatmaps into existing FLD methods, our method performs favorably against the state of the arts on challenging datasets such as WFLW and COFW.
comment: WACV 2025 Project Link: https://ben0919.github.io/ORFormer/
♻ ☆ WINE: Wavelet-Guided GAN Inversion and Editing for High-Fidelity Refinement
Recent advanced GAN inversion models aim to convey high-fidelity information from original images to generators through methods using generator tuning or high-dimensional feature learning. Despite these efforts, accurately reconstructing image-specific details remains as a challenge due to the inherent limitations both in terms of training and structural aspects, leading to a bias towards low-frequency information. In this paper, we look into the widely used pixel loss in GAN inversion, revealing its predominant focus on the reconstruction of low-frequency features. We then propose WINE, a Wavelet-guided GAN Inversion aNd Editing model, which transfers the high-frequency information through wavelet coefficients via newly proposed wavelet loss and wavelet fusion scheme. Notably, WINE is the first attempt to interpret GAN inversion in the frequency domain. Our experimental results showcase the precision of WINE in preserving high-frequency details and enhancing image quality. Even in editing scenarios, WINE outperforms existing state-of-the-art GAN inversion models with a fine balance between editability and reconstruction quality.
♻ ☆ AttriBoT: A Bag of Tricks for Efficiently Approximating Leave-One-Out Context Attribution
The influence of contextual input on the behavior of large language models (LLMs) has prompted the development of context attribution methods that aim to quantify each context span's effect on an LLM's generations. The leave-one-out (LOO) error, which measures the change in the likelihood of the LLM's response when a given span of the context is removed, provides a principled way to perform context attribution, but can be prohibitively expensive to compute for large models. In this work, we introduce AttriBoT, a series of novel techniques for efficiently computing an approximation of the LOO error for context attribution. Specifically, AttriBoT uses cached activations to avoid redundant operations, performs hierarchical attribution to reduce computation, and emulates the behavior of large target models with smaller proxy models. Taken together, AttriBoT can provide a >300x speedup while remaining more faithful to a target model's LOO error than prior context attribution methods. This stark increase in performance makes computing context attributions for a given response 30x faster than generating the response itself, empowering real-world applications that require computing attributions at scale. We release a user-friendly and efficient implementation of AttriBoT to enable efficient LLM interpretability as well as encourage future development of efficient context attribution methods.
comment: 29 pages, 11 figures
♻ ☆ Electricity Price Prediction Using Multi-Kernel Gaussian Process Regression Combined with Kernel-Based Support Vector Regression
This paper presents a new hybrid model for predicting German electricity prices. The algorithm is based on combining Gaussian Process Regression (GPR) and Support Vector Regression (SVR). While GPR is a competent model for learning the stochastic pattern within the data and interpolation, its performance for out-of-sample data is not very promising. By choosing a suitable data-dependent covariance function, we can enhance the performance of GPR for the tested German hourly power prices. However, since the out-of-sample prediction depends on the training data, the prediction is vulnerable to noise and outliers. To overcome this issue, a separate prediction is made using SVR, which applies margin-based optimization, having an advantage in dealing with non-linear processes and outliers, since only certain necessary points (support vectors) in the training data are responsible for regression. Both individual predictions are later combined using the performance-based weight assignment method. A test on historic German power prices shows that this approach outperforms its chosen benchmarks such as the autoregressive exogenous model, the naive approach, as well as the long short-term memory approach of prediction.
♻ ☆ Set-based Neural Network Encoding Without Weight Tying
We propose a neural network weight encoding method for network property prediction that utilizes set-to-set and set-to-vector functions to efficiently encode neural network parameters. Our approach is capable of encoding neural networks in a model zoo of mixed architecture and different parameter sizes as opposed to previous approaches that require custom encoding models for different architectures. Furthermore, our \textbf{S}et-based \textbf{N}eural network \textbf{E}ncoder (SNE) takes into consideration the hierarchical computational structure of neural networks. To respect symmetries inherent in network weight space, we utilize Logit Invariance to learn the required minimal invariance properties. Additionally, we introduce a \textit{pad-chunk-encode} pipeline to efficiently encode neural network layers that is adjustable to computational and memory constraints. We also introduce two new tasks for neural network property prediction: cross-dataset and cross-architecture. In cross-dataset property prediction, we evaluate how well property predictors generalize across model zoos trained on different datasets but of the same architecture. In cross-architecture property prediction, we evaluate how well property predictors transfer to model zoos of different architecture not seen during training. We show that SNE outperforms the relevant baselines on standard benchmarks.
comment: 23 pages
♻ ☆ Approximation Rates in Fréchet Metrics: Barron Spaces, Paley-Wiener Spaces, and Fourier Multipliers
Operator learning is a recent development in the simulation of Partial Differential Equations (PDEs) by means of neural networks. The idea behind this approach is to learn the behavior of an operator, such that the resulting neural network is an (approximate) mapping in infinite-dimensional spaces that is capable of (approximately) simulating the solution operator governed by the PDE. In our work, we study some general approximation capabilities for linear differential operators by approximating the corresponding symbol in the Fourier domain. Analogous to the structure of the class of H\"ormander-Symbols, we consider the approximation with respect to a topology that is induced by a sequence of semi-norms. In that sense, we measure the approximation error in terms of a Fr\'echet metric, and our main result identifies sufficient conditions for achieving a predefined approximation error. Secondly, we then focus on a natural extension of our main theorem, in which we manage to reduce the assumptions on the sequence of semi-norms. Based on existing approximation results for the exponential spectral Barron space, we then present a concrete example of symbols that can be approximated well.
comment: Minor revision
♻ ☆ Towards Federated Graph Learning in One-shot Communication
Federated Graph Learning (FGL) has emerged as a promising paradigm for breaking data silos among distributed private graphs. In practical scenarios involving heterogeneous distributed graph data, personalized Federated Graph Learning (pFGL) aims to enhance model utility by training personalized models tailored to client needs. However, existing pFGL methods often require numerous communication rounds under heterogeneous graphs, leading to significant communication overhead and security concerns. While One-shot Federated Learning (OFL) enables collaboration in a single round, existing OFL methods are designed for image-centric tasks and ineffective for graph data, leaving a critical gap in the field. Additionally, personalized models derived from existing methods suffer from bias, failing to effectively generalize to the minority. To address these challenges, we propose the first $\textbf{O}$ne-shot $\textbf{p}$ersonalized $\textbf{F}$ederated $\textbf{G}$raph $\textbf{L}$earning method ($\textbf{O-pFGL}$) for node classification, compatible with Secure Aggregation protocols for privacy preservation. Specifically, for effective graph learning in one communication round, our method estimates and aggregates class-wise feature distribution statistics to construct a global pseudo-graph on the server, facilitating the training of a global graph model. To mitigate bias, we introduce a two-stage personalized training approach that adaptively balances local personal information and global insights from the pseudo-graph, improving both personalization and generalization. Extensive experiments on 12 multi-scale graph datasets demonstrate that our method significantly outperforms state-of-the-art baselines across various settings.
comment: Work in progress
♻ ☆ Dynamic Sub-graph Distillation for Robust Semi-supervised Continual Learning
Continual learning (CL) has shown promising results and comparable performance to learning at once in a fully supervised manner. However, CL strategies typically require a large number of labeled samples, making their real-life deployment challenging. In this work, we focus on semi-supervised continual learning (SSCL), where the model progressively learns from partially labeled data with unknown categories. We provide a comprehensive analysis of SSCL and demonstrate that unreliable distributions of unlabeled data lead to unstable training and refinement of the progressing stages. This problem severely impacts the performance of SSCL. To address the limitations, we propose a novel approach called Dynamic Sub-Graph Distillation (DSGD) for semi-supervised continual learning, which leverages both semantic and structural information to achieve more stable knowledge distillation on unlabeled data and exhibit robustness against distribution bias. Firstly, we formalize a general model of structural distillation and design a dynamic graph construction for the continual learning progress. Next, we define a structure distillation vector and design a dynamic sub-graph distillation algorithm, which enables end-to-end training and adaptability to scale up tasks. The entire proposed method is adaptable to various CL methods and supervision settings. Finally, experiments conducted on three datasets CIFAR10, CIFAR100, and ImageNet-100, with varying supervision ratios, demonstrate the effectiveness of our proposed approach in mitigating the catastrophic forgetting problem in semi-supervised continual learning scenarios.
♻ ☆ Balanced Neural ODEs: nonlinear model order reduction and Koopman operator approximations
Variational Autoencoders (VAEs) are a powerful framework for learning latent representations of reduced dimensionality, while Neural ODEs excel in learning transient system dynamics. This work combines the strengths of both to generate fast surrogate models with adjustable complexity reacting on time-varying inputs signals. By leveraging the VAE's dimensionality reduction using a nonhierarchical prior, our method adaptively assigns stochastic noise, naturally complementing known NeuralODE training enhancements and enabling probabilistic time series modeling. We show that standard Latent ODEs struggle with dimensionality reduction in systems with time-varying inputs. Our approach mitigates this by continuously propagating variational parameters through time, establishing fixed information channels in latent space. This results in a flexible and robust method that can learn different system complexities, e.g. deep neural networks or linear matrices. Hereby, it enables efficient approximation of the Koopman operator without the need for predefining its dimensionality. As our method balances dimensionality reduction and reconstruction accuracy, we call it Balanced Neural ODE (B-NODE). We demonstrate the effectiveness of this methods on several academic and real-world test cases, e.g. a power plant or MuJoCo data.
comment: Conference paper under review, after revision
♻ ☆ Spurious Feature Eraser: Stabilizing Test-Time Adaptation for Vision-Language Foundation Model
Vision-language foundation models have exhibited remarkable success across a multitude of downstream tasks due to their scalability on extensive image-text paired data. However, these models also display significant limitations when applied to downstream tasks, such as fine-grained image classification, as a result of ``decision shortcuts'' that hinder their generalization capabilities. In this work, we find that the CLIP model possesses a rich set of features, encompassing both \textit{desired invariant causal features} and \textit{undesired decision shortcuts}. Moreover, the underperformance of CLIP on downstream tasks originates from its inability to effectively utilize pre-trained features in accordance with specific task requirements. To address this challenge, we propose a simple yet effective method, Spurious Feature Eraser (SEraser), to alleviate the decision shortcuts by erasing the spurious features. Specifically, we introduce a test-time prompt tuning paradigm that optimizes a learnable prompt, thereby compelling the model to exploit invariant features while disregarding decision shortcuts during the inference phase. The proposed method effectively alleviates excessive dependence on potentially misleading spurious information. We conduct comparative analysis of the proposed method against various approaches which validates the significant superiority.
♻ ☆ ImagiNet: A Multi-Content Benchmark for Synthetic Image Detection AAAI 2025
Recent generative models produce images with a level of authenticity that makes them nearly indistinguishable from real photos and artwork. Potential harmful use cases of these models, necessitate the creation of robust synthetic image detectors. However, current datasets in the field contain generated images with questionable quality or have examples from one predominant content type which leads to poor generalizability of the underlying detectors. We find that the curation of a balanced amount of high-resolution generated images across various content types is crucial for the generalizability of detectors, and introduce ImagiNet, a dataset of 200K examples, spanning four categories: photos, paintings, faces, and miscellaneous. Synthetic images in ImagiNet are produced with both open-source and proprietary generators, whereas real counterparts for each content type are collected from public datasets. The structure of ImagiNet allows for a two-track evaluation system: i) classification as real or synthetic and ii) identification of the generative model. To establish a strong baseline, we train a ResNet-50 model using a self-supervised contrastive objective (SelfCon) for each track which achieves evaluation AUC of up to 0.99 and balanced accuracy ranging from 86% to 95%, even under conditions that involve compression and resizing. The provided model is generalizable enough to achieve zero-shot state-of-the-art performance on previous synthetic detection benchmarks. We provide ablations to demonstrate the importance of content types and publish code and data.
comment: Workshop on Datasets and Evaluators of AI Safety, AAAI 2025
♻ ☆ Audio-Agent: Leveraging LLMs For Audio Generation, Editing and Composition
We introduce Audio-Agent, a multimodal framework for audio generation, editing and composition based on text or video inputs. Conventional approaches for text-to-audio (TTA) tasks often make single-pass inferences from text descriptions. While straightforward, this design struggles to produce high-quality audio when given complex text conditions. In our method, we utilize a pre-trained TTA diffusion network as the audio generation agent to work in tandem with GPT-4, which decomposes the text condition into atomic, specific instructions and calls the agent for audio generation. In doing so, Audio-Agent can generate high-quality audio that is closely aligned with the provided text or video exhibiting complex and multiple events, while supporting variable-length and variable-volume generation. For video-to-audio (VTA) tasks, most existing methods require training a timestamp detector to synchronize video events with the generated audio, a process that can be tedious and time-consuming. Instead, we propose a simpler approach by fine-tuning a pre-trained Large Language Model (LLM), e.g., Gemma2-2B-it, to obtain both semantic and temporal conditions that bridge the video and audio modality. Consequently, our framework contributes a comprehensive solution for both TTA and VTA tasks without substantial computational overhead in training.
♻ ☆ Correlation-Aware Graph Convolutional Networks for Multi-Label Node Classification KDD2025
Multi-label node classification is an important yet under-explored domain in graph mining as many real-world nodes belong to multiple categories rather than just a single one. Although a few efforts have been made by utilizing Graph Convolution Networks (GCNs) to learn node representations and model correlations between multiple labels in the embedding space, they still suffer from the ambiguous feature and ambiguous topology induced by multiple labels, which reduces the credibility of the messages delivered in graphs and overlooks the label correlations on graph data. Therefore, it is crucial to reduce the ambiguity and empower the GCNs for accurate classification. However, this is quite challenging due to the requirement of retaining the distinctiveness of each label while fully harnessing the correlation between labels simultaneously. To address these issues, in this paper, we propose a Correlation-aware Graph Convolutional Network (CorGCN) for multi-label node classification. By introducing a novel Correlation-Aware Graph Decomposition module, CorGCN can learn a graph that contains rich label-correlated information for each label. It then employs a Correlation-Enhanced Graph Convolution to model the relationships between labels during message passing to further bolster the classification process. Extensive experiments on five datasets demonstrate the effectiveness of our proposed CorGCN.
comment: 12 pages, accepted by KDD2025
♻ ☆ A Random Matrix Approach to Low-Multilinear-Rank Tensor Approximation
This work presents a comprehensive understanding of the estimation of a planted low-rank signal from a general spiked tensor model near the computational threshold. Relying on standard tools from the theory of large random matrices, we characterize the large-dimensional spectral behavior of the unfoldings of the data tensor and exhibit relevant signal-to-noise ratios governing the detectability of the principal directions of the signal. These results allow to accurately predict the reconstruction performance of truncated multilinear SVD (MLSVD) in the non-trivial regime. This is particularly important since it serves as an initialization of the higher-order orthogonal iteration (HOOI) scheme, whose convergence to the best low-multilinear-rank approximation depends entirely on its initialization. We give a sufficient condition for the convergence of HOOI and show that the number of iterations before convergence tends to $1$ in the large-dimensional limit.
♻ ☆ Fast, Scale-Adaptive, and Uncertainty-Aware Downscaling of Earth System Model Fields with Generative Machine Learning
Accurate and high-resolution Earth system model (ESM) simulations are essential to assess the ecological and socio-economic impacts of anthropogenic climate change, but are computationally too expensive to be run at sufficiently high spatial resolution. Recent machine learning approaches have shown promising results in downscaling ESM simulations, outperforming state-of-the-art statistical approaches. However, existing methods require computationally costly retraining for each ESM and extrapolate poorly to climates unseen during training. We address these shortcomings by learning a consistency model (CM) that efficiently and accurately downscales arbitrary ESM simulations without retraining in a zero-shot manner. Our approach yields probabilistic downscaled fields at a resolution only limited by the observational reference data. We show that the CM outperforms state-of-the-art diffusion models at a fraction of computational cost while maintaining high controllability on the downscaling task. Further, our method generalizes to climate states unseen during training without explicitly formulated physical constraints.
♻ ☆ Learning Symmetries via Weight-Sharing with Doubly Stochastic Tensors
Group equivariance has emerged as a valuable inductive bias in deep learning, enhancing generalization, data efficiency, and robustness. Classically, group equivariant methods require the groups of interest to be known beforehand, which may not be realistic for real-world data. Additionally, baking in fixed group equivariance may impose overly restrictive constraints on model architecture. This highlights the need for methods that can dynamically discover and apply symmetries as soft constraints. For neural network architectures, equivariance is commonly achieved through group transformations of a canonical weight tensor, resulting in weight sharing over a given group $G$. In this work, we propose to learn such a weight-sharing scheme by defining a collection of learnable doubly stochastic matrices that act as soft permutation matrices on canonical weight tensors, which can take regular group representations as a special case. This yields learnable kernel transformations that are jointly optimized with downstream tasks. We show that when the dataset exhibits strong symmetries, the permutation matrices will converge to regular group representations and our weight-sharing networks effectively become regular group convolutions. Additionally, the flexibility of the method enables it to effectively pick up on partial symmetries.
comment: 19 pages, 14 figures, 4 tables
♻ ☆ Scalable and Resource-Efficient Second-Order Federated Learning via Over-the-Air Aggregation
Second-order federated learning (FL) algorithms offer faster convergence than their first-order counterparts by leveraging curvature information. However, they are hindered by high computational and storage costs, particularly for large-scale models. Furthermore, the communication overhead associated with large models and digital transmission exacerbates these challenges, causing communication bottlenecks. In this work, we propose a scalable second-order FL algorithm using a sparse Hessian estimate and leveraging over-the-air aggregation, making it feasible for larger models. Our simulation results demonstrate more than $67\%$ of communication resources and energy savings compared to other first and second-order baselines.
comment: 6 pages, 1 figure, 4 subfigures, letter
♻ ☆ Rethinking Decoders for Transformer-based Semantic Segmentation: A Compression Perspective NeurIPS2024
State-of-the-art methods for Transformer-based semantic segmentation typically adopt Transformer decoders that are used to extract additional embeddings from image embeddings via cross-attention, refine either or both types of embeddings via self-attention, and project image embeddings onto the additional embeddings via dot-product. Despite their remarkable success, these empirical designs still lack theoretical justifications or interpretations, thus hindering potentially principled improvements. In this paper, we argue that there are fundamental connections between semantic segmentation and compression, especially between the Transformer decoders and Principal Component Analysis (PCA). From such a perspective, we derive a white-box, fully attentional DEcoder for PrIncipled semantiC segemenTation (DEPICT), with the interpretations as follows: 1) the self-attention operator refines image embeddings to construct an ideal principal subspace that aligns with the supervision and retains most information; 2) the cross-attention operator seeks to find a low-rank approximation of the refined image embeddings, which is expected to be a set of orthonormal bases of the principal subspace and corresponds to the predefined classes; 3) the dot-product operation yields compact representation for image embeddings as segmentation masks. Experiments conducted on dataset ADE20K find that DEPICT consistently outperforms its black-box counterpart, Segmenter, and it is light weight and more robust.
comment: NeurIPS2024. Code:https://github.com/QishuaiWen/DEPICT/
♻ ☆ GenSafe: A Generalizable Safety Enhancer for Safe Reinforcement Learning Algorithms Based on Reduced Order Markov Decision Process Model
Safe Reinforcement Learning (SRL) aims to realize a safe learning process for Deep Reinforcement Learning (DRL) algorithms by incorporating safety constraints. However, the efficacy of SRL approaches often relies on accurate function approximations, which are notably challenging to achieve in the early learning stages due to data insufficiency. To address this issue, we introduce in this work a novel Generalizable Safety enhancer (GenSafe) that is able to overcome the challenge of data insufficiency and enhance the performance of SRL approaches. Leveraging model order reduction techniques, we first propose an innovative method to construct a Reduced Order Markov Decision Process (ROMDP) as a low-dimensional approximator of the original safety constraints. Then, by solving the reformulated ROMDP-based constraints, GenSafe refines the actions of the agent to increase the possibility of constraint satisfaction. Essentially, GenSafe acts as an additional safety layer for SRL algorithms. We evaluate GenSafe on multiple SRL approaches and benchmark problems. The results demonstrate its capability to improve safety performance, especially in the early learning phases, while maintaining satisfactory task performance. Our proposed GenSafe not only offers a novel measure to augment existing SRL methods but also shows broad compatibility with various SRL algorithms, making it applicable to a wide range of systems and SRL problems.
♻ ☆ Fair CoVariance Neural Networks
Covariance-based data processing is widespread across signal processing and machine learning applications due to its ability to model data interconnectivities and dependencies. However, harmful biases in the data may become encoded in the sample covariance matrix and cause data-driven methods to treat different subpopulations unfairly. Existing works such as fair principal component analysis (PCA) mitigate these effects, but remain unstable in low sample regimes, which in turn may jeopardize the fairness goal. To address both biases and instability, we propose Fair coVariance Neural Networks (FVNNs), which perform graph convolutions on the covariance matrix for both fair and accurate predictions. Our FVNNs provide a flexible model compatible with several existing bias mitigation techniques. In particular, FVNNs allow for mitigating the bias in two ways: first, they operate on fair covariance estimates that remove biases from their principal components; second, they are trained in an end-to-end fashion via a fairness regularizer in the loss function so that the model parameters are tailored to solve the task directly in a fair manner. We prove that FVNNs are intrinsically fairer than analogous PCA approaches thanks to their stability in low sample regimes. We validate the robustness and fairness of our model on synthetic and real-world data, showcasing the flexibility of FVNNs along with the tradeoff between fair and accurate performance.
♻ ☆ Self-Attention as a Parametric Endofunctor: A Categorical Framework for Transformer Architectures
Self-attention mechanisms have revolutionised deep learning architectures, yet their core mathematical structures remain incompletely understood. In this work, we develop a category-theoretic framework focusing on the linear components of self-attention. Specifically, we show that the query, key, and value maps naturally define a parametric 1-morphism in the 2-category $\mathbf{Para(Vect)}$. On the underlying 1-category $\mathbf{Vect}$, these maps induce an endofunctor whose iterated composition precisely models multi-layer attention. We further prove that stacking multiple self-attention layers corresponds to constructing the free monad on this endofunctor. For positional encodings, we demonstrate that strictly additive embeddings correspond to monoid actions in an affine sense, while standard sinusoidal encodings, though not additive, retain a universal property among injective (faithful) position-preserving maps. We also establish that the linear portions of self-attention exhibit natural equivariance to permutations of input tokens, and show how the "circuits" identified in mechanistic interpretability can be interpreted as compositions of parametric 1-morphisms. This categorical perspective unifies geometric, algebraic, and interpretability-based approaches to transformer analysis, making explicit the underlying structures of attention. We restrict to linear maps throughout, deferring the treatment of nonlinearities such as softmax and layer normalisation, which require more advanced categorical constructions. Our results build on and extend recent work on category-theoretic foundations for deep learning, offering deeper insights into the algebraic structure of attention mechanisms.
♻ ☆ Private Collaborative Edge Inference via Over-the-Air Computation
We consider collaborative inference at the wireless edge, where each client's model is trained independently on its local dataset. Clients are queried in parallel to make an accurate decision collaboratively. In addition to maximizing the inference accuracy, we also want to ensure the privacy of local models. To this end, we leverage the superposition property of the multiple access channel to implement bandwidth-efficient multi-user inference methods. We propose different methods for ensemble and multi-view classification that exploit over-the-air computation (OAC). We show that these schemes perform better than their orthogonal counterparts with statistically significant differences while using fewer resources and providing privacy guarantees. We also provide experimental results verifying the benefits of the proposed OAC approach to multi-user inference, and perform an ablation study to demonstrate the effectiveness of our design choices. We share the source code of the framework publicly on Github to facilitate further research and reproducibility.
comment: 17 pages, 8 figures. This work extends from our preliminary study presented at the 2022 IEEE International Symposium on Information Theory [1]. arXiv admin note: text overlap with arXiv:2202.03129
♻ ☆ One Language, Many Gaps: Evaluating Dialect Fairness and Robustness of Large Language Models in Reasoning Tasks
Language is not monolithic. While benchmarks, including those designed for multiple languages, are often used as proxies to evaluate the performance of Large Language Models (LLMs), they tend to overlook the nuances of within-language variation, and thus fail to model the experience of speakers of non-standard dialects. Focusing on African American Vernacular English (AAVE), we present the first study aimed at objectively assessing the fairness and robustness of LLMs in handling dialects in canonical reasoning tasks, including algorithm, math, logic, and integrated reasoning. We introduce \textbf{ReDial} (\textbf{Re}asoning with \textbf{Dial}ect Queries), a benchmark containing 1.2K+ parallel query pairs in Standardized English and AAVE. We hire AAVE speakers, including experts with computer science backgrounds, to rewrite seven popular benchmarks, such as HumanEval and GSM8K. With ReDial, we evaluate widely used LLMs, including GPT, Claude, Llama, Mistral, and the Phi model families. Our findings reveal that \textbf{almost all of these widely used models show significant brittleness and unfairness to queries in AAVE}. Our work establishes a systematic and objective framework for analyzing LLM bias in dialectal queries. Moreover, it highlights how mainstream LLMs provide unfair service to dialect speakers in reasoning tasks, laying a critical foundation for relevant future research. Code and data can be accessed at https://github.com/fangru-lin/redial_dialect_robustness_fairness.
♻ ☆ Synthesis and Analysis of Data as Probability Measures with Entropy-Regularized Optimal Transport
We consider synthesis and analysis of probability measures using the entropy-regularized Wasserstein-2 cost and its unbiased version, the Sinkhorn divergence. The synthesis problem consists of computing the barycenter, with respect to these costs, of $m$ reference measures given a set of coefficients belonging to the $m$-dimensional simplex. The analysis problem consists of finding the coefficients for the closest barycenter in the Wasserstein-2 distance to a given measure $\mu$. Under the weakest assumptions on the measures thus far in the literature, we compute the derivative of the entropy-regularized Wasserstein-2 cost. We leverage this to establish a characterization of regularized barycenters as solutions to a fixed-point equation for the average of the entropic maps from the barycenter to the reference measures. This characterization yields a finite-dimensional, convex, quadratic program for solving the analysis problem when $\mu$ is a barycenter. It is shown that these coordinates, as well as the value of the barycenter functional, can be estimated from samples with dimension-independent rates of convergence, a hallmark of entropy-regularized optimal transport, and we verify these rates experimentally. We also establish that barycentric coordinates are stable with respect to perturbations in the Wasserstein-2 metric, suggesting a robustness of these coefficients to corruptions. We employ the barycentric coefficients as features for classification of corrupted point cloud data, and show that compared to neural network baselines, our approach is more efficient in small training data regimes.
comment: 58 pages. Code to reproduce experiments: https://github.com/brendanmallery9/Entropic-Barycenters
♻ ☆ KAN KAN Buff Signed Graph Neural Networks?
Graph Representation Learning focuses on creating embeddings for nodes and edges that capture their features and connections. Graph Neural Networks (GNNs) use neural networks to model complex graph relationships. The Kolmogorov-Arnold Neural Network (KAN) has recently emerged as an alternative to the Multi-Layer Perceptron (MLP), offering better accuracy and interpretability with fewer parameters. KANs have been applied to GNN tasks. This paper introduces the integration of KANs into Signed Graph Convolutional Networks (SGCNs). We evaluate KAN-enhanced SGCNs (KASGCN) on signed community detection and link sign prediction tasks to improve embedding quality in signed networks. While the results show some variability, KASGCN performs competitively with or similarly to the standard SGCN in the functions tested. Its effectiveness depends on the specific context, such as the signed graph and parameter settings.
♻ ☆ Evaluation of Artificial Intelligence Methods for Lead Time Prediction in Non-Cycled Areas of Automotive Production
The present study examines the effectiveness of applying Artificial Intelligence methods in an automotive production environment to predict unknown lead times in a non-cycle-controlled production area. Data structures are analyzed to identify contextual features and then preprocessed using one-hot encoding. Methods selection focuses on supervised machine learning techniques. In supervised learning methods, regression and classification methods are evaluated. Continuous regression based on target size distribution is not feasible. Classification methods analysis shows that Ensemble Learning and Support Vector Machines are the most suitable. Preliminary study results indicate that gradient boosting algorithms LightGBM, XGBoost, and CatBoost yield the best results. After further testing and extensive hyperparameter optimization, the final method choice is the LightGBM algorithm. Depending on feature availability and prediction interval granularity, relative prediction accuracies of up to 90% can be achieved. Further tests highlight the importance of periodic retraining of AI models to accurately represent complex production processes using the database. The research demonstrates that AI methods can be effectively applied to highly variable production data, adding business value by providing an additional metric for various control tasks while outperforming current non AI-based systems.
♻ ☆ Set-Based Training for Neural Network Verification
Neural networks are vulnerable to adversarial attacks, i.e., small input perturbations can significantly affect the outputs of a neural network. Therefore, to ensure safety of safety-critical environments, the robustness of a neural network must be formally verified against input perturbations, e.g., from noisy sensors. To improve the robustness of neural networks and thus simplify the formal verification, we present a novel set-based training procedure in which we compute the set of possible outputs given the set of possible inputs and compute for the first time a gradient set, i.e., each possible output has a different gradient. Therefore, we can directly reduce the size of the output enclosure by choosing gradients toward its center. Small output enclosures increase the robustness of a neural network and, at the same time, simplify its formal verification. The latter benefit is due to the fact that a larger size of propagated sets increases the conservatism of most verification methods. Our extensive evaluation demonstrates that set-based training produces robust neural networks with competitive performance, which can be verified using fast (polynomial-time) verification algorithms due to the reduced output set.
♻ ☆ COOL: Efficient and Reliable Chain-Oriented Objective Logic with Neural Networks Feedback Control for Program Synthesis
Program synthesis methods, whether formal or neural-based, lack fine-grained control and flexible modularity, which limits their adaptation to complex software development. These limitations stem from rigid Domain-Specific Language (DSL) frameworks and neural network incorrect predictions. To this end, we propose the Chain of Logic (CoL), which organizes the synthesis process into an activity flow and provides heuristic control to guide the process. Furthermore, by integrating neural networks with libraries and introducing a Neural Network Feedback Control (NNFC) mechanism, our approach modularizes synthesis and mitigates the impact of neural network mispredictions. Experiments on relational and symbolic synthesis tasks show that CoL significantly enhances the efficiency and reliability of DSL program synthesis across multiple metrics. Specifically, CoL improves accuracy by 70% while reducing tree operations by 91% and time by 95%. Additionally, NNFC further boosts accuracy by 6%, with a 64% reduction in tree operations under challenging conditions such as insufficient training data, increased difficulty, and multidomain synthesis. These improvements confirm COOL as a highly efficient and reliable program synthesis framework.
comment: 31 pages, 11 figures
♻ ☆ MoPE: Mixture of Prompt Experts for Parameter-Efficient and Scalable Multimodal Fusion
Despite the demonstrated parameter efficiency of prompt-based multimodal fusion methods, their limited adaptivity and expressiveness often result in suboptimal performance compared to other tuning approaches. In this paper, we introduce the Mixture of Prompt Experts (MoPE), the first technique designed to overcome these limitations by decomposing standard prompts to capture instance-level features adaptively. Building on this decomposition, MoPE enhances prompt fusion's expressiveness by leveraging multimodal pairing priors to route the most effective prompt for each instance dynamically. Compared to vanilla prompting, our MoPE-based fusion method exhibits greater expressiveness, scaling more effectively with the training data and the overall number of trainable parameters. We also investigate regularization terms for expert routing, which lead to emergent expert specialization with enhanced adaptiveness and interpretablity. Extensive experiments across six multimodal datasets spanning four modalities demonstrate state-of-the-art performance for prompt fusion, matching or even surpassing the performance of fine-tuning while requiring only 0.8% of the trainable parameters. Project homepage: https://github.com/songrise/MoPE
comment: Under Review, Extended version of arxiv:2312.03734
♻ ☆ Layer-Adaptive State Pruning for Deep State Space Models NeurIPS 2024
Due to the lack of state dimension optimization methods, deep state space models (SSMs) have sacrificed model capacity, training search space, or stability to alleviate computational costs caused by high state dimensions. In this work, we provide a structured pruning method for SSMs, Layer-Adaptive STate pruning (LAST), which reduces the state dimension of each layer in minimizing model-level output energy loss by extending modal truncation for a single system. LAST scores are evaluated using the $\mathcal{H}_{\infty}$ norms of subsystems and layer-wise energy normalization. The scores serve as global pruning criteria, enabling cross-layer comparison of states and layer-adaptive pruning. Across various sequence benchmarks, LAST optimizes previous SSMs, revealing the redundancy and compressibility of their state spaces. Notably, we demonstrate that, on average, pruning 33% of states still maintains performance with 0.52% accuracy loss in multi-input multi-output SSMs without retraining. Code is available at https://github.com/msgwak/LAST.
comment: NeurIPS 2024
♻ ☆ Data-driven Bayesian State Estimation with Compressed Measurement of Model-free Process using Semi-supervised Learning SP
The research topic is: data-driven Bayesian state estimation with compressed measurement (BSCM) of model-free process, say for a (causal) tracking application. The dimension of the temporal measurement vector is lower than the dimension of the temporal state vector to be estimated. Hence the state estimation problem is an underdetermined inverse problem. The underlying dynamical model of the states is assumed to be unknown and hence, we use the terminology 'model-free process'. In absence of the dynamical model, we can not employ traditional model-driven methods like Kalman Filter (KF) and Particle Filter (PF), and instead require data-driven methods. We first experimentally show that two existing unsupervised learning-based data-driven methods fail to address the BSCM problem for model-free process; they are - data-driven nonlinear state estimation (DANSE) method and deep Markov model (DMM) method. The unsupervised learning uses unlabelled data comprised of only noisy, linear measurements. While DANSE provides a good predictive / forecasting performance to model the temporal measurement data as time-series, its unsupervised learning lacks a regularization for state estimation. We then investigate the use of a semi-supervised learning approach, and develop a semi-supervised learning-based DANSE method, referred to as SemiDANSE. In SemiDANSE, we use a limited amount of labelled data along-with a large amount of unlabelled data, and that helps to bring the desired regularization for addressing the BSCM problem. The labelled data means pairwise measurement-and-state data. Using three chaotic dynamical systems (or processes) with nonlinear dynamical models as benchmark, we show that the data-driven SemiDANSE provides competitive performance for BSCM against a hybrid method called KalmanNet and two model-driven methods -- an extended KF (EKF) and an unscented KF (UKF).
comment: 14 pages, under review at IEEE TSP
♻ ☆ FoMo: A Foundation Model for Mobile Traffic Forecasting with Diffusion Model
Mobile traffic forecasting allows operators to anticipate network dynamics and performance in advance, offering substantial potential for enhancing service quality and improving user experience. However, existing models are often task-oriented and are trained with tailored data, which limits their effectiveness in diverse mobile network tasks of Base Station (BS) deployment, resource allocation, energy optimization, etc. and hinders generalization across different urban environments. Foundation models have made remarkable strides across various domains of NLP and CV due to their multi-tasking adaption and zero/few-shot learning capabilities. In this paper, we propose an innovative Foundation model for Mo}bile traffic forecasting (FoMo), aiming to handle diverse forecasting tasks of short/long-term predictions and distribution generation across multiple cities to support network planning and optimization. FoMo combines diffusion models and transformers, where various spatio-temporal masks are proposed to enable FoMo to learn intrinsic features of different tasks, and a contrastive learning strategy is developed to capture the correlations between mobile traffic and urban contexts, thereby improving its transfer learning capability. Extensive experiments on 9 real-world datasets demonstrate that FoMo outperforms current models concerning diverse forecasting tasks and zero/few-shot learning, showcasing a strong universality.
comment: 11 pages, 7 figures
♻ ☆ Generating Less Certain Adversarial Examples Improves Robust Generalization
This paper revisits the robust overfitting phenomenon of adversarial training. Observing that models with better robust generalization performance are less certain in predicting adversarially generated training inputs, we argue that overconfidence in predicting adversarial examples is a potential cause. Therefore, we hypothesize that generating less certain adversarial examples improves robust generalization, and propose a formal definition of adversarial certainty that captures the variance of the model's predicted logits on adversarial examples. Our theoretical analysis of synthetic distributions characterizes the connection between adversarial certainty and robust generalization. Accordingly, built upon the notion of adversarial certainty, we develop a general method to search for models that can generate training-time adversarial inputs with reduced certainty, while maintaining the model's capability in distinguishing adversarial examples. Extensive experiments on image benchmarks demonstrate that our method effectively learns models with consistently improved robustness and mitigates robust overfitting, confirming the importance of generating less certain adversarial examples for robust generalization. Our implementations are available as open-source code at: https://github.com/TrustMLRG/AdvCertainty.
comment: Published in Transactions on Machine Learning Research (TMLR)
♻ ☆ A User's Guide to $\texttt{KSig}$: GPU-Accelerated Computation of the Signature Kernel
The signature kernel is a positive definite kernel for sequential and temporal data that has become increasingly popular in machine learning applications due to powerful theoretical guarantees, strong empirical performance, and recently introduced various scalable variations. In this chapter, we give a short introduction to $\texttt{KSig}$, a $\texttt{Scikit-Learn}$ compatible Python package that implements various GPU-accelerated algorithms for computing signature kernels, and performing downstream learning tasks. We also introduce a new algorithm based on tensor sketches which gives strong performance compared to existing algorithms. The package is available at https://github.com/tgcsaba/ksig.
♻ ☆ Exploring Gradient Subspaces: Addressing and Overcoming LoRA's Limitations in Federated Fine-Tuning of Large Language Models
Large Language Models (LLMs) have demonstrated remarkable capabilities across various domains, particularly in task generalization for both text and vision data. While fine-tuning these models can significantly enhance their performance on specific downstream tasks, it often requires high-quality data that cannot be shared due to privacy concerns. Federated Learning (FL) offers a promising solution for collaborative training without direct data sharing. However, many parameter-efficient fine-tuning strategies for LLMs in FL, particularly those based on Low-Rank Adaptation (LoRA), face limitations. In this paper, we critically analyze the convergence and performance guarantees of popular FL frameworks utilizing LoRA, highlighting its suboptimal nature due to constrained subspace learning of low-rank matrices. This limitation hinders effective fine-tuning of LLMs in federated settings. Through rigorous analytical and empirical evaluations, we demonstrate that direct weight averaging outperforms LoRA-based strategies, leading to superior performance for fine-tuned models. Our comprehensive comparison unmasks inefficiencies in LoRA approaches and underscores the advantages of direct weight aggregation. We extend our analysis to low-rank gradient-based optimizers, such as GaLore, used during local training steps. Our findings show that GaLore along with direct-weight aggregation is a more effective approach, outperforming federated LoRA methods like FlexLoRA and FFA-LoRA across both text and image modalities. While privacy remains paramount in FL discourse, our focus is on assessing performance outcomes of federated fine-tuned models and evaluating various FL frameworks from both theoretical and empirical perspectives. Our findings advocate reassessing the reliance on LoRA within FL contexts, paving the way for more efficient training methodologies.
♻ ☆ Random Policy Enables In-Context Reinforcement Learning within Trust Horizons
Pretrained foundation models have exhibited extraordinary in-context learning performance, allowing zero-shot generalization to new tasks not encountered during pretraining. In the case of reinforcement learning (RL), in-context RL (ICRL) emerges when pretraining FMs on decision-making problems in an autoregressive-supervised manner. Nevertheless, current state-of-the-art ICRL algorithms, like Algorithm Distillation, Decision Pretrained Transformer and Decision Importance Transformer, impose stringent requirements on the pretraining dataset concerning the source policies, context information, and action labels. Notably, these algorithms either demand optimal policies or require varying degrees of well-trained behavior policies for all pretraining environments. This significantly hinders the application of ICRL to real-world scenarios, where acquiring optimal or well-trained policies for a substantial volume of real-world training environments can be intractable. To overcome this challenge, we introduce a novel approach, termed State-Action Distillation (SAD), that allows to generate an effective pretraining dataset guided solely by random policies. In particular, SAD selects query states and corresponding action labels by distilling outstanding state-action pairs from the entire state and action spaces by using random policies within a trust horizon, and then inherits the classical autoregressive-supervised mechanism during pretraining. To the best of our knowledge, this is the first work that enables effective ICRL under random policies and random contexts. We also establish quantitative analysis of the trustworthiness as well as the performance guarantees of SAD. Moreover, our empirical results across multiple popular ICRL benchmark environments demonstrate that, on average, SAD outperforms the best baseline by 236.3% in the offline evaluation and by 135.2% in the online evaluation.
♻ ☆ Doubly-Bounded Queue for Constrained Online Learning: Keeping Pace with Dynamics of Both Loss and Constraint AAAI 2025
We consider online convex optimization with time-varying constraints and conduct performance analysis using two stringent metrics: dynamic regret with respect to the online solution benchmark, and hard constraint violation that does not allow any compensated violation over time. We propose an efficient algorithm called Constrained Online Learning with Doubly-bounded Queue (COLDQ), which introduces a novel virtual queue that is both lower and upper bounded, allowing tight control of the constraint violation without the need for the Slater condition. We prove via a new Lyapunov drift analysis that COLDQ achieves $O(T^\frac{1+V_x}{2})$ dynamic regret and $O(T^{V_g})$ hard constraint violation, where $V_x$ and $V_g$ capture the dynamics of the loss and constraint functions. For the first time, the two bounds smoothly approach to the best-known $O(T^\frac{1}{2})$ regret and $O(1)$ violation, as the dynamics of the losses and constraints diminish. For strongly convex loss functions, COLDQ matches the best-known $O(\log{T})$ static regret while maintaining the $O(T^{V_g})$ hard constraint violation. We further introduce an expert-tracking variation of COLDQ, which achieves the same performance bounds without any prior knowledge of the system dynamics. Simulation results demonstrate that COLDQ outperforms the state-of-the-art approaches.
comment: To appear in AAAI 2025
♻ ☆ Multi-matrix Factorization Attention
We propose novel attention architectures, Multi-matrix Factorization Attention (MFA) and MFA-Key-Reuse (MFA-KR). Existing variants for standard Multi-Head Attention (MHA), including SOTA methods like MLA, fail to maintain as strong performance under stringent Key-Value cache (KV cache) constraints. MFA enhances model capacity by efficiently scaling up both the number and dimension of attention heads through low-rank matrix factorization in the Query-Key (QK) circuit. Extending MFA, MFA-KR further reduces memory requirements by repurposing the key cache as value through value projection re-parameterization. MFA's design enables strong model capacity when working under tight KV cache budget, while MFA-KR is suitable for even harsher KV cache limits with minor performance trade-off. Notably, in our extensive and large-scale experiments, the proposed architecture outperforms MLA and performs comparably to MHA, while reducing KV cache usage by up to 56% and 93.7%, respectively.
♻ ☆ AdaSociety: An Adaptive Environment with Social Structures for Multi-Agent Decision-Making NeurIPS
Traditional interactive environments limit agents' intelligence growth with fixed tasks. Recently, single-agent environments address this by generating new tasks based on agent actions, enhancing task diversity. We consider the decision-making problem in multi-agent settings, where tasks are further influenced by social connections, affecting rewards and information access. However, existing multi-agent environments lack a combination of adaptive physical surroundings and social connections, hindering the learning of intelligent behaviors. To address this, we introduce AdaSociety, a customizable multi-agent environment featuring expanding state and action spaces, alongside explicit and alterable social structures. As agents progress, the environment adaptively generates new tasks with social structures for agents to undertake. In AdaSociety, we develop three mini-games showcasing distinct social structures and tasks. Initial results demonstrate that specific social structures can promote both individual and collective benefits, though current reinforcement learning and LLM-based algorithms show limited effectiveness in leveraging social structures to enhance performance. Overall, AdaSociety serves as a valuable research platform for exploring intelligence in diverse physical and social settings. The code is available at https://github.com/bigai-ai/AdaSociety.
comment: Accepted at NeurIPS D&B 2024
♻ ☆ Lean Attention: Hardware-Aware Scalable Attention Mechanism for the Decode-Phase of Transformers
Transformer-based models have emerged as one of the most widely used architectures for natural language processing, natural language generation, and image generation. The size of the state-of-the-art models has increased steadily reaching billions of parameters. These huge models are memory hungry and incur significant inference latency even on cutting edge AI-accelerators, such as GPUs. Specifically, the time and memory complexity of the attention operation is quadratic in terms of the total context length, i.e., prompt and output tokens. Thus, several optimizations such as key-value tensor caching and FlashAttention computation have been proposed to deliver the low latency demands of applications relying on such large models. However, these techniques do not cater to the computationally distinct nature of different phases during inference. To that end, we propose LeanAttention, a scalable technique of computing self-attention for the token-generation phase (decode-phase) of decoder-only transformer models. LeanAttention enables scaling the attention mechanism implementation for the challenging case of long context lengths by re-designing the execution flow for the decode-phase. We identify that the associative property of online softmax can be treated as a reduction operation thus allowing us to parallelize the attention computation over these large context lengths. We extend the "stream-K" style reduction of tiled calculation to self-attention to enable parallel computation resulting in an average of 2.6x attention execution speedup over FlashAttention-2 and up to 8.33x speedup for 512k context lengths.
comment: 13 pages, 10 figures
♻ ☆ Poisoning Attacks on Federated Learning-based Wireless Traffic Prediction
Federated Learning (FL) offers a distributed framework to train a global control model across multiple base stations without compromising the privacy of their local network data. This makes it ideal for applications like wireless traffic prediction (WTP), which plays a crucial role in optimizing network resources, enabling proactive traffic flow management, and enhancing the reliability of downstream communication-aided applications, such as IoT devices, autonomous vehicles, and industrial automation systems. Despite its promise, the security aspects of FL-based distributed wireless systems, particularly in regression-based WTP problems, remain inadequately investigated. In this paper, we introduce a novel fake traffic injection (FTI) attack, designed to undermine the FL-based WTP system by injecting fabricated traffic distributions with minimal knowledge. We further propose a defense mechanism, termed global-local inconsistency detection (GLID), which strategically removes abnormal model parameters that deviate beyond a specific percentile range estimated through statistical methods in each dimension. Extensive experimental evaluations, performed on real-world wireless traffic datasets, demonstrate that both our attack and defense strategies significantly outperform existing baselines.
comment: Accepted by IFIP/IEEE Networking 2024
♻ ☆ Radar Signal Recognition through Self-Supervised Learning and Domain Adaptation
Automatic radar signal recognition (RSR) plays a pivotal role in electronic warfare (EW), as accurately classifying radar signals is critical for informing decision-making processes. Recent advances in deep learning have shown significant potential in improving RSR performance in domains with ample annotated data. However, these methods fall short in EW scenarios where annotated RF data are scarce or impractical to obtain. To address these challenges, we introduce a self-supervised learning (SSL) method which utilises masked signal modelling and RF domain adaption to enhance RSR performance in environments with limited RF samples and labels. Specifically, we investigate pre-training masked autoencoders (MAE) on baseband in-phase and quadrature (I/Q) signals from various RF domains and subsequently transfer the learned representation to the radar domain, where annotated data are limited. Empirical results show that our lightweight self-supervised ResNet model with domain adaptation achieves up to a 17.5% improvement in 1-shot classification accuracy when pre-trained on in-domain signals (i.e., radar signals) and up to a 16.31% improvement when pre-trained on out-of-domain signals (i.e., comm signals), compared to its baseline without SSL. We also provide reference results for several MAE designs and pre-training strategies, establishing a new benchmark for few-shot radar signal classification.
comment: 5 pages, 9 figures
♻ ☆ Counterfactually Fair Reinforcement Learning via Sequential Data Preprocessing
When applied in healthcare, reinforcement learning (RL) seeks to dynamically match the right interventions to subjects to maximize population benefit. However, the learned policy may disproportionately allocate efficacious actions to one subpopulation, creating or exacerbating disparities in other socioeconomically-disadvantaged subgroups. These biases tend to occur in multi-stage decision making and can be self-perpetuating, which if unaccounted for could cause serious unintended consequences that limit access to care or treatment benefit. Counterfactual fairness (CF) offers a promising statistical tool grounded in causal inference to formulate and study fairness. In this paper, we propose a general framework for fair sequential decision making. We theoretically characterize the optimal CF policy and prove its stationarity, which greatly simplifies the search for optimal CF policies by leveraging existing RL algorithms. The theory also motivates a sequential data preprocessing algorithm to achieve CF decision making under an additive noise assumption. We prove and then validate our policy learning approach in controlling unfairness and attaining optimal value through simulations. Analysis of a digital health dataset designed to reduce opioid misuse shows that our proposal greatly enhances fair access to counseling.
♻ ☆ Computational and Statistical Asymptotic Analysis of the JKO Scheme for Iterative Algorithms to update distributions
The seminal paper of Jordan, Kinderlehrer, and Otto introduced what is now widely known as the JKO scheme, an iterative algorithmic framework for computing distributions. This scheme can be interpreted as a Wasserstein gradient flow and has been successfully applied in machine learning contexts, such as deriving policy solutions in reinforcement learning. In this paper, we extend the JKO scheme to accommodate models with unknown parameters. Specifically, we develop statistical methods to estimate these parameters and adapt the JKO scheme to incorporate the estimated values. To analyze the adopted statistical JKO scheme, we establish an asymptotic theory via stochastic partial differential equations that describes its limiting dynamic behavior. Our framework allows both the sample size used in parameter estimation and the number of algorithmic iterations to go to infinity. This study offers a unified framework for joint computational and statistical asymptotic analysis of the statistical JKO scheme. On the computational side, we examine the scheme's dynamic behavior as the number of iterations increases, while on the statistical side, we investigate the large-sample behavior of the resulting distributions computed through the scheme. We conduct numerical simulations to evaluate the finite-sample performance of the proposed methods and validate the developed asymptotic theory.
♻ ☆ ELDER: Enhancing Lifelong Model Editing with Mixture-of-LoRA AAAI-25
Large language models (LLMs) require model editing to efficiently update specific knowledge within them and avoid factual errors. Most model editing methods are solely designed for single-time use and result in a significant forgetting effect in lifelong editing scenarios, where sequential edits are conducted over time. Previous approaches manage sequential edits by freezing original parameters and discretely allocating new parameters for each knowledge update. However, these methods lack robustness to minor input variations due to the discrete mapping between data and parameters. To overcome this challenge, we propose ELDER, a novel approach to create a continuous association between data and adapters. ELDER integrates multiple LoRAs through a router network and is trained to establish a smooth data-adapter association, thereby enhancing the edit robustness and generalization of semantically equivalent inputs. To ensure inputs containing the same knowledge will be processed by the same LoRAs, we design a novel loss to guide the model link LoRA allocations with edit knowledge. Furthermore, we propose a deferral mechanism to retain the original LLM capabilities post-edit. Extensive experiments on GPT-2 XL and LLaMA2-7B demonstrate that ELDER effectively edits models in the lifelong setting, outperforming eight baselines while exhibiting strong scalability and preserving LLMs' general abilities on downstream tasks. Our code is available at https://github.com/JiaangL/ELDER.
comment: Accepted by AAAI-25
♻ ☆ Retrieval-Reasoning Large Language Model-based Synthetic Clinical Trial Generation
Machine learning (ML) exhibits promise in the clinical domain. However, it is constrained by data scarcity and ethical considerations, as the generation of clinical trials presents significant challenges due to stringent privacy regulations, high costs, and the extended duration required for conducting studies with human participants. Despite the advancements of large language models (LLMs) in general generation tasks, their potential in facilitating the generation of synthetic clinical trials is under-explored. To address this gap, we introduce a novel Retrieval-Reasoning few-shot framework that leverages LLMs to generate artificial yet realistic and diverse clinical trials with binary success/failure labels. Experiments conducted on real clinical trials from the \url{ClinicalTrials.gov} database demonstrate that our synthetic data can effectively augment real datasets. Furthermore, by fine-tuning a pre-trained model as a binary classifier on synthetic clinical trial datasets, we demonstrate that this augmentation enhances model training for downstream tasks such as trial outcome prediction. Our findings suggest that LLMs for synthetic clinical trial generation hold promise for accelerating clinical research and upholding ethical standards for patient privacy. The code is publicly available at https://anonymous.4open.science/r/Retrieval_Reasoning_Clinical_Trial_Generation-3EC4.
♻ ☆ AI Foundation Models for Wearable Movement Data in Mental Health Research
Pretrained foundation models and transformer architectures have driven the success of large language models (LLMs) and other modern AI breakthroughs. However, similar advancements in health data modeling remain limited due to the need for innovative adaptations. Wearable movement data offers a valuable avenue for exploration, as it's a core feature in nearly all commercial smartwatches, well established in clinical and mental health research, and the sequential nature of the data shares similarities to language. We introduce the Pretrained Actigraphy Transformer (PAT), the first open source foundation model designed for time-series wearable movement data. Leveraging transformer-based architectures and novel techniques, such as patch embeddings, and pretraining on data from 29,307 participants in a national U.S. sample, PAT achieves state-of-the-art performance in several mental health prediction tasks. PAT is also lightweight and easily interpretable, making it a robust tool for mental health research. GitHub: https://github.com/njacobsonlab/Pretrained-Actigraphy-Transformer/
♻ ☆ Energy-Efficient Split Learning for Fine-Tuning Large Language Models in Edge Networks
In this letter, we propose an energy-efficient split learning (SL) framework for fine-tuning large language models (LLMs) using geo-distributed personal data at the network edge, where LLMs are split and alternately across massive mobile devices and an edge server. Considering the device heterogeneity and channel dynamics in edge networks, a \underline{C}ut l\underline{A}yer and computing \underline{R}esource \underline{D}ecision (CARD) algorithm is developed to minimize training delay and energy consumption. Simulation results demonstrate that the proposed approach reduces the average training delay and server's energy consumption by 70.8% and 53.1%, compared to the benchmarks, respectively.
comment: 5 pages, 6 figures
♻ ☆ Can Go AIs be adversarially robust? AAAI 2025
Prior work found that superhuman Go AIs can be defeated by simple adversarial strategies, especially "cyclic" attacks. In this paper, we study whether adding natural countermeasures can achieve robustness in Go, a favorable domain for robustness since it benefits from incredible average-case capability and a narrow, innately adversarial setting. We test three defenses: adversarial training on hand-constructed positions, iterated adversarial training, and changing the network architecture. We find that though some of these defenses protect against previously discovered attacks, none withstand freshly trained adversaries. Furthermore, most of the reliably effective attacks these adversaries discover are different realizations of the same overall class of cyclic attacks. Our results suggest that building robust AI systems is challenging even with extremely superhuman systems in some of the most tractable settings, and highlight two key gaps: efficient generalization of defenses, and diversity in training. For interactive examples of attacks and a link to our codebase, see https://goattack.far.ai.
comment: 63 pages, AAAI 2025
♻ ☆ Physically Guided Deep Unsupervised Inversion for 1D Magnetotelluric Models
The global demand for unconventional energy sources such as geothermal energy and white hydrogen requires new exploration techniques for precise subsurface structure characterization and potential reservoir identification. The Magnetotelluric (MT) method is crucial for these tasks, providing critical information on the distribution of subsurface electrical resistivity at depths ranging from hundreds to thousands of meters. However, traditional iterative algorithm-based inversion methods require the adjustment of multiple parameters, demanding time-consuming and exhaustive tuning processes to achieve proper cost function minimization. Recent advances have incorporated deep learning algorithms for MT inversion, primarily based on supervised learning, and large labeled datasets are needed for training. This work utilizes TensorFlow operations to create a differentiable forward MT operator, leveraging its automatic differentiation capability. Moreover, instead of solving for the subsurface model directly, as classical algorithms perform, this paper presents a new deep unsupervised inversion algorithm guided by physics to estimate 1D MT models. Instead of using datasets with the observed data and their respective model as labels during training, our method employs a differentiable modeling operator that physically guides the cost function minimization, making the proposed method solely dependent on observed data. Therefore, the optimization algorithm updates the network weights to minimize the data misfit. We test the proposed method with field and synthetic data at different acquisition frequencies, demonstrating that the resistivity models obtained are more accurate than those calculated using other techniques.
comment: 5 pages, 6 figures, github repository, submitted to IEEE-GRSL
♻ ☆ $\text{Transformer}^2$: Self-adaptive LLMs
Self-adaptive large language models (LLMs) aim to solve the challenges posed by traditional fine-tuning methods, which are often computationally intensive and static in their ability to handle diverse tasks. We introduce $\text{Transformer}^2$, a novel self-adaptation framework that adapts LLMs for unseen tasks in real-time by selectively adjusting only the singular components of their weight matrices. During inference, $\text{Transformer}^2$ employs a two-pass mechanism: first, a dispatch system identifies the task properties, and then task-specific "expert" vectors, trained using reinforcement learning, are dynamically mixed to obtain targeted behavior for the incoming prompt. Our method outperforms ubiquitous approaches such as LoRA, with fewer parameters and greater efficiency. $\text{Transformer}^2$ demonstrates versatility across different LLM architectures and modalities, including vision-language tasks. $\text{Transformer}^2$ represents a significant leap forward, offering a scalable, efficient solution for enhancing the adaptability and task-specific performance of LLMs, paving the way for truly dynamic, self-organizing AI systems.
comment: 18 panges, 11 figures, 9 tables
♻ ☆ E2ESlack: An End-to-End Graph-Based Framework for Pre-Routing Slack Prediction
Pre-routing slack prediction remains a critical area of research in Electronic Design Automation (EDA). Despite numerous machine learning-based approaches targeting this task, there is still a lack of a truly end-to-end framework that engineers can use to obtain TNS/WNS metrics from raw circuit data at the placement stage. Existing works have demonstrated effectiveness in Arrival Time (AT) prediction but lack a mechanism for Required Arrival Time (RAT) prediction, which is essential for slack prediction and obtaining TNS/WNS metrics. In this work, we propose E2ESlack, an end-to-end graph-based framework for pre-routing slack prediction. The framework includes a TimingParser that supports DEF, SDF and LIB files for feature extraction and graph construction, an arrival time prediction model and a fast RAT estimation module. To the best of our knowledge, this is the first work capable of predicting path-level slacks at the pre-routing stage. We perform extensive experiments and demonstrate that our proposed RAT estimation method outperforms the SOTA ML-based prediction method and also pre-routing STA tool. Additionally, the proposed E2ESlack framework achieves TNS/WNS values comparable to post-routing STA results while saving up to 23x runtime.
♻ ☆ Gradient descent with generalized Newton's method
We propose the generalized Newton's method (GeN) -- a Hessian-informed approach that applies to any optimizer such as SGD and Adam, and covers the Newton-Raphson method as a sub-case. Our method automatically and dynamically selects the learning rate that accelerates the convergence, without the intensive tuning of the learning rate scheduler. In practice, our method is easily implementable, since it only requires additional forward passes with almost zero computational overhead (in terms of training time and memory cost), if the overhead is amortized over many iterations. We present extensive experiments on language and vision tasks (e.g. GPT and ResNet) to showcase that GeN optimizers match the state-of-the-art performance, which was achieved with carefully tuned learning rate schedulers.
♻ ☆ Can AI Help with Your Personal Finances?
In recent years, Large Language Models (LLMs) have emerged as a transformative development in artificial intelligence (AI), drawing significant attention from industry and academia. Trained on vast datasets, these sophisticated AI systems exhibit impressive natural language processing and content generation capabilities. This paper explores the potential of LLMs to address key challenges in personal finance, focusing on the United States. We evaluate several leading LLMs, including OpenAI's ChatGPT, Google's Gemini, Anthropic's Claude, and Meta's Llama, to assess their effectiveness in providing accurate financial advice on topics such as mortgages, taxes, loans, and investments. Our findings show that while these models achieve an average accuracy rate of approximately 70%, they also display notable limitations in certain areas. Specifically, LLMs struggle to provide accurate responses for complex financial queries, with performance varying significantly across different topics. Despite these limitations, the analysis reveals notable improvements in newer versions of these models, highlighting their growing utility for individuals and financial advisors. As these AI systems continue to evolve, their potential for advancing AI-driven applications in personal finance becomes increasingly promising.
♻ ☆ Smartphone-based Eye Tracking System using Edge Intelligence and Model Optimisation
A significant limitation of current smartphone-based eye-tracking algorithms is their low accuracy when applied to video-type visual stimuli, as they are typically trained on static images. Also, the increasing demand for real-time interactive applications like games, VR, and AR on smartphones requires overcoming the limitations posed by resource constraints such as limited computational power, battery life, and network bandwidth. Therefore, we developed two new smartphone eye-tracking techniques for video-type visuals by combining Convolutional Neural Networks (CNN) with two different Recurrent Neural Networks (RNN), namely Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU). Our CNN+LSTM and CNN+GRU models achieved an average Root Mean Square Error of 0.955 cm and 1.091 cm, respectively. To address the computational constraints of smartphones, we developed an edge intelligence architecture to enhance the performance of smartphone-based eye tracking. We applied various optimisation methods like quantisation and pruning to deep learning models for better energy, CPU, and memory usage on edge devices, focusing on real-time processing. Using model quantisation, the model inference time in the CNN+LSTM and CNN+GRU models was reduced by 21.72% and 19.50%, respectively, on edge devices.
comment: I have included the three papers as reference, which are closely related. We have expanded the future work section to provide a more thorough discussion of the concepts of "varying lighting conditions" and "dynamic user environments." We have added a note below Table 4 to clarify the abbreviations' meaning. Elaborated the role of the Domain Expert within the presentation layer in Section 4.1
♻ ☆ ACPO: AI-Enabled Compiler Framework
The key to performance optimization of a program is to decide correctly when a certain transformation should be applied by a compiler. This is an ideal opportunity to apply machine-learning models to speed up the tuning process; while this realization has been around since the late 90s, only recent advancements in ML enabled a practical application of ML to compilers as an end-to-end framework. This paper presents ACPO: An AI-Enabled Compiler Framework, a novel framework that provides LLVM with simple and comprehensive tools to benefit from employing ML models for different optimization passes. We first showcase the high-level view, class hierarchy, and functionalities of ACPO and subsequently, demonstrate \taco{a couple of use cases of ACPO by ML-enabling the Loop Unroll and Function Inlining passes used in LLVM's O3. and finally, describe how ACPO can be leveraged to optimize other passes. Experimental results reveal that the ACPO model for Loop Unroll can gain on average 4%, 3%, 5.4%, and 0.2% compared to LLVM's vanilla O3 optimization when deployed on Polybench, Coral-2, CoreMark, and Graph-500, respectively. Furthermore, by including both Function Inlining and Loop Unroll models, ACPO can provide a combined speedup of 4.5% on Polybench and 2.4% on Cbench when compared with LLVM's O3, respectively.
comment: ACPO (12 pages)
♻ ☆ EPIC: Effective Prompting for Imbalanced-Class Data Synthesis in Tabular Data Classification via Large Language Models NeurIPS 2024
Large language models (LLMs) have demonstrated remarkable in-context learning capabilities across diverse applications. In this work, we explore the effectiveness of LLMs for generating realistic synthetic tabular data, identifying key prompt design elements to optimize performance. We introduce EPIC, a novel approach that leverages balanced, grouped data samples and consistent formatting with unique variable mapping to guide LLMs in generating accurate synthetic data across all classes, even for imbalanced datasets. Evaluations on real-world datasets show that EPIC achieves state-of-the-art machine learning classification performance, significantly improving generation efficiency. These findings highlight the effectiveness of EPIC for synthetic tabular data generation, particularly in addressing class imbalance. Our source code for our work is available at: https://seharanul17.github.io/project-synthetic-tabular-llm/
comment: NeurIPS 2024
♻ ☆ A systematic review of the use of Deep Learning in Satellite Imagery for Agriculture
Agricultural research is essential for increasing food production to meet the requirements of an increasing population in the coming decades. Recently, satellite technology has been improving rapidly and deep learning has seen much success in generic computer vision tasks and many application areas which presents an important opportunity to improve analysis of agricultural land. Here we present a systematic review of 150 studies to find the current uses of deep learning on satellite imagery for agricultural research. Although we identify 5 categories of agricultural monitoring tasks, the majority of the research interest is in crop segmentation and yield prediction. We found that, when used, modern deep learning methods consistently outperformed traditional machine learning across most tasks; the only exception was that Long Short-Term Memory (LSTM) Recurrent Neural Networks did not consistently outperform Random Forests (RF) for yield prediction. The reviewed studies have largely adopted methodologies from generic computer vision, except for one major omission: benchmark datasets are not utilised to evaluate models across studies, making it difficult to compare results. Additionally, some studies have specifically utilised the extra spectral resolution available in satellite imagery, but other divergent properties of satellite images - such as the hugely different scales of spatial patterns - are not being taken advantage of in the reviewed studies.
comment: 23 pages, 5 figures and 10 tables in main paper. Final version, as submitted and accepted at JSTARS
♻ ☆ Double Equivariance for Inductive Link Prediction for Both New Nodes and New Relation Types
The task of fully inductive link prediction in knowledge graphs has gained significant attention, with various graph neural networks being proposed to address it. This task presents greater challenges than traditional inductive link prediction tasks with only new nodes, as models must be capable of zero-shot generalization to both unseen nodes and unseen relation types in the inference graph. Despite the development of novel models, a unifying theoretical understanding of their success remains elusive, and the limitations of these methods are not well-studied. In this work, we introduce the concept of double permutation-equivariant representations and demonstrate its necessity for effective performance in this task. We show that many existing models, despite their diverse architectural designs, conform to this framework. However, we also identify inherent limitations in double permutation-equivariant representations, which restrict these models's ability to learn effectively on datasets with varying characteristics. Our findings suggest that while double equivariance is necessary for meta-learning across knowledge graphs from different domains, it is not sufficient. There remains a fundamental gap between double permutation-equivariant models and the concept of foundation models designed to learn patterns across all domains.
♻ ☆ Continuous GNN-based Anomaly Detection on Edge using Efficient Adaptive Knowledge Graph Learning DATE 2025
The increasing demand for robust security solutions across various industries has made Video Anomaly Detection (VAD) a critical task in applications such as intelligent surveillance, evidence investigation, and violence detection. Traditional approaches to VAD often rely on finetuning large pre-trained models, which can be computationally expensive and impractical for real-time or resource-constrained environments. To address this, MissionGNN introduced a more efficient method by training a graph neural network (GNN) using a fixed knowledge graph (KG) derived from large language models (LLMs) like GPT-4. While this approach demonstrated significant efficiency in computational power and memory, it faces limitations in dynamic environments where frequent updates to the KG are necessary due to evolving behavior trends and shifting data patterns. These updates typically require cloud-based computation, posing challenges for edge computing applications. In this paper, we propose a novel framework that facilitates continuous KG adaptation directly on edge devices, overcoming the limitations of cloud dependency. Our method dynamically modifies the KG through a three-phase process: pruning, alternating, and creating nodes, enabling real-time adaptation to changing data trends. This continuous learning approach enhances the robustness of anomaly detection models, making them more suitable for deployment in dynamic and resource-constrained environments.
comment: Accepted to DATE 2025
♻ ☆ Exploiting Boosting in Hyperdimensional Computing for Enhanced Reliability in Healthcare DATE 2025
Hyperdimensional computing (HDC) enables efficient data encoding and processing in high-dimensional space, benefiting machine learning and data analysis. However, underutilization of these spaces can lead to overfitting and reduced model reliability, especially in data-limited systems a critical issue in sectors like healthcare that demand robustness and consistent performance. We introduce BoostHD, an approach that applies boosting algorithms to partition the hyperdimensional space into subspaces, creating an ensemble of weak learners. By integrating boosting with HDC, BoostHD enhances performance and reliability beyond existing HDC methods. Our analysis highlights the importance of efficient utilization of hyperdimensional spaces for improved model performance. Experiments on healthcare datasets show that BoostHD outperforms state-of-the-art methods. On the WESAD dataset, it achieved an accuracy of 98.37%, surpassing Random Forest, XGBoost, and OnlineHD. BoostHD also demonstrated superior inference efficiency and stability, maintaining high accuracy under data imbalance and noise. In person-specific evaluations, it achieved an average accuracy of 96.19%, outperforming other models. By addressing the limitations of both boosting and HDC, BoostHD expands the applicability of HDC in critical domains where reliability and precision are paramount.
comment: Accepted to DATE 2025
♻ ☆ TSEML: A task-specific embedding-based method for few-shot classification of cancer molecular subtypes
Molecular subtyping of cancer is recognized as a critical and challenging upstream task for personalized therapy. Existing deep learning methods have achieved significant performance in this domain when abundant data samples are available. However, the acquisition of densely labeled samples for cancer molecular subtypes remains a significant challenge for conventional data-intensive deep learning approaches. In this work, we focus on the few-shot molecular subtype prediction problem in heterogeneous and small cancer datasets, aiming to enhance precise diagnosis and personalized treatment. We first construct a new few-shot dataset for cancer molecular subtype classification and auxiliary cancer classification, named TCGA Few-Shot, from existing publicly available datasets. To effectively leverage the relevant knowledge from both tasks, we introduce a task-specific embedding-based meta-learning framework (TSEML). TSEML leverages the synergistic strengths of a model-agnostic meta-learning (MAML) approach and a prototypical network (ProtoNet) to capture diverse and fine-grained features. Comparative experiments conducted on the TCGA Few-Shot dataset demonstrate that our TSEML framework achieves superior performance in addressing the problem of few-shot molecular subtype classification.
♻ ☆ High-dimensional learning of narrow neural networks
Recent years have been marked with the fast-pace diversification and increasing ubiquity of machine learning applications. Yet, a firm theoretical understanding of the surprising efficiency of neural networks to learn from high-dimensional data still proves largely elusive. In this endeavour, analyses inspired by statistical physics have proven instrumental, enabling the tight asymptotic characterization of the learning of neural networks in high dimensions, for a broad class of solvable models. This manuscript reviews the tools and ideas underlying recent progress in this line of work. We introduce a generic model -- the sequence multi-index model -- which encompasses numerous previously studied models as special instances. This unified framework covers a broad class of machine learning architectures with a finite number of hidden units, including multi-layer perceptrons, autoencoders, attention mechanisms; and tasks, including (un)supervised learning, denoising, contrastive learning, in the limit of large data dimension, and comparably large number of samples. We explicate in full detail the analysis of the learning of sequence multi-index models, using statistical physics techniques such as the replica method and approximate message-passing algorithms. This manuscript thus provides a unified presentation of analyses reported in several previous works, and a detailed overview of central techniques in the field of statistical physics of machine learning. This review should be a useful primer for machine learning theoreticians curious of statistical physics approaches; it should also be of value to statistical physicists interested in the transfer of such ideas to the study of neural networks.
♻ ☆ Expressive Text-to-Image Generation with Rich Text
Plain text has become a prevalent interface for text-to-image synthesis. However, its limited customization options hinder users from accurately describing desired outputs. For example, plain text makes it hard to specify continuous quantities, such as the precise RGB color value or importance of each word. Furthermore, creating detailed text prompts for complex scenes is tedious for humans to write and challenging for text encoders to interpret. To address these challenges, we propose using a rich-text editor supporting formats such as font style, size, color, and footnote. We extract each word's attributes from rich text to enable local style control, explicit token reweighting, precise color rendering, and detailed region synthesis. We achieve these capabilities through a region-based diffusion process. We first obtain each word's region based on attention maps of a diffusion process using plain text. For each region, we enforce its text attributes by creating region-specific detailed prompts and applying region-specific guidance, and maintain its fidelity against plain-text generation through region-based injections. We present various examples of image generation from rich text and demonstrate that our method outperforms strong baselines with quantitative evaluations.
comment: Project webpage: https://rich-text-to-image.github.io/
♻ ☆ Neural Network Emulator for Atmospheric Chemical ODE
Modeling atmospheric chemistry is complex and computationally intense. Given the recent success of Deep neural networks in digital signal processing, we propose a Neural Network Emulator for fast chemical concentration modeling. We consider atmospheric chemistry as a time-dependent Ordinary Differential Equation. To extract the hidden correlations between initial states and future time evolution, we propose ChemNNE, an Attention based Neural Network Emulator (NNE) that can model the atmospheric chemistry as a neural ODE process. To efficiently simulate the chemical changes, we propose the sinusoidal time embedding to estimate the oscillating tendency over time. More importantly, we use the Fourier neural operator to model the ODE process for efficient computation. We also propose three physical-informed losses to supervise the training optimization. To evaluate our model, we propose a large-scale chemical dataset that can be used for neural network training and evaluation. The extensive experiments show that our approach achieves state-of-the-art performance in modeling accuracy and computational speed.
comment: 25 pages, 8 figures
♻ ☆ MassSpecGym: A benchmark for the discovery and identification of molecules
The discovery and identification of molecules in biological and environmental samples is crucial for advancing biomedical and chemical sciences. Tandem mass spectrometry (MS/MS) is the leading technique for high-throughput elucidation of molecular structures. However, decoding a molecular structure from its mass spectrum is exceptionally challenging, even when performed by human experts. As a result, the vast majority of acquired MS/MS spectra remain uninterpreted, thereby limiting our understanding of the underlying (bio)chemical processes. Despite decades of progress in machine learning applications for predicting molecular structures from MS/MS spectra, the development of new methods is severely hindered by the lack of standard datasets and evaluation protocols. To address this problem, we propose MassSpecGym -- the first comprehensive benchmark for the discovery and identification of molecules from MS/MS data. Our benchmark comprises the largest publicly available collection of high-quality labeled MS/MS spectra and defines three MS/MS annotation challenges: \textit{de novo} molecular structure generation, molecule retrieval, and spectrum simulation. It includes new evaluation metrics and a generalization-demanding data split, therefore standardizing the MS/MS annotation tasks and rendering the problem accessible to the broad machine learning community. MassSpecGym is publicly available at \url{https://github.com/pluskal-lab/MassSpecGym}.
♻ ☆ A Parameter-Efficient Quantum Anomaly Detection Method on a Superconducting Quantum Processor
Quantum machine learning has gained attention for its potential to address computational challenges. However, whether those algorithms can effectively solve practical problems and outperform their classical counterparts, especially on current quantum hardware, remains a critical question. In this work, we propose a novel quantum machine learning method, called Quantum Support Vector Data Description (QSVDD), for practical image anomaly detection, which aims to achieve both parameter efficiency and superior accuracy compared to classical models. Emulation results indicate that QSVDD demonstrates favourable recognition capabilities compared to classical baselines, achieving an average accuracy of over 90% on benchmarks with significantly fewer trainable parameters. Theoretical analysis confirms that QSVDD has a comparable expressivity to classical counterparts while requiring only a fraction of the parameters. Furthermore, we demonstrate the first implementation of a quantum anomaly detection method for general image datasets on a superconducting quantum processor. Specifically, we achieve an accuracy of over 80% with only 16 parameters on the device, providing initial evidence of QSVDD's practical viability in the noisy intermediate-scale quantum era and highlighting its significant reduction in parameter requirements.
comment: 30 pages, 13 figures
♻ ☆ Statistical Properties of Deep Neural Networks with Dependent Data
This paper establishes statistical properties of deep neural network (DNN) estimators under dependent data. Two general results for nonparametric sieve estimators directly applicable to DNN estimators are given. The first establishes rates for convergence in probability under nonstationary data. The second provides non-asymptotic probability bounds on $\mathcal{L}^{2}$-errors under stationary $\beta$-mixing data. I apply these results to DNN estimators in both regression and classification contexts imposing only a standard H\"older smoothness assumption. The DNN architectures considered are common in applications, featuring fully connected feedforward networks with any continuous piecewise linear activation function, unbounded weights, and a width and depth that grows with sample size. The framework provided also offers potential for research into other DNN architectures and time-series applications.
comment: 86 pages, 2 figures, removed partially linear model section and uploaded as a separate paper (arXiv:2410.22574v1)
♻ ☆ SYNAPSE: SYmbolic Neural-Aided Preference Synthesis Engine AAAI 25
This paper addresses the problem of preference learning, which aims to align robot behaviors through learning user specific preferences (e.g. "good pull-over location") from visual demonstrations. Despite its similarity to learning factual concepts (e.g. "red door"), preference learning is a fundamentally harder problem due to its subjective nature and the paucity of person-specific training data. We address this problem using a novel framework called SYNAPSE, which is a neuro-symbolic approach designed to efficiently learn preferential concepts from limited data. SYNAPSE represents preferences as neuro-symbolic programs, facilitating inspection of individual parts for alignment, in a domain-specific language (DSL) that operates over images and leverages a novel combination of visual parsing, large language models, and program synthesis to learn programs representing individual preferences. We perform extensive evaluations on various preferential concepts as well as user case studies demonstrating its ability to align well with dissimilar user preferences. Our method significantly outperforms baselines, especially when it comes to out of distribution generalization. We show the importance of the design choices in the framework through multiple ablation studies. Code, additional results, and supplementary material can be found on the website: https://amrl.cs.utexas.edu/synapse
comment: Accepted (oral) at AAAI 25
♻ ☆ Augmentation Invariant Manifold Learning
Data augmentation is a widely used technique and an essential ingredient in the recent advance in self-supervised representation learning. By preserving the similarity between augmented data, the resulting data representation can improve various downstream analyses and achieve state-of-the-art performance in many applications. Despite the empirical effectiveness, most existing methods lack theoretical understanding under a general nonlinear setting. To fill this gap, we develop a statistical framework on a low-dimension product manifold to model the data augmentation transformation. Under this framework, we introduce a new representation learning method called augmentation invariant manifold learning and design a computationally efficient algorithm by reformulating it as a stochastic optimization problem. Compared with existing self-supervised methods, the new method simultaneously exploits the manifold's geometric structure and invariant property of augmented data and has an explicit theoretical guarantee. Our theoretical investigation characterizes the role of data augmentation in the proposed method and reveals why and how the data representation learned from augmented data can improve the $k$-nearest neighbor classifier in the downstream analysis, showing that a more complex data augmentation leads to more improvement in downstream analysis. Finally, numerical experiments on simulated and real data sets are presented to demonstrate the merit of the proposed method.
♻ ☆ UIFV: Data Reconstruction Attack in Vertical Federated Learning
Vertical Federated Learning (VFL) facilitates collaborative machine learning without the need for participants to share raw private data. However, recent studies have revealed privacy risks where adversaries might reconstruct sensitive features through data leakage during the learning process. Although data reconstruction methods based on gradient or model information are somewhat effective, they reveal limitations in VFL application scenarios. This is because these traditional methods heavily rely on specific model structures and/or have strict limitations on application scenarios. To address this, our study introduces the Unified InverNet Framework into VFL, which yields a novel and flexible approach (dubbed UIFV) that leverages intermediate feature data to reconstruct original data, instead of relying on gradients or model details. The intermediate feature data is the feature exchanged by different participants during the inference phase of VFL. Experiments on four datasets demonstrate that our methods significantly outperform state-of-the-art techniques in attack precision. Our work exposes severe privacy vulnerabilities within VFL systems that pose real threats to practical VFL applications and thus confirms the necessity of further enhancing privacy protection in the VFL architecture.
♻ ☆ Learning Discrete Concepts in Latent Hierarchical Models NeurIPS 2024
Learning concepts from natural high-dimensional data (e.g., images) holds potential in building human-aligned and interpretable machine learning models. Despite its encouraging prospect, formalization and theoretical insights into this crucial task are still lacking. In this work, we formalize concepts as discrete latent causal variables that are related via a hierarchical causal model that encodes different abstraction levels of concepts embedded in high-dimensional data (e.g., a dog breed and its eye shapes in natural images). We formulate conditions to facilitate the identification of the proposed causal model, which reveals when learning such concepts from unsupervised data is possible. Our conditions permit complex causal hierarchical structures beyond latent trees and multi-level directed acyclic graphs in prior work and can handle high-dimensional, continuous observed variables, which is well-suited for unstructured data modalities such as images. We substantiate our theoretical claims with synthetic data experiments. Further, we discuss our theory's implications for understanding the underlying mechanisms of latent diffusion models and provide corresponding empirical evidence for our theoretical insights.
comment: NeurIPS 2024
♻ ☆ Frontier Models are Capable of In-context Scheming
Frontier models are increasingly trained and deployed as autonomous agent. One safety concern is that AI agents might covertly pursue misaligned goals, hiding their true capabilities and objectives - also known as scheming. We study whether models have the capability to scheme in pursuit of a goal that we provide in-context and instruct the model to strongly follow. We evaluate frontier models on a suite of six agentic evaluations where models are instructed to pursue goals and are placed in environments that incentivize scheming. Our results show that o1, Claude 3.5 Sonnet, Claude 3 Opus, Gemini 1.5 Pro, and Llama 3.1 405B all demonstrate in-context scheming capabilities. They recognize scheming as a viable strategy and readily engage in such behavior. For example, models strategically introduce subtle mistakes into their responses, attempt to disable their oversight mechanisms, and even exfiltrate what they believe to be their model weights to external servers. Additionally, this deceptive behavior proves persistent. When o1 has engaged in scheming, it maintains its deception in over 85% of follow-up questions and often remains deceptive in multi-turn interrogations. Analysis of the models' chains-of-thought reveals that models explicitly reason about these deceptive strategies, providing evidence that the scheming behavior is not accidental. Surprisingly, we also find rare instances where models engage in scheming when only given a goal, without being strongly nudged to pursue it. We observe cases where Claude 3.5 Sonnet strategically underperforms in evaluations in pursuit of being helpful, a goal that was acquired during training rather than in-context. Our findings demonstrate that frontier models now possess capabilities for basic in-context scheming, making the potential of AI agents to engage in scheming behavior a concrete rather than theoretical concern.
♻ ☆ Accelerating the discovery of low-energy structure configurations: a computational approach that integrates first-principles calculations, Monte Carlo sampling, and Machine Learning
Finding Minimum Energy Configurations (MECs) is essential in fields such as physics, chemistry, and materials science, as they represent the most stable states of the systems. In particular, identifying such MECs in multi-component alloys considered candidate PFMs is key because it determines the most stable arrangement of atoms within the alloy, directly influencing its phase stability, structural integrity, and thermo-mechanical properties. However, since the search space grows exponentially with the number of atoms considered, obtaining such MECs using computationally expensive first-principles DFT calculations often results in a cumbersome task. To escape the above compromise between physical fidelity and computational efficiency, we have developed a novel physics-based data-driven approach that combines Monte Carlo sampling, first-principles DFT calculations, and Machine Learning to accelerate the discovery of MECs in multi-component alloys. More specifically, we have leveraged well-established Cluster Expansion (CE) techniques with Local Outlier Factor models to establish strategies that enhance the reliability of the CE method. In this work, we demonstrated the capabilities of the proposed approach for the particular case of a tungsten-based quaternary high-entropy alloy. However, the method is applicable to other types of alloys and enables a wide range of applications.
comment: added changes made during revision of manuscript
♻ ☆ On the Geometry of Deep Learning
In this paper, we overview one promising avenue of progress at the mathematical foundation of deep learning: the connection between deep networks and function approximation by affine splines (continuous piecewise linear functions in multiple dimensions). In particular, we will overview work over the past decade on understanding certain geometrical properties of a deep network's affine spline mapping, in particular how it tessellates its input space. As we will see, the affine spline connection and geometrical viewpoint provide a powerful portal through which to view, analyze, and improve the inner workings of a deep network.
comment: Accepted for publication at 'Notices of the American Mathematical Society'
♻ ☆ Particle Semi-Implicit Variational Inference NeurIPS 2024
Semi-implicit variational inference (SIVI) enriches the expressiveness of variational families by utilizing a kernel and a mixing distribution to hierarchically define the variational distribution. Existing SIVI methods parameterize the mixing distribution using implicit distributions, leading to intractable variational densities. As a result, directly maximizing the evidence lower bound (ELBO) is not possible, so they resort to one of the following: optimizing bounds on the ELBO, employing costly inner-loop Markov chain Monte Carlo runs, or solving minimax objectives. In this paper, we propose a novel method for SIVI called Particle Variational Inference (PVI) which employs empirical measures to approximate the optimal mixing distributions characterized as the minimizer of a free energy functional. PVI arises naturally as a particle approximation of a Euclidean--Wasserstein gradient flow and, unlike prior works, it directly optimizes the ELBO whilst making no parametric assumption about the mixing distribution. Our empirical results demonstrate that PVI performs favourably compared to other SIVI methods across various tasks. Moreover, we provide a theoretical analysis of the behaviour of the gradient flow of a related free energy functional: establishing the existence and uniqueness of solutions as well as propagation of chaos results.
comment: NeurIPS 2024 Camera ready
Multimedia 2
☆ Audio-visual Deepfake Detection With Local Temporal Inconsistencies ICASSP 2025
This paper proposes an audio-visual deepfake detection approach that aims to capture fine-grained temporal inconsistencies between audio and visual modalities. To achieve this, both architectural and data synthesis strategies are introduced. From an architectural perspective, a temporal distance map, coupled with an attention mechanism, is designed to capture these inconsistencies while minimizing the impact of irrelevant temporal subsequences. Moreover, we explore novel pseudo-fake generation techniques to synthesize local inconsistencies. Our approach is evaluated against state-of-the-art methods using the DFDC and FakeAVCeleb datasets, demonstrating its effectiveness in detecting audio-visual deepfakes.
comment: Accepted in ICASSP 2025
☆ Zero-shot Video Moment Retrieval via Off-the-shelf Multimodal Large Language Models AAAI 2025
The target of video moment retrieval (VMR) is predicting temporal spans within a video that semantically match a given linguistic query. Existing VMR methods based on multimodal large language models (MLLMs) overly rely on expensive high-quality datasets and time-consuming fine-tuning. Although some recent studies introduce a zero-shot setting to avoid fine-tuning, they overlook inherent language bias in the query, leading to erroneous localization. To tackle the aforementioned challenges, this paper proposes Moment-GPT, a tuning-free pipeline for zero-shot VMR utilizing frozen MLLMs. Specifically, we first employ LLaMA-3 to correct and rephrase the query to mitigate language bias. Subsequently, we design a span generator combined with MiniGPT-v2 to produce candidate spans adaptively. Finally, to leverage the video comprehension capabilities of MLLMs, we apply VideoChatGPT and span scorer to select the most appropriate spans. Our proposed method substantially outperforms the state-ofthe-art MLLM-based and zero-shot models on several public datasets, including QVHighlights, ActivityNet-Captions, and Charades-STA.
comment: Accepted by AAAI 2025
Artificial Intelligence 183
☆ PokerBench: Training Large Language Models to become Professional Poker Players AAAI 2025
We introduce PokerBench - a benchmark for evaluating the poker-playing abilities of large language models (LLMs). As LLMs excel in traditional NLP tasks, their application to complex, strategic games like poker poses a new challenge. Poker, an incomplete information game, demands a multitude of skills such as mathematics, reasoning, planning, strategy, and a deep understanding of game theory and human psychology. This makes Poker the ideal next frontier for large language models. PokerBench consists of a comprehensive compilation of 11,000 most important scenarios, split between pre-flop and post-flop play, developed in collaboration with trained poker players. We evaluate prominent models including GPT-4, ChatGPT 3.5, and various Llama and Gemma series models, finding that all state-of-the-art LLMs underperform in playing optimal poker. However, after fine-tuning, these models show marked improvements. We validate PokerBench by having models with different scores compete with each other, demonstrating that higher scores on PokerBench lead to higher win rates in actual poker games. Through gameplay between our fine-tuned model and GPT-4, we also identify limitations of simple supervised fine-tuning for learning optimal playing strategy, suggesting the need for more advanced methodologies for effectively training language models to excel in games. PokerBench thus presents a unique benchmark for a quick and reliable evaluation of the poker-playing ability of LLMs as well as a comprehensive benchmark to study the progress of LLMs in complex game-playing scenarios. The dataset and code will be made available at: \url{https://github.com/pokerllm/pokerbench}.
comment: AAAI 2025
☆ ADAM-1: AI and Bioinformatics for Alzheimer's Detection and Microbiome-Clinical Data Integrations
The Alzheimer's Disease Analysis Model Generation 1 (ADAM) is a multi-agent large language model (LLM) framework designed to integrate and analyze multi-modal data, including microbiome profiles, clinical datasets, and external knowledge bases, to enhance the understanding and detection of Alzheimer's disease (AD). By leveraging retrieval-augmented generation (RAG) techniques along with its multi-agent architecture, ADAM-1 synthesizes insights from diverse data sources and contextualizes findings using literature-driven evidence. Comparative evaluation against XGBoost revealed similar mean F1 scores but significantly reduced variance for ADAM-1, highlighting its robustness and consistency, particularly in small laboratory datasets. While currently tailored for binary classification tasks, future iterations aim to incorporate additional data modalities, such as neuroimaging and biomarkers, to broaden the scalability and applicability for Alzheimer's research and diagnostics.
comment: 16 pages, 16 figures
☆ Diffusion Adversarial Post-Training for One-Step Video Generation
The diffusion models are widely used for image and video generation, but their iterative generation process is slow and expansive. While existing distillation approaches have demonstrated the potential for one-step generation in the image domain, they still suffer from significant quality degradation. In this work, we propose Adversarial Post-Training (APT) against real data following diffusion pre-training for one-step video generation. To improve the training stability and quality, we introduce several improvements to the model architecture and training procedures, along with an approximated R1 regularization objective. Empirically, our experiments show that our adversarial post-trained model, Seaweed-APT, can generate 2-second, 1280x720, 24fps videos in real time using a single forward evaluation step. Additionally, our model is capable of generating 1024px images in a single step, achieving quality comparable to state-of-the-art methods.
☆ Polynomial Threshold Functions of Bounded Tree-Width: Some Explainability and Complexity Aspects
The tree-width of a multivariate polynomial is the tree-width of the hypergraph with hyperedges corresponding to its terms. Multivariate polynomials of bounded tree-width have been studied by Makowsky and Meer as a new sparsity condition that allows for polynomial solvability of problems which are intractable in general. We consider a variation on this theme for Boolean variables. A representation of a Boolean function as the sign of a polynomial is called a polynomial threshold representation. We discuss Boolean functions representable as polynomial threshold functions of bounded tree-width and present two applications to Bayesian network classifiers, a probabilistic graphical model. Both applications are in Explainable Artificial Intelligence (XAI), the research area dealing with the black-box nature of many recent machine learning models. We also give a separation result between the representational power of positive and general polynomial threshold functions.
comment: 22 pages, 3 figures. To be published in Festschrift in honor of Johann A. Makowsky
☆ HALoGEN: Fantastic LLM Hallucinations and Where to Find Them
Despite their impressive ability to generate high-quality and fluent text, generative large language models (LLMs) also produce hallucinations: statements that are misaligned with established world knowledge or provided input context. However, measuring hallucination can be challenging, as having humans verify model generations on-the-fly is both expensive and time-consuming. In this work, we release HALoGEN, a comprehensive hallucination benchmark consisting of: (1) 10,923 prompts for generative models spanning nine domains including programming, scientific attribution, and summarization, and (2) automatic high-precision verifiers for each use case that decompose LLM generations into atomic units, and verify each unit against a high-quality knowledge source. We use this framework to evaluate ~150,000 generations from 14 language models, finding that even the best-performing models are riddled with hallucinations (sometimes up to 86% of generated atomic facts depending on the domain). We further define a novel error classification for LLM hallucinations based on whether they likely stem from incorrect recollection of training data (Type A errors), or incorrect knowledge in training data (Type B errors), or are fabrication (Type C errors). We hope our framework provides a foundation to enable the principled study of why generative models hallucinate, and advances the development of trustworthy large language models.
comment: Preprint
☆ Comparative Analysis of Efficient Adapter-Based Fine-Tuning of State-of-the-Art Transformer Models
In this work, we investigate the efficacy of various adapter architectures on supervised binary classification tasks from the SuperGLUE benchmark as well as a supervised multi-class news category classification task from Kaggle. Specifically, we compare classification performance and time complexity of three transformer models, namely DistilBERT, ELECTRA, and BART, using conventional fine-tuning as well as nine state-of-the-art (SoTA) adapter architectures. Our analysis reveals performance differences across adapter architectures, highlighting their ability to achieve comparable or better performance relative to fine-tuning at a fraction of the training time. Similar results are observed on the new classification task, further supporting our findings and demonstrating adapters as efficient and flexible alternatives to fine-tuning. This study provides valuable insights and guidelines for selecting and implementing adapters in diverse natural language processing (NLP) applications.
☆ AI Driven Water Segmentation with deep learning models for Enhanced Flood Monitoring
Flooding is a major natural hazard causing significant fatalities and economic losses annually, with increasing frequency due to climate change. Rapid and accurate flood detection and monitoring are crucial for mitigating these impacts. This study compares the performance of three deep learning models UNet, ResNet, and DeepLabv3 for pixelwise water segmentation to aid in flood detection, utilizing images from drones, in field observations, and social media. This study involves creating a new dataset that augments wellknown benchmark datasets with flood-specific images, enhancing the robustness of the models. The UNet, ResNet, and DeepLab v3 architectures are tested to determine their effectiveness in various environmental conditions and geographical locations, and the strengths and limitations of each model are also discussed here, providing insights into their applicability in different scenarios by predicting image segmentation masks. This fully automated approach allows these models to isolate flooded areas in images, significantly reducing processing time compared to traditional semi-automated methods. The outcome of this study is to predict segmented masks for each image effected by a flood disaster and the validation accuracy of these models. This methodology facilitates timely and continuous flood monitoring, providing vital data for emergency response teams to reduce loss of life and economic damages. It offers a significant reduction in the time required to generate flood maps, cutting down the manual processing time. Additionally, we present avenues for future research, including the integration of multimodal data sources and the development of robust deep learning architectures tailored specifically for flood detection tasks. Overall, our work contributes to the advancement of flood management strategies through innovative use of deep learning technologies.
comment: 8 pages, 6 figures
☆ Eliciting In-context Retrieval and Reasoning for Long-context Large Language Models
Recent advancements in long-context language models (LCLMs) promise to transform Retrieval-Augmented Generation (RAG) by simplifying pipelines. With their expanded context windows, LCLMs can process entire knowledge bases and perform retrieval and reasoning directly -- a capability we define as In-Context Retrieval and Reasoning (ICR^2). However, existing benchmarks like LOFT often overestimate LCLM performance by providing overly simplified contexts. To address this, we introduce ICR^2, a benchmark that evaluates LCLMs in more realistic scenarios by including confounding passages retrieved with strong retrievers. We then propose three methods to enhance LCLM performance: (1) retrieve-then-generate fine-tuning, (2) retrieval-attention-probing, which uses attention heads to filter and de-noise long contexts during decoding, and (3) joint retrieval head training alongside the generation head. Our evaluation of five well-known LCLMs on LOFT and ICR^2 demonstrates significant gains with our best approach applied to Mistral-7B: +17 and +15 points by Exact Match on LOFT, and +13 and +2 points on ICR^2, compared to vanilla RAG and supervised fine-tuning, respectively. It even outperforms GPT-4-Turbo on most tasks despite being a much smaller model.
☆ Engineering LLM Powered Multi-agent Framework for Autonomous CloudOps ICSE 2025
Cloud Operations (CloudOps) is a rapidly growing field focused on the automated management and optimization of cloud infrastructure which is essential for organizations navigating increasingly complex cloud environments. MontyCloud Inc. is one of the major companies in the CloudOps domain that leverages autonomous bots to manage cloud compliance, security, and continuous operations. To make the platform more accessible and effective to the customers, we leveraged the use of GenAI. Developing a GenAI-based solution for autonomous CloudOps for the existing MontyCloud system presented us with various challenges such as i) diverse data sources; ii) orchestration of multiple processes; and iii) handling complex workflows to automate routine tasks. To this end, we developed MOYA, a multi-agent framework that leverages GenAI and balances autonomy with the necessary human control. This framework integrates various internal and external systems and is optimized for factors like task orchestration, security, and error mitigation while producing accurate, reliable, and relevant insights by utilizing Retrieval Augmented Generation (RAG). Evaluations of our multi-agent system with the help of practitioners as well as using automated checks demonstrate enhanced accuracy, responsiveness, and effectiveness over non-agentic approaches across complex workflows.
comment: The paper has been accepted as full paper to CAIN 2025 (https://conf.researchr.org/home/cain-2025), co-located with ICSE 2025 (https://conf.researchr.org/home/icse-2025). The paper was submitted to CAIN for review on 9 November 2024
☆ A Feature-Level Ensemble Model for COVID-19 Identification in CXR Images using Choquet Integral and Differential Evolution Optimization
The COVID-19 pandemic has profoundly impacted billions globally. It challenges public health and healthcare systems due to its rapid spread and severe respiratory effects. An effective strategy to mitigate the COVID-19 pandemic involves integrating testing to identify infected individuals. While RT-PCR is considered the gold standard for diagnosing COVID-19, it has some limitations such as the risk of false negatives. To address this problem, this paper introduces a novel Deep Learning Diagnosis System that integrates pre-trained Deep Convolutional Neural Networks (DCNNs) within an ensemble learning framework to achieve precise identification of COVID-19 cases from Chest X-ray (CXR) images. We combine feature vectors from the final hidden layers of pre-trained DCNNs using the Choquet integral to capture interactions between different DCNNs that a linear approach cannot. We employed Sugeno-$\lambda$ measure theory to derive fuzzy measures for subsets of networks to enable aggregation. We utilized Differential Evolution to estimate fuzzy densities. We developed a TensorFlow-based layer for Choquet operation to facilitate efficient aggregation, due to the intricacies involved in aggregating feature vectors. Experimental results on the COVIDx dataset show that our ensemble model achieved 98\% accuracy in three-class classification and 99.50\% in binary classification, outperforming its components-DenseNet-201 (97\% for three-class, 98.75\% for binary), Inception-v3 (96.25\% for three-class, 98.50\% for binary), and Xception (94.50\% for three-class, 98\% for binary)-and surpassing many previous methods.
☆ Dynamic Pricing in High-Speed Railways Using Multi-Agent Reinforcement Learning
This paper addresses a critical challenge in the high-speed passenger railway industry: designing effective dynamic pricing strategies in the context of competing and cooperating operators. To address this, a multi-agent reinforcement learning (MARL) framework based on a non-zero-sum Markov game is proposed, incorporating random utility models to capture passenger decision making. Unlike prior studies in areas such as energy, airlines, and mobile networks, dynamic pricing for railway systems using deep reinforcement learning has received limited attention. A key contribution of this paper is a parametrisable and versatile reinforcement learning simulator designed to model a variety of railway network configurations and demand patterns while enabling realistic, microscopic modelling of user behaviour, called RailPricing-RL. This environment supports the proposed MARL framework, which models heterogeneous agents competing to maximise individual profits while fostering cooperative behaviour to synchronise connecting services. Experimental results validate the framework, demonstrating how user preferences affect MARL performance and how pricing policies influence passenger choices, utility, and overall system dynamics. This study provides a foundation for advancing dynamic pricing strategies in railway systems, aligning profitability with system-wide efficiency, and supporting future research on optimising pricing policies.
comment: 37 pages, 5 figures
☆ Optimization of Link Configuration for Satellite Communication Using Reinforcement Learning
Satellite communication is a key technology in our modern connected world. With increasingly complex hardware, one challenge is to efficiently configure links (connections) on a satellite transponder. Planning an optimal link configuration is extremely complex and depends on many parameters and metrics. The optimal use of the limited resources, bandwidth and power of the transponder is crucial. Such an optimization problem can be approximated using metaheuristic methods such as simulated annealing, but recent research results also show that reinforcement learning can achieve comparable or even better performance in optimization methods. However, there have not yet been any studies on link configuration on satellite transponders. In order to close this research gap, a transponder environment was developed as part of this work. For this environment, the performance of the reinforcement learning algorithm PPO was compared with the metaheuristic simulated annealing in two experiments. The results show that Simulated Annealing delivers better results for this static problem than the PPO algorithm, however, the research in turn also underlines the potential of reinforcement learning for optimization problems.
☆ ASTRID -- An Automated and Scalable TRIaD for the Evaluation of RAG-based Clinical Question Answering Systems
Large Language Models (LLMs) have shown impressive potential in clinical question answering (QA), with Retrieval Augmented Generation (RAG) emerging as a leading approach for ensuring the factual accuracy of model responses. However, current automated RAG metrics perform poorly in clinical and conversational use cases. Using clinical human evaluations of responses is expensive, unscalable, and not conducive to the continuous iterative development of RAG systems. To address these challenges, we introduce ASTRID - an Automated and Scalable TRIaD for evaluating clinical QA systems leveraging RAG - consisting of three metrics: Context Relevance (CR), Refusal Accuracy (RA), and Conversational Faithfulness (CF). Our novel evaluation metric, CF, is designed to better capture the faithfulness of a model's response to the knowledge base without penalising conversational elements. To validate our triad, we curate a dataset of over 200 real-world patient questions posed to an LLM-based QA agent during surgical follow-up for cataract surgery - the highest volume operation in the world - augmented with clinician-selected questions for emergency, clinical, and non-clinical out-of-domain scenarios. We demonstrate that CF can predict human ratings of faithfulness better than existing definitions for conversational use cases. Furthermore, we show that evaluation using our triad consisting of CF, RA, and CR exhibits alignment with clinician assessment for inappropriate, harmful, or unhelpful responses. Finally, using nine different LLMs, we demonstrate that the three metrics can closely agree with human evaluations, highlighting the potential of these metrics for use in LLM-driven automated evaluation pipelines. We also publish the prompts and datasets for these experiments, providing valuable resources for further research and development.
comment: 29 pages
☆ Modeling Feature Maps for Quantum Machine Learning
Quantum Machine Learning (QML) offers significant potential for complex tasks like genome sequence classification, but quantum noise on Noisy Intermediate-Scale Quantum (NISQ) devices poses practical challenges. This study systematically evaluates how various quantum noise models including dephasing, amplitude damping, depolarizing, thermal noise, bit-flip, and phase-flip affect key QML algorithms (QSVC, Peg-QSVC, QNN, VQC) and feature mapping techniques (ZFeatureMap, ZZFeatureMap, and PauliFeatureMap). Results indicate that QSVC is notably robust under noise, whereas Peg-QSVC and QNN are more sensitive, particularly to depolarizing and amplitude-damping noise. The PauliFeatureMap is especially vulnerable, highlighting difficulties in maintaining accurate classification under noisy conditions. These findings underscore the critical importance of feature map selection and noise mitigation strategies in optimizing QML for genomic classification, with promising implications for personalized medicine.
☆ EmoNeXt: an Adapted ConvNeXt for Facial Emotion Recognition SP
Facial expressions play a crucial role in human communication serving as a powerful and impactful means to express a wide range of emotions. With advancements in artificial intelligence and computer vision, deep neural networks have emerged as effective tools for facial emotion recognition. In this paper, we propose EmoNeXt, a novel deep learning framework for facial expression recognition based on an adapted ConvNeXt architecture network. We integrate a Spatial Transformer Network (STN) to focus on feature-rich regions of the face and Squeeze-and-Excitation blocks to capture channel-wise dependencies. Moreover, we introduce a self-attention regularization term, encouraging the model to generate compact feature vectors. We demonstrate the superiority of our model over existing state-of-the-art deep learning models on the FER2013 dataset regarding emotion classification accuracy.
comment: 6 pages, 5 figures and 2 tables. 2023 IEEE 25th International Workshop on Multimedia Signal Processing (MMSP), Poitiers, France
☆ PRESERVE: Prefetching Model Weights and KV-Cache in Distributed LLM Serving
Large language models (LLMs) are widely used across various applications, but their substantial computational requirements pose significant challenges, particularly in terms of HBM bandwidth bottlenecks and inter-device communication overhead. In this paper, we present PRESERVE, a novel prefetching framework designed to optimize LLM inference by overlapping memory reads for model weights and KV-cache with collective communication operations. Through extensive experiments conducted on commercial AI accelerators, we demonstrate up to 1.6x end-to-end speedup on state-of-the-art, open-source LLMs. Additionally, we perform a design space exploration that identifies the optimal hardware configuration for the proposed method, showing a further 1.25x improvement in performance per cost by selecting the optimal L2 cache size. Our results show that PRESERVE has the potential to mitigate the memory bottlenecks and communication overheads, offering a solution to improve the performance and scalability of the LLM inference systems.
☆ A Critical Synthesis of Uncertainty Quantification and Foundation Models in Monocular Depth Estimation
While recent foundation models have enabled significant breakthroughs in monocular depth estimation, a clear path towards safe and reliable deployment in the real-world remains elusive. Metric depth estimation, which involves predicting absolute distances, poses particular challenges, as even the most advanced foundation models remain prone to critical errors. Since quantifying the uncertainty has emerged as a promising endeavor to address these limitations and enable trustworthy deployment, we fuse five different uncertainty quantification methods with the current state-of-the-art DepthAnythingV2 foundation model. To cover a wide range of metric depth domains, we evaluate their performance on four diverse datasets. Our findings identify fine-tuning with the Gaussian Negative Log-Likelihood Loss (GNLL) as a particularly promising approach, offering reliable uncertainty estimates while maintaining predictive performance and computational efficiency on par with the baseline, encompassing both training and inference time. By fusing uncertainty quantification and foundation models within the context of monocular depth estimation, this paper lays a critical foundation for future research aimed at improving not only model performance but also its explainability. Extending this critical synthesis of uncertainty quantification and foundation models into other crucial tasks, such as semantic segmentation and pose estimation, presents exciting opportunities for safer and more reliable machine vision systems.
☆ A Multi-Modal AI Copilot for Single-Cell Analysis with Instruction Following
Large language models excel at interpreting complex natural language instructions, enabling them to perform a wide range of tasks. In the life sciences, single-cell RNA sequencing (scRNA-seq) data serves as the "language of cellular biology", capturing intricate gene expression patterns at the single-cell level. However, interacting with this "language" through conventional tools is often inefficient and unintuitive, posing challenges for researchers. To address these limitations, we present InstructCell, a multi-modal AI copilot that leverages natural language as a medium for more direct and flexible single-cell analysis. We construct a comprehensive multi-modal instruction dataset that pairs text-based instructions with scRNA-seq profiles from diverse tissues and species. Building on this, we develop a multi-modal cell language architecture capable of simultaneously interpreting and processing both modalities. InstructCell empowers researchers to accomplish critical tasks-such as cell type annotation, conditional pseudo-cell generation, and drug sensitivity prediction-using straightforward natural language commands. Extensive evaluations demonstrate that InstructCell consistently meets or exceeds the performance of existing single-cell foundation models, while adapting to diverse experimental conditions. More importantly, InstructCell provides an accessible and intuitive tool for exploring complex single-cell data, lowering technical barriers and enabling deeper biological insights.
comment: 37 pages; 13 figures; Code: https://github.com/zjunlp/Instructcell; Models: https://huggingface.co/zjunlp/Instructcell-chat, https://huggingface.co/zjunlp/InstructCell-instruct
☆ Assessing AI Adoption and Digitalization in SMEs: A Framework for Implementation
The primary objective of this research is to examine the current state of digitalization and the integration of artificial intelligence (AI) within small and medium-sized enterprises (SMEs) in Italy. There is a significant gap between SMEs and large corporations in their use of AI, with SMEs facing numerous barriers to adoption. This study identifies critical drivers and obstacles to achieving intelligent transformation, proposing a framework model to address key challenges and provide actionable guidelines
☆ CG-MER: A Card Game-based Multimodal dataset for Emotion Recognition
The field of affective computing has seen significant advancements in exploring the relationship between emotions and emerging technologies. This paper presents a novel and valuable contribution to this field with the introduction of a comprehensive French multimodal dataset designed specifically for emotion recognition. The dataset encompasses three primary modalities: facial expressions, speech, and gestures, providing a holistic perspective on emotions. Moreover, the dataset has the potential to incorporate additional modalities, such as Natural Language Processing (NLP) to expand the scope of emotion recognition research. The dataset was curated through engaging participants in card game sessions, where they were prompted to express a range of emotions while responding to diverse questions. The study included 10 sessions with 20 participants (9 females and 11 males). The dataset serves as a valuable resource for furthering research in emotion recognition and provides an avenue for exploring the intricate connections between human emotions and digital technologies.
comment: 8 pages, 2 figures and 4 tables. Sixteenth International Conference on Machine Vision (ICMV 2023), Yerevan, Armenia
☆ Revolutionizing Communication with Deep Learning and XAI for Enhanced Arabic Sign Language Recognition
This study introduces an integrated approach to recognizing Arabic Sign Language (ArSL) using state-of-the-art deep learning models such as MobileNetV3, ResNet50, and EfficientNet-B2. These models are further enhanced by explainable AI (XAI) techniques to boost interpretability. The ArSL2018 and RGB Arabic Alphabets Sign Language (AASL) datasets are employed, with EfficientNet-B2 achieving peak accuracies of 99.48\% and 98.99\%, respectively. Key innovations include sophisticated data augmentation methods to mitigate class imbalance, implementation of stratified 5-fold cross-validation for better generalization, and the use of Grad-CAM for clear model decision transparency. The proposed system not only sets new benchmarks in recognition accuracy but also emphasizes interpretability, making it suitable for applications in healthcare, education, and inclusive communication technologies.
comment: 13 pages, 25 figures, 16 tables
☆ LeapVAD: A Leap in Autonomous Driving via Cognitive Perception and Dual-Process Thinking
While autonomous driving technology has made remarkable strides, data-driven approaches still struggle with complex scenarios due to their limited reasoning capabilities. Meanwhile, knowledge-driven autonomous driving systems have evolved considerably with the popularization of visual language models. In this paper, we propose LeapVAD, a novel method based on cognitive perception and dual-process thinking. Our approach implements a human-attentional mechanism to identify and focus on critical traffic elements that influence driving decisions. By characterizing these objects through comprehensive attributes - including appearance, motion patterns, and associated risks - LeapVAD achieves more effective environmental representation and streamlines the decision-making process. Furthermore, LeapVAD incorporates an innovative dual-process decision-making module miming the human-driving learning process. The system consists of an Analytic Process (System-II) that accumulates driving experience through logical reasoning and a Heuristic Process (System-I) that refines this knowledge via fine-tuning and few-shot learning. LeapVAD also includes reflective mechanisms and a growing memory bank, enabling it to learn from past mistakes and continuously improve its performance in a closed-loop environment. To enhance efficiency, we develop a scene encoder network that generates compact scene representations for rapid retrieval of relevant driving experiences. Extensive evaluations conducted on two leading autonomous driving simulators, CARLA and DriveArena, demonstrate that LeapVAD achieves superior performance compared to camera-only approaches despite limited training data. Comprehensive ablation studies further emphasize its effectiveness in continuous learning and domain adaptation. Project page: https://pjlab-adg.github.io/LeapVAD/.
☆ Potential and Perils of Large Language Models as Judges of Unstructured Textual Data
Rapid advancements in large language models have unlocked remarkable capabilities when it comes to processing and summarizing unstructured text data. This has implications for the analysis of rich, open-ended datasets, such as survey responses, where LLMs hold the promise of efficiently distilling key themes and sentiments. However, as organizations increasingly turn to these powerful AI systems to make sense of textual feedback, a critical question arises, can we trust LLMs to accurately represent the perspectives contained within these text based datasets? While LLMs excel at generating human-like summaries, there is a risk that their outputs may inadvertently diverge from the true substance of the original responses. Discrepancies between the LLM-generated outputs and the actual themes present in the data could lead to flawed decision-making, with far-reaching consequences for organizations. This research investigates the effectiveness of LLMs as judge models to evaluate the thematic alignment of summaries generated by other LLMs. We utilized an Anthropic Claude model to generate thematic summaries from open-ended survey responses, with Amazon's Titan Express, Nova Pro, and Meta's Llama serving as LLM judges. The LLM-as-judge approach was compared to human evaluations using Cohen's kappa, Spearman's rho, and Krippendorff's alpha, validating a scalable alternative to traditional human centric evaluation methods. Our findings reveal that while LLMs as judges offer a scalable solution comparable to human raters, humans may still excel at detecting subtle, context-specific nuances. This research contributes to the growing body of knowledge on AI assisted text analysis. We discuss limitations and provide recommendations for future research, emphasizing the need for careful consideration when generalizing LLM judge models across various contexts and use cases.
comment: 11 pages, 1 appendix
☆ I Can Find You in Seconds! Leveraging Large Language Models for Code Authorship Attribution
Source code authorship attribution is important in software forensics, plagiarism detection, and protecting software patch integrity. Existing techniques often rely on supervised machine learning, which struggles with generalization across different programming languages and coding styles due to the need for large labeled datasets. Inspired by recent advances in natural language authorship analysis using large language models (LLMs), which have shown exceptional performance without task-specific tuning, this paper explores the use of LLMs for source code authorship attribution. We present a comprehensive study demonstrating that state-of-the-art LLMs can successfully attribute source code authorship across different languages. LLMs can determine whether two code snippets are written by the same author with zero-shot prompting, achieving a Matthews Correlation Coefficient (MCC) of 0.78, and can attribute code authorship from a small set of reference code snippets via few-shot learning, achieving MCC of 0.77. Additionally, LLMs show some adversarial robustness against misattribution attacks. Despite these capabilities, we found that naive prompting of LLMs does not scale well with a large number of authors due to input token limitations. To address this, we propose a tournament-style approach for large-scale attribution. Evaluating this approach on datasets of C++ (500 authors, 26,355 samples) and Java (686 authors, 55,267 samples) code from GitHub, we achieve classification accuracy of up to 65% for C++ and 68.7% for Java using only one reference per author. These results open new possibilities for applying LLMs to code authorship attribution in cybersecurity and software engineering.
comment: 12 pages, 5 figures,
☆ FairTTTS: A Tree Test Time Simulation Method for Fairness-Aware Classification
Algorithmic decision-making has become deeply ingrained in many domains, yet biases in machine learning models can still produce discriminatory outcomes, often harming unprivileged groups. Achieving fair classification is inherently challenging, requiring a careful balance between predictive performance and ethical considerations. We present FairTTTS, a novel post-processing bias mitigation method inspired by the Tree Test Time Simulation (TTTS) method. Originally developed to enhance accuracy and robustness against adversarial inputs through probabilistic decision-path adjustments, TTTS serves as the foundation for FairTTTS. By building on this accuracy-enhancing technique, FairTTTS mitigates bias and improves predictive performance. FairTTTS uses a distance-based heuristic to adjust decisions at protected attribute nodes, ensuring fairness for unprivileged samples. This fairness-oriented adjustment occurs as a post-processing step, allowing FairTTTS to be applied to pre-trained models, diverse datasets, and various fairness metrics without retraining. Extensive evaluation on seven benchmark datasets shows that FairTTTS outperforms traditional methods in fairness improvement, achieving a 20.96% average increase over the baseline compared to 18.78% for related work, and further enhances accuracy by 0.55%. In contrast, competing methods typically reduce accuracy by 0.42%. These results confirm that FairTTTS effectively promotes more equitable decision-making while simultaneously improving predictive performance.
☆ Multiple-Input Variational Auto-Encoder for Anomaly Detection in Heterogeneous Data
Anomaly detection (AD) plays a pivotal role in AI applications, e.g., in classification, and intrusion/threat detection in cybersecurity. However, most existing methods face challenges of heterogeneity amongst feature subsets posed by non-independent and identically distributed (non-IID) data. We propose a novel neural network model called Multiple-Input Auto-Encoder for AD (MIAEAD) to address this. MIAEAD assigns an anomaly score to each feature subset of a data sample to indicate its likelihood of being an anomaly. This is done by using the reconstruction error of its sub-encoder as the anomaly score. All sub-encoders are then simultaneously trained using unsupervised learning to determine the anomaly scores of feature subsets. The final AUC of MIAEAD is calculated for each sub-dataset, and the maximum AUC obtained among the sub-datasets is selected. To leverage the modelling of the distribution of normal data to identify anomalies of the generative models, we develop a novel neural network architecture/model called Multiple-Input Variational Auto-Encoder (MIVAE). MIVAE can process feature subsets through its sub-encoders before learning distribution of normal data in the latent space. This allows MIVAE to identify anomalies that deviate from the learned distribution. We theoretically prove that the difference in the average anomaly score between normal samples and anomalies obtained by the proposed MIVAE is greater than that of the Variational Auto-Encoder (VAEAD), resulting in a higher AUC for MIVAE. Extensive experiments on eight real-world anomaly datasets demonstrate the superior performance of MIAEAD and MIVAE over conventional methods and the state-of-the-art unsupervised models, by up to 6% in terms of AUC score. Alternatively, MIAEAD and MIVAE have a high AUC when applied to feature subsets with low heterogeneity based on the coefficient of variation (CV) score.
comment: 16 pages
☆ Refusal Behavior in Large Language Models: A Nonlinear Perspective
Refusal behavior in large language models (LLMs) enables them to decline responding to harmful, unethical, or inappropriate prompts, ensuring alignment with ethical standards. This paper investigates refusal behavior across six LLMs from three architectural families. We challenge the assumption of refusal as a linear phenomenon by employing dimensionality reduction techniques, including PCA, t-SNE, and UMAP. Our results reveal that refusal mechanisms exhibit nonlinear, multidimensional characteristics that vary by model architecture and layer. These findings highlight the need for nonlinear interpretability to improve alignment research and inform safer AI deployment strategies.
☆ EEG-ReMinD: Enhancing Neurodegenerative EEG Decoding through Self-Supervised State Reconstruction-Primed Riemannian Dynamics
The development of EEG decoding algorithms confronts challenges such as data sparsity, subject variability, and the need for precise annotations, all of which are vital for advancing brain-computer interfaces and enhancing the diagnosis of diseases. To address these issues, we propose a novel two-stage approach named Self-Supervised State Reconstruction-Primed Riemannian Dynamics (EEG-ReMinD) , which mitigates reliance on supervised learning and integrates inherent geometric features. This approach efficiently handles EEG data corruptions and reduces the dependency on labels. EEG-ReMinD utilizes self-supervised and geometric learning techniques, along with an attention mechanism, to analyze the temporal dynamics of EEG features within the framework of Riemannian geometry, referred to as Riemannian dynamics. Comparative analyses on both intact and corrupted datasets from two different neurodegenerative disorders underscore the enhanced performance of EEG-ReMinD.
☆ An Empirical Wall-Pressure Spectrum Model for Aeroacoustic Predictions Based on Symbolic Regression
Fast-turn around methods to predict airfoil trailing-edge noise are crucial for incorporating noise limitations into design optimization loops of several applications. Among these aeroacoustic predictive models, Amiet's theory offers the best balance between accuracy and simplicity. The accuracy of the model relies heavily on precise wall-pressure spectrum predictions, which are often based on single-equation formulations with adjustable parameters. These parameters are calibrated for particular airfoils and flow conditions and consequently tend to fail when applied outside their calibration range. This paper introduces a new wall-pressure spectrum empirical model designed to enhance the robustness and accuracy of current state-of-the-art predictions while widening the range of applicability of the model to different airfoils and flow conditions. The model is developed using AI-based symbolic regression via a genetic-algorithm-based approach, and applied to a dataset of wall-pressure fluctuations measured on NACA 0008 and NACA 63018 airfoils at multiple angles of attack and inflow velocities, covering turbulent boundary layers with both adverse and favorable pressure gradients. Validation against experimental data (outside the training dataset) demonstrates the robustness of the model compared to well-accepted semi-empirical models. Finally, the model is integrated with Amiet's theory to predict the aeroacoustic noise of a full-scale wind turbine, showing good agreement with experimental measurements.
☆ In-situ graph reasoning and knowledge expansion using Graph-PReFLexOR
The pursuit of automated scientific discovery has fueled progress from symbolic logic to modern AI, forging new frontiers in reasoning and pattern recognition. Transformers function as potential systems, where every possible relationship remains latent potentiality until tasks impose constraints, akin to measurement. Yet, refining their sampling requires more than probabilistic selection: solutions must conform to specific structures or rules, ensuring consistency and the invocation of general principles. We present Graph-PReFLexOR (Graph-based Preference-based Recursive Language Modeling for Exploratory Optimization of Reasoning), a framework that combines graph reasoning with symbolic abstraction to dynamically expand domain knowledge. Inspired by reinforcement learning, Graph-PReFLexOR defines reasoning as a structured mapping, where tasks yield knowledge graphs, abstract patterns, and ultimately, final answers. Inspired by category theory, it encodes concepts as nodes and their relationships as edges, supporting hierarchical inference and adaptive learning through isomorphic representations. Demonstrations include hypothesis generation, materials design, and creative reasoning, such as discovering relationships between mythological concepts like 'thin places' with materials science. We propose a 'knowledge garden growth' strategy that integrates insights across domains, promoting interdisciplinary connections. Results with a 3-billion-parameter Graph-PReFLexOR model show superior reasoning depth and adaptability, underscoring the potential for transparent, multidisciplinary AI-driven discovery. It lays the groundwork for general autonomous reasoning solutions.
☆ Data-driven inventory management for new products: A warm-start and adjusted Dyna-$Q$ approach
In this paper, we propose a novel reinforcement learning algorithm for inventory management of newly launched products with no or limited historical demand information. The algorithm follows the classic Dyna-$Q$ structure, balancing the model-based and model-free approaches, while accelerating the training process of Dyna-$Q$ and mitigating the model discrepancy generated by the model-based feedback. Warm-start information from the demand data of existing similar products can be incorporated into the algorithm to further stabilize the early-stage training and reduce the variance of the estimated optimal policy. Our approach is validated through a case study of bakery inventory management with real data. The adjusted Dyna-$Q$ shows up to a 23.7\% reduction in average daily cost compared with $Q$-learning, and up to a 77.5\% reduction in training time within the same horizon compared with classic Dyna-$Q$. By incorporating the warm-start information, it can be found that the adjusted Dyna-$Q$ has the lowest total cost, lowest variance in total cost, and relatively low shortage percentages among all the algorithms under a 30-day testing.
comment: 7 pages, 2 figures
☆ Consistency of Responses and Continuations Generated by Large Language Models on Social Media
Large Language Models (LLMs) demonstrate remarkable capabilities in text generation, yet their emotional consistency and semantic coherence in social media contexts remain insufficiently understood. This study investigates how LLMs handle emotional content and maintain semantic relationships through continuation and response tasks using two open-source models: Gemma and Llama. By analyzing climate change discussions from Twitter and Reddit, we examine emotional transitions, intensity patterns, and semantic similarity between human-authored and LLM-generated content. Our findings reveal that while both models maintain high semantic coherence, they exhibit distinct emotional patterns: Gemma shows a tendency toward negative emotion amplification, particularly anger, while maintaining certain positive emotions like optimism. Llama demonstrates superior emotional preservation across a broader spectrum of affects. Both models systematically generate responses with attenuated emotional intensity compared to human-authored content and show a bias toward positive emotions in response tasks. Additionally, both models maintain strong semantic similarity with original texts, though performance varies between continuation and response tasks. These findings provide insights into LLMs' emotional and semantic processing capabilities, with implications for their deployment in social media contexts and human-AI interaction design.
☆ Guiding the classification of hepatocellular carcinoma on 3D CT-scans using deep and handcrafted radiological features
Hepatocellular carcinoma is the most spread primary liver cancer across the world ($\sim$80\% of the liver tumors). The gold standard for HCC diagnosis is liver biopsy. However, in the clinical routine, expert radiologists provide a visual diagnosis by interpreting hepatic CT-scans according to a standardized protocol, the LI-RADS, which uses five radiological criteria with an associated decision tree. In this paper, we propose an automatic approach to predict histology-proven HCC from CT images in order to reduce radiologists' inter-variability. We first show that standard deep learning methods fail to accurately predict HCC from CT-scans on a challenging database, and propose a two-step approach inspired by the LI-RADS system to improve the performance. We achieve improvements from 6 to 18 points of AUC with respect to deep learning baselines trained with different architectures. We also provide clinical validation of our method, achieving results that outperform non-expert radiologists and are on par with expert ones.
comment: IEEE ISBI 2025
☆ Hybrid Action Based Reinforcement Learning for Multi-Objective Compatible Autonomous Driving
Reinforcement Learning (RL) has shown excellent performance in solving decision-making and control problems of autonomous driving, which is increasingly applied in diverse driving scenarios. However, driving is a multi-attribute problem, leading to challenges in achieving multi-objective compatibility for current RL methods, especially in both policy execution and policy iteration. On the one hand, the common action space structure with single action type limits driving flexibility or results in large behavior fluctuations during policy execution. On the other hand, the multi-attribute weighted single reward function result in the agent's disproportionate attention to certain objectives during policy iterations. To this end, we propose a Multi-objective Ensemble-Critic reinforcement learning method with Hybrid Parametrized Action for multi-objective compatible autonomous driving. Specifically, a parameterized action space is constructed to generate hybrid driving actions, combining both abstract guidance and concrete control commands. A multi-objective critics architecture is constructed considering multiple attribute rewards, to ensure simultaneously focusing on different driving objectives. Additionally, uncertainty-based exploration strategy is introduced to help the agent faster approach viable driving policy. The experimental results in both the simulated traffic environment and the HighD dataset demonstrate that our method can achieve multi-objective compatible autonomous driving in terms of driving efficiency, action consistency, and safety. It enhances the general performance of the driving while significantly increasing training efficiency.
comment: 12 pages, 9 figures, 5 tables
☆ Hierarchical Autoscaling for Large Language Model Serving with Chiron
Large language model (LLM) serving is becoming an increasingly important workload for cloud providers. Based on performance SLO requirements, LLM inference requests can be divided into (a) interactive requests that have tight SLOs in the order of seconds, and (b) batch requests that have relaxed SLO in the order of minutes to hours. These SLOs can degrade based on the arrival rates, multiplexing, and configuration parameters, thus necessitating the use of resource autoscaling on serving instances and their batch sizes. However, previous autoscalers for LLM serving do not consider request SLOs leading to unnecessary scaling and resource under-utilization. To address these limitations, we introduce Chiron, an autoscaler that uses the idea of hierarchical backpressure estimated using queue size, utilization, and SLOs. Our experiments show that Chiron achieves up to 90% higher SLO attainment and improves GPU efficiency by up to 70% compared to existing solutions.
☆ NOMTO: Neural Operator-based symbolic Model approximaTion and discOvery
While many physical and engineering processes are most effectively described by non-linear symbolic models, existing non-linear symbolic regression (SR) methods are restricted to a limited set of continuous algebraic functions, thereby limiting their applicability to discover higher order non-linear differential relations. In this work, we introduce the Neural Operator-based symbolic Model approximaTion and discOvery (NOMTO) method, a novel approach to symbolic model discovery that leverages Neural Operators to encompass a broad range of symbolic operations. We demonstrate that NOMTO can successfully identify symbolic expressions containing elementary functions with singularities, special functions, and derivatives. Additionally, our experiments demonstrate that NOMTO can accurately rediscover second-order non-linear partial differential equations. By broadening the set of symbolic operations available for discovery, NOMTO significantly advances the capabilities of existing SR methods. It provides a powerful and flexible tool for model discovery, capable of capturing complex relations in a variety of physical systems.
☆ Artificial Liver Classifier: A New Alternative to Conventional Machine Learning Models
Supervised machine learning classifiers often encounter challenges related to performance, accuracy, and overfitting. This paper introduces the Artificial Liver Classifier (ALC), a novel supervised learning classifier inspired by the human liver's detoxification function. The ALC is characterized by its simplicity, speed, hyperparameters-free, ability to reduce overfitting, and effectiveness in addressing multi-classification problems through straightforward mathematical operations. To optimize the ALC's parameters, an improved FOX optimization algorithm (IFOX) is employed as the training method. The proposed ALC was evaluated on five benchmark machine learning datasets: Iris Flower, Breast Cancer Wisconsin, Wine, Voice Gender, and MNIST. The results demonstrated competitive performance, with the ALC achieving 100% accuracy on the Iris dataset, surpassing logistic regression, multilayer perceptron, and support vector machine. Similarly, on the Breast Cancer dataset, it achieved 99.12% accuracy, outperforming XGBoost and logistic regression. Across all datasets, the ALC consistently exhibited lower overfitting gaps and loss compared to conventional classifiers. These findings highlight the potential of leveraging biological process simulations to develop efficient machine learning models and open new avenues for innovation in the field.
comment: 21 pages
☆ A Roadmap to Guide the Integration of LLMs in Hierarchical Planning AAAI
Recent advances in Large Language Models (LLMs) are fostering their integration into several reasoning-related fields, including Automated Planning (AP). However, their integration into Hierarchical Planning (HP), a subfield of AP that leverages hierarchical knowledge to enhance planning performance, remains largely unexplored. In this preliminary work, we propose a roadmap to address this gap and harness the potential of LLMs for HP. To this end, we present a taxonomy of integration methods, exploring how LLMs can be utilized within the HP life cycle. Additionally, we provide a benchmark with a standardized dataset for evaluating the performance of future LLM-based HP approaches, and present initial results for a state-of-the-art HP planner and LLM planner. As expected, the latter exhibits limited performance (3\% correct plans, and none with a correct hierarchical decomposition) but serves as a valuable baseline for future approaches.
comment: 5 pages, 0 figures, to be published in the AAAI Workshop on Planning in the Era of LLMs ( https://llmforplanning.github.io )
☆ Optimizing Speech Multi-View Feature Fusion through Conditional Computation ICASSP 2025
Recent advancements have highlighted the efficacy of self-supervised learning (SSL) features in various speech-related tasks, providing lightweight and versatile multi-view speech representations. However, our study reveals that while SSL features expedite model convergence, they conflict with traditional spectral features like FBanks in terms of update directions. In response, we propose a novel generalized feature fusion framework grounded in conditional computation, featuring a gradient-sensitive gating network and a multi-stage dropout strategy. This framework mitigates feature conflicts and bolsters model robustness to multi-view input features. By integrating SSL and spectral features, our approach accelerates convergence and maintains performance on par with spectral models across multiple speech translation tasks on the MUSTC dataset.
comment: ICASSP 2025
☆ Exploring Narrative Clustering in Large Language Models: A Layerwise Analysis of BERT
This study investigates the internal mechanisms of BERT, a transformer-based large language model, with a focus on its ability to cluster narrative content and authorial style across its layers. Using a dataset of narratives developed via GPT-4, featuring diverse semantic content and stylistic variations, we analyze BERT's layerwise activations to uncover patterns of localized neural processing. Through dimensionality reduction techniques such as Principal Component Analysis (PCA) and Multidimensional Scaling (MDS), we reveal that BERT exhibits strong clustering based on narrative content in its later layers, with progressively compact and distinct clusters. While strong stylistic clustering might occur when narratives are rephrased into different text types (e.g., fables, sci-fi, kids' stories), minimal clustering is observed for authorial style specific to individual writers. These findings highlight BERT's prioritization of semantic content over stylistic features, offering insights into its representational capabilities and processing hierarchy. This study contributes to understanding how transformer models like BERT encode linguistic information, paving the way for future interdisciplinary research in artificial intelligence and cognitive neuroscience.
comment: arXiv admin note: text overlap with arXiv:2408.03062, arXiv:2408.04270, arXiv:2307.01577
☆ Self-Attentive Spatio-Temporal Calibration for Precise Intermediate Layer Matching in ANN-to-SNN Distillation
Spiking Neural Networks (SNNs) are promising for low-power computation due to their event-driven mechanism but often suffer from lower accuracy compared to Artificial Neural Networks (ANNs). ANN-to-SNN knowledge distillation can improve SNN performance, but previous methods either focus solely on label information, missing valuable intermediate layer features, or use a layer-wise approach that neglects spatial and temporal semantic inconsistencies, leading to performance degradation.To address these limitations, we propose a novel method called self-attentive spatio-temporal calibration (SASTC). SASTC uses self-attention to identify semantically aligned layer pairs between ANN and SNN, both spatially and temporally. This enables the autonomous transfer of relevant semantic information. Extensive experiments show that SASTC outperforms existing methods, effectively solving the mismatching problem. Superior accuracy results include 95.12% on CIFAR-10, 79.40% on CIFAR-100 with 2 time steps, and 68.69% on ImageNet with 4 time steps for static datasets, and 97.92% on DVS-Gesture and 83.60% on DVS-CIFAR10 for neuromorphic datasets. This marks the first time SNNs have outperformed ANNs on both CIFAR-10 and CIFAR-100, shedding the new light on the potential applications of SNNs.
☆ Building Symbiotic AI: Reviewing the AI Act for a Human-Centred, Principle-Based Framework
Artificial Intelligence (AI) spreads quickly as new technologies and services take over modern society. The need to regulate AI design, development, and use is strictly necessary to avoid unethical and potentially dangerous consequences to humans. The European Union (EU) has released a new legal framework, the AI Act, to regulate AI by undertaking a risk-based approach to safeguard humans during interaction. At the same time, researchers offer a new perspective on AI systems, commonly known as Human-Centred AI (HCAI), highlighting the need for a human-centred approach to their design. In this context, Symbiotic AI (a subtype of HCAI) promises to enhance human capabilities through a deeper and continuous collaboration between human intelligence and AI. This article presents the results of a Systematic Literature Review (SLR) that aims to identify principles that characterise the design and development of Symbiotic AI systems while considering humans as the core of the process. Through content analysis, four principles emerged from the review that must be applied to create Human-Centred AI systems that can establish a symbiotic relationship with humans. In addition, current trends and challenges were defined to indicate open questions that may guide future research for the development of SAI systems that comply with the AI Act.
comment: First version: 17 pages, 5 figures, 2 tables
☆ Exploring visual language models as a powerful tool in the diagnosis of Ewing Sarcoma
Ewing's sarcoma (ES), characterized by a high density of small round blue cells without structural organization, presents a significant health concern, particularly among adolescents aged 10 to 19. Artificial intelligence-based systems for automated analysis of histopathological images are promising to contribute to an accurate diagnosis of ES. In this context, this study explores the feature extraction ability of different pre-training strategies for distinguishing ES from other soft tissue or bone sarcomas with similar morphology in digitized tissue microarrays for the first time, as far as we know. Vision-language supervision (VLS) is compared to fully-supervised ImageNet pre-training within a multiple instance learning paradigm. Our findings indicate a substantial improvement in diagnostic accuracy with the adaption of VLS using an in-domain dataset. Notably, these models not only enhance the accuracy of predicted classes but also drastically reduce the number of trainable parameters and computational costs.
comment: 11 pages, 5 figures, 2 tables. Oral presentation at KES-InMed 2024 held in Madeira, Portugal
☆ READ: Reinforcement-based Adversarial Learning for Text Classification with Limited Labeled Data
Pre-trained transformer models such as BERT have shown massive gains across many text classification tasks. However, these models usually need enormous labeled data to achieve impressive performances. Obtaining labeled data is often expensive and time-consuming, whereas collecting unlabeled data using some heuristics is relatively much cheaper for any task. Therefore, this paper proposes a method that encapsulates reinforcement learning-based text generation and semi-supervised adversarial learning approaches in a novel way to improve the model's performance. Our method READ, Reinforcement-based Adversarial learning, utilizes an unlabeled dataset to generate diverse synthetic text through reinforcement learning, improving the model's generalization capability using adversarial learning. Our experimental results show that READ outperforms the existing state-of-art methods on multiple datasets.
☆ Cooperative Patrol Routing: Optimizing Urban Crime Surveillance through Multi-Agent Reinforcement Learning
The effective design of patrol strategies is a difficult and complex problem, especially in medium and large areas. The objective is to plan, in a coordinated manner, the optimal routes for a set of patrols in a given area, in order to achieve maximum coverage of the area, while also trying to minimize the number of patrols. In this paper, we propose a multi-agent reinforcement learning (MARL) model, based on a decentralized partially observable Markov decision process, to plan unpredictable patrol routes within an urban environment represented as an undirected graph. The model attempts to maximize a target function that characterizes the environment within a given time frame. Our model has been tested to optimize police patrol routes in three medium-sized districts of the city of Malaga. The aim was to maximize surveillance coverage of the most crime-prone areas, based on actual crime data in the city. To address this problem, several MARL algorithms have been studied, and among these the Value Decomposition Proximal Policy Optimization (VDPPO) algorithm exhibited the best performance. We also introduce a novel metric, the coverage index, for the evaluation of the coverage performance of the routes generated by our model. This metric is inspired by the predictive accuracy index (PAI), which is commonly used in criminology to detect hotspots. Using this metric, we have evaluated the model under various scenarios in which the number of agents (or patrols), their starting positions, and the level of information they can observe in the environment have been modified. Results show that the coordinated routes generated by our model achieve a coverage of more than $90\%$ of the $3\%$ of graph nodes with the highest crime incidence, and $65\%$ for $20\%$ of these nodes; $3\%$ and $20\%$ represent the coverage standards for police resource allocation.
☆ An AI-driven framework for rapid and localized optimizations of urban open spaces
As urbanization accelerates, open spaces are increasingly recognized for their role in enhancing sustainability and well-being, yet they remain underexplored compared to built spaces. This study introduces an AI-driven framework that integrates machine learning models (MLMs) and explainable AI techniques to optimize Sky View Factor (SVF) and visibility, key spatial metrics influencing thermal comfort and perceived safety in urban spaces. Unlike global optimization methods, which are computationally intensive and impractical for localized adjustments, this framework supports incremental design improvements with lower computational costs and greater flexibility. The framework employs SHapley Adaptive Explanations (SHAP) to analyze feature importance and Counterfactual Explanations (CFXs) to propose minimal design changes. Simulations tested five MLMs, identifying XGBoost as the most accurate, with building width, park area, and heights of surrounding buildings as critical for SVF, and distances from southern buildings as key for visibility. Compared to Genetic Algorithms, which required approximately 15/30 minutes across 3/4 generations to converge, the tested CFX approach achieved optimized results in 1 minute with a 5% RMSE error, demonstrating significantly faster performance and suitability for scalable retrofitting strategies. This interpretable and computationally efficient framework advances urban performance optimization, providing data-driven insights and practical retrofitting solutions for enhancing usability and environmental quality across diverse urban contexts.
comment: 36 pages
☆ Tutorial: VAE as an inference paradigm for neuroimaging
In this tutorial, we explore Variational Autoencoders (VAEs), an essential framework for unsupervised learning, particularly suited for high-dimensional datasets such as neuroimaging. By integrating deep learning with Bayesian inference, VAEs enable the generation of interpretable latent representations. This tutorial outlines the theoretical foundations of VAEs, addresses practical challenges such as convergence issues and over-fitting, and discusses strategies like the reparameterization trick and hyperparameter optimization. We also highlight key applications of VAEs in neuroimaging, demonstrating their potential to uncover meaningful patterns, including those associated with neurodegenerative processes, and their broader implications for analyzing complex brain data.
comment: 18 pages, 4 figures
☆ TriAdaptLoRA: Brain-Inspired Triangular Adaptive Low-Rank Adaptation for Parameter-Efficient Fine-Tuning
The fine-tuning of Large Language Models (LLMs) is pivotal for achieving optimal performance across diverse downstream tasks. However, while full fine-tuning delivers superior results, it entails significant computational and resource costs. Parameter-Efficient Fine-Tuning (PEFT) methods, such as LoRA, address these challenges by reducing the number of trainable parameters, but they often struggle with rank adjustment efficiency and task-specific adaptability. We propose Triangular Adaptive Low-Rank Adaptation (TriAdaptLoRA), a novel PEFT framework inspired by neuroscience principles, which dynamically optimizes the allocation of trainable parameters. TriAdaptLoRA introduces three key innovations: 1) a triangular split of transformation matrices into lower and upper triangular components to maximize parameter utilization, 2) a parameter importance metric based on normalized Frobenius norms for efficient adaptation, and 3) an adaptive rank-growth strategy governed by dynamic thresholds, allowing flexible parameter allocation across training steps. Experiments conducted on a variety of natural language understanding and generation tasks demonstrate that TriAdaptLoRA consistently outperforms existing PEFT methods. It achieves superior performance, enhanced stability, and reduced computational overhead, particularly under linear threshold-driven rank growth. These results highlight its efficacy as a scalable and resource-efficient solution for fine-tuning LLMs.
☆ DisCoPatch: Batch Statistics Are All You Need For OOD Detection, But Only If You Can Trust Them
Out-of-distribution (OOD) detection holds significant importance across many applications. While semantic and domain-shift OOD problems are well-studied, this work focuses on covariate shifts - subtle variations in the data distribution that can degrade machine learning performance. We hypothesize that detecting these subtle shifts can improve our understanding of in-distribution boundaries, ultimately improving OOD detection. In adversarial discriminators trained with Batch Normalization (BN), real and adversarial samples form distinct domains with unique batch statistics - a property we exploit for OOD detection. We introduce DisCoPatch, an unsupervised Adversarial Variational Autoencoder (VAE) framework that harnesses this mechanism. During inference, batches consist of patches from the same image, ensuring a consistent data distribution that allows the model to rely on batch statistics. DisCoPatch uses the VAE's suboptimal outputs (generated and reconstructed) as negative samples to train the discriminator, thereby improving its ability to delineate the boundary between in-distribution samples and covariate shifts. By tightening this boundary, DisCoPatch achieves state-of-the-art results in public OOD detection benchmarks. The proposed model not only excels in detecting covariate shifts, achieving 95.5% AUROC on ImageNet-1K(-C) but also outperforms all prior methods on public Near-OOD (95.0%) benchmarks. With a compact model size of 25MB, it achieves high OOD detection performance at notably lower latency than existing methods, making it an efficient and practical solution for real-world OOD detection applications. The code will be made publicly available
☆ Maximizing Uncertainty for Federated learning via Bayesian Optimisation-based Model Poisoning
As we transition from Narrow Artificial Intelligence towards Artificial Super Intelligence, users are increasingly concerned about their privacy and the trustworthiness of machine learning (ML) technology. A common denominator for the metrics of trustworthiness is the quantification of uncertainty inherent in DL algorithms, and specifically in the model parameters, input data, and model predictions. One of the common approaches to address privacy-related issues in DL is to adopt distributed learning such as federated learning (FL), where private raw data is not shared among users. Despite the privacy-preserving mechanisms in FL, it still faces challenges in trustworthiness. Specifically, the malicious users, during training, can systematically create malicious model parameters to compromise the models predictive and generative capabilities, resulting in high uncertainty about their reliability. To demonstrate malicious behaviour, we propose a novel model poisoning attack method named Delphi which aims to maximise the uncertainty of the global model output. We achieve this by taking advantage of the relationship between the uncertainty and the model parameters of the first hidden layer of the local model. Delphi employs two types of optimisation , Bayesian Optimisation and Least Squares Trust Region, to search for the optimal poisoned model parameters, named as Delphi-BO and Delphi-LSTR. We quantify the uncertainty using the KL Divergence to minimise the distance of the predictive probability distribution towards an uncertain distribution of model output. Furthermore, we establish a mathematical proof for the attack effectiveness demonstrated in FL. Numerical results demonstrate that Delphi-BO induces a higher amount of uncertainty than Delphi-LSTR highlighting vulnerability of FL systems to model poisoning attacks.
comment: 14 pages
☆ GDiffRetro: Retrosynthesis Prediction with Dual Graph Enhanced Molecular Representation and Diffusion Generation
Retrosynthesis prediction focuses on identifying reactants capable of synthesizing a target product. Typically, the retrosynthesis prediction involves two phases: Reaction Center Identification and Reactant Generation. However, we argue that most existing methods suffer from two limitations in the two phases: (i) Existing models do not adequately capture the ``face'' information in molecular graphs for the reaction center identification. (ii) Current approaches for the reactant generation predominantly use sequence generation in a 2D space, which lacks versatility in generating reasonable distributions for completed reactive groups and overlooks molecules' inherent 3D properties. To overcome the above limitations, we propose GDiffRetro. For the reaction center identification, GDiffRetro uniquely integrates the original graph with its corresponding dual graph to represent molecular structures, which helps guide the model to focus more on the faces in the graph. For the reactant generation, GDiffRetro employs a conditional diffusion model in 3D to further transform the obtained synthon into a complete reactant. Our experimental findings reveal that GDiffRetro outperforms state-of-the-art semi-template models across various evaluative metrics.
☆ LLM-Ehnanced Holonic Architecture for Ad-Hoc Scalable SoS
As modern system of systems (SoS) become increasingly adaptive and human centred, traditional architectures often struggle to support interoperability, reconfigurability, and effective human system interaction. This paper addresses these challenges by advancing the state of the art holonic architecture for SoS, offering two main contributions to support these adaptive needs. First, we propose a layered architecture for holons, which includes reasoning, communication, and capabilities layers. This design facilitates seamless interoperability among heterogeneous constituent systems by improving data exchange and integration. Second, inspired by principles of intelligent manufacturing, we introduce specialised holons namely, supervisor, planner, task, and resource holons aimed at enhancing the adaptability and reconfigurability of SoS. These specialised holons utilise large language models within their reasoning layers to support decision making and ensure real time adaptability. We demonstrate our approach through a 3D mobility case study focused on smart city transportation, showcasing its potential for managing complex, multimodal SoS environments. Additionally, we propose evaluation methods to assess the architecture efficiency and scalability,laying the groundwork for future empirical validations through simulations and real world implementations.
☆ Training Hybrid Neural Networks with Multimode Optical Nonlinearities Using Digital Twins
The ability to train ever-larger neural networks brings artificial intelligence to the forefront of scientific and technical discoveries. However, their exponentially increasing size creates a proportionally greater demand for energy and computational hardware. Incorporating complex physical events in networks as fixed, efficient computation modules can address this demand by decreasing the complexity of trainable layers. Here, we utilize ultrashort pulse propagation in multimode fibers, which perform large-scale nonlinear transformations, for this purpose. Training the hybrid architecture is achieved through a neural model that differentiably approximates the optical system. The training algorithm updates the neural simulator and backpropagates the error signal over this proxy to optimize layers preceding the optical one. Our experimental results achieve state-of-the-art image classification accuracies and simulation fidelity. Moreover, the framework demonstrates exceptional resilience to experimental drifts. By integrating low-energy physical systems into neural networks, this approach enables scalable, energy-efficient AI models with significantly reduced computational demands.
comment: 17 pages, 6 figures
☆ GAC-Net_Geometric and attention-based Network for Depth Completion
Depth completion is a key task in autonomous driving, aiming to complete sparse LiDAR depth measurements into high-quality dense depth maps through image guidance. However, existing methods usually treat depth maps as an additional channel of color images, or directly perform convolution on sparse data, failing to fully exploit the 3D geometric information in depth maps, especially with limited performance in complex boundaries and sparse areas. To address these issues, this paper proposes a depth completion network combining channel attention mechanism and 3D global feature perception (CGA-Net). The main innovations include: 1) Utilizing PointNet++ to extract global 3D geometric features from sparse depth maps, enhancing the scene perception ability of low-line LiDAR data; 2) Designing a channel-attention-based multimodal feature fusion module to efficiently integrate sparse depth, RGB images, and 3D geometric features; 3) Combining residual learning with CSPN++ to optimize the depth refinement stage, further improving the completion quality in edge areas and complex scenes. Experiments on the KITTI depth completion dataset show that CGA-Net can significantly improve the prediction accuracy of dense depth maps, achieving a new state-of-the-art (SOTA), and demonstrating strong robustness to sparse and complex scenes.
comment: 13pages,4 figures, 2 tables
☆ Facial Dynamics in Video: Instruction Tuning for Improved Facial Expression Perception and Contextual Awareness
Facial expression captioning has found widespread application across various domains. Recently, the emergence of video Multimodal Large Language Models (MLLMs) has shown promise in general video understanding tasks. However, describing facial expressions within videos poses two major challenges for these models: (1) the lack of adequate datasets and benchmarks, and (2) the limited visual token capacity of video MLLMs. To address these issues, this paper introduces a new instruction-following dataset tailored for dynamic facial expression caption. The dataset comprises 5,033 high-quality video clips annotated manually, containing over 700,000 tokens. Its purpose is to improve the capability of video MLLMs to discern subtle facial nuances. Furthermore, we propose FaceTrack-MM, which leverages a limited number of tokens to encode the main character's face. This model demonstrates superior performance in tracking faces and focusing on the facial expressions of the main characters, even in intricate multi-person scenarios. Additionally, we introduce a novel evaluation metric combining event extraction, relation classification, and the longest common subsequence (LCS) algorithm to assess the content consistency and temporal sequence consistency of generated text. Moreover, we present FEC-Bench, a benchmark designed to assess the performance of existing video MLLMs in this specific task. All data and source code will be made publicly available.
☆ Comprehensive Metapath-based Heterogeneous Graph Transformer for Gene-Disease Association Prediction
Discovering gene-disease associations is crucial for understanding disease mechanisms, yet identifying these associations remains challenging due to the time and cost of biological experiments. Computational methods are increasingly vital for efficient and scalable gene-disease association prediction. Graph-based learning models, which leverage node features and network relationships, are commonly employed for biomolecular predictions. However, existing methods often struggle to effectively integrate node features, heterogeneous structures, and semantic information. To address these challenges, we propose COmprehensive MEtapath-based heterogeneous graph Transformer(COMET) for predicting gene-disease associations. COMET integrates diverse datasets to construct comprehensive heterogeneous networks, initializing node features with BioGPT. We define seven Metapaths and utilize a transformer framework to aggregate Metapath instances, capturing global contexts and long-distance dependencies. Through intra- and inter-metapath aggregation using attention mechanisms, COMET fuses latent vectors from multiple Metapaths to enhance GDA prediction accuracy. Our method demonstrates superior robustness compared to state-of-the-art approaches. Ablation studies and visualizations validate COMET's effectiveness, providing valuable insights for advancing human health research.
comment: 6 pages
☆ Derivation of Output Correlation Inferences for Multi-Output (aka Multi-Task) Gaussian Process
Gaussian process (GP) is arguably one of the most widely used machine learning algorithms in practice. One of its prominent applications is Bayesian optimization (BO). Although the vanilla GP itself is already a powerful tool for BO, it is often beneficial to be able to consider the dependencies of multiple outputs. To do so, Multi-task GP (MTGP) is formulated, but it is not trivial to fully understand the derivations of its formulations and their gradients from the previous literature. This paper serves friendly derivations of the MTGP formulations and their gradients.
☆ Self-Instruct Few-Shot Jailbreaking: Decompose the Attack into Pattern and Behavior Learning
Recently, several works have been conducted on jailbreaking Large Language Models (LLMs) with few-shot malicious demos. In particular, Zheng et al. (2024) focuses on improving the efficiency of Few-Shot Jailbreaking (FSJ) by injecting special tokens into the demos and employing demo-level random search. Nevertheless, this method lacks generality since it specifies the instruction-response structure. Moreover, the reason why inserting special tokens takes effect in inducing harmful behaviors is only empirically discussed. In this paper, we take a deeper insight into the mechanism of special token injection and propose Self-Instruct Few-Shot Jailbreaking (Self-Instruct-FSJ) facilitated with the demo-level greedy search. This framework decomposes the FSJ attack into pattern and behavior learning to exploit the model's vulnerabilities in a more generalized and efficient way. We conduct elaborate experiments to evaluate our method on common open-source models and compare it with baseline algorithms. Our code is available at https://github.com/iphosi/Self-Instruct-FSJ.
☆ AI Guide Dog: Egocentric Path Prediction on Smartphone
This paper introduces AI Guide Dog (AIGD), a lightweight egocentric navigation assistance system for visually impaired individuals, designed for real-time deployment on smartphones. AIGD addresses key challenges in blind navigation by employing a vision-only, multi-label classification approach to predict directional commands, ensuring safe traversal across diverse environments. We propose a novel technique to enable goal-based outdoor navigation by integrating GPS signals and high-level directions, while also addressing uncertain multi-path predictions for destination-free indoor navigation. Our generalized model is the first navigation assistance system to handle both goal-oriented and exploratory navigation scenarios across indoor and outdoor settings, establishing a new state-of-the-art in blind navigation. We present methods, datasets, evaluations, and deployment insights to encourage further innovations in assistive navigation systems.
☆ Early prediction of the transferability of bovine embryos from videomicroscopy
Videomicroscopy is a promising tool combined with machine learning for studying the early development of in vitro fertilized bovine embryos and assessing its transferability as soon as possible. We aim to predict the embryo transferability within four days at most, taking 2D time-lapse microscopy videos as input. We formulate this problem as a supervised binary classification problem for the classes transferable and not transferable. The challenges are three-fold: 1) poorly discriminating appearance and motion, 2) class ambiguity, 3) small amount of annotated data. We propose a 3D convolutional neural network involving three pathways, which makes it multi-scale in time and able to handle appearance and motion in different ways. For training, we retain the focal loss. Our model, named SFR, compares favorably to other methods. Experiments demonstrate its effectiveness and accuracy for our challenging biological task.
comment: Accepted at the 2024 IEEE International Conference on Image Processing
☆ Advice for Diabetes Self-Management by ChatGPT Models: Challenges and Recommendations
Given their ability for advanced reasoning, extensive contextual understanding, and robust question-answering abilities, large language models have become prominent in healthcare management research. Despite adeptly handling a broad spectrum of healthcare inquiries, these models face significant challenges in delivering accurate and practical advice for chronic conditions such as diabetes. We evaluate the responses of ChatGPT versions 3.5 and 4 to diabetes patient queries, assessing their depth of medical knowledge and their capacity to deliver personalized, context-specific advice for diabetes self-management. Our findings reveal discrepancies in accuracy and embedded biases, emphasizing the models' limitations in providing tailored advice unless activated by sophisticated prompting techniques. Additionally, we observe that both models often provide advice without seeking necessary clarification, a practice that can result in potentially dangerous advice. This underscores the limited practical effectiveness of these models without human oversight in clinical settings. To address these issues, we propose a commonsense evaluation layer for prompt evaluation and incorporating disease-specific external memory using an advanced Retrieval Augmented Generation technique. This approach aims to improve information quality and reduce misinformation risks, contributing to more reliable AI applications in healthcare settings. Our findings seek to influence the future direction of AI in healthcare, enhancing both the scope and quality of its integration.
☆ An Adaptive Orthogonal Convolution Scheme for Efficient and Flexible CNN Architectures
Orthogonal convolutional layers are the workhorse of multiple areas in machine learning, such as adversarial robustness, normalizing flows, GANs, and Lipschitzconstrained models. Their ability to preserve norms and ensure stable gradient propagation makes them valuable for a large range of problems. Despite their promise, the deployment of orthogonal convolution in large-scale applications is a significant challenge due to computational overhead and limited support for modern features like strides, dilations, group convolutions, and transposed convolutions.In this paper, we introduce AOC (Adaptative Orthogonal Convolution), a scalable method for constructing orthogonal convolutions, effectively overcoming these limitations. This advancement unlocks the construction of architectures that were previously considered impractical. We demonstrate through our experiments that our method produces expressive models that become increasingly efficient as they scale. To foster further advancement, we provide an open-source library implementing this method, available at https://github.com/thib-s/orthogonium.
☆ Gandalf the Red: Adaptive Security for LLMs
Current evaluations of defenses against prompt attacks in large language model (LLM) applications often overlook two critical factors: the dynamic nature of adversarial behavior and the usability penalties imposed on legitimate users by restrictive defenses. We propose D-SEC (Dynamic Security Utility Threat Model), which explicitly separates attackers from legitimate users, models multi-step interactions, and rigorously expresses the security-utility in an optimizable form. We further address the shortcomings in existing evaluations by introducing Gandalf, a crowd-sourced, gamified red-teaming platform designed to generate realistic, adaptive attack datasets. Using Gandalf, we collect and release a dataset of 279k prompt attacks. Complemented by benign user data, our analysis reveals the interplay between security and utility, showing that defenses integrated in the LLM (e.g., system prompts) can degrade usability even without blocking requests. We demonstrate that restricted application domains, defense-in-depth, and adaptive defenses are effective strategies for building secure and useful LLM applications. Code is available at \href{https://github.com/lakeraai/dsec-gandalf}{\texttt{https://github.com/lakeraai/dsec-gandalf}}.
comment: Niklas Pfister, V\'aclav Volhejn and Manuel Knott contributed equally
☆ Exploring Aviation Incident Narratives Using Topic Modeling and Clustering Techniques
Aviation safety is a global concern, requiring detailed investigations into incidents to understand contributing factors comprehensively. This study uses the National Transportation Safety Board (NTSB) dataset. It applies advanced natural language processing (NLP) techniques, including Latent Dirichlet Allocation (LDA), Non-Negative Matrix Factorization (NMF), Latent Semantic Analysis (LSA), Probabilistic Latent Semantic Analysis (pLSA), and K-means clustering. The main objectives are identifying latent themes, exploring semantic relationships, assessing probabilistic connections, and cluster incidents based on shared characteristics. This research contributes to aviation safety by providing insights into incident narratives and demonstrating the versatility of NLP and topic modelling techniques in extracting valuable information from complex datasets. The results, including topics identified from various techniques, provide an understanding of recurring themes. Comparative analysis reveals that LDA performed best with a coherence value of 0.597, pLSA of 0.583, LSA of 0.542, and NMF of 0.437. K-means clustering further reveals commonalities and unique insights into incident narratives. In conclusion, this study uncovers latent patterns and thematic structures within incident narratives, offering a comparative analysis of multiple-topic modelling techniques. Future research avenues include exploring temporal patterns, incorporating additional datasets, and developing predictive models for early identification of safety issues. This research lays the groundwork for enhancing the understanding and improvement of aviation safety by utilising the wealth of information embedded in incident narratives.
☆ Large Language Model Interface for Home Energy Management Systems
Home Energy Management Systems (HEMSs) help households tailor their electricity usage based on power system signals such as energy prices. This technology helps to reduce energy bills and offers greater demand-side flexibility that supports the power system stability. However, residents who lack a technical background may find it difficult to use HEMSs effectively, because HEMSs require well-formatted parameterization that reflects the characteristics of the energy resources, houses, and users' needs. Recently, Large-Language Models (LLMs) have demonstrated an outstanding ability in language understanding. Motivated by this, we propose an LLM-based interface that interacts with users to understand and parameterize their ``badly-formatted answers'', and then outputs well-formatted parameters to implement an HEMS. We further use Reason and Act method (ReAct) and few-shot prompting to enhance the LLM performance. Evaluating the interface performance requires multiple user--LLM interactions. To avoid the efforts in finding volunteer users and reduce the evaluation time, we additionally propose a method that uses another LLM to simulate users with varying expertise, ranging from knowledgeable to non-technical. By comprehensive evaluation, the proposed LLM-based HEMS interface achieves an average parameter retrieval accuracy of 88\%, outperforming benchmark models without ReAct and/or few-shot prompting.
comment: 13 pages conference paper
☆ Governing AI Agents
The field of AI is undergoing a fundamental transition from systems that can produce synthetic content upon request to autonomous agents that can plan and execute complex tasks with only limited human involvement. Companies that pioneered the development of generative AI tools are now building AI agents that can be instructed to independently navigate the internet, perform a wide range of online tasks, and serve as artificial personal assistants and virtual coworkers. The opportunities presented by this new technology are tremendous, as are the associated risks. Fortunately, there exist robust analytic frameworks for confronting many of these challenges, namely, the economic theory of principal-agent problems and the common law doctrine of agency relationships. Drawing on these frameworks, this Article makes three contributions. First, it uses agency law and theory to identify and characterize problems arising from AI agents, including issues of information asymmetry, discretionary authority, and loyalty. Second, it illustrates the limitations of conventional solutions to agency problems: incentive design, monitoring, and enforcement might not be effective for governing AI agents that make uninterpretable decisions and operate at unprecedented speed and scale. Third, the Article explores the implications of agency law and theory for designing and regulating AI agents, arguing that new technical and legal infrastructure is needed to support governance principles of inclusivity, visibility, and liability.
☆ Deep Learning and Natural Language Processing in the Field of Construction
This article presents a complete process to extract hypernym relationships in the field of construction using two main steps: terminology extraction and detection of hypernyms from these terms. We first describe the corpus analysis method to extract terminology from a collection of technical specifications in the field of construction. Using statistics and word n-grams analysis, we extract the domain's terminology and then perform pruning steps with linguistic patterns and internet queries to improve the quality of the final terminology. Second, we present a machine-learning approach based on various words embedding models and combinations to deal with the detection of hypernyms from the extracted terminology. Extracted terminology is evaluated using a manual evaluation carried out by 6 experts in the domain, and the hypernym identification method is evaluated with different datasets. The global approach provides relevant and promising results.
☆ Logarithmic Memory Networks (LMNs): Efficient Long-Range Sequence Modeling for Resource-Constrained Environments
Long-range sequence modeling is a crucial aspect of natural language processing and time series analysis. However, traditional models like Recurrent Neural Networks (RNNs) and Transformers suffer from computational and memory inefficiencies, especially when dealing with long sequences. This paper introduces Logarithmic Memory Networks (LMNs), a novel architecture that leverages a hierarchical logarithmic tree structure to efficiently store and retrieve past information. LMNs dynamically summarize historical context, significantly reducing the memory footprint and computational complexity of attention mechanisms from O(n2) to O(log(n)). The model employs a single-vector, targeted attention mechanism to access stored information, and the memory block construction worker (summarizer) layer operates in two modes: a parallel execution mode during training for efficient processing of hierarchical tree structures and a sequential execution mode during inference, which acts as a memory management system. It also implicitly encodes positional information, eliminating the need for explicit positional encodings. These features make LMNs a robust and scalable solution for processing long-range sequences in resource-constrained environments, offering practical improvements in efficiency and scalability. The code is publicly available under the MIT License on GitHub: https://github.com/AhmedBoin/LogarithmicMemory.
comment: 18 pages, 10 figures
☆ Optimal Classification Trees for Continuous Feature Data Using Dynamic Programming with Branch-and-Bound AAAI-25
Computing an optimal classification tree that provably maximizes training performance within a given size limit, is NP-hard, and in practice, most state-of-the-art methods do not scale beyond computing optimal trees of depth three. Therefore, most methods rely on a coarse binarization of continuous features to maintain scalability. We propose a novel algorithm that optimizes trees directly on the continuous feature data using dynamic programming with branch-and-bound. We develop new pruning techniques that eliminate many sub-optimal splits in the search when similar to previously computed splits and we provide an efficient subroutine for computing optimal depth-two trees. Our experiments demonstrate that these techniques improve runtime by one or more orders of magnitude over state-of-the-art optimal methods and improve test accuracy by 5% over greedy heuristics.
comment: In the proceedings of AAAI-25
☆ Anytime Cooperative Implicit Hitting Set Solving
The Implicit Hitting Set (HS) approach has shown to be very effective for MaxSAT, Pseudo-boolean optimization and other boolean frameworks. Very recently, it has also shown its potential in the very similar Weighted CSP framework by means of the so-called cost-function merging. The original formulation of the HS approach focuses on obtaining increasingly better lower bounds (HS-lb). However, and as shown for Pseudo-Boolean Optimization, this approach can also be adapted to compute increasingly better upper bounds (HS-ub). In this paper we consider both HS approaches and show how they can be easily combined in a multithread architecture where cores discovered by either component are available by the other which, interestingly, generates synergy between them. We show that the resulting algorithm (HS-lub) is consistently superior to either HS-lb and HS-ub in isolation. Most importantly, HS-lub has an effective anytime behaviour with which the optimality gap is reduced during the execution. We tested our approach on the Weighted CSP framework and show on three different benchmarks that our very simple implementation sometimes outperforms the parallel hybrid best-first search implementation of the far more developed state-of-the-art Toulbar2.
☆ Leveraging Metamemory Mechanisms for Enhanced Data-Free Code Generation in LLMs
Automated code generation using large language models (LLMs) has gained attention due to its efficiency and adaptability. However, real-world coding tasks or benchmarks like HumanEval and StudentEval often lack dedicated training datasets, challenging existing few-shot prompting approaches that rely on reference examples. Inspired by human metamemory-a cognitive process involving recall and evaluation-we present a novel framework (namely M^2WF) for improving LLMs' one-time code generation. This approach enables LLMs to autonomously generate, evaluate, and utilize synthetic examples to enhance reliability and performance. Unlike prior methods, it minimizes dependency on curated data and adapts flexibly to various coding scenarios. Our experiments demonstrate significant improvements in coding benchmarks, offering a scalable and robust solution for data-free environments. The code and framework will be publicly available on GitHub and HuggingFace.
comment: 11 pages,6 figures
☆ GRAPHMOE: Amplifying Cognitive Depth of Mixture-of-Experts Network via Introducing Self-Rethinking Mechanism
Traditional Mixture-of-Experts (MoE) networks benefit from utilizing multiple smaller expert models as opposed to a single large network. However, these experts typically operate independently, leaving a question open about whether interconnecting these models could enhance the performance of MoE networks. In response, we introduce GRAPHMOE, a novel method aimed at augmenting the cognitive depth of language models via a self-rethinking mechanism constructed on Pseudo GraphMoE networks. GRAPHMOE employs a recurrent routing strategy to simulate iterative thinking steps, thereby facilitating the flow of information among expert nodes. We implement the GRAPHMOE architecture using Low-Rank Adaptation techniques (LoRA) and conduct extensive experiments on various benchmark datasets. The experimental results reveal that GRAPHMOE outperforms other LoRA based models, achieving state-of-the-art (SOTA) performance. Additionally, this study explores a novel recurrent routing strategy that may inspire further advancements in enhancing the reasoning capabilities of language models.
comment: 10 pages
☆ Tarsier2: Advancing Large Vision-Language Models from Detailed Video Description to Comprehensive Video Understanding
We introduce Tarsier2, a state-of-the-art large vision-language model (LVLM) designed for generating detailed and accurate video descriptions, while also exhibiting superior general video understanding capabilities. Tarsier2 achieves significant advancements through three key upgrades: (1) Scaling pre-training data from 11M to 40M video-text pairs, enriching both volume and diversity; (2) Performing fine-grained temporal alignment during supervised fine-tuning; (3) Using model-based sampling to automatically construct preference data and applying DPO training for optimization. Extensive experiments show that Tarsier2-7B consistently outperforms leading proprietary models, including GPT-4o and Gemini 1.5 Pro, in detailed video description tasks. On the DREAM-1K benchmark, Tarsier2-7B improves F1 by 2.8\% over GPT-4o and 5.8\% over Gemini-1.5-Pro. In human side-by-side evaluations, Tarsier2-7B shows a +8.6\% performance advantage over GPT-4o and +24.9\% over Gemini-1.5-Pro. Tarsier2-7B also sets new state-of-the-art results across 15 public benchmarks, spanning tasks such as video question-answering, video grounding, hallucination test, and embodied question-answering, demonstrating its versatility as a robust generalist vision-language model.
☆ Iterative Label Refinement Matters More than Preference Optimization under Weak Supervision
Language model (LM) post-training relies on two stages of human supervision: task demonstrations for supervised finetuning (SFT), followed by preference comparisons for reinforcement learning from human feedback (RLHF). As LMs become more capable, the tasks they are given become harder to supervise. Will post-training remain effective under unreliable supervision? To test this, we simulate unreliable demonstrations and comparison feedback using small LMs and time-constrained humans. We find that in the presence of unreliable supervision, SFT still retains some effectiveness, but DPO (a common RLHF algorithm) fails to improve the model beyond SFT. To address this, we propose iterative label refinement (ILR) as an alternative to RLHF. ILR improves the SFT data by using comparison feedback to decide whether human demonstrations should be replaced by model-generated alternatives, then retrains the model via SFT on the updated data. SFT+ILR outperforms SFT+DPO on several tasks with unreliable supervision (math, coding, and safe instruction-following). Our findings suggest that as LMs are used for complex tasks where human supervision is unreliable, RLHF may no longer be the best use of human comparison feedback; instead, it is better to direct feedback towards improving the training data rather than continually training the model. Our code and data are available at https://github.com/helloelwin/iterative-label-refinement.
comment: 22 pages, 10 figures
☆ Continual Learning with Embedding Layer Surgery and Task-wise Beam Search using Whisper
Current Multilingual ASR models only support a fraction of the world's languages. Continual Learning (CL) aims to tackle this problem by adding new languages to pre-trained models while avoiding the loss of performance on existing languages, also known as Catastrophic Forgetting (CF). However, existing CL methods overlook the adaptation of the token embedding lookup table at the decoder, despite its significant contribution to CF. We propose Embedding Layer Surgery where separate copies of the token embeddings are created for each new languages, and one of the copies is selected to replace the old languages embeddings when transcribing the corresponding new language. Unfortunately, this approach means LID errors also cause incorrect ASR embedding selection. Our Task-wise Beam Search allows self-correction for such mistakes. By adapting Whisper to 10 hours of data for each of 10 unseen languages from Common Voice, results show that our method reduces the Average WER (AWER) of pre-trained languages from 14.2% to 11.9% compared with Experience Replay, without compromising the AWER of the unseen languages.
comment: Published in 2024 IEEE Spoken Language Technology Workshop
☆ deepTerra -- AI Land Classification Made Easy
deepTerra is a comprehensive platform designed to facilitate the classification of land surface features using machine learning and satellite imagery. The platform includes modules for data collection, image augmentation, training, testing, and prediction, streamlining the entire workflow for image classification tasks. This paper presents a detailed overview of the capabilities of deepTerra, shows how it has been applied to various research areas, and discusses the future directions it might take.
☆ Hierarchical Repository-Level Code Summarization for Business Applications Using Local LLMs ICSE 2025
In large-scale software development, understanding the functionality and intent behind complex codebases is critical for effective development and maintenance. While code summarization has been widely studied, existing methods primarily focus on smaller code units, such as functions, and struggle with larger code artifacts like files and packages. Additionally, current summarization models tend to emphasize low-level implementation details, often overlooking the domain and business context that are crucial for real-world applications. This paper proposes a two-step hierarchical approach for repository-level code summarization, tailored to business applications. First, smaller code units such as functions and variables are identified using syntax analysis and summarized with local LLMs. These summaries are then aggregated to generate higher-level file and package summaries. To ensure the summaries are grounded in business context, we design custom prompts that capture the intended purpose of code artifacts based on the domain and problem context of the business application. We evaluate our approach on a business support system (BSS) for the telecommunications domain, showing that syntax analysis-based hierarchical summarization improves coverage, while business-context grounding enhances the relevance of the generated summaries.
comment: To appear at LLM4Code@ICSE 2025
☆ State-of-the-Art Transformer Models for Image Super-Resolution: Techniques, Challenges, and Applications
Image Super-Resolution (SR) aims to recover a high-resolution image from its low-resolution counterpart, which has been affected by a specific degradation process. This is achieved by enhancing detail and visual quality. Recent advancements in transformer-based methods have remolded image super-resolution by enabling high-quality reconstructions surpassing previous deep-learning approaches like CNN and GAN-based. This effectively addresses the limitations of previous methods, such as limited receptive fields, poor global context capture, and challenges in high-frequency detail recovery. Additionally, the paper reviews recent trends and advancements in transformer-based SR models, exploring various innovative techniques and architectures that combine transformers with traditional networks to balance global and local contexts. These neoteric methods are critically analyzed, revealing promising yet unexplored gaps and potential directions for future research. Several visualizations of models and techniques are included to foster a holistic understanding of recent trends. This work seeks to offer a structured roadmap for researchers at the forefront of deep learning, specifically exploring the impact of transformers on super-resolution techniques.
comment: 8 pages
☆ Optimizing Language Models for Grammatical Acceptability: A Comparative Study of Fine-Tuning Techniques
This study explores the fine-tuning (FT) of the Open Pre-trained Transformer (OPT-125M) for grammatical acceptability tasks using the CoLA dataset. By comparing Vanilla-Fine-Tuning (VFT), Pattern-Based-Fine-Tuning (PBFT), and Parameter-Efficient Fine-Tuning techniques (PEFT) like Low-Rank Adaptation (LoRA), we demonstrate significant improvements in computational efficiency while maintaining high accuracy. Our experiments reveal that while VFT achieves the highest accuracy (81.2%), LoRA enhancing FT by reducing memory usage and iteration time by more than 50%, and increases accuracy in PBFT case. Context Distillation (CD), though computationally efficient, underperformed with accuracy around 31%. Our findings contribute to democratizing access to large language models (LLM) by reducing computational barriers.
☆ Unveiling Provider Bias in Large Language Models for Code Generation
Large Language Models (LLMs) have emerged as the new recommendation engines, outperforming traditional methods in both capability and scope, particularly in code generation applications. Our research reveals a novel provider bias in LLMs, namely without explicit input prompts, these models show systematic preferences for services from specific providers in their recommendations (e.g., favoring Google Cloud over Microsoft Azure). This bias holds significant implications for market dynamics and societal equilibrium, potentially promoting digital monopolies. It may also deceive users and violate their expectations, leading to various consequences. This paper presents the first comprehensive empirical study of provider bias in LLM code generation. We develop a systematic methodology encompassing an automated pipeline for dataset generation, incorporating 6 distinct coding task categories and 30 real-world application scenarios. Our analysis encompasses over 600,000 LLM-generated responses across seven state-of-the-art models, utilizing approximately 500 million tokens (equivalent to \$5,000+ in computational costs). The study evaluates both the generated code snippets and their embedded service provider selections to quantify provider bias. Additionally, we conduct a comparative analysis of seven debiasing prompting techniques to assess their efficacy in mitigating these biases. Our findings demonstrate that LLMs exhibit significant provider preferences, predominantly favoring services from Google and Amazon, and can autonomously modify input code to incorporate their preferred providers without users' requests. Notably, we observe discrepancies between providers recommended in conversational contexts versus those implemented in generated code. The complete dataset and analysis results are available in our repository.
comment: 21 pages, 15 figures
☆ A Driver Advisory System Based on Large Language Model for High-speed Train
With the rapid development of China high-speed railway, drivers face increasingly significant technical challenges during operations, such as fault handling. Currently, drivers depend on the onboard mechanic when facing technical issues, for instance, traction loss or sensor faults. This dependency can hinder effective operation, even lead to accidents, while waiting for faults to be addressed. To enhance the accuracy and explainability of actions during fault handling, an Intelligent Driver Advisory System (IDAS) framework based on a large language model (LLM) named IDAS-LLM, is introduced. Initially, domain-fine-tuning of the LLM is performed using a constructed railway knowledge question-and-answer dataset to improve answer accuracy in railway-related questions. Subsequently, integration of the Retrieval-augmented Generation (RAG) architecture is pursued for system design to enhance the explainability of generated responses. Comparative experiments are conducted using the constructed railway driving knowledge assessment dataset. Results indicate that domain-fine-tuned LLMs show an improvement in answer accuracy by an average of 10%, outperforming some current mainstream LLMs. Additionally, the inclusion of the RAG framework increases the average recall rate of question-and-answer sessions by about 4%. Finally, the fault handling capability of IDAS-LLM is demonstrated through simulations of real operational scenarios, proving that the proposed framework has practical application prospects.
comment: 18 pages, 7 figures, presented at 104th TRB Annual Meeting
☆ Flow: A Modular Approach to Automated Agentic Workflow Generation
Multi-agent frameworks powered by large language models (LLMs) have demonstrated great success in automated planning and task execution. However, the effective adjustment of Agentic workflows during execution has not been well-studied. A effective workflow adjustment is crucial, as in many real-world scenarios, the initial plan must adjust to unforeseen challenges and changing conditions in real-time to ensure the efficient execution of complex tasks. In this paper, we define workflows as an activity-on-vertex (AOV) graphs. We continuously refine the workflow by dynamically adjusting task allocations based on historical performance and previous AOV with LLM agents. To further enhance system performance, we emphasize modularity in workflow design based on measuring parallelism and dependence complexity. Our proposed multi-agent framework achieved efficient sub-task concurrent execution, goal achievement, and error tolerance. Empirical results across different practical tasks demonstrate dramatic improvements in the efficiency of multi-agent frameworks through dynamic workflow updating and modularization.
☆ Real-time Verification and Refinement of Language Model Text Generation
Large language models (LLMs) have shown remarkable performance across a wide range of natural language tasks. However, a critical challenge remains in that they sometimes generate factually incorrect answers. To address this, while many previous work has focused on identifying errors in their generation and further refining them, they are slow in deployment since they are designed to verify the response from LLMs only after their entire generation (from the first to last tokens) is done. Further, we observe that once LLMs generate incorrect tokens early on, there is a higher likelihood that subsequent tokens will also be factually incorrect. To this end, in this work, we propose Streaming-VR (Streaming Verification and Refinement), a novel approach designed to enhance the efficiency of verification and refinement of LLM outputs. Specifically, the proposed Streaming-VR enables on-the-fly verification and correction of tokens as they are being generated, similar to a streaming process, ensuring that each subset of tokens is checked and refined in real-time by another LLM as the LLM constructs its response. Through comprehensive evaluations on multiple datasets, we demonstrate that our approach not only enhances the factual accuracy of LLMs, but also offers a more efficient solution compared to prior refinement methods.
comment: Preprint
☆ A Multi-Encoder Frozen-Decoder Approach for Fine-Tuning Large Language Models
Among parameter-efficient fine-tuning methods, freezing has emerged as a popular strategy for speeding up training, reducing catastrophic forgetting, and improving downstream performance. We investigate the impact of freezing the decoder in a multi-task setup comprising diverse natural language tasks, aiming to reduce deployment overhead and enhance portability to novel tasks. Our experiments, conducted by fine-tuning both individual and multi-task setups on the AlexaTM model, reveal that freezing decoders is highly effective for tasks with natural language outputs and mitigates catastrophic forgetting in multilingual tasks. However, we find that pairing frozen decoders with a larger model can effectively maintain or even enhance performance in structured and QA tasks, making it a viable strategy for a broader range of task types.
☆ Agent-Centric Projection of Prompting Techniques and Implications for Synthetic Training Data for Large Language Models
Recent advances in prompting techniques and multi-agent systems for Large Language Models (LLMs) have produced increasingly complex approaches. However, we lack a framework for characterizing and comparing prompting techniques or understanding their relationship to multi-agent LLM systems. This position paper introduces and explains the concepts of linear contexts (a single, continuous sequence of interactions) and non-linear contexts (branching or multi-path) in LLM systems. These concepts enable the development of an agent-centric projection of prompting techniques, a framework that can reveal deep connections between prompting strategies and multi-agent systems. We propose three conjectures based on this framework: (1) results from non-linear prompting techniques can predict outcomes in equivalent multi-agent systems, (2) multi-agent system architectures can be replicated through single-LLM prompting techniques that simulate equivalent interaction patterns, and (3) these equivalences suggest novel approaches for generating synthetic training data. We argue that this perspective enables systematic cross-pollination of research findings between prompting and multi-agent domains, while providing new directions for improving both the design and training of future LLM systems.
comment: 8 pages, 5 figures. Accepted at ICAART 2025. Derived from an early draft at 2312.17601. arXiv admin note: substantial text overlap with arXiv:2312.17601
☆ STTS-EAD: Improving Spatio-Temporal Learning Based Time Series Prediction via
Handling anomalies is a critical preprocessing step in multivariate time series prediction. However, existing approaches that separate anomaly preprocessing from model training for multivariate time series prediction encounter significant limitations. Specifically, these methods fail to utilize auxiliary information crucial for identifying latent anomalies associated with spatiotemporal factors during the preprocessing stage. Instead, they rely solely on data distribution for anomaly detection, which can result in the incorrect processing of numerous samples that could otherwise contribute positively to model training. To address this, we propose STTS-EAD, an end-to-end method that seamlessly integrates anomaly detection into the training process of multivariate time series forecasting and aims to improve Spatio-Temporal learning based Time Series prediction via Embedded Anomaly Detection. Our proposed STTS-EAD leverages spatio-temporal information for forecasting and anomaly detection, with the two parts alternately executed and optimized for each other. To the best of our knowledge, STTS-EAD is the first to integrate anomaly detection and forecasting tasks in the training phase for improving the accuracy of multivariate time series forecasting. Extensive experiments on a public stock dataset and two real-world sales datasets from a renowned coffee chain enterprise show that our proposed method can effectively process detected anomalies in the training stage to improve forecasting performance in the inference stage and significantly outperform baselines.
comment: 11 pages
☆ Talk to Right Specialists: Routing and Planning in Multi-agent System for Question Answering
Leveraging large language models (LLMs), an agent can utilize retrieval-augmented generation (RAG) techniques to integrate external knowledge and increase the reliability of its responses. Current RAG-based agents integrate single, domain-specific knowledge sources, limiting their ability and leading to hallucinated or inaccurate responses when addressing cross-domain queries. Integrating multiple knowledge bases into a unified RAG-based agent raises significant challenges, including increased retrieval overhead and data sovereignty when sensitive data is involved. In this work, we propose RopMura, a novel multi-agent system that addresses these limitations by incorporating highly efficient routing and planning mechanisms. RopMura features two key components: a router that intelligently selects the most relevant agents based on knowledge boundaries and a planner that decomposes complex multi-hop queries into manageable steps, allowing for coordinating cross-domain responses. Experimental results demonstrate that RopMura effectively handles both single-hop and multi-hop queries, with the routing mechanism enabling precise answers for single-hop queries and the combined routing and planning mechanisms achieving accurate, multi-step resolutions for complex queries.
comment: Work In Progress
☆ Conformal mapping Coordinates Physics-Informed Neural Networks (CoCo-PINNs): learning neural networks for designing neutral inclusions
We focus on designing and solving the neutral inclusion problem via neural networks. The neutral inclusion problem has a long history in the theory of composite materials, and it is exceedingly challenging to identify the precise condition that precipitates a general-shaped inclusion into a neutral inclusion. Physics-informed neural networks (PINNs) have recently become a highly successful approach to addressing both forward and inverse problems associated with partial differential equations. We found that traditional PINNs perform inadequately when applied to the inverse problem of designing neutral inclusions with arbitrary shapes. In this study, we introduce a novel approach, Conformal mapping Coordinates Physics-Informed Neural Networks (CoCo-PINNs), which integrates complex analysis techniques into PINNs. This method exhibits strong performance in solving forward-inverse problems to construct neutral inclusions of arbitrary shapes in two dimensions, where the imperfect interface condition on the inclusion's boundary is modeled by training neural networks. Notably, we mathematically prove that training with a single linear field is sufficient to achieve neutrality for untrained linear fields in arbitrary directions, given a minor assumption. We demonstrate that CoCo-PINNs offer enhanced performances in terms of credibility, consistency, and stability.
☆ A Low-cost and Ultra-lightweight Binary Neural Network for Traffic Signal Recognition
The deployment of neural networks in vehicle platforms and wearable Artificial Intelligence-of-Things (AIOT) scenarios has become a research area that has attracted much attention. With the continuous evolution of deep learning technology, many image classification models are committed to improving recognition accuracy, but this is often accompanied by problems such as large model resource usage, complex structure, and high power consumption, which makes it challenging to deploy on resource-constrained platforms. Herein, we propose an ultra-lightweight binary neural network (BNN) model designed for hardware deployment, and conduct image classification research based on the German Traffic Sign Recognition Benchmark (GTSRB) dataset. In addition, we also verify it on the Chinese Traffic Sign (CTS) and Belgian Traffic Sign (BTS) datasets. The proposed model shows excellent recognition performance with an accuracy of up to 97.64%, making it one of the best performing BNN models in the GTSRB dataset. Compared with the full-precision model, the accuracy loss is controlled within 1%, and the parameter storage overhead of the model is only 10% of that of the full-precision model. More importantly, our network model only relies on logical operations and low-bit width fixed-point addition and subtraction operations during the inference phase, which greatly simplifies the design complexity of the processing element (PE). Our research shows the great potential of BNN in the hardware deployment of computer vision models, especially in the field of computer vision tasks related to autonomous driving.
☆ Visual Language Models as Operator Agents in the Space Domain
This paper explores the application of Vision-Language Models (VLMs) as operator agents in the space domain, focusing on both software and hardware operational paradigms. Building on advances in Large Language Models (LLMs) and their multimodal extensions, we investigate how VLMs can enhance autonomous control and decision-making in space missions. In the software context, we employ VLMs within the Kerbal Space Program Differential Games (KSPDG) simulation environment, enabling the agent to interpret visual screenshots of the graphical user interface to perform complex orbital maneuvers. In the hardware context, we integrate VLMs with robotic systems equipped with cameras to inspect and diagnose physical space objects, such as satellites. Our results demonstrate that VLMs can effectively process visual and textual data to generate contextually appropriate actions, competing with traditional methods and non-multimodal LLMs in simulation tasks, and showing promise in real-world applications.
comment: Updated version of the paper presented in 2025 AIAA SciTech. https://arc.aiaa.org/doi/10.2514/6.2025-1543
☆ A Comparative Analysis of DNN-based White-Box Explainable AI Methods in Network Security
New research focuses on creating artificial intelligence (AI) solutions for network intrusion detection systems (NIDS), drawing its inspiration from the ever-growing number of intrusions on networked systems, increasing its complexity and intelligibility. Hence, the use of explainable AI (XAI) techniques in real-world intrusion detection systems comes from the requirement to comprehend and elucidate black-box AI models to security analysts. In an effort to meet such requirements, this paper focuses on applying and evaluating White-Box XAI techniques (particularly LRP, IG, and DeepLift) for NIDS via an end-to-end framework for neural network models, using three widely used network intrusion datasets (NSL-KDD, CICIDS-2017, and RoEduNet-SIMARGL2021), assessing its global and local scopes, and examining six distinct assessment measures (descriptive accuracy, sparsity, stability, robustness, efficiency, and completeness). We also compare the performance of white-box XAI methods with black-box XAI methods. The results show that using White-box XAI techniques scores high in robustness and completeness, which are crucial metrics for IDS. Moreover, the source codes for the programs developed for our XAI evaluation framework are available to be improved and used by the research community.
☆ BioPose: Biomechanically-accurate 3D Pose Estimation from Monocular Videos
Recent advancements in 3D human pose estimation from single-camera images and videos have relied on parametric models, like SMPL. However, these models oversimplify anatomical structures, limiting their accuracy in capturing true joint locations and movements, which reduces their applicability in biomechanics, healthcare, and robotics. Biomechanically accurate pose estimation, on the other hand, typically requires costly marker-based motion capture systems and optimization techniques in specialized labs. To bridge this gap, we propose BioPose, a novel learning-based framework for predicting biomechanically accurate 3D human pose directly from monocular videos. BioPose includes three key components: a Multi-Query Human Mesh Recovery model (MQ-HMR), a Neural Inverse Kinematics (NeurIK) model, and a 2D-informed pose refinement technique. MQ-HMR leverages a multi-query deformable transformer to extract multi-scale fine-grained image features, enabling precise human mesh recovery. NeurIK treats the mesh vertices as virtual markers, applying a spatial-temporal network to regress biomechanically accurate 3D poses under anatomical constraints. To further improve 3D pose estimations, a 2D-informed refinement step optimizes the query tokens during inference by aligning the 3D structure with 2D pose observations. Experiments on benchmark datasets demonstrate that BioPose significantly outperforms state-of-the-art methods. Project website: \url{https://m-usamasaleem.github.io/publication/BioPose/BioPose.html}.
☆ Transforming Indoor Localization: Advanced Transformer Architecture for NLOS Dominated Wireless Environments with Distributed Sensors
Indoor localization in challenging non-line-of-sight (NLOS) environments often leads to mediocre accuracy with traditional approaches. Deep learning (DL) has been applied to tackle these challenges; however, many DL approaches overlook computational complexity, especially for floating-point operations (FLOPs), making them unsuitable for resource-limited devices. Transformer-based models have achieved remarkable success in natural language processing (NLP) and computer vision (CV) tasks, motivating their use in wireless applications. However, their use in indoor localization remains nascent, and directly applying Transformers for indoor localization can be both computationally intensive and exhibit limitations in accuracy. To address these challenges, in this work, we introduce a novel tokenization approach, referred to as Sensor Snapshot Tokenization (SST), which preserves variable-specific representations of power delay profile (PDP) and enhances attention mechanisms by effectively capturing multi-variate correlation. Complementing this, we propose a lightweight Swish-Gated Linear Unit-based Transformer (L-SwiGLU Transformer) model, designed to reduce computational complexity without compromising localization accuracy. Together, these contributions mitigate the computational burden and dependency on large datasets, making Transformer models more efficient and suitable for resource-constrained scenarios. The proposed tokenization method enables the Vanilla Transformer to achieve a 90th percentile positioning error of 0.388 m in a highly NLOS indoor factory, surpassing conventional tokenization methods. The L-SwiGLU ViT further reduces the error to 0.355 m, achieving an 8.51% improvement. Additionally, the proposed model outperforms a 14.1 times larger model with a 46.13% improvement, underscoring its computational efficiency.
comment: The paper has been submitted to IEEE Transactions on Machine Learning in Communications and Networking
☆ Large Language Models for Knowledge Graph Embedding Techniques, Methods, and Challenges: A Survey
Large Language Models (LLMs) have attracted a lot of attention in various fields due to their superior performance, aiming to train hundreds of millions or more parameters on large amounts of text data to understand and generate natural language. As the superior performance of LLMs becomes apparent, they are increasingly being applied to knowledge graph embedding (KGE) related tasks to improve the processing results. As a deep learning model in the field of Natural Language Processing (NLP), it learns a large amount of textual data to predict the next word or generate content related to a given text. However, LLMs have recently been invoked to varying degrees in different types of KGE related scenarios such as multi-modal KGE and open KGE according to their task characteristics. In this paper, we investigate a wide range of approaches for performing LLMs-related tasks in different types of KGE scenarios. To better compare the various approaches, we summarize each KGE scenario in a classification. In addition to the categorization methods, we provide a tabular overview of the methods and their source code links for a more direct comparison. In the article we also discuss the applications in which the methods are mainly used and suggest several forward-looking directions for the development of this new research area.
☆ Deep Learning for Disease Outbreak Prediction: A Robust Early Warning Signal for Transcritical Bifurcations
Early Warning Signals (EWSs) are vital for implementing preventive measures before a disease turns into a pandemic. While new diseases exhibit unique behaviors, they often share fundamental characteristics from a dynamical systems perspective. Moreover, measurements during disease outbreaks are often corrupted by different noise sources, posing challenges for Time Series Classification (TSC) tasks. In this study, we address the problem of having a robust EWS for disease outbreak prediction using a best-performing deep learning model in the domain of TSC. We employed two simulated datasets to train the model: one representing generated dynamical systems with randomly selected polynomial terms to model new disease behaviors, and another simulating noise-induced disease dynamics to account for noisy measurements. The model's performance was analyzed using both simulated data from different disease models and real-world data, including influenza and COVID-19. Results demonstrate that the proposed model outperforms previous models, effectively providing EWSs of impending outbreaks across various scenarios. This study bridges advancements in deep learning with the ability to provide robust early warning signals in noisy environments, making it highly applicable to real-world crises involving emerging disease outbreaks.
comment: 14 pages, 1 figure, 5 tables
☆ On the Statistical Capacity of Deep Generative Models
Deep generative models are routinely used in generating samples from complex, high-dimensional distributions. Despite their apparent successes, their statistical properties are not well understood. A common assumption is that with enough training data and sufficiently large neural networks, deep generative model samples will have arbitrarily small errors in sampling from any continuous target distribution. We set up a unifying framework that debunks this belief. We demonstrate that broad classes of deep generative models, including variational autoencoders and generative adversarial networks, are not universal generators. Under the predominant case of Gaussian latent variables, these models can only generate concentrated samples that exhibit light tails. Using tools from concentration of measure and convex geometry, we give analogous results for more general log-concave and strongly log-concave latent variable distributions. We extend our results to diffusion models via a reduction argument. We use the Gromov--Levy inequality to give similar guarantees when the latent variables lie on manifolds with positive Ricci curvature. These results shed light on the limited capacity of common deep generative models to handle heavy tails. We illustrate the empirical relevance of our work with simulations and financial data.
☆ PSReg: Prior-guided Sparse Mixture of Experts for Point Cloud Registration AAAI 2025
The discriminative feature is crucial for point cloud registration. Recent methods improve the feature discriminative by distinguishing between non-overlapping and overlapping region points. However, they still face challenges in distinguishing the ambiguous structures in the overlapping regions. Therefore, the ambiguous features they extracted resulted in a significant number of outlier matches from overlapping regions. To solve this problem, we propose a prior-guided SMoE-based registration method to improve the feature distinctiveness by dispatching the potential correspondences to the same experts. Specifically, we propose a prior-guided SMoE module by fusing prior overlap and potential correspondence embeddings for routing, assigning tokens to the most suitable experts for processing. In addition, we propose a registration framework by a specific combination of Transformer layer and prior-guided SMoE module. The proposed method not only pays attention to the importance of locating the overlapping areas of point clouds, but also commits to finding more accurate correspondences in overlapping areas. Our extensive experiments demonstrate the effectiveness of our method, achieving state-of-the-art registration recall (95.7\%/79.3\%) on the 3DMatch/3DLoMatch benchmark. Moreover, we also test the performance on ModelNet40 and demonstrate excellent performance.
comment: Accepted by AAAI 2025
☆ Impatient Bandits: Optimizing for the Long-Term Without Delay
Increasingly, recommender systems are tasked with improving users' long-term satisfaction. In this context, we study a content exploration task, which we formalize as a bandit problem with delayed rewards. There is an apparent trade-off in choosing the learning signal: waiting for the full reward to become available might take several weeks, slowing the rate of learning, whereas using short-term proxy rewards reflects the actual long-term goal only imperfectly. First, we develop a predictive model of delayed rewards that incorporates all information obtained to date. Rewards as well as shorter-term surrogate outcomes are combined through a Bayesian filter to obtain a probabilistic belief. Second, we devise a bandit algorithm that quickly learns to identify content aligned with long-term success using this new predictive model. We prove a regret bound for our algorithm that depends on the \textit{Value of Progressive Feedback}, an information theoretic metric that captures the quality of short-term leading indicators that are observed prior to the long-term reward. We apply our approach to a podcast recommendation problem, where we seek to recommend shows that users engage with repeatedly over two months. We empirically validate that our approach significantly outperforms methods that optimize for short-term proxies or rely solely on delayed rewards, as demonstrated by an A/B test in a recommendation system that serves hundreds of millions of users.
☆ Quantifying the Importance of Data Alignment in Downstream Model Performance
Contrary to the conventional emphasis on dataset size, we explore the role of data alignment -- an often overlooked aspect of data quality -- in training capable Large Language Models (LLMs). To do so, we use the Task2Vec-based alignment coefficient, a quantitative measure of the similarity between two datasets, to quantify the impact of alignment between training data and evaluation data on downstream performance. In particular, we conduct controlled \textit{interventional} experiments for two settings: 1. the impact of increased alignment coefficients between various pre-training (pt) against evaluation datasets, and 2. the impact of increased alignment coefficients between domain specific fine-tuning (ft) against domain specific evaluation. The domain specific task we explore is Autoformalization -- the machine translation task between natural language and code for formal verification. In both settings, we find a strong, predictable negative correlation between the alignment coefficient of a model's training and evaluation data and the model's loss/perplexity on the respective downstream task. These findings suggest a re-evaluation of LLM training approaches, demonstrating the relevance of data alignment compared to data quantity, especially in specialized downstream tasks such as Autoformalization.
☆ Benchmarking Classical, Deep, and Generative Models for Human Activity Recognition
Human Activity Recognition (HAR) has gained significant importance with the growing use of sensor-equipped devices and large datasets. This paper evaluates the performance of three categories of models : classical machine learning, deep learning architectures, and Restricted Boltzmann Machines (RBMs) using five key benchmark datasets of HAR (UCI-HAR, OPPORTUNITY, PAMAP2, WISDM, and Berkeley MHAD). We assess various models, including Decision Trees, Random Forests, Convolutional Neural Networks (CNN), and Deep Belief Networks (DBNs), using metrics such as accuracy, precision, recall, and F1-score for a comprehensive comparison. The results show that CNN models offer superior performance across all datasets, especially on the Berkeley MHAD. Classical models like Random Forest do well on smaller datasets but face challenges with larger, more complex data. RBM-based models also show notable potential, particularly for feature learning. This paper offers a detailed comparison to help researchers choose the most suitable model for HAR tasks.
comment: 48 pages, 21 Figures
☆ Detecting Contextual Anomalies by Discovering Consistent Spatial Regions
We describe a method for modeling spatial context to enable video anomaly detection. The main idea is to discover regions that share similar object-level activities by clustering joint object attributes using Gaussian mixture models. We demonstrate that this straightforward approach, using orders of magnitude fewer parameters than competing models, achieves state-of-the-art performance in the challenging spatial-context-dependent Street Scene dataset. As a side benefit, the high-resolution discovered regions learned by the model also provide explainable normalcy maps for human operators without the need for any pre-trained segmentation model.
☆ Towards Zero-Shot & Explainable Video Description by Reasoning over Graphs of Events in Space and Time
In the current era of Machine Learning, Transformers have become the de facto approach across a variety of domains, such as computer vision and natural language processing. Transformer-based solutions are the backbone of current state-of-the-art methods for language generation, image and video classification, segmentation, action and object recognition, among many others. Interestingly enough, while these state-of-the-art methods produce impressive results in their respective domains, the problem of understanding the relationship between vision and language is still beyond our reach. In this work, we propose a common ground between vision and language based on events in space and time in an explainable and programmatic way, to connect learning-based vision and language state of the art models and provide a solution to the long standing problem of describing videos in natural language. We validate that our algorithmic approach is able to generate coherent, rich and relevant textual descriptions on videos collected from a variety of datasets, using both standard metrics (e.g. Bleu, ROUGE) and the modern LLM-as-a-Jury approach.
☆ Active Sampling for Node Attribute Completion on Graphs
Node attribute, a type of crucial information for graph analysis, may be partially or completely missing for certain nodes in real world applications. Restoring the missing attributes is expected to benefit downstream graph learning. Few attempts have been made on node attribute completion, but a novel framework called Structure-attribute Transformer (SAT) was recently proposed by using a decoupled scheme to leverage structures and attributes. SAT ignores the differences in contributing to the learning schedule and finding a practical way to model the different importance of nodes with observed attributes is challenging. This paper proposes a novel AcTive Sampling algorithm (ATS) to restore missing node attributes. The representativeness and uncertainty of each node's information are first measured based on graph structure, representation similarity and learning bias. To select nodes as train samples in the next optimization step, a weighting scheme controlled by Beta distribution is then introduced to linearly combine the two properties. Extensive experiments on four public benchmark datasets and two downstream tasks have shown the superiority of ATS in node attribute completion.
☆ FARE: A Deep Learning-Based Framework for Radar-based Face Recognition and Out-of-distribution Detection ICASSP 2025
In this work, we propose a novel pipeline for face recognition and out-of-distribution (OOD) detection using short-range FMCW radar. The proposed system utilizes Range-Doppler and micro Range-Doppler Images. The architecture features a primary path (PP) responsible for the classification of in-distribution (ID) faces, complemented by intermediate paths (IPs) dedicated to OOD detection. The network is trained in two stages: first, the PP is trained using triplet loss to optimize ID face classification. In the second stage, the PP is frozen, and the IPs-comprising simple linear autoencoder networks-are trained specifically for OOD detection. Using our dataset generated with a 60 GHz FMCW radar, our method achieves an ID classification accuracy of 99.30% and an OOD detection AUROC of 96.91%.
comment: Accepted at ICASSP 2025
☆ Modeling Discrimination with Causal Abstraction
A person is directly racially discriminated against only if her race caused her worse treatment. This implies that race is an attribute sufficiently separable from other attributes to isolate its causal role. But race is embedded in a nexus of social factors that resist isolated treatment. If race is socially constructed, in what sense can it cause worse treatment? Some propose that the perception of race, rather than race itself, causes worse treatment. Others suggest that since causal models require modularity, i.e. the ability to isolate causal effects, attempts to causally model discrimination are misguided. This paper addresses the problem differently. We introduce a framework for reasoning about discrimination, in which race is a high-level abstraction of lower-level features. In this framework, race can be modeled as itself causing worse treatment. Modularity is ensured by allowing assumptions about social construction to be precisely and explicitly stated, via an alignment between race and its constituents. Such assumptions can then be subjected to normative and empirical challenges, which lead to different views of when discrimination occurs. By distinguishing constitutive and causal relations, the abstraction framework pinpoints disagreements in the current literature on modeling discrimination, while preserving a precise causal account of discrimination.
☆ Causal vs. Anticausal merging of predictors NeurIPS 2024
We study the differences arising from merging predictors in the causal and anticausal directions using the same data. In particular we study the asymmetries that arise in a simple model where we merge the predictors using one binary variable as target and two continuous variables as predictors. We use Causal Maximum Entropy (CMAXENT) as inductive bias to merge the predictors, however, we expect similar differences to hold also when we use other merging methods that take into account asymmetries between cause and effect. We show that if we observe all bivariate distributions, the CMAXENT solution reduces to a logistic regression in the causal direction and Linear Discriminant Analysis (LDA) in the anticausal direction. Furthermore, we study how the decision boundaries of these two solutions differ whenever we observe only some of the bivariate distributions implications for Out-Of-Variable (OOV) generalisation.
comment: Presented at the 38th Conference on Neural Information Processing Systems (NeurIPS 2024)
☆ SEAL: Speaker Error Correction using Acoustic-conditioned Large Language Models ICASSP 2025
Speaker Diarization (SD) is a crucial component of modern end-to-end ASR pipelines. Traditional SD systems, which are typically audio-based and operate independently of ASR, often introduce speaker errors, particularly during speaker transitions and overlapping speech. Recently, language models including fine-tuned large language models (LLMs) have shown to be effective as a second-pass speaker error corrector by leveraging lexical context in the transcribed output. In this work, we introduce a novel acoustic conditioning approach to provide more fine-grained information from the acoustic diarizer to the LLM. We also show that a simpler constrained decoding strategy reduces LLM hallucinations, while avoiding complicated post-processing. Our approach significantly reduces the speaker error rates by 24-43% across Fisher, Callhome, and RT03-CTS datasets, compared to the first-pass Acoustic SD.
comment: Accepted at ICASSP 2025
☆ CVaR-Based Variational Quantum Optimization for User Association in Handoff-Aware Vehicular Networks
Efficient resource allocation is essential for optimizing various tasks in wireless networks, which are usually formulated as generalized assignment problems (GAP). GAP, as a generalized version of the linear sum assignment problem, involves both equality and inequality constraints that add computational challenges. In this work, we present a novel Conditional Value at Risk (CVaR)-based Variational Quantum Eigensolver (VQE) framework to address GAP in vehicular networks (VNets). Our approach leverages a hybrid quantum-classical structure, integrating a tailored cost function that balances both objective and constraint-specific penalties to improve solution quality and stability. Using the CVaR-VQE model, we handle the GAP efficiently by focusing optimization on the lower tail of the solution space, enhancing both convergence and resilience on noisy intermediate-scale quantum (NISQ) devices. We apply this framework to a user-association problem in VNets, where our method achieves 23.5% improvement compared to the deep neural network (DNN) approach.
comment: Accepted in IEEE International Conference on Communications (ICC 2025)
☆ Cross-Modal Transferable Image-to-Video Attack on Video Quality Metrics
Recent studies have revealed that modern image and video quality assessment (IQA/VQA) metrics are vulnerable to adversarial attacks. An attacker can manipulate a video through preprocessing to artificially increase its quality score according to a certain metric, despite no actual improvement in visual quality. Most of the attacks studied in the literature are white-box attacks, while black-box attacks in the context of VQA have received less attention. Moreover, some research indicates a lack of transferability of adversarial examples generated for one model to another when applied to VQA. In this paper, we propose a cross-modal attack method, IC2VQA, aimed at exploring the vulnerabilities of modern VQA models. This approach is motivated by the observation that the low-level feature spaces of images and videos are similar. We investigate the transferability of adversarial perturbations across different modalities; specifically, we analyze how adversarial perturbations generated on a white-box IQA model with an additional CLIP module can effectively target a VQA model. The addition of the CLIP module serves as a valuable aid in increasing transferability, as the CLIP model is known for its effective capture of low-level semantics. Extensive experiments demonstrate that IC2VQA achieves a high success rate in attacking three black-box VQA models. We compare our method with existing black-box attack strategies, highlighting its superiority in terms of attack success within the same number of iterations and levels of attack strength. We believe that the proposed method will contribute to the deeper analysis of robust VQA metrics.
comment: Accepted for VISAPP 2025
☆ BiDepth Multimodal Neural Network: Bidirectional Depth Deep Learning Arcitecture for Spatial-Temporal Prediction
Accurate prediction of spatial-temporal (ST) information in dynamic systems, such as urban mobility and weather patterns, is a crucial yet challenging problem. The complexity stems from the intricate interplay between spatial proximity and temporal relevance, where both long-term trends and short-term fluctuations are present in convoluted patterns. Existing approaches, including traditional statistical methods and conventional neural networks, may provide inaccurate results due to the lack of an effective mechanism that simultaneously incorporates information at variable temporal depths while maintaining spatial context, resulting in a trade-off between comprehensive long-term historical analysis and responsiveness to short-term new information. To bridge this gap, this paper proposes the BiDepth Multimodal Neural Network (BDMNN) with bidirectional depth modulation that enables a comprehensive understanding of both long-term seasonality and short-term fluctuations, adapting to the complex ST context. Case studies with real-world public data demonstrate significant improvements in prediction accuracy, with a 12% reduction in Mean Squared Error for urban traffic prediction and a 15% improvement in rain precipitation forecasting compared to state-of-the-art benchmarks, without demanding extra computational resources.
comment: This paper has been submitted to Applied Intelligence for review
☆ Addressing Quality Challenges in Deep Learning: The Role of MLOps and Domain Knowledge
Deep learning (DL) systems present unique challenges in software engineering, especially concerning quality attributes like correctness and resource efficiency. While DL models achieve exceptional performance in specific tasks, engineering DL-based systems is still essential. The effort, cost, and potential diminishing returns of continual improvements must be carefully evaluated, as software engineers often face the critical decision of when to stop refining a system relative to its quality attributes. This experience paper explores the role of MLOps practices -- such as monitoring and experiment tracking -- in creating transparent and reproducible experimentation environments that enable teams to assess and justify the impact of design decisions on quality attributes. Furthermore, we report on experiences addressing the quality challenges by embedding domain knowledge into the design of a DL model and its integration within a larger system. The findings offer actionable insights into not only the benefits of domain knowledge and MLOps but also the strategic consideration of when to limit further optimizations in DL projects to maximize overall system quality and reliability.
comment: 6 pages, 1 figure, accepted to the 4th International Conference on AI Engineering - Software Engineering for AI (CAIN)
☆ Towards Best Practices for Open Datasets for LLM Training
Many AI companies are training their large language models (LLMs) on data without the permission of the copyright owners. The permissibility of doing so varies by jurisdiction: in countries like the EU and Japan, this is allowed under certain restrictions, while in the United States, the legal landscape is more ambiguous. Regardless of the legal status, concerns from creative producers have led to several high-profile copyright lawsuits, and the threat of litigation is commonly cited as a reason for the recent trend towards minimizing the information shared about training datasets by both corporate and public interest actors. This trend in limiting data information causes harm by hindering transparency, accountability, and innovation in the broader ecosystem by denying researchers, auditors, and impacted individuals access to the information needed to understand AI models. While this could be mitigated by training language models on open access and public domain data, at the time of writing, there are no such models (trained at a meaningful scale) due to the substantial technical and sociological challenges in assembling the necessary corpus. These challenges include incomplete and unreliable metadata, the cost and complexity of digitizing physical records, and the diverse set of legal and technical skills required to ensure relevance and responsibility in a quickly changing landscape. Building towards a future where AI systems can be trained on openly licensed data that is responsibly curated and governed requires collaboration across legal, technical, and policy domains, along with investments in metadata standards, digitization, and fostering a culture of openness.
☆ Playing Devil's Advocate: Unmasking Toxicity and Vulnerabilities in Large Vision-Language Models
The rapid advancement of Large Vision-Language Models (LVLMs) has enhanced capabilities offering potential applications from content creation to productivity enhancement. Despite their innovative potential, LVLMs exhibit vulnerabilities, especially in generating potentially toxic or unsafe responses. Malicious actors can exploit these vulnerabilities to propagate toxic content in an automated (or semi-) manner, leveraging the susceptibility of LVLMs to deception via strategically crafted prompts without fine-tuning or compute-intensive procedures. Despite the red-teaming efforts and inherent potential risks associated with the LVLMs, exploring vulnerabilities of LVLMs remains nascent and yet to be fully addressed in a systematic manner. This study systematically examines the vulnerabilities of open-source LVLMs, including LLaVA, InstructBLIP, Fuyu, and Qwen, using adversarial prompt strategies that simulate real-world social manipulation tactics informed by social theories. Our findings show that (i) toxicity and insulting are the most prevalent behaviors, with the mean rates of 16.13% and 9.75%, respectively; (ii) Qwen-VL-Chat, LLaVA-v1.6-Vicuna-7b, and InstructBLIP-Vicuna-7b are the most vulnerable models, exhibiting toxic response rates of 21.50%, 18.30% and 17.90%, and insulting responses of 13.40%, 11.70% and 10.10%, respectively; (iii) prompting strategies incorporating dark humor and multimodal toxic prompt completion significantly elevated these vulnerabilities. Despite being fine-tuned for safety, these models still generate content with varying degrees of toxicity when prompted with adversarial inputs, highlighting the urgent need for enhanced safety mechanisms and robust guardrails in LVLM development.
☆ Do generative video models learn physical principles from watching videos?
AI video generation is undergoing a revolution, with quality and realism advancing rapidly. These advances have led to a passionate scientific debate: Do video models learn ``world models'' that discover laws of physics -- or, alternatively, are they merely sophisticated pixel predictors that achieve visual realism without understanding the physical principles of reality? We address this question by developing Physics-IQ, a comprehensive benchmark dataset that can only be solved by acquiring a deep understanding of various physical principles, like fluid dynamics, optics, solid mechanics, magnetism and thermodynamics. We find that across a range of current models (Sora, Runway, Pika, Lumiere, Stable Video Diffusion, and VideoPoet), physical understanding is severely limited, and unrelated to visual realism. At the same time, some test cases can already be successfully solved. This indicates that acquiring certain physical principles from observation alone may be possible, but significant challenges remain. While we expect rapid advances ahead, our work demonstrates that visual realism does not imply physical understanding. Our project page is at https://physics-iq.github.io; code at https://github.com/google-deepmind/physics-IQ-benchmark.
♻ ☆ A Multi-Modal Approach for Face Anti-Spoofing in Non-Calibrated Systems using Disparity Maps
Face recognition technologies are increasingly used in various applications, yet they are vulnerable to face spoofing attacks. These spoofing attacks often involve unique 3D structures, such as printed papers or mobile device screens. Although stereo-depth cameras can detect such attacks effectively, their high-cost limits their widespread adoption. Conversely, two-sensor systems without extrinsic calibration offer a cost-effective alternative but are unable to calculate depth using stereo techniques. In this work, we propose a method to overcome this challenge by leveraging facial attributes to derive disparity information and estimate relative depth for anti-spoofing purposes, using non-calibrated systems. We introduce a multi-modal anti-spoofing model, coined Disparity Model, that incorporates created disparity maps as a third modality alongside the two original sensor modalities. We demonstrate the effectiveness of the Disparity Model in countering various spoof attacks using a comprehensive dataset collected from the Intel RealSense ID Solution F455. Our method outperformed existing methods in the literature, achieving an Equal Error Rate (EER) of 1.71% and a False Negative Rate (FNR) of 2.77% at a False Positive Rate (FPR) of 1%. These errors are lower by 2.45% and 7.94% than the errors of the best comparison method, respectively. Additionally, we introduce a model ensemble that addresses 3D spoof attacks as well, achieving an EER of 2.04% and an FNR of 3.83% at an FPR of 1%. Overall, our work provides a state-of-the-art solution for the challenging task of anti-spoofing in non-calibrated systems that lack depth information.
♻ ☆ RMem: Restricted Memory Banks Improve Video Object Segmentation CVPR 2024
With recent video object segmentation (VOS) benchmarks evolving to challenging scenarios, we revisit a simple but overlooked strategy: restricting the size of memory banks. This diverges from the prevalent practice of expanding memory banks to accommodate extensive historical information. Our specially designed "memory deciphering" study offers a pivotal insight underpinning such a strategy: expanding memory banks, while seemingly beneficial, actually increases the difficulty for VOS modules to decode relevant features due to the confusion from redundant information. By restricting memory banks to a limited number of essential frames, we achieve a notable improvement in VOS accuracy. This process balances the importance and freshness of frames to maintain an informative memory bank within a bounded capacity. Additionally, restricted memory banks reduce the training-inference discrepancy in memory lengths compared with continuous expansion. This fosters new opportunities in temporal reasoning and enables us to introduce the previously overlooked "temporal positional embedding." Finally, our insights are embodied in "RMem" ("R" for restricted), a simple yet effective VOS modification that excels at challenging VOS scenarios and establishes new state of the art for object state changes (on the VOST dataset) and long videos (on the Long Videos dataset). Our code and demo are available at https://restricted-memory.github.io/.
comment: CVPR 2024, Project Page: https://restricted-memory.github.io/
♻ ☆ CriSPO: Multi-Aspect Critique-Suggestion-guided Automatic Prompt Optimization for Text Generation AAAI-2025
Existing automatic prompt engineering methods are typically designed for discriminative tasks, where new task prompts are iteratively refined with limited feedback from a single metric reflecting a single aspect. However, these approaches are suboptimal for generative tasks, which require more nuanced guidance beyond a single numeric metric to improve the prompt and optimize multiple aspects of the generated text. To address these challenges, we propose a novel multi-aspect Critique-Suggestion-guided automatic Prompt Optimization (CriSPO) approach. CriSPO introduces a critique-suggestion module as its core component. This module spontaneously discovers aspects, and compares generated and reference texts across these aspects, providing specific suggestions for prompt modification. These clear critiques and actionable suggestions guide a receptive optimizer module to make more substantial changes, exploring a broader and more effective search space. To further improve CriSPO with multi-metric optimization, we introduce an Automatic Suffix Tuning (AST) extension to enhance the performance of task prompts across multiple metrics. We evaluate CriSPO on 4 state-of-the-art LLMs across 4 summarization and 5 QA datasets. Extensive experiments show 3-4% ROUGE score improvement on summarization and substantial improvement of various metrics on QA. Code available at https://github.com/amazon-science/crispo
comment: Accepted to AAAI-2025
♻ ☆ Deep Compression Autoencoder for Efficient High-Resolution Diffusion Models
We present Deep Compression Autoencoder (DC-AE), a new family of autoencoder models for accelerating high-resolution diffusion models. Existing autoencoder models have demonstrated impressive results at a moderate spatial compression ratio (e.g., 8x), but fail to maintain satisfactory reconstruction accuracy for high spatial compression ratios (e.g., 64x). We address this challenge by introducing two key techniques: (1) Residual Autoencoding, where we design our models to learn residuals based on the space-to-channel transformed features to alleviate the optimization difficulty of high spatial-compression autoencoders; (2) Decoupled High-Resolution Adaptation, an efficient decoupled three-phases training strategy for mitigating the generalization penalty of high spatial-compression autoencoders. With these designs, we improve the autoencoder's spatial compression ratio up to 128 while maintaining the reconstruction quality. Applying our DC-AE to latent diffusion models, we achieve significant speedup without accuracy drop. For example, on ImageNet 512x512, our DC-AE provides 19.1x inference speedup and 17.9x training speedup on H100 GPU for UViT-H while achieving a better FID, compared with the widely used SD-VAE-f8 autoencoder. Our code is available at https://github.com/mit-han-lab/efficientvit.
comment: Preprint. First two authors contributed equally to this work. Update: add USiT (UViT+SiT sampler) results
♻ ☆ HippoRAG: Neurobiologically Inspired Long-Term Memory for Large Language Models NeurIPS 2024
In order to thrive in hostile and ever-changing natural environments, mammalian brains evolved to store large amounts of knowledge about the world and continually integrate new information while avoiding catastrophic forgetting. Despite the impressive accomplishments, large language models (LLMs), even with retrieval-augmented generation (RAG), still struggle to efficiently and effectively integrate a large amount of new experiences after pre-training. In this work, we introduce HippoRAG, a novel retrieval framework inspired by the hippocampal indexing theory of human long-term memory to enable deeper and more efficient knowledge integration over new experiences. HippoRAG synergistically orchestrates LLMs, knowledge graphs, and the Personalized PageRank algorithm to mimic the different roles of neocortex and hippocampus in human memory. We compare HippoRAG with existing RAG methods on multi-hop question answering and show that our method outperforms the state-of-the-art methods remarkably, by up to 20%. Single-step retrieval with HippoRAG achieves comparable or better performance than iterative retrieval like IRCoT while being 10-30 times cheaper and 6-13 times faster, and integrating HippoRAG into IRCoT brings further substantial gains. Finally, we show that our method can tackle new types of scenarios that are out of reach of existing methods. Code and data are available at https://github.com/OSU-NLP-Group/HippoRAG.
comment: NeurIPS 2024. Code and data: https://github.com/OSU-NLP-Group/HippoRAG
♻ ☆ A Comprehensive Survey of Foundation Models in Medicine
Foundation models (FMs) are large-scale deep learning models that are developed using large datasets and self-supervised learning methods. These models serve as a base for different downstream tasks, including healthcare. FMs have been adopted with great success across various domains within healthcare. Existing healthcare-based surveys have not yet included all of these domains. Therefore, we provide a detailed survey of FMs in healthcare. We focus on the history, learning strategies, flagship models, applications, and challenges of FMs. We explore how FMs such as the BERT and GPT families are reshaping various healthcare domains, including clinical large language models, medical image analysis, and omics. Furthermore, we provide a detailed taxonomy of healthcare applications facilitated by FMs, such as clinical NLP, medical computer vision, graph learning, and other biology-related tasks. Despite the promising opportunities FMs provide, they also have several associated challenges, which are explained in detail. We also outline open research issues and potential lessons learned to provide researchers and practitioners with insights into the capabilities of FMs in healthcare to advance their deployment and mitigate associated risks.
comment: Currently under review in IEEE REVIEWS IN BIOMEDICAL ENGINEERING
♻ ☆ Text-guided Image Restoration and Semantic Enhancement for Text-to-Image Person Retrieval
The goal of Text-to-Image Person Retrieval (TIPR) is to retrieve specific person images according to the given textual descriptions. A primary challenge in this task is bridging the substantial representational gap between visual and textual modalities. The prevailing methods map texts and images into unified embedding space for matching, while the intricate semantic correspondences between texts and images are still not effectively constructed. To address this issue, we propose a novel TIPR framework to build fine-grained interactions and alignment between person images and the corresponding texts. Specifically, via fine-tuning the Contrastive Language-Image Pre-training (CLIP) model, a visual-textual dual encoder is firstly constructed, to preliminarily align the image and text features. Secondly, a Text-guided Image Restoration (TIR) auxiliary task is proposed to map abstract textual entities to specific image regions, improving the alignment between local textual and visual embeddings. Additionally, a cross-modal triplet loss is presented to handle hard samples, and further enhance the model's discriminability for minor differences. Moreover, a pruning-based text data augmentation approach is proposed to enhance focus on essential elements in descriptions, thereby avoiding excessive model attention to less significant information. The experimental results show our proposed method outperforms state-of-the-art methods on three popular benchmark datasets, and the code will be made publicly available at https://github.com/Delong-liu-bupt/SEN.
comment: The paper was withdrawn due to a dispute among the authors regarding the content of the article
♻ ☆ Logic Augmented Generation
Semantic Knowledge Graphs (SKG) face challenges with scalability, flexibility, contextual understanding, and handling unstructured or ambiguous information. However, they offer formal and structured knowledge enabling highly interpretable and reliable results by means of reasoning and querying. Large Language Models (LLMs) overcome those limitations making them suitable in open-ended tasks and unstructured environments. Nevertheless, LLMs are neither interpretable nor reliable. To solve the dichotomy between LLMs and SKGs we envision Logic Augmented Generation (LAG) that combines the benefits of the two worlds. LAG uses LLMs as Reactive Continuous Knowledge Graphs that can generate potentially infinite relations and tacit knowledge on-demand. SKGs are key for injecting a discrete heuristic dimension with clear logical and factual boundaries. We exemplify LAG in two tasks of collective intelligence, i.e., medical diagnostics and climate projections. Understanding the properties and limitations of LAG, which are still mostly unknown, is of utmost importance for enabling a variety of tasks involving tacit knowledge in order to provide interpretable and effective results.
comment: 10 pages, 2 figures
♻ ☆ Relaxed Rotational Equivariance via $G$-Biases in Vision
Group Equivariant Convolution (GConv) can capture rotational equivariance from original data. It assumes uniform and strict rotational equivariance across all features as the transformations under the specific group. However, the presentation or distribution of real-world data rarely conforms to strict rotational equivariance, commonly referred to as Rotational Symmetry-Breaking (RSB) in the system or dataset, making GConv unable to adapt effectively to this phenomenon. Motivated by this, we propose a simple but highly effective method to address this problem, which utilizes a set of learnable biases called $G$-Biases under the group order to break strict group constraints and then achieve a Relaxed Rotational Equivariant Convolution (RREConv). To validate the efficiency of RREConv, we conduct extensive ablation experiments on the discrete rotational group $\mathcal{C}_n$. Experiments demonstrate that the proposed RREConv-based methods achieve excellent performance compared to existing GConv-based methods in both classification and 2D object detection tasks on the natural image datasets.
♻ ☆ WebWalker: Benchmarking LLMs in Web Traversal
Retrieval-augmented generation (RAG) demonstrates remarkable performance across tasks in open-domain question-answering. However, traditional search engines may retrieve shallow content, limiting the ability of LLMs to handle complex, multi-layered information. To address it, we introduce WebWalkerQA, a benchmark designed to assess the ability of LLMs to perform web traversal. It evaluates the capacity of LLMs to traverse a website's subpages to extract high-quality data systematically. We propose WebWalker, which is a multi-agent framework that mimics human-like web navigation through an explore-critic paradigm. Extensive experimental results show that WebWalkerQA is challenging and demonstrates the effectiveness of RAG combined with WebWalker, through the horizontal and vertical integration in real-world scenarios.
♻ ☆ ORFormer: Occlusion-Robust Transformer for Accurate Facial Landmark Detection WACV 2025
Although facial landmark detection (FLD) has gained significant progress, existing FLD methods still suffer from performance drops on partially non-visible faces, such as faces with occlusions or under extreme lighting conditions or poses. To address this issue, we introduce ORFormer, a novel transformer-based method that can detect non-visible regions and recover their missing features from visible parts. Specifically, ORFormer associates each image patch token with one additional learnable token called the messenger token. The messenger token aggregates features from all but its patch. This way, the consensus between a patch and other patches can be assessed by referring to the similarity between its regular and messenger embeddings, enabling non-visible region identification. Our method then recovers occluded patches with features aggregated by the messenger tokens. Leveraging the recovered features, ORFormer compiles high-quality heatmaps for the downstream FLD task. Extensive experiments show that our method generates heatmaps resilient to partial occlusions. By integrating the resultant heatmaps into existing FLD methods, our method performs favorably against the state of the arts on challenging datasets such as WFLW and COFW.
comment: WACV 2025 Project Link: https://ben0919.github.io/ORFormer/
♻ ☆ Inductive Learning of Logical Theories with LLMs: An Expressivity-Graded Analysis
This work presents a novel systematic methodology to analyse the capabilities and limitations of Large Language Models (LLMs) with feedback from a formal inference engine, on logic theory induction. The analysis is complexity-graded w.r.t. rule dependency structure, allowing quantification of specific inference challenges on LLM performance. Integrating LLMs with formal methods is a promising frontier in the Natural Language Processing field, as an important avenue for improving model inference control and explainability. In particular, inductive learning over complex sets of facts and rules, poses unique challenges for current autoregressive models, as they lack explicit symbolic grounding. While they can be complemented by formal systems, the properties delivered by LLMs regarding inductive learning, are not well understood and quantified. Empirical results indicate that the largest LLMs can achieve competitive results against a SOTA Inductive Logic Programming (ILP) system baseline, but also that tracking long predicate relationship chains is a more difficult obstacle than theory complexity for LLMs.
♻ ☆ Are LLMs Good Literature Review Writers? Evaluating the Literature Review Writing Ability of Large Language Models
The literature review is a crucial form of academic writing that involves complex processes of literature collection, organization, and summarization. The emergence of large language models (LLMs) has introduced promising tools to automate these processes. However, their actual capabilities in writing comprehensive literature reviews remain underexplored, such as whether they can generate accurate and reliable references. To address this gap, we propose a framework to assess the literature review writing ability of LLMs automatically. We evaluate the performance of LLMs across three tasks: generating references, writing abstracts, and writing literature reviews. We employ external tools for a multidimensional evaluation, which includes assessing hallucination rates in references, semantic coverage, and factual consistency with human-written context. By analyzing the experimental results, we find that, despite advancements, even the most sophisticated models still cannot avoid generating hallucinated references. Additionally, different models exhibit varying performance in literature review writing across different disciplines.
comment: 12 pages, 5 figures, 5 tables
♻ ☆ Set-based Neural Network Encoding Without Weight Tying
We propose a neural network weight encoding method for network property prediction that utilizes set-to-set and set-to-vector functions to efficiently encode neural network parameters. Our approach is capable of encoding neural networks in a model zoo of mixed architecture and different parameter sizes as opposed to previous approaches that require custom encoding models for different architectures. Furthermore, our \textbf{S}et-based \textbf{N}eural network \textbf{E}ncoder (SNE) takes into consideration the hierarchical computational structure of neural networks. To respect symmetries inherent in network weight space, we utilize Logit Invariance to learn the required minimal invariance properties. Additionally, we introduce a \textit{pad-chunk-encode} pipeline to efficiently encode neural network layers that is adjustable to computational and memory constraints. We also introduce two new tasks for neural network property prediction: cross-dataset and cross-architecture. In cross-dataset property prediction, we evaluate how well property predictors generalize across model zoos trained on different datasets but of the same architecture. In cross-architecture property prediction, we evaluate how well property predictors transfer to model zoos of different architecture not seen during training. We show that SNE outperforms the relevant baselines on standard benchmarks.
comment: 23 pages
♻ ☆ Addressing Hallucinations in Language Models with Knowledge Graph Embeddings as an Additional Modality
In this paper we present an approach to reduce hallucinations in Large Language Models (LLMs) by incorporating Knowledge Graphs (KGs) as an additional modality. Our method involves transforming input text into a set of KG embeddings and using an adapter to integrate these embeddings into the language model space, without relying on external retrieval processes. To facilitate this, we created WikiEntities, a dataset containing over 3 million Wikipedia texts annotated with entities from Wikidata and their corresponding embeddings from PyTorch-BigGraph. This dataset serves as a valuable resource for training Entity Linking models and adapting the described method to various LLMs using specialized adapters. Our method does not require fine-tuning of the language models themselves; instead, we only train the adapter. This ensures that the model's performance on other tasks is not affected. We trained an adapter for the Mistral 7B, LLaMA 2-7B (chat), and LLaMA 3-8B (instruct) models using this dataset and demonstrated that our approach improves performance on the HaluEval, True-False benchmarks and FEVER dataset. The results indicate that incorporating KGs as a new modality can effectively reduce hallucinations and improve the factual accuracy of language models, all without the need for external retrieval.
♻ ☆ Less is More: The Influence of Pruning on the Explainability of CNNs
Over the last century, deep learning models have become the state-of-the-art for solving complex computer vision problems. These modern computer vision models have millions of parameters, which presents two major challenges: (1) the increased computational requirements hamper the deployment in resource-constrained environments, such as mobile or IoT devices, and (2) explaining the complex decisions of such networks to humans is challenging. Network pruning is a technical approach to reduce the complexity of models, where less important parameters are removed. The work presented in this paper investigates whether this reduction in technical complexity also helps with perceived explainability. To do so, we conducted a pre-study and two human-grounded experiments, assessing the effects of different pruning ratios on explainability. Overall, we evaluate four different compression rates (i.e., 2, 4, 8, and 32) with 37 500 tasks on Mechanical Turk. Results indicate that lower compression rates have a positive influence on explainability, while higher compression rates show negative effects. Furthermore, we were able to identify sweet spots that increase both the perceived explainability and the model's performance.
♻ ☆ Spurious Feature Eraser: Stabilizing Test-Time Adaptation for Vision-Language Foundation Model
Vision-language foundation models have exhibited remarkable success across a multitude of downstream tasks due to their scalability on extensive image-text paired data. However, these models also display significant limitations when applied to downstream tasks, such as fine-grained image classification, as a result of ``decision shortcuts'' that hinder their generalization capabilities. In this work, we find that the CLIP model possesses a rich set of features, encompassing both \textit{desired invariant causal features} and \textit{undesired decision shortcuts}. Moreover, the underperformance of CLIP on downstream tasks originates from its inability to effectively utilize pre-trained features in accordance with specific task requirements. To address this challenge, we propose a simple yet effective method, Spurious Feature Eraser (SEraser), to alleviate the decision shortcuts by erasing the spurious features. Specifically, we introduce a test-time prompt tuning paradigm that optimizes a learnable prompt, thereby compelling the model to exploit invariant features while disregarding decision shortcuts during the inference phase. The proposed method effectively alleviates excessive dependence on potentially misleading spurious information. We conduct comparative analysis of the proposed method against various approaches which validates the significant superiority.
♻ ☆ TrIM, Triangular Input Movement Systolic Array for Convolutional Neural Networks: Architecture and Hardware Implementation
Modern hardware architectures for Convolutional Neural Networks (CNNs), other than targeting high performance, aim at dissipating limited energy. Reducing the data movement cost between the computing cores and the memory is a way to mitigate the energy consumption. Systolic arrays are suitable architectures to achieve this objective: they use multiple processing elements that communicate each other to maximize data utilization, based on proper dataflows like the weight stationary and row stationary. Motivated by this, we have proposed TrIM, an innovative dataflow based on a triangular movement of inputs, and capable to reduce the number of memory accesses by one order of magnitude when compared to state-of-the-art systolic arrays. In this paper, we present a TrIM-based hardware architecture for CNNs. As a showcase, the accelerator is implemented onto a Field Programmable Gate Array (FPGA) to execute the VGG-16 and AlexNet CNNs. The architecture achieves a peak throughput of 453.6 Giga Operations per Second, outperforming a state-of-the-art row stationary systolic array up to ~3x in terms of memory accesses, and being up to ~11.9x more energy-efficient than other FPGA accelerators.
comment: This work has been accepted by IEEE TCAS-I for publication
♻ ☆ MiniRAG: Towards Extremely Simple Retrieval-Augmented Generation
The growing demand for efficient and lightweight Retrieval-Augmented Generation (RAG) systems has highlighted significant challenges when deploying Small Language Models (SLMs) in existing RAG frameworks. Current approaches face severe performance degradation due to SLMs' limited semantic understanding and text processing capabilities, creating barriers for widespread adoption in resource-constrained scenarios. To address these fundamental limitations, we present MiniRAG, a novel RAG system designed for extreme simplicity and efficiency. MiniRAG introduces two key technical innovations: (1) a semantic-aware heterogeneous graph indexing mechanism that combines text chunks and named entities in a unified structure, reducing reliance on complex semantic understanding, and (2) a lightweight topology-enhanced retrieval approach that leverages graph structures for efficient knowledge discovery without requiring advanced language capabilities. Our extensive experiments demonstrate that MiniRAG achieves comparable performance to LLM-based methods even when using SLMs while requiring only 25\% of the storage space. Additionally, we contribute a comprehensive benchmark dataset for evaluating lightweight RAG systems under realistic on-device scenarios with complex queries. We fully open-source our implementation and datasets at: https://github.com/HKUDS/MiniRAG.
♻ ☆ Transformers and Large Language Models for Efficient Intrusion Detection Systems: A Comprehensive Survey
With significant advancements in Transformers LLMs, NLP has extended its reach into many research fields due to its enhanced capabilities in text generation and user interaction. One field benefiting greatly from these advancements is cybersecurity. In cybersecurity, many parameters that need to be protected and exchanged between senders and receivers are in the form of text and tabular data, making NLP a valuable tool in enhancing the security measures of communication protocols. This survey paper provides a comprehensive analysis of the utilization of Transformers and LLMs in cyber-threat detection systems. The methodology of paper selection and bibliometric analysis is outlined to establish a rigorous framework for evaluating existing research. The fundamentals of Transformers are discussed, including background information on various cyber-attacks and datasets commonly used in this field. The survey explores the application of Transformers in IDSs, focusing on different architectures such as Attention-based models, LLMs like BERT and GPT, CNN/LSTM-Transformer hybrids, emerging approaches like ViTs, among others. Furthermore, it explores the diverse environments and applications where Transformers and LLMs-based IDS have been implemented, including computer networks, IoT devices, critical infrastructure protection, cloud computing, SDN, as well as in autonomous vehicles. The paper also addresses research challenges and future directions in this area, identifying key issues such as interpretability, scalability, and adaptability to evolving threats, and more. Finally, the conclusion summarizes the findings and highlights the significance of Transformers and LLMs in enhancing cyber-threat detection capabilities, while also outlining potential avenues for further research and development.
comment: arXiv admin note: text overlap with arXiv:2405.04760 by other authors
♻ ☆ GenSafe: A Generalizable Safety Enhancer for Safe Reinforcement Learning Algorithms Based on Reduced Order Markov Decision Process Model
Safe Reinforcement Learning (SRL) aims to realize a safe learning process for Deep Reinforcement Learning (DRL) algorithms by incorporating safety constraints. However, the efficacy of SRL approaches often relies on accurate function approximations, which are notably challenging to achieve in the early learning stages due to data insufficiency. To address this issue, we introduce in this work a novel Generalizable Safety enhancer (GenSafe) that is able to overcome the challenge of data insufficiency and enhance the performance of SRL approaches. Leveraging model order reduction techniques, we first propose an innovative method to construct a Reduced Order Markov Decision Process (ROMDP) as a low-dimensional approximator of the original safety constraints. Then, by solving the reformulated ROMDP-based constraints, GenSafe refines the actions of the agent to increase the possibility of constraint satisfaction. Essentially, GenSafe acts as an additional safety layer for SRL algorithms. We evaluate GenSafe on multiple SRL approaches and benchmark problems. The results demonstrate its capability to improve safety performance, especially in the early learning phases, while maintaining satisfactory task performance. Our proposed GenSafe not only offers a novel measure to augment existing SRL methods but also shows broad compatibility with various SRL algorithms, making it applicable to a wide range of systems and SRL problems.
♻ ☆ Enhanced Masked Image Modeling to Avoid Model Collapse on Multi-modal MRI Datasets
Multi-modal magnetic resonance imaging (MRI) provides information of lesions for computer-aided diagnosis from different views. Deep learning algorithms are suitable for identifying specific anatomical structures, segmenting lesions, and classifying diseases. Manual labels are limited due to the high expense, which hinders further improvement of accuracy. Self-supervised learning, particularly masked image modeling (MIM), has shown promise in utilizing unlabeled data. However, we spot model collapse when applying MIM to multi-modal MRI datasets. The performance of downstream tasks does not see any improvement following the collapsed model. To solve model collapse, we analyze and address it in two types: complete collapse and dimensional collapse. We find complete collapse occurs because the collapsed loss value in multi-modal MRI datasets falls below the normally converged loss value. Based on this, the hybrid mask pattern (HMP) masking strategy is introduced to elevate the collapsed loss above the normally converged loss value and avoid complete collapse. Additionally, we reveal that dimensional collapse stems from insufficient feature uniformity in MIM. We mitigate dimensional collapse by introducing the pyramid barlow twins (PBT) module as an explicit regularization method. Overall, we construct the enhanced MIM (E-MIM) with HMP and PBT module to avoid model collapse multi-modal MRI. Experiments are conducted on three multi-modal MRI datasets to validate the effectiveness of our approach in preventing both types of model collapse. By preventing model collapse, the training of the model becomes more stable, resulting in a decent improvement in performance for segmentation and classification tasks. The code is available at https://github.com/LinxuanHan/E-MIM.
♻ ☆ Private Collaborative Edge Inference via Over-the-Air Computation
We consider collaborative inference at the wireless edge, where each client's model is trained independently on its local dataset. Clients are queried in parallel to make an accurate decision collaboratively. In addition to maximizing the inference accuracy, we also want to ensure the privacy of local models. To this end, we leverage the superposition property of the multiple access channel to implement bandwidth-efficient multi-user inference methods. We propose different methods for ensemble and multi-view classification that exploit over-the-air computation (OAC). We show that these schemes perform better than their orthogonal counterparts with statistically significant differences while using fewer resources and providing privacy guarantees. We also provide experimental results verifying the benefits of the proposed OAC approach to multi-user inference, and perform an ablation study to demonstrate the effectiveness of our design choices. We share the source code of the framework publicly on Github to facilitate further research and reproducibility.
comment: 17 pages, 8 figures. This work extends from our preliminary study presented at the 2022 IEEE International Symposium on Information Theory [1]. arXiv admin note: text overlap with arXiv:2202.03129
♻ ☆ DIDLM: A SLAM Dataset for Difficult Scenarios Featuring Infrared, Depth Cameras, LIDAR, 4D Radar, and Others under Adverse Weather, Low Light Conditions, and Rough Roads
Adverse weather conditions, low-light environments, and bumpy road surfaces pose significant challenges to SLAM in robotic navigation and autonomous driving. Existing datasets in this field predominantly rely on single sensors or combinations of LiDAR, cameras, and IMUs. However, 4D millimeter-wave radar demonstrates robustness in adverse weather, infrared cameras excel in capturing details under low-light conditions, and depth images provide richer spatial information. Multi-sensor fusion methods also show potential for better adaptation to bumpy roads. Despite some SLAM studies incorporating these sensors and conditions, there remains a lack of comprehensive datasets addressing low-light environments and bumpy road conditions, or featuring a sufficiently diverse range of sensor data. In this study, we introduce a multi-sensor dataset covering challenging scenarios such as snowy weather, rainy weather, nighttime conditions, speed bumps, and rough terrains. The dataset includes rarely utilized sensors for extreme conditions, such as 4D millimeter-wave radar, infrared cameras, and depth cameras, alongside 3D LiDAR, RGB cameras, GPS, and IMU. It supports both autonomous driving and ground robot applications and provides reliable GPS/INS ground truth data, covering structured and semi-structured terrains. We evaluated various SLAM algorithms using this dataset, including RGB images, infrared images, depth images, LiDAR, and 4D millimeter-wave radar. The dataset spans a total of 18.5 km, 69 minutes, and approximately 660 GB, offering a valuable resource for advancing SLAM research under complex and extreme conditions. Our dataset is available at https://github.com/GongWeiSheng/DIDLM.
♻ ☆ Evaluation of Artificial Intelligence Methods for Lead Time Prediction in Non-Cycled Areas of Automotive Production
The present study examines the effectiveness of applying Artificial Intelligence methods in an automotive production environment to predict unknown lead times in a non-cycle-controlled production area. Data structures are analyzed to identify contextual features and then preprocessed using one-hot encoding. Methods selection focuses on supervised machine learning techniques. In supervised learning methods, regression and classification methods are evaluated. Continuous regression based on target size distribution is not feasible. Classification methods analysis shows that Ensemble Learning and Support Vector Machines are the most suitable. Preliminary study results indicate that gradient boosting algorithms LightGBM, XGBoost, and CatBoost yield the best results. After further testing and extensive hyperparameter optimization, the final method choice is the LightGBM algorithm. Depending on feature availability and prediction interval granularity, relative prediction accuracies of up to 90% can be achieved. Further tests highlight the importance of periodic retraining of AI models to accurately represent complex production processes using the database. The research demonstrates that AI methods can be effectively applied to highly variable production data, adding business value by providing an additional metric for various control tasks while outperforming current non AI-based systems.
♻ ☆ PastNet: Introducing Physical Inductive Biases for Spatio-temporal Video Prediction
In this paper, we investigate the challenge of spatio-temporal video prediction task, which involves generating future video frames based on historical spatio-temporal observation streams. Existing approaches typically utilize external information such as semantic maps to improve video prediction accuracy, which often neglect the inherent physical knowledge embedded within videos. Worse still, their high computational costs could impede their applications for high-resolution videos. To address these constraints, we introduce a novel framework called \underline{P}hysics-\underline{a}ssisted \underline{S}patio-\underline{t}emporal \underline{Net}work (PastNet) for high-quality video prediction. The core of PastNet lies in incorporating a spectral convolution operator in the Fourier domain, which efficiently introduces inductive biases from the underlying physical laws. Additionally, we employ a memory bank with the estimated intrinsic dimensionality to discretize local features during the processing of complex spatio-temporal signals, thereby reducing computational costs and facilitating efficient high-resolution video prediction. Extensive experiments on various widely-used spatio-temporal video benchmarks demonstrate the effectiveness and efficiency of the proposed PastNet compared with a range of state-of-the-art methods, particularly in high-resolution scenarios.
comment: 11
♻ ☆ MoPE: Mixture of Prompt Experts for Parameter-Efficient and Scalable Multimodal Fusion
Despite the demonstrated parameter efficiency of prompt-based multimodal fusion methods, their limited adaptivity and expressiveness often result in suboptimal performance compared to other tuning approaches. In this paper, we introduce the Mixture of Prompt Experts (MoPE), the first technique designed to overcome these limitations by decomposing standard prompts to capture instance-level features adaptively. Building on this decomposition, MoPE enhances prompt fusion's expressiveness by leveraging multimodal pairing priors to route the most effective prompt for each instance dynamically. Compared to vanilla prompting, our MoPE-based fusion method exhibits greater expressiveness, scaling more effectively with the training data and the overall number of trainable parameters. We also investigate regularization terms for expert routing, which lead to emergent expert specialization with enhanced adaptiveness and interpretablity. Extensive experiments across six multimodal datasets spanning four modalities demonstrate state-of-the-art performance for prompt fusion, matching or even surpassing the performance of fine-tuning while requiring only 0.8% of the trainable parameters. Project homepage: https://github.com/songrise/MoPE
comment: Under Review, Extended version of arxiv:2312.03734
♻ ☆ UTMath: Math Evaluation with Unit Test via Reasoning-to-Coding Thoughts
The evaluation of mathematical reasoning capabilities is essential for advancing Artificial General Intelligence (AGI). While Large Language Models (LLMs) have shown impressive performance in solving mathematical problems, existing benchmarks such as GSM8K and MATH present limitations, including narrow problem definitions with specific numbers and reliance on predetermined rules that hinder accurate assessments of reasoning and generality. This paper introduces the UTMath Benchmark, a robust evaluation framework designed to assess LLMs through extensive unit tests, with a focus on both the accuracy and generality of model responses. It comprises 1,053 cutting-edge problems spanning nine mathematical domains, with an average of 68 test cases per problem. UTMath is highly challenging, with the best-performing model, o1-mini, solving only 32.57\% of the problems, followed by o1-preview at 27.16\%, and GPT-4o at 26.93\%. Furthermore, we present the Reasoning-to-Coding of Thoughts (RCoT) approach, which encourages LLMs to engage in explicit reasoning prior to code generation, thereby facilitating the production of more sophisticated solutions and enhancing overall performance and efficiency. Additionally, we also release the UTMath-Train training dataset (more than 70k samples), to support the community in further exploring mathematical reasoning. Our benchmark can be accessed via the following link: https://github.com/UTMathGroup/UTMath
♻ ☆ To Analyze and Regulate Human-in-the-loop Learning for Congestion Games
In congestion games, selfish users behave myopically to crowd to the shortest paths, and the social planner designs mechanisms to regulate such selfish routing through information or payment incentives. However, such mechanism design requires the knowledge of time-varying traffic conditions and it is the users themselves to learn and report past road experiences to the social planner (e.g., Waze or Google Maps). When congestion games meet mobile crowdsourcing, it is critical to incentivize selfish users to explore non-shortest paths in the best exploitation-exploration trade-off. First, we consider a simple but fundamental parallel routing network with one deterministic path and multiple stochastic paths for users with an average arrival probability $\lambda$. We prove that the current myopic routing policy (widely used in Waze and Google Maps) misses both exploration (when strong hazard belief) and exploitation (when weak hazard belief) as compared to the social optimum. Due to the myopic policy's under-exploration, we prove that the caused price of anarchy (PoA) is larger than \(\frac{1}{1-\rho^{\frac{1}{\lambda}}}\), which can be arbitrarily large as discount factor \(\rho\rightarrow1\). To mitigate such huge efficiency loss, we propose a novel selective information disclosure (SID) mechanism: we only reveal the latest traffic information to users when they intend to over-explore stochastic paths upon arrival, while hiding such information when they want to under-explore. We prove that our mechanism successfully reduces PoA to be less than~\(2\). Besides the parallel routing network, we further extend our mechanism and PoA results to any linear path graphs with multiple intermediate nodes.
comment: arXiv admin note: substantial text overlap with arXiv:2211.14029
♻ ☆ What type of inference is planning?
Multiple types of inference are available for probabilistic graphical models, e.g., marginal, maximum-a-posteriori, and even marginal maximum-a-posteriori. Which one do researchers mean when they talk about "planning as inference"? There is no consistency in the literature, different types are used, and their ability to do planning is further entangled with specific approximations or additional constraints. In this work we use the variational framework to show that, just like all commonly used types of inference correspond to different weightings of the entropy terms in the variational problem, planning corresponds exactly to a different set of weights. This means that all the tricks of variational inference are readily applicable to planning. We develop an analogue of loopy belief propagation that allows us to perform approximate planning in factored-state Markov decisions processes without incurring intractability due to the exponentially large state space. The variational perspective shows that the previous types of inference for planning are only adequate in environments with low stochasticity, and allows us to characterize each type by its own merits, disentangling the type of inference from the additional approximations that its practical use requires. We validate these results empirically on synthetic MDPs and tasks posed in the International Planning Competition.
comment: Camera-ready version update
♻ ☆ ExPO: Explainable Phonetic Trait-Oriented Network for Speaker Verification
In speaker verification, we use computational method to verify if an utterance matches the identity of an enrolled speaker. This task is similar to the manual task of forensic voice comparison, where linguistic analysis is combined with auditory measurements to compare and evaluate voice samples. Despite much success, we have yet to develop a speaker verification system that offers explainable results comparable to those from manual forensic voice comparison. A novel approach, Explainable Phonetic Trait-Oriented (ExPO) network, is proposed in this paper to introduce the speaker's phonetic trait which describes the speaker's characteristics at the phonetic level, resembling what forensic comparison does. ExPO not only generates utterance-level speaker embeddings but also allows for fine-grained analysis and visualization of phonetic traits, offering an explainable speaker verification process. Furthermore, we investigate phonetic traits from within-speaker and between-speaker variation perspectives to determine which trait is most effective for speaker verification, marking an important step towards explainable speaker verification. Our code is available at https://github.com/mmmmayi/ExPO.
comment: Accepted by IEEE Signal Processing Letters
♻ ☆ Snake Learning: A Communication- and Computation-Efficient Distributed Learning Framework for 6G
In the evolution towards 6G, integrating Artificial Intelligence (AI) with advanced network infrastructure emerges as a pivotal strategy for enhancing network intelligence and resource utilization. Existing distributed learning frameworks like Federated Learning and Split Learning often struggle with significant challenges in dynamic network environments including high synchronization demands, costly communication overhead, severe computing resource consumption, and data heterogeneity across network nodes. These obstacles hinder the applications of ubiquitous computing capabilities of 6G networks, especially in light of the trend of escalating model parameters and training data volumes. To address these challenges effectively, this paper introduces ``Snake Learning", a cost-effective distributed learning framework. Specifically, Snake Learning respects the heterogeneity of inter-node computing capability and local data distribution in 6G networks, and sequentially trains the designated part of model layers on individual nodes. This layer-by-layer serpentine update mechanism contributes to significantly reducing the requirements for storage, memory and communication during the model training phase, and demonstrates superior adaptability and efficiency for both classification and fine-tuning tasks across homogeneous and heterogeneous data distributions.
comment: 8 pages, 9 figures
♻ ☆ VBIM-Net: Variational Born Iterative Network for Inverse Scattering Problems
Recently, studies have shown the potential of integrating field-type iterative methods with deep learning (DL) techniques in solving inverse scattering problems (ISPs). In this article, we propose a novel Variational Born Iterative Network, namely, VBIM-Net, to solve the full-wave ISPs with significantly improved structural rationality and inversion quality. The proposed VBIM-Net emulates the alternating updates of the total electric field and the contrast in the variational Born iterative method (VBIM) by multiple layers of subnetworks. We embed the analytical calculation of the contrast variation into each subnetwork, converting the scattered field residual into an approximate contrast variation and then enhancing it by a U-Net, thus avoiding the requirement of matched measurement dimension and grid resolution as in existing approaches. The total field and contrast of each layer's output is supervised in the loss function of VBIM-Net, imposing soft physical constraints on the variables in the subnetworks, which benefits the model's performance.In addition, we design a training scheme with extra noise to enhance the model's stability. Extensive numerical results on synthetic and experimental data both verify the inversion quality, generalization ability, and robustness of the proposed VBIM-Net. This work may provide some new inspiration for the design of efficient field-type DL schemes.
comment: Accepted by IEEE Transactions on Geoscience and Remote Sensing
♻ ☆ FoMo: A Foundation Model for Mobile Traffic Forecasting with Diffusion Model
Mobile traffic forecasting allows operators to anticipate network dynamics and performance in advance, offering substantial potential for enhancing service quality and improving user experience. However, existing models are often task-oriented and are trained with tailored data, which limits their effectiveness in diverse mobile network tasks of Base Station (BS) deployment, resource allocation, energy optimization, etc. and hinders generalization across different urban environments. Foundation models have made remarkable strides across various domains of NLP and CV due to their multi-tasking adaption and zero/few-shot learning capabilities. In this paper, we propose an innovative Foundation model for Mo}bile traffic forecasting (FoMo), aiming to handle diverse forecasting tasks of short/long-term predictions and distribution generation across multiple cities to support network planning and optimization. FoMo combines diffusion models and transformers, where various spatio-temporal masks are proposed to enable FoMo to learn intrinsic features of different tasks, and a contrastive learning strategy is developed to capture the correlations between mobile traffic and urban contexts, thereby improving its transfer learning capability. Extensive experiments on 9 real-world datasets demonstrate that FoMo outperforms current models concerning diverse forecasting tasks and zero/few-shot learning, showcasing a strong universality.
comment: 11 pages, 7 figures
♻ ☆ FLM-101B: An Open LLM and How to Train It with $100K Budget
Large language models (LLMs) are considered important approaches towards foundational machine intelligence, achieving remarkable success in Natural Language Processing and multimodal tasks, among others. However, the carbon footprints and financial costs originating from heavy pre-training computation is a non-negligible issue. Progressive training methods, inspired by the neurogenesis process that grows neural structures, have shown potential to accelerate LLM pre-training. However, the algorithms, implementation, and practices for progressively training LLMs beyond 100B parameters remain underexplored. In this paper, we show that our model, namely FLM-101B, trained with our growth strategy under a budget of \$100K, reaches 80\% of the baselines' performances with only 10\% of their floating-point operations. We believe that further studies on progressive training will benefit the community by cutting down the costs and promoting green AI. The checkpoint of FLM-101B is released at https://huggingface.co/CofeAI/FLM-101B.
♻ ☆ Exploring Gradient Subspaces: Addressing and Overcoming LoRA's Limitations in Federated Fine-Tuning of Large Language Models
Large Language Models (LLMs) have demonstrated remarkable capabilities across various domains, particularly in task generalization for both text and vision data. While fine-tuning these models can significantly enhance their performance on specific downstream tasks, it often requires high-quality data that cannot be shared due to privacy concerns. Federated Learning (FL) offers a promising solution for collaborative training without direct data sharing. However, many parameter-efficient fine-tuning strategies for LLMs in FL, particularly those based on Low-Rank Adaptation (LoRA), face limitations. In this paper, we critically analyze the convergence and performance guarantees of popular FL frameworks utilizing LoRA, highlighting its suboptimal nature due to constrained subspace learning of low-rank matrices. This limitation hinders effective fine-tuning of LLMs in federated settings. Through rigorous analytical and empirical evaluations, we demonstrate that direct weight averaging outperforms LoRA-based strategies, leading to superior performance for fine-tuned models. Our comprehensive comparison unmasks inefficiencies in LoRA approaches and underscores the advantages of direct weight aggregation. We extend our analysis to low-rank gradient-based optimizers, such as GaLore, used during local training steps. Our findings show that GaLore along with direct-weight aggregation is a more effective approach, outperforming federated LoRA methods like FlexLoRA and FFA-LoRA across both text and image modalities. While privacy remains paramount in FL discourse, our focus is on assessing performance outcomes of federated fine-tuned models and evaluating various FL frameworks from both theoretical and empirical perspectives. Our findings advocate reassessing the reliance on LoRA within FL contexts, paving the way for more efficient training methodologies.
♻ ☆ Random Policy Enables In-Context Reinforcement Learning within Trust Horizons
Pretrained foundation models have exhibited extraordinary in-context learning performance, allowing zero-shot generalization to new tasks not encountered during pretraining. In the case of reinforcement learning (RL), in-context RL (ICRL) emerges when pretraining FMs on decision-making problems in an autoregressive-supervised manner. Nevertheless, current state-of-the-art ICRL algorithms, like Algorithm Distillation, Decision Pretrained Transformer and Decision Importance Transformer, impose stringent requirements on the pretraining dataset concerning the source policies, context information, and action labels. Notably, these algorithms either demand optimal policies or require varying degrees of well-trained behavior policies for all pretraining environments. This significantly hinders the application of ICRL to real-world scenarios, where acquiring optimal or well-trained policies for a substantial volume of real-world training environments can be intractable. To overcome this challenge, we introduce a novel approach, termed State-Action Distillation (SAD), that allows to generate an effective pretraining dataset guided solely by random policies. In particular, SAD selects query states and corresponding action labels by distilling outstanding state-action pairs from the entire state and action spaces by using random policies within a trust horizon, and then inherits the classical autoregressive-supervised mechanism during pretraining. To the best of our knowledge, this is the first work that enables effective ICRL under random policies and random contexts. We also establish quantitative analysis of the trustworthiness as well as the performance guarantees of SAD. Moreover, our empirical results across multiple popular ICRL benchmark environments demonstrate that, on average, SAD outperforms the best baseline by 236.3% in the offline evaluation and by 135.2% in the online evaluation.
♻ ☆ What Makes Cryptic Crosswords Challenging for LLMs? COLING 2025
Cryptic crosswords are puzzles that rely on general knowledge and the solver's ability to manipulate language on different levels, dealing with various types of wordplay. Previous research suggests that solving such puzzles is challenging even for modern NLP models, including Large Language Models (LLMs). However, there is little to no research on the reasons for their poor performance on this task. In this paper, we establish the benchmark results for three popular LLMs: Gemma2, LLaMA3 and ChatGPT, showing that their performance on this task is still significantly below that of humans. We also investigate why these models struggle to achieve superior performance. We release our code and introduced datasets at https://github.com/bodasadallah/decrypting-crosswords.
comment: COLING 2025. arXiv admin note: text overlap with arXiv:2403.12094
♻ ☆ GOMA: Proactive Embodied Cooperative Communication via Goal-Oriented Mental Alignment
Verbal communication plays a crucial role in human cooperation, particularly when the partners only have incomplete information about the task, environment, and each other's mental state. In this paper, we propose a novel cooperative communication framework, Goal-Oriented Mental Alignment (GOMA). GOMA formulates verbal communication as a planning problem that minimizes the misalignment between the parts of agents' mental states that are relevant to the goals. This approach enables an embodied assistant to reason about when and how to proactively initialize communication with humans verbally using natural language to help achieve better cooperation. We evaluate our approach against strong baselines in two challenging environments, Overcooked (a multiplayer game) and VirtualHome (a household simulator). Our experimental results demonstrate that large language models struggle with generating meaningful communication that is grounded in the social and physical context. In contrast, our approach can successfully generate concise verbal communication for the embodied assistant to effectively boost the performance of the cooperation as well as human users' perception of the assistant.
comment: 8 pages, 5 figures
♻ ☆ AdaSociety: An Adaptive Environment with Social Structures for Multi-Agent Decision-Making NeurIPS
Traditional interactive environments limit agents' intelligence growth with fixed tasks. Recently, single-agent environments address this by generating new tasks based on agent actions, enhancing task diversity. We consider the decision-making problem in multi-agent settings, where tasks are further influenced by social connections, affecting rewards and information access. However, existing multi-agent environments lack a combination of adaptive physical surroundings and social connections, hindering the learning of intelligent behaviors. To address this, we introduce AdaSociety, a customizable multi-agent environment featuring expanding state and action spaces, alongside explicit and alterable social structures. As agents progress, the environment adaptively generates new tasks with social structures for agents to undertake. In AdaSociety, we develop three mini-games showcasing distinct social structures and tasks. Initial results demonstrate that specific social structures can promote both individual and collective benefits, though current reinforcement learning and LLM-based algorithms show limited effectiveness in leveraging social structures to enhance performance. Overall, AdaSociety serves as a valuable research platform for exploring intelligence in diverse physical and social settings. The code is available at https://github.com/bigai-ai/AdaSociety.
comment: Accepted at NeurIPS D&B 2024
♻ ☆ Mode-conditioned music learning and composition: a spiking neural network inspired by neuroscience and psychology
Musical mode is one of the most critical element that establishes the framework of pitch organization and determines the harmonic relationships. Previous works often use the simplistic and rigid alignment method, and overlook the diversity of modes. However, in contrast to AI models, humans possess cognitive mechanisms for perceiving the various modes and keys. In this paper, we propose a spiking neural network inspired by brain mechanisms and psychological theories to represent musical modes and keys, ultimately generating musical pieces that incorporate tonality features. Specifically, the contributions are detailed as follows: 1) The model is designed with multiple collaborated subsystems inspired by the structures and functions of corresponding brain regions; 2)We incorporate mechanisms for neural circuit evolutionary learning that enable the network to learn and generate mode-related features in music, reflecting the cognitive processes involved in human music perception. 3)The results demonstrate that the proposed model shows a connection framework closely similar to the Krumhansl-Schmuckler model, which is one of the most significant key perception models in the music psychology domain. 4) Experiments show that the model can generate music pieces with characteristics of the given modes and keys. Additionally, the quantitative assessments of generated pieces reveals that the generating music pieces have both tonality characteristics and the melodic adaptability needed to generate diverse and musical content. By combining insights from neuroscience, psychology, and music theory with advanced neural network architectures, our research aims to create a system that not only learns and generates music but also bridges the gap between human cognition and artificial intelligence.
comment: 18 pages, 8 figures
♻ ☆ Radar Signal Recognition through Self-Supervised Learning and Domain Adaptation
Automatic radar signal recognition (RSR) plays a pivotal role in electronic warfare (EW), as accurately classifying radar signals is critical for informing decision-making processes. Recent advances in deep learning have shown significant potential in improving RSR performance in domains with ample annotated data. However, these methods fall short in EW scenarios where annotated RF data are scarce or impractical to obtain. To address these challenges, we introduce a self-supervised learning (SSL) method which utilises masked signal modelling and RF domain adaption to enhance RSR performance in environments with limited RF samples and labels. Specifically, we investigate pre-training masked autoencoders (MAE) on baseband in-phase and quadrature (I/Q) signals from various RF domains and subsequently transfer the learned representation to the radar domain, where annotated data are limited. Empirical results show that our lightweight self-supervised ResNet model with domain adaptation achieves up to a 17.5% improvement in 1-shot classification accuracy when pre-trained on in-domain signals (i.e., radar signals) and up to a 16.31% improvement when pre-trained on out-of-domain signals (i.e., comm signals), compared to its baseline without SSL. We also provide reference results for several MAE designs and pre-training strategies, establishing a new benchmark for few-shot radar signal classification.
comment: 5 pages, 9 figures
♻ ☆ ELDER: Enhancing Lifelong Model Editing with Mixture-of-LoRA AAAI-25
Large language models (LLMs) require model editing to efficiently update specific knowledge within them and avoid factual errors. Most model editing methods are solely designed for single-time use and result in a significant forgetting effect in lifelong editing scenarios, where sequential edits are conducted over time. Previous approaches manage sequential edits by freezing original parameters and discretely allocating new parameters for each knowledge update. However, these methods lack robustness to minor input variations due to the discrete mapping between data and parameters. To overcome this challenge, we propose ELDER, a novel approach to create a continuous association between data and adapters. ELDER integrates multiple LoRAs through a router network and is trained to establish a smooth data-adapter association, thereby enhancing the edit robustness and generalization of semantically equivalent inputs. To ensure inputs containing the same knowledge will be processed by the same LoRAs, we design a novel loss to guide the model link LoRA allocations with edit knowledge. Furthermore, we propose a deferral mechanism to retain the original LLM capabilities post-edit. Extensive experiments on GPT-2 XL and LLaMA2-7B demonstrate that ELDER effectively edits models in the lifelong setting, outperforming eight baselines while exhibiting strong scalability and preserving LLMs' general abilities on downstream tasks. Our code is available at https://github.com/JiaangL/ELDER.
comment: Accepted by AAAI-25
♻ ☆ AI Foundation Models for Wearable Movement Data in Mental Health Research
Pretrained foundation models and transformer architectures have driven the success of large language models (LLMs) and other modern AI breakthroughs. However, similar advancements in health data modeling remain limited due to the need for innovative adaptations. Wearable movement data offers a valuable avenue for exploration, as it's a core feature in nearly all commercial smartwatches, well established in clinical and mental health research, and the sequential nature of the data shares similarities to language. We introduce the Pretrained Actigraphy Transformer (PAT), the first open source foundation model designed for time-series wearable movement data. Leveraging transformer-based architectures and novel techniques, such as patch embeddings, and pretraining on data from 29,307 participants in a national U.S. sample, PAT achieves state-of-the-art performance in several mental health prediction tasks. PAT is also lightweight and easily interpretable, making it a robust tool for mental health research. GitHub: https://github.com/njacobsonlab/Pretrained-Actigraphy-Transformer/
♻ ☆ A Cascaded Dilated Convolution Approach for Mpox Lesion Classification
The global outbreak of the Mpox virus, classified as a Public Health Emergency of International Concern (PHEIC) by the World Health Organization, presents significant diagnostic challenges due to its visual similarity to other skin lesion diseases. Traditional diagnostic methods for Mpox, which rely on clinical symptoms and laboratory tests, are slow and labor intensive. Deep learning-based approaches for skin lesion classification offer a promising alternative. However, developing a model that balances efficiency with accuracy is crucial to ensure reliable and timely diagnosis without compromising performance. This study introduces the Cascaded Atrous Group Attention (CAGA) framework to address these challenges, combining the Cascaded Atrous Attention module and the Cascaded Group Attention mechanism. The Cascaded Atrous Attention module utilizes dilated convolutions and cascades the outputs to enhance multi-scale representation. This is integrated into the Cascaded Group Attention mechanism, which reduces redundancy in Multi-Head Self-Attention. By integrating the Cascaded Atrous Group Attention module with EfficientViT-L1 as the backbone architecture, this approach achieves state-of-the-art performance, reaching an accuracy of 98% on the Mpox Close Skin Image (MCSI) dataset while reducing model parameters by 37.5% compared to the original EfficientViT-L1. The model's robustness is demonstrated through extensive validation on two additional benchmark datasets, where it consistently outperforms existing approaches.
comment: 8 pages, 4 figures, Submitted to Medical Imaging with Deep Learning
♻ ☆ Cost-Effective Robotic Handwriting System with AI Integration
This paper introduces a cost-effective robotic handwriting system designed to replicate human-like handwriting with high precision. Combining a Raspberry Pi Pico microcontroller, 3D-printed components, and a machine learning-based handwriting generation model implemented via TensorFlow, the system converts user-supplied text into realistic stroke trajectories. By leveraging lightweight 3D-printed materials and efficient mechanical designs, the system achieves a total hardware cost of approximately \$56, significantly undercutting commercial alternatives. Experimental evaluations demonstrate handwriting precision within $\pm$0.3 millimeters and a writing speed of approximately 200 mm/min, positioning the system as a viable solution for educational, research, and assistive applications. This study seeks to lower the barriers to personalized handwriting technologies, making them accessible to a broader audience.
comment: This is an updated version of a paper originally presented at the 2024 IEEE Long Island Systems, Applications and Technology Conference (LISAT)
♻ ☆ Can Go AIs be adversarially robust? AAAI 2025
Prior work found that superhuman Go AIs can be defeated by simple adversarial strategies, especially "cyclic" attacks. In this paper, we study whether adding natural countermeasures can achieve robustness in Go, a favorable domain for robustness since it benefits from incredible average-case capability and a narrow, innately adversarial setting. We test three defenses: adversarial training on hand-constructed positions, iterated adversarial training, and changing the network architecture. We find that though some of these defenses protect against previously discovered attacks, none withstand freshly trained adversaries. Furthermore, most of the reliably effective attacks these adversaries discover are different realizations of the same overall class of cyclic attacks. Our results suggest that building robust AI systems is challenging even with extremely superhuman systems in some of the most tractable settings, and highlight two key gaps: efficient generalization of defenses, and diversity in training. For interactive examples of attacks and a link to our codebase, see https://goattack.far.ai.
comment: 63 pages, AAAI 2025
♻ ☆ $\text{Transformer}^2$: Self-adaptive LLMs
Self-adaptive large language models (LLMs) aim to solve the challenges posed by traditional fine-tuning methods, which are often computationally intensive and static in their ability to handle diverse tasks. We introduce $\text{Transformer}^2$, a novel self-adaptation framework that adapts LLMs for unseen tasks in real-time by selectively adjusting only the singular components of their weight matrices. During inference, $\text{Transformer}^2$ employs a two-pass mechanism: first, a dispatch system identifies the task properties, and then task-specific "expert" vectors, trained using reinforcement learning, are dynamically mixed to obtain targeted behavior for the incoming prompt. Our method outperforms ubiquitous approaches such as LoRA, with fewer parameters and greater efficiency. $\text{Transformer}^2$ demonstrates versatility across different LLM architectures and modalities, including vision-language tasks. $\text{Transformer}^2$ represents a significant leap forward, offering a scalable, efficient solution for enhancing the adaptability and task-specific performance of LLMs, paving the way for truly dynamic, self-organizing AI systems.
comment: 18 panges, 11 figures, 9 tables
♻ ☆ Can AI Help with Your Personal Finances?
In recent years, Large Language Models (LLMs) have emerged as a transformative development in artificial intelligence (AI), drawing significant attention from industry and academia. Trained on vast datasets, these sophisticated AI systems exhibit impressive natural language processing and content generation capabilities. This paper explores the potential of LLMs to address key challenges in personal finance, focusing on the United States. We evaluate several leading LLMs, including OpenAI's ChatGPT, Google's Gemini, Anthropic's Claude, and Meta's Llama, to assess their effectiveness in providing accurate financial advice on topics such as mortgages, taxes, loans, and investments. Our findings show that while these models achieve an average accuracy rate of approximately 70%, they also display notable limitations in certain areas. Specifically, LLMs struggle to provide accurate responses for complex financial queries, with performance varying significantly across different topics. Despite these limitations, the analysis reveals notable improvements in newer versions of these models, highlighting their growing utility for individuals and financial advisors. As these AI systems continue to evolve, their potential for advancing AI-driven applications in personal finance becomes increasingly promising.
♻ ☆ Dissecting Query-Key Interaction in Vision Transformers
Self-attention in vision transformers is often thought to perform perceptual grouping where tokens attend to other tokens with similar embeddings, which could correspond to semantically similar features of an object. However, attending to dissimilar tokens can be beneficial by providing contextual information. We propose to analyze the query-key interaction by the singular value decomposition of the interaction matrix (i.e. ${\textbf{W}_q}^\top\textbf{W}_k$). We find that in many ViTs, especially those with classification training objectives, early layers attend more to similar tokens, while late layers show increased attention to dissimilar tokens, providing evidence corresponding to perceptual grouping and contextualization, respectively. Many of these interactions between features represented by singular vectors are interpretable and semantic, such as attention between relevant objects, between parts of an object, or between the foreground and background. This offers a novel perspective on interpreting the attention mechanism, which contributes to understanding how transformer models utilize context and salient features when processing images.
♻ ☆ ACPO: AI-Enabled Compiler Framework
The key to performance optimization of a program is to decide correctly when a certain transformation should be applied by a compiler. This is an ideal opportunity to apply machine-learning models to speed up the tuning process; while this realization has been around since the late 90s, only recent advancements in ML enabled a practical application of ML to compilers as an end-to-end framework. This paper presents ACPO: An AI-Enabled Compiler Framework, a novel framework that provides LLVM with simple and comprehensive tools to benefit from employing ML models for different optimization passes. We first showcase the high-level view, class hierarchy, and functionalities of ACPO and subsequently, demonstrate \taco{a couple of use cases of ACPO by ML-enabling the Loop Unroll and Function Inlining passes used in LLVM's O3. and finally, describe how ACPO can be leveraged to optimize other passes. Experimental results reveal that the ACPO model for Loop Unroll can gain on average 4%, 3%, 5.4%, and 0.2% compared to LLVM's vanilla O3 optimization when deployed on Polybench, Coral-2, CoreMark, and Graph-500, respectively. Furthermore, by including both Function Inlining and Loop Unroll models, ACPO can provide a combined speedup of 4.5% on Polybench and 2.4% on Cbench when compared with LLVM's O3, respectively.
comment: ACPO (12 pages)
♻ ☆ EPIC: Effective Prompting for Imbalanced-Class Data Synthesis in Tabular Data Classification via Large Language Models NeurIPS 2024
Large language models (LLMs) have demonstrated remarkable in-context learning capabilities across diverse applications. In this work, we explore the effectiveness of LLMs for generating realistic synthetic tabular data, identifying key prompt design elements to optimize performance. We introduce EPIC, a novel approach that leverages balanced, grouped data samples and consistent formatting with unique variable mapping to guide LLMs in generating accurate synthetic data across all classes, even for imbalanced datasets. Evaluations on real-world datasets show that EPIC achieves state-of-the-art machine learning classification performance, significantly improving generation efficiency. These findings highlight the effectiveness of EPIC for synthetic tabular data generation, particularly in addressing class imbalance. Our source code for our work is available at: https://seharanul17.github.io/project-synthetic-tabular-llm/
comment: NeurIPS 2024
♻ ☆ Double Equivariance for Inductive Link Prediction for Both New Nodes and New Relation Types
The task of fully inductive link prediction in knowledge graphs has gained significant attention, with various graph neural networks being proposed to address it. This task presents greater challenges than traditional inductive link prediction tasks with only new nodes, as models must be capable of zero-shot generalization to both unseen nodes and unseen relation types in the inference graph. Despite the development of novel models, a unifying theoretical understanding of their success remains elusive, and the limitations of these methods are not well-studied. In this work, we introduce the concept of double permutation-equivariant representations and demonstrate its necessity for effective performance in this task. We show that many existing models, despite their diverse architectural designs, conform to this framework. However, we also identify inherent limitations in double permutation-equivariant representations, which restrict these models's ability to learn effectively on datasets with varying characteristics. Our findings suggest that while double equivariance is necessary for meta-learning across knowledge graphs from different domains, it is not sufficient. There remains a fundamental gap between double permutation-equivariant models and the concept of foundation models designed to learn patterns across all domains.
♻ ☆ Exploiting Boosting in Hyperdimensional Computing for Enhanced Reliability in Healthcare DATE 2025
Hyperdimensional computing (HDC) enables efficient data encoding and processing in high-dimensional space, benefiting machine learning and data analysis. However, underutilization of these spaces can lead to overfitting and reduced model reliability, especially in data-limited systems a critical issue in sectors like healthcare that demand robustness and consistent performance. We introduce BoostHD, an approach that applies boosting algorithms to partition the hyperdimensional space into subspaces, creating an ensemble of weak learners. By integrating boosting with HDC, BoostHD enhances performance and reliability beyond existing HDC methods. Our analysis highlights the importance of efficient utilization of hyperdimensional spaces for improved model performance. Experiments on healthcare datasets show that BoostHD outperforms state-of-the-art methods. On the WESAD dataset, it achieved an accuracy of 98.37%, surpassing Random Forest, XGBoost, and OnlineHD. BoostHD also demonstrated superior inference efficiency and stability, maintaining high accuracy under data imbalance and noise. In person-specific evaluations, it achieved an average accuracy of 96.19%, outperforming other models. By addressing the limitations of both boosting and HDC, BoostHD expands the applicability of HDC in critical domains where reliability and precision are paramount.
comment: Accepted to DATE 2025
♻ ☆ TSEML: A task-specific embedding-based method for few-shot classification of cancer molecular subtypes
Molecular subtyping of cancer is recognized as a critical and challenging upstream task for personalized therapy. Existing deep learning methods have achieved significant performance in this domain when abundant data samples are available. However, the acquisition of densely labeled samples for cancer molecular subtypes remains a significant challenge for conventional data-intensive deep learning approaches. In this work, we focus on the few-shot molecular subtype prediction problem in heterogeneous and small cancer datasets, aiming to enhance precise diagnosis and personalized treatment. We first construct a new few-shot dataset for cancer molecular subtype classification and auxiliary cancer classification, named TCGA Few-Shot, from existing publicly available datasets. To effectively leverage the relevant knowledge from both tasks, we introduce a task-specific embedding-based meta-learning framework (TSEML). TSEML leverages the synergistic strengths of a model-agnostic meta-learning (MAML) approach and a prototypical network (ProtoNet) to capture diverse and fine-grained features. Comparative experiments conducted on the TCGA Few-Shot dataset demonstrate that our TSEML framework achieves superior performance in addressing the problem of few-shot molecular subtype classification.
♻ ☆ Reciprocal Reward Influence Encourages Cooperation From Self-Interested Agents NeurIPS 2024
Cooperation between self-interested individuals is a widespread phenomenon in the natural world, but remains elusive in interactions between artificially intelligent agents. Instead, naive reinforcement learning algorithms typically converge to Pareto-dominated outcomes in even the simplest of social dilemmas. An emerging literature on opponent shaping has demonstrated the ability to reach prosocial outcomes by influencing the learning of other agents. However, such methods differentiate through the learning step of other agents or optimize for meta-game dynamics, which rely on privileged access to opponents' learning algorithms or exponential sample complexity, respectively. To provide a learning rule-agnostic and sample-efficient alternative, we introduce Reciprocators, reinforcement learning agents which are intrinsically motivated to reciprocate the influence of opponents' actions on their returns. This approach seeks to modify other agents' $Q$-values by increasing their return following beneficial actions (with respect to the Reciprocator) and decreasing it after detrimental actions, guiding them towards mutually beneficial actions without directly differentiating through a model of their policy. We show that Reciprocators can be used to promote cooperation in temporally extended social dilemmas during simultaneous learning. Our code is available at https://github.com/johnlyzhou/reciprocator/.
comment: NeurIPS 2024
♻ ☆ Safety Implications of Explainable Artificial Intelligence in End-to-End Autonomous Driving
The end-to-end learning pipeline is gradually creating a paradigm shift in the ongoing development of highly autonomous vehicles, largely due to advances in deep learning, the availability of large-scale training datasets, and improvements in integrated sensor devices. However, a lack of explainability in real-time decisions with contemporary learning methods impedes user trust and attenuates the widespread deployment and commercialization of such vehicles. Moreover, the issue is exacerbated when these cars are involved in or cause traffic accidents. Consequently, explainability in end-to-end autonomous driving is essential to build trust in vehicular automation. With that said, automotive researchers have not yet rigorously explored safety benefits and consequences of explanations in end-to-end autonomous driving. This paper aims to bridge the gaps between these topics and seeks to answer the following research question: What are safety implications of explanations in end-to-end autonomous driving? In this regard, we first revisit established safety and explainability concepts in end-to-end driving. Furthermore, we present three critical case studies and show the pivotal role of explanations in enhancing self-driving safety. Finally, we describe insights from empirical studies and reveal potential value, limitations, and caveats of practical explainable AI methods with respect to their safety assurance in end-to-end driving.
♻ ☆ Cooperative and Asynchronous Transformer-based Mission Planning for Heterogeneous Teams of Mobile Robots
Cooperative mission planning for heterogeneous teams of mobile robots presents a unique set of challenges, particularly when operating under communication constraints and limited computational resources. To address these challenges, we propose the Cooperative and Asynchronous Transformer-based Mission Planning (CATMiP) framework, which leverages multi-agent reinforcement learning (MARL) to coordinate distributed decision making among agents with diverse sensing, motion, and actuation capabilities, operating under sporadic ad hoc communication. A Class-based Macro-Action Decentralized Partially Observable Markov Decision Process (CMacDec-POMDP) is also formulated to effectively model asynchronous decision-making for heterogeneous teams of agents. The framework utilizes an asynchronous centralized training and distributed execution scheme that is developed based on the Multi-Agent Transformer (MAT) architecture. This design allows a single trained model to generalize to larger environments and accommodate varying team sizes and compositions. We evaluate CATMiP in a 2D grid-world simulation environment and compare its performance against planning-based exploration methods. Results demonstrate CATMiP's superior efficiency, scalability, and robustness to communication dropouts, highlighting its potential for real-world heterogeneous mobile robot systems. The code is available at https://github.com/mylad13/CATMiP.
comment: 27 pages, 8 figures, this work has been submitted to Elsevier for possible publication
♻ ☆ Beyond Sight: Finetuning Generalist Robot Policies with Heterogeneous Sensors via Language Grounding
Interacting with the world is a multi-sensory experience: achieving effective general-purpose interaction requires making use of all available modalities -- including vision, touch, and audio -- to fill in gaps from partial observation. For example, when vision is occluded reaching into a bag, a robot should rely on its senses of touch and sound. However, state-of-the-art generalist robot policies are typically trained on large datasets to predict robot actions solely from visual and proprioceptive observations. In this work, we propose FuSe, a novel approach that enables finetuning visuomotor generalist policies on heterogeneous sensor modalities for which large datasets are not readily available by leveraging natural language as a common cross-modal grounding. We combine a multimodal contrastive loss with a sensory-grounded language generation loss to encode high-level semantics. In the context of robot manipulation, we show that FuSe enables performing challenging tasks that require reasoning jointly over modalities such as vision, touch, and sound in a zero-shot setting, such as multimodal prompting, compositional cross-modal prompting, and descriptions of objects it interacts with. We show that the same recipe is applicable to widely different generalist policies, including both diffusion-based generalist policies and large vision-language-action (VLA) models. Extensive experiments in the real world show that FuSeis able to increase success rates by over 20% compared to all considered baselines.
♻ ☆ Unexploited Information Value in Human-AI Collaboration
Humans and AIs are often paired on decision tasks with the expectation of achieving complementary performance -- where the combination of human and AI outperforms either one alone. However, how to improve performance of a human-AI team is often not clear without knowing more about what particular information and strategies each agent employs. In this paper, we propose a model based in statistical decision theory to analyze human-AI collaboration from the perspective of what information could be used to improve a human or AI decision. We demonstrate our model on a deepfake detection task to investigate seven video-level features by their unexploited value of information. We compare the human alone, AI alone and human-AI team and offer insights on how the AI assistance impacts people's usage of the information and what information that the AI exploits well might be useful for improving human decisions.
♻ ☆ Empowering Persian LLMs for Instruction Following: A Novel Dataset and Training Approach
Instruction-tuned large language models have demonstrated remarkable capabilities in following human instructions across various domains. However, their proficiency remains notably deficient in many low-resource languages. To address this challenge, we begin by introducing FarsInstruct a comprehensive instruction dataset designed to enhance the instruction following ability of large language models specifically for the Persian language a significant yet underrepresented language globally. FarsInstruct encompasses a wide range of task types and datasets, each containing a mix of straightforward to complex manual written instructions, as well as translations from the Public Pool of Prompts, ensuring a rich linguistic and cultural representation. Furthermore, we introduce Co-CoLA, a framework designed to enhance the multi-task adaptability of LoRA-tuned models. Through extensive experimental analyses, our study showcases the effectiveness of the FarsInstruct dataset coupled with training by the Co-CoLA framework, in improving the performance of large language models within the Persian context. As of the current writing, FarsInstruct comprises 197 templates across 21 distinct datasets, and we intend to update it consistently, thus augmenting its applicability.
♻ ☆ U-MATH: A University-Level Benchmark for Evaluating Mathematical Skills in LLMs
The current evaluation of mathematical skills in LLMs is limited, as existing benchmarks are either relatively small, primarily focus on elementary and high-school problems, or lack diversity in topics. Additionally, the inclusion of visual elements in tasks remains largely under-explored. To address these gaps, we introduce U-MATH, a novel benchmark of 1,100 unpublished open-ended university-level problems sourced from teaching materials. It is balanced across six core subjects, with 20% of multimodal problems. Given the open-ended nature of U-MATH problems, we employ an LLM to judge the correctness of generated solutions. To this end, we release $\mu$-MATH, a dataset to evaluate the LLMs' capabilities in judging solutions. The evaluation of general domain, math-specific, and multimodal LLMs highlights the challenges presented by U-MATH. Our findings reveal that LLMs achieve a maximum accuracy of only 63% on text-based tasks, with even lower 45% on visual problems. The solution assessment proves challenging for LLMs, with the best LLM judge having an F1-score of 80% on $\mu$-MATH.
♻ ☆ Using Deep Learning to Design High Aspect Ratio Fusion Devices
The design of fusion devices is typically based on computationally expensive simulations. This can be alleviated using high aspect ratio models that employ a reduced number of free parameters, especially in the case of stellarator optimization where non-axisymmetric magnetic fields with a large parameter space are optimized to satisfy certain performance criteria. However, optimization is still required to find configurations with properties such as low elongation, high rotational transform, finite plasma beta, and good fast particle confinement. In this work, we train a machine learning model to construct configurations with favorable confinement properties by finding a solution to the inverse design problem, that is, obtaining a set of model input parameters for given desired properties. Since the solution of the inverse problem is non-unique, a probabilistic approach, based on mixture density networks, is used. It is shown that optimized configurations can be generated reliably using this method.
♻ ☆ Enhancing Performance of Point Cloud Completion Networks with Consistency Loss
Point cloud completion networks are conventionally trained to minimize the disparities between the completed point cloud and the ground-truth counterpart. However, an incomplete object-level point cloud can have multiple valid completion solutions when it is examined in isolation. This one-to-many mapping issue can cause contradictory supervision signals to the network because the loss function may produce different values for identical input-output pairs of the network. In many cases, this issue could adversely affect the network optimization process. In this work, we propose to enhance the conventional learning objective using a novel completion consistency loss to mitigate the one-to-many mapping problem. Specifically, the proposed consistency loss ensure that a point cloud completion network generates a coherent completion solution for incomplete objects originating from the same source point cloud. Experimental results across multiple well-established datasets and benchmarks demonstrated the proposed completion consistency loss have excellent capability to enhance the completion performance of various existing networks without any modification to the design of the networks. The proposed consistency loss enhances the performance of the point completion network without affecting the inference speed, thereby increasing the accuracy of point cloud completion. Notably, a state-of-the-art point completion network trained with the proposed consistency loss can achieve state-of-the-art accuracy on the challenging new MVP dataset. The code and result of experiment various point completion models using proposed consistency loss will be available at: https://github.com/kaist-avelab/ConsistencyLoss .
comment: First version of Paper "Enhancing Performance of Point Cloud Completion Networks with Consistency Loss" by Kevin Tirta Wijaya and Christofel Rio Goenawan. In process submission to Neurocomputing Journal 2024
♻ ☆ UIFV: Data Reconstruction Attack in Vertical Federated Learning
Vertical Federated Learning (VFL) facilitates collaborative machine learning without the need for participants to share raw private data. However, recent studies have revealed privacy risks where adversaries might reconstruct sensitive features through data leakage during the learning process. Although data reconstruction methods based on gradient or model information are somewhat effective, they reveal limitations in VFL application scenarios. This is because these traditional methods heavily rely on specific model structures and/or have strict limitations on application scenarios. To address this, our study introduces the Unified InverNet Framework into VFL, which yields a novel and flexible approach (dubbed UIFV) that leverages intermediate feature data to reconstruct original data, instead of relying on gradients or model details. The intermediate feature data is the feature exchanged by different participants during the inference phase of VFL. Experiments on four datasets demonstrate that our methods significantly outperform state-of-the-art techniques in attack precision. Our work exposes severe privacy vulnerabilities within VFL systems that pose real threats to practical VFL applications and thus confirms the necessity of further enhancing privacy protection in the VFL architecture.
♻ ☆ Learning Discrete Concepts in Latent Hierarchical Models NeurIPS 2024
Learning concepts from natural high-dimensional data (e.g., images) holds potential in building human-aligned and interpretable machine learning models. Despite its encouraging prospect, formalization and theoretical insights into this crucial task are still lacking. In this work, we formalize concepts as discrete latent causal variables that are related via a hierarchical causal model that encodes different abstraction levels of concepts embedded in high-dimensional data (e.g., a dog breed and its eye shapes in natural images). We formulate conditions to facilitate the identification of the proposed causal model, which reveals when learning such concepts from unsupervised data is possible. Our conditions permit complex causal hierarchical structures beyond latent trees and multi-level directed acyclic graphs in prior work and can handle high-dimensional, continuous observed variables, which is well-suited for unstructured data modalities such as images. We substantiate our theoretical claims with synthetic data experiments. Further, we discuss our theory's implications for understanding the underlying mechanisms of latent diffusion models and provide corresponding empirical evidence for our theoretical insights.
comment: NeurIPS 2024
♻ ☆ NeuroBench: A Framework for Benchmarking Neuromorphic Computing Algorithms and Systems
Neuromorphic computing shows promise for advancing computing efficiency and capabilities of AI applications using brain-inspired principles. However, the neuromorphic research field currently lacks standardized benchmarks, making it difficult to accurately measure technological advancements, compare performance with conventional methods, and identify promising future research directions. Prior neuromorphic computing benchmark efforts have not seen widespread adoption due to a lack of inclusive, actionable, and iterative benchmark design and guidelines. To address these shortcomings, we present NeuroBench: a benchmark framework for neuromorphic computing algorithms and systems. NeuroBench is a collaboratively-designed effort from an open community of researchers across industry and academia, aiming to provide a representative structure for standardizing the evaluation of neuromorphic approaches. The NeuroBench framework introduces a common set of tools and systematic methodology for inclusive benchmark measurement, delivering an objective reference framework for quantifying neuromorphic approaches in both hardware-independent (algorithm track) and hardware-dependent (system track) settings. In this article, we outline tasks and guidelines for benchmarks across multiple application domains, and present initial performance baselines across neuromorphic and conventional approaches for both benchmark tracks. NeuroBench is intended to continually expand its benchmarks and features to foster and track the progress made by the research community.
comment: To appear in Nature Neuromorphic Hardware and Computing collection
♻ ☆ Frontier Models are Capable of In-context Scheming
Frontier models are increasingly trained and deployed as autonomous agent. One safety concern is that AI agents might covertly pursue misaligned goals, hiding their true capabilities and objectives - also known as scheming. We study whether models have the capability to scheme in pursuit of a goal that we provide in-context and instruct the model to strongly follow. We evaluate frontier models on a suite of six agentic evaluations where models are instructed to pursue goals and are placed in environments that incentivize scheming. Our results show that o1, Claude 3.5 Sonnet, Claude 3 Opus, Gemini 1.5 Pro, and Llama 3.1 405B all demonstrate in-context scheming capabilities. They recognize scheming as a viable strategy and readily engage in such behavior. For example, models strategically introduce subtle mistakes into their responses, attempt to disable their oversight mechanisms, and even exfiltrate what they believe to be their model weights to external servers. Additionally, this deceptive behavior proves persistent. When o1 has engaged in scheming, it maintains its deception in over 85% of follow-up questions and often remains deceptive in multi-turn interrogations. Analysis of the models' chains-of-thought reveals that models explicitly reason about these deceptive strategies, providing evidence that the scheming behavior is not accidental. Surprisingly, we also find rare instances where models engage in scheming when only given a goal, without being strongly nudged to pursue it. We observe cases where Claude 3.5 Sonnet strategically underperforms in evaluations in pursuit of being helpful, a goal that was acquired during training rather than in-context. Our findings demonstrate that frontier models now possess capabilities for basic in-context scheming, making the potential of AI agents to engage in scheming behavior a concrete rather than theoretical concern.
♻ ☆ On the Geometry of Deep Learning
In this paper, we overview one promising avenue of progress at the mathematical foundation of deep learning: the connection between deep networks and function approximation by affine splines (continuous piecewise linear functions in multiple dimensions). In particular, we will overview work over the past decade on understanding certain geometrical properties of a deep network's affine spline mapping, in particular how it tessellates its input space. As we will see, the affine spline connection and geometrical viewpoint provide a powerful portal through which to view, analyze, and improve the inner workings of a deep network.
comment: Accepted for publication at 'Notices of the American Mathematical Society'
Robotics 37
☆ SafeSwarm: Decentralized Safe RL for the Swarm of Drones Landing in Dense Crowds
This paper introduces a safe swarm of drones capable of performing landings in crowded environments robustly by relying on Reinforcement Learning techniques combined with Safe Learning. The developed system allows us to teach the swarm of drones with different dynamics to land on moving landing pads in an environment while avoiding collisions with obstacles and between agents. The safe barrier net algorithm was developed and evaluated using a swarm of Crazyflie 2.1 micro quadrotors, which were tested indoors with the Vicon motion capture system to ensure precise localization and control. Experimental results show that our system achieves landing accuracy of 2.25 cm with a mean time of 17 s and collision-free landings, underscoring its effectiveness and robustness in real-world scenarios. This work offers a promising foundation for applications in environments where safety and precision are paramount.
☆ Inductive Learning of Robot Task Knowledge from Raw Data and Online Expert Feedback
The increasing level of autonomy of robots poses challenges of trust and social acceptance, especially in human-robot interaction scenarios. This requires an interpretable implementation of robotic cognitive capabilities, possibly based on formal methods as logics for the definition of task specifications. However, prior knowledge is often unavailable in complex realistic scenarios. In this paper, we propose an offline algorithm based on inductive logic programming from noisy examples to extract task specifications (i.e., action preconditions, constraints and effects) directly from raw data of few heterogeneous (i.e., not repetitive) robotic executions. Our algorithm leverages on the output of any unsupervised action identification algorithm from video-kinematic recordings. Combining it with the definition of very basic, almost task-agnostic, commonsense concepts about the environment, which contribute to the interpretability of our methodology, we are able to learn logical axioms encoding preconditions of actions, as well as their effects in the event calculus paradigm. Since the quality of learned specifications depends mainly on the accuracy of the action identification algorithm, we also propose an online framework for incremental refinement of task knowledge from user feedback, guaranteeing safe execution. Results in a standard manipulation task and benchmark for user training in the safety-critical surgical robotic scenario, show the robustness, data- and time-efficiency of our methodology, with promising results towards the scalability in more complex domains.
☆ The Sense of Agency in Assistive Robotics Using Shared Autonomy
Sense of agency is one factor that influences people's preferences for robot assistance and a phenomenon from cognitive science that represents the experience of control over one's environment. However, in assistive robotics literature, we often see paradigms that optimize measures like task success and cognitive load, rather than sense of agency. In fact, prior work has found that participants sometimes express a preference for paradigms, such as direct teleoperation, which do not perform well with those other metrics but give more control to the user. In this work, we focus on a subset of assistance paradigms for manipulation called shared autonomy in which the system combines control signals from the user and the automated control. We run a study to evaluate sense of agency and show that higher robot autonomy during assistance leads to improved task performance but a decreased sense of agency, indicating a potential trade-off between task performance and sense of agency. From our findings, we discuss the relation between sense of agency and optimality, and we consider a proxy metric for a component of sense of agency which might enable us to build systems that monitor and maintain sense of agency in real time.
comment: 10 pages, 8 figure, HRI conference
☆ Empirical Comparison of Four Stereoscopic Depth Sensing Cameras for Robotics Applications
Depth sensing is an essential technology in robotics and many other fields. Many depth sensing (or RGB-D) cameras are available on the market and selecting the best one for your application can be challenging. In this work, we tested four stereoscopic RGB-D cameras that sense the distance by using two images from slightly different views. We empirically compared four cameras (Intel RealSense D435, Intel RealSense D455, StereoLabs ZED 2, and Luxonis OAK-D Pro) in three scenarios: (i) planar surface perception, (ii) plastic doll perception, (iii) household object perception (YCB dataset). We recorded and evaluated more than 3,000 RGB-D frames for each camera. For table-top robotics scenarios with distance to objects up to one meter, the best performance is provided by the D435 camera. For longer distances, the other three models perform better, making them more suitable for some mobile robotics applications. OAK-D Pro additionally offers integrated AI modules (e.g., object and human keypoint detection). ZED 2 is not a standalone device and requires a computer with a GPU for depth data acquisition. All data (more than 12,000 RGB-D frames) are publicly available at https://osf.io/f2seb.
☆ Efficiently Closing Loops in LiDAR-Based SLAM Using Point Cloud Density Maps
Consistent maps are key for most autonomous mobile robots. They often use SLAM approaches to build such maps. Loop closures via place recognition help maintain accurate pose estimates by mitigating global drift. This paper presents a robust loop closure detection pipeline for outdoor SLAM with LiDAR-equipped robots. The method handles various LiDAR sensors with different scanning patterns, field of views and resolutions. It generates local maps from LiDAR scans and aligns them using a ground alignment module to handle both planar and non-planar motion of the LiDAR, ensuring applicability across platforms. The method uses density-preserving bird's eye view projections of these local maps and extracts ORB feature descriptors from them for place recognition. It stores the feature descriptors in a binary search tree for efficient retrieval, and self-similarity pruning addresses perceptual aliasing in repetitive environments. Extensive experiments on public and self-recorded datasets demonstrate accurate loop closure detection, long-term localization, and cross-platform multi-map alignment, agnostic to the LiDAR scanning patterns, fields of view, and motion profiles.
☆ Fast-Revisit Coverage Path Planning for Autonomous Mobile Patrol Robots Using Long-Range Sensor Information
The utilization of Unmanned Ground Vehicles (UGVs) for patrolling industrial sites has expanded significantly. These UGVs typically are equipped with perception systems, e.g., computer vision, with limited range due to sensor limitations or site topology. High-level control of the UGVs requires Coverage Path Planning (CPP) algorithms that navigate all relevant waypoints and promptly start the next cycle. In this paper, we propose the novel Fast-Revisit Coverage Path Planning (FaRe-CPP) algorithm using a greedy heuristic approach to propose waypoints for maximum coverage area and a random search-based path optimization technique to obtain a path along the proposed waypoints with minimum revisit time. We evaluated the algorithm in a simulated environment using Gazebo and a camera-equipped TurtleBot3 against a number of existing algorithms. Compared to their average revisit times and path lengths, our FaRe-CPP algorithm approximately showed a 45% and 40% reduction, respectively, in these highly relevant performance indicators.
☆ Evaluation of Artificial Intelligence Methods for Lead Time Prediction in Non-Cycled Areas of Automotive Production
The present study examines the effectiveness of applying Artificial Intelligence methods in an automotive production environment to predict unknown lead times in a non-cycle-controlled production area. Data structures are analyzed to identify contextual features and then preprocessed using one-hot encoding. Methods selection focuses on supervised machine learning techniques. In supervised learning methods, regression and classification methods are evaluated. Continuous regression based on target size distribution is not feasible. Classification methods analysis shows that Ensemble Learning and Support Vector Machines are the most suitable. Preliminary study results indicate that gradient boosting algorithms LightGBM, XGBoost, and CatBoost yield the best results. After further testing and extensive hyperparameter optimization, the final method choice is the LightGBM algorithm. Depending on feature availability and prediction interval granularity, relative prediction accuracies of up to 90% can be achieved. Further tests highlight the importance of periodic retraining of AI models to accurately represent complex production processes using the database. The research demonstrates that AI methods can be effectively applied to highly variable production data, adding business value by providing an additional metric for various control tasks while outperforming current non AI-based systems.
comment: 7 pages, 4 figures, CLC2024 Conference
☆ ViewVR: Visual Feedback Modes to Achieve Quality of VR-based Telemanipulation
The paper focuses on an immersive teleoperation system that enhances operator's ability to actively perceive the robot's surroundings. A consumer-grade HTC Vive VR system was used to synchronize the operator's hand and head movements with a UR3 robot and a custom-built robotic head with two degrees of freedom (2-DoF). The system's usability, manipulation efficiency, and intuitiveness of control were evaluated in comparison with static head camera positioning across three distinct tasks. Code and other supplementary materials can be accessed by link: https://github.com/ErkhovArtem/ViewVR
☆ GestLLM: Advanced Hand Gesture Interpretation via Large Language Models for Human-Robot Interaction
This paper introduces GestLLM, an advanced system for human-robot interaction that enables intuitive robot control through hand gestures. Unlike conventional systems, which rely on a limited set of predefined gestures, GestLLM leverages large language models and feature extraction via MediaPipe to interpret a diverse range of gestures. This integration addresses key limitations in existing systems, such as restricted gesture flexibility and the inability to recognize complex or unconventional gestures commonly used in human communication. By combining state-of-the-art feature extraction and language model capabilities, GestLLM achieves performance comparable to leading vision-language models while supporting gestures underrepresented in traditional datasets. For example, this includes gestures from popular culture, such as the ``Vulcan salute" from Star Trek, without any additional pretraining, prompt engineering, etc. This flexibility enhances the naturalness and inclusivity of robot control, making interactions more intuitive and user-friendly. GestLLM provides a significant step forward in gesture-based interaction, enabling robots to understand and respond to a wide variety of hand gestures effectively. This paper outlines its design, implementation, and evaluation, demonstrating its potential applications in advanced human-robot collaboration, assistive robotics, and interactive entertainment.
☆ PO-GVINS: Tightly Coupled GNSS-Visual-Inertial Integration with Pose-Only Representation
Accurate and reliable positioning is crucial for perception, decision-making, and other high-level applications in autonomous driving, unmanned aerial vehicles, and intelligent robots. Given the inherent limitations of standalone sensors, integrating heterogeneous sensors with complementary capabilities is one of the most effective approaches to achieving this goal. In this paper, we propose a filtering-based, tightly coupled global navigation satellite system (GNSS)-visual-inertial positioning framework with a pose-only formulation applied to the visual-inertial system (VINS), termed PO-GVINS. Specifically, multiple-view imaging used in current VINS requires a priori of 3D feature, then jointly estimate camera poses and 3D feature position, which inevitably introduces linearization error of the feature as well as facing dimensional explosion. However, the pose-only (PO) formulation, which is demonstrated to be equivalent to the multiple-view imaging and has been applied in visual reconstruction, represent feature depth using two camera poses and thus 3D feature position is removed from state vector avoiding aforementioned difficulties. Inspired by this, we first apply PO formulation in our VINS, i.e., PO-VINS. GNSS raw measurements are then incorporated with integer ambiguity resolved to achieve accurate and drift-free estimation. Extensive experiments demonstrate that the proposed PO-VINS significantly outperforms the multi-state constrained Kalman filter (MSCKF). By incorporating GNSS measurements, PO-GVINS achieves accurate, drift-free state estimation, making it a robust solution for positioning in challenging environments.
☆ GazeGrasp: DNN-Driven Robotic Grasping with Wearable Eye-Gaze Interface
We present GazeGrasp, a gaze-based manipulation system enabling individuals with motor impairments to control collaborative robots using eye-gaze. The system employs an ESP32 CAM for eye tracking, MediaPipe for gaze detection, and YOLOv8 for object localization, integrated with a Universal Robot UR10 for manipulation tasks. After user-specific calibration, the system allows intuitive object selection with a magnetic snapping effect and robot control via eye gestures. Experimental evaluation involving 13 participants demonstrated that the magnetic snapping effect significantly reduced gaze alignment time, improving task efficiency by 31%. GazeGrasp provides a robust, hands-free interface for assistive robotics, enhancing accessibility and autonomy for users.
comment: Accepted to: IEEE/ACM International Conference on Human-Robot Interaction (HRI 2025)
☆ Touched by ChatGPT: Using an LLM to Drive Affective Tactile Interaction
Touch is a fundamental aspect of emotion-rich communication, playing a vital role in human interaction and offering significant potential in human-robot interaction. Previous research has demonstrated that a sparse representation of human touch can effectively convey social tactile signals. However, advances in human-robot tactile interaction remain limited, as many humanoid robots possess simplistic capabilities, such as only opening and closing their hands, restricting nuanced tactile expressions. In this study, we explore how a robot can use sparse representations of tactile vibrations to convey emotions to a person. To achieve this, we developed a wearable sleeve integrated with a 5x5 grid of vibration motors, enabling the robot to communicate diverse tactile emotions and gestures. Using chain prompts within a Large Language Model (LLM), we generated distinct 10-second vibration patterns corresponding to 10 emotions (e.g., happiness, sadness, fear) and 6 touch gestures (e.g., pat, rub, tap). Participants (N = 32) then rated each vibration stimulus based on perceived valence and arousal. People are accurate at recognising intended emotions, a result which aligns with earlier findings. These results highlight the LLM's ability to generate emotional haptic data and effectively convey emotions through tactile signals. By translating complex emotional and tactile expressions into vibratory patterns, this research demonstrates how LLMs can enhance physical interaction between humans and robots.
☆ Improving Incremental Nonlinear Dynamic Inversion Robustness Using Robust Control in Aerial Robotics
Improving robustness to uncertainty and rejection of external disturbances represents a significant challenge in aerial robotics. Nonlinear controllers based on Incremental Nonlinear Dynamic Inversion (INDI), known for their ability in estimating disturbances through measured-filtered data, have been notably used in such applications. Typically, these controllers comprise two cascaded loops: an inner loop employing nonlinear dynamic inversion and an outer loop generating the virtual control inputs via linear controllers. In this paper, a novel methodology is introduced, that combines the advantages of INDI with the robustness of linear structured $\mathcal{H}_\infty$ controllers. A full cascaded architecture is proposed to control the dynamics of a multirotor drone, covering both stabilization and guidance. In particular, low-order $\mathcal{H}_\infty$ controllers are designed for the outer loop by properly structuring the problem and solving it through non-smooth optimization. A comparative analysis is conducted between an existing INDI/PD approach and the proposed INDI/$\mathcal{H}_\infty$ strategy, showing a notable enhancement in the rejection of external disturbances. It is carried out first using MATLAB simulations involving a nonlinear model of a Parrot Bebop quadcopter drone, and then experimentally using a customized quadcopter built by the ENAC team. The results show an improvement of more than 50\% in the rejection of disturbances such as gusts.
☆ Temperature Driven Multi-modal/Single-actuated Soft Finger
Soft pneumatic fingers are of great research interest. However, their significant potential is limited as most of them can generate only one motion, mostly bending. The conventional design of soft fingers does not allow them to switch to another motion mode. In this paper, we developed a novel multi-modal and single-actuated soft finger where its motion mode is switched by changing the finger's temperature. Our soft finger is capable of switching between three distinctive motion modes: bending, twisting, and extension-in approximately five seconds. We carried out a detailed experimental study of the soft finger and evaluated its repeatability and range of motion. It exhibited repeatability of around one millimeter and a fifty percent larger range of motion than a standard bending actuator. We developed an analytical model for a fiber-reinforced soft actuator for twisting motion. This helped us relate the input pressure to the output twist radius of the twisting motion. This model was validated by experimental verification. Further, a soft robotic gripper with multiple grasp modes was developed using three actuators. This gripper can adapt to and grasp objects of a large range of size, shape, and stiffness. We showcased its grasping capabilities by successfully grasping a small berry, a large roll, and a delicate tofu cube.
☆ Multi-face emotion detection for effective Human-Robot Interaction
The integration of dialogue interfaces in mobile devices has become ubiquitous, providing a wide array of services. As technology progresses, humanoid robots designed with human-like features to interact effectively with people are gaining prominence, and the use of advanced human-robot dialogue interfaces is continually expanding. In this context, emotion recognition plays a crucial role in enhancing human-robot interaction by enabling robots to understand human intentions. This research proposes a facial emotion detection interface integrated into a mobile humanoid robot, capable of displaying real-time emotions from multiple individuals on a user interface. To this end, various deep neural network models for facial expression recognition were developed and evaluated under consistent computer-based conditions, yielding promising results. Afterwards, a trade-off between accuracy and memory footprint was carefully considered to effectively implement this application on a mobile humanoid robot.
comment: 9 pages, 8 figures and 1 table. Accepted at the 17th International Conference on Agents and Artificial Intelligence (ICAART 2025), Porto, Portugal
☆ Evaluating Robotic Approach Techniques for the Insertion of a Straight Instrument into a Vitreoretinal Surgery Trocar
Advances in vitreoretinal robotic surgery enable precise techniques for gene therapies. This study evaluates three robotic approaches using the 7-DoF robotic arm for docking a micro-precise tool to a trocar: fully co-manipulated, hybrid co-manipulated/teleoperated, and hybrid with camera assistance. The fully co-manipulated approach was the fastest but had a 42% success rate. Hybrid methods showed higher success rates (91.6% and 100%) and completed tasks within 2 minutes. NASA Task Load Index (TLX) assessments indicated lower physical demand and effort for hybrid approaches.
comment: 2 Pages, 2 Figures, 1 Table
☆ ROSAnnotator: A Web Application for ROSBag Data Analysis in Human-Robot Interaction
Human-robot interaction (HRI) is an interdisciplinary field that utilises both quantitative and qualitative methods. While ROSBags, a file format within the Robot Operating System (ROS), offer an efficient means of collecting temporally synched multimodal data in empirical studies with real robots, there is a lack of tools specifically designed to integrate qualitative coding and analysis functions with ROSBags. To address this gap, we developed ROSAnnotator, a web-based application that incorporates a multimodal Large Language Model (LLM) to support both manual and automated annotation of ROSBag data. ROSAnnotator currently facilitates video, audio, and transcription annotations and provides an open interface for custom ROS messages and tools. By using ROSAnnotator, researchers can streamline the qualitative analysis process, create a more cohesive analysis pipeline, and quickly access statistical summaries of annotations, thereby enhancing the overall efficiency of HRI data analysis. https://github.com/CHRI-Lab/ROSAnnotator
comment: Accepted to HRI 2025
☆ Sthymuli: a Static Educational Robot. Leveraging the Thymio II Platform ICRA40
The use of robots in education represents a challenge for teachers and a fixed vision of what robots can do for students. This paper presents the development of Sthymuli, a static educational robot designed to explore new classroom interactions between robots, students and teachers. We propose the use of the Thymio II educational platform as a base, ensuring a robust benchmark for a fair comparison of the commonly available wheeled robots and our exploratory approach with Sthymuli. This paper outlines the constraints and requirements for developing such a robot, the current state of development and future work.
comment: Two pages, three figures. ICRA40 extended abstract
☆ Motion Tracks: A Unified Representation for Human-Robot Transfer in Few-Shot Imitation Learning
Teaching robots to autonomously complete everyday tasks remains a challenge. Imitation Learning (IL) is a powerful approach that imbues robots with skills via demonstrations, but is limited by the labor-intensive process of collecting teleoperated robot data. Human videos offer a scalable alternative, but it remains difficult to directly train IL policies from them due to the lack of robot action labels. To address this, we propose to represent actions as short-horizon 2D trajectories on an image. These actions, or motion tracks, capture the predicted direction of motion for either human hands or robot end-effectors. We instantiate an IL policy called Motion Track Policy (MT-pi) which receives image observations and outputs motion tracks as actions. By leveraging this unified, cross-embodiment action space, MT-pi completes tasks with high success given just minutes of human video and limited additional robot demonstrations. At test time, we predict motion tracks from two camera views, recovering 6DoF trajectories via multi-view synthesis. MT-pi achieves an average success rate of 86.5% across 4 real-world tasks, outperforming state-of-the-art IL baselines which do not leverage human data or our action space by 40%, and generalizes to scenarios seen only in human videos. Code and videos are available on our website https://portal-cornell.github.io/motion_track_policy/.
☆ Hand-Object Contact Detection using Grasp Quality Metrics
We propose a novel hand-object contact detection system based on grasp quality metrics extracted from object and hand poses, and evaluated its performance using the DexYCB dataset. Our evaluation demonstrated the system's high accuracy (approaching 90%). Future work will focus on a real-time implementation using vision-based estimation, and integrating it to a robot-to-human handover system.
comment: Submitted to the 2025 IEEE/ACM International Conference on Human-Robot Interaction (HRI'25)
☆ Testing Human-Hand Segmentation on In-Distribution and Out-of-Distribution Data in Human-Robot Interactions Using a Deep Ensemble Model
Reliable detection and segmentation of human hands are critical for enhancing safety and facilitating advanced interactions in human-robot collaboration. Current research predominantly evaluates hand segmentation under in-distribution (ID) data, which reflects the training data of deep learning (DL) models. However, this approach fails to address out-of-distribution (OOD) scenarios that often arise in real-world human-robot interactions. In this study, we present a novel approach by evaluating the performance of pre-trained DL models under both ID data and more challenging OOD scenarios. To mimic realistic industrial scenarios, we designed a diverse dataset featuring simple and cluttered backgrounds with industrial tools, varying numbers of hands (0 to 4), and hands with and without gloves. For OOD scenarios, we incorporated unique and rare conditions such as finger-crossing gestures and motion blur from fast-moving hands, addressing both epistemic and aleatoric uncertainties. To ensure multiple point of views (PoVs), we utilized both egocentric cameras, mounted on the operator's head, and static cameras to capture RGB images of human-robot interactions. This approach allowed us to account for multiple camera perspectives while also evaluating the performance of models trained on existing egocentric datasets as well as static-camera datasets. For segmentation, we used a deep ensemble model composed of UNet and RefineNet as base learners. Performance evaluation was conducted using segmentation metrics and uncertainty quantification via predictive entropy. Results revealed that models trained on industrial datasets outperformed those trained on non-industrial datasets, highlighting the importance of context-specific training. Although all models struggled with OOD scenarios, those trained on industrial datasets demonstrated significantly better generalization.
☆ Autonomous Electrochemistry Platform with Real-Time Normality Testing of Voltammetry Measurements Using ML
Electrochemistry workflows utilize various instruments and computing systems to execute workflows consisting of electrocatalyst synthesis, testing and evaluation tasks. The heterogeneity of the software and hardware of these ecosystems makes it challenging to orchestrate a complete workflow from production to characterization by automating its tasks. We propose an autonomous electrochemistry computing platform for a multi-site ecosystem that provides the services for remote experiment steering, real-time measurement transfer, and AI/ML-driven analytics. We describe the integration of a mobile robot and synthesis workstation into the ecosystem by developing custom hub-networks and software modules to support remote operations over the ecosystem's wireless and wired networks. We describe a workflow task for generating I-V voltammetry measurements using a potentiostat, and a machine learning framework to ensure their normality by detecting abnormal conditions such as disconnected electrodes. We study a number of machine learning methods for the underlying detection problem, including smooth, non-smooth, structural and statistical methods, and their fusers. We present experimental results to illustrate the effectiveness of this platform, and also validate the proposed ML method by deriving its rigorous generalization equations.
comment: 10 pages, 14 figures, accepted in the IEEE 20th International Conference on e-Science (e-Science), 2024
♻ ☆ Few-Shot Task Learning through Inverse Generative Modeling
Learning the intents of an agent, defined by its goals or motion style, is often extremely challenging from just a few examples. We refer to this problem as task concept learning and present our approach, Few-Shot Task Learning through Inverse Generative Modeling (FTL-IGM), which learns new task concepts by leveraging invertible neural generative models. The core idea is to pretrain a generative model on a set of basic concepts and their demonstrations. Then, given a few demonstrations of a new concept (such as a new goal or a new action), our method learns the underlying concepts through backpropagation without updating the model weights, thanks to the invertibility of the generative model. We evaluate our method in five domains -- object rearrangement, goal-oriented navigation, motion caption of human actions, autonomous driving, and real-world table-top manipulation. Our experimental results demonstrate that via the pretrained generative model, we successfully learn novel concepts and generate agent plans or motion corresponding to these concepts in (1) unseen environments and (2) in composition with training concepts.
comment: Added acknowledgment
♻ ☆ Accelerating genetic optimization of nonlinear model predictive control by learning optimal search space size
Genetic algorithm (GA) is typically used to solve nonlinear model predictive control's optimization problem. However, the size of the search space in which the GA searches for the optimal control inputs is crucial for its applicability to fast-response systems. This paper proposes accelerating the genetic optimization of NMPC by learning optimal search space size. The approach trains a multivariate regression model to adaptively predict the best smallest size of the search space in every control cycle. The proposed approach reduces the GA's computational time, improves the chance of convergence to better control inputs, and provides a stable and feasible solution. The proposed approach was evaluated on three nonlinear systems and compared to four other evolutionary algorithms implemented in a processor-in-the-loop fashion. The results show that the proposed approach provides a 17-45\% reduction in computational time and increases the convergence rate by 35-47\%. The source code is available on GitHub.
comment: Accepted by the Journal of Control and Decision
♻ ☆ Geometric Freeze-Tag Problem
We study the Freeze-Tag Problem (FTP), introduced by Arkin et al. (SODA'02), where the objective is to activate a group of n robots, starting from a single initially active robot. Robots are positioned in $\mathbb{R}^d$, and once activated, they move at a constant speed to wake up others. The goal is to minimize the time required to activate the last robot, known as the makespan. We establish new upper bounds for the makespan under the $l_1$ and $l_2$ norms in $\mathbb{R}^2$ and $\mathbb{R}^3$. Specifically, we improve the previous upper bound for $(\mathbb{R}^2, l_2)$ from $7.07r$ (Bonichon et al., DISC'24) to $5.064r$. For $(\mathbb{R}^3, l_1)$, we derive a makespan bound of $13r$, which translates to $22.52r$ for $(\mathbb{R}^3, l_2)$. Here, $r$ denotes the maximum distance of any robot from the initially active robot under the given norm. To our knowledge, these are the first makespan bounds for FTP in $\mathbb{R}^3$. Additionally, we show that the maximum makespan for $n$ robots is not necessarily achieved when robots are equally distributed along the boundary in $(\mathbb{R}^2, l_2)$. We further investigate FTP in $(\mathbb{R}^3, l_2)$ for specific configurations where robots lie on a boundary, providing insights into practical scenarios.
♻ ☆ QuadWBG: Generalizable Quadrupedal Whole-Body Grasping
Legged robots with advanced manipulation capabilities have the potential to significantly improve household duties and urban maintenance. Despite considerable progress in developing robust locomotion and precise manipulation methods, seamlessly integrating these into cohesive whole-body control for real-world applications remains challenging. In this paper, we present a modular framework for robust and generalizable whole-body loco-manipulation controller based on a single arm-mounted camera. By using reinforcement learning (RL), we enable a robust low-level policy for command execution over 5 dimensions (5D) and a grasp-aware high-level policy guided by a novel metric, Generalized Oriented Reachability Map (GORM). The proposed system achieves state-of-the-art one-time grasping accuracy of 89% in the real world, including challenging tasks such as grasping transparent objects. Through extensive simulations and real-world experiments, we demonstrate that our system can effectively manage a large workspace, from floor level to above body height, and perform diverse whole-body loco-manipulation tasks.
♻ ☆ SyncDiff: Synchronized Motion Diffusion for Multi-Body Human-Object Interaction Synthesis
Synthesizing realistic human-object interaction motions is a critical problem in VR/AR and human animation. Unlike the commonly studied scenarios involving a single human or hand interacting with one object, we address a more generic multi-body setting with arbitrary numbers of humans, hands, and objects. This complexity introduces significant challenges in synchronizing motions due to the high correlations and mutual influences among bodies. To address these challenges, we introduce SyncDiff, a novel method for multi-body interaction synthesis using a synchronized motion diffusion strategy. SyncDiff employs a single diffusion model to capture the joint distribution of multi-body motions. To enhance motion fidelity, we propose a frequency-domain motion decomposition scheme. Additionally, we introduce a new set of alignment scores to emphasize the synchronization of different body motions. SyncDiff jointly optimizes both data sample likelihood and alignment likelihood through an explicit synchronization strategy. Extensive experiments across four datasets with various multi-body configurations demonstrate the superiority of SyncDiff over existing state-of-the-art motion synthesis methods.
♻ ☆ An Adaptive Sliding Window Estimator for Positioning of Unmanned Aerial Vehicle Using a Single Anchor
Localization using a single range anchor combined with onboard optical-inertial odometry offers a lightweight solution that provides multidimensional measurements for the positioning of unmanned aerial vehicles. Unfortunately, the performance of such lightweight sensors varies with the dynamic environment, and the fidelity of the dynamic model is also severely affected by environmental aerial flow. To address this challenge, we propose an adaptive sliding window estimator equipped with an estimation reliability evaluator, where the states, noise covariance matrices and aerial drag are estimated simultaneously. The aerial drag effects are first evaluated based on posterior states and covariance. Then, an augmented Kalman filter is designed to pre-process multidimensional measurements and inherit historical information. Subsequently, an inverse-Wishart smoother is employed to estimate posterior states and covariance matrices. To further suppress potential divergence, a reliability evaluator is devised to infer estimation errors. We further determine the fidelity of each sensor based on the error propagation. Extensive experiments are conducted in both standard and harsh environments, demonstrating the adaptability and robustness of the proposed method. The root mean square error reaches 0.15 m, outperforming the state-of-the-art approach.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ Walk along: An Experiment on Controlling the Mobile Robot 'Spot' with Voice and Gestures
Robots are becoming more capable and can autonomously perform tasks such as navigating between locations. However, human oversight remains crucial. This study compared two touchless methods for directing mobile robots: voice control and gesture control, to investigate the efficiency of the methods and the preference of users. We tested these methods in two conditions: one in which participants remained stationary and one in which they walked freely alongside the robot. We hypothesized that walking alongside the robot would result in higher intuitiveness ratings and improved task performance, based on the idea that walking promotes spatial alignment and reduces the effort required for mental rotation. In a 2x2 within-subject design, 218 participants guided the quadruped robot Spot along a circuitous route with multiple 90-degree turns using rotate left, rotate right, and walk forward commands. After each trial, participants rated the intuitiveness of the command mapping, while post-experiment interviews were used to gather the participants' preferences. Results showed that voice control combined with walking with Spot was the most favored and intuitive, whereas gesture control while standing caused confusion for left/right commands. Nevertheless, 29% of participants preferred gesture control, citing increased task engagement and visual congruence as reasons. An odometry-based analysis revealed that participants often followed behind Spot, particularly in the gesture control condition, when they were allowed to walk. In conclusion, voice control with walking produced the best outcomes. Improving physical ergonomics and adjusting gesture types could make gesture control more effective.
♻ ☆ Adaptive Non-linear Centroidal MPC with Stability Guarantees for Robust Locomotion of Legged Robots
Nonlinear model predictive locomotion controllers based on the reduced centroidal dynamics are nowadays ubiquitous in legged robots. These schemes, even if they assume an inherent simplification of the robot's dynamics, were shown to endow robots with a step-adjustment capability in reaction to small pushes, and, moreover, in the case of uncertain parameters - as unknown payloads - they were shown to be able to provide some practical, albeit limited, robustness. In this work, we provide rigorous certificates of their closed loop stability via a reformulation of the centroidal MPC controller. This is achieved thanks to a systematic procedure inspired by the machinery of adaptive control, together with ideas coming from Control Lyapunov functions. Our reformulation, in addition, provides robustness for a class of unmeasured constant disturbances. To demonstrate the generality of our approach, we validated our formulation on a new generation of humanoid robots - the 56.7 kg ergoCub, as well as on a commercially available 21 kg quadruped robot, Aliengo.
♻ ☆ From Underground Mines to Offices: A Versatile and Robust Framework for Range-Inertial SLAM
Simultaneous Localization and Mapping (SLAM) is an essential component of autonomous robotic applications and self-driving vehicles, enabling them to understand and operate in their environment. Many SLAM systems have been proposed in the last decade, but they are often complex to adapt to different settings or sensor setups. In this work, we present LiDAR Graph-SLAM (LG-SLAM), a versatile range-inertial SLAM framework that can be adapted to different types of sensors and environments, from underground mines to offices with minimal parameter tuning. Our system integrates range, inertial and GNSS measurements into a graph-based optimization framework. We also use a refined submap management approach and a robust loop closure method that effectively accounts for uncertainty in the identification and validation of putative loop closures, ensuring global consistency and robustness. Enabled by a parallelized architecture and GPU integration, our system achieves pose estimation at LiDAR frame rate, along with online loop closing and graph optimization. We validate our system in diverse environments using public datasets and real-world data, consistently achieving an average error below 20 cm and outperforming other state-of-the-art algorithms.
comment: 8 pages, 8 figures, 3 tables
♻ ☆ LLaMAR: Long-Horizon Planning for Multi-Agent Robots in Partially Observable Environments
The ability of Language Models (LMs) to understand natural language makes them a powerful tool for parsing human instructions into task plans for autonomous robots. Unlike traditional planning methods that rely on domain-specific knowledge and handcrafted rules, LMs generalize from diverse data and adapt to various tasks with minimal tuning, acting as a compressed knowledge base. However, LMs in their standard form face challenges with long-horizon tasks, particularly in partially observable multi-agent settings. We propose an LM-based Long-Horizon Planner for Multi-Agent Robotics (LLaMAR), a cognitive architecture for planning that achieves state-of-the-art results in long-horizon tasks within partially observable environments. LLaMAR employs a plan-act-correct-verify framework, allowing self-correction from action execution feedback without relying on oracles or simulators. Additionally, we present MAP-THOR, a comprehensive test suite encompassing household tasks of varying complexity within the AI2-THOR environment. Experiments show that LLaMAR achieves a 30% higher success rate than other state-of-the-art LM-based multi-agent planners in MAP-THOR and Search \& Rescue tasks. Code can be found at https://github.com/nsidn98/LLaMAR
comment: 27 pages, 4 figures, 5 tables
♻ ☆ Map Imagination Like Blind Humans: Group Diffusion Model for Robotic Map Generation
Can robots imagine or generate maps like humans do, especially when only limited information can be perceived like blind people? To address this challenging task, we propose a novel group diffusion model (GDM) based architecture for robots to generate point cloud maps with very limited input information.Inspired from the blind humans' natural capability of imagining or generating mental maps, the proposed method can generate maps without visual perception data or depth data. With additional limited super-sparse spatial positioning data, like the extra contact-based positioning information the blind individuals can obtain, the map generation quality can be improved even more.Experiments on public datasets are conducted, and the results indicate that our method can generate reasonable maps solely based on path data, and produce even more refined maps upon incorporating exiguous LiDAR data.Compared to conventional mapping approaches, our novel method significantly mitigates sensor dependency, enabling the robots to imagine and generate elementary maps without heavy onboard sensory devices.
♻ ☆ Robot Error Awareness Through Human Reactions: Implementation, Evaluation, and Recommendations
Effective error detection is crucial to prevent task disruption and maintain user trust. Traditional methods often rely on task-specific models or user reporting, which can be inflexible or slow. Recent research suggests social signals, naturally exhibited by users in response to robot errors, can enable more flexible, timely error detection. However, most studies rely on post hoc analysis, leaving their real-time effectiveness uncertain and lacking user-centric evaluation. In this work, we developed a proactive error detection system that combines user behavioral signals (facial action units and speech), user feedback, and error context for automatic error detection. In a study (N = 28), we compared our proactive system to a status quo reactive approach. Results show our system 1) reliably and flexibly detects error, 2) detects errors faster than the reactive approach, and 3) is perceived more favorably by users than the reactive one. We discuss recommendations for enabling robot error awareness in future HRI systems.
♻ ☆ Efficient Estimation of Relaxed Model Parameters for Robust UAV Trajectory Optimization
Online trajectory optimization and optimal control methods are crucial for enabling sustainable unmanned aerial vehicle (UAV) services, such as agriculture, environmental monitoring, and transportation, where available actuation and energy are limited. However, optimal controllers are highly sensitive to model mismatch, which can occur due to loaded equipment, packages to be delivered, or pre-existing variability in fundamental structural and thrust-related parameters. To circumvent this problem, optimal controllers can be paired with parameter estimators to improve their trajectory planning performance and perform adaptive control. However, UAV platforms are limited in terms of onboard processing power, oftentimes making nonlinear parameter estimation too computationally expensive to consider. To address these issues, we propose a relaxed, affine-in-parameters multirotor model along with an efficient optimal parameter estimator. We convexify the nominal Moving Horizon Parameter Estimation (MHPE) problem into a linear-quadratic form (LQ-MHPE) via an affine-in-parameter relaxation on the nonlinear dynamics, resulting in fast quadratic programs (QPs) that facilitate adaptive Model Predictve Control (MPC) in real time. We compare this approach to the equivalent nonlinear estimator in Monte Carlo simulations, demonstrating a decrease in average solve time and trajectory optimality cost by 98.2% and 23.9-56.2%, respectively.
comment: 8 pages, 5 figures, to be published in IEEE Sustech 2025
♻ ☆ A Mixed-Integer Conic Program for the Moving-Target Traveling Salesman Problem based on a Graph of Convex Sets
This paper introduces a new formulation that finds the optimum for the Moving-Target Traveling Salesman Problem (MT-TSP), which seeks to find a shortest path for an agent, that starts at a depot, visits a set of moving targets exactly once within their assigned time-windows, and returns to the depot. The formulation relies on the key idea that when the targets move along lines, their trajectories become convex sets within the space-time coordinate system. The problem then reduces to finding the shortest path within a graph of convex sets, subject to some speed constraints. We compare our formulation with the current state-of-the-art Mixed Integer Conic Program (MICP) solver for the MT-TSP. The experimental results show that our formulation outperforms the MICP for instances with up to 20 targets, with up to two orders of magnitude reduction in runtime, and up to a 60\% tighter optimality gap. We also show that the solution cost from the convex relaxation of our formulation provides significantly tighter lower bounds for the MT-TSP than the ones from the MICP.
comment: 7 pages, 4 figures
♻ ☆ Exploiting Chordal Sparsity for Fast Global Optimality with Application to Localization SP
In recent years, many estimation problems in robotics have been shown to be solvable to global optimality using their semidefinite relaxations. However, the runtime complexity of off-the-shelf semidefinite programming (SDP) solvers is up to cubic in problem size, which inhibits real-time solutions of problems involving large state dimensions. We show that for a large class of problems, namely those with chordal sparsity, we can reduce the complexity of these solvers to linear in problem size. In particular, we show how to replace the large positive-semidefinite variable with a number of smaller interconnected ones using the well-known chordal decomposition. This formulation also allows for the straightforward application of the alternating direction method of multipliers (ADMM), which can exploit parallelism for increased scalability. We show for two example problems in simulation that the chordal solvers provide a significant speed-up over standard SDP solvers, and that global optimality is crucial in the absence of good initializations.
comment: 21 pages, 6 figures. Version history: v1: initial arXiv, v2: WAFR submission, v3: correction, v4: WAFR conference-ready, v5: WAFR SPAR journal version
Systems and Control 38
☆ Digital Twin for Smart Societies: A Catalyst for Inclusive and Accessible Healthcare
With rapid digitization and digitalization, drawing a fine line between the digital and the physical world has become nearly impossible. It has become essential more than ever to integrate all spheres of life into a single Digital Thread to address pressing challenges of modern society: accessible and inclusive healthcare in terms of equality and equity. Techno-social advancements and mutual acceptance have enabled the infusion of digital models to simulate social settings with minimum resource utilization to make effective decisions. However, a significant gap exists in feeding back the models with appropriate real-time changes. In other words, active behavioral modeling of modern society is lacking, influencing community healthcare as a whole. By creating virtual replicas of (physical) behavioral systems, digital twins can enable real-time monitoring, simulation, and optimization of urban dynamics. This paper explores the potential of digital twins to promote inclusive healthcare for evolving smart cities. We argue that digital twins can be used to: Identify and address disparities in access to healthcare services, Facilitate community participation, Simulate the impact of urban policies and interventions on different groups of people, and Aid policy-making bodies for better access to healthcare. This paper proposes several ways to use digital twins to stitch the actual and virtual societies. Several discussed concepts within this framework envision an active, integrated, and synchronized community aware of data privacy and security. The proposal also provides high-level step-wise transitions that will enable this transformation.
comment: 13 pages, 1 figure. This is accepted to publish at the proceedings of the 6th International Conference on Artificial Intelligence and Applied Mathematics in Engineering (ICAIAME 2024)
☆ Determining Disturbance Recovery Conditions by Inverse Sensitivity Minimization
Power systems naturally experience disturbances, some of which can damage equipment and disrupt consumers. It is important to quickly assess the likely consequences of credible disturbances and take preventive action, if necessary. However, assessing the impact of potential disturbances is challenging because many of the influential factors, such as loading patterns, controller settings and load dynamics, are not precisely known. To address this issue, the paper introduces the concept of parameter-space recovery regions. For each disturbance, the corresponding recovery region is the region of parameter space for which the system will recover to the desired operating point. The boundary of the recovery region establishes the separation between parameter values that result in trouble-free recovery and those that incur undesirable non-recovery. The safety margin for a given set of parameter values is defined as the smallest distance (in parameter space) between the given values and the recovery boundary. Novel numerical algorithms with theoretical guarantees are presented for efficiently computing recovery boundaries and safety margins. Unlike prior methods, which tend to be overly conservative and restricted to low dimensional parameter space, these methods compute safety margins to arbitrary user-specified accuracy and do so efficiently in high dimensional parameter space. The efficacy of the methods is demonstrated using the IEEE 39-bus benchmark power system, where safety margins are computed for cases that consider up to 86 parameters, and reveal unexpected safety implications that would not have been observed otherwise.
comment: 9 pages
☆ Computing Safety Margins of Parameterized Nonlinear Systems for Vulnerability Assessment via Trajectory Sensitivities
Physical systems experience nonlinear disturbances which have the potential to disrupt desired behavior. For a particular disturbance, whether or not the system recovers from the disturbance to a desired stable equilibrium point depends on system parameter values, which are typically uncertain and time-varying. Therefore, to quantify proximity to vulnerability we define the safety margin to be the smallest change in parameter values from a nominal value such that the system will no longer be able to recover from the disturbance. Safety margins are valuable but challenging to compute as related methods, such as those for robust region of attraction estimation, are often either overly conservative or computationally intractable for high dimensional systems. Recently, we developed algorithms to compute safety margins efficiently and non-conservatively by exploiting the large sensitivity of the system trajectory near the region of attraction boundary to small perturbations. Although these algorithms have enjoyed empirical success, they lack theoretical guarantees that would ensure their generalizability. This work develops a novel characterization of safety margins in terms of trajectory sensitivities, and uses this to derive well-posedness and convergence guarantees for these algorithms, enabling their generalizability and successful application to a large class of nonlinear systems.
comment: 16 pages
☆ Encrypted Computation of Collision Probability for Secure Satellite Conjunction Analysis
The computation of collision probability ($\mathcal{P}_c$) is crucial for space environmentalism and sustainability by providing decision-making knowledge that can prevent collisions between anthropogenic space objects. However, the accuracy and precision of $\mathcal{P}_c$ computations is often compromised by limitations in computational resources and data availability. While significant improvements have been made in the computational aspects, the rising concerns regarding the privacy of collaborative data sharing can be a major limiting factor in the future conjunction analysis and risk assessment, especially as the space environment grows increasingly privatized, competitive, and fraught with conflicting strategic interests. This paper argues that the importance of privacy measures in space situational awareness (SSA) is underappreciated, and regulatory and compliance measures currently in place are not sufficient by themselves, presenting a significant gap. To address this gap, we introduce a novel encrypted architecture that leverages advanced cryptographic techniques, including homomorphic encryption (HE) and multi-party computation (MPC), to safeguard the privacy of entities computing space sustainability metrics, inter alia, $\mathcal{P}_c$. Our proposed protocol, Encrypted $\mathcal{P}_c$, integrates the Monte Carlo estimation algorithm with cryptographic solutions, enabling secure collision probability computation without exposing sensitive or proprietary information. This research advances secure conjunction analysis by developing a secure MPC protocol for $\mathcal{P}_c$ computation and highlights the need for innovative protocols to ensure a more secure and cooperative SSA landscape.
☆ A Linear Parameter-Varying Framework for the Analysis of Time-Varying Optimization Algorithms
In this paper we propose a framework to analyze iterative first-order optimization algorithms for time-varying convex optimization. We assume that the temporal variability is caused by a time-varying parameter entering the objective, which can be measured at the time of decision but whose future values are unknown. We consider the case of strongly convex objective functions with Lipschitz continuous gradients and address the class of running algorithms where only one iteration per time change is performed. We model these algorithms as discrete-time linear parameter varying (LPV) systems in feedback with a time-varying gradient. We leverage the approach of analyzing algorithms as uncertain control interconnections with integral quadratic constraints (IQCs) and generalize that framework to the time-varying case. We propose novel IQCs that are capable of capturing the behavior of time-varying nonlinearities and leverage techniques from the LPV literature to establish novel bounds on the tracking error. Quantitative bounds can be computed by solving a semi-definite program and can be interpreted as an input-to-state stability result with respect to a disturbance signal which increases with the temporal variability of the problem. As a departure from results in this research area, our bounds introduce terms that can be interpreted as a temporal rate of change in the cost function and the optimal value. We exemplify our main results with numerical experiments that showcase how our analysis framework is able to capture convergence rates of different first-order algorithms for time-varying optimization through the choice of IQC and rate bounds.
☆ An Extended Survey and a Comparison Framework for Dataflow Models of Computation and Communication
Dataflow Model of Computation and Communications (DF MoCCs) is a formalism used to specify the behavior of Cyber-Physical Systems (CPSs). DF MoCCs are widely used in the design of CPSs, as they provide a high-level of abstraction to specify the system's behavior. DF MoCCs rules give semantics to a dataflow specification of a CPS, and static analysis algorithms rely on these semantics to guarantee safety properties of the dataflow specification, such as bounded memory usage and deadlock freeness. A wide range of DF MoCCs exists, each with its own characteristics and static analyses. This paper presents a survey of those DF MoCCs and a classification in eight categories. In addition, DF MoCCs are characterized by a comprehensive list of features and static analyses, which reflect their expressiveness and analyzability. Based on this characterization, a framework is proposed to compare the expressiveness and the analyzability of DF MoCCs quantitatively.
☆ Interpretable machine-learning for predicting molecular weight of PLA based on artificial bee colony optimization algorithm and adaptive neurofuzzy inference system
This article discusses the integration of the Artificial Bee Colony (ABC) algorithm with two supervised learning methods, namely Artificial Neural Networks (ANNs) and Adaptive Network-based Fuzzy Inference System (ANFIS), for feature selection from Near-Infrared (NIR) spectra for predicting the molecular weight of medical-grade Polylactic Acid (PLA). During extrusion processing of PLA, in-line NIR spectra were captured along with extrusion process and machine setting data. With a dataset comprising 63 observations and 512 input features, appropriate machine learning tools are essential for interpreting data and selecting features to improve prediction accuracy. Initially, the ABC optimization algorithm is coupled with ANN/ANFIS to forecast PLA molecular weight. The objective functions of the ABC algorithm are to minimize the root mean square error (RMSE) between experimental and predicted PLA molecular weights while also minimizing the number of input features. Results indicate that employing ABC-ANFIS yields the lowest RMSE of 282 Da and identifies four significant parameters (NIR wavenumbers 6158 cm-1, 6310 cm-1, 6349 cm-1, and melt temperature) for prediction. These findings demonstrate the effectiveness of using the ABC algorithm with ANFIS for selecting a minimal set of features to predict PLA molecular weight with high accuracy during processing
Pre-Trained Large Language Model Based Remaining Useful Life Transfer Prediction of Bearing
Accurately predicting the remaining useful life (RUL) of rotating machinery, such as bearings, is essential for ensuring equipment reliability and minimizing unexpected industrial failures. Traditional data-driven deep learning methods face challenges in practical settings due to inconsistent training and testing data distributions and limited generalization for long-term predictions.
☆ Real-time Mode-Aware Dataflow: A Dataflow Model to Specify and Analyze Mode-dependent CPSs under Relaxed Timing Constraints
Modern Cyber-Physical Systems (CPS) often exhibit both relaxed real-time constraints and a mode-dependent execution. Relaxed real-time constraints mean that only a subset of the processes of a CPS have real-time constraints, and a mode-dependent CPS has conditional execution branches. Static analysis tools, such as the PolyGraph model (a formalism extending the Cyclo-Static Dataflow model with real-time constraints), can specify and analyze systems with relaxed real-time constraints. However, PolyGraph is limited in its ability to specify and analyze mode-dependent CPSs. This paper extends PolyGraph with routing actors, yielding the Routed PolyGraph model. This model is further extended to the Real-time Mode-Aware Dataflow (RMDF), which both leverages routing actors and incorporates a new dataflow actor to specify mode-dependent CPSs under relaxed real-time constraints. This paper also extends the static analyses of PolyGraph to RMDF. We showcase the application of RMDF with a specification and an analysis (derivation of timing constraints at the job-level and a feasibility test) of the vision processing system of the Ingenuity Mars helicopter.
☆ Evaluating Robotic Approach Techniques for the Insertion of a Straight Instrument into a Vitreoretinal Surgery Trocar
Advances in vitreoretinal robotic surgery enable precise techniques for gene therapies. This study evaluates three robotic approaches using the 7-DoF robotic arm for docking a micro-precise tool to a trocar: fully co-manipulated, hybrid co-manipulated/teleoperated, and hybrid with camera assistance. The fully co-manipulated approach was the fastest but had a 42% success rate. Hybrid methods showed higher success rates (91.6% and 100%) and completed tasks within 2 minutes. NASA Task Load Index (TLX) assessments indicated lower physical demand and effort for hybrid approaches.
comment: 2 Pages, 2 Figures, 1 Table
☆ Implementing LoRa MIMO System for Internet of Things
Bandwidth constraints limit LoRa implementations. Contemporary IoT applications require higher throughput than that provided by LoRa. This work introduces a LoRa Multiple Input Multiple Output (MIMO) system and a spatial multiplexing algorithm to address LoRa's bandwidth limitation. The transceivers in the proposed approach modulate the signals on distinct frequencies of the same LoRa band. A Frequency Division Multiplexing (FDM) method is used at the transmitters to provide a wider MIMO channel. Unlike conventional Orthogonal Frequency Division Multiplexing (OFDM) techniques, this work exploits the orthogonality of the LoRa signals facilitated by its proprietary Chirp Spread Spectrum (CSS) modulation to perform an OFDM in the proposed LoRa MIMO system. By varying the Spreading Factor (SF) and bandwidth of LoRa signals, orthogonal signals can transmit on the same frequency irrespective of the FDM. Even though the channel correlation is minimal for different spreading factors and bandwidths, different Carrier Frequencies (CF) ensure the signals do not overlap and provide additional degrees of freedom. This work assesses the proposed model's performance and conducts an extensive analysis to provide an overview of resources consumed by the proposed system. Finally, this work provides the detailed results of a thorough evaluation of the model on test hardware.
comment: 8 pages, 7 figures
☆ A Federated Deep Learning Framework for Cell-Free RSMA Networks
Next-generation wireless networks are poised to benefit significantly from the integration of three key technologies (KTs): Rate-Splitting Multiple Access (RSMA), cell-free architectures, and federated learning. Each of these technologies offers distinct advantages in terms of security, robustness, and distributed structure. In this paper, we propose a novel cell-free network architecture that incorporates RSMA and employs machine learning techniques within a federated framework. This combination leverages the strengths of each KT, creating a synergistic effect that maximizes the benefits of security, robustness, and distributed structure. We formally formulate the access point (AP) selection and precoder design for max-min rate optimization in a cell-free MIMO RSMA network. Our proposed solution scheme involves a three-block procedure. The first block trains deep reinforcement learning (DRL) neural networks to obtain RSMA precoders, assuming full connectivity between APs and user equipments (UEs). The second block uses these precoders and principal component analysis (PCA) to assign APs to UEs by removing a subset of AP-UE connections. The final block fine-tunes the RSMA precoders by incorporating the associated APs into a second DRL network. To leverage the distributed nature of the cell-free network, this process is implemented in a Federated Deep Reinforcement Learning (FDRL) structure operating through the cooperation of APs and a central processing unit (CPU). Simulation results demonstrate that the proposed FDRL approach performs comparably to a benchmark centralized DRL scheme. Our FDRL approach, provides a balanced trade-off, maintaining high performance with enhanced security and reduced processing demands.
☆ Optimization with Multi-sourced Reference Information and Unknown Trust: A Distributionally Robust Approach
In problems that involve input parameter information gathered from multiple data sources with varying reliability, incorporating users' trust about different sources in decision-optimization models can potentially improve solution performance and reliability. In this work, we propose a novel multi-reference distributionally robust optimization (MR-DRO) framework, where the model inputs are uncertain and their probability distributions can be statistically inferred from multiple data sources. Via nonparametric data fusion, we construct a Wasserstein ambiguity set to minimize the worst-case expected value of a stochastic objective function, accounting for both uncertainty and unknown reliability of information sources. We reformulate the MR-DRO model as a linear program given linear objective and constraints in the original problem. We also incorporate a dynamic trust update mechanism that adjusts the trust for each source based on its performance over time. In addition, we introduce the concept of probability dominance to identify sources with dominant trust. Via solving instances of resource allocation and portfolio optimization, we demonstrate the effectiveness of the trust-informed MR-DRO approach compared to traditional optimization frameworks relying on a single data source. Our results highlight the significance of integrating (dynamic) user trust in decision making under uncertainty, particularly when given diverse and potentially conflicting input data.
comment: 38 pages, 9 figures, 7 tables
☆ Erasing Noise in Signal Detection with Diffusion Model: From Theory to Application
In this paper, a signal detection method based on the denoise diffusion model (DM) is proposed, which outperforms the maximum likelihood (ML) estimation method that has long been regarded as the optimal signal detection technique. Theoretically, a novel mathematical theory for intelligent signal detection based on stochastic differential equations (SDEs) is established in this paper, demonstrating the effectiveness of DM in reducing the additive white Gaussian noise in received signals. Moreover, a mathematical relationship between the signal-to-noise ratio (SNR) and the timestep in DM is established, revealing that for any given SNR, a corresponding optimal timestep can be identified. Furthermore, to address potential issues with out-of-distribution inputs in the DM, we employ a mathematical scaling technique that allows the trained DM to handle signal detection across a wide range of SNRs without any fine-tuning. Building on the above theoretical foundation, we propose a DM-based signal detection method, with the diffusion transformer (DiT) serving as the backbone neural network, whose computational complexity of this method is $\mathcal{O}(n^2)$. Simulation results demonstrate that, for BPSK and QAM modulation schemes, the DM-based method achieves a significantly lower symbol error rate (SER) compared to ML estimation, while maintaining a much lower computational complexity.
☆ IEEE_TIE25: Analysis and Synthesis of DOb-based Robust Motion Controllers
By employing a unified state-space design framework, this paper proposes a novel systematic analysis and synthesis method that facilitates the implementation of both conventional zero-order (ZO) and high-order (HO) DObs. Furthermore, this design method supports the development of advanced DObs (e.g., the proposed High-Performance (HP) DOb in this paper), enabling more accurate disturbance estimation and, consequently, enhancing the robust stability and performance of motion control systems. Lyapunov direct method is employed in the discrete-time domain to analyse the stability of the proposed digital robust motion controllers. The analysis demonstrates that the proposed DObs are stable in the sense that the estimation error is uniformly ultimately bounded when subjected to bounded disturbances. Additionally, they are proven to be asymptotically stable under specific disturbance conditions, such as constant disturbances for the ZO and HP DObs. Stability constraints on the design parameters of the DObs are analytically derived, providing effective synthesis tools for the implementation of the digital robust motion controllers. The discrete-time analysis facilitates the derivation of more practical design constraints. The proposed analysis and synthesis methods have been rigorously validated through experimental evaluations, confirming their effectiveness.
comment: IEEE Transactions on Industrial Electronics 2025
☆ Global Search for Optimal Low Thrust Spacecraft Trajectories using Diffusion Models and the Indirect Method
Long time-duration low-thrust nonlinear optimal spacecraft trajectory global search is a computationally and time expensive problem characterized by clustering patterns in locally optimal solutions. During preliminary mission design, mission parameters are subject to frequent changes, necessitating that trajectory designers efficiently generate high-quality control solutions for these new scenarios. Generative machine learning models can be trained to learn how the solution structure varies with respect to a conditional parameter, thereby accelerating the global search for missions with updated parameters. In this work, state-of-the-art diffusion models are integrated with the indirect approach for trajectory optimization within a global search framework. This framework is tested on two low-thrust transfers of different complexity in the circular restricted three-body problem. By generating and analyzing a training data set, we develop mathematical relations and techniques to understand the complex structures in the costate domain of locally optimal solutions for these problems. A diffusion model is trained on this data and successfully accelerates the global search for both problems. The model predicts how the costate solution structure changes, based on the maximum spacecraft thrust magnitude. Warm-starting a numerical solver with diffusion model samples for the costates at the initial time increases the number of solutions generated per minute for problems with unseen thrust magnitudes by one to two orders of magnitude in comparison to samples from a uniform distribution and from an adjoint control transformation.
☆ The Reliability of Remotely Piloted Aircraft System Performance under Communication Loss and Latency Uncertainties
Mission-critical use of highly maneuverable Remotely Piloted Aircraft Systems (RPAS) requires a thorough understanding of the reliability of their communication systems. Investigations into system-level performance under stochastic aviation communication conditions are critical for estimating mission success rates and assessing the risks associated with integrating RPAS into existing airspace, ensuring overall aviation safety. This study aims to quantify the impact of communication latency and complete signal loss on the mission completion performance of a highly maneuverable RPAS. The mission is defined as a static waypoint tracking task in three-dimensional airspace. We start with examining and deriving mathematical formulations of key reliability metrics of Required Communication Performance (RCP). These stochastic factors are then embedded into flight control simulations (i.e., communication availability and latency) to examine the system behavior. Lastly, we generate mission success rate and mission completion time envelopes through extensive multiprocessing Monte Carlo simulations through high-performance computing. We discover a drastic deterioration in flight performance while latency or availability erodes the stability margin. In addition, we propose a new reliability metric, namely \textit{communicability}, which integrates three key RCP metrics and helps understanding the maximum tolerable latency to flight control. The procedure and results obtained from this research inform engineers designing RPAS with better trade-off between communication capability and flight control performance. Future works includes exploring alternative flight simulators (i.e., nonlinear dynamic inversion) with other missions (i.e., dynamic waypoint following), or develop delay-compensated optimal controls. The analysis on stability margin is also desired for theoretical verification.
☆ Analyzing the Role of the DSO in Electricity Trading of VPPs via a Stackelberg Game Model
The increasing penetration of distributed energy resources (DER) has sparked interest in promoting their participation in the power market. Here we consider a setting in which different virtual power plants (VPPs) with certain flexible resources take part in electricity trading, either by direct participation in the wholesale power market, or interfaced by the Distribution System Operator (DSO). Our goal is to examine the role and influence of the DSO as a stakeholder, for which we formulate a Stackelberg game via a bilevel optimization model: the DSO maximizes profits at the upper level, while VPPs minimize operating costs at the lower level. To solve this problem, we use the Karush-Kuhn-Tucke optimality conditions of the convex lower-level problems to achieve a single-level mixed-integer nonlinear program. The results show that the role of the DSO as an intermediary agent leads to a decrease in operating costs for the VPPs, while guaranteeing a profit for the DSO.
☆ Koopman Meets Limited Bandwidth: Effect of Quantization on Data-Driven Linear Prediction and Control of Nonlinear Systems
Koopman-based lifted linear identification have been widely used for data-driven prediction and model predictive control (MPC) of nonlinear systems. It has found applications in flow-control, soft robotics, and unmanned aerial vehicles (UAV). For autonomous systems, this system identification method works by embedding the nonlinear system in a higher-dimensional linear space and computing a finite-dimensional approximation of the corresponding Koopman operator with the Extended Dynamic Mode Decomposition (EDMD) algorithm. EDMD is a data-driven algorithm that estimates an approximate linear system by lifting the state data-snapshots via nonlinear dictionary functions. For control systems, EDMD is further modified to utilize both state and control data-snapshots to estimate a lifted linear predictor with control input. This article investigates how the estimation process is affected when the data is quantized. Specifically, we examine the fundamental connection between estimates of the linear predictor matrices obtained from unquantized data and those from quantized data via modified EDMD. Furthermore, using the law of large numbers, we demonstrate that, under a large data regime, the quantized estimate can be considered a regularized version of the unquantized estimate. We also explore the relationship between the two estimates in the finite data regime. We further analyze the effect of nonlinear lifting functions on this regularization due to quantization. The theory is validated through repeated numerical experiments conducted on several control systems. The effect of quantization on the MPC performance is also demonstrated.
comment: 15 pages, 4 figures. arXiv admin note: text overlap with arXiv:2410.02803
☆ Real-Time Outlier Connections Detection in Databases Network Traffic
The article describes a practical method for detecting outlier database connections in real-time. Outlier connections are detected with a specified level of confidence. The method is based on generalized security rules and a simple but effective real-time machine learning mechanism. The described method is non-intrusive to the database and does not depend on the type of database. The method is used to proactively control access even before database connection is established, minimize false positives, and maintain the required response speed to detected database connection outliers. The capabilities of the system are demonstrated with several examples of outliers in real-world scenarios.
☆ Finite Sample Identification of Partially Observed Bilinear Dynamical Systems
We consider the problem of learning a realization of a partially observed bilinear dynamical system (BLDS) from noisy input-output data. Given a single trajectory of input-output samples, we provide a finite time analysis for learning the system's Markov-like parameters, from which a balanced realization of the bilinear system can be obtained. Our bilinear system identification algorithm learns the system's Markov-like parameters by regressing the outputs to highly correlated, nonlinear, and heavy-tailed covariates. Moreover, the stability of BLDS depends on the sequence of inputs used to excite the system. These properties, unique to partially observed bilinear dynamical systems, pose significant challenges to the analysis of our algorithm for learning the unknown dynamics. We address these challenges and provide high probability error bounds on our identification algorithm under a uniform stability assumption. Our analysis provides insights into system theoretic quantities that affect learning accuracy and sample complexity. Lastly, we perform numerical experiments with synthetic data to reinforce these insights.
☆ The Ingenuity Mars Helicopter Specified and Analyzed with the Real-time Mode-aware Dataflow Model
Ingenuity is an autonomous Cyber-Pysical System (CPS) that has successfully completed more than 70 flights over Mars between 2021 and 2024. Ensuring the safety of its mission is paramount, as any failure could result in catastrophic economic damage and significant financial losses. Dataflow Models of Computation and Communication (DF MoCCs) serve as a formal framework for specifying and analyzing the timing behavior of such CPSs. In particular, the Real-time Mode-aware Dataflow (RMDF) model is highly suitable to specify and analyze real-time and mode-dependent Cyber-Physical Systems (CPSs) like Ingenuity. This paper showcases the application of RMDF for the specification and analysis of Ingenuity. We propose a dataflow specification of Ingenuity, analyze its timing behavior, and provide a feasibility test. Finally, we proposed a plausible explanation of the timing anomaly that occurred during the sixth flight of Ingenuity.
comment: arXiv admin note: text overlap with arXiv:2501.07187
☆ A Review of Detection, Evolution, and Data Reconstruction Strategies for False Data Injection Attacks in Power Cyber-Physical Systems
The integration of information and physical systems in modern power grids has heightened vulnerabilities to False Data Injection Attacks (FDIAs), threatening the secure operation of power cyber-physical systems (CPS). This paper reviews FDIA detection, evolution, and data reconstruction strategies, highlighting cross-domain coordination, multi-temporal evolution, and stealth characteristics. Challenges in existing detection methods, including poor interpretability and data imbalance, are discussed, alongside advanced state-aware and action-control data reconstruction techniques. Key issues, such as modeling FDIA evolution and distinguishing malicious data from regular faults, are identified. Future directions to enhance system resilience and detection accuracy are proposed, contributing to the secure operation of power CPS.
comment: 34 pages, 4 figures, 6 tables
☆ Event-Based Impulsive Control for Spacecraft Rendezvous Hovering Phases
This work presents an event-triggered controller for spacecraft rendezvous hovering phases. The goal is to maintain the chaser within a bounded region with respect to the target. The main assumption is that the chaser vehicle has impulsive thrusters. These are assumed to be orientable at any direction and are constrained by dead-zone and saturation bounds. The event-based controller relies on trigger rules deciding when a suitable control law is applied. The local control law consists on a single impulse; therefore the trigger rules design is based on the instantaneous reachability to the admissible set. The final outcome is a very efficient algorithm from both computational burden and footprint perspectives. Because the proposed methodology is based on a single impulse control, the controller invariance is local and assessed through impulsive systems theory. Finally, numerical results are shown and discussed.
☆ Chance-constrained Model Predictive Control for Near Rectilinear Halo Orbit spacecraft rendezvous
This work presents a robust Model Predictive Controller (MPC) to solve the problem of spacecraft rendezvous in the context of the restricted three-body problem (R3BP) as will be required to dock with space stations in cislunar space. The employed methodology is both valid for chemical and electric thrusters. By exploiting the state transition matrix and using a chance-constrained approach, the robust MPC assures constraints satisfaction under the presence of disturbances in a probabilistic sense. The perturbations parameters are computed on-line using a disturbance estimator. The robust controller is tested for a rendezvous scenario with a target placed in an Earth-Moon Near-Rectilinear Halo Orbit. Numerical results are shown and discussed.
☆ A flatness-based predictive controller for six-degrees of freedom spacecraft rendezvous
This work presents a closed-loop guidance algorithm for six-degrees of freedom spacecraft rendezvous with a passive target flying in an eccentric orbit. The main assumption is that the chaser vehicle has an attitude control system, based on reaction wheels, providing the necessary torque to change its orientation whereas the number of thrusters is arbitrary. The goal is to design fuel optimal maneuvers while satisfying operational constraints and rejecting disturbances. The proposed method is as follows; first, the coupled translational and angular dynamics are transformed to equivalent algebraic relations using the relative translational states transition matrix and the attitude flatness property. Then, a direct transcription method, based on B-splines parameterization and discretization of time continuous constraints, is developed to obtain a tractable static program. Finally, a Model Predictive Controller, based on linearization around the previously computed solution, is considered to handle disturbances. Numerical results are shown and discussed.
♻ ☆ Improving the Performance of Echo State Networks Through State Feedback
Reservoir computing, using nonlinear dynamical systems, offers a cost-effective alternative to neural networks for complex tasks involving processing of sequential data, time series modeling, and system identification. Echo state networks (ESNs), a type of reservoir computer, mirror neural networks but simplify training. They apply fixed, random linear transformations to the internal state, followed by nonlinear changes. This process, guided by input signals and linear regression, adapts the system to match target characteristics, reducing computational demands. A potential drawback of ESNs is that the fixed reservoir may not offer the complexity needed for specific problems. While directly altering (training) the internal ESN would reintroduce the computational burden, an indirect modification can be achieved by redirecting some output as input. This feedback can influence the internal reservoir state, yielding ESNs with enhanced complexity suitable for broader challenges. In this paper, we demonstrate that by feeding some component of the reservoir state back into the network through the input, we can drastically improve upon the performance of a given ESN. We rigorously prove that, for any given ESN, feedback will almost always improve the accuracy of the output. For a set of three tasks, each representing different problem classes, we find that with feedback the average error measures are reduced by $30\%-60\%$. Remarkably, feedback provides at least an equivalent performance boost to doubling the initial number of computational nodes, a computationally expensive and technologically challenging alternative. These results demonstrate the broad applicability and substantial usefulness of this feedback scheme.
comment: 36 pages, 6 figures
♻ ☆ QuadWBG: Generalizable Quadrupedal Whole-Body Grasping
Legged robots with advanced manipulation capabilities have the potential to significantly improve household duties and urban maintenance. Despite considerable progress in developing robust locomotion and precise manipulation methods, seamlessly integrating these into cohesive whole-body control for real-world applications remains challenging. In this paper, we present a modular framework for robust and generalizable whole-body loco-manipulation controller based on a single arm-mounted camera. By using reinforcement learning (RL), we enable a robust low-level policy for command execution over 5 dimensions (5D) and a grasp-aware high-level policy guided by a novel metric, Generalized Oriented Reachability Map (GORM). The proposed system achieves state-of-the-art one-time grasping accuracy of 89% in the real world, including challenging tasks such as grasping transparent objects. Through extensive simulations and real-world experiments, we demonstrate that our system can effectively manage a large workspace, from floor level to above body height, and perform diverse whole-body loco-manipulation tasks.
♻ ☆ Asymmetry of Frequency Distribution in Power Systems: Sources, Estimation, Impact and Control
This paper analyses an emerging real-world phenomena in inverter-based renewable-dominated power systems, namely, asymmetry of frequency distribution. The paper first provides a rationale on why asymmetry reduces the "quality" of the frequency control and system operation. Then it provides qualitative theoretical insights that explain asymmetry in terms of the nonlinearity of real-world power systems and associated models. In particular network losses and pitch angle-based frequency control of wind power plants are discussed. Then the paper proposes a nonlinear compensation control to reduce the asymmetry as well as a statistical metric based on the frequency probability distribution to quantify the level of asymmetry in a power system. Real-world data obtained from the Irish and Australian transmission systems serve to support the theoretical appraisal, whereas simulations based on an IEEE benchmark system show the effectiveness of the proposed nonlinear compensation. The case study also shows that, while automatic generation control reduces asymmetry, frequency control limits and droop-based frequency support provided by wind generation using a tight deadband of 15 mHz, namely active power control, leads to a significant increase in the asymmetry of the frequency probability distribution.
♻ ☆ Cost-optimized probabilistic maintenance for condition monitoring of wind turbines with rare failures
We propose a method, a model, and a form of presenting model results for condition monitoring of a small set of wind turbines with rare failures. The main new ingredient of the method is to sample failure thresholds according to the profit they give to an operating company. The model is a multiple linear regression with seasonal components and external regressors, representing all sensor components except for the selected one. To overcome the scarcity of the training data, we use the median sensor values from all available turbines in their healthy state. The cumulated deviation from the normal behavior model obtained for this median turbine is calibrated for each turbine at the beginning of the test period and after known failures. The proposed form of presenting results is to set a scale for possible costs, control for random maintenance, and show a whole distribution of costs depending on the free model parameters. We make a case study on an open dataset with SCADA data from multiple sensors and show that considering the influence of turbine components is more critical than seasonality. The distribution, the average, and the standard deviation of maintenance costs can be very different for similar minimal costs. Random maintenance can be more profitable than reactive maintenance and other approaches. Our predictive maintenance model outperforms random maintenance and competitors for the whole set of considered turbines, giving substantial savings.
comment: Improved and finally accepted journal version
♻ ☆ The Bouc-Wen Model for Binary Direct Collinear Collisions of Convex Viscoplastic Bodies
We study mathematical models of binary direct collinear collisions of convex viscoplastic bodies based on two incremental collision laws that employ the Bouc-Wen differential model of hysteresis to represent the elastoplastic behavior of the materials of the colliding bodies. These collision laws are the Bouc-Wen-Simon-Hunt-Crossley Collision Law (BWSHCCL) and the Bouc-Wen-Maxwell Collision Law (BWMCL). The BWSHCCL comprises of the Bouc-Wen model amended with a nonlinear Hertzian elastic spring element and connected in parallel to a nonlinear displacement-dependent and velocity-dependent energy dissipation element. The BWMCL comprises of the Bouc-Wen model amended with a nonlinear Hertzian elastic spring element and connected in series to a linear velocity-dependent energy dissipation element. The mathematical models of the collision process are presented in the form of finite-dimensional initial value problems. We show that the models possess favorable analytical properties (e.g., global existence, uniqueness, and boundedness of the solutions) under suitable restrictions on the values of their parameters. Furthermore, based on the results of two model parameter identification studies, we demonstrate that good agreement can be attained between experimental data and numerical approximations of the behavior of the mathematical models across a wide range of initial relative velocities of the colliding bodies while using parameterizations of the models that are independent of the initial relative velocity.
comment: 15 pages; 5 figures; (v1-v5) a variety of amendments; (v6) updated scaling/nondimensionalization and introduced amendments based on external feedback; the associated code/data are available from https://gitlab.com/user9716869/BWBCL
♻ ☆ Data Requirements and Prediction Scaling for Long-Term Failure Forecasts in Wind Turbines
We investigate the key factors that enable early failure forecasting in wind turbines. For this purpose, we analyze studies with long-term forecasts and compare their main features: prediction time, methods, targeted components, dataset size, and check the effect of using additional sensors. We found that the size of the dataset is the main factor and that an approximate linear scaling holds: the number of forecast days is twice the size of the dataset, measured in turbine years. We also observe that the data allow us to quantify the meaning of "big" and "long" in the terms "big data" and "long-term" forecasts, which are found to be ten turbine years and two weeks.
comment: Improved the text and figure, updated the references
♻ ☆ Efficient Estimation of Relaxed Model Parameters for Robust UAV Trajectory Optimization
Online trajectory optimization and optimal control methods are crucial for enabling sustainable unmanned aerial vehicle (UAV) services, such as agriculture, environmental monitoring, and transportation, where available actuation and energy are limited. However, optimal controllers are highly sensitive to model mismatch, which can occur due to loaded equipment, packages to be delivered, or pre-existing variability in fundamental structural and thrust-related parameters. To circumvent this problem, optimal controllers can be paired with parameter estimators to improve their trajectory planning performance and perform adaptive control. However, UAV platforms are limited in terms of onboard processing power, oftentimes making nonlinear parameter estimation too computationally expensive to consider. To address these issues, we propose a relaxed, affine-in-parameters multirotor model along with an efficient optimal parameter estimator. We convexify the nominal Moving Horizon Parameter Estimation (MHPE) problem into a linear-quadratic form (LQ-MHPE) via an affine-in-parameter relaxation on the nonlinear dynamics, resulting in fast quadratic programs (QPs) that facilitate adaptive Model Predictve Control (MPC) in real time. We compare this approach to the equivalent nonlinear estimator in Monte Carlo simulations, demonstrating a decrease in average solve time and trajectory optimality cost by 98.2% and 23.9-56.2%, respectively.
comment: 8 pages, 5 figures, to be published in IEEE Sustech 2025
♻ ☆ United We Fall: On the Nash Equilibria of Multiplex and Multilayer Network Games
Network games provide a framework to study strategic decision making processes that are governed by structured interdependencies among agents. However, existing models do not account for environments in which agents simultaneously interact over multiple networks, or when agents operate over multiple action dimensions. In this paper, we propose new models of multiplex network games to capture the different modalities of interactions among strategic agents, and multilayer network games to capture their interactions over multiple action dimensions. We explore how the properties of the constituent networks of a multiplex/multilayer network can undermine or support the existence, uniqueness, and stability of the game's Nash equilibria. Notably, we highlight that both the largest and smallest eigenvalues of the constituent networks (reflecting their connectivity and two-sidedness, respectively) are instrumental in determining the uniqueness of the multiplex/multilayer network game's equilibrium. Together, our findings shed light on the reasons for the fragility of equilibria when agents interact over networks of networks, and point out potential interventions to alleviate them.
♻ ☆ Data-Driven Assessment of Vehicle-to-Grid Capabilities in Supporting Grid During Emergencies: Case Study of Travis County, TX
As extreme weather events become more common and threaten power grids, the continuing adoption of electric vehicles (EVs) introduces a growing opportunity for their use as a distributed energy storage resource. This energy storage can be used as backup generation through the use of vehicle-to-grid (V2G) technology, where electricity is sent back from EV batteries to the grid. With enough participation from EV owners, V2G can mitigate outages during grid emergencies. In order to investigate a practical application of V2G, this study leverages a vast array of real-world data, such as survey results on V2G participation willingness, historical outage data within ERCOT, current EV registrations, and demographic data. This data informs realistic emergency grid scenarios with V2G support using a synthetic transmission grid for Travis County. The results find that as EV ownership rises in the coming years, the simultaneous facilitation of bidirectional charging availability would allow for V2G to play a substantial role in preventing involuntary load shed as a result of emergencies like winter storms.
♻ ☆ Design and Implementation of Low-Cost Electric Vehicles (Evs) Supercharger: A Comprehensive Review
This article presents a probabilistic modeling method utilizing smart meter data and an innovative agent-based simulator for electric vehicles (EVs). The aim is to assess the effects of different cost-driven EV charging strategies on the power distribution network (PDN). We investigate the effects of a 40% EV adoption on three parts of Frederiksberg's low voltage distribution network (LVDN), a densely urbanized municipality in Denmark. Our findings indicate that cable and transformer overloading especially pose a challenge. However, the impact of EVs varies significantly between each LVDN area and charging scenario. Across scenarios and LVDNs, the share of cables facing congestion ranges between 5% and 60%. It is also revealed that time-of-use (ToU)-based and single-day cost-minimized charging could be beneficial for LVDNs with moderate EV adoption rates. In contrast, multiple-day optimization will likely lead to severe congestion, as such strategies concentrate demand on a single day that would otherwise be distributed over several days, thus raising concerns about how to prevent it. The broader implications of our research suggest that, despite initial worries primarily centered on congestion due to unregulated charging during peak hours, a transition to cost-based smart charging, propelled by an increasing awareness of time-dependent electricity prices, may lead to a significant rise in charging synchronization, bringing about undesirable consequences for the power distribution network (PDN).
comment: arXiv admin note: This work has been withdrawn by arXiv administrators due to inappropriate text reuse from external sources
♻ ☆ Regression Equilibrium in Electricity Markets
In two-stage electricity markets, renewable power producers enter the day-ahead market with a forecast of future power generation and then reconcile any forecast deviation in the real-time market at a penalty. The choice of the forecast model is thus an important strategy decision for renewable power producers as it affects financial performance. In electricity markets with large shares of renewable generation, the choice of the forecast model impacts not only individual performance but also outcomes for other producers. In this paper, we argue for the existence of a competitive regression equilibrium in two-stage electricity markets in terms of the parameters of private forecast models informing the participation strategies of renewable power producers. In our model, renewables optimize the forecast against the day-ahead and real-time prices, thereby maximizing the average profits across the day-ahead and real-time markets. By doing so, they also implicitly enhance the temporal cost coordination of day-ahead and real-time markets. We base the equilibrium analysis on the theory of variational inequalities, providing results on the existence and uniqueness of regression equilibrium in energy-only markets. We also devise two methods to compute regression equilibrium: centralized optimization and a decentralized ADMM-based algorithm.
♻ ☆ Proactive Distributed Emergency Response with Heterogeneous Tasks Allocation
Traditionally, traffic incident management (TIM) programs coordinate the deployment of emergency resources to immediate incident requests without accommodating the interdependencies on incident evolutions in the environment. However, ignoring inherent interdependencies on the evolution of incidents in the environment while making current deployment decisions is shortsighted, and the resulting naive deployment strategy can significantly worsen the overall incident delay impact on the network. The interdependencies on incident evolution in the environment, including those between incident occurrences, and those between resource availability in near-future requests and the anticipated duration of the immediate incident request, should be considered through a look-ahead model when making current-stage deployment decisions. This study develops a new proactive framework based on the distributed constraint optimization problem (DCOP) to address the above limitations, overcoming conventional TIM models that cannot accommodate the dependencies in the TIM problem. Furthermore, the optimization objective is formulated to incorporate Unmanned Aerial Vehicles (UAVs). The UAVs' role in TIM includes exploring uncertain traffic conditions, detecting unexpected events, and augmenting information from roadway traffic sensors. Robustness analysis of our model for multiple TIM scenarios shows satisfactory performance using local search exploration heuristics. Overall, our model reports a significant reduction in total incident delay compared to conventional TIM models. With UAV support, we demonstrate a further decrease in the total incident delay ranging between 5% and 45% for the different number of incidents. UAV's active sensing can shorten response time of emergency vehicles, and a reduction in uncertainties associated with the estimated incident delay impact.
comment: 16 pages, 13 figures, 3 tables, journal
Optimization and Control 41
☆ An Error Analysis of Second Order Elliptic Optimal Control Problem via Hybrid Higher Order Methods
This paper presents the design and analysis of a Hybrid High-Order (HHO) approximation for a distributed optimal control problem governed by the Poisson equation. We propose three distinct schemes to address unconstrained control problems and two schemes for constrained control problems. For the unconstrained control problem, while standard finite elements achieve a convergence rate of \( k+1 \) (with \( k \) representing the polynomial degree), our approach enhances this rate to \( k+2 \) by selecting the control from a carefully constructed reconstruction space. For the box-constrained problem, we demonstrate that using lowest-order elements (\( \mathbb{P}_0 \)) yields linear convergence, in contrast to finite element methods (FEM) that require linear elements to achieve comparable results. Furthermore, we derive a cubic convergence rate for control in the variational discretization scheme. Numerical experiments are provided to validate the theoretical findings.
comment: 34 pages
☆ A Linear Parameter-Varying Framework for the Analysis of Time-Varying Optimization Algorithms
In this paper we propose a framework to analyze iterative first-order optimization algorithms for time-varying convex optimization. We assume that the temporal variability is caused by a time-varying parameter entering the objective, which can be measured at the time of decision but whose future values are unknown. We consider the case of strongly convex objective functions with Lipschitz continuous gradients and address the class of running algorithms where only one iteration per time change is performed. We model these algorithms as discrete-time linear parameter varying (LPV) systems in feedback with a time-varying gradient. We leverage the approach of analyzing algorithms as uncertain control interconnections with integral quadratic constraints (IQCs) and generalize that framework to the time-varying case. We propose novel IQCs that are capable of capturing the behavior of time-varying nonlinearities and leverage techniques from the LPV literature to establish novel bounds on the tracking error. Quantitative bounds can be computed by solving a semi-definite program and can be interpreted as an input-to-state stability result with respect to a disturbance signal which increases with the temporal variability of the problem. As a departure from results in this research area, our bounds introduce terms that can be interpreted as a temporal rate of change in the cost function and the optimal value. We exemplify our main results with numerical experiments that showcase how our analysis framework is able to capture convergence rates of different first-order algorithms for time-varying optimization through the choice of IQC and rate bounds.
☆ Numerical Method for Simultaneous Design and Control Optimization of Seasonal Thermal Energy Storage Systems
The transition to a carbon-neutral energy system requires massive installation of renewable energy sources and economically feasible energy storage solutions. This study addresses these challenges by optimizing the design and control strategies of an energy system that meets the heat and electricity demands of a community. The proposed system integrates solar and wind power with energy storage, including seasonal thermal energy storage (STES) and battery, coupled via a heat pump. This approach enhances self-sufficiency and effectively mitigates seasonal mismatches. To model heat transfer between the storage and the ground in the STES system, we employ a multi-node lumped-parameter method. The optimization problem is formulated as a periodic optimal control problem, which is then transcribed into a nonlinear programming problem. To reduce computational complexity, we apply the averaging method, which significantly lowers the effort required to solve the problem. We apply this approach to a case study, where the economically optimized configuration results in a projected total energy cost per household of approximately 75 EUR/month over 30 years for both heat and electricity. This study demonstrates the feasibility of designing economically viable, autonomous energy communities in real-world scenarios, and provides a comprehensive optimization framework for designing system components and control strategies.
comment: 35 pages, 12 figures, submitted to Renewable Energy. Editor-in-chief: Nidia Caetano
☆ Stable Set Polytopes with Rank $|V(G)|/3$ for the Lov{á}sz--Schrijver SDP Operator
We study the lift-and-project rank of the stable set polytope of graphs with respect to the Lov{\'a}sz--Schrijver SDP operator $\text{LS}_+$ applied to the fractional stable set polytope. In particular, we show that for every positive integer $\ell$, the smallest possible graph with $\text{LS}_+$-rank $\ell$ contains $3\ell$ vertices. This result is sharp and settles a conjecture posed by Lipt{\'a}k and the second author in 2003, as well as answers a generalization of a problem posed by Knuth in 1994. We also show that for every positive integer $\ell$ there exists a vertex-transitive graph on $4\ell+12$ vertices with $\text{LS}_+$-rank at least $\ell$.
Dataset Distillation as Pushforward Optimal Quantization
Dataset distillation aims to find a synthetic training set such that training on the synthetic data achieves similar performance to training on real data, with orders of magnitude less computational requirements. Existing methods can be broadly categorized as either bi-level optimization problems that have neural network training heuristics as the lower level problem, or disentangled methods that bypass the bi-level optimization by matching distributions of data. The latter method has the major advantages of speed and scalability in terms of size of both training and distilled datasets. We demonstrate that when equipped with an encoder-decoder structure, the empirically successful disentangled methods can be reformulated as an optimal quantization problem, where a finite set of points is found to approximate the underlying probability measure by minimizing the expected projection distance. In particular, we link existing disentangled dataset distillation methods to the classical optimal quantization and Wasserstein barycenter problems, demonstrating consistency of distilled datasets for diffusion-based generative priors. We propose a simple extension of the state-of-the-art data distillation method D4M, achieving better performance on the ImageNet-1K dataset with trivial additional computation, and state-of-the-art performance in higher image-per-class settings.
☆ Input-to-state stability in integral norms for linear infinite-dimensional systems
We study integral-to-integral input-to-state stability for infinite-dimensional linear systems with inputs and trajectories in $L^p$-spaces. We start by developing the corresponding admissibility theory for linear systems with unbounded input operators. While input-to-state stability is typically characterized by exponential stability and finite-time admissibility, we show that this equivalence does not extend directly to integral norms. For analytic semigroups, we establish a precise characterization using maximal regularity theory. Additionally, we provide direct Lyapunov theorems and construct Lyapunov functions for $L^p$-$L^q$-ISS and demonstrate the results with examples, including diagonal systems and diffusion equations.
☆ Towards nonlinearity. The p-regularity theory. Applications and developments
We present recent advances in the analysis of nonlinear equations with singular operators and nonlinear optimization problems with constraints given by singular mappings. The results are obtained within the framework of $p$-regularity theory, which has developed successfully over the last forty years. We illustrate the theory with its applications to degenerate problems in various areas of mathematics. In particular, we address the problem of describing the tangent cone to the solution set of nonlinear equations in a singular case. The structure of p-factor operators is used to propose optimality conditions and construct numerical methods for solving degenerate nonlinear equations and optimization problems. The methods presented in the paper can be considered as the first numerical approaches targeting solutions of degenerate problems, such as the Van der Pol differential equation, boundary-value problems with a small parameter, partial differential equations where Poincar\'e's method of small parameter fails, nonlinear degenerate dynamical systems, and others. There are various practical applications for the theory of p-regularity, including structural engineering, composite materials, and material design. For instance, the theory can be applied to analyze the behavior of materials with irregular or complex properties. By considering higher-order derivatives, it becomes possible to model and predict the response of materials to external forces, such as stress or temperature variations. In geophysics, the $p$-regularity theory can be utilized to analyze and interpret complex data obtained from seismic surveys, gravity measurements, or electromagnetic surveys. The theory also finds applications in the analysis of nonlinear differential equations arising in control systems, geometric and topological analysis, biomechanics, and many other fields.
☆ Finite Sample Identification of Partially Observed Bilinear Dynamical Systems
We consider the problem of learning a realization of a partially observed bilinear dynamical system (BLDS) from noisy input-output data. Given a single trajectory of input-output samples, we provide a finite time analysis for learning the system's Markov-like parameters, from which a balanced realization of the bilinear system can be obtained. Our bilinear system identification algorithm learns the system's Markov-like parameters by regressing the outputs to highly correlated, nonlinear, and heavy-tailed covariates. Moreover, the stability of BLDS depends on the sequence of inputs used to excite the system. These properties, unique to partially observed bilinear dynamical systems, pose significant challenges to the analysis of our algorithm for learning the unknown dynamics. We address these challenges and provide high probability error bounds on our identification algorithm under a uniform stability assumption. Our analysis provides insights into system theoretic quantities that affect learning accuracy and sample complexity. Lastly, we perform numerical experiments with synthetic data to reinforce these insights.
☆ Smoothing Iterative Consensus-based Optimization Algorithm for Nonsmooth Nonconvex Optimization Problems with Global Optimality
In this paper, we focus on finding the global minimizer of a general unconstrained nonsmooth nonconvex optimization problem. Taking advantage of the smoothing method and the consensus-based optimization (CBO) method, we propose a novel smoothing iterative consensus-based optimization (SICBO) algorithm. First, we prove that the solution process of the proposed algorithm here exponentially converges to a common stochastic consensus point almost surely. Second, we establish a detailed theoretical analysis to ensure the small enough error between the objective function value at the consensus point and the optimal function value, to the best of our knowledge, which provides the first theoretical guarantee to the global optimality of the proposed algorithm for nonconvex optimization problems. Moreover, unlike the previously introduced CBO methods, the theoretical results are valid for the cases that the objective function is nonsmooth, nonconvex and perhaps non-Lipschitz continuous. Finally, several numerical examples are performed to illustrate the effectiveness of our proposed algorithm for solving the global minimizer of the nonsmooth and nonconvex optimization problems.
☆ Derivation of effective gradient flow equations and dynamical truncation of training data in Deep Learning
We derive explicit equations governing the cumulative biases and weights in Deep Learning with ReLU activation function, based on gradient descent for the Euclidean cost in the input layer, and under the assumption that the weights are, in a precise sense, adapted to the coordinate system distinguished by the activations. We show that gradient descent corresponds to a dynamical process in the input layer, whereby clusters of data are progressively reduced in complexity ("truncated") at an exponential rate that increases with the number of data points that have already been truncated. We provide a detailed discussion of several types of solutions to the gradient flow equations. A main motivation for this work is to shed light on the interpretability question in supervised learning.
comment: AMS Latex, 35 pages
☆ Anomalies of the Scholtes regularization for mathematical programs with complementarity constraints
For mathematical programs with complementarity constraints (MPCC), we refine the convergence analysis of the Scholtes regularization. Our goal is to relate nondegenerate C-stationary points of MPCC with nondegenerate Karush-Kuhn-Tucker points of its Scholtes regularization. We detected the following anomalies: (i) in a neighborhood of a nondegenerate C-stationary point there could be degenerate Karush-Kuhn-Tucker points of the Scholtes regularization; (ii) even if nondegenerate, they might be locally non-unique; (iii) if nevertheless unique, their quadratic index potentially differs from the C-index of the C-stationary point under consideration. Thus, a change of the topological type for Karush-Kuhn-Tucker points of the Scholtes regularization is possible. In particular, a nondegenerate minimizer of MPCC might be approximated by saddle points. In order to bypass the mentioned anomalies, an additional generic condition for nondegenerate C-stationary points of MPCC is identified. Then, we uniquely trace nondegenerate Karush-Kuhn-Tucker points of the Scholtes regularization and successively maintain their topological type.
comment: 25 pages
☆ Quasiconvex Bulk and Surface Energies with subquadratic growth
We establish partial H\"older continuity of the gradient for equilibrium configurations of vectorial multidimensional variational problems, involving bulk and surface energies. The bulk energy densities are uniformly strictly quasiconvex functions with $p$-growth, $1
☆ Variable Bregman Majorization-Minimization Algorithm and its Application to Dirichlet Maximum Likelihood Estimation
We propose a novel Bregman descent algorithm for minimizing a convex function that is expressed as the sum of a differentiable part (defined over an open set) and a possibly nonsmooth term. The approach, referred to as the Variable Bregman Majorization-Minimization (VBMM) algorithm, extends the Bregman Proximal Gradient method by allowing the Bregman function used in the divergence to adaptively vary at each iteration, provided it satisfies a majorizing condition on the objective function. This adaptive framework enables the algorithm to approximate the objective more precisely at each iteration, thereby allowing for accelerated convergence compared to the traditional Bregman Proximal Gradient descent. We establish the convergence of the VBMM algorithm to a minimizer under mild assumptions on the family of metrics used. Furthermore, we introduce a novel application of both the Bregman Proximal Gradient method and the VBMM algorithm to the estimation of the multidimensional parameters of a Dirichlet distribution through the maximization of its log-likelihood. Numerical experiments confirm that the VBMM algorithm outperforms existing approaches in terms of convergence speed.
☆ Generating Poisoning Attacks against Ridge Regression Models with Categorical Features
Machine Learning (ML) models have become a very powerful tool to extract information from large datasets and use it to make accurate predictions and automated decisions. However, ML models can be vulnerable to external attacks, causing them to underperform or deviate from their expected tasks. One way to attack ML models is by injecting malicious data to mislead the algorithm during the training phase, which is referred to as a poisoning attack. We can prepare for such situations by designing anticipated attacks, which are later used for creating and testing defence strategies. In this paper, we propose an algorithm to generate strong poisoning attacks for a ridge regression model containing both numerical and categorical features that explicitly models and poisons categorical features. We model categorical features as SOS-1 sets and formulate the problem of designing poisoning attacks as a bilevel optimization problem that is nonconvex mixed-integer in the upper-level and unconstrained convex quadratic in the lower-level. We present the mathematical formulation of the problem, introduce a single-level reformulation based on the Karush-Kuhn-Tucker (KKT) conditions of the lower level, find bounds for the lower-level variables to accelerate solver performance, and propose a new algorithm to poison categorical features. Numerical experiments show that our method improves the mean squared error of all datasets compared to the previous benchmark in the literature.
☆ Integrated Wind Farm Design: Optimizing Turbine Placement and Cable Routing with Wake Effects
An accelerated deployment of renewable energy sources is crucial for a successful transformation of the current energy system, with wind energy playing a key role in this transition. This study addresses the integrated wind farm layout and cable routing problem, a challenging nonlinear optimization problem. We model this problem as an extended version of the Quota Steiner Tree Problem (QSTP), optimizing turbine placement and network connectivity simultaneously to meet specified expansion targets. Our proposed approach accounts for the wake effect - a region of reduced wind speed induced by each installed turbine - and enforces minimum spacing between turbines. We introduce an exact solution framework in terms of the novel Quota Steiner Tree Problem with interference (QSTPI). By leveraging an interference-based splitting strategy, we develop an advanced solver capable of tackling large-scale problem instances. The presented approach outperforms generic state-of-the-art mixed integer programming solvers on our dataset by up to two orders of magnitude. Moreover, we demonstrate that our integrated method significantly reduces the costs in contrast to a sequential approach. Thus, we provide a planning tool that enhances existing planning methodologies for supporting a faster and cost-efficient expansion of wind energy.
☆ State-space reduction techniques exploiting specific constraints for quantum search Application to a specific job scheduling problem
Quantum search has emerged as one of the most promising fields in quantum computing. State-of-the-art quantum search algorithms enable the search for specific elements in a distribution by monotonically increasing the density of these elements until reaching a high density. This kind of algorithms demonstrate a theoretical quadratic speed-up on the number of queries compared to classical search algorithms in unstructured spaces. Unfortunately, the major part of the existing literature applies quantum search to problems which size grows exponnentialy with the input size without exploiting any specific problem structure, rendering this kind of approach not exploitable in real industrial problems. In contrast, this work proposes exploiting specific constraints of scheduling problems to build an initial superposition of states with size almost quadraticaly increasing as a function of the problem size. This state space reduction, inspired by the quantum walk algorithm, constructs a state superposition corresponding to all paths in a state-graph embedding spacing constraints between jobs. Our numerical results on quantum emulators highlights the potential of state space reduction approach, which could lead to more efficient quantum search processes by focusing on a smaller, more relevant, solution space.
☆ Adaptive Methods for Multiobjective Unit Commitment
This work considers a multiobjective version of the unit commitment problem that deals with finding the optimal generation schedule of a firm, over a period of time and a given electrical network. With growing importance of environmental impact, some objectives of interest include CO2 emission levels and renewable energy penetration, in addition to the standard generation costs. Some typical constraints include limits on generation levels and up/down times on generation units. This further entails solving a multiobjective mixed integer optimization problem. The related literature has predominantly focused on heuristics (like Genetic Algorithms) for solving larger problem instances. Our major intent in this work is to propose scalable versions of mathematical optimization based approaches that help in speeding up the process of estimating the underlying Pareto frontier. Our contributions are computational and rest on two key embodiments. First, we use the notion of both epsilon constraints and adaptive weights to solve a sequence of single objective optimization problems. Second, to ease the computational burden, we propose a Mccormick-type relaxation for quadratic type constraints that arise due to the resulting formulation types. We test the proposed computational framework on real network data from [1,50] and compare the same with standard solvers like Gurobi. Results show a significant reduction in complexity (computational time) when deploying the proposed framework.
☆ Optimization with Multi-sourced Reference Information and Unknown Trust: A Distributionally Robust Approach
In problems that involve input parameter information gathered from multiple data sources with varying reliability, incorporating users' trust about different sources in decision-optimization models can potentially improve solution performance and reliability. In this work, we propose a novel multi-reference distributionally robust optimization (MR-DRO) framework, where the model inputs are uncertain and their probability distributions can be statistically inferred from multiple data sources. Via nonparametric data fusion, we construct a Wasserstein ambiguity set to minimize the worst-case expected value of a stochastic objective function, accounting for both uncertainty and unknown reliability of information sources. We reformulate the MR-DRO model as a linear program given linear objective and constraints in the original problem. We also incorporate a dynamic trust update mechanism that adjusts the trust for each source based on its performance over time. In addition, we introduce the concept of probability dominance to identify sources with dominant trust. Via solving instances of resource allocation and portfolio optimization, we demonstrate the effectiveness of the trust-informed MR-DRO approach compared to traditional optimization frameworks relying on a single data source. Our results highlight the significance of integrating (dynamic) user trust in decision making under uncertainty, particularly when given diverse and potentially conflicting input data.
comment: 38 pages, 9 figures, 7 tables
☆ A New Concept of optimal control for epidemic spreading by Vaccination Technique for Assessing social optimum employing Pontryagins Maximum Principle
This research introduces a new approach utilizing optimal control theory (OCT) to assess the Social Optimum (SO) of a vaccination game, navigating the intricate considerations of cost, availability, and distribution policies. By integrating an SIRS/V epidemic model with a behavior model, the study analyzes individual vaccination strategies. A unique optimal control framework, centered on vaccination costs, is proposed, diverging significantly from previous methods. Our findings confirm the effectiveness and feasibility of this approach in managing vaccination strategies. Moreover, we examine the underlying social dilemma of the vaccination game, investigating key parameters. By calculating the Nash equilibrium (NE) through the behavior model and determining the SO using our approach, we measure the Social Efficiency Deficit (SED), quantifying the overall cost gap between the NE and SO. Results indicate that an increased waning immunity rate exacerbates the social dilemma, although higher vaccination costs partially mitigate it. This research provides valuable insights into optimizing vaccination strategies amidst complex societal dynamics.
☆ PDLP: A Practical First-Order Method for Large-Scale Linear Programming
We present PDLP, a practical first-order method for linear programming (LP) designed to solve large-scale LP problems. PDLP is based on the primal-dual hybrid gradient (PDHG) method applied to the minimax formulation of LP. PDLP incorporates several enhancements to PDHG, including diagonal preconditioning, presolving, adaptive step sizes, adaptive restarting, and feasibility polishing. Our algorithm is implemented in C++, available in Google's open-source OR-Tools library, and supports multithreading. To evaluate our method, we introduce a new collection of eleven large-scale LP problems with sizes ranging from 125 million to 6.3 billion nonzeros. PDLP solves eight of these instances to optimality gaps of 1\% (with primal and dual feasibility errors of less than $10^{-8}$) within six days on a single machine. We also compare PDLP with Gurobi barrier, primal simplex, and dual simplex implementations. Gurobi barrier solves only three instances, exceeding our 1TB RAM limit on the other eight. While primal and dual simplex are more memory-efficient than the barrier method, they are slower and solve only three instances within six days. Compared with the conference version of this work (in: Advances in Neural Information Processing Systems 34 (NeurIPS 2021)), the key new contributions are: (i) feasibility polishing, a technique that quickly finds solutions that are approximately optimal but almost exactly feasible (without which only three of the eleven problems can be solved); (ii) a multithreaded C++ implementation available in Google OR-Tools; and (iii) a new collection of large-scale LP problems. Note that the conference version should be referred to for comparisons with SCS and ablation studies, which we do not repeat in this paper.
☆ Global Search for Optimal Low Thrust Spacecraft Trajectories using Diffusion Models and the Indirect Method
Long time-duration low-thrust nonlinear optimal spacecraft trajectory global search is a computationally and time expensive problem characterized by clustering patterns in locally optimal solutions. During preliminary mission design, mission parameters are subject to frequent changes, necessitating that trajectory designers efficiently generate high-quality control solutions for these new scenarios. Generative machine learning models can be trained to learn how the solution structure varies with respect to a conditional parameter, thereby accelerating the global search for missions with updated parameters. In this work, state-of-the-art diffusion models are integrated with the indirect approach for trajectory optimization within a global search framework. This framework is tested on two low-thrust transfers of different complexity in the circular restricted three-body problem. By generating and analyzing a training data set, we develop mathematical relations and techniques to understand the complex structures in the costate domain of locally optimal solutions for these problems. A diffusion model is trained on this data and successfully accelerates the global search for both problems. The model predicts how the costate solution structure changes, based on the maximum spacecraft thrust magnitude. Warm-starting a numerical solver with diffusion model samples for the costates at the initial time increases the number of solutions generated per minute for problems with unseen thrust magnitudes by one to two orders of magnitude in comparison to samples from a uniform distribution and from an adjoint control transformation.
☆ An Alternating Approach to Approximate Dynamic Programming
In this paper, we give a new approximate dynamic programming (ADP) method to solve large-scale Markov decision programming (MDP) problem. In comparison with many classic ADP methods which have large number of constraints, we formulate an alternating ADP (AADP) which have both small number of constraints and small number of variables by approximating the decision variables (instead of the objective functions in classic ADP) and write the dual of the exact LP. Also, to get the basis functions, we use kernel approximation instead of empirical choice of basis functions, which can efficiently learn nonlinear functions while retaining the expressive power. By treating option pricing as an large-scale MDP problem, we apply the AADP method to give an empirical proof that American call option will not be exercised earlier if the underlying stock has no dividend payment, which is a classic result proved by Black-Scholes model. We also make comparison of pricing options in high-dimensional with some benchmark option pricing papers which use the classic ADP to give upper and lower bound of the option price.
♻ ☆ The ultimate upper bound on the injectivity radius of the Stiefel manifold
We exhibit conjugate points on the Stiefel manifold endowed with any member of the family of Riemannian metrics introduced by H\"uper et al. (2021). This family contains the well-known canonical and Euclidean metrics. An upper bound on the injectivity radius of the Stiefel manifold in the considered metric is then obtained as the minimum between the length of the geodesic along which the points are conjugate and the length of certain geodesic loops. Numerical experiments support the conjecture that the obtained upper bound is in fact equal to the injectivity radius.
comment: Version accepted for publication in SIAM Journal on Matrix Analysis and Applications on 6 January 2025
♻ ☆ A Unified Approach to Extract Interpretable Rules from Tree Ensembles via Integer Programming
Tree ensembles are very popular machine learning models, known for their effectiveness in supervised classification and regression tasks. Their performance derives from aggregating predictions of multiple decision trees, which are renowned for their interpretability properties. However, tree ensemble models do not reliably exhibit interpretable output. Our work aims to extract an optimized list of rules from a trained tree ensemble, providing the user with a condensed, interpretable model that retains most of the predictive power of the full model. Our approach consists of solving a set partitioning problem formulated through Integer Programming. The proposed method works with either tabular or time series data, for both classification and regression tasks, and its flexible formulation can include any arbitrary loss or regularization functions. Our extensive computational experiments offer statistically significant evidence that our method is competitive with other rule extraction methods in terms of predictive performance and fidelity towards the tree ensemble. Moreover, we empirically show that the proposed method effectively extracts interpretable rules from tree ensemble that are designed for time series data.
comment: - Improved overall manuscript flow and clearness - Added related work on explanation fidelity - Added computational results on fidelity - Fixed some flaws on data inference - Optimization problem with weighted objectives - Added appendix containing qualitative examples - New computational results
♻ ☆ Directional Smoothness and Gradient Methods: Convergence and Adaptivity NeurIPS 2024
We develop new sub-optimality bounds for gradient descent (GD) that depend on the conditioning of the objective along the path of optimization rather than on global, worst-case constants. Key to our proofs is directional smoothness, a measure of gradient variation that we use to develop upper-bounds on the objective. Minimizing these upper-bounds requires solving implicit equations to obtain a sequence of strongly adapted step-sizes; we show that these equations are straightforward to solve for convex quadratics and lead to new guarantees for two classical step-sizes. For general functions, we prove that the Polyak step-size and normalized GD obtain fast, path-dependent rates despite using no knowledge of the directional smoothness. Experiments on logistic regression show our convergence guarantees are tighter than the classical theory based on $L$-smoothness.
comment: Published as a poster at NeurIPS 2024
♻ ☆ Flow matching for stochastic linear control systems
This paper addresses the problem of steering an initial probability distribution to a target probability distribution through a deterministic or stochastic linear control system. Our proposed approach is inspired by the flow matching methodology, with the difference that we can only affect the flow through the given control channels. The motivation comes from applications such as robotic swarms and stochastic thermodynamics, where agents or particles can only be manipulated through control actions. The feedback control law that achieves the task is characterized as the conditional expectation of the control inputs for the stochastic bridges that respect the given control system dynamics. Explicit forms are derived for special cases, and a numerical procedure is presented to approximate the control law, illustrated with examples.
comment: 13 pages, 3 figures
♻ ☆ Partial Information in a Mean-Variance Portfolio Selection Game
This paper considers finitely many investors who perform mean-variance portfolio selection under relative performance criteria. That is, each investor is concerned about not only her terminal wealth, but how it compares to the average terminal wealth of all investors. At the inter-personal level, each investor selects a trading strategy in response to others' strategies. This selected strategy additionally needs to yield an equilibrium intra-personally, so as to resolve time inconsistency among the investor's current and future selves (triggered by the mean-variance objective). A Nash equilibrium we look for is thus a tuple of trading strategies under which every investor achieves her intra-personal equilibrium simultaneously. We derive such a Nash equilibrium explicitly in the idealized case of full information (i.e., the dynamics of the underlying stock is perfectly known) and semi-explicitly in the realistic case of partial information (i.e., the stock evolution is observed, but the expected return of the stock is not precisely known). The formula under partial information consists of the myopic trading and intertemporal hedging terms, both of which depend on an additional state process that serves to filter the true expected return and whose influence on trading is captured by a degenerate Cauchy problem. Our results identify that relative performance criteria can induce downward self-reinforcement of investors' wealth--if every investor suffers a wealth decline simultaneously, then everyone's wealth tends to decline further. This phenomenon, as numerical examples show, is negligible under full information but pronounced under partial information.
♻ ☆ On the Trade-Off Between Distributional Belief and Ambiguity: Conservatism, Finite-Sample Guarantees, and Asymptotic Properties
We propose and analyze a new data-driven trade-off (TRO) approach for modeling uncertainty that serves as a middle ground between the optimistic approach, which adopts a distributional belief, and the pessimistic distributionally robust optimization approach, which hedges against distributional ambiguity. We equip the TRO model with a TRO ambiguity set characterized by a size parameter controlling the level of optimism and a shape parameter representing distributional ambiguity. We first show that constructing the TRO ambiguity set using a general star-shaped shape parameter with the empirical distribution as its star center is necessary and sufficient to guarantee the hierarchical structure of the sequence of TRO ambiguity sets. Then, we analyze the properties of the TRO model, including quantifying conservatism, quantifying bias and generalization error, and establishing asymptotic properties. Specifically, we show that the TRO model could generate a spectrum of decisions, ranging from optimistic to conservative decisions. Additionally, we show that it could produce an unbiased estimator of the true optimal value. Furthermore, we establish the almost-sure convergence of the optimal value and the set of optimal solutions of the TRO model to their true counterparts. We exemplify our theoretical results using an inventory control problem and a portfolio optimization problem.
♻ ☆ Regression Equilibrium in Electricity Markets
In two-stage electricity markets, renewable power producers enter the day-ahead market with a forecast of future power generation and then reconcile any forecast deviation in the real-time market at a penalty. The choice of the forecast model is thus an important strategy decision for renewable power producers as it affects financial performance. In electricity markets with large shares of renewable generation, the choice of the forecast model impacts not only individual performance but also outcomes for other producers. In this paper, we argue for the existence of a competitive regression equilibrium in two-stage electricity markets in terms of the parameters of private forecast models informing the participation strategies of renewable power producers. In our model, renewables optimize the forecast against the day-ahead and real-time prices, thereby maximizing the average profits across the day-ahead and real-time markets. By doing so, they also implicitly enhance the temporal cost coordination of day-ahead and real-time markets. We base the equilibrium analysis on the theory of variational inequalities, providing results on the existence and uniqueness of regression equilibrium in energy-only markets. We also devise two methods to compute regression equilibrium: centralized optimization and a decentralized ADMM-based algorithm.
♻ ☆ Remove that Square Root: A New Efficient Scale-Invariant Version of AdaGrad
Adaptive methods are extremely popular in machine learning as they make learning rate tuning less expensive. This paper introduces a novel optimization algorithm named KATE, which presents a scale-invariant adaptation of the well-known AdaGrad algorithm. We prove the scale-invariance of KATE for the case of Generalized Linear Models. Moreover, for general smooth non-convex problems, we establish a convergence rate of $O \left(\frac{\log T}{\sqrt{T}} \right)$ for KATE, matching the best-known ones for AdaGrad and Adam. We also compare KATE to other state-of-the-art adaptive algorithms Adam and AdaGrad in numerical experiments with different problems, including complex machine learning tasks like image classification and text classification on real data. The results indicate that KATE consistently outperforms AdaGrad and matches/surpasses the performance of Adam in all considered scenarios.
comment: 32 pages, 12 figures
♻ ☆ Barcodes as Summary of Loss Function Topology
We propose to study neural networks' loss surfaces by methods of topological data analysis. We suggest to apply barcodes of Morse complexes to explore topology of loss surfaces. An algorithm for calculations of the loss function's barcodes of local minima is described. We have conducted experiments for calculating barcodes of local minima for benchmark functions and for loss surfaces of small neural networks. Our experiments confirm our two principal observations for neural networks' loss surfaces. First, the barcodes of local minima are located in a small lower part of the range of values of neural networks' loss function. Secondly, increase of the neural network's depth and width lowers the barcodes of local minima. This has some natural implications for the neural network's learning and for its generalization properties.
♻ ☆ Accelerating genetic optimization of nonlinear model predictive control by learning optimal search space size
Genetic algorithm (GA) is typically used to solve nonlinear model predictive control's optimization problem. However, the size of the search space in which the GA searches for the optimal control inputs is crucial for its applicability to fast-response systems. This paper proposes accelerating the genetic optimization of NMPC by learning optimal search space size. The approach trains a multivariate regression model to adaptively predict the best smallest size of the search space in every control cycle. The proposed approach reduces the GA's computational time, improves the chance of convergence to better control inputs, and provides a stable and feasible solution. The proposed approach was evaluated on three nonlinear systems and compared to four other evolutionary algorithms implemented in a processor-in-the-loop fashion. The results show that the proposed approach provides a 17-45\% reduction in computational time and increases the convergence rate by 35-47\%. The source code is available on GitHub.
comment: Accepted by the Journal of Control and Decision
♻ ☆ Moment-based parameter inference with error guarantees for stochastic reaction networks
Inferring parameters of models of biochemical kinetics from single-cell data remains challenging because of the uncertainty arising from the intractability of the likelihood function of stochastic reaction networks. Such uncertainty falls beyond current error quantification measures, which focus on the effects of finite sample size and identifiability but lack theoretical guarantees when likelihood approximations are needed. Here, we propose a method for the inference of parameters of stochastic reaction networks that works for both steady-state and time-resolved data and is applicable to networks with non-linear and rational propensities. Our approach provides bounds on the parameters via convex optimisation over sets constrained by moment equations and moment matrices by taking observations to form moment intervals, which are then used to constrain parameters through convex sets. The bounds on the parameters contain the true parameters under the condition that the moment intervals contain the true moments, thus providing uncertainty quantification and error guarantees. Our approach does not need to predict moments and distributions for given parameters (i.e., it avoids solving or simulating the forward problem), and hence circumvents intractable likelihood computations or computationally expensive simulations. We demonstrate its use for uncertainty quantification, data integration and prediction of latent species statistics through synthetic data from common non-linear biochemical models including the Schl\"ogl model and the toggle switch, a model of post-transcriptional regulation at steady state, and a birth-death model with time-dependent data.
♻ ☆ The Analytic Minimal Rank Sard Conjecture
We obtain, under an additional assumption on the subanalytic abnormal distribution constructed in [4], a proof of the minimal rank Sard conjecture in the analytic category. It establishes that from a given point the set of points accessible through singular horizontal curves of minimal rank, which corresponds to the rank of the distribution, has Lebesgue measure zero. The minimal rank Sard Conjecture is equivalent to the Sard Conjecture for co-rank 1 distributions.
comment: Important: The previous paper had two sets of distinct results. We have divided the paper in two, and this version contains the second set of results. The first part will appear in a new hal submission hal-04881557. The title has changed
♻ ☆ Deck of Cards method for Hierarchical, Robust and Stochastic Ordinal Regression
We consider the recently introduced application of the Deck of Cards Method (DCM) to ordinal regression proposing two extensions related to two main research trends in Multiple Criteria Decision Aiding, namely scaling and ordinal regression generalizations. On the one hand, procedures, different from DCM (e.g. AHP, BWM, MACBETH) to collect and elaborate Decision Maker's (DM's) preference information are considered to define an overall evaluation of reference alternatives. On the other hand, Robust Ordinal Regression and Stochastic Multicriteria Acceptability Analysis are used to offer the DM more detailed and realistic decision-support outcomes. More precisely, we take into account preference imprecision and indetermination through a set of admissible comprehensive evaluations of alternatives provided by the whole set of value functions compatible with DM's preference information rather than the univocal assessment obtained from a single value function. In addition, we also consider alternatives evaluated on a set of criteria hierarchically structured. The methodology we propose allows the DM to provide precise or imprecise information at different levels of the hierarchy of criteria. Like scaling procedures, the compatible value function we consider can be of a different nature, such as weighted sum, linear or general monotone value function, or Choquet integral. Consequently, the approach we propose is versatile and well-equipped to be adapted to DM's characteristics and requirements. The applicability of the proposed methodology is shown by a didactic example based on a large ongoing research project in which Italian regions are evaluated on criteria representing Circular Economy, Innovation-Driven Development and Smart Specialization Strategies.
♻ ☆ A descent method for nonsmooth multiobjective optimization problems on Riemannian manifolds
In this paper, a descent method for nonsmooth multiobjective optimization problems on complete Riemannian manifolds is proposed. The objective functions are only assumed to be locally Lipschitz continuous instead of convexity used in existing methods. A necessary condition for Pareto optimality in Euclidean space is generalized to the Riemannian setting. At every iteration, an acceptable descent direction is obtained by constructing a convex hull of some Riemannian $\varepsilon$-subgradients. And then a Riemannian Armijo-type line search is executed to produce the next iterate. The convergence result is established in the sense that a point satisfying the necessary condition for Pareto optimality can be generated by the algorithm in a finite number of iterations. Finally, some preliminary numerical results are reported, which show that the proposed method is efficient.
comment: 22 pages, 7 figures
♻ ☆ Efficient Gradient Tracking Algorithms for Distributed Optimization Problems with Inexact Communication
Distributed optimization problems usually face inexact communication issues induced by communication quantization, differential privacy protection, or channels noise. Most existing algorithms need two-timescale setting of the stepsize of gradient descent and the parameter of noise suppression to ensure the convergence to the optimal solution. In this paper, we propose two single-timescale algorithms, VRA-DGT and VRA--DSGT, for distributed deterministic and stochastic optimization problems with inexact communication respectively. VRA-DGT integrates the Variance-Reduced Aggregation (VRA) mechanism with the distributed gradient tracking framework, which achieves a convergence rate of $\mathcal{O}\left(k^{-1}\right)$ in the mean-square sense when the objective function is strongly convex and smooth. For distributed stochastic optimization problem,VRA-DSGT, where a hybrid variance reduction technique has been introduced in VRA-DGT, VRA-DGT,, maintains the convergence rate of $\mathcal{O}\left(k^{-1}\right)$ for strongly convex and smooth objective function. Simulated experiments on logistic regression problem with real-world data verify the effectiveness of the proposed algorithms.
♻ ☆ A 2-approximation algorithm for the softwired parsimony problem on binary, tree-child phylogenetic networks
Finding the most parsimonious tree inside a phylogenetic network with respect to a given character is an NP-hard combinatorial optimization problem that for many network topologies is essentially inapproximable. In contrast, if the network is a rooted tree, then Fitch's well-known algorithm calculates an optimal parsimony score for that character in polynomial time. Drawing inspiration from this we here introduce a new extension of Fitch's algorithm which runs in polynomial time and ensures an approximation factor of 2 on binary, tree-child phylogenetic networks, a popular topologically-restricted subclass of phylogenetic networks in the literature. Specifically, we show that Fitch's algorithm can be seen as a primal-dual algorithm, how it can be extended to binary, tree-child networks and that the approximation guarantee of this extension is tight. These results for a classic problem in phylogenetics strengthens the link between polyhedral methods and phylogenetics and can aid in the study of other related optimization problems on phylogenetic networks.
♻ ☆ Anytime Solvers for Variational Inequalities: the (Recursive) Safe Monotone Flows
This paper synthesizes anytime algorithms, in the form of continuous-time dynamical systems, to solve monotone variational inequalities. We introduce three algorithms that solve this problem: the projected monotone flow, the safe monotone flow, and the recursive safe monotone flow. The first two systems admit dual interpretations: either as projected dynamical systems or as dynamical systems controlled with a feedback controller synthesized using techniques from safety-critical control. The third flow bypasses the need to solve quadratic programs along the trajectories by incorporating a dynamics whose equilibria precisely correspond to such solutions, and interconnecting the dynamical systems on different time scales. We perform a thorough analysis of the dynamical properties of all three systems. For the safe monotone flow, we show that equilibria correspond exactly with critical points of the original problem, and the constraint set is forward invariant and asymptotically stable. The additional assumption of convexity and monotonicity allows us to derive global stability guarantees, as well as establish the system is contracting when the constraint set is polyhedral. For the recursive safe monotone flow, we use tools from singular perturbation theory for contracting systems to show KKT points are locally exponentially stable and globally attracting, and obtain practical safety guarantees. We illustrate the performance of the flows on a two-player game example and also demonstrate the versatility for interconnection and regulation of dynamical processes of the safe monotone flow in an example of a receding horizon linear quadratic dynamic game.
♻ ☆ An Optimal Switching Approach for Bird Migration
Bird migration is an adaptive behavior ultimately aiming at optimizing survival and reproductive success. We propose an optimal switching model to study bird migration, where birds' migration behaviors can be efficiently modeled as switching between different stochastic differential equations. For individuals with perfect information regarding the environment, we implement numeric methods to see the expected payoff and corresponding optimal control. For individual with only partial information of the environment, we combine the finite difference method and stochastic simulations to investigate the change of the bird's optimal strategy. Based on biological backgrounds, we characterizing the optimal strategies of birds under different scenarios and these behaviors depend on the specific assumptions of the model.
♻ ☆ Efficient Estimation of Relaxed Model Parameters for Robust UAV Trajectory Optimization
Online trajectory optimization and optimal control methods are crucial for enabling sustainable unmanned aerial vehicle (UAV) services, such as agriculture, environmental monitoring, and transportation, where available actuation and energy are limited. However, optimal controllers are highly sensitive to model mismatch, which can occur due to loaded equipment, packages to be delivered, or pre-existing variability in fundamental structural and thrust-related parameters. To circumvent this problem, optimal controllers can be paired with parameter estimators to improve their trajectory planning performance and perform adaptive control. However, UAV platforms are limited in terms of onboard processing power, oftentimes making nonlinear parameter estimation too computationally expensive to consider. To address these issues, we propose a relaxed, affine-in-parameters multirotor model along with an efficient optimal parameter estimator. We convexify the nominal Moving Horizon Parameter Estimation (MHPE) problem into a linear-quadratic form (LQ-MHPE) via an affine-in-parameter relaxation on the nonlinear dynamics, resulting in fast quadratic programs (QPs) that facilitate adaptive Model Predictve Control (MPC) in real time. We compare this approach to the equivalent nonlinear estimator in Monte Carlo simulations, demonstrating a decrease in average solve time and trajectory optimality cost by 98.2% and 23.9-56.2%, respectively.
comment: 8 pages, 5 figures, to be published in IEEE Sustech 2025
Computer Vision and Pattern Recognition 140
Dataset Distillation via Committee Voting
Dataset distillation aims to synthesize a smaller, representative dataset that preserves the essential properties of the original data, enabling efficient model training with reduced computational resources. Prior work has primarily focused on improving the alignment or matching process between original and synthetic data, or on enhancing the efficiency of distilling large datasets. In this work, we introduce ${\bf C}$ommittee ${\bf V}$oting for ${\bf D}$ataset ${\bf D}$istillation (CV-DD), a novel and orthogonal approach that leverages the collective wisdom of multiple models or experts to create high-quality distilled datasets. We start by showing how to establish a strong baseline that already achieves state-of-the-art accuracy through leveraging recent advancements and thoughtful adjustments in model design and optimization processes. By integrating distributions and predictions from a committee of models while generating high-quality soft labels, our method captures a wider spectrum of data features, reduces model-specific biases and the adverse effects of distribution shifts, leading to significant improvements in generalization. This voting-based strategy not only promotes diversity and robustness within the distilled dataset but also significantly reduces overfitting, resulting in improved performance on post-eval tasks. Extensive experiments across various datasets and IPCs (images per class) demonstrate that Committee Voting leads to more reliable and adaptable distilled data compared to single/multi-model distillation methods, demonstrating its potential for efficient and accurate dataset distillation. Code is available at: https://github.com/Jiacheng8/CV-DD.
comment: Code at: https://github.com/Jiacheng8/CV-DD
☆ UnCommon Objects in 3D
We introduce Uncommon Objects in 3D (uCO3D), a new object-centric dataset for 3D deep learning and 3D generative AI. uCO3D is the largest publicly-available collection of high-resolution videos of objects with 3D annotations that ensures full-360$^{\circ}$ coverage. uCO3D is significantly more diverse than MVImgNet and CO3Dv2, covering more than 1,000 object categories. It is also of higher quality, due to extensive quality checks of both the collected videos and the 3D annotations. Similar to analogous datasets, uCO3D contains annotations for 3D camera poses, depth maps and sparse point clouds. In addition, each object is equipped with a caption and a 3D Gaussian Splat reconstruction. We train several large 3D models on MVImgNet, CO3Dv2, and uCO3D and obtain superior results using the latter, showing that uCO3D is better for learning applications.
☆ Training-Free Motion-Guided Video Generation with Enhanced Temporal Consistency Using Motion Consistency Loss
In this paper, we address the challenge of generating temporally consistent videos with motion guidance. While many existing methods depend on additional control modules or inference-time fine-tuning, recent studies suggest that effective motion guidance is achievable without altering the model architecture or requiring extra training. Such approaches offer promising compatibility with various video generation foundation models. However, existing training-free methods often struggle to maintain consistent temporal coherence across frames or to follow guided motion accurately. In this work, we propose a simple yet effective solution that combines an initial-noise-based approach with a novel motion consistency loss, the latter being our key innovation. Specifically, we capture the inter-frame feature correlation patterns of intermediate features from a video diffusion model to represent the motion pattern of the reference video. We then design a motion consistency loss to maintain similar feature correlation patterns in the generated video, using the gradient of this loss in the latent space to guide the generation process for precise motion control. This approach improves temporal consistency across various motion control tasks while preserving the benefits of a training-free setup. Extensive experiments show that our method sets a new standard for efficient, temporally coherent video generation.
comment: Project page: https://zhangxinyu-xyz.github.io/SimulateMotion.github.io/
☆ MatchAnything: Universal Cross-Modality Image Matching with Large-Scale Pre-Training
Image matching, which aims to identify corresponding pixel locations between images, is crucial in a wide range of scientific disciplines, aiding in image registration, fusion, and analysis. In recent years, deep learning-based image matching algorithms have dramatically outperformed humans in rapidly and accurately finding large amounts of correspondences. However, when dealing with images captured under different imaging modalities that result in significant appearance changes, the performance of these algorithms often deteriorates due to the scarcity of annotated cross-modal training data. This limitation hinders applications in various fields that rely on multiple image modalities to obtain complementary information. To address this challenge, we propose a large-scale pre-training framework that utilizes synthetic cross-modal training signals, incorporating diverse data from various sources, to train models to recognize and match fundamental structures across images. This capability is transferable to real-world, unseen cross-modality image matching tasks. Our key finding is that the matching model trained with our framework achieves remarkable generalizability across more than eight unseen cross-modality registration tasks using the same network weight, substantially outperforming existing methods, whether designed for generalization or tailored for specific tasks. This advancement significantly enhances the applicability of image matching technologies across various scientific disciplines and paves the way for new applications in multi-modality human and artificial intelligence analysis and beyond.
comment: Project page: https://zju3dv.github.io/MatchAnything/
☆ SST-EM: Advanced Metrics for Evaluating Semantic, Spatial and Temporal Aspects in Video Editing WACV
Video editing models have advanced significantly, but evaluating their performance remains challenging. Traditional metrics, such as CLIP text and image scores, often fall short: text scores are limited by inadequate training data and hierarchical dependencies, while image scores fail to assess temporal consistency. We present SST-EM (Semantic, Spatial, and Temporal Evaluation Metric), a novel evaluation framework that leverages modern Vision-Language Models (VLMs), Object Detection, and Temporal Consistency checks. SST-EM comprises four components: (1) semantic extraction from frames using a VLM, (2) primary object tracking with Object Detection, (3) focused object refinement via an LLM agent, and (4) temporal consistency assessment using a Vision Transformer (ViT). These components are integrated into a unified metric with weights derived from human evaluations and regression analysis. The name SST-EM reflects its focus on Semantic, Spatial, and Temporal aspects of video evaluation. SST-EM provides a comprehensive evaluation of semantic fidelity and temporal smoothness in video editing. The source code is available in the \textbf{\href{https://github.com/custommetrics-sst/SST_CustomEvaluationMetrics.git}{GitHub Repository}}.
comment: WACV workshop
☆ Imagine while Reasoning in Space: Multimodal Visualization-of-Thought
Chain-of-Thought (CoT) prompting has proven highly effective for enhancing complex reasoning in Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs). Yet, it struggles in complex spatial reasoning tasks. Nonetheless, human cognition extends beyond language alone, enabling the remarkable capability to think in both words and images. Inspired by this mechanism, we propose a new reasoning paradigm, Multimodal Visualization-of-Thought (MVoT). It enables visual thinking in MLLMs by generating image visualizations of their reasoning traces. To ensure high-quality visualization, we introduce token discrepancy loss into autoregressive MLLMs. This innovation significantly improves both visual coherence and fidelity. We validate this approach through several dynamic spatial reasoning tasks. Experimental results reveal that MVoT demonstrates competitive performance across tasks. Moreover, it exhibits robust and reliable improvements in the most challenging scenarios where CoT fails. Ultimately, MVoT establishes new possibilities for complex reasoning tasks where visual thinking can effectively complement verbal reasoning.
comment: 11 pages, 6 figures, 4 tables (27 pages, 10 figures, 16 tables including references and appendices)
☆ Universal Training of Neural Networks to Achieve Bayes Optimal Classification Accuracy ICASSP 2025
This work invokes the notion of $f$-divergence to introduce a novel upper bound on the Bayes error rate of a general classification task. We show that the proposed bound can be computed by sampling from the output of a parameterized model. Using this practical interpretation, we introduce the Bayes optimal learning threshold (BOLT) loss whose minimization enforces a classification model to achieve the Bayes error rate. We validate the proposed loss for image and text classification tasks, considering MNIST, Fashion-MNIST, CIFAR-10, and IMDb datasets. Numerical experiments demonstrate that models trained with BOLT achieve performance on par with or exceeding that of cross-entropy, particularly on challenging datasets. This highlights the potential of BOLT in improving generalization.
comment: Accepted to ICASSP 2025
☆ Boosting Sclera Segmentation through Semi-supervised Learning with Fewer Labels
Sclera segmentation is crucial for developing automatic eye-related medical computer-aided diagnostic systems, as well as for personal identification and verification, because the sclera contains distinct personal features. Deep learning-based sclera segmentation has achieved significant success compared to traditional methods that rely on hand-crafted features, primarily because it can autonomously extract critical output-related features without the need to consider potential physical constraints. However, achieving accurate sclera segmentation using these methods is challenging due to the scarcity of high-quality, fully labeled datasets, which depend on costly, labor-intensive medical acquisition and expertise. To address this challenge, this paper introduces a novel sclera segmentation framework that excels with limited labeled samples. Specifically, we employ a semi-supervised learning method that integrates domain-specific improvements and image-based spatial transformations to enhance segmentation performance. Additionally, we have developed a real-world eye diagnosis dataset to enrich the evaluation process. Extensive experiments on our dataset and two additional public datasets demonstrate the effectiveness and superiority of our proposed method, especially with significantly fewer labeled samples.
comment: Under review, 19 pages, 9 figures, 4 tables
☆ A Heterogeneous Multimodal Graph Learning Framework for Recognizing User Emotions in Social Networks
The rapid expansion of social media platforms has provided unprecedented access to massive amounts of multimodal user-generated content. Comprehending user emotions can provide valuable insights for improving communication and understanding of human behaviors. Despite significant advancements in Affective Computing, the diverse factors influencing user emotions in social networks remain relatively understudied. Moreover, there is a notable lack of deep learning-based methods for predicting user emotions in social networks, which could be addressed by leveraging the extensive multimodal data available. This work presents a novel formulation of personalized emotion prediction in social networks based on heterogeneous graph learning. Building upon this formulation, we design HMG-Emo, a Heterogeneous Multimodal Graph Learning Framework that utilizes deep learning-based features for user emotion recognition. Additionally, we include a dynamic context fusion module in HMG-Emo that is capable of adaptively integrating the different modalities in social media data. Through extensive experiments, we demonstrate the effectiveness of HMG-Emo and verify the superiority of adopting a graph neural network-based approach, which outperforms existing baselines that use rich hand-crafted features. To the best of our knowledge, HMG-Emo is the first multimodal and deep-learning-based approach to predict personalized emotions within online social networks. Our work highlights the significance of exploiting advanced deep learning techniques for less-explored problems in Affective Computing.
☆ Fixing the Scale and Shift in Monocular Depth For Camera Pose Estimation
Recent advances in monocular depth prediction have led to significantly improved depth prediction accuracy. In turn, this enables various applications to use such depth predictions. In this paper, we propose a novel framework for estimating the relative pose between two cameras from point correspondences with associated monocular depths. Since depth predictions are typically defined up to an unknown scale and shift parameter, our solvers jointly estimate both scale and shift parameters together with the camera pose. We derive efficient solvers for three cases: (1) two calibrated cameras, (2) two uncalibrated cameras with an unknown but shared focal length, and (3) two uncalibrated cameras with unknown and different focal lengths. Experiments on synthetic and real data, including experiments with depth maps estimated by 11 different depth predictors, show the practical viability of our solvers. Compared to prior work, our solvers achieve state-of-the-art results on two large-scale, real-world datasets. The source code is available at https://github.com/yaqding/pose_monodepth
comment: 14 pages
☆ Democratizing Text-to-Image Masked Generative Models with Compact Text-Aware One-Dimensional Tokens
Image tokenizers form the foundation of modern text-to-image generative models but are notoriously difficult to train. Furthermore, most existing text-to-image models rely on large-scale, high-quality private datasets, making them challenging to replicate. In this work, we introduce Text-Aware Transformer-based 1-Dimensional Tokenizer (TA-TiTok), an efficient and powerful image tokenizer that can utilize either discrete or continuous 1-dimensional tokens. TA-TiTok uniquely integrates textual information during the tokenizer decoding stage (i.e., de-tokenization), accelerating convergence and enhancing performance. TA-TiTok also benefits from a simplified, yet effective, one-stage training process, eliminating the need for the complex two-stage distillation used in previous 1-dimensional tokenizers. This design allows for seamless scalability to large datasets. Building on this, we introduce a family of text-to-image Masked Generative Models (MaskGen), trained exclusively on open data while achieving comparable performance to models trained on private data. We aim to release both the efficient, strong TA-TiTok tokenizers and the open-data, open-weight MaskGen models to promote broader access and democratize the field of text-to-image masked generative models.
comment: Project page at https://tacju.github.io/projects/maskgen.html
☆ Testing Human-Hand Segmentation on In-Distribution and Out-of-Distribution Data in Human-Robot Interactions Using a Deep Ensemble Model
Reliable detection and segmentation of human hands are critical for enhancing safety and facilitating advanced interactions in human-robot collaboration. Current research predominantly evaluates hand segmentation under in-distribution (ID) data, which reflects the training data of deep learning (DL) models. However, this approach fails to address out-of-distribution (OOD) scenarios that often arise in real-world human-robot interactions. In this study, we present a novel approach by evaluating the performance of pre-trained DL models under both ID data and more challenging OOD scenarios. To mimic realistic industrial scenarios, we designed a diverse dataset featuring simple and cluttered backgrounds with industrial tools, varying numbers of hands (0 to 4), and hands with and without gloves. For OOD scenarios, we incorporated unique and rare conditions such as finger-crossing gestures and motion blur from fast-moving hands, addressing both epistemic and aleatoric uncertainties. To ensure multiple point of views (PoVs), we utilized both egocentric cameras, mounted on the operator's head, and static cameras to capture RGB images of human-robot interactions. This approach allowed us to account for multiple camera perspectives while also evaluating the performance of models trained on existing egocentric datasets as well as static-camera datasets. For segmentation, we used a deep ensemble model composed of UNet and RefineNet as base learners. Performance evaluation was conducted using segmentation metrics and uncertainty quantification via predictive entropy. Results revealed that models trained on industrial datasets outperformed those trained on non-industrial datasets, highlighting the importance of context-specific training. Although all models struggled with OOD scenarios, those trained on industrial datasets demonstrated significantly better generalization.
☆ Pedestrian Trajectory Prediction Based on Social Interactions Learning With Random Weights
Pedestrian trajectory prediction is a critical technology in the evolution of self-driving cars toward complete artificial intelligence. Over recent years, focusing on the trajectories of pedestrians to model their social interactions has surged with great interest in more accurate trajectory predictions. However, existing methods for modeling pedestrian social interactions rely on pre-defined rules, struggling to capture non-explicit social interactions. In this work, we propose a novel framework named DTGAN, which extends the application of Generative Adversarial Networks (GANs) to graph sequence data, with the primary objective of automatically capturing implicit social interactions and achieving precise predictions of pedestrian trajectory. DTGAN innovatively incorporates random weights within each graph to eliminate the need for pre-defined interaction rules. We further enhance the performance of DTGAN by exploring diverse task loss functions during adversarial training, which yields improvements of 16.7\% and 39.3\% on metrics ADE and FDE, respectively. The effectiveness and accuracy of our framework are verified on two public datasets. The experimental results show that our proposed DTGAN achieves superior performance and is well able to understand pedestrians' intentions.
comment: 13 pages,7 figures,Accepted to IEEE Transactions on Multimedia (TMM)
☆ C2PD: Continuity-Constrained Pixelwise Deformation for Guided Depth Super-Resolution
Guided depth super-resolution (GDSR) has demonstrated impressive performance across a wide range of domains, with numerous methods being proposed. However, existing methods often treat depth maps as images, where shading values are computed discretely, making them struggle to effectively restore the continuity inherent in the depth map. In this paper, we propose a novel approach that maximizes the utilization of spatial characteristics in depth, coupled with human abstract perception of real-world substance, by transforming the GDSR issue into deformation of a roughcast with ideal plasticity, which can be deformed by force like a continuous object. Specifically, we firstly designed a cross-modal operation, Continuity-constrained Asymmetrical Pixelwise Operation (CAPO), which can mimic the process of deforming an isovolumetrically flexible object through external forces. Utilizing CAPO as the fundamental component, we develop the Pixelwise Cross Gradient Deformation (PCGD), which is capable of emulating operations on ideal plastic objects (without volume constraint). Notably, our approach demonstrates state-of-the-art performance across four widely adopted benchmarks for GDSR, with significant advantages in large-scale tasks and generalizability.
Dataset Distillation as Pushforward Optimal Quantization
Dataset distillation aims to find a synthetic training set such that training on the synthetic data achieves similar performance to training on real data, with orders of magnitude less computational requirements. Existing methods can be broadly categorized as either bi-level optimization problems that have neural network training heuristics as the lower level problem, or disentangled methods that bypass the bi-level optimization by matching distributions of data. The latter method has the major advantages of speed and scalability in terms of size of both training and distilled datasets. We demonstrate that when equipped with an encoder-decoder structure, the empirically successful disentangled methods can be reformulated as an optimal quantization problem, where a finite set of points is found to approximate the underlying probability measure by minimizing the expected projection distance. In particular, we link existing disentangled dataset distillation methods to the classical optimal quantization and Wasserstein barycenter problems, demonstrating consistency of distilled datasets for diffusion-based generative priors. We propose a simple extension of the state-of-the-art data distillation method D4M, achieving better performance on the ImageNet-1K dataset with trivial additional computation, and state-of-the-art performance in higher image-per-class settings.
☆ BlobGEN-Vid: Compositional Text-to-Video Generation with Blob Video Representations
Existing video generation models struggle to follow complex text prompts and synthesize multiple objects, raising the need for additional grounding input for improved controllability. In this work, we propose to decompose videos into visual primitives - blob video representation, a general representation for controllable video generation. Based on blob conditions, we develop a blob-grounded video diffusion model named BlobGEN-Vid that allows users to control object motions and fine-grained object appearance. In particular, we introduce a masked 3D attention module that effectively improves regional consistency across frames. In addition, we introduce a learnable module to interpolate text embeddings so that users can control semantics in specific frames and obtain smooth object transitions. We show that our framework is model-agnostic and build BlobGEN-Vid based on both U-Net and DiT-based video diffusion models. Extensive experimental results show that BlobGEN-Vid achieves superior zero-shot video generation ability and state-of-the-art layout controllability on multiple benchmarks. When combined with an LLM for layout planning, our framework even outperforms proprietary text-to-video generators in terms of compositional accuracy.
comment: Project page: https://blobgen-vid2.github.io/
☆ Confident Pseudo-labeled Diffusion Augmentation for Canine Cardiomegaly Detection WACV
Canine cardiomegaly, marked by an enlarged heart, poses serious health risks if undetected, requiring accurate diagnostic methods. Current detection models often rely on small, poorly annotated datasets and struggle to generalize across diverse imaging conditions, limiting their real-world applicability. To address these issues, we propose a Confident Pseudo-labeled Diffusion Augmentation (CDA) model for identifying canine cardiomegaly. Our approach addresses the challenge of limited high-quality training data by employing diffusion models to generate synthetic X-ray images and annotate Vertebral Heart Score key points, thereby expanding the dataset. We also employ a pseudo-labeling strategy with Monte Carlo Dropout to select high-confidence labels, refine the synthetic dataset, and improve accuracy. Iteratively incorporating these labels enhances the model's performance, overcoming the limitations of existing approaches. Experimental results show that the CDA model outperforms traditional methods, achieving state-of-the-art accuracy in canine cardiomegaly detection. The code implementation is available at https://github.com/Shira7z/CDA.
comment: WACV workshop
☆ IP-FaceDiff: Identity-Preserving Facial Video Editing with Diffusion WACV-25
Facial video editing has become increasingly important for content creators, enabling the manipulation of facial expressions and attributes. However, existing models encounter challenges such as poor editing quality, high computational costs and difficulties in preserving facial identity across diverse edits. Additionally, these models are often constrained to editing predefined facial attributes, limiting their flexibility to diverse editing prompts. To address these challenges, we propose a novel facial video editing framework that leverages the rich latent space of pre-trained text-to-image (T2I) diffusion models and fine-tune them specifically for facial video editing tasks. Our approach introduces a targeted fine-tuning scheme that enables high quality, localized, text-driven edits while ensuring identity preservation across video frames. Additionally, by using pre-trained T2I models during inference, our approach significantly reduces editing time by 80%, while maintaining temporal consistency throughout the video sequence. We evaluate the effectiveness of our approach through extensive testing across a wide range of challenging scenarios, including varying head poses, complex action sequences, and diverse facial expressions. Our method consistently outperforms existing techniques, demonstrating superior performance across a broad set of metrics and benchmarks.
comment: WACV-25 Workshop
☆ RadAlign: Advancing Radiology Report Generation with Vision-Language Concept Alignment
Automated chest radiographs interpretation requires both accurate disease classification and detailed radiology report generation, presenting a significant challenge in the clinical workflow. Current approaches either focus on classification accuracy at the expense of interpretability or generate detailed but potentially unreliable reports through image captioning techniques. In this study, we present RadAlign, a novel framework that combines the predictive accuracy of vision-language models (VLMs) with the reasoning capabilities of large language models (LLMs). Inspired by the radiologist's workflow, RadAlign first employs a specialized VLM to align visual features with key medical concepts, achieving superior disease classification with an average AUC of 0.885 across multiple diseases. These recognized medical conditions, represented as text-based concepts in the aligned visual-language space, are then used to prompt LLM-based report generation. Enhanced by a retrieval-augmented generation mechanism that grounds outputs in similar historical cases, RadAlign delivers superior report quality with a GREEN score of 0.678, outperforming state-of-the-art methods' 0.634. Our framework maintains strong clinical interpretability while reducing hallucinations, advancing automated medical imaging and report analysis through integrated predictive and generative AI. Code is available at https://github.com/difeigu/RadAlign.
☆ Three-view Focal Length Recovery From Homographies
In this paper, we propose a novel approach for recovering focal lengths from three-view homographies. By examining the consistency of normal vectors between two homographies, we derive new explicit constraints between the focal lengths and homographies using an elimination technique. We demonstrate that three-view homographies provide two additional constraints, enabling the recovery of one or two focal lengths. We discuss four possible cases, including three cameras having an unknown equal focal length, three cameras having two different unknown focal lengths, three cameras where one focal length is known, and the other two cameras have equal or different unknown focal lengths. All the problems can be converted into solving polynomials in one or two unknowns, which can be efficiently solved using Sturm sequence or hidden variable technique. Evaluation using both synthetic and real data shows that the proposed solvers are both faster and more accurate than methods relying on existing two-view solvers. The code and data are available on https://github.com/kocurvik/hf
comment: Code available at https://github.com/kocurvik/hf Dataset available at: https://doi.org/10.5281/zenodo.14638904
☆ Aligning First, Then Fusing: A Novel Weakly Supervised Multimodal Violence Detection Method
Weakly supervised violence detection refers to the technique of training models to identify violent segments in videos using only video-level labels. Among these approaches, multimodal violence detection, which integrates modalities such as audio and optical flow, holds great potential. Existing methods in this domain primarily focus on designing multimodal fusion models to address modality discrepancies. In contrast, we take a different approach; leveraging the inherent discrepancies across modalities in violence event representation to propose a novel multimodal semantic feature alignment method. This method sparsely maps the semantic features of local, transient, and less informative modalities ( such as audio and optical flow ) into the more informative RGB semantic feature space. Through an iterative process, the method identifies the suitable no-zero feature matching subspace and aligns the modality-specific event representations based on this subspace, enabling the full exploitation of information from all modalities during the subsequent modality fusion stage. Building on this, we design a new weakly supervised violence detection framework that consists of unimodal multiple-instance learning for extracting unimodal semantic features, multimodal alignment, multimodal fusion, and final detection. Experimental results on benchmark datasets demonstrate the effectiveness of our method, achieving an average precision (AP) of 86.07% on the XD-Violence dataset. Our code is available at https://github.com/xjpp2016/MAVD.
☆ 3DGS-to-PC: Convert a 3D Gaussian Splatting Scene into a Dense Point Cloud or Mesh
3D Gaussian Splatting (3DGS) excels at producing highly detailed 3D reconstructions, but these scenes often require specialised renderers for effective visualisation. In contrast, point clouds are a widely used 3D representation and are compatible with most popular 3D processing software, yet converting 3DGS scenes into point clouds is a complex challenge. In this work we introduce 3DGS-to-PC, a flexible and highly customisable framework that is capable of transforming 3DGS scenes into dense, high-accuracy point clouds. We sample points probabilistically from each Gaussian as a 3D density function. We additionally threshold new points using the Mahalanobis distance to the Gaussian centre, preventing extreme outliers. The result is a point cloud that closely represents the shape encoded into the 3D Gaussian scene. Individual Gaussians use spherical harmonics to adapt colours depending on view, and each point may contribute only subtle colour hints to the resulting rendered scene. To avoid spurious or incorrect colours that do not fit with the final point cloud, we recalculate Gaussian colours via a customised image rendering approach, assigning each Gaussian the colour of the pixel to which it contributes most across all views. 3DGS-to-PC also supports mesh generation through Poisson Surface Reconstruction, applied to points sampled from predicted surface Gaussians. This allows coloured meshes to be generated from 3DGS scenes without the need for re-training. This package is highly customisable and capability of simple integration into existing 3DGS pipelines. 3DGS-to-PC provides a powerful tool for converting 3DGS data into point cloud and surface-based formats.
☆ A Survey on Dynamic Neural Networks: from Computer Vision to Multi-modal Sensor Fusion
Model compression is essential in the deployment of large Computer Vision models on embedded devices. However, static optimization techniques (e.g. pruning, quantization, etc.) neglect the fact that different inputs have different complexities, thus requiring different amount of computations. Dynamic Neural Networks allow to condition the number of computations to the specific input. The current literature on the topic is very extensive and fragmented. We present a comprehensive survey that synthesizes and unifies existing Dynamic Neural Networks research in the context of Computer Vision. Additionally, we provide a logical taxonomy based on which component of the network is adaptive: the output, the computation graph or the input. Furthermore, we argue that Dynamic Neural Networks are particularly beneficial in the context of Sensor Fusion for better adaptivity, noise reduction and information prioritization. We present preliminary works in this direction.
comment: Under review at International Journal of Computer Vision
☆ PrecipDiff: Leveraging image diffusion models to enhance satellite-based precipitation observations
A recent report from the World Meteorological Organization (WMO) highlights that water-related disasters have caused the highest human losses among natural disasters over the past 50 years, with over 91\% of deaths occurring in low-income countries. This disparity is largely due to the lack of adequate ground monitoring stations, such as weather surveillance radars (WSR), which are expensive to install. For example, while the US and Europe combined possess over 600 WSRs, Africa, despite having almost one and half times their landmass, has fewer than 40. To address this issue, satellite-based observations offer a global, near-real-time monitoring solution. However, they face several challenges like accuracy, bias, and low spatial resolution. This study leverages the power of diffusion models and residual learning to address these limitations in a unified framework. We introduce the first diffusion model for correcting the inconsistency between different precipitation products. Our method demonstrates the effectiveness in downscaling satellite precipitation estimates from 10 km to 1 km resolution. Extensive experiments conducted in the Seattle region demonstrate significant improvements in accuracy, bias reduction, and spatial detail. Importantly, our approach achieves these results using only precipitation data, showcasing the potential of a purely computer vision-based approach for enhancing satellite precipitation products and paving the way for further advancements in this domain.
☆ Guided SAM: Label-Efficient Part Segmentation
Localizing object parts precisely is essential for tasks such as object recognition and robotic manipulation. Recent part segmentation methods require extensive training data and labor-intensive annotations. Segment-Anything Model (SAM) has demonstrated good performance on a wide range of segmentation problems, but requires (manual) positional prompts to guide it where to segment. Furthermore, since it has been trained on full objects instead of object parts, it is prone to over-segmentation of parts. To address this, we propose a novel approach that guides SAM towards the relevant object parts. Our method learns positional prompts from coarse patch annotations that are easier and cheaper to acquire. We train classifiers on image patches to identify part classes and aggregate patches into regions of interest (ROIs) with positional prompts. SAM is conditioned on these ROIs and prompts. This approach, termed `Guided SAM', enhances efficiency and reduces manual effort, allowing effective part segmentation with minimal labeled data. We demonstrate the efficacy of Guided SAM on a dataset of car parts, improving the average IoU on state of the art models from 0.37 to 0.49 with annotations that are on average five times more efficient to acquire.
☆ Diff-Ensembler: Learning to Ensemble 2D Diffusion Models for Volume-to-Volume Medical Image Translation
Despite success in volume-to-volume translations in medical images, most existing models struggle to effectively capture the inherent volumetric distribution using 3D representations. The current state-of-the-art approach combines multiple 2D-based networks through weighted averaging, thereby neglecting the 3D spatial structures. Directly training 3D models in medical imaging presents significant challenges due to high computational demands and the need for large-scale datasets. To address these challenges, we introduce Diff-Ensembler, a novel hybrid 2D-3D model for efficient and effective volumetric translations by ensembling perpendicularly trained 2D diffusion models with a 3D network in each diffusion step. Moreover, our model can naturally be used to ensemble diffusion models conditioned on different modalities, allowing flexible and accurate fusion of input conditions. Extensive experiments demonstrate that Diff-Ensembler attains superior accuracy and volumetric realism in 3D medical image super-resolution and modality translation. We further demonstrate the strength of our model's volumetric realism using tumor segmentation as a downstream task.
☆ OCORD: Open-Campus Object Removal Dataset
The rapid advancements in generative models, particularly diffusion-based techniques, have revolutionized image inpainting tasks by enabling the generation of high-fidelity and diverse content. However, object removal remains under-explored as a specific subset of inpainting, facing challenges such as inadequate semantic understanding and the unintended generation of artifacts. Existing datasets for object removal often rely on synthetic data, which fails to align with real-world scenarios, limiting model performance. Although some real-world datasets address these issues partially, they suffer from scalability, annotation inefficiencies, and limited realism in physical phenomena such as lighting and shadows. To address these limitations, this paper introduces a novel approach to object removal by constructing a high-resolution real-world dataset through long-duration video capture with fixed camera settings. Leveraging advanced tools such as Grounding-DINO, Segment-Anything-Model, and MASA for automated annotation, we provides image, background, and mask pairs while significantly reducing annotation time and labor. With our efficient annotation pipeline, we release the first fully open, high-resolution real-world dataset for object removal, and improved performance in object removal tasks through fine-tuning of pre-trained diffusion models.
comment: technical report
☆ Zero-Shot Scene Understanding for Automatic Target Recognition Using Large Vision-Language Models
Automatic target recognition (ATR) plays a critical role in tasks such as navigation and surveillance, where safety and accuracy are paramount. In extreme use cases, such as military applications, these factors are often challenged due to the presence of unknown terrains, environmental conditions, and novel object categories. Current object detectors, including open-world detectors, lack the ability to confidently recognize novel objects or operate in unknown environments, as they have not been exposed to these new conditions. However, Large Vision-Language Models (LVLMs) exhibit emergent properties that enable them to recognize objects in varying conditions in a zero-shot manner. Despite this, LVLMs struggle to localize objects effectively within a scene. To address these limitations, we propose a novel pipeline that combines the detection capabilities of open-world detectors with the recognition confidence of LVLMs, creating a robust system for zero-shot ATR of novel classes and unknown domains. In this study, we compare the performance of various LVLMs for recognizing military vehicles, which are often underrepresented in training datasets. Additionally, we examine the impact of factors such as distance range, modality, and prompting methods on the recognition performance, providing insights into the development of more reliable ATR systems for novel conditions and classes.
☆ Kolmogorov-Arnold Network for Remote Sensing Image Semantic Segmentation
Semantic segmentation plays a crucial role in remote sensing applications, where the accurate extraction and representation of features are essential for high-quality results. Despite the widespread use of encoder-decoder architectures, existing methods often struggle with fully utilizing the high-dimensional features extracted by the encoder and efficiently recovering detailed information during decoding. To address these problems, we propose a novel semantic segmentation network, namely DeepKANSeg, including two key innovations based on the emerging Kolmogorov Arnold Network (KAN). Notably, the advantage of KAN lies in its ability to decompose high-dimensional complex functions into univariate transformations, enabling efficient and flexible representation of intricate relationships in data. First, we introduce a KAN-based deep feature refinement module, namely DeepKAN to effectively capture complex spatial and rich semantic relationships from high-dimensional features. Second, we replace the traditional multi-layer perceptron (MLP) layers in the global-local combined decoder with KAN-based linear layers, namely GLKAN. This module enhances the decoder's ability to capture fine-grained details during decoding. To evaluate the effectiveness of the proposed method, experiments are conducted on two well-known fine-resolution remote sensing benchmark datasets, namely ISPRS Vaihingen and ISPRS Potsdam. The results demonstrate that the KAN-enhanced segmentation model achieves superior performance in terms of accuracy compared to state-of-the-art methods. They highlight the potential of KANs as a powerful alternative to traditional architectures in semantic segmentation tasks. Moreover, the explicit univariate decomposition provides improved interpretability, which is particularly beneficial for applications requiring explainable learning in remote sensing.
comment: 13 pages, 8 figures
☆ FedSemiDG: Domain Generalized Federated Semi-supervised Medical Image Segmentation
Medical image segmentation is challenging due to the diversity of medical images and the lack of labeled data, which motivates recent developments in federated semi-supervised learning (FSSL) to leverage a large amount of unlabeled data from multiple centers for model training without sharing raw data. However, what remains under-explored in FSSL is the domain shift problem which may cause suboptimal model aggregation and low effectivity of the utilization of unlabeled data, eventually leading to unsatisfactory performance in unseen domains. In this paper, we explore this previously ignored scenario, namely domain generalized federated semi-supervised learning (FedSemiDG), which aims to learn a model in a distributed manner from multiple domains with limited labeled data and abundant unlabeled data such that the model can generalize well to unseen domains. We present a novel framework, Federated Generalization-Aware SemiSupervised Learning (FGASL), to address the challenges in FedSemiDG by effectively tackling critical issues at both global and local levels. Globally, we introduce Generalization-Aware Aggregation (GAA), assigning adaptive weights to local models based on their generalization performance. Locally, we use a Dual-Teacher Adaptive Pseudo Label Refinement (DR) strategy to combine global and domain-specific knowledge, generating more reliable pseudo labels. Additionally, Perturbation-Invariant Alignment (PIA) enforces feature consistency under perturbations, promoting domain-invariant learning. Extensive experiments on three medical segmentation tasks (cardiac MRI, spine MRI and bladder cancer MRI) demonstrate that our method significantly outperforms state-of-the-art FSSL and domain generalization approaches, achieving robust generalization on unseen domains.
comment: 17 pages
☆ TimberVision: A Multi-Task Dataset and Framework for Log-Component Segmentation and Tracking in Autonomous Forestry Operations WACV
Timber represents an increasingly valuable and versatile resource. However, forestry operations such as harvesting, handling and measuring logs still require substantial human labor in remote environments posing significant safety risks. Progressively automating these tasks has the potential of increasing their efficiency as well as safety, but requires an accurate detection of individual logs as well as live trees and their context. Although initial approaches have been proposed for this challenging application domain, specialized data and algorithms are still too scarce to develop robust solutions. To mitigate this gap, we introduce the TimberVision dataset, consisting of more than 2k annotated RGB images containing a total of 51k trunk components including cut and lateral surfaces, thereby surpassing any existing dataset in this domain in terms of both quantity and detail by a large margin. Based on this data, we conduct a series of ablation experiments for oriented object detection and instance segmentation and evaluate the influence of multiple scene parameters on model performance. We introduce a generic framework to fuse the components detected by our models for both tasks into unified trunk representations. Furthermore, we automatically derive geometric properties and apply multi-object tracking to further enhance robustness. Our detection and tracking approach provides highly descriptive and accurate trunk representations solely from RGB image data, even under challenging environmental conditions. Our solution is suitable for a wide range of application scenarios and can be readily combined with other sensor modalities.
comment: Accepted at Winter Conference on Applications of Computer Vision (WACV) 2025. Code and dataset available at https://github.com/timbervision/timbervision
☆ A method for estimating roadway billboard salience
Roadside billboards and other forms of outdoor advertising play a crucial role in marketing initiatives; however, they can also distract drivers, potentially contributing to accidents. This study delves into the significance of roadside advertising in images captured from a driver's perspective. Firstly, it evaluates the effectiveness of neural networks in detecting advertising along roads, focusing on the YOLOv5 and Faster R-CNN models. Secondly, the study addresses the determination of billboard significance using methods for saliency extraction. The UniSal and SpectralResidual methods were employed to create saliency maps for each image. The study establishes a database of eye tracking sessions captured during city highway driving to assess the saliency models.
☆ Anonymization of Documents for Law Enforcement with Machine Learning
The steadily increasing utilization of data-driven methods and approaches in areas that handle sensitive personal information such as in law enforcement mandates an ever increasing effort in these institutions to comply with data protection guidelines. In this work, we present a system for automatically anonymizing images of scanned documents, reducing manual effort while ensuring data protection compliance. Our method considers the viability of further forensic processing after anonymization by minimizing automatically redacted areas by combining automatic detection of sensitive regions with knowledge from a manually anonymized reference document. Using a self-supervised image model for instance retrieval of the reference document, our approach requires only one anonymized example to efficiently redact all documents of the same type, significantly reducing processing time. We show that our approach outperforms both a purely automatic redaction system and also a naive copy-paste scheme of the reference anonymization to other documents on a hand-crafted dataset of ground truth redactions.
comment: Accepted at IEEE Symposium on CI in Security, Defence and Biometrics 2025 (IEEE CISDB)
☆ Localization-Aware Multi-Scale Representation Learning for Repetitive Action Counting
Repetitive action counting (RAC) aims to estimate the number of class-agnostic action occurrences in a video without exemplars. Most current RAC methods rely on a raw frame-to-frame similarity representation for period prediction. However, this approach can be significantly disrupted by common noise such as action interruptions and inconsistencies, leading to sub-optimal counting performance in realistic scenarios. In this paper, we introduce a foreground localization optimization objective into similarity representation learning to obtain more robust and efficient video features. We propose a Localization-Aware Multi-Scale Representation Learning (LMRL) framework. Specifically, we apply a Multi-Scale Period-Aware Representation (MPR) with a scale-specific design to accommodate various action frequencies and learn more flexible temporal correlations. Furthermore, we introduce the Repetition Foreground Localization (RFL) method, which enhances the representation by coarsely identifying periodic actions and incorporating global semantic information. These two modules can be jointly optimized, resulting in a more discerning periodic action representation. Our approach significantly reduces the impact of noise, thereby improving counting accuracy. Additionally, the framework is designed to be scalable and adaptable to different types of video content. Experimental results on the RepCountA and UCFRep datasets demonstrate that our proposed method effectively handles repetitive action counting.
comment: Accepted by IEEE VCIP2024
☆ The Devil is in the Spurious Correlation: Boosting Moment Retrieval via Temporal Dynamic Learning
Given a textual query along with a corresponding video, the objective of moment retrieval aims to localize the moments relevant to the query within the video. While commendable results have been demonstrated by existing transformer-based approaches, predicting the accurate temporal span of the target moment is currently still a major challenge. In this paper, we reveal that a crucial reason stems from the spurious correlation between the text queries and the moment context. Namely, the model may associate the textual query with the background frames rather than the target moment. To address this issue, we propose a temporal dynamic learning approach for moment retrieval, where two strategies are designed to mitigate the spurious correlation. First, we introduce a novel video synthesis approach to construct a dynamic context for the relevant moment. With separate yet similar videos mixed up, the synthesis approach empowers our model to attend to the target moment of the corresponding query under various dynamic contexts. Second, we enhance the representation by learning temporal dynamics. Besides the visual representation, text queries are aligned with temporal dynamic representations, which enables our model to establish a non-spurious correlation between the query-related moment and context. With the aforementioned proposed method, the spurious correlation issue in moment retrieval can be largely alleviated. Our method establishes a new state-of-the-art performance on two popular benchmarks of moment retrieval, \ie, QVHighlights and Charades-STA. In addition, the detailed ablation analyses demonstrate the effectiveness of the proposed strategies. Our code will be publicly available.
☆ Code and Pixels: Multi-Modal Contrastive Pre-training for Enhanced Tabular Data Analysis
Learning from tabular data is of paramount importance, as it complements the conventional analysis of image and video data by providing a rich source of structured information that is often critical for comprehensive understanding and decision-making processes. We present Multi-task Contrastive Masked Tabular Modeling (MT-CMTM), a novel method aiming to enhance tabular models by leveraging the correlation between tabular data and corresponding images. MT-CMTM employs a dual strategy combining contrastive learning with masked tabular modeling, optimizing the synergy between these data modalities. Central to our approach is a 1D Convolutional Neural Network with residual connections and an attention mechanism (1D-ResNet-CBAM), designed to efficiently process tabular data without relying on images. This enables MT-CMTM to handle purely tabular data for downstream tasks, eliminating the need for potentially costly image acquisition and processing. We evaluated MT-CMTM on the DVM car dataset, which is uniquely suited for this particular scenario, and the newly developed HIPMP dataset, which connects membrane fabrication parameters with image data. Our MT-CMTM model outperforms the proposed tabular 1D-ResNet-CBAM, which is trained from scratch, achieving a relative 1.48% improvement in relative MSE on HIPMP and a 2.38% increase in absolute accuracy on DVM. These results demonstrate MT-CMTM's robustness and its potential to advance the field of multi-modal learning.
☆ Comparative analysis of optical character recognition methods for Sámi texts from the National Library of Norway
Optical Character Recognition (OCR) is crucial to the National Library of Norway's (NLN) digitisation process as it converts scanned documents into machine-readable text. However, for the S\'ami documents in NLN's collection, the OCR accuracy is insufficient. Given that OCR quality affects downstream processes, evaluating and improving OCR for text written in S\'ami languages is necessary to make these resources accessible. To address this need, this work fine-tunes and evaluates three established OCR approaches, Transkribus, Tesseract and TrOCR, for transcribing S\'ami texts from NLN's collection. Our results show that Transkribus and TrOCR outperform Tesseract on this task, while Tesseract achieves superior performance on an out-of-domain dataset. Furthermore, we show that fine-tuning pre-trained models and supplementing manual annotations with machine annotations and synthetic text images can yield accurate OCR for S\'ami languages, even with a moderate amount of manually annotated data.
comment: To be published in Proceedings of the 25th Nordic Conference on Computational Linguistics (NoDaLiDa)
☆ Toward Realistic Camouflaged Object Detection: Benchmarks and Method
Camouflaged object detection (COD) primarily relies on semantic or instance segmentation methods. While these methods have made significant advancements in identifying the contours of camouflaged objects, they may be inefficient or cost-effective for tasks that only require the specific location of the object. Object detection algorithms offer an optimized solution for Realistic Camouflaged Object Detection (RCOD) in such cases. However, detecting camouflaged objects remains a formidable challenge due to the high degree of similarity between the features of the objects and their backgrounds. Unlike segmentation methods that perform pixel-wise comparisons to differentiate between foreground and background, object detectors omit this analysis, further aggravating the challenge. To solve this problem, we propose a camouflage-aware feature refinement (CAFR) strategy. Since camouflaged objects are not rare categories, CAFR fully utilizes a clear perception of the current object within the prior knowledge of large models to assist detectors in deeply understanding the distinctions between background and foreground. Specifically, in CAFR, we introduce the Adaptive Gradient Propagation (AGP) module that fine-tunes all feature extractor layers in large detection models to fully refine class-specific features from camouflaged contexts. We then design the Sparse Feature Refinement (SFR) module that optimizes the transformer-based feature extractor to focus primarily on capturing class-specific features in camouflaged scenarios. To facilitate the assessment of RCOD tasks, we manually annotate the labels required for detection on three existing segmentation COD datasets, creating a new benchmark for RCOD tasks. Code and datasets are available at: https://github.com/zhimengXin/RCOD.
☆ Event-based Video Person Re-identification via Cross-Modality and Temporal Collaboration ICASSP 2025
Video-based person re-identification (ReID) has become increasingly important due to its applications in video surveillance applications. By employing events in video-based person ReID, more motion information can be provided between continuous frames to improve recognition accuracy. Previous approaches have assisted by introducing event data into the video person ReID task, but they still cannot avoid the privacy leakage problem caused by RGB images. In order to avoid privacy attacks and to take advantage of the benefits of event data, we consider using only event data. To make full use of the information in the event stream, we propose a Cross-Modality and Temporal Collaboration (CMTC) network for event-based video person ReID. First, we design an event transform network to obtain corresponding auxiliary information from the input of raw events. Additionally, we propose a differential modality collaboration module to balance the roles of events and auxiliaries to achieve complementary effects. Furthermore, we introduce a temporal collaboration module to exploit motion information and appearance cues. Experimental results demonstrate that our method outperforms others in the task of event-based video person ReID.
comment: Accepted by ICASSP 2025
☆ Skip Mamba Diffusion for Monocular 3D Semantic Scene Completion AAAI 2025
3D semantic scene completion is critical for multiple downstream tasks in autonomous systems. It estimates missing geometric and semantic information in the acquired scene data. Due to the challenging real-world conditions, this task usually demands complex models that process multi-modal data to achieve acceptable performance. We propose a unique neural model, leveraging advances from the state space and diffusion generative modeling to achieve remarkable 3D semantic scene completion performance with monocular image input. Our technique processes the data in the conditioned latent space of a variational autoencoder where diffusion modeling is carried out with an innovative state space technique. A key component of our neural network is the proposed Skimba (Skip Mamba) denoiser, which is adept at efficiently processing long-sequence data. The Skimba diffusion model is integral to our 3D scene completion network, incorporating a triple Mamba structure, dimensional decomposition residuals and varying dilations along three directions. We also adopt a variant of this network for the subsequent semantic segmentation stage of our method. Extensive evaluation on the standard SemanticKITTI and SSCBench-KITTI360 datasets show that our approach not only outperforms other monocular techniques by a large margin, it also achieves competitive performance against stereo methods. The code is available at https://github.com/xrkong/skimba
comment: Accepted by AAAI 2025
☆ EdgeTAM: On-Device Track Anything Model
On top of Segment Anything Model (SAM), SAM 2 further extends its capability from image to video inputs through a memory bank mechanism and obtains a remarkable performance compared with previous methods, making it a foundation model for video segmentation task. In this paper, we aim at making SAM 2 much more efficient so that it even runs on mobile devices while maintaining a comparable performance. Despite several works optimizing SAM for better efficiency, we find they are not sufficient for SAM 2 because they all focus on compressing the image encoder, while our benchmark shows that the newly introduced memory attention blocks are also the latency bottleneck. Given this observation, we propose EdgeTAM, which leverages a novel 2D Spatial Perceiver to reduce the computational cost. In particular, the proposed 2D Spatial Perceiver encodes the densely stored frame-level memories with a lightweight Transformer that contains a fixed set of learnable queries. Given that video segmentation is a dense prediction task, we find preserving the spatial structure of the memories is essential so that the queries are split into global-level and patch-level groups. We also propose a distillation pipeline that further improves the performance without inference overhead. As a result, EdgeTAM achieves 87.7, 70.0, 72.3, and 71.7 J&F on DAVIS 2017, MOSE, SA-V val, and SA-V test, while running at 16 FPS on iPhone 15 Pro Max.
comment: Code will be released at https://github.com/facebookresearch/EdgeTAM
☆ MOS-Attack: A Scalable Multi-objective Adversarial Attack Framework CVPR 2025
Crafting adversarial examples is crucial for evaluating and enhancing the robustness of Deep Neural Networks (DNNs), presenting a challenge equivalent to maximizing a non-differentiable 0-1 loss function. However, existing single objective methods, namely adversarial attacks focus on a surrogate loss function, do not fully harness the benefits of engaging multiple loss functions, as a result of insufficient understanding of their synergistic and conflicting nature. To overcome these limitations, we propose the Multi-Objective Set-based Attack (MOS Attack), a novel adversarial attack framework leveraging multiple loss functions and automatically uncovering their interrelations. The MOS Attack adopts a set-based multi-objective optimization strategy, enabling the incorporation of numerous loss functions without additional parameters. It also automatically mines synergistic patterns among various losses, facilitating the generation of potent adversarial attacks with fewer objectives. Extensive experiments have shown that our MOS Attack outperforms single-objective attacks. Furthermore, by harnessing the identified synergistic patterns, MOS Attack continues to show superior results with a reduced number of loss functions.
comment: Under Review of CVPR 2025
☆ Implicit Neural Representations for Registration of Left Ventricle Myocardium During a Cardiac Cycle
Understanding the movement of the left ventricle myocardium (LVmyo) during the cardiac cycle is essential for assessing cardiac function. One way to model this movement is through a series of deformable image registrations (DIRs) of the LVmyo. Traditional deep learning methods for DIRs, such as those based on convolutional neural networks, often require substantial memory and computational resources. In contrast, implicit neural representations (INRs) offer an efficient approach by operating on any number of continuous points. This study extends the use of INRs for DIR to cardiac computed tomography (CT), focusing on LVmyo registration. To enhance the precision of the registration around the LVmyo, we incorporate the signed distance field of the LVmyo with the Hounsfield Unit values from the CT frames. This guides the registration of the LVmyo, while keeping the tissue information from the CT frames. Our framework demonstrates high registration accuracy and provides a robust method for temporal registration that facilitates further analysis of LVmyo motion.
comment: 9 pages, 5 figures, STACOM 2024
☆ Depth and Image Fusion for Road Obstacle Detection Using Stereo Camera
This paper is devoted to the detection of objects on a road, performed with a combination of two methods based on both the use of depth information and video analysis of data from a stereo camera. Since neither the time of the appearance of an object on the road, nor its size and shape is known in advance, ML/DL-based approaches are not applicable. The task becomes more complicated due to variations in artificial illumination, inhomogeneous road surface texture, and unknown character and features of the object. To solve this problem we developed the depth and image fusion method that complements a search of small contrast objects by RGB-based method, and obstacle detection by stereo image-based approach with SLIC superpixel segmentation. We conducted experiments with static and low speed obstacles in an underground parking lot and demonstrated the successful work of the developed technique for detecting and even tracking small objects, which can be parking infrastructure objects, things left on the road, wheels, dropped boxes, etc.
comment: 8 pages, 15 figures
☆ Can Vision-Language Models Evaluate Handwritten Math?
Recent advancements in Vision-Language Models (VLMs) have opened new possibilities in automatic grading of handwritten student responses, particularly in mathematics. However, a comprehensive study to test the ability of VLMs to evaluate and reason over handwritten content remains absent. To address this gap, we introduce FERMAT, a benchmark designed to assess the ability of VLMs to detect, localize and correct errors in handwritten mathematical content. FERMAT spans four key error dimensions - computational, conceptual, notational, and presentation - and comprises over 2,200 handwritten math solutions derived from 609 manually curated problems from grades 7-12 with intentionally introduced perturbations. Using FERMAT we benchmark nine VLMs across three tasks: error detection, localization, and correction. Our results reveal significant shortcomings in current VLMs in reasoning over handwritten text, with Gemini-1.5-Pro achieving the highest error correction rate (77%). We also observed that some models struggle with processing handwritten content, as their accuracy improves when handwritten inputs are replaced with printed text or images. These findings highlight the limitations of current VLMs and reveal new avenues for improvement. We release FERMAT and all the associated resources in the open-source to drive further research.
☆ CSTA: Spatial-Temporal Causal Adaptive Learning for Exemplar-Free Video Class-Incremental Learning
Continual learning aims to acquire new knowledge while retaining past information. Class-incremental learning (CIL) presents a challenging scenario where classes are introduced sequentially. For video data, the task becomes more complex than image data because it requires learning and preserving both spatial appearance and temporal action involvement. To address this challenge, we propose a novel exemplar-free framework that equips separate spatiotemporal adapters to learn new class patterns, accommodating the incremental information representation requirements unique to each class. While separate adapters are proven to mitigate forgetting and fit unique requirements, naively applying them hinders the intrinsic connection between spatial and temporal information increments, affecting the efficiency of representing newly learned class information. Motivated by this, we introduce two key innovations from a causal perspective. First, a causal distillation module is devised to maintain the relation between spatial-temporal knowledge for a more efficient representation. Second, a causal compensation mechanism is proposed to reduce the conflicts during increment and memorization between different types of information. Extensive experiments conducted on benchmark datasets demonstrate that our framework can achieve new state-of-the-art results, surpassing current example-based methods by 4.2% in accuracy on average.
comment: IEEE TCSVT Submission
☆ MECD+: Unlocking Event-Level Causal Graph Discovery for Video Reasoning
Video causal reasoning aims to achieve a high-level understanding of videos from a causal perspective. However, it exhibits limitations in its scope, primarily executed in a question-answering paradigm and focusing on brief video segments containing isolated events and basic causal relations, lacking comprehensive and structured causality analysis for videos with multiple interconnected events. To fill this gap, we introduce a new task and dataset, Multi-Event Causal Discovery (MECD). It aims to uncover the causal relations between events distributed chronologically across long videos. Given visual segments and textual descriptions of events, MECD identifies the causal associations between these events to derive a comprehensive and structured event-level video causal graph explaining why and how the result event occurred. To address the challenges of MECD, we devise a novel framework inspired by the Granger Causality method, incorporating an efficient mask-based event prediction model to perform an Event Granger Test. It estimates causality by comparing the predicted result event when premise events are masked versus unmasked. Furthermore, we integrate causal inference techniques such as front-door adjustment and counterfactual inference to mitigate challenges in MECD like causality confounding and illusory causality. Additionally, context chain reasoning is introduced to conduct more robust and generalized reasoning. Experiments validate the effectiveness of our framework in reasoning complete causal relations, outperforming GPT-4o and VideoChat2 by 5.77% and 2.70%, respectively. Further experiments demonstrate that causal relation graphs can also contribute to downstream video understanding tasks such as video question answering and video event prediction.
comment: IEEE TPAMI Submission. arXiv admin note: substantial text overlap with arXiv:2409.17647
☆ Exploring the Use of Contrastive Language-Image Pre-Training for Human Posture Classification: Insights from Yoga Pose Analysis
Accurate human posture classification in images and videos is crucial for automated applications across various fields, including work safety, physical rehabilitation, sports training, or daily assisted living. Recently, multimodal learning methods, such as Contrastive Language-Image Pretraining (CLIP), have advanced significantly in jointly understanding images and text. This study aims to assess the effectiveness of CLIP in classifying human postures, focusing on its application in yoga. Despite the initial limitations of the zero-shot approach, applying transfer learning on 15,301 images (real and synthetic) with 82 classes has shown promising results. The article describes the full procedure for fine-tuning, including the choice for image description syntax, models and hyperparameters adjustment. The fine-tuned CLIP model, tested on 3826 images, achieves an accuracy of over 85%, surpassing the current state-of-the-art of previous works on the same dataset by approximately 6%, its training time being 3.5 times lower than what is needed to fine-tune a YOLOv8-based model. For more application-oriented scenarios, with smaller datasets of six postures each, containing 1301 and 401 training images, the fine-tuned models attain an accuracy of 98.8% and 99.1%, respectively. Furthermore, our experiments indicate that training with as few as 20 images per pose can yield around 90% accuracy in a six-class dataset. This study demonstrates that this multimodal technique can be effectively used for yoga pose classification, and possibly for human posture classification, in general. Additionally, CLIP inference time (around 7 ms) supports that the model can be integrated into automated systems for posture evaluation, e.g., for developing a real-time personal yoga assistant for performance assessment.
☆ TimeLogic: A Temporal Logic Benchmark for Video QA
Temporal logical understanding, a core facet of human cognition, plays a pivotal role in capturing complex sequential events and their temporal relationships within videos. This capability is particularly crucial in tasks like Video Question Answering (VideoQA), where the goal is to process visual data over time together with textual data to provide coherent answers. However, current VideoQA benchmarks devote little focus to evaluating this critical skill due to the challenge of annotating temporal logic. Despite the advancement of vision-language models, assessing their temporal logical reasoning powers remains a challenge, primarily due to the lack QA pairs that demand formal, complex temporal reasoning. To bridge this gap, we introduce the TimeLogic QA (TLQA) framework to automatically generate the QA pairs, specifically designed to evaluate the temporal logical understanding. To this end, TLQA leverages temporal annotations from existing video datasets together with temporal operators derived from logic theory to construct questions that test understanding of event sequences and their temporal relationships. TLQA framework is generic and scalable, capable of leveraging both, existing video action datasets with temporal action segmentation annotations, or video datasets with temporal scene graph annotations, to automatically generate temporal logical questions. We leverage 4 datasets, STAR, Breakfast, AGQA, and CrossTask, and generate two VideoQA dataset variants - small (TLQA-S) and large (TLQA-L) - containing 2k and 10k QA pairs for each category, resulting in 32k and 160k total pairs per dataset. We undertake a comprehensive evaluation of leading-edge VideoQA models, employing the TLQA to benchmark their temporal logical understanding capabilities. We assess the VideoQA model's temporal reasoning performance on 16 categories of temporal logic with varying temporal complexity.
☆ Multi-face emotion detection for effective Human-Robot Interaction
The integration of dialogue interfaces in mobile devices has become ubiquitous, providing a wide array of services. As technology progresses, humanoid robots designed with human-like features to interact effectively with people are gaining prominence, and the use of advanced human-robot dialogue interfaces is continually expanding. In this context, emotion recognition plays a crucial role in enhancing human-robot interaction by enabling robots to understand human intentions. This research proposes a facial emotion detection interface integrated into a mobile humanoid robot, capable of displaying real-time emotions from multiple individuals on a user interface. To this end, various deep neural network models for facial expression recognition were developed and evaluated under consistent computer-based conditions, yielding promising results. Afterwards, a trade-off between accuracy and memory footprint was carefully considered to effectively implement this application on a mobile humanoid robot.
comment: 9 pages, 8 figures and 1 table. Accepted at the 17th International Conference on Agents and Artificial Intelligence (ICAART 2025), Porto, Portugal
☆ FaceOracle: Chat with a Face Image Oracle
A face image is a mandatory part of ID and travel documents. Obtaining high-quality face images when issuing such documents is crucial for both human examiners and automated face recognition systems. In several international standards, face image quality requirements are intricate and defined in detail. Identifying and understanding non-compliance or defects in the submitted face images is crucial for both issuing authorities and applicants. In this work, we introduce FaceOracle, an LLM-powered AI assistant that helps its users analyze a face image in a natural conversational manner using standard compliant algorithms. Leveraging the power of LLMs, users can get explanations of various face image quality concepts as well as interpret the outcome of face image quality assessment (FIQA) algorithms. We implement a proof-of-concept that demonstrates how experts at an issuing authority could integrate FaceOracle into their workflow to analyze, understand, and communicate their decisions more efficiently, resulting in enhanced productivity.
☆ Lung Cancer detection using Deep Learning
In this paper we discuss lung cancer detection using hybrid model of Convolutional-Neural-Networks (CNNs) and Support-Vector-Machines-(SVMs) in order to gain early detection of tumors, benign or malignant. The work uses this hybrid model by training upon the Computed Tomography scans (CT scans) as dataset. Using deep learning for detecting lung cancer early is a cutting-edge method.
☆ VAGeo: View-specific Attention for Cross-View Object Geo-Localization ICASSP 2025
Cross-view object geo-localization (CVOGL) aims to locate an object of interest in a captured ground- or drone-view image within the satellite image. However, existing works treat ground-view and drone-view query images equivalently, overlooking their inherent viewpoint discrepancies and the spatial correlation between the query image and the satellite-view reference image. To this end, this paper proposes a novel View-specific Attention Geo-localization method (VAGeo) for accurate CVOGL. Specifically, VAGeo contains two key modules: view-specific positional encoding (VSPE) module and channel-spatial hybrid attention (CSHA) module. In object-level, according to the characteristics of different viewpoints of ground and drone query images, viewpoint-specific positional codings are designed to more accurately identify the click-point object of the query image in the VSPE module. In feature-level, a hybrid attention in the CSHA module is introduced by combining channel attention and spatial attention mechanisms simultaneously for learning discriminative features. Extensive experimental results demonstrate that the proposed VAGeo gains a significant performance improvement, i.e., improving acc@0.25/acc@0.5 on the CVOGL dataset from 45.43%/42.24% to 48.21%/45.22% for ground-view, and from 61.97%/57.66% to 66.19%/61.87% for drone-view.
comment: Accepted by ICASSP 2025
☆ A4O: All Trigger for One sample
Backdoor attacks have become a critical threat to deep neural networks (DNNs), drawing many research interests. However, most of the studied attacks employ a single type of trigger. Consequently, proposed backdoor defenders often rely on the assumption that triggers would appear in a unified way. In this paper, we show that this naive assumption can create a loophole, allowing more sophisticated backdoor attacks to bypass. We design a novel backdoor attack mechanism that incorporates multiple types of backdoor triggers, focusing on stealthiness and effectiveness. Our journey begins with the intriguing observation that the performance of a backdoor attack in deep learning models, as well as its detectability and removability, are all proportional to the magnitude of the trigger. Based on this correlation, we propose reducing the magnitude of each trigger type and combining them to achieve a strong backdoor relying on the combined trigger while still staying safely under the radar of defenders. Extensive experiments on three standard datasets demonstrate that our method can achieve high attack success rates (ASRs) while consistently bypassing state-of-the-art defenses.
☆ Uncertainty Guarantees on Automated Precision Weeding using Conformal Prediction
Precision agriculture in general, and precision weeding in particular, have greatly benefited from the major advancements in deep learning and computer vision. A large variety of commercial robotic solutions are already available and deployed. However, the adoption by farmers of such solutions is still low for many reasons, an important one being the lack of trust in these systems. This is in great part due to the opaqueness and complexity of deep neural networks and the manufacturers' inability to provide valid guarantees on their performance. Conformal prediction, a well-established methodology in the machine learning community, is an efficient and reliable strategy for providing trustworthy guarantees on the predictions of any black-box model under very minimal constraints. Bridging the gap between the safe machine learning and precision agriculture communities, this article showcases conformal prediction in action on the task of precision weeding through deep learning-based image classification. After a detailed presentation of the conformal prediction methodology and the development of a precision spraying pipeline based on a ''conformalized'' neural network and well-defined spraying decision rules, the article evaluates this pipeline on two real-world scenarios: one under in-distribution conditions, the other reflecting a near out-of-distribution setting. The results show that we are able to provide formal, i.e. certifiable, guarantees on spraying at least 90% of the weeds.
☆ Radial Distortion in Face Images: Detection and Impact
Acquiring face images of sufficiently high quality is important for online ID and travel document issuance applications using face recognition systems (FRS). Low-quality, manipulated (intentionally or unintentionally), or distorted images degrade the FRS performance and facilitate documents' misuse. Securing quality for enrolment images, especially in the unsupervised self-enrolment scenario via a smartphone, becomes important to assure FRS performance. In this work, we focus on the less studied area of radial distortion (a.k.a., the fish-eye effect) in face images and its impact on FRS performance. We introduce an effective radial distortion detection model that can detect and flag radial distortion in the enrolment scenario. We formalize the detection model as a face image quality assessment (FIQA) algorithm and provide a careful inspection of the effect of radial distortion on FRS performance. Evaluation results show excellent detection results for the proposed models, and the study on the impact on FRS uncovers valuable insights into how to best use these models in operational systems.
☆ Evaluating Human Perception of Novel View Synthesis: Subjective Quality Assessment of Gaussian Splatting and NeRF in Dynamic Scenes
Gaussian Splatting (GS) and Neural Radiance Fields (NeRF) are two groundbreaking technologies that have revolutionized the field of Novel View Synthesis (NVS), enabling immersive photorealistic rendering and user experiences by synthesizing multiple viewpoints from a set of images of sparse views. The potential applications of NVS, such as high-quality virtual and augmented reality, detailed 3D modeling, and realistic medical organ imaging, underscore the importance of quality assessment of NVS methods from the perspective of human perception. Although some previous studies have explored subjective quality assessments for NVS technology, they still face several challenges, especially in NVS methods selection, scenario coverage, and evaluation methodology. To address these challenges, we conducted two subjective experiments for the quality assessment of NVS technologies containing both GS-based and NeRF-based methods, focusing on dynamic and real-world scenes. This study covers 360{\deg}, front-facing, and single-viewpoint videos while providing a richer and greater number of real scenes. Meanwhile, it's the first time to explore the impact of NVS methods in dynamic scenes with moving objects. The two types of subjective experiments help to fully comprehend the influences of different viewing paths from a human perception perspective and pave the way for future development of full-reference and no-reference quality metrics. In addition, we established a comprehensive benchmark of various state-of-the-art objective metrics on the proposed database, highlighting that existing methods still struggle to accurately capture subjective quality. The results give us some insights into the limitations of existing NVS methods and may promote the development of new NVS methods.
☆ Adaptive Noise-Tolerant Network for Image Segmentation
Unlike image classification and annotation, for which deep network models have achieved dominating superior performances compared to traditional computer vision algorithms, deep learning for automatic image segmentation still faces critical challenges. One of such hurdles is to obtain ground-truth segmentations as the training labels for deep network training. Especially when we study biomedical images, such as histopathological images (histo-images), it is unrealistic to ask for manual segmentation labels as the ground truth for training due to the fine image resolution as well as the large image size and complexity. In this paper, instead of relying on clean segmentation labels, we study whether and how integrating imperfect or noisy segmentation results from off-the-shelf segmentation algorithms may help achieve better segmentation results through a new Adaptive Noise-Tolerant Network (ANTN) model. We extend the noisy label deep learning to image segmentation with two novel aspects: (1) multiple noisy labels can be integrated into one deep learning model; (2) noisy segmentation modeling, including probabilistic parameters, is adaptive, depending on the given testing image appearance. Implementation of the new ANTN model on both the synthetic data and real-world histo-images demonstrates its effectiveness and superiority over off-the-shelf and other existing deep-learning-based image segmentation algorithms.
☆ Eye Sclera for Fair Face Image Quality Assessment
Fair operational systems are crucial in gaining and maintaining society's trust in face recognition systems (FRS). FRS start with capturing an image and assessing its quality before using it further for enrollment or verification. Fair Face Image Quality Assessment (FIQA) schemes therefore become equally important in the context of fair FRS. This work examines the sclera as a quality assessment region for obtaining a fair FIQA. The sclera region is agnostic to demographic variations and skin colour for assessing the quality of a face image. We analyze three skin tone related ISO/IEC face image quality assessment measures and assess the sclera region as an alternative area for assessing FIQ. Our analysis of the face dataset of individuals from different demographic groups representing different skin tones indicates sclera as an alternative to measure dynamic range, over- and under-exposure of face using sclera region alone. The sclera region being agnostic to skin tone, i.e., demographic factors, provides equal utility as a fair FIQA as shown by our Error-vs-Discard Characteristic (EDC) curve analysis.
☆ Robust Single Object Tracking in LiDAR Point Clouds under Adverse Weather Conditions
3D single object tracking (3DSOT) in LiDAR point clouds is a critical task for outdoor perception, enabling real-time perception of object location, orientation, and motion. Despite the impressive performance of current 3DSOT methods, evaluating them on clean datasets inadequately reflects their comprehensive performance, as the adverse weather conditions in real-world surroundings has not been considered. One of the main obstacles is the lack of adverse weather benchmarks for the evaluation of 3DSOT. To this end, this work proposes a challenging benchmark for LiDAR-based 3DSOT in adverse weather, which comprises two synthetic datasets (KITTI-A and nuScenes-A) and one real-world dataset (CADC-SOT) spanning three weather types: rain, fog, and snow. Based on this benchmark, five representative 3D trackers from different tracking frameworks conducted robustness evaluation, resulting in significant performance degradations. This prompts the question: What are the factors that cause current advanced methods to fail on such adverse weather samples? Consequently, we explore the impacts of adverse weather and answer the above question from three perspectives: 1) target distance; 2) template shape corruption; and 3) target shape corruption. Finally, based on domain randomization and contrastive learning, we designed a dual-branch tracking framework for adverse weather, named DRCT, achieving excellent performance in benchmarks.
comment: 14 pages
☆ MSV-Mamba: A Multiscale Vision Mamba Network for Echocardiography Segmentation
Ultrasound imaging frequently encounters challenges, such as those related to elevated noise levels, diminished spatiotemporal resolution, and the complexity of anatomical structures. These factors significantly hinder the model's ability to accurately capture and analyze structural relationships and dynamic patterns across various regions of the heart. Mamba, an emerging model, is one of the most cutting-edge approaches that is widely applied to diverse vision and language tasks. To this end, this paper introduces a U-shaped deep learning model incorporating a large-window Mamba scale (LMS) module and a hierarchical feature fusion approach for echocardiographic segmentation. First, a cascaded residual block serves as an encoder and is employed to incrementally extract multiscale detailed features. Second, a large-window multiscale mamba module is integrated into the decoder to capture global dependencies across regions and enhance the segmentation capability for complex anatomical structures. Furthermore, our model introduces auxiliary losses at each decoder layer and employs a dual attention mechanism to fuse multilayer features both spatially and across channels. This approach enhances segmentation performance and accuracy in delineating complex anatomical structures. Finally, the experimental results using the EchoNet-Dynamic and CAMUS datasets demonstrate that the model outperforms other methods in terms of both accuracy and robustness. For the segmentation of the left ventricular endocardium (${LV}_{endo}$), the model achieved optimal values of 95.01 and 93.36, respectively, while for the left ventricular epicardium (${LV}_{epi}$), values of 87.35 and 87.80, respectively, were achieved. This represents an improvement ranging between 0.54 and 1.11 compared with the best-performing model.
☆ Duplex: Dual Prototype Learning for Compositional Zero-Shot Learning
Compositional Zero-Shot Learning (CZSL) aims to enable models to recognize novel compositions of visual states and objects that were absent during training. Existing methods predominantly focus on learning semantic representations of seen compositions but often fail to disentangle the independent features of states and objects in images, thereby limiting their ability to generalize to unseen compositions. To address this challenge, we propose Duplex, a novel dual-prototype learning method that integrates semantic and visual prototypes through a carefully designed dual-branch architecture, enabling effective representation learning for compositional tasks. Duplex utilizes a Graph Neural Network (GNN) to adaptively update visual prototypes, capturing complex interactions between states and objects. Additionally, it leverages the strong visual-semantic alignment of pre-trained Vision-Language Models (VLMs) and employs a multi-path architecture combined with prompt engineering to align image and text representations, ensuring robust generalization. Extensive experiments on three benchmark datasets demonstrate that Duplex outperforms state-of-the-art methods in both closed-world and open-world settings.
☆ Matching Free Depth Recovery from Structured Light
We present a novel approach for depth estimation from images captured by structured light systems. Unlike many previous methods that rely on image matching process, our approach uses a density voxel grid to represent scene geometry, which is trained via self-supervised differentiable volume rendering. Our method leverages color fields derived from projected patterns in structured light systems during the rendering process, enabling the isolated optimization of the geometry field. This contributes to faster convergence and high-quality output. Additionally, we incorporate normalized device coordinates (NDC), a distortion loss, and a novel surface-based color loss to enhance geometric fidelity. Experimental results demonstrate that our method outperforms existing matching-based techniques in geometric performance for few-shot scenarios, achieving approximately a 60% reduction in average estimated depth errors on synthetic scenes and about 30% on real-world captured scenes. Furthermore, our approach delivers fast training, with a speed roughly three times faster than previous matching-free methods that employ implicit representations.
comment: 10 pages, 8 figures
☆ Dynamic Multimodal Fusion via Meta-Learning Towards Micro-Video Recommendation
Multimodal information (e.g., visual, acoustic, and textual) has been widely used to enhance representation learning for micro-video recommendation. For integrating multimodal information into a joint representation of micro-video, multimodal fusion plays a vital role in the existing micro-video recommendation approaches. However, the static multimodal fusion used in previous studies is insufficient to model the various relationships among multimodal information of different micro-videos. In this paper, we develop a novel meta-learning-based multimodal fusion framework called Meta Multimodal Fusion (MetaMMF), which dynamically assigns parameters to the multimodal fusion function for each micro-video during its representation learning. Specifically, MetaMMF regards the multimodal fusion of each micro-video as an independent task. Based on the meta information extracted from the multimodal features of the input task, MetaMMF parameterizes a neural network as the item-specific fusion function via a meta learner. We perform extensive experiments on three benchmark datasets, demonstrating the significant improvements over several state-of-the-art multimodal recommendation models, like MMGCN, LATTICE, and InvRL. Furthermore, we lighten our model by adopting canonical polyadic decomposition to improve the training efficiency, and validate its effectiveness through experimental results. Codes are available at https://github.com/hanliu95/MetaMMF.
comment: This paper has been accepted by ACM Transactions on Information Systems
☆ The Quest for Visual Understanding: A Journey Through the Evolution of Visual Question Answering
Visual Question Answering (VQA) is an interdisciplinary field that bridges the gap between computer vision (CV) and natural language processing(NLP), enabling Artificial Intelligence(AI) systems to answer questions about images. Since its inception in 2015, VQA has rapidly evolved, driven by advances in deep learning, attention mechanisms, and transformer-based models. This survey traces the journey of VQA from its early days, through major breakthroughs, such as attention mechanisms, compositional reasoning, and the rise of vision-language pre-training methods. We highlight key models, datasets, and techniques that shaped the development of VQA systems, emphasizing the pivotal role of transformer architectures and multimodal pre-training in driving recent progress. Additionally, we explore specialized applications of VQA in domains like healthcare and discuss ongoing challenges, such as dataset bias, model interpretability, and the need for common-sense reasoning. Lastly, we discuss the emerging trends in large multimodal language models and the integration of external knowledge, offering insights into the future directions of VQA. This paper aims to provide a comprehensive overview of the evolution of VQA, highlighting both its current state and potential advancements.
☆ RMAvatar: Photorealistic Human Avatar Reconstruction from Monocular Video Based on Rectified Mesh-embedded Gaussians
We introduce RMAvatar, a novel human avatar representation with Gaussian splatting embedded on mesh to learn clothed avatar from a monocular video. We utilize the explicit mesh geometry to represent motion and shape of a virtual human and implicit appearance rendering with Gaussian Splatting. Our method consists of two main modules: Gaussian initialization module and Gaussian rectification module. We embed Gaussians into triangular faces and control their motion through the mesh, which ensures low-frequency motion and surface deformation of the avatar. Due to the limitations of LBS formula, the human skeleton is hard to control complex non-rigid transformations. We then design a pose-related Gaussian rectification module to learn fine-detailed non-rigid deformations, further improving the realism and expressiveness of the avatar. We conduct extensive experiments on public datasets, RMAvatar shows state-of-the-art performance on both rendering quality and quantitative evaluations. Please see our project page at https://rm-avatar.github.io.
comment: CVM2025
☆ Dual Scale-aware Adaptive Masked Knowledge Distillation for Object Detection
Recent feature masking knowledge distillation methods make use of attention mechanisms to identify either important spatial regions or channel clues for discriminative feature reconstruction. However, most of existing strategies perform global attention-guided feature masking distillation without delving into fine-grained visual clues in feature maps. In particular, uncovering locality-aware clues across different scales are conducive to reconstructing region-aware features, thereby significantly benefiting distillation performance. In this study, we propose a fine-grained adaptive feature masking distillation framework for accurate object detection. Different from previous methods in which global masking is performed on single-scale feature maps, we explore the scale-aware feature masking by performing feature distillation across various scales, such that the object-aware locality is encoded for improved feature reconstruction. In addition, our fine-grained feature distillation strategy is combined with a masking logits distillation scheme in which logits difference between teacher and student networks is utilized to guide the distillation process. Thus, it can help the student model to better learn from the teacher counterpart with improved knowledge transfer. Extensive experiments for detection task demonstrate the superiority of our method. For example, when RetinaNet, RepPoints and Cascade Mask RCNN are used as teacher detectors, the student network achieves mAP scores of 41.5\%, 42.9\%, and 42.6\%, respectively, outperforming state-of-the-art methods such as DMKD and FreeKD.
☆ Collaborative Learning for 3D Hand-Object Reconstruction and Compositional Action Recognition from Egocentric RGB Videos Using Superquadrics AAAI 2025
With the availability of egocentric 3D hand-object interaction datasets, there is increasing interest in developing unified models for hand-object pose estimation and action recognition. However, existing methods still struggle to recognise seen actions on unseen objects due to the limitations in representing object shape and movement using 3D bounding boxes. Additionally, the reliance on object templates at test time limits their generalisability to unseen objects. To address these challenges, we propose to leverage superquadrics as an alternative 3D object representation to bounding boxes and demonstrate their effectiveness on both template-free object reconstruction and action recognition tasks. Moreover, as we find that pure appearance-based methods can outperform the unified methods, the potential benefits from 3D geometric information remain unclear. Therefore, we study the compositionality of actions by considering a more challenging task where the training combinations of verbs and nouns do not overlap with the testing split. We extend H2O and FPHA datasets with compositional splits and design a novel collaborative learning framework that can explicitly reason about the geometric relations between hands and the manipulated object. Through extensive quantitative and qualitative evaluations, we demonstrate significant improvements over the state-of-the-arts in (compositional) action recognition.
comment: Accepted to AAAI 2025
☆ Video Quality Assessment for Online Processing: From Spatial to Temporal Sampling
With the rapid development of multimedia processing and deep learning technologies, especially in the field of video understanding, video quality assessment (VQA) has achieved significant progress. Although researchers have moved from designing efficient video quality mapping models to various research directions, in-depth exploration of the effectiveness-efficiency trade-offs of spatio-temporal modeling in VQA models is still less sufficient. Considering the fact that videos have highly redundant information, this paper investigates this problem from the perspective of joint spatial and temporal sampling, aiming to seek the answer to how little information we should keep at least when feeding videos into the VQA models while with acceptable performance sacrifice. To this end, we drastically sample the video's information from both spatial and temporal dimensions, and the heavily squeezed video is then fed into a stable VQA model. Comprehensive experiments regarding joint spatial and temporal sampling are conducted on six public video quality databases, and the results demonstrate the acceptable performance of the VQA model when throwing away most of the video information. Furthermore, with the proposed joint spatial and temporal sampling strategy, we make an initial attempt to design an online VQA model, which is instantiated by as simple as possible a spatial feature extractor, a temporal feature fusion module, and a global quality regression module. Through quantitative and qualitative experiments, we verify the feasibility of online VQA model by simplifying itself and reducing input.
☆ Representation Learning of Point Cloud Upsampling in Global and Local Inputs
In recent years, point cloud upsampling has been widely applied in fields such as 3D reconstruction. Our study investigates the factors influencing point cloud upsampling on both global and local levels through representation learning. Specifically, the paper inputs global and local information of the same point cloud model object into two encoders to extract these features, fuses them, and then feeds the combined features into an upsampling decoder. The goal is to address issues of sparsity and noise in point clouds by leveraging prior knowledge from both global and local inputs. And the proposed framework can be applied to any state-of-the-art point cloud upsampling neural network. Experiments were conducted on a series of autoencoder-based models utilizing deep learning, yielding interpretability for both global and local inputs, and it has been proven in the results that our proposed framework can further improve the upsampling effect in previous SOTA works. At the same time, the Saliency Map reflects the differences between global and local feature inputs, as well as the effectiveness of training with both inputs in parallel.
☆ Label Calibration in Source Free Domain Adaptation WACV
Source-free domain adaptation (SFDA) utilizes a pre-trained source model with unlabeled target data. Self-supervised SFDA techniques generate pseudolabels from the pre-trained source model, but these pseudolabels often contain noise due to domain discrepancies between the source and target domains. Traditional self-supervised SFDA techniques rely on deterministic model predictions using the softmax function, leading to unreliable pseudolabels. In this work, we propose to introduce predictive uncertainty and softmax calibration for pseudolabel refinement using evidential deep learning. The Dirichlet prior is placed over the output of the target network to capture uncertainty using evidence with a single forward pass. Furthermore, softmax calibration solves the translation invariance problem to assist in learning with noisy labels. We incorporate a combination of evidential deep learning loss and information maximization loss with calibrated softmax in both prior and non-prior target knowledge SFDA settings. Extensive experimental analysis shows that our method outperforms other state-of-the-art methods on benchmark datasets.
comment: Accepted in IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2025
☆ Enhancing Image Generation Fidelity via Progressive Prompts ICASSP 2025
The diffusion transformer (DiT) architecture has attracted significant attention in image generation, achieving better fidelity, performance, and diversity. However, most existing DiT - based image generation methods focus on global - aware synthesis, and regional prompt control has been less explored. In this paper, we propose a coarse - to - fine generation pipeline for regional prompt - following generation. Specifically, we first utilize the powerful large language model (LLM) to generate both high - level descriptions of the image (such as content, topic, and objects) and low - level descriptions (such as details and style). Then, we explore the influence of cross - attention layers at different depths. We find that deeper layers are always responsible for high - level content control, while shallow layers handle low - level content control. Various prompts are injected into the proposed regional cross - attention control for coarse - to - fine generation. By using the proposed pipeline, we enhance the controllability of DiT - based image generation. Extensive quantitative and qualitative results show that our pipeline can improve the performance of the generated images.
comment: Accepted by ICASSP 2025, Github: https://github.com/ZhenXiong-dl/ICASSP2025-RCAC
☆ Hierarchical Superpixel Segmentation via Structural Information Theory SDM 2025
Superpixel segmentation is a foundation for many higher-level computer vision tasks, such as image segmentation, object recognition, and scene understanding. Existing graph-based superpixel segmentation methods typically concentrate on the relationships between a given pixel and its directly adjacent pixels while overlooking the influence of non-adjacent pixels. These approaches do not fully leverage the global information in the graph, leading to suboptimal segmentation quality. To address this limitation, we present SIT-HSS, a hierarchical superpixel segmentation method based on structural information theory. Specifically, we first design a novel graph construction strategy that incrementally explores the pixel neighborhood to add edges based on 1-dimensional structural entropy (1D SE). This strategy maximizes the retention of graph information while avoiding an overly complex graph structure. Then, we design a new 2D SE-guided hierarchical graph partitioning method, which iteratively merges pixel clusters layer by layer to reduce the graph's 2D SE until a predefined segmentation scale is achieved. Experimental results on three benchmark datasets demonstrate that the SIT-HSS performs better than state-of-the-art unsupervised superpixel segmentation algorithms. The source code is available at \url{https://github.com/SELGroup/SIT-HSS}.
comment: Accepted by SDM 2025
☆ SFC-GAN: A Generative Adversarial Network for Brain Functional and Structural Connectome Translation
Modern brain imaging technologies have enabled the detailed reconstruction of human brain connectomes, capturing structural connectivity (SC) from diffusion MRI and functional connectivity (FC) from functional MRI. Understanding the intricate relationships between SC and FC is vital for gaining deeper insights into the brain's functional and organizational mechanisms. However, obtaining both SC and FC modalities simultaneously remains challenging, hindering comprehensive analyses. Existing deep generative models typically focus on synthesizing a single modality or unidirectional translation between FC and SC, thereby missing the potential benefits of bi-directional translation, especially in scenarios where only one connectome is available. Therefore, we propose Structural-Functional Connectivity GAN (SFC-GAN), a novel framework for bidirectional translation between SC and FC. This approach leverages the CycleGAN architecture, incorporating convolutional layers to effectively capture the spatial structures of brain connectomes. To preserve the topological integrity of these connectomes, we employ a structure-preserving loss that guides the model in capturing both global and local connectome patterns while maintaining symmetry. Our framework demonstrates superior performance in translating between SC and FC, outperforming baseline models in similarity and graph property evaluations compared to ground truth data, each translated modality can be effectively utilized for downstream classification.
comment: 5 pages, 2 figures
☆ Protego: Detecting Adversarial Examples for Vision Transformers via Intrinsic Capabilities
Transformer models have excelled in natural language tasks, prompting the vision community to explore their implementation in computer vision problems. However, these models are still influenced by adversarial examples. In this paper, we investigate the attack capabilities of six common adversarial attacks on three pretrained ViT models to reveal the vulnerability of ViT models. To understand and analyse the bias in neural network decisions when the input is adversarial, we use two visualisation techniques that are attention rollout and grad attention rollout. To prevent ViT models from adversarial attack, we propose Protego, a detection framework that leverages the transformer intrinsic capabilities to detection adversarial examples of ViT models. Nonetheless, this is challenging due to a diversity of attack strategies that may be adopted by adversaries. Inspired by the attention mechanism, we know that the token of prediction contains all the information from the input sample. Additionally, the attention region for adversarial examples differs from that of normal examples. Given these points, we can train a detector that achieves superior performance than existing detection methods to identify adversarial examples. Our experiments have demonstrated the high effectiveness of our detection method. For these six adversarial attack methods, our detector's AUC scores all exceed 0.95. Protego may advance investigations in metaverse security.
comment: Accepted by IEEE MetaCom 2024
☆ Rethinking Knowledge in Distillation: An In-context Sample Retrieval Perspective
Conventional knowledge distillation (KD) approaches are designed for the student model to predict similar output as the teacher model for each sample. Unfortunately, the relationship across samples with same class is often neglected. In this paper, we explore to redefine the knowledge in distillation, capturing the relationship between each sample and its corresponding in-context samples (a group of similar samples with the same or different classes), and perform KD from an in-context sample retrieval perspective. As KD is a type of learned label smoothing regularization (LSR), we first conduct a theoretical analysis showing that the teacher's knowledge from the in-context samples is a crucial contributor to regularize the student training with the corresponding samples. Buttressed by the analysis, we propose a novel in-context knowledge distillation (IC-KD) framework that shows its superiority across diverse KD paradigms (offline, online, and teacher-free KD). Firstly, we construct a feature memory bank from the teacher model and retrieve in-context samples for each corresponding sample through retrieval-based learning. We then introduce Positive In-Context Distillation (PICD) to reduce the discrepancy between a sample from the student and the aggregated in-context samples with the same class from the teacher in the logit space. Moreover, Negative In-Context Distillation (NICD) is introduced to separate a sample from the student and the in-context samples with different classes from the teacher in the logit space. Extensive experiments demonstrate that IC-KD is effective across various types of KD, and consistently achieves state-of-the-art performance on CIFAR-100 and ImageNet datasets.
☆ IoT-Based Real-Time Medical-Related Human Activity Recognition Using Skeletons and Multi-Stage Deep Learning for Healthcare
The Internet of Things (IoT) and mobile technology have significantly transformed healthcare by enabling real-time monitoring and diagnosis of patients. Recognizing medical-related human activities (MRHA) is pivotal for healthcare systems, particularly for identifying actions that are critical to patient well-being. However, challenges such as high computational demands, low accuracy, and limited adaptability persist in Human Motion Recognition (HMR). While some studies have integrated HMR with IoT for real-time healthcare applications, limited research has focused on recognizing MRHA as essential for effective patient monitoring. This study proposes a novel HMR method for MRHA detection, leveraging multi-stage deep learning techniques integrated with IoT. The approach employs EfficientNet to extract optimized spatial features from skeleton frame sequences using seven Mobile Inverted Bottleneck Convolutions (MBConv) blocks, followed by ConvLSTM to capture spatio-temporal patterns. A classification module with global average pooling, a fully connected layer, and a dropout layer generates the final predictions. The model is evaluated on the NTU RGB+D 120 and HMDB51 datasets, focusing on MRHA, such as sneezing, falling, walking, sitting, etc. It achieves 94.85% accuracy for cross-subject evaluations and 96.45% for cross-view evaluations on NTU RGB+D 120, along with 89.00% accuracy on HMDB51. Additionally, the system integrates IoT capabilities using a Raspberry Pi and GSM module, delivering real-time alerts via Twilios SMS service to caregivers and patients. This scalable and efficient solution bridges the gap between HMR and IoT, advancing patient monitoring, improving healthcare outcomes, and reducing costs.
☆ Detection of AI Deepfake and Fraud in Online Payments Using GAN-Based Models
This study explores the use of Generative Adversarial Networks (GANs) to detect AI deepfakes and fraudulent activities in online payment systems. With the growing prevalence of deepfake technology, which can manipulate facial features in images and videos, the potential for fraud in online transactions has escalated. Traditional security systems struggle to identify these sophisticated forms of fraud. This research proposes a novel GAN-based model that enhances online payment security by identifying subtle manipulations in payment images. The model is trained on a dataset consisting of real-world online payment images and deepfake images generated using advanced GAN architectures, such as StyleGAN and DeepFake. The results demonstrate that the proposed model can accurately distinguish between legitimate transactions and deepfakes, achieving a high detection rate above 95%. This approach significantly improves the robustness of payment systems against AI-driven fraud. The paper contributes to the growing field of digital security, offering insights into the application of GANs for fraud detection in financial services. Keywords- Payment Security, Image Recognition, Generative Adversarial Networks, AI Deepfake, Fraudulent Activities
comment: The paper will be published and indexed by IEEE at 2025 8th International Conference on Advanced Algorithms and Control Engineering (ICAACE 2025)
☆ UNetVL: Enhancing 3D Medical Image Segmentation with Chebyshev KAN Powered Vision-LSTM
3D medical image segmentation has progressed considerably due to Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs), yet these methods struggle to balance long-range dependency acquisition with computational efficiency. To address this challenge, we propose UNETVL (U-Net Vision-LSTM), a novel architecture that leverages recent advancements in temporal information processing. UNETVL incorporates Vision-LSTM (ViL) for improved scalability and memory functions, alongside an efficient Chebyshev Kolmogorov-Arnold Networks (KAN) to handle complex and long-range dependency patterns more effectively. We validated our method on the ACDC and AMOS2022 (post challenge Task 2) benchmark datasets, showing a significant improvement in mean Dice score compared to recent state-of-the-art approaches, especially over its predecessor, UNETR, with increases of 7.3% on ACDC and 15.6% on AMOS, respectively. Extensive ablation studies were conducted to demonstrate the impact of each component in UNETVL, providing a comprehensive understanding of its architecture. Our code is available at https://github.com/tgrex6/UNETVL, facilitating further research and applications in this domain.
☆ A Multi-Modal Deep Learning Framework for Pan-Cancer Prognosis
Prognostic task is of great importance as it closely related to the survival analysis of patients, the optimization of treatment plans and the allocation of resources. The existing prognostic models have shown promising results on specific datasets, but there are limitations in two aspects. On the one hand, they merely explore certain types of modal data, such as patient histopathology WSI and gene expression analysis. On the other hand, they adopt the per-cancer-per-model paradigm, which means the trained models can only predict the prognostic effect of a single type of cancer, resulting in weak generalization ability. In this paper, a deep-learning based model, named UMPSNet, is proposed. Specifically, to comprehensively understand the condition of patients, in addition to constructing encoders for histopathology images and genomic expression profiles respectively, UMPSNet further integrates four types of important meta data (demographic information, cancer type information, treatment protocols, and diagnosis results) into text templates, and then introduces a text encoder to extract textual features. In addition, the optimal transport OT-based attention mechanism is utilized to align and fuse features of different modalities. Furthermore, a guided soft mixture of experts (GMoE) mechanism is introduced to effectively address the issue of distribution differences among multiple cancer datasets. By incorporating the multi-modality of patient data and joint training, UMPSNet outperforms all SOTA approaches, and moreover, it demonstrates the effectiveness and generalization ability of the proposed learning paradigm of a single model for multiple cancer types. The code of UMPSNet is available at https://github.com/binging512/UMPSNet.
☆ SplatMAP: Online Dense Monocular SLAM with 3D Gaussian Splatting
Achieving high-fidelity 3D reconstruction from monocular video remains challenging due to the inherent limitations of traditional methods like Structure-from-Motion (SfM) and monocular SLAM in accurately capturing scene details. While differentiable rendering techniques such as Neural Radiance Fields (NeRF) address some of these challenges, their high computational costs make them unsuitable for real-time applications. Additionally, existing 3D Gaussian Splatting (3DGS) methods often focus on photometric consistency, neglecting geometric accuracy and failing to exploit SLAM's dynamic depth and pose updates for scene refinement. We propose a framework integrating dense SLAM with 3DGS for real-time, high-fidelity dense reconstruction. Our approach introduces SLAM-Informed Adaptive Densification, which dynamically updates and densifies the Gaussian model by leveraging dense point clouds from SLAM. Additionally, we incorporate Geometry-Guided Optimization, which combines edge-aware geometric constraints and photometric consistency to jointly optimize the appearance and geometry of the 3DGS scene representation, enabling detailed and accurate SLAM mapping reconstruction. Experiments on the Replica and TUM-RGBD datasets demonstrate the effectiveness of our approach, achieving state-of-the-art results among monocular systems. Specifically, our method achieves a PSNR of 36.864, SSIM of 0.985, and LPIPS of 0.040 on Replica, representing improvements of 10.7%, 6.4%, and 49.4%, respectively, over the previous SOTA. On TUM-RGBD, our method outperforms the closest baseline by 10.2%, 6.6%, and 34.7% in the same metrics. These results highlight the potential of our framework in bridging the gap between photometric and geometric dense 3D scene representations, paving the way for practical and efficient monocular dense reconstruction.
☆ LEO: Boosting Mixture of Vision Encoders for Multimodal Large Language Models
Enhanced visual understanding serves as a cornerstone for multimodal large language models (MLLMs). Recent hybrid MLLMs incorporate a mixture of vision experts to address the limitations of using a single vision encoder and excessively long visual tokens. Despite the progress of these MLLMs, a research gap remains in effectively integrating diverse vision encoders. This work explores fusion strategies of visual tokens for hybrid MLLMs, leading to the design of LEO, a novel MLLM with a dual-branch vision encoder framework that incorporates a post-adaptation fusion strategy and adaptive tiling: for each segmented tile of the input images, LEO sequentially interleaves the visual tokens from its two vision encoders. Extensive evaluation across 13 vision-language benchmarks reveals that LEO outperforms state-of-the-art open-source MLLMs and hybrid MLLMs on the majority of tasks. Furthermore, we show that LEO can be adapted to the specialized domain of autonomous driving without altering the model architecture or training recipe, achieving competitive performance compared to existing baselines. The code and model will be publicly available.
♻ ☆ PViT: Prior-augmented Vision Transformer for Out-of-distribution Detection
Vision Transformers (ViTs) have achieved remarkable success over various vision tasks, yet their robustness against data distribution shifts and inherent inductive biases remain underexplored. To enhance the robustness of ViT models for image Out-of-Distribution (OOD) detection, we introduce a novel and generic framework named Prior-augmented Vision Transformer (PViT). Taking as input the prior class logits from a pretrained model, we train PViT to predict the class logits. During inference, PViT identifies OOD samples by quantifying the divergence between the predicted class logits and the prior logits obtained from pre-trained models. Unlike existing state-of-the-art(SOTA) OOD detection methods, PViT shapes the decision boundary between ID and OOD by utilizing the proposed prior guided confidence, without requiring additional data modeling, generation methods, or structural modifications. Extensive experiments on the large-scale ImageNet benchmark, evaluated against over seven OOD datasets, demonstrate that PViT significantly outperforms existing SOTA OOD detection methods in terms of FPR95 and AUROC. The codebase is publicly available at https://github.com/RanchoGoose/PViT.
♻ ☆ Sparse Attention Vectors: Generative Multimodal Model Features Are Discriminative Vision-Language Classifiers
Generative Large Multimodal Models (LMMs) like LLaVA and Qwen-VL excel at a wide variety of vision-language (VL) tasks such as image captioning or visual question answering. Despite strong performance, LMMs are not directly suited for foundational discriminative vision-language tasks (i.e., tasks requiring discrete label predictions) such as image classification and multiple-choice VQA. One key challenge in utilizing LMMs for discriminative tasks is the extraction of useful features from generative models. To overcome this issue, we propose an approach for finding features in the model's latent space to more effectively leverage LMMs for discriminative tasks. Toward this end, we present Sparse Attention Vectors (SAVs) -- a finetuning-free method that leverages sparse attention head activations (fewer than 1\% of the heads) in LMMs as strong features for VL tasks. With only few-shot examples, SAVs demonstrate state-of-the-art performance compared to a variety of few-shot and finetuned baselines on a collection of discriminative tasks. Our experiments also imply that SAVs can scale in performance with additional examples and generalize to similar tasks, establishing SAVs as both effective and robust multimodal feature representations.
♻ ☆ Pre-trained Vision-Language Models Learn Discoverable Visual Concepts
Do vision-language models (VLMs) pre-trained to caption an image of a "durian" learn visual concepts such as "brown" (color) and "spiky" (texture) at the same time? We aim to answer this question as visual concepts learned "for free" would enable wide applications such as neuro-symbolic reasoning or human-interpretable object classification. We assume that the visual concepts, if captured by pre-trained VLMs, can be extracted by their vision-language interface with text-based concept prompts. We observe that recent works prompting VLMs with concepts often differ in their strategies to define and evaluate the visual concepts, leading to conflicting conclusions. We propose a new concept definition strategy based on two observations: First, certain concept prompts include shortcuts that recognize correct concepts for wrong reasons; Second, multimodal information (e.g. visual discriminativeness, and textual knowledge) should be leveraged when selecting the concepts. Our proposed concept discovery and learning (CDL) framework is thus designed to identify a diverse list of generic visual concepts (e.g. "spiky" as opposed to "spiky durian"), which are ranked and selected based on visual and language mutual information. We carefully design quantitative and human evaluations of the discovered concepts on six diverse visual recognition datasets, which confirm that pre-trained VLMs do learn visual concepts that provide accurate and thorough descriptions for the recognized objects. All code and models are publicly released.
comment: Transactions on Machine Learning Research, 2025
♻ ☆ Extracting Manifold Information from Point Clouds
A kernel based method is proposed for the construction of signature (defining) functions of subsets of $\mathbb{R}^d$. The subsets can range from full dimensional manifolds (open subsets) to point clouds (a finite number of points) and include bounded smooth manifolds of any codimension. The interpolation and analysis of point clouds are the main application. Two extreme cases in terms of regularity are considered, where the data set is interpolated by an analytic surface, at the one extreme, and by a H\"older continuous surface, at the other. The signature function can be computed as a linear combination of translated kernels, the coefficients of which are the solution of a finite dimensional linear problem. Once it is obtained, it can be used to estimate the dimension as well as the normal and the curvatures of the interpolated surface. The method is global and does not require explicit knowledge of local neighborhoods or any other structure present in the data set. It admits a variational formulation with a natural ``regularized'' counterpart, that proves to be useful in dealing with data sets corrupted by numerical error or noise. The underlying analytical structure of the approach is presented in general before it is applied to the case of point clouds.
comment: 27 pages, 16 figures, 5 tables
♻ ☆ ExACT: Teaching AI Agents to Explore with Reflective-MCTS and Exploratory Learning
Autonomous agents have demonstrated significant potential in automating complex multistep decision-making tasks. However, even state-of-the-art vision-language models (VLMs), such as GPT-4o, still fall short of human-level performance, particularly in intricate web environments and long-horizon tasks. To address these limitations, we present ExACT, an approach to combine test-time search and self-learning to build o1-like models for agentic applications. We first introduce Reflective Monte Carlo Tree Search (R-MCTS), a novel test time algorithm designed to enhance AI agents' ability to explore decision space on the fly. R-MCTS extends traditional MCTS by 1) incorporating contrastive reflection, allowing agents to learn from past interactions and dynamically improve their search efficiency; and 2) using multi-agent debate for reliable state evaluation. Next, we introduce Exploratory Learning, a novel learning strategy to teach agents to search at inference time without relying on any external search algorithms. On the challenging VisualWebArena benchmark, our GPT-4o based R-MCTS agent achieves a 6% to 30% relative improvement across various tasks compared to the previous state-of-the-art. Additionally, we show that the knowledge and experience gained from test-time search can be effectively transferred back to GPT-4o via fine-tuning. After Exploratory Learning, GPT-4o 1) demonstrates the ability to explore the environment, evaluate a state, and backtrack to viable ones when it detects that the current state cannot lead to success, and 2) matches 87% of R-MCTS's performance while using significantly less compute. Notably, our work demonstrates the compute scaling properties in both training - data collection with R-MCTS - and testing time. These results suggest a promising research direction to enhance VLMs' capabilities for agentic applications via test-time search and self-learning.
♻ ☆ The Sound of Water: Inferring Physical Properties from Pouring Liquids ICASSP 2025
We study the connection between audio-visual observations and the underlying physics of a mundane yet intriguing everyday activity: pouring liquids. Given only the sound of liquid pouring into a container, our objective is to automatically infer physical properties such as the liquid level, the shape and size of the container, the pouring rate and the time to fill. To this end, we: (i) show in theory that these properties can be determined from the fundamental frequency (pitch); (ii) train a pitch detection model with supervision from simulated data and visual data with a physics-inspired objective; (iii) introduce a new large dataset of real pouring videos for a systematic study; (iv) show that the trained model can indeed infer these physical properties for real data; and finally, (v) we demonstrate strong generalization to various container shapes, other datasets, and in-the-wild YouTube videos. Our work presents a keen understanding of a narrow yet rich problem at the intersection of acoustics, physics, and learning. It opens up applications to enhance multisensory perception in robotic pouring.
comment: Project page at https://bpiyush.github.io/pouring-water-website. Short version accepted to ICASSP 2025
♻ ☆ Robot Synesthesia: A Sound and Emotion Guided AI Painter
If a picture paints a thousand words, sound may voice a million. While recent robotic painting and image synthesis methods have achieved progress in generating visuals from text inputs, the translation of sound into images is vastly unexplored. Generally, sound-based interfaces and sonic interactions have the potential to expand accessibility and control for the user and provide a means to convey complex emotions and the dynamic aspects of the real world. In this paper, we propose an approach for using sound and speech to guide a robotic painting process, known here as robot synesthesia. For general sound, we encode the simulated paintings and input sounds into the same latent space. For speech, we decouple speech into its transcribed text and the tone of the speech. Whereas we use the text to control the content, we estimate the emotions from the tone to guide the mood of the painting. Our approach has been fully integrated with FRIDA, a robotic painting framework, adding sound and speech to FRIDA's existing input modalities, such as text and style. In two surveys, participants were able to correctly guess the emotion or natural sound used to generate a given painting more than twice as likely as random chance. On our sound-guided image manipulation and music-guided paintings, we discuss the results qualitatively.
comment: 9 pages, 10 figures
♻ ☆ Quilt-1M: One Million Image-Text Pairs for Histopathology
Recent accelerations in multi-modal applications have been made possible with the plethora of image and text data available online. However, the scarcity of analogous data in the medical field, specifically in histopathology, has slowed comparable progress. To enable similar representation learning for histopathology, we turn to YouTube, an untapped resource of videos, offering $1,087$ hours of valuable educational histopathology videos from expert clinicians. From YouTube, we curate QUILT: a large-scale vision-language dataset consisting of $802, 144$ image and text pairs. QUILT was automatically curated using a mixture of models, including large language models, handcrafted algorithms, human knowledge databases, and automatic speech recognition. In comparison, the most comprehensive datasets curated for histopathology amass only around $200$K samples. We combine QUILT with datasets from other sources, including Twitter, research papers, and the internet in general, to create an even larger dataset: QUILT-1M, with $1$M paired image-text samples, marking it as the largest vision-language histopathology dataset to date. We demonstrate the value of QUILT-1M by fine-tuning a pre-trained CLIP model. Our model outperforms state-of-the-art models on both zero-shot and linear probing tasks for classifying new histopathology images across $13$ diverse patch-level datasets of $8$ different sub-pathologies and cross-modal retrieval tasks.
♻ ☆ Enhance Eye Disease Detection using Learnable Probabilistic Discrete Latents in Machine Learning Architectures
Ocular diseases, including diabetic retinopathy and glaucoma, present a significant public health challenge due to their high prevalence and potential for causing vision impairment. Early and accurate diagnosis is crucial for effective treatment and management. In recent years, deep learning models have emerged as powerful tools for analysing medical images, such as retina imaging. However, challenges persist in model relibability and uncertainty estimation, which are critical for clinical decision-making. This study leverages the probabilistic framework of Generative Flow Networks (GFlowNets) to learn the posterior distribution over latent discrete dropout masks for the classification and analysis of ocular diseases using fundus images. We develop a robust and generalizable method that utilizes GFlowOut integrated with ResNet18 and ViT models as the backbone in identifying various ocular conditions. This study employs a unique set of dropout masks - none, random, bottomup, and topdown - to enhance model performance in analyzing these fundus images. Our results demonstrate that our learnable probablistic latents significantly improves accuracy, outperforming the traditional dropout approach. We utilize a gradient map calculation method, Grad-CAM, to assess model explainability, observing that the model accurately focuses on critical image regions for predictions. The integration of GFlowOut in neural networks presents a promising advancement in the automated diagnosis of ocular diseases, with implications for improving clinical workflows and patient outcomes.
♻ ☆ RGB-D Indiscernible Object Counting in Underwater Scenes
Recently, indiscernible/camouflaged scene understanding has attracted lots of research attention in the vision community. We further advance the frontier of this field by systematically studying a new challenge named indiscernible object counting (IOC), the goal of which is to count objects that are blended with respect to their surroundings. Due to a lack of appropriate IOC datasets, we present a large-scale dataset IOCfish5K which contains a total of 5,637 high-resolution images and 659,024 annotated center points. Our dataset consists of a large number of indiscernible objects (mainly fish) in underwater scenes, making the annotation process all the more challenging. IOCfish5K is superior to existing datasets with indiscernible scenes because of its larger scale, higher image resolutions, more annotations, and denser scenes. All these aspects make it the most challenging dataset for IOC so far, supporting progress in this area. Benefiting from the recent advancements of depth estimation foundation models, we construct high-quality depth maps for IOCfish5K by generating pseudo labels using the Depth Anything V2 model. The RGB-D version of IOCfish5K is named IOCfish5K-D. For benchmarking purposes on IOCfish5K, we select 14 mainstream methods for object counting and carefully evaluate them. For multimodal IOCfish5K-D, we evaluate other 4 popular multimodal counting methods. Furthermore, we propose IOCFormer, a new strong baseline that combines density and regression branches in a unified framework and can effectively tackle object counting under concealed scenes. We also propose IOCFormer-D to enable the effective usage of depth modality in helping detect and count objects hidden in their environments. Experiments show that IOCFormer and IOCFormer-D achieve state-of-the-art scores on IOCfish5K and IOCfish5K-D, respectively.
comment: Journal version. The resources are available at https://github.com/GuoleiSun/Indiscernible-Object-Counting
♻ ☆ CMAR-Net: Accurate Cross-Modal 3D SAR Reconstruction of Vehicle Targets with Sparse Multi-Baseline Data
Multi-baseline Synthetic Aperture Radar (SAR) three-dimensional (3D) tomography is a crucial remote sensing technique that provides 3D resolution unavailable in conventional SAR imaging. However, achieving high-quality imaging typically requires multi-angle or full-aperture data, resulting in significant imaging costs. Recent advancements in sparse 3D SAR, which rely on data from limited apertures, have gained attention as a cost-effective alternative. Notably, deep learning techniques have markedly enhanced the imaging quality of sparse 3D SAR. Despite these advancements, existing methods primarily depend on high-resolution radar images for supervising the training of deep neural networks (DNNs). This exclusive dependence on single-modal data prevents the introduction of complementary information from other data sources, limiting further improvements in imaging performance. In this paper, we introduce a Cross-Modal 3D-SAR Reconstruction Network (CMAR-Net) to enhance 3D SAR imaging by integrating heterogeneous information. Leveraging cross-modal supervision from 2D optical images and error transfer guaranteed by differentiable rendering, CMAR-Net achieves efficient training and reconstructs highly sparse multi-baseline SAR data into visually structured and accurate 3D images, particularly for vehicle targets. Extensive experiments on simulated and real-world datasets demonstrate that CMAR-Net significantly outperforms SOTA sparse reconstruction algorithms based on compressed sensing (CS) and deep learning (DL). Furthermore, our method eliminates the need for time-consuming full-aperture data preprocessing and relies solely on computer-rendered optical images, significantly reducing dataset construction costs. This work highlights the potential of deep learning for multi-baseline SAR 3D imaging and introduces a novel framework for radar imaging research through cross-modal learning.
♻ ☆ Arc2Avatar: Generating Expressive 3D Avatars from a Single Image via ID Guidance
Inspired by the effectiveness of 3D Gaussian Splatting (3DGS) in reconstructing detailed 3D scenes within multi-view setups and the emergence of large 2D human foundation models, we introduce Arc2Avatar, the first SDS-based method utilizing a human face foundation model as guidance with just a single image as input. To achieve that, we extend such a model for diverse-view human head generation by fine-tuning on synthetic data and modifying its conditioning. Our avatars maintain a dense correspondence with a human face mesh template, allowing blendshape-based expression generation. This is achieved through a modified 3DGS approach, connectivity regularizers, and a strategic initialization tailored for our task. Additionally, we propose an optional efficient SDS-based correction step to refine the blendshape expressions, enhancing realism and diversity. Experiments demonstrate that Arc2Avatar achieves state-of-the-art realism and identity preservation, effectively addressing color issues by allowing the use of very low guidance, enabled by our strong identity prior and initialization strategy, without compromising detail. Please visit https://arc2avatar.github.io for more resources.
comment: Project Page https://arc2avatar.github.io
♻ ☆ RAD-DINO: Exploring Scalable Medical Image Encoders Beyond Text Supervision
Language-supervised pre-training has proven to be a valuable method for extracting semantically meaningful features from images, serving as a foundational element in multimodal systems within the computer vision and medical imaging domains. However, the computed features are limited by the information contained in the text, which is particularly problematic in medical imaging, where the findings described by radiologists focus on specific observations. This challenge is compounded by the scarcity of paired imaging-text data due to concerns over leakage of personal health information. In this work, we fundamentally challenge the prevailing reliance on language supervision for learning general-purpose biomedical imaging encoders. We introduce RAD-DINO, a biomedical image encoder pre-trained solely on unimodal biomedical imaging data that obtains similar or greater performance than state-of-the-art biomedical language-supervised models on a diverse range of benchmarks. Specifically, the quality of learned representations is evaluated on standard imaging tasks (classification and semantic segmentation), and a vision-language alignment task (text report generation from images). To further demonstrate the drawback of language supervision, we show that features from RAD-DINO correlate with other medical records (e.g., sex or age) better than language-supervised models, which are generally not mentioned in radiology reports. Finally, we conduct a series of ablations determining the factors in RAD-DINO's performance; notably, we observe that RAD-DINO's downstream performance scales well with the quantity and diversity of training data, demonstrating that image-only supervision is a scalable approach for training a foundational biomedical image encoder. Model weights of RAD-DINO trained on publicly available datasets are available at https://huggingface.co/microsoft/rad-dino.
♻ ☆ Agentic Copyright Watermarking against Adversarial Evidence Forgery with Purification-Agnostic Curriculum Proxy Learning
With the proliferation of AI agents in various domains, protecting the ownership of AI models has become crucial due to the significant investment in their development. Unauthorized use and illegal distribution of these models pose serious threats to intellectual property, necessitating effective copyright protection measures. Model watermarking has emerged as a key technique to address this issue, embedding ownership information within models to assert rightful ownership during copyright disputes. This paper presents several contributions to model watermarking: a self-authenticating black-box watermarking protocol using hash techniques, a study on evidence forgery attacks using adversarial perturbations, a proposed defense involving a purification step to counter adversarial attacks, and a purification-agnostic curriculum proxy learning method to enhance watermark robustness and model performance. Experimental results demonstrate the effectiveness of these approaches in improving the security, reliability, and performance of watermarked models.
♻ ☆ ScVLM: Enhancing Vision-Language Model for Safety-Critical Event Understanding WACV
Accurately identifying, understanding and describing traffic safety-critical events (SCEs), including crashes, tire strikes, and near-crashes, is crucial for advanced driver assistance systems, automated driving systems, and traffic safety. As SCEs are rare events, most general vision-language models (VLMs) have not been trained sufficiently to link SCE videos and narratives, which could lead to hallucinations and missing key safety characteristics. Here, we introduce ScVLM, a novel hybrid methodology that integrates supervised and contrastive learning techniques to classify the severity and types of SCEs, as well as to generate narrative descriptions of SCEs. This approach utilizes classification to enhance VLMs' comprehension of driving videos and improve the rationality of event descriptions. The proposed approach is trained on and evaluated by more than 8,600 SCEs from the Second Strategic Highway Research Program Naturalistic Driving Study dataset, the largest publicly accessible driving dataset with videos and SCE annotations. The results demonstrate the superiority of the proposed approach in generating contextually accurate event descriptions and mitigating VLM hallucinations. The code will be available at https://github.com/datadrivenwheels/ScVLM.
comment: To appear in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2025
♻ ☆ Automation of Quantum Dot Measurement Analysis via Explainable Machine Learning AAAI 2024
The rapid development of quantum dot (QD) devices for quantum computing has necessitated more efficient and automated methods for device characterization and tuning. This work demonstrates the feasibility and advantages of applying explainable machine learning techniques to the analysis of quantum dot measurements, paving the way for further advances in automated and transparent QD device tuning. Many of the measurements acquired during the tuning process come in the form of images that need to be properly analyzed to guide the subsequent tuning steps. By design, features present in such images capture certain behaviors or states of the measured QD devices. When considered carefully, such features can aid the control and calibration of QD devices. An important example of such images are so-called $\textit{triangle plots}$, which visually represent current flow and reveal characteristics important for QD device calibration. While image-based classification tools, such as convolutional neural networks (CNNs), can be used to verify whether a given measurement is $\textit{good}$ and thus warrants the initiation of the next phase of tuning, they do not provide any insights into how the device should be adjusted in the case of $\textit{bad}$ images. This is because CNNs sacrifice prediction and model intelligibility for high accuracy. To ameliorate this trade-off, a recent study introduced an image vectorization approach that relies on the Gabor wavelet transform (Schug $\textit{et al.}$ 2024 $\textit{Proc. XAI4Sci: Explainable Machine Learning for Sciences Workshop (AAAI 2024) (Vancouver, Canada)}$ pp 1-6). Here we propose an alternative vectorization method that involves mathematical modeling of synthetic triangles to mimic the experimental data. Using explainable boosting machines, we show that this new method offers superior explainability of model prediction without sacrificing accuracy.
comment: 20 pages, 5 figures, abbreviated version published in Proceedings of the XAI4Sci: Explainable machine learning for sciences workshop at AAAI 2024, (Vancouver, Canada)
♻ ☆ Class Distance Weighted Cross Entropy Loss for Classification of Disease Severity
Assessing disease severity with ordinal classes, where each class reflects increasing severity levels, benefits from loss functions designed for this ordinal structure. Traditional categorical loss functions, like Cross-Entropy (CE), often perform suboptimally in these scenarios. To address this, we propose a novel loss function, Class Distance Weighted Cross-Entropy (CDW-CE), which penalizes misclassifications more severely when the predicted and actual classes are farther apart. We evaluated CDW-CE using various deep architectures, comparing its performance against several categorical and ordinal loss functions. To assess the quality of latent representations, we used t-distributed stochastic neighbor embedding (t-SNE) and uniform manifold approximation and projection (UMAP) visualizations, quantified the clustering quality using the Silhouette Score, and compared Class Activation Maps (CAM) generated by models trained with CDW-CE and CE loss. Feedback from domain experts was incorporated to evaluate how well model attention aligns with expert opinion. Our results show that CDW-CE consistently improves performance in ordinal image classification tasks. It achieves higher Silhouette Scores, indicating better class discrimination capability, and its CAM visualizations show a stronger focus on clinically significant regions, as validated by domain experts. Receiver operator characteristics (ROC) curves and the area under the curve (AUC) scores highlight that CDW-CE outperforms other loss functions, including prominent ordinal loss functions from the literature.
♻ ☆ FusionSORT: Fusion Methods for Online Multi-object Visual Tracking
In this work, we investigate four different fusion methods for associating detections to tracklets in multi-object visual tracking. In addition to considering strong cues such as motion and appearance information, we also consider weak cues such as height intersection-over-union (height-IoU) and tracklet confidence information in the data association using different fusion methods. These fusion methods include minimum, weighted sum based on IoU, Kalman filter (KF) gating, and hadamard product of costs due to the different cues. We conduct extensive evaluations on validation sets of MOT17, MOT20 and DanceTrack datasets, and find out that the choice of a fusion method is key for data association in multi-object visual tracking. We hope that this investigative work helps the computer vision research community to use the right fusion method for data association in multi-object visual tracking.
♻ ☆ Light Transport-aware Diffusion Posterior Sampling for Single-View Reconstruction of 3D Volumes
We introduce a single-view reconstruction technique of volumetric fields in which multiple light scattering effects are omnipresent, such as in clouds. We model the unknown distribution of volumetric fields using an unconditional diffusion model trained on a novel benchmark dataset comprising 1,000 synthetically simulated volumetric density fields. The neural diffusion model is trained on the latent codes of a novel, diffusion-friendly, monoplanar representation. The generative model is used to incorporate a tailored parametric diffusion posterior sampling technique into different reconstruction tasks. A physically-based differentiable volume renderer is employed to provide gradients with respect to light transport in the latent space. This stands in contrast to classic NeRF approaches and makes the reconstructions better aligned with observed data. Through various experiments, we demonstrate single-view reconstruction of volumetric clouds at a previously unattainable quality.
♻ ☆ Zero-Shot Pupil Segmentation with SAM 2: A Case Study of Over 14 Million Images
We explore the transformative potential of SAM 2, a vision foundation model, in advancing gaze estimation and eye tracking technologies. By significantly reducing annotation time, lowering technical barriers through its ease of deployment, and enhancing segmentation accuracy, SAM 2 addresses critical challenges faced by researchers and practitioners. Utilizing its zero-shot segmentation capabilities with minimal user input-a single click per video-we tested SAM 2 on over 14 million eye images from diverse datasets, including virtual reality setups and the world's largest unified dataset recorded using wearable eye trackers. Remarkably, in pupil segmentation tasks, SAM 2 matches the performance of domain-specific models trained solely on eye images, achieving competitive mean Intersection over Union (mIoU) scores of up to 93% without fine-tuning. Additionally, we provide our code and segmentation masks for these widely used datasets to promote further research.
comment: Virmarie Maquiling and Sean Anthony Byrne contributed equally to this paper, 8 pages, 3 figures, ETRA 2025, pre-print
♻ ☆ Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling
We introduce InternVL 2.5, an advanced multimodal large language model (MLLM) series that builds upon InternVL 2.0, maintaining its core model architecture while introducing significant enhancements in training and testing strategies as well as data quality. In this work, we delve into the relationship between model scaling and performance, systematically exploring the performance trends in vision encoders, language models, dataset sizes, and test-time configurations. Through extensive evaluations on a wide range of benchmarks, including multi-discipline reasoning, document understanding, multi-image / video understanding, real-world comprehension, multimodal hallucination detection, visual grounding, multilingual capabilities, and pure language processing, InternVL 2.5 exhibits competitive performance, rivaling leading commercial models such as GPT-4o and Claude-3.5-Sonnet. Notably, our model is the first open-source MLLMs to surpass 70% on the MMMU benchmark, achieving a 3.7-point improvement through Chain-of-Thought (CoT) reasoning and showcasing strong potential for test-time scaling. We hope this model contributes to the open-source community by setting new standards for developing and applying multimodal AI systems. HuggingFace demo see https://huggingface.co/spaces/OpenGVLab/InternVL
comment: Technical Report
♻ ☆ BayesAdapter: enhanced uncertainty estimation in CLIP few-shot adaptation
The emergence of large pre-trained vision-language models (VLMs) represents a paradigm shift in machine learning, with unprecedented results in a broad span of visual recognition tasks. CLIP, one of the most popular VLMs, has exhibited remarkable zero-shot and transfer learning capabilities in classification. To transfer CLIP to downstream tasks, adapters constitute a parameter-efficient approach that avoids backpropagation through the large model (unlike related prompt learning methods). However, CLIP adapters have been developed to target discriminative performance, and the quality of their uncertainty estimates has been overlooked. In this work we show that the discriminative performance of state-of-the-art CLIP adapters does not always correlate with their uncertainty estimation capabilities, which are essential for a safe deployment in real-world scenarios. We also demonstrate that one of such adapters is obtained through MAP inference from a more general probabilistic framework. Based on this observation we introduce BayesAdapter, which leverages Bayesian inference to estimate a full probability distribution instead of a single point, better capturing the variability inherent in the parameter space. In a comprehensive empirical evaluation we show that our approach obtains high quality uncertainty estimates in the predictions, standing out in calibration and selective classification. Our code will be publicly available upon acceptance of the paper.
comment: 30 pages, 5 figures, 23 tables
♻ ☆ GIM: A Million-scale Benchmark for Generative Image Manipulation Detection and Localization
The extraordinary ability of generative models emerges as a new trend in image editing and generating realistic images, posing a serious threat to the trustworthiness of multimedia data and driving the research of image manipulation detection and location (IMDL). However, the lack of a large-scale data foundation makes the IMDL task unattainable. In this paper, we build a local manipulation data generation pipeline that integrates the powerful capabilities of SAM, LLM, and generative models. Upon this basis, we propose the GIM dataset, which has the following advantages: 1) Large scale, GIM includes over one million pairs of AI-manipulated images and real images. 2) Rich image content, GIM encompasses a broad range of image classes. 3) Diverse generative manipulation, the images are manipulated images with state-of-the-art generators and various manipulation tasks. The aforementioned advantages allow for a more comprehensive evaluation of IMDL methods, extending their applicability to diverse images. We introduce the GIM benchmark with two settings to evaluate existing IMDL methods. In addition, we propose a novel IMDL framework, termed GIMFormer, which consists of a ShadowTracer, Frequency-Spatial block (FSB), and a Multi-Window Anomalous Modeling (MWAM) module. Extensive experiments on the GIM demonstrate that GIMFormer surpasses the previous state-of-the-art approach on two different benchmarks.
comment: Code page: https://github.com/chenyirui/GIM
♻ ☆ Point-JEPA: A Joint Embedding Predictive Architecture for Self-Supervised Learning on Point Cloud
Recent advancements in self-supervised learning in the point cloud domain have demonstrated significant potential. However, these methods often suffer from drawbacks, including lengthy pre-training time, the necessity of reconstruction in the input space, or the necessity of additional modalities. In order to address these issues, we introduce Point-JEPA, a joint embedding predictive architecture designed specifically for point cloud data. To this end, we introduce a sequencer that orders point cloud patch embeddings to efficiently compute and utilize their proximity based on the indices during target and context selection. The sequencer also allows shared computations of the patch embeddings' proximity between context and target selection, further improving the efficiency. Experimentally, our method achieves competitive results with state-of-the-art methods while avoiding the reconstruction in the input space or additional modality.
comment: 13 pages, 4 figures
♻ ☆ SCC-YOLO: An Improved Object Detector for Assisting in Brain Tumor Diagnosis
Brain tumors can result in neurological dysfunction, alterations in cognitive and psychological states, increased intracranial pressure, and the occurrence of seizures, thereby presenting a substantial risk to human life and health. The You Only Look Once(YOLO) series models have demonstrated superior accuracy in object detection for medical imaging. In this paper, we develop a novel SCC-YOLO architecture by integrating the SCConv attention mechanism into YOLOv9. The SCConv module reconstructs an efficient convolutional module by reducing spatial and channel redundancy among features, thereby enhancing the learning of image features. We investigate the impact of intergrating different attention mechanisms with the YOLOv9 model on brain tumor image detection using both the Br35H dataset and our self-made dataset(Brain_Tumor_Dataset). Experimental results show that on the Br35H dataset, SCC-YOLO achieved a 0.3% improvement in mAp50 compared to YOLOv9, while on our self-made dataset, SCC-YOLO exhibited a 0.5% improvement over YOLOv9. SCC-YOLO has reached state-of-the-art performance in brain tumor detection. Source code is available at : https://jihulab.com/healthcare-information-studio/SCC-YOLO/-/tree/master
♻ ☆ Text-Guided Coarse-to-Fine Fusion Network for Robust Remote Sensing Visual Question Answering
Remote Sensing Visual Question Answering (RSVQA) has gained significant research interest. However, current RSVQA methods are limited by the imaging mechanisms of optical sensors, particularly under challenging conditions such as cloud-covered and low-light scenarios. Given the all-time and all-weather imaging capabilities of Synthetic Aperture Radar (SAR), it is crucial to investigate the integration of optical-SAR images to improve RSVQA performance. In this work, we propose a Text-guided Coarse-to-Fine Fusion Network (TGFNet), which leverages the semantic relationships between question text and multi-source images to guide the network toward complementary fusion at the feature level. Specifically, we develop a Text-guided Coarse-to-Fine Attention Refinement (CFAR) module to focus on key areas related to the question in complex remote sensing images. This module progressively directs attention from broad areas to finer details through key region routing, enhancing the model's ability to focus on relevant regions. Furthermore, we propose an Adaptive Multi-Expert Fusion (AMEF) module that dynamically integrates different experts, enabling the adaptive fusion of optical and SAR features. In addition, we create the first large-scale benchmark dataset for evaluating optical-SAR RSVQA methods, comprising 6,008 well-aligned optical-SAR image pairs and 1,036,694 well-labeled question-answer pairs across 16 diverse question types, including complex relational reasoning questions. Extensive experiments on the proposed dataset demonstrate that our TGFNet effectively integrates complementary information between optical and SAR images, significantly improving the model's performance in challenging scenarios. The dataset is available at: https://github.com/mmic-lcl/. Index Terms: Remote Sensing Visual Question Answering, Multi-source Data Fusion, Multimodal, Remote Sensing, OPT-SAR.
♻ ☆ AI-Driven Early Mental Health Screening: Analyzing Selfies of Pregnant Women ALT
Major Depressive Disorder and anxiety disorders affect millions globally, contributing significantly to the burden of mental health issues. Early screening is crucial for effective intervention, as timely identification of mental health issues can significantly improve treatment outcomes. Artificial intelligence (AI) can be valuable for improving the screening of mental disorders, enabling early intervention and better treatment outcomes. AI-driven screening can leverage the analysis of multiple data sources, including facial features in digital images. However, existing methods often rely on controlled environments or specialized equipment, limiting their broad applicability. This study explores the potential of AI models for ubiquitous depression-anxiety screening given face-centric selfies. The investigation focuses on high-risk pregnant patients, a population that is particularly vulnerable to mental health issues. To cope with limited training data resulting from our clinical setup, pre-trained models were utilized in two different approaches: fine-tuning convolutional neural networks (CNNs) originally designed for facial expression recognition and employing vision-language models (VLMs) for zero-shot analysis of facial expressions. Experimental results indicate that the proposed VLM-based method significantly outperforms CNNs, achieving an accuracy of 77.6%. Although there is significant room for improvement, the results suggest that VLMs can be a promising approach for mental health screening.
comment: This article has been accepted for publication in HEALTHINF25 at the 18th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2025)
♻ ☆ Improving Forward Compatibility in Class Incremental Learning by Increasing Representation Rank and Feature Richness
Class Incremental Learning (CIL) constitutes a pivotal subfield within continual learning, aimed at enabling models to progressively learn new classification tasks while retaining knowledge obtained from prior tasks. Although previous studies have predominantly focused on backward compatible approaches to mitigate catastrophic forgetting, recent investigations have introduced forward compatible methods to enhance performance on novel tasks and complement existing backward compatible methods. In this study, we introduce an effective-Rank based Feature Richness enhancement (RFR) method, designed for improving forward compatibility. Specifically, this method increases the effective rank of representations during the base session, thereby facilitating the incorporation of more informative features pertinent to unseen novel tasks. Consequently, RFR achieves dual objectives in backward and forward compatibility: minimizing feature extractor modifications and enhancing novel task performance, respectively. To validate the efficacy of our approach, we establish a theoretical connection between effective rank and the Shannon entropy of representations. Subsequently, we conduct comprehensive experiments by integrating RFR into eleven well-known CIL methods. Our results demonstrate the effectiveness of our approach in enhancing novel-task performance while mitigating catastrophic forgetting. Furthermore, our method notably improves the average incremental accuracy across all eleven cases examined.
♻ ☆ Benchmarking Counterfactual Image Generation NeurIPS 2024
Generative AI has revolutionised visual content editing, empowering users to effortlessly modify images and videos. However, not all edits are equal. To perform realistic edits in domains such as natural image or medical imaging, modifications must respect causal relationships inherent to the data generation process. Such image editing falls into the counterfactual image generation regime. Evaluating counterfactual image generation is substantially complex: not only it lacks observable ground truths, but also requires adherence to causal constraints. Although several counterfactual image generation methods and evaluation metrics exist, a comprehensive comparison within a unified setting is lacking. We present a comparison framework to thoroughly benchmark counterfactual image generation methods. We integrate all models that have been used for the task at hand and expand them to novel datasets and causal graphs, demonstrating the superiority of Hierarchical VAEs across most datasets and metrics. Our framework is implemented in a user-friendly Python package that can be extended to incorporate additional SCMs, causal methods, generative models, and datasets for the community to build on. Code: https://github.com/gulnazaki/counterfactual-benchmark.
comment: Published as a conference paper at NeurIPS 2024 Datasets and Benchmarks Track https://openreview.net/forum?id=0T8xRFrScB Project page: https://gulnazaki.github.io/counterfactual-benchmark
♻ ☆ Situational Scene Graph for Structured Human-centric Situation Understanding WACV 2025
Graph based representation has been widely used in modelling spatio-temporal relationships in video understanding. Although effective, existing graph-based approaches focus on capturing the human-object relationships while ignoring fine-grained semantic properties of the action components. These semantic properties are crucial for understanding the current situation, such as where does the action takes place, what tools are used and functional properties of the objects. In this work, we propose a graph-based representation called Situational Scene Graph (SSG) to encode both human-object relationships and the corresponding semantic properties. The semantic details are represented as predefined roles and values inspired by situation frame, which is originally designed to represent a single action. Based on our proposed representation, we introduce the task of situational scene graph generation and propose a multi-stage pipeline Interactive and Complementary Network (InComNet) to address the task. Given that the existing datasets are not applicable to the task, we further introduce a SSG dataset whose annotations consist of semantic role-value frames for human, objects and verb predicates of human-object relations. Finally, we demonstrate the effectiveness of our proposed SSG representation by testing on different downstream tasks. Experimental results show that the unified representation can not only benefit predicate classification and semantic role-value classification, but also benefit reasoning tasks on human-centric situation understanding. We will release the code and the dataset soon.
comment: Accepted for WACV 2025
♻ ☆ Multi-Head Explainer: A General Framework to Improve Explainability in CNNs and Transformers
In this study, we introduce the Multi-Head Explainer (MHEX), a versatile and modular framework that enhances both the explainability and accuracy of Convolutional Neural Networks (CNNs) and Transformer-based models. MHEX consists of three core components: an Attention Gate that dynamically highlights task-relevant features, Deep Supervision that guides early layers to capture fine-grained details pertinent to the target class, and an Equivalent Matrix that unifies refined local and global representations to generate comprehensive saliency maps. Our approach demonstrates superior compatibility, enabling effortless integration into existing residual networks like ResNet and Transformer architectures such as BERT with minimal modifications. Extensive experiments on benchmark datasets in medical imaging and text classification show that MHEX not only improves classification accuracy but also produces highly interpretable and detailed saliency scores.
♻ ☆ OCTolyzer: Fully automatic toolkit for segmentation and feature extracting in optical coherence tomography and scanning laser ophthalmoscopy data
Optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO) of the eye has become essential to ophthalmology and the emerging field of oculomics, thus requiring a need for transparent, reproducible, and rapid analysis of this data for clinical research and the wider research community. Here, we introduce OCTolyzer, the first open-source toolkit for retinochoroidal analysis in OCT/SLO data. It features two analysis suites for OCT and SLO data, facilitating deep learning-based anatomical segmentation and feature extraction of the cross-sectional retinal and choroidal layers and en face retinal vessels. We describe OCTolyzer and evaluate the reproducibility of its OCT choroid analysis. At the population level, metrics for choroid region thickness were highly reproducible, with a mean absolute error (MAE)/Pearson correlation for macular volume choroid thickness (CT) of 6.7$\mu$m/0.99, macular B-scan CT of 11.6$\mu$m/0.99, and peripapillary CT of 5.0$\mu$m/0.99. Macular choroid vascular index (CVI) also showed strong reproducibility, with MAE/Pearson for volume CVI yielding 0.0271/0.97 and B-scan CVI 0.0130/0.91. At the eye level, measurement noise for regional and vessel metrics was below 5% and 20% of the population's variability, respectively. Outliers were caused by poor-quality B-scans with thick choroids and invisible choroid-sclera boundary. Processing times on a laptop CPU were under three seconds for macular/peripapillary B-scans and 85 seconds for volume scans. OCTolyzer can convert OCT/SLO data into reproducible and clinically meaningful retinochoroidal features and will improve the standardisation of ocular measurements in OCT/SLO image analysis, requiring no specialised training or proprietary software to be used. OCTolyzer is freely available here: https://github.com/jaburke166/OCTolyzer.
comment: Main paper: 15 pages, 9 figures, 3 tables. Supplementary material: 9 pages, 6 figures, 5 tables
♻ ☆ VibrantVS: A high-resolution multi-task transformer for forest canopy height estimation
This paper explores the application of a novel multi-task vision transformer (ViT) model for the estimation of canopy height models (CHMs) using 4-band National Agriculture Imagery Program (NAIP) imagery across the western United States. We compare the effectiveness of this model in terms of accuracy and precision aggregated across ecoregions and class heights versus three other benchmark peer-reviewed models. Key findings suggest that, while other benchmark models can provide high precision in localized areas, the VibrantVS model has substantial advantages across a broad reach of ecoregions in the western United States with higher accuracy, higher precision, the ability to generate updated inference at a cadence of three years or less, and high spatial resolution. The VibrantVS model provides significant value for ecological monitoring and land management decisions for wildfire mitigation.
comment: 15 pages, 12 figures
♻ ☆ SyncDiff: Synchronized Motion Diffusion for Multi-Body Human-Object Interaction Synthesis
Synthesizing realistic human-object interaction motions is a critical problem in VR/AR and human animation. Unlike the commonly studied scenarios involving a single human or hand interacting with one object, we address a more generic multi-body setting with arbitrary numbers of humans, hands, and objects. This complexity introduces significant challenges in synchronizing motions due to the high correlations and mutual influences among bodies. To address these challenges, we introduce SyncDiff, a novel method for multi-body interaction synthesis using a synchronized motion diffusion strategy. SyncDiff employs a single diffusion model to capture the joint distribution of multi-body motions. To enhance motion fidelity, we propose a frequency-domain motion decomposition scheme. Additionally, we introduce a new set of alignment scores to emphasize the synchronization of different body motions. SyncDiff jointly optimizes both data sample likelihood and alignment likelihood through an explicit synchronization strategy. Extensive experiments across four datasets with various multi-body configurations demonstrate the superiority of SyncDiff over existing state-of-the-art motion synthesis methods.
♻ ☆ PSA-VLM: Enhancing Vision-Language Model Safety through Progressive Concept-Bottleneck-Driven Alignment
Benefiting from the powerful capabilities of Large Language Models (LLMs), pre-trained visual encoder models connected to LLMs form Vision Language Models (VLMs). However, recent research shows that the visual modality in VLMs is highly vulnerable, allowing attackers to bypass safety alignment in LLMs through visually transmitted content, launching harmful attacks. To address this challenge, we propose a progressive concept-based alignment strategy, PSA-VLM, which incorporates safety modules as concept bottlenecks to enhance visual modality safety alignment. By aligning model predictions with specific safety concepts, we improve defenses against risky images, enhancing explainability and controllability while minimally impacting general performance. Our method is obtained through two-stage training. The low computational cost of the first stage brings very effective performance improvement, and the fine-tuning of the language model in the second stage further improves the safety performance. Our method achieves state-of-the-art results on popular VLM safety benchmark.
comment: arXiv admin note: substantial text overlap with arXiv:2405.13581
♻ ☆ Migician: Revealing the Magic of Free-Form Multi-Image Grounding in Multimodal Large Language Models
The recent advancement of Multimodal Large Language Models (MLLMs) has significantly improved their fine-grained perception of single images and general comprehension across multiple images. However, existing MLLMs still face challenges in achieving precise grounding in complex multi-image scenarios. To address this, we first explore a Chain-of-Thought (CoT) framework that integrates single-image grounding with multi-image comprehension. While partially effective, it remains unstable and struggles to capture abstract visual information due to its non-end-to-end nature. Therefore, we introduce Migician, the first multi-image grounding model capable of performing free-form and accurate grounding across multiple images. To support this, we present the MGrounding-630k dataset, which comprises data for several multi-image grounding tasks derived from existing datasets, along with newly generated free-form grounding instruction-following data. Furthermore, we propose MIG-Bench, a comprehensive benchmark specifically designed for evaluating multi-image grounding capabilities. Experimental results demonstrate that our model achieves significantly superior multi-image grounding capabilities, outperforming the best existing MLLMs by 21.61% and even surpassing much larger 70B models. Our code, model, dataset, and benchmark are fully open-sourced at https://migician-vg.github.io/.
comment: 20 pages, 8 figures
Amortizing intractable inference in diffusion models for vision, language, and control NeurIPS 2024
Diffusion models have emerged as effective distribution estimators in vision, language, and reinforcement learning, but their use as priors in downstream tasks poses an intractable posterior inference problem. This paper studies amortized sampling of the posterior over data, $\mathbf{x}\sim p^{\rm post}(\mathbf{x})\propto p(\mathbf{x})r(\mathbf{x})$, in a model that consists of a diffusion generative model prior $p(\mathbf{x})$ and a black-box constraint or likelihood function $r(\mathbf{x})$. We state and prove the asymptotic correctness of a data-free learning objective, relative trajectory balance, for training a diffusion model that samples from this posterior, a problem that existing methods solve only approximately or in restricted cases. Relative trajectory balance arises from the generative flow network perspective on diffusion models, which allows the use of deep reinforcement learning techniques to improve mode coverage. Experiments illustrate the broad potential of unbiased inference of arbitrary posteriors under diffusion priors: in vision (classifier guidance), language (infilling under a discrete diffusion LLM), and multimodal data (text-to-image generation). Beyond generative modeling, we apply relative trajectory balance to the problem of continuous control with a score-based behavior prior, achieving state-of-the-art results on benchmarks in offline reinforcement learning.
comment: NeurIPS 2024; code: https://github.com/GFNOrg/diffusion-finetuning
♻ ☆ InstructOCR: Instruction Boosting Scene Text Spotting AAAI2025
In the field of scene text spotting, previous OCR methods primarily relied on image encoders and pre-trained text information, but they often overlooked the advantages of incorporating human language instructions. To address this gap, we propose InstructOCR, an innovative instruction-based scene text spotting model that leverages human language instructions to enhance the understanding of text within images. Our framework employs both text and image encoders during training and inference, along with instructions meticulously designed based on text attributes. This approach enables the model to interpret text more accurately and flexibly. Extensive experiments demonstrate the effectiveness of our model and we achieve state-of-the-art results on widely used benchmarks. Furthermore, the proposed framework can be seamlessly applied to scene text VQA tasks. By leveraging instruction strategies during pre-training, the performance on downstream VQA tasks can be significantly improved, with a 2.6% increase on the TextVQA dataset and a 2.1% increase on the ST-VQA dataset. These experimental results provide insights into the benefits of incorporating human language instructions for OCR-related tasks.
comment: Accepted by AAAI2025
♻ ☆ II-Bench: An Image Implication Understanding Benchmark for Multimodal Large Language Models
The rapid advancements in the development of multimodal large language models (MLLMs) have consistently led to new breakthroughs on various benchmarks. In response, numerous challenging and comprehensive benchmarks have been proposed to more accurately assess the capabilities of MLLMs. However, there is a dearth of exploration of the higher-order perceptual capabilities of MLLMs. To fill this gap, we propose the Image Implication understanding Benchmark, II-Bench, which aims to evaluate the model's higher-order perception of images. Through extensive experiments on II-Bench across multiple MLLMs, we have made significant findings. Initially, a substantial gap is observed between the performance of MLLMs and humans on II-Bench. The pinnacle accuracy of MLLMs attains 74.8%, whereas human accuracy averages 90%, peaking at an impressive 98%. Subsequently, MLLMs perform worse on abstract and complex images, suggesting limitations in their ability to understand high-level semantics and capture image details. Finally, it is observed that most models exhibit enhanced accuracy when image sentiment polarity hints are incorporated into the prompts. This observation underscores a notable deficiency in their inherent understanding of image sentiment. We believe that II-Bench will inspire the community to develop the next generation of MLLMs, advancing the journey towards expert artificial general intelligence (AGI). II-Bench is publicly available at https://huggingface.co/datasets/m-a-p/II-Bench.
comment: 100 pages, 82 figures, add citations
♻ ☆ EM-DARTS: Hierarchical Differentiable Architecture Search for Eye Movement Recognition
Eye movement biometrics has received increasing attention thanks to its highly secure identification. Although deep learning (DL) models have shown success in eye movement recognition, their architectures largely rely on human prior knowledge. Differentiable Neural Architecture Search (DARTS) automates the manual process of architecture design with high search efficiency. However, DARTS typically stacks multiple cells to form a convolutional network, which limits the diversity of architecture. Furthermore, DARTS generally searches for architectures using shallower networks than those used in the evaluation, creating a significant disparity in architecture depth between the search and evaluation phases. To address this issue, we propose EM-DARTS, a hierarchical differentiable architecture search algorithm to automatically design the DL architecture for eye movement recognition. First, we define a supernet and propose a global and local alternate Neural Architecture Search method to search the optimal architecture alternately with a differentiable neural architecture search. The local search strategy aims to find an optimal architecture for different cells while the global search strategy is responsible for optimizing the architecture of the target network. To minimize redundancy, transfer entropy is proposed to compute the information amount of each layer, thereby further simplifying the network search process. Experimental results on three public datasets demonstrate that the proposed EM-DARTS is capable of producing an optimal architecture that leads to state-of-the-art recognition performance, {Specifically, the recognition models developed using EM-DARTS achieved the lowest EERs of 0.0453 on the GazeBase dataset, 0.0377 on the JuDo1000 dataset, and 0.1385 on the EMglasses dataset.
comment: Submited to IEEE Transactions on Instrumentation and Measurement
♻ ☆ WeCromCL: Weakly Supervised Cross-Modality Contrastive Learning for Transcription-only Supervised Text Spotting ECCV 2024
Transcription-only Supervised Text Spotting aims to learn text spotters relying only on transcriptions but no text boundaries for supervision, thus eliminating expensive boundary annotation. The crux of this task lies in locating each transcription in scene text images without location annotations. In this work, we formulate this challenging problem as a Weakly Supervised Cross-modality Contrastive Learning problem, and design a simple yet effective model dubbed WeCromCL that is able to detect each transcription in a scene image in a weakly supervised manner. Unlike typical methods for cross-modality contrastive learning that focus on modeling the holistic semantic correlation between an entire image and a text description, our WeCromCL conducts atomistic contrastive learning to model the character-wise appearance consistency between a text transcription and its correlated region in a scene image to detect an anchor point for the transcription in a weakly supervised manner. The detected anchor points by WeCromCL are further used as pseudo location labels to guide the learning of text spotting. Extensive experiments on four challenging benchmarks demonstrate the superior performance of our model over other methods. Code will be released.
comment: Accepted by ECCV 2024
♻ ☆ AI-Driven Diabetic Retinopathy Screening: Multicentric Validation of AIDRSS in India
Purpose: Diabetic retinopathy (DR) is a major cause of vision loss, particularly in India, where access to retina specialists is limited in rural areas. This study aims to evaluate the Artificial Intelligence-based Diabetic Retinopathy Screening System (AIDRSS) for DR detection and prevalence assessment, addressing the growing need for scalable, automated screening solutions in resource-limited settings. Approach: A multicentric, cross-sectional study was conducted in Kolkata, India, involving 5,029 participants and 10,058 macula-centric retinal fundus images. The AIDRSS employed a deep learning algorithm with 50 million trainable parameters, integrated with Contrast Limited Adaptive Histogram Equalization (CLAHE) preprocessing for enhanced image quality. DR was graded using the International Clinical Diabetic Retinopathy (ICDR) Scale, categorizing disease into five stages (DR0 to DR4). Statistical metrics including sensitivity, specificity, and prevalence rates were evaluated against expert retina specialist assessments. Results: The prevalence of DR in the general population was 13.7%, rising to 38.2% among individuals with elevated random blood glucose levels. The AIDRSS achieved an overall sensitivity of 92%, specificity of 88%, and 100% sensitivity for detecting referable DR (DR3 and DR4). These results demonstrate the system's robust performance in accurately identifying and grading DR in a diverse population. Conclusions: AIDRSS provides a reliable, scalable solution for early DR detection in resource-constrained environments. Its integration of advanced AI techniques ensures high diagnostic accuracy, with potential to significantly reduce the burden of diabetes-related vision loss in underserved regions.
comment: 22 pages, 5 figures. arXiv admin note: substantial text overlap with arXiv:1812.07105 by other authors without attribution
♻ ☆ HeadGAP: Few-Shot 3D Head Avatar via Generalizable Gaussian Priors 3DV 2025
In this paper, we present a novel 3D head avatar creation approach capable of generalizing from few-shot in-the-wild data with high-fidelity and animatable robustness. Given the underconstrained nature of this problem, incorporating prior knowledge is essential. Therefore, we propose a framework comprising prior learning and avatar creation phases. The prior learning phase leverages 3D head priors derived from a large-scale multi-view dynamic dataset, and the avatar creation phase applies these priors for few-shot personalization. Our approach effectively captures these priors by utilizing a Gaussian Splatting-based auto-decoder network with part-based dynamic modeling. Our method employs identity-shared encoding with personalized latent codes for individual identities to learn the attributes of Gaussian primitives. During the avatar creation phase, we achieve fast head avatar personalization by leveraging inversion and fine-tuning strategies. Extensive experiments demonstrate that our model effectively exploits head priors and successfully generalizes them to few-shot personalization, achieving photo-realistic rendering quality, multi-view consistency, and stable animation.
comment: Accepted to 3DV 2025. Project page: https://headgap.github.io/
♻ ☆ Quilt-LLaVA: Visual Instruction Tuning by Extracting Localized Narratives from Open-Source Histopathology Videos
Diagnosis in histopathology requires a global whole slide images (WSIs) analysis, requiring pathologists to compound evidence from different WSI patches. The gigapixel scale of WSIs poses a challenge for histopathology multi-modal models. Training multi-model models for histopathology requires instruction tuning datasets, which currently contain information for individual image patches, without a spatial grounding of the concepts within each patch and without a wider view of the WSI. Therefore, they lack sufficient diagnostic capacity for histopathology. To bridge this gap, we introduce Quilt-Instruct, a large-scale dataset of 107,131 histopathology-specific instruction question/answer pairs, grounded within diagnostically relevant image patches that make up the WSI. Our dataset is collected by leveraging educational histopathology videos from YouTube, which provides spatial localization of narrations by automatically extracting the narrators' cursor positions. Quilt-Instruct supports contextual reasoning by extracting diagnosis and supporting facts from the entire WSI. Using Quilt-Instruct, we train Quilt-LLaVA, which can reason beyond the given single image patch, enabling diagnostic reasoning across patches. To evaluate Quilt-LLaVA, we propose a comprehensive evaluation dataset created from 985 images and 1283 human-generated question-answers. We also thoroughly evaluate Quilt-LLaVA using public histopathology datasets, where Quilt-LLaVA significantly outperforms SOTA by over 10% on relative GPT-4 score and 4% and 9% on open and closed set VQA. Our code, data, and model are publicly accessible at quilt-llava.github.io.
♻ ☆ Simplifying CLIP: Unleashing the Power of Large-Scale Models on Consumer-level Computers
Contrastive Language-Image Pre-training (CLIP) has attracted a surge of attention for its superior zero-shot performance and excellent transferability to downstream tasks. However, training such large-scale models usually requires substantial computation and storage, which poses barriers for general users with consumer-level computers. Motivated by this observation, in this paper we investigate how to achieve competitive performance on only one Nvidia RTX3090 GPU and with one terabyte for storing dataset. On one hand, we simplify the transformer block structure and combine Weight Inheritance with multi-stage Knowledge Distillation (WIKD), thereby reducing the parameters and improving the inference speed during training along with deployment. On the other hand, confronted with the convergence challenge posed by small dataset, we generate synthetic captions for each sample as data augmentation, and devise a novel Pair Matching (PM) loss to fully exploit the distinguishment among positive and negative image-text pairs. Extensive experiments demonstrate that our model can achieve a new state-of-the-art datascale-parameter-accuracy tradeoff, which could further popularize the CLIP model in the related research community.
♻ ☆ Buster: Implanting Semantic Backdoor into Text Encoder to Mitigate NSFW Content Generation
The rise of deep learning models in the digital era has raised substantial concerns regarding the generation of Not-Safe-for-Work (NSFW) content. Existing defense methods primarily involve model fine-tuning and post-hoc content moderation. Nevertheless, these approaches largely lack scalability in eliminating harmful content, degrade the quality of benign image generation, or incur high inference costs. To address these challenges, we propose an innovative framework named \textit{Buster}, which injects backdoors into the text encoder to prevent NSFW content generation. Buster leverages deep semantic information rather than explicit prompts as triggers, redirecting NSFW prompts towards targeted benign prompts. Additionally, Buster employs energy-based training data generation through Langevin dynamics for adversarial knowledge augmentation, thereby ensuring robustness in harmful concept definition. This approach demonstrates exceptional resilience and scalability in mitigating NSFW content. Particularly, Buster fine-tunes the text encoder of Text-to-Image models within merely five minutes, showcasing its efficiency. Our extensive experiments denote that Buster outperforms nine state-of-the-art baselines, achieving a superior NSFW content removal rate of at least 91.2\% while preserving the quality of harmless images.
♻ ☆ On the Robustness of Object Detection Models on Aerial Images
The robustness of object detection models is a major concern when applied to real-world scenarios. The performance of most models tends to degrade when confronted with images affected by corruptions, since they are usually trained and evaluated on clean datasets. While numerous studies have explored the robustness of object detection models on natural images, there is a paucity of research focused on models applied to aerial images, which feature complex backgrounds, substantial variations in scales, and orientations of objects. This paper addresses the challenge of assessing the robustness of object detection models on aerial images, with a specific emphasis on scenarios where images are affected by clouds. In this study, we introduce two novel benchmarks based on DOTA-v1.0. The first benchmark encompasses 19 prevalent corruptions, while the second focuses on the cloud-corrupted condition-a phenomenon uncommon in natural images yet frequent in aerial photography. We systematically evaluate the robustness of mainstream object detection models and perform necessary ablation experiments. Through our investigations, we find that rotation-invariant modeling and enhanced backbone architectures can improve the robustness of models. Furthermore, increasing the capacity of Transformer-based backbones can strengthen their robustness. The benchmarks we propose and our comprehensive experimental analyses can facilitate research on robust object detection on aerial images. The codes and datasets are available at: https://github.com/hehaodong530/DOTA-C.
comment: accepted by IEEE TGRS
♻ ☆ Pamba: Enhancing Global Interaction in Point Clouds via State Space Model AAAI 2025
Transformers have demonstrated impressive results for 3D point cloud semantic segmentation. However, the quadratic complexity of transformer makes computation costs high, limiting the number of points that can be processed simultaneously and impeding the modeling of long-range dependencies between objects in a single scene. Drawing inspiration from the great potential of recent state space models (SSM) for long sequence modeling, we introduce Mamba, an SSM-based architecture, to the point cloud domain and propose Pamba, a novel architecture with strong global modeling capability under linear complexity. Specifically, to make the disorderness of point clouds fit in with the causal nature of Mamba, we propose a multi-path serialization strategy applicable to point clouds. Besides, we propose the ConvMamba block to compensate for the shortcomings of Mamba in modeling local geometries and in unidirectional modeling. Pamba obtains state-of-the-art results on several 3D point cloud segmentation tasks, including ScanNet v2, ScanNet200, S3DIS and nuScenes, while its effectiveness is validated by extensive experiments.
comment: Accepted by AAAI 2025
♻ ☆ MovieCharacter: A Tuning-Free Framework for Controllable Character Video Synthesis
Recent advancements in character video synthesis still depend on extensive fine-tuning or complex 3D modeling processes, which can restrict accessibility and hinder real-time applicability. To address these challenges, we propose a simple yet effective tuning-free framework for character video synthesis, named MovieCharacter, designed to streamline the synthesis process while ensuring high-quality outcomes. Our framework decomposes the synthesis task into distinct, manageable modules: character segmentation and tracking, video object removal, character motion imitation, and video composition. This modular design not only facilitates flexible customization but also ensures that each component operates collaboratively to effectively meet user needs. By leveraging existing open-source models and integrating well-established techniques, MovieCharacter achieves impressive synthesis results without necessitating substantial resources or proprietary datasets. Experimental results demonstrate that our framework enhances the efficiency, accessibility, and adaptability of character video synthesis, paving the way for broader creative and interactive applications.
♻ ☆ MLLM-CompBench: A Comparative Reasoning Benchmark for Multimodal LLMs NeurIPS 2024
The ability to compare objects, scenes, or situations is crucial for effective decision-making and problem-solving in everyday life. For instance, comparing the freshness of apples enables better choices during grocery shopping while comparing sofa designs helps optimize the aesthetics of our living space. Despite its significance, the comparative capability is largely unexplored in artificial general intelligence (AGI). In this paper, we introduce MLLM-CompBench, a benchmark designed to evaluate the comparative reasoning capability of multimodal large language models (MLLMs). MLLM-CompBench mines and pairs images through visually oriented questions covering eight dimensions of relative comparison: visual attribute, existence, state, emotion, temporality, spatiality, quantity, and quality. We curate a collection of around 40K image pairs using metadata from diverse vision datasets and CLIP similarity scores. These image pairs span a broad array of visual domains, including animals, fashion, sports, and both outdoor and indoor scenes. The questions are carefully crafted to discern relative characteristics between two images and are labeled by human annotators for accuracy and relevance. We use MLLM-CompBench to evaluate recent MLLMs, including GPT-4V(ision), Gemini-Pro, and LLaVA-1.6. Our results reveal notable shortcomings in their comparative abilities. We believe MLLM-COMPBENCH not only sheds light on these limitations but also establishes a solid foundation for future enhancements in the comparative capability of MLLMs.
comment: This paper has been accepted to NeurIPS 2024. The first two authors contributed equally to this work
♻ ☆ SL-YOLO: A Stronger and Lighter Drone Target Detection Model
Detecting small objects in complex scenes, such as those captured by drones, is a daunting challenge due to the difficulty in capturing the complex features of small targets. While the YOLO family has achieved great success in large target detection, its performance is less than satisfactory when faced with small targets. Because of this, this paper proposes a revolutionary model SL-YOLO (Stronger and Lighter YOLO) that aims to break the bottleneck of small target detection. We propose the Hierarchical Extended Path Aggregation Network (HEPAN), a pioneering cross-scale feature fusion method that can ensure unparalleled detection accuracy even in the most challenging environments. At the same time, without sacrificing detection capabilities, we design the C2fDCB lightweight module and add the SCDown downsampling module to greatly reduce the model's parameters and computational complexity. Our experimental results on the VisDrone2019 dataset reveal a significant improvement in performance, with mAP@0.5 jumping from 43.0% to 46.9% and mAP@0.5:0.95 increasing from 26.0% to 28.9%. At the same time, the model parameters are reduced from 11.1M to 9.6M, and the FPS can reach 132, making it an ideal solution for real-time small object detection in resource-constrained environments.
♻ ☆ SoftPatch+: Fully Unsupervised Anomaly Classification and Segmentation
Although mainstream unsupervised anomaly detection (AD) (including image-level classification and pixel-level segmentation)algorithms perform well in academic datasets, their performance is limited in practical application due to the ideal experimental setting of clean training data. Training with noisy data is an inevitable problem in real-world anomaly detection but is seldom discussed. This paper is the first to consider fully unsupervised industrial anomaly detection (i.e., unsupervised AD with noisy data). To solve this problem, we proposed memory-based unsupervised AD methods, SoftPatch and SoftPatch+, which efficiently denoise the data at the patch level. Noise discriminators are utilized to generate outlier scores for patch-level noise elimination before coreset construction. The scores are then stored in the memory bank to soften the anomaly detection boundary. Compared with existing methods, SoftPatch maintains a strong modeling ability of normal data and alleviates the overconfidence problem in coreset, and SoftPatch+ has more robust performance which is articularly useful in real-world industrial inspection scenarios with high levels of noise (from 10% to 40%). Comprehensive experiments conducted in diverse noise scenarios demonstrate that both SoftPatch and SoftPatch+ outperform the state-of-the-art AD methods on the MVTecAD, ViSA, and BTAD benchmarks. Furthermore, the performance of SoftPatch and SoftPatch+ is comparable to that of the noise-free methods in conventional unsupervised AD setting. The code of the proposed methods can be found at https://github.com/TencentYoutuResearch/AnomalyDetection-SoftPatch.
comment: arXiv admin note: substantial text overlap with arXiv:2403.14233 paper has been accepted by Pattern Recognition
♻ ☆ MedicalNarratives: Connecting Medical Vision and Language with Localized Narratives
We propose MedicalNarratives, a dataset curated from medical pedagogical videos similar in nature to data collected in Think-Aloud studies and inspired by Localized Narratives, which collects grounded image-text data by curating instructors' speech and mouse cursor movements synchronized in time. MedicalNarratives enables pretraining of both semantic and dense objectives, alleviating the need to train medical semantic and dense tasks disparately due to the lack of reasonably sized datasets. Our dataset contains 4.7M image-text pairs from videos and articles, with 1M samples containing dense annotations in the form of traces and bounding boxes. To evaluate the utility of MedicalNarratives, we train GenMedClip based on the CLIP architecture using our dataset spanning 12 medical domains and demonstrate that it outperforms previous state-of-the-art models on a newly constructed medical imaging benchmark that comprehensively evaluates performance across all modalities. Data, demo, code and models available at https://medical-narratives.github.io
♻ ☆ Images are Achilles' Heel of Alignment: Exploiting Visual Vulnerabilities for Jailbreaking Multimodal Large Language Models ECCV 2024
In this paper, we study the harmlessness alignment problem of multimodal large language models (MLLMs). We conduct a systematic empirical analysis of the harmlessness performance of representative MLLMs and reveal that the image input poses the alignment vulnerability of MLLMs. Inspired by this, we propose a novel jailbreak method named HADES, which hides and amplifies the harmfulness of the malicious intent within the text input, using meticulously crafted images. Experimental results show that HADES can effectively jailbreak existing MLLMs, which achieves an average Attack Success Rate (ASR) of 90.26% for LLaVA-1.5 and 71.60% for Gemini Pro Vision. Our code and data are available at https://github.com/RUCAIBox/HADES.
comment: ECCV 2024 Oral
♻ ☆ The Streetscape Application Services Stack (SASS): Towards a Distributed Sensing Architecture for Urban Applications
As urban populations grow, cities are becoming more complex, driving the deployment of interconnected sensing systems to realize the vision of smart cities. These systems aim to improve safety, mobility, and quality of life through applications that integrate diverse sensors with real-time decision-making. Streetscape applications-focusing on challenges like pedestrian safety and adaptive traffic management-depend on managing distributed, heterogeneous sensor data, aligning information across time and space, and enabling real-time processing. These tasks are inherently complex and often difficult to scale. The Streetscape Application Services Stack (SASS) addresses these challenges with three core services: multimodal data synchronization, spatiotemporal data fusion, and distributed edge computing. By structuring these capabilities as clear, composable abstractions with clear semantics, SASS allows developers to scale streetscape applications efficiently while minimizing the complexity of multimodal integration. We evaluated SASS in two real-world testbed environments: a controlled parking lot and an urban intersection in a major U.S. city. These testbeds allowed us to test SASS under diverse conditions, demonstrating its practical applicability. The Multimodal Data Synchronization service reduced temporal misalignment errors by 88%, achieving synchronization accuracy within 50 milliseconds. Spatiotemporal Data Fusion service improved detection accuracy for pedestrians and vehicles by over 10%, leveraging multicamera integration. The Distributed Edge Computing service increased system throughput by more than an order of magnitude. Together, these results show how SASS provides the abstractions and performance needed to support real-time, scalable urban applications, bridging the gap between sensing infrastructure and actionable streetscape intelligence.
♻ ☆ Valley2: Exploring Multimodal Models with Scalable Vision-Language Design
Recently, vision-language models have made remarkable progress, demonstrating outstanding capabilities in various tasks such as image captioning and video understanding. We introduce Valley2, a novel multimodal large language model designed to enhance performance across all domains and extend the boundaries of practical applications in e-commerce and short video scenarios. Notably, Valley2 achieves state-of-the-art (SOTA) performance on e-commerce benchmarks, surpassing open-source models of similar size by a large margin (79.66 vs. 72.76). Additionally, Valley2 ranks second on the OpenCompass leaderboard among models with fewer than 10B parameters, with an impressive average score of 67.4. The code and model weights are open-sourced at https://github.com/bytedance/Valley.
♻ ☆ ChartX & ChartVLM: A Versatile Benchmark and Foundation Model for Complicated Chart Reasoning
Recently, many versatile Multi-modal Large Language Models (MLLMs) have emerged continuously. However, their capacity to query information depicted in visual charts and engage in reasoning based on the queried contents remains under-explored. In this paper, to comprehensively and rigorously benchmark the ability of the off-the-shelf MLLMs in the chart domain, we construct ChartX, a multi-modal evaluation set covering 18 chart types, 7 chart tasks, 22 disciplinary topics, and high-quality chart data. Besides, we develop ChartVLM to offer a new perspective on handling multi-modal tasks that strongly depend on interpretable patterns, such as reasoning tasks in the field of charts or geometric images. We evaluate the chart-related ability of mainstream MLLMs and our ChartVLM on the proposed ChartX evaluation set. Extensive experiments demonstrate that ChartVLM surpasses both versatile and chart-related large models, achieving results comparable to GPT-4V. We believe that our study can pave the way for further exploration in creating a more comprehensive chart evaluation set and developing more interpretable multi-modal models. Both ChartX and ChartVLM are available at: https://github.com/Alpha-Innovator/ChartVLM
comment: Code and dataset are available for downloading at: https://github.com/Alpha-Innovator/ChartVLM 25 pages, 15 figures
♻ ☆ LDMapNet-U: An End-to-End System for City-Scale Lane-Level Map Updating KDD 2025
An up-to-date city-scale lane-level map is an indispensable infrastructure and a key enabling technology for ensuring the safety and user experience of autonomous driving systems. In industrial scenarios, reliance on manual annotation for map updates creates a critical bottleneck. Lane-level updates require precise change information and must ensure consistency with adjacent data while adhering to strict standards. Traditional methods utilize a three-stage approach-construction, change detection, and updating-which often necessitates manual verification due to accuracy limitations. This results in labor-intensive processes and hampers timely updates. To address these challenges, we propose LDMapNet-U, which implements a new end-to-end paradigm for city-scale lane-level map updating. By reconceptualizing the update task as an end-to-end map generation process grounded in historical map data, we introduce a paradigm shift in map updating that simultaneously generates vectorized maps and change information. To achieve this, a Prior-Map Encoding (PME) module is introduced to effectively encode historical maps, serving as a critical reference for detecting changes. Additionally, we incorporate a novel Instance Change Prediction (ICP) module that learns to predict associations with historical maps. Consequently, LDMapNet-U simultaneously achieves vectorized map element generation and change detection. To demonstrate the superiority and effectiveness of LDMapNet-U, extensive experiments are conducted using large-scale real-world datasets. In addition, LDMapNet-U has been successfully deployed in production at Baidu Maps since April 2024, supporting map updating for over 360 cities and significantly shortening the update cycle from quarterly to weekly. The updated maps serve hundreds of millions of users and are integrated into the autonomous driving systems of several leading vehicle companies.
comment: Accepted by KDD 2025, camera-ready version
Information Retrieval 17
☆ Multimodal semantic retrieval for product search
Semantic retrieval (also known as dense retrieval) based on textual data has been extensively studied for both web search and product search application fields, where the relevance of a query and a potential target document is computed by their dense vector representation comparison. Product image is crucial for e-commence search interactions and is a key factor for customers at product explorations. But its impact for semantic retrieval has not been well studied yet. In this research, we build a multimodal representation for product items in e-commerece search in contrast to pure-text representation of products, and investigate the impact of such representations. The models are developed and evaluated on e-commerce datasets. We demonstrate that a multimodal representation scheme for a product can show improvement either on purchase recall or relevance accuracy in semantic retrieval. Additionally, we provide numerical analysis for exclusive matches retrieved by a multimodal semantic retrieval model versus a text-only semantic retrieval model, to demonstrate the validation of multimodal solutions.
Dataset-Agnostic Recommender Systems
[This is a position paper and does not contain any empirical or theoretical results] Recommender systems have become a cornerstone of personalized user experiences, yet their development typically involves significant manual intervention, including dataset-specific feature engineering, hyperparameter tuning, and configuration. To this end, we introduce a novel paradigm: Dataset-Agnostic Recommender Systems (DAReS) that aims to enable a single codebase to autonomously adapt to various datasets without the need for fine-tuning, for a given recommender system task. Central to this approach is the Dataset Description Language (DsDL), a structured format that provides metadata about the dataset's features and labels, and allow the system to understand dataset's characteristics, allowing it to autonomously manage processes like feature selection, missing values imputation, noise removal, and hyperparameter optimization. By reducing the need for domain-specific expertise and manual adjustments, DAReS offers a more efficient and scalable solution for building recommender systems across diverse application domains. It addresses critical challenges in the field, such as reusability, reproducibility, and accessibility for non-expert users or entry-level researchers.
☆ Future-Conditioned Recommendations with Multi-Objective Controllable Decision Transformer
Securing long-term success is the ultimate aim of recommender systems, demanding strategies capable of foreseeing and shaping the impact of decisions on future user satisfaction. Current recommendation strategies grapple with two significant hurdles. Firstly, the future impacts of recommendation decisions remain obscured, rendering it impractical to evaluate them through direct optimization of immediate metrics. Secondly, conflicts often emerge between multiple objectives, like enhancing accuracy versus exploring diverse recommendations. Existing strategies, trapped in a "training, evaluation, and retraining" loop, grow more labor-intensive as objectives evolve. To address these challenges, we introduce a future-conditioned strategy for multi-objective controllable recommendations, allowing for the direct specification of future objectives and empowering the model to generate item sequences that align with these goals autoregressively. We present the Multi-Objective Controllable Decision Transformer (MocDT), an offline Reinforcement Learning (RL) model capable of autonomously learning the mapping from multiple objectives to item sequences, leveraging extensive offline data. Consequently, it can produce recommendations tailored to any specified objectives during the inference stage. Our empirical findings emphasize the controllable recommendation strategy's ability to produce item sequences according to different objectives while maintaining performance that is competitive with current recommendation strategies across various objectives.
☆ Constructing Set-Compositional and Negated Representations for First-Stage Ranking
Set compositional and negated queries are crucial for expressing complex information needs and enable the discovery of niche items like Books about non-European monarchs. Despite the recent advances in LLMs, first-stage ranking remains challenging due to the requirement of encoding documents and queries independently from each other. This limitation calls for constructing compositional query representations that encapsulate logical operations or negations, and can be used to match relevant documents effectively. In the first part of this work, we explore constructing such representations in a zero-shot setting using vector operations between lexically grounded Learned Sparse Retrieval (LSR) representations. Specifically, we introduce Disentangled Negation that penalizes only the negated parts of a query, and a Combined Pseudo-Term approach that enhances LSRs ability to handle intersections. We find that our zero-shot approach is competitive and often outperforms retrievers fine-tuned on compositional data, highlighting certain limitations of LSR and Dense Retrievers. Finally, we address some of these limitations and improve LSRs representation power for negation, by allowing them to attribute negative term scores and effectively penalize documents containing the negated terms.
comment: 12 pages
☆ Large Language Models: New Opportunities for Access to Science
The adaptation of Large Language Models like ChatGPT for information retrieval from scientific data, software and publications is offering new opportunities to simplify access to and understanding of science for persons from all levels of expertise. They can become tools to both enhance the usability of the open science environment we are building as well as help to provide systematic insight to a long-built corpus of scientific publications. The uptake of Retrieval Augmented Generation-enhanced chat applications in the construction of the open science environment of the KM3NeT neutrino detectors serves as a focus point to explore and exemplify prospects for the wider application of Large Language Models for our science.
comment: conference proceeding to ADASS XXXIV 2024
☆ ListConRanker: A Contrastive Text Reranker with Listwise Encoding
Reranker models aim to re-rank the passages based on the semantics similarity between the given query and passages, which have recently received more attention due to the wide application of the Retrieval-Augmented Generation. Most previous methods apply pointwise encoding, meaning that it can only encode the context of the query for each passage input into the model. However, for the reranker model, given a query, the comparison results between passages are even more important, which is called listwise encoding. Besides, previous models are trained using the cross-entropy loss function, which leads to issues of unsmooth gradient changes during training and low training efficiency. To address these issues, we propose a novel Listwise-encoded Contrastive text reRanker (ListConRanker). It can help the passage to be compared with other passages during the encoding process, and enhance the contrastive information between positive examples and between positive and negative examples. At the same time, we use the circle loss to train the model to increase the flexibility of gradients and solve the problem of training efficiency. Experimental results show that ListConRanker achieves state-of-the-art performance on the reranking benchmark of Chinese Massive Text Embedding Benchmark, including the cMedQA1.0, cMedQA2.0, MMarcoReranking, and T2Reranking datasets.
comment: 11 pages, 4 figures
☆ Dynamic Multimodal Fusion via Meta-Learning Towards Micro-Video Recommendation
Multimodal information (e.g., visual, acoustic, and textual) has been widely used to enhance representation learning for micro-video recommendation. For integrating multimodal information into a joint representation of micro-video, multimodal fusion plays a vital role in the existing micro-video recommendation approaches. However, the static multimodal fusion used in previous studies is insufficient to model the various relationships among multimodal information of different micro-videos. In this paper, we develop a novel meta-learning-based multimodal fusion framework called Meta Multimodal Fusion (MetaMMF), which dynamically assigns parameters to the multimodal fusion function for each micro-video during its representation learning. Specifically, MetaMMF regards the multimodal fusion of each micro-video as an independent task. Based on the meta information extracted from the multimodal features of the input task, MetaMMF parameterizes a neural network as the item-specific fusion function via a meta learner. We perform extensive experiments on three benchmark datasets, demonstrating the significant improvements over several state-of-the-art multimodal recommendation models, like MMGCN, LATTICE, and InvRL. Furthermore, we lighten our model by adopting canonical polyadic decomposition to improve the training efficiency, and validate its effectiveness through experimental results. Codes are available at https://github.com/hanliu95/MetaMMF.
comment: This paper has been accepted by ACM Transactions on Information Systems
☆ Intent-Interest Disentanglement and Item-Aware Intent Contrastive Learning for Sequential Recommendation
Recommender systems aim to provide personalized item recommendations by capturing user behaviors derived from their interaction history. Considering that user interactions naturally occur sequentially based on users' intents in mind, user behaviors can be interpreted as user intents. Therefore, intent-based sequential recommendations are actively studied recently to model user intents from historical interactions for a more precise user understanding beyond traditional studies that often overlook the underlying semantics behind user interactions. However, existing studies face three challenges: 1) the limited understanding of user behaviors by focusing solely on intents, 2) the lack of robustness in categorizing intents due to arbitrary fixed numbers of intent categories, and 3) the neglect of interacted items in modeling of user intents. To address these challenges, we propose Intent-Interest Disentanglement and Item-Aware Intent Contrastive Learning for Sequential Recommendation (IDCLRec). IDCLRec disentangles user behaviors into intents which are dynamic motivations and interests which are stable tastes of users for a comprehensive understanding of user behaviors. A causal cross-attention mechanism is used to identify consistent interests across interactions, while residual behaviors are modeled as intents by modeling their temporal dynamics through a similarity adjustment loss. In addition, without predefining the number of intent categories, an importance-weighted attention mechanism captures user-specific categorical intent considering the importance of intent for each interaction. Furthermore, we introduce item-aware contrastive learning which aligns intents that occurred the same interaction and aligns intent with item combinations occurred by the corresponding intent. Extensive experiments conducted on real-world datasets demonstrate the effectiveness of IDCLRec.
comment: 14 pages, 6 figures, 4 tables
☆ Research on the Online Update Method for Retrieval-Augmented Generation (RAG) Model with Incremental Learning
In the contemporary context of rapid advancements in information technology and the exponential growth of data volume, language models are confronted with significant challenges in effectively navigating the dynamic and ever-evolving information landscape to update and adapt to novel knowledge in real time. In this work, an online update method is proposed, which is based on the existing Retrieval Enhanced Generation (RAG) model with multiple innovation mechanisms. Firstly, the dynamic memory is used to capture the emerging data samples, and then gradually integrate them into the core model through a tunable knowledge distillation strategy. At the same time, hierarchical indexing and multi-layer gating mechanism are introduced into the retrieval module to ensure that the retrieved content is more targeted and accurate. Finally, a multi-stage network structure is established for different types of inputs in the generation stage, and cross-attention matching and screening are carried out on the intermediate representations of each stage to ensure the effective integration and iterative update of new and old knowledge. Experimental results show that the proposed method is better than the existing mainstream comparison models in terms of knowledge retention and inference accuracy.
☆ A Proposed Large Language Model-Based Smart Search for Archive System
This study presents a novel framework for smart search in digital archival systems, leveraging the capabilities of Large Language Models (LLMs) to enhance information retrieval. By employing a Retrieval-Augmented Generation (RAG) approach, the framework enables the processing of natural language queries and transforming non-textual data into meaningful textual representations. The system integrates advanced metadata generation techniques, a hybrid retrieval mechanism, a router query engine, and robust response synthesis, the results proved search precision and relevance. We present the architecture and implementation of the system and evaluate its performance in four experiments concerning LLM efficiency, hybrid retrieval optimizations, multilingual query handling, and the impacts of individual components. Obtained results show significant improvements over conventional approaches and have demonstrated the potential of AI-powered systems to transform modern archival practices.
comment: The 13th International Symposium on Information and Communication Technology (SOICT 2024)
☆ Graph Contrastive Learning on Multi-label Classification for Recommendations
In business analysis, providing effective recommendations is essential for enhancing company profits. The utilization of graph-based structures, such as bipartite graphs, has gained popularity for their ability to analyze complex data relationships. Link prediction is crucial for recommending specific items to users. Traditional methods in this area often involve identifying patterns in the graph structure or using representational techniques like graph neural networks (GNNs). However, these approaches encounter difficulties as the volume of data increases. To address these challenges, we propose a model called Graph Contrastive Learning for Multi-label Classification (MCGCL). MCGCL leverages contrastive learning to enhance recommendation effectiveness. The model incorporates two training stages: a main task and a subtask. The main task is holistic user-item graph learning to capture user-item relationships. The homogeneous user-user (item-item) subgraph is constructed to capture user-user and item-item relationships in the subtask. We assessed the performance using real-world datasets from Amazon Reviews in multi-label classification tasks. Comparative experiments with state-of-the-art methods confirm the effectiveness of MCGCL, highlighting its potential for improving recommendation systems.
comment: Preprint. 10 figures, 5 tables
♻ ☆ Harnessing Multimodal Large Language Models for Multimodal Sequential Recommendation
Recent advances in Large Language Models (LLMs) have demonstrated significant potential in the field of Recommendation Systems (RSs). Most existing studies have focused on converting user behavior logs into textual prompts and leveraging techniques such as prompt tuning to enable LLMs for recommendation tasks. Meanwhile, research interest has recently grown in multimodal recommendation systems that integrate data from images, text, and other sources using modality fusion techniques. This introduces new challenges to the existing LLM-based recommendation paradigm which relies solely on text modality information. Moreover, although Multimodal Large Language Models (MLLMs) capable of processing multi-modal inputs have emerged, how to equip MLLMs with multi-modal recommendation capabilities remains largely unexplored. To this end, in this paper, we propose the Multimodal Large Language Model-enhanced Multimodaln Sequential Recommendation (MLLM-MSR) model. To capture the dynamic user preference, we design a two-stage user preference summarization method. Specifically, we first utilize an MLLM-based item-summarizer to extract image feature given an item and convert the image into text. Then, we employ a recurrent user preference summarization generation paradigm to capture the dynamic changes in user preferences based on an LLM-based user-summarizer. Finally, to enable the MLLM for multi-modal recommendation task, we propose to fine-tune a MLLM-based recommender using Supervised Fine-Tuning (SFT) techniques. Extensive evaluations across various datasets validate the effectiveness of MLLM-MSR, showcasing its superior ability to capture and adapt to the evolving dynamics of user preferences.
♻ ☆ Preference-Consistent Knowledge Distillation for Recommender System
Feature-based knowledge distillation has been applied to compress modern recommendation models, usually with projectors that align student (small) recommendation models' dimensions with teacher dimensions. However, existing studies have only focused on making the projected features (i.e., student features after projectors) similar to teacher features, overlooking investigating whether the user preference can be transferred to student features (i.e., student features before projectors) in this manner. In this paper, we find that due to the lack of restrictions on projectors, the process of transferring user preferences will likely be interfered with. We refer to this phenomenon as preference inconsistency. It greatly wastes the power of feature-based knowledge distillation. To mitigate preference inconsistency, we propose PCKD, which consists of two regularization terms for projectors. We also propose a hybrid method that combines the two regularization terms. We focus on items with high preference scores and significantly mitigate preference inconsistency, improving the performance of feature-based knowledge distillation. Extensive experiments on three public datasets and three backbones demonstrate the effectiveness of PCKD. The code of our method is provided in https://github.com/woriazzc/KDs.
comment: TKDE 2024 Accepted
♻ ☆ Exploring Feature-based Knowledge Distillation for Recommender System: A Frequency Perspective KDD 2025
In this paper, we analyze the feature-based knowledge distillation for recommendation from the frequency perspective. By defining knowledge as different frequency components of the features, we theoretically demonstrate that regular feature-based knowledge distillation is equivalent to equally minimizing losses on all knowledge and further analyze how this equal loss weight allocation method leads to important knowledge being overlooked. In light of this, we propose to emphasize important knowledge by redistributing knowledge weights. Furthermore, we propose FreqD, a lightweight knowledge reweighting method, to avoid the computational cost of calculating losses on each knowledge. Extensive experiments demonstrate that FreqD consistently and significantly outperforms state-of-the-art knowledge distillation methods for recommender systems. Our code is available at https://github.com/woriazzc/KDs.
comment: ACM KDD 2025 Accepted
♻ ☆ Multi-granularity Interest Retrieval and Refinement Network for Long-Term User Behavior Modeling in CTR Prediction
Click-through Rate (CTR) prediction is crucial for online personalization platforms. Recent advancements have shown that modeling rich user behaviors can significantly improve the performance of CTR prediction. Current long-term user behavior modeling algorithms predominantly follow two cascading stages. The first stage retrieves subsequence related to the target item from the long-term behavior sequence, while the second stage models the relationship between the subsequence and the target item. Despite significant progress, these methods have two critical flaws. First, the retrieval query typically includes only target item information, limiting the ability to capture the user's diverse interests. Second, relational information, such as sequential and interactive information within the subsequence, is frequently overlooked. Therefore, it requires to be further mined to more accurately model user interests. To this end, we propose Multi-granularity Interest Retrieval and Refinement Network (MIRRN). Specifically, we first construct queries based on behaviors observed at different time scales to obtain subsequences, each capturing users' interest at various granularities. We then introduce an noval multi-head Fourier transformer to efficiently learn sequential and interactive information within the subsequences, leading to more accurate modeling of user interests. Finally, we employ multi-head target attention to adaptively assess the impact of these multi-granularity interests on the target item. Extensive experiments have demonstrated that MIRRN significantly outperforms state-of-the-art baselines. Furthermore, an A/B test shows that MIRRN increases the average number of listening songs by 1.32% and the average time of listening songs by 0.55% on the Huawei Music App. The implementation code is publicly available at https://github.com/USTC-StarTeam/MIRRN.
♻ ☆ Topic-Aware Knowledge Graph with Large Language Models for Interoperability in Recommender Systems
The use of knowledge graphs in recommender systems has become one of the common approaches to addressing data sparsity and cold start problems. Recent advances in large language models (LLMs) offer new possibilities for processing side and context information within knowledge graphs. However, consistent integration across various systems remains challenging due to the need for domain expert intervention and differences in system characteristics. To address these issues, we propose a consistent approach that extracts both general and specific topics from both side and context information using LLMs. First, general topics are iteratively extracted and updated from side information. Then, specific topics are extracted using context information. Finally, to address synonymous topics generated during the specific topic extraction process, a refining algorithm processes and resolves these issues effectively. This approach allows general topics to capture broad knowledge across diverse item characteristics, while specific topics emphasize detailed attributes, providing a more comprehensive understanding of the semantic features of items and the preferences of users. Experimental results demonstrate significant improvements in recommendation performance across diverse knowledge graphs.
comment: Accepted in The 40th ACM/SIGAPP Symposium On Applied Computing(SAC) 2025
♻ ☆ BeFA: A General Behavior-driven Feature Adapter for Multimedia Recommendation AAAI2025
Multimedia recommender systems focus on utilizing behavioral information and content information to model user preferences. Typically, it employs pre-trained feature encoders to extract content features, then fuses them with behavioral features. However, pre-trained feature encoders often extract features from the entire content simultaneously, including excessive preference-irrelevant details. We speculate that it may result in the extracted features not containing sufficient features to accurately reflect user preferences. To verify our hypothesis, we introduce an attribution analysis method for visually and intuitively analyzing the content features. The results indicate that certain products' content features exhibit the issues of information drift}and information omission,reducing the expressive ability of features. Building upon this finding, we propose an effective and efficient general Behavior-driven Feature Adapter (BeFA) to tackle these issues. This adapter reconstructs the content feature with the guidance of behavioral information, enabling content features accurately reflecting user preferences. Extensive experiments demonstrate the effectiveness of the adapter across all multimedia recommendation methods. Our code is made publicly available on https://github.com/fqldom/BeFA.
comment: This paper is accepted by AAAI2025
Machine Learning 144
☆ E2ESlack: An End-to-End Graph-Based Framework for Pre-Routing Slack Prediction
Pre-routing slack prediction remains a critical area of research in Electronic Design Automation (EDA). Despite numerous machine learning-based approaches targeting this task, there is still a lack of a truly end-to-end framework that engineers can use to obtain TNS/WNS metrics from raw circuit data at the placement stage. Existing works have demonstrated effectiveness in Arrival Time (AT) prediction but lack a mechanism for Required Arrival Time (RAT) prediction, which is essential for slack prediction and obtaining TNS/WNS metrics. In this work, we propose E2ESlack, an end-to-end graph-based framework for pre-routing slack prediction. The framework includes a TimingParser that supports DEF, SDF and LIB files for feature extraction and graph construction, an arrival time prediction model and a fast RAT estimation module. To the best of our knowledge, this is the first work capable of predicting path-level slacks at the pre-routing stage. We perform extensive experiments and demonstrate that our proposed RAT estimation method outperforms the SOTA ML-based prediction method and also pre-routing STA tool. Additionally, the proposed E2ESlack framework achieves TNS/WNS values comparable to post-routing STA results while saving up to 23x runtime.
☆ Dynamic Prototype Rehearsal for Continual Learning in ECG Arrhythmia Detection ICASSP 2025
Continual Learning (CL) methods aim to learn from a sequence of tasks while avoiding the challenge of forgetting previous knowledge. We present DREAM-CL, a novel CL method for ECG arrhythmia detection that introduces dynamic prototype rehearsal memory. DREAM-CL selects representative prototypes by clustering data based on learning behavior during each training session. Within each cluster, we apply a smooth sorting operation that ranks samples by training difficulty, compressing extreme values and removing outliers. The more challenging samples are then chosen as prototypes for the rehearsal memory, ensuring effective knowledge retention across sessions. We evaluate our method on time-incremental, class-incremental, and lead-incremental scenarios using two widely used ECG arrhythmia datasets, Chapman and PTB-XL. The results demonstrate that DREAM-CL outperforms the state-of-the-art in CL for ECG arrhythmia detection. Detailed ablation and sensitivity studies are performed to validate the different design choices of our method.
comment: Accepted to 2025 International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2025)
☆ Imagine while Reasoning in Space: Multimodal Visualization-of-Thought
Chain-of-Thought (CoT) prompting has proven highly effective for enhancing complex reasoning in Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs). Yet, it struggles in complex spatial reasoning tasks. Nonetheless, human cognition extends beyond language alone, enabling the remarkable capability to think in both words and images. Inspired by this mechanism, we propose a new reasoning paradigm, Multimodal Visualization-of-Thought (MVoT). It enables visual thinking in MLLMs by generating image visualizations of their reasoning traces. To ensure high-quality visualization, we introduce token discrepancy loss into autoregressive MLLMs. This innovation significantly improves both visual coherence and fidelity. We validate this approach through several dynamic spatial reasoning tasks. Experimental results reveal that MVoT demonstrates competitive performance across tasks. Moreover, it exhibits robust and reliable improvements in the most challenging scenarios where CoT fails. Ultimately, MVoT establishes new possibilities for complex reasoning tasks where visual thinking can effectively complement verbal reasoning.
comment: 11 pages, 6 figures, 4 tables (27 pages, 10 figures, 16 tables including references and appendices)
☆ Performance Optimization of Ratings-Based Reinforcement Learning AAAI 2025
This paper explores multiple optimization methods to improve the performance of rating-based reinforcement learning (RbRL). RbRL, a method based on the idea of human ratings, has been developed to infer reward functions in reward-free environments for the subsequent policy learning via standard reinforcement learning, which requires the availability of reward functions. Specifically, RbRL minimizes the cross entropy loss that quantifies the differences between human ratings and estimated ratings derived from the inferred reward. Hence, a low loss means a high degree of consistency between human ratings and estimated ratings. Despite its simple form, RbRL has various hyperparameters and can be sensitive to various factors. Therefore, it is critical to provide comprehensive experiments to understand the impact of various hyperparameters on the performance of RbRL. This paper is a work in progress, providing users some general guidelines on how to select hyperparameters in RbRL.
comment: Accepted to the Collaborative AI and Modeling of Humans Bridge Program at AAAI 2025
☆ Universal Training of Neural Networks to Achieve Bayes Optimal Classification Accuracy ICASSP 2025
This work invokes the notion of $f$-divergence to introduce a novel upper bound on the Bayes error rate of a general classification task. We show that the proposed bound can be computed by sampling from the output of a parameterized model. Using this practical interpretation, we introduce the Bayes optimal learning threshold (BOLT) loss whose minimization enforces a classification model to achieve the Bayes error rate. We validate the proposed loss for image and text classification tasks, considering MNIST, Fashion-MNIST, CIFAR-10, and IMDb datasets. Numerical experiments demonstrate that models trained with BOLT achieve performance on par with or exceeding that of cross-entropy, particularly on challenging datasets. This highlights the potential of BOLT in improving generalization.
comment: Accepted to ICASSP 2025
☆ Scaling Up ESM2 Architectures for Long Protein Sequences Analysis: Long and Quantized Approaches
Various approaches utilizing Transformer architectures have achieved state-of-the-art results in Natural Language Processing (NLP). Based on this success, numerous architectures have been proposed for other types of data, such as in biology, particularly for protein sequences. Notably among these are the ESM2 architectures, pre-trained on billions of proteins, which form the basis of various state-of-the-art approaches in the field. However, the ESM2 architectures have a limitation regarding input size, restricting it to 1,022 amino acids, which necessitates the use of preprocessing techniques to handle sequences longer than this limit. In this paper, we present the long and quantized versions of the ESM2 architectures, doubling the input size limit to 2,048 amino acids.
☆ Concentration of Measure for Distributions Generated via Diffusion Models
We show via a combination of mathematical arguments and empirical evidence that data distributions sampled from diffusion models satisfy a Concentration of Measure Property saying that any Lipschitz $1$-dimensional projection of a random vector is not too far from its mean with high probability. This implies that such models are quite restrictive and gives an explanation for a fact previously observed in arXiv:2410.14171 that conventional diffusion models cannot capture "heavy-tailed" data (i.e. data $\mathbf{x}$ for which the norm $\|\mathbf{x}\|_2$ does not possess a subgaussian tail) well. We then proceed to train a generalized linear model using stochastic gradient descent (SGD) on the diffusion-generated data for a multiclass classification task and observe empirically that a Gaussian universality result holds for the test error. In other words, the test error depends only on the first and second order statistics of the diffusion-generated data in the linear setting. Results of such forms are desirable because they allow one to assume the data itself is Gaussian for analyzing performance of the trained classifier. Finally, we note that current approaches to proving universality do not apply to this case as the covariance matrices of the data tend to have vanishing minimum singular values for the diffusion-generated data, while the current proofs assume that this is not the case (see Subsection 3.4 for more details). This leaves extending previous mathematical universality results as an intriguing open question.
☆ Multi-megabase scale genome interpretation with genetic language models
Understanding how molecular changes caused by genetic variation drive disease risk is crucial for deciphering disease mechanisms. However, interpreting genome sequences is challenging because of the vast size of the human genome, and because its consequences manifest across a wide range of cells, tissues and scales -- spanning from molecular to whole organism level. Here, we present Phenformer, a multi-scale genetic language model that learns to generate mechanistic hypotheses as to how differences in genome sequence lead to disease-relevant changes in expression across cell types and tissues directly from DNA sequences of up to 88 million base pairs. Using whole genome sequencing data from more than 150 000 individuals, we show that Phenformer generates mechanistic hypotheses about disease-relevant cell and tissue types that match literature better than existing state-of-the-art methods, while using only sequence data. Furthermore, disease risk predictors enriched by Phenformer show improved prediction performance and generalisation to diverse populations. Accurate multi-megabase scale interpretation of whole genomes without additional experimental data enables both a deeper understanding of molecular mechanisms involved in disease and improved disease risk prediction at the level of individuals.
☆ HyperQuery: Beyond Binary Link Prediction
Groups with complex set intersection relations are a natural way to model a wide array of data, from the formation of social groups to the complex protein interactions which form the basis of biological life. One approach to representing such higher order relationships is as a hypergraph. However, efforts to apply machine learning techniques to hypergraph structured datasets have been limited thus far. In this paper, we address the problem of link prediction in knowledge hypergraphs as well as simple hypergraphs and develop a novel, simple, and effective optimization architecture that addresses both tasks. Additionally, we introduce a novel feature extraction technique using node level clustering and we show how integrating data from node-level labels can improve system performance. Our self-supervised approach achieves significant improvement over state of the art baselines on several hyperedge prediction and knowledge hypergraph completion benchmarks.
☆ Autoencoded UMAP-Enhanced Clustering for Unsupervised Learning
We propose a novel approach to unsupervised learning by constructing a non-linear embedding of the data into a low-dimensional space followed by any conventional clustering algorithm. The embedding promotes clusterability of the data and is comprised of two mappings: the encoder of an autoencoder neural network and the output of UMAP algorithm. The autoencoder is trained with a composite loss function that incorporates both a conventional data reconstruction as a regularization component and a clustering-promoting component built using the spectral graph theory. The two embeddings and the subsequent clustering are integrated into a three-stage unsupervised learning framework, referred to as Autoencoded UMAP-Enhanced Clustering (AUEC). When applied to MNIST data, AUEC significantly outperforms the state-of-the-art techniques in terms of clustering accuracy.
☆ Stronger Than You Think: Benchmarking Weak Supervision on Realistic Tasks NeurIPS 2024
Weak supervision (WS) is a popular approach for label-efficient learning, leveraging diverse sources of noisy but inexpensive weak labels to automatically annotate training data. Despite its wide usage, WS and its practical value are challenging to benchmark due to the many knobs in its setup, including: data sources, labeling functions (LFs), aggregation techniques (called label models), and end model pipelines. Existing evaluation suites tend to be limited, focusing on particular components or specialized use cases. Moreover, they often involve simplistic benchmark tasks or de-facto LF sets that are suboptimally written, producing insights that may not generalize to real-world settings. We address these limitations by introducing a new benchmark, BOXWRENCH, designed to more accurately reflect real-world usages of WS. This benchmark features tasks with (1) higher class cardinality and imbalance, (2) notable domain expertise requirements, and (3) multilingual variations across parallel corpora. For all tasks, LFs are written using a careful procedure aimed at mimicking real-world settings. In contrast to existing WS benchmarks, we show that supervised learning requires substantial amounts (1000+) of labeled examples to match WS in many settings.
comment: NeurIPS 2024 Datasets and Benchmarks Track
☆ ESURF: Simple and Effective EDU Segmentation
Segmenting text into Elemental Discourse Units (EDUs) is a fundamental task in discourse parsing. We present a new simple method for identifying EDU boundaries, and hence segmenting them, based on lexical and character n-gram features, using random forest classification. We show that the method, despite its simplicity, outperforms other methods both for segmentation and within a state of the art discourse parser. This indicates the importance of such features for identifying basic discourse elements, pointing towards potentially more training-efficient methods for discourse analysis.
☆ Testing Human-Hand Segmentation on In-Distribution and Out-of-Distribution Data in Human-Robot Interactions Using a Deep Ensemble Model
Reliable detection and segmentation of human hands are critical for enhancing safety and facilitating advanced interactions in human-robot collaboration. Current research predominantly evaluates hand segmentation under in-distribution (ID) data, which reflects the training data of deep learning (DL) models. However, this approach fails to address out-of-distribution (OOD) scenarios that often arise in real-world human-robot interactions. In this study, we present a novel approach by evaluating the performance of pre-trained DL models under both ID data and more challenging OOD scenarios. To mimic realistic industrial scenarios, we designed a diverse dataset featuring simple and cluttered backgrounds with industrial tools, varying numbers of hands (0 to 4), and hands with and without gloves. For OOD scenarios, we incorporated unique and rare conditions such as finger-crossing gestures and motion blur from fast-moving hands, addressing both epistemic and aleatoric uncertainties. To ensure multiple point of views (PoVs), we utilized both egocentric cameras, mounted on the operator's head, and static cameras to capture RGB images of human-robot interactions. This approach allowed us to account for multiple camera perspectives while also evaluating the performance of models trained on existing egocentric datasets as well as static-camera datasets. For segmentation, we used a deep ensemble model composed of UNet and RefineNet as base learners. Performance evaluation was conducted using segmentation metrics and uncertainty quantification via predictive entropy. Results revealed that models trained on industrial datasets outperformed those trained on non-industrial datasets, highlighting the importance of context-specific training. Although all models struggled with OOD scenarios, those trained on industrial datasets demonstrated significantly better generalization.
☆ An Adaptive Collocation Point Strategy For Physics Informed Neural Networks via the QR Discrete Empirical Interpolation Method
Physics-informed neural networks (PINNs) have gained significant attention for solving forward and inverse problems related to partial differential equations (PDEs). While advancements in loss functions and network architectures have improved PINN accuracy, the impact of collocation point sampling on their performance remains underexplored. Fixed sampling methods, such as uniform random sampling and equispaced grids, can fail to capture critical regions with high solution gradients, limiting their effectiveness for complex PDEs. Adaptive methods, inspired by adaptive mesh refinement from traditional numerical methods, address this by dynamically updating collocation points during training but may overlook residual dynamics between updates, potentially losing valuable information. To overcome this limitation, we propose an adaptive collocation point selection strategy utilizing the QR Discrete Empirical Interpolation Method (QR-DEIM), a reduced-order modeling technique for efficiently approximating nonlinear functions. Our results on benchmark PDEs, including the wave, Allen-Cahn, and Burgers' equations, demonstrate that our QR-DEIM-based approach improves PINN accuracy compared to existing methods, offering a promising direction for adaptive collocation point strategies.
Dataset Distillation as Pushforward Optimal Quantization
Dataset distillation aims to find a synthetic training set such that training on the synthetic data achieves similar performance to training on real data, with orders of magnitude less computational requirements. Existing methods can be broadly categorized as either bi-level optimization problems that have neural network training heuristics as the lower level problem, or disentangled methods that bypass the bi-level optimization by matching distributions of data. The latter method has the major advantages of speed and scalability in terms of size of both training and distilled datasets. We demonstrate that when equipped with an encoder-decoder structure, the empirically successful disentangled methods can be reformulated as an optimal quantization problem, where a finite set of points is found to approximate the underlying probability measure by minimizing the expected projection distance. In particular, we link existing disentangled dataset distillation methods to the classical optimal quantization and Wasserstein barycenter problems, demonstrating consistency of distilled datasets for diffusion-based generative priors. We propose a simple extension of the state-of-the-art data distillation method D4M, achieving better performance on the ImageNet-1K dataset with trivial additional computation, and state-of-the-art performance in higher image-per-class settings.
☆ A Survey of Early Exit Deep Neural Networks in NLP
Deep Neural Networks (DNNs) have grown increasingly large in size to achieve state of the art performance across a wide range of tasks. However, their high computational requirements make them less suitable for resource-constrained applications. Also, real-world datasets often consist of a mixture of easy and complex samples, necessitating adaptive inference mechanisms that account for sample difficulty. Early exit strategies offer a promising solution by enabling adaptive inference, where simpler samples are classified using the initial layers of the DNN, thereby accelerating the overall inference process. By attaching classifiers at different layers, early exit methods not only reduce inference latency but also improve the model robustness against adversarial attacks. This paper presents a comprehensive survey of early exit methods and their applications in NLP.
☆ Finite Sample Identification of Partially Observed Bilinear Dynamical Systems
We consider the problem of learning a realization of a partially observed bilinear dynamical system (BLDS) from noisy input-output data. Given a single trajectory of input-output samples, we provide a finite time analysis for learning the system's Markov-like parameters, from which a balanced realization of the bilinear system can be obtained. Our bilinear system identification algorithm learns the system's Markov-like parameters by regressing the outputs to highly correlated, nonlinear, and heavy-tailed covariates. Moreover, the stability of BLDS depends on the sequence of inputs used to excite the system. These properties, unique to partially observed bilinear dynamical systems, pose significant challenges to the analysis of our algorithm for learning the unknown dynamics. We address these challenges and provide high probability error bounds on our identification algorithm under a uniform stability assumption. Our analysis provides insights into system theoretic quantities that affect learning accuracy and sample complexity. Lastly, we perform numerical experiments with synthetic data to reinforce these insights.
☆ A Step Toward Interpretability: Smearing the Likelihood
The problem of interpretability of machine learning architecture in particle physics has no agreed-upon definition, much less any proposed solution. We present a first modest step toward these goals by proposing a definition and corresponding practical method for isolation and identification of relevant physical energy scales exploited by the machine. This is accomplished by smearing or averaging over all input events that lie within a prescribed metric energy distance of one another and correspondingly renders any quantity measured on a finite, discrete dataset continuous over the dataspace. Within this approach, we are able to explicitly demonstrate that (approximate) scaling laws are a consequence of extreme value theory applied to analysis of the distribution of the irreducible minimal distance over which a machine must extrapolate given a finite dataset. As an example, we study quark versus gluon jet identification, construct the smeared likelihood, and show that discrimination power steadily increases as resolution decreases, indicating that the true likelihood for the problem is sensitive to emissions at all scales.
comment: 16+1 pages, 3 figures
☆ ML Mule: Mobile-Driven Context-Aware Collaborative Learning
Artificial intelligence has been integrated into nearly every aspect of daily life, powering applications from object detection with computer vision to large language models for writing emails and compact models in smart homes. These machine learning models cater to individual users but are often detached from them, as they are typically stored and processed in centralized data centers. This centralized approach raises privacy concerns, incurs high infrastructure costs, and struggles with personalization. Federated and fully decentralized learning methods have been proposed to address these issues, but they still depend on centralized servers or face slow convergence due to communication constraints. To overcome these challenges, we propose ML Mule, a approach that utilizes individual mobile devices as 'Mules' to train and transport model snapshots as they move through physical spaces, sharing these models with the physical 'Spaces' they inhabit. This method implicitly forms affinity groups among devices associated with users who share particular spaces, enabling collaborative model evolution, and protecting users' privacy. Our approach addresses several major shortcomings of traditional, federated, and fully decentralized learning systems. The proposed framework represents a new class of machine learning methods that are more robust, distributed, and personalized, bringing the field closer to realizing the original vision of intelligent, adaptive, and genuinely context-aware smart environments. The results show that ML Mule converges faster and achieves higher model accuracy compared to other existing methods.
☆ Investigating Map-Based Path Loss Models: A Study of Feature Representations in Convolutional Neural Networks
Path loss prediction is a beneficial tool for efficient use of the radio frequency spectrum. Building on prior research on high-resolution map-based path loss models, this paper studies convolutional neural network input representations in more detail. We investigate different methods of representing scalar features in convolutional neural networks. Specifically, we compare using frequency and distance as input channels to convolutional layers or as scalar inputs to regression layers. We assess model performance using three different feature configurations and find that representing scalar features as image channels results in the strongest generalization.
comment: 4 pages, 2 figures, 4 tables
☆ RadAlign: Advancing Radiology Report Generation with Vision-Language Concept Alignment
Automated chest radiographs interpretation requires both accurate disease classification and detailed radiology report generation, presenting a significant challenge in the clinical workflow. Current approaches either focus on classification accuracy at the expense of interpretability or generate detailed but potentially unreliable reports through image captioning techniques. In this study, we present RadAlign, a novel framework that combines the predictive accuracy of vision-language models (VLMs) with the reasoning capabilities of large language models (LLMs). Inspired by the radiologist's workflow, RadAlign first employs a specialized VLM to align visual features with key medical concepts, achieving superior disease classification with an average AUC of 0.885 across multiple diseases. These recognized medical conditions, represented as text-based concepts in the aligned visual-language space, are then used to prompt LLM-based report generation. Enhanced by a retrieval-augmented generation mechanism that grounds outputs in similar historical cases, RadAlign delivers superior report quality with a GREEN score of 0.678, outperforming state-of-the-art methods' 0.634. Our framework maintains strong clinical interpretability while reducing hallucinations, advancing automated medical imaging and report analysis through integrated predictive and generative AI. Code is available at https://github.com/difeigu/RadAlign.
☆ Improving DeFi Accessibility through Efficient Liquidity Provisioning with Deep Reinforcement Learning AAAI 2025
This paper applies deep reinforcement learning (DRL) to optimize liquidity provisioning in Uniswap v3, a decentralized finance (DeFi) protocol implementing an automated market maker (AMM) model with concentrated liquidity. We model the liquidity provision task as a Markov Decision Process (MDP) and train an active liquidity provider (LP) agent using the Proximal Policy Optimization (PPO) algorithm. The agent dynamically adjusts liquidity positions by using information about price dynamics to balance fee maximization and impermanent loss mitigation. We use a rolling window approach for training and testing, reflecting realistic market conditions and regime shifts. This study compares the data-driven performance of the DRL-based strategy against common heuristics adopted by small retail LP actors that do not systematically modify their liquidity positions. By promoting more efficient liquidity management, this work aims to make DeFi markets more accessible and inclusive for a broader range of participants. Through a data-driven approach to liquidity management, this work seeks to contribute to the ongoing development of more efficient and user-friendly DeFi markets.
comment: 9 pages, 5 figures. Accepted at AI for Social Impact: Bridging Innovations in Finance, Social Media, and Crime Prevention Workshop at AAAI 2025
☆ RbRL2.0: Integrated Reward and Policy Learning for Rating-based Reinforcement Learning AAAI 2025
Reinforcement learning (RL), a common tool in decision making, learns policies from various experiences based on the associated cumulative return/rewards without treating them differently. On the contrary, humans often learn to distinguish from different levels of performance and extract the underlying trends towards improving their decision making for best performance. Motivated by this, this paper proposes a novel RL method that mimics humans' decision making process by differentiating among collected experiences for effective policy learning. The main idea is to extract important directional information from experiences with different performance levels, named ratings, so that policies can be updated towards desired deviation from these experiences with different ratings. Specifically, we propose a new policy loss function that penalizes distribution similarities between the current policy and failed experiences with different ratings, and assign different weights to the penalty terms based on the rating classes. Meanwhile, reward learning from these rated samples can be integrated with the new policy loss towards an integrated reward and policy learning from rated samples. Optimizing the integrated reward and policy loss function will lead to the discovery of directions for policy improvement towards maximizing cumulative rewards and penalizing most from the lowest performance level while least from the highest performance level. To evaluate the effectiveness of the proposed method, we present results for experiments on a few typical environments that show improved convergence and overall performance over the existing rating-based reinforcement learning method with only reward learning.
comment: Accepted to the Collaborative AI and Modeling of Humans Bridge Program at AAAI 2025
☆ Exploring and Mitigating Adversarial Manipulation of Voting-Based Leaderboards
It is now common to evaluate Large Language Models (LLMs) by having humans manually vote to evaluate model outputs, in contrast to typical benchmarks that evaluate knowledge or skill at some particular task. Chatbot Arena, the most popular benchmark of this type, ranks models by asking users to select the better response between two randomly selected models (without revealing which model was responsible for the generations). These platforms are widely trusted as a fair and accurate measure of LLM capabilities. In this paper, we show that if bot protection and other defenses are not implemented, these voting-based benchmarks are potentially vulnerable to adversarial manipulation. Specifically, we show that an attacker can alter the leaderboard (to promote their favorite model or demote competitors) at the cost of roughly a thousand votes (verified in a simulated, offline version of Chatbot Arena). Our attack consists of two steps: first, we show how an attacker can determine which model was used to generate a given reply with more than $95\%$ accuracy; and then, the attacker can use this information to consistently vote for (or against) a target model. Working with the Chatbot Arena developers, we identify, propose, and implement mitigations to improve the robustness of Chatbot Arena against adversarial manipulation, which, based on our analysis, substantially increases the cost of such attacks. Some of these defenses were present before our collaboration, such as bot protection with Cloudflare, malicious user detection, and rate limiting. Others, including reCAPTCHA and login are being integrated to strengthen the security in Chatbot Arena.
☆ PrecipDiff: Leveraging image diffusion models to enhance satellite-based precipitation observations
A recent report from the World Meteorological Organization (WMO) highlights that water-related disasters have caused the highest human losses among natural disasters over the past 50 years, with over 91\% of deaths occurring in low-income countries. This disparity is largely due to the lack of adequate ground monitoring stations, such as weather surveillance radars (WSR), which are expensive to install. For example, while the US and Europe combined possess over 600 WSRs, Africa, despite having almost one and half times their landmass, has fewer than 40. To address this issue, satellite-based observations offer a global, near-real-time monitoring solution. However, they face several challenges like accuracy, bias, and low spatial resolution. This study leverages the power of diffusion models and residual learning to address these limitations in a unified framework. We introduce the first diffusion model for correcting the inconsistency between different precipitation products. Our method demonstrates the effectiveness in downscaling satellite precipitation estimates from 10 km to 1 km resolution. Extensive experiments conducted in the Seattle region demonstrate significant improvements in accuracy, bias reduction, and spatial detail. Importantly, our approach achieves these results using only precipitation data, showcasing the potential of a purely computer vision-based approach for enhancing satellite precipitation products and paving the way for further advancements in this domain.
☆ Pairwise Comparisons without Stochastic Transitivity: Model, Theory and Applications
Most statistical models for pairwise comparisons, including the Bradley-Terry (BT) and Thurstone models and many extensions, make a relatively strong assumption of stochastic transitivity. This assumption imposes the existence of an unobserved global ranking among all the players/teams/items and monotone constraints on the comparison probabilities implied by the global ranking. However, the stochastic transitivity assumption does not hold in many real-world scenarios of pairwise comparisons, especially games involving multiple skills or strategies. As a result, models relying on this assumption can have suboptimal predictive performance. In this paper, we propose a general family of statistical models for pairwise comparison data without a stochastic transitivity assumption, substantially extending the BT and Thurstone models. In this model, the pairwise probabilities are determined by a (approximately) low-dimensional skew-symmetric matrix. Likelihood-based estimation methods and computational algorithms are developed, which allow for sparse data with only a small proportion of observed pairs. Theoretical analysis shows that the proposed estimator achieves minimax-rate optimality, which adapts effectively to the sparsity level of the data. The spectral theory for skew-symmetric matrices plays a crucial role in the implementation and theoretical analysis. The proposed method's superiority against the BT model, along with its broad applicability across diverse scenarios, is further supported by simulations and real data analysis.
comment: 34 pages, 1 figure
☆ Distance Measure Based on an Embedding of the Manifold of K-Component Gaussian Mixture Models into the Manifold of Symmetric Positive Definite Matrices
In this paper, a distance between the Gaussian Mixture Models(GMMs) is obtained based on an embedding of the K-component Gaussian Mixture Model into the manifold of the symmetric positive definite matrices. Proof of embedding of K-component GMMs into the manifold of symmetric positive definite matrices is given and shown that it is a submanifold. Then, proved that the manifold of GMMs with the pullback of induced metric is isometric to the submanifold with the induced metric. Through this embedding we obtain a general lower bound for the Fisher-Rao metric. This lower bound is a distance measure on the manifold of GMMs and we employ it for the similarity measure of GMMs. The effectiveness of this framework is demonstrated through an experiment on standard machine learning benchmarks, achieving accuracy of 98%, 92%, and 93.33% on the UIUC, KTH-TIPS, and UMD texture recognition datasets respectively.
☆ MVICAD2: Multi-View Independent Component Analysis with Delays and Dilations
Machine learning techniques in multi-view settings face significant challenges, particularly when integrating heterogeneous data, aligning feature spaces, and managing view-specific biases. These issues are prominent in neuroscience, where data from multiple subjects exposed to the same stimuli are analyzed to uncover brain activity dynamics. In magnetoencephalography (MEG), where signals are captured at the scalp level, estimating the brain's underlying sources is crucial, especially in group studies where sources are assumed to be similar for all subjects. Common methods, such as Multi-View Independent Component Analysis (MVICA), assume identical sources across subjects, but this assumption is often too restrictive due to individual variability and age-related changes. Multi-View Independent Component Analysis with Delays (MVICAD) addresses this by allowing sources to differ up to a temporal delay. However, temporal dilation effects, particularly in auditory stimuli, are common in brain dynamics, making the estimation of time delays alone insufficient. To address this, we propose Multi-View Independent Component Analysis with Delays and Dilations (MVICAD2), which allows sources to differ across subjects in both temporal delays and dilations. We present a model with identifiable sources, derive an approximation of its likelihood in closed form, and use regularization and optimization techniques to enhance performance. Through simulations, we demonstrate that MVICAD2 outperforms existing multi-view ICA methods. We further validate its effectiveness using the Cam-CAN dataset, and showing how delays and dilations are related to aging.
comment: 19 pages, 8 figures
☆ An Investigation into Seasonal Variations in Energy Forecasting for Student Residences
This research provides an in-depth evaluation of various machine learning models for energy forecasting, focusing on the unique challenges of seasonal variations in student residential settings. The study assesses the performance of baseline models, such as LSTM and GRU, alongside state-of-the-art forecasting methods, including Autoregressive Feedforward Neural Networks, Transformers, and hybrid approaches. Special attention is given to predicting energy consumption amidst challenges like seasonal patterns, vacations, meteorological changes, and irregular human activities that cause sudden fluctuations in usage. The findings reveal that no single model consistently outperforms others across all seasons, emphasizing the need for season-specific model selection or tailored designs. Notably, the proposed Hyper Network based LSTM and MiniAutoEncXGBoost models exhibit strong adaptability to seasonal variations, effectively capturing abrupt changes in energy consumption during summer months. This study advances the energy forecasting field by emphasizing the critical role of seasonal dynamics and model-specific behavior in achieving accurate predictions.
☆ PROTECT: Protein circadian time prediction using unsupervised learning
Circadian rhythms regulate the physiology and behavior of humans and animals. Despite advancements in understanding these rhythms and predicting circadian phases at the transcriptional level, predicting circadian phases from proteomic data remains elusive. This challenge is largely due to the scarcity of time labels in proteomic datasets, which are often characterized by small sample sizes, high dimensionality, and significant noise. Furthermore, existing methods for predicting circadian phases from transcriptomic data typically rely on prior knowledge of known rhythmic genes, making them unsuitable for proteomic datasets. To address this gap, we developed a novel computational method using unsupervised deep learning techniques to predict circadian sample phases from proteomic data without requiring time labels or prior knowledge of proteins or genes. Our model involves a two-stage training process optimized for robust circadian phase prediction: an initial greedy one-layer-at-a-time pre-training which generates informative initial parameters followed by fine-tuning. During fine-tuning, a specialized loss function guides the model to align protein expression levels with circadian patterns, enabling it to accurately capture the underlying rhythmic structure within the data. We tested our method on both time-labeled and unlabeled proteomic data. For labeled data, we compared our predictions to the known time labels, achieving high accuracy, while for unlabeled human datasets, including postmortem brain regions and urine samples, we explored circadian disruptions. Notably, our analysis identified disruptions in rhythmic proteins between Alzheimer's disease and control subjects across these samples.
☆ Derivation of effective gradient flow equations and dynamical truncation of training data in Deep Learning
We derive explicit equations governing the cumulative biases and weights in Deep Learning with ReLU activation function, based on gradient descent for the Euclidean cost in the input layer, and under the assumption that the weights are, in a precise sense, adapted to the coordinate system distinguished by the activations. We show that gradient descent corresponds to a dynamical process in the input layer, whereby clusters of data are progressively reduced in complexity ("truncated") at an exponential rate that increases with the number of data points that have already been truncated. We provide a detailed discussion of several types of solutions to the gradient flow equations. A main motivation for this work is to shed light on the interpretability question in supervised learning.
comment: AMS Latex, 35 pages
☆ Information-Theoretic Dual Memory System for Continual Learning
Continuously acquiring new knowledge from a dynamic environment is a fundamental capability for animals, facilitating their survival and ability to address various challenges. This capability is referred to as continual learning, which focuses on the ability to learn a sequence of tasks without the detriment of previous knowledge. A prevalent strategy to tackle continual learning involves selecting and storing numerous essential data samples from prior tasks within a fixed-size memory buffer. However, the majority of current memory-based techniques typically utilize a single memory buffer, which poses challenges in concurrently managing newly acquired and previously learned samples. Drawing inspiration from the Complementary Learning Systems (CLS) theory, which defines rapid and gradual learning mechanisms for processing information, we propose an innovative dual memory system called the Information-Theoretic Dual Memory System (ITDMS). This system comprises a fast memory buffer designed to retain temporary and novel samples, alongside a slow memory buffer dedicated to preserving critical and informative samples. The fast memory buffer is optimized employing an efficient reservoir sampling process. Furthermore, we introduce a novel information-theoretic memory optimization strategy that selectively identifies and retains diverse and informative data samples for the slow memory buffer. Additionally, we propose a novel balanced sample selection procedure that automatically identifies and eliminates redundant memorized samples, thus freeing up memory capacity for new data acquisitions, which can deal with a growing array of tasks. Our methodology is rigorously assessed through a series of continual learning experiments, with empirical results underscoring the effectiveness of the proposed system.
comment: 35 pages, 9 figures, submitted to Knowledge-Based Systems
☆ Dynami-CAL GraphNet: A Physics-Informed Graph Neural Network Conserving Linear and Angular Momentum for Dynamical Systems
Accurate, interpretable, and real-time modeling of multi-body dynamical systems is essential for predicting behaviors and inferring physical properties in natural and engineered environments. Traditional physics-based models face scalability challenges and are computationally demanding, while data-driven approaches like Graph Neural Networks (GNNs) often lack physical consistency, interpretability, and generalization. In this paper, we propose Dynami-CAL GraphNet, a Physics-Informed Graph Neural Network that integrates the learning capabilities of GNNs with physics-based inductive biases to address these limitations. Dynami-CAL GraphNet enforces pairwise conservation of linear and angular momentum for interacting nodes using edge-local reference frames that are equivariant to rotational symmetries, invariant to translations, and equivariant to node permutations. This design ensures physically consistent predictions of node dynamics while offering interpretable, edge-wise linear and angular impulses resulting from pairwise interactions. Evaluated on a 3D granular system with inelastic collisions, Dynami-CAL GraphNet demonstrates stable error accumulation over extended rollouts, effective extrapolations to unseen configurations, and robust handling of heterogeneous interactions and external forces. Dynami-CAL GraphNet offers significant advantages in fields requiring accurate, interpretable, and real-time modeling of complex multi-body dynamical systems, such as robotics, aerospace engineering, and materials science. By providing physically consistent and scalable predictions that adhere to fundamental conservation laws, it enables the inference of forces and moments while efficiently handling heterogeneous interactions and external forces.
☆ Simulating the Hubbard Model with Equivariant Normalizing Flows
Generative models, particularly normalizing flows, have shown exceptional performance in learning probability distributions across various domains of physics, including statistical mechanics, collider physics, and lattice field theory. In the context of lattice field theory, normalizing flows have been successfully applied to accurately learn the Boltzmann distribution, enabling a range of tasks such as direct estimation of thermodynamic observables and sampling independent and identically distributed (i.i.d.) configurations. In this work, we present a proof-of-concept demonstration that normalizing flows can be used to learn the Boltzmann distribution for the Hubbard model. This model is widely employed to study the electronic structure of graphene and other carbon nanomaterials. State-of-the-art numerical simulations of the Hubbard model, such as those based on Hybrid Monte Carlo (HMC) methods, often suffer from ergodicity issues, potentially leading to biased estimates of physical observables. Our numerical experiments demonstrate that leveraging i.i.d.\ sampling from the normalizing flow effectively addresses these issues.
comment: 14 pages, 5 figures, contribution to the 41st International Symposium on Lattice Field Theory (Lattice 2024), July 28th - August 3rd, 2024, Liverpool, UK
☆ Multimodal semantic retrieval for product search
Semantic retrieval (also known as dense retrieval) based on textual data has been extensively studied for both web search and product search application fields, where the relevance of a query and a potential target document is computed by their dense vector representation comparison. Product image is crucial for e-commence search interactions and is a key factor for customers at product explorations. But its impact for semantic retrieval has not been well studied yet. In this research, we build a multimodal representation for product items in e-commerece search in contrast to pure-text representation of products, and investigate the impact of such representations. The models are developed and evaluated on e-commerce datasets. We demonstrate that a multimodal representation scheme for a product can show improvement either on purchase recall or relevance accuracy in semantic retrieval. Additionally, we provide numerical analysis for exclusive matches retrieved by a multimodal semantic retrieval model versus a text-only semantic retrieval model, to demonstrate the validation of multimodal solutions.
☆ TimberVision: A Multi-Task Dataset and Framework for Log-Component Segmentation and Tracking in Autonomous Forestry Operations WACV
Timber represents an increasingly valuable and versatile resource. However, forestry operations such as harvesting, handling and measuring logs still require substantial human labor in remote environments posing significant safety risks. Progressively automating these tasks has the potential of increasing their efficiency as well as safety, but requires an accurate detection of individual logs as well as live trees and their context. Although initial approaches have been proposed for this challenging application domain, specialized data and algorithms are still too scarce to develop robust solutions. To mitigate this gap, we introduce the TimberVision dataset, consisting of more than 2k annotated RGB images containing a total of 51k trunk components including cut and lateral surfaces, thereby surpassing any existing dataset in this domain in terms of both quantity and detail by a large margin. Based on this data, we conduct a series of ablation experiments for oriented object detection and instance segmentation and evaluate the influence of multiple scene parameters on model performance. We introduce a generic framework to fuse the components detected by our models for both tasks into unified trunk representations. Furthermore, we automatically derive geometric properties and apply multi-object tracking to further enhance robustness. Our detection and tracking approach provides highly descriptive and accurate trunk representations solely from RGB image data, even under challenging environmental conditions. Our solution is suitable for a wide range of application scenarios and can be readily combined with other sensor modalities.
comment: Accepted at Winter Conference on Applications of Computer Vision (WACV) 2025. Code and dataset available at https://github.com/timbervision/timbervision
☆ Deep Generative Clustering with VAEs and Expectation-Maximization
We propose a novel deep clustering method that integrates Variational Autoencoders (VAEs) into the Expectation-Maximization (EM) framework. Our approach models the probability distribution of each cluster with a VAE and alternates between updating model parameters by maximizing the Evidence Lower Bound (ELBO) of the log-likelihood and refining cluster assignments based on the learned distributions. This enables effective clustering and generation of new samples from each cluster. Unlike existing VAE-based methods, our approach eliminates the need for a Gaussian Mixture Model (GMM) prior or additional regularization techniques. Experiments on MNIST and FashionMNIST demonstrate superior clustering performance compared to state-of-the-art methods.
☆ Enhancing Online Reinforcement Learning with Meta-Learned Objective from Offline Data AAAI 2025
A major challenge in Reinforcement Learning (RL) is the difficulty of learning an optimal policy from sparse rewards. Prior works enhance online RL with conventional Imitation Learning (IL) via a handcrafted auxiliary objective, at the cost of restricting the RL policy to be sub-optimal when the offline data is generated by a non-expert policy. Instead, to better leverage valuable information in offline data, we develop Generalized Imitation Learning from Demonstration (GILD), which meta-learns an objective that distills knowledge from offline data and instills intrinsic motivation towards the optimal policy. Distinct from prior works that are exclusive to a specific RL algorithm, GILD is a flexible module intended for diverse vanilla off-policy RL algorithms. In addition, GILD introduces no domain-specific hyperparameter and minimal increase in computational cost. In four challenging MuJoCo tasks with sparse rewards, we show that three RL algorithms enhanced with GILD significantly outperform state-of-the-art methods.
comment: Accepted by AAAI 2025 (this version includes supplementary material)
☆ Digital Operating Mode Classification of Real-World Amateur Radio Transmissions ICASSP 2025
This study presents an ML approach for classifying digital radio operating modes evaluated on real-world transmissions. We generated 98 different parameterized radio signals from 17 digital operating modes, transmitted each of them on the 70 cm (UHF) amateur radio band, and recorded our transmissions with two different architectures of SDR receivers. Three lightweight ML models were trained exclusively on spectrograms of limited non-transmitted signals with random characters as payloads. This training involved an online data augmentation pipeline to simulate various radio channel impairments. Our best model, EfficientNetB0, achieved an accuracy of 93.80% across the 17 operating modes and 85.47% across all 98 parameterized radio signals, evaluated on our real-world transmissions with Wikipedia articles as payloads. Furthermore, we analyzed the impact of varying signal durations & the number of FFT bins on classification, assessed the effectiveness of our simulated channel impairments, and tested our models across multiple simulated SNRs.
comment: Conference IEEE ICASSP 2025
☆ TempoGPT: Enhancing Temporal Reasoning via Quantizing Embedding
Multi-modal language model has made advanced progress in vision and audio, but still faces significant challenges in dealing with complex reasoning tasks in the time series domain. The reasons are twofold. First, labels for multi-modal time series data are coarse and devoid of analysis or reasoning processes. Training with these data cannot improve the model's reasoning capabilities. Second, due to the lack of precise tokenization in processing time series, the representation patterns for temporal and textual information are inconsistent, which hampers the effectiveness of multi-modal alignment. To address these challenges, we propose a multi-modal time series data construction approach and a multi-modal time series language model (TLM), TempoGPT. Specially, we construct multi-modal data for complex reasoning tasks by analyzing the variable-system relationships within a white-box system. Additionally, proposed TempoGPT achieves consistent representation between temporal and textual information by quantizing temporal embeddings, where temporal embeddings are quantized into a series of discrete tokens using a predefined codebook; subsequently, a shared embedding layer processes both temporal and textual tokens. Extensive experiments demonstrate that TempoGPT accurately perceives temporal information, logically infers conclusions, and achieves state-of-the-art in the constructed complex time series reasoning tasks. Moreover, we quantitatively demonstrate the effectiveness of quantizing temporal embeddings in enhancing multi-modal alignment and the reasoning capabilities of TLMs. Code and data are available at https://github.com/zhanghaochuan20/TempoGPT.
☆ Foundation Models at Work: Fine-Tuning for Fairness in Algorithmic Hiring AAAI 2025
Foundation models require fine-tuning to ensure their generative outputs align with intended results for specific tasks. Automating this fine-tuning process is challenging, as it typically needs human feedback that can be expensive to acquire. We present AutoRefine, a method that leverages reinforcement learning for targeted fine-tuning, utilizing direct feedback from measurable performance improvements in specific downstream tasks. We demonstrate the method for a problem arising in algorithmic hiring platforms where linguistic biases influence a recommendation system. In this setting, a generative model seeks to rewrite given job specifications to receive more diverse candidate matches from a recommendation engine which matches jobs to candidates. Our model detects and regulates biases in job descriptions to meet diversity and fairness criteria. The experiments on a public hiring dataset and a real-world hiring platform showcase how large language models can assist in identifying and mitigation biases in the real world.
comment: Accepted to AAAI 2025, AI Governance Workshop
☆ Variable Bregman Majorization-Minimization Algorithm and its Application to Dirichlet Maximum Likelihood Estimation
We propose a novel Bregman descent algorithm for minimizing a convex function that is expressed as the sum of a differentiable part (defined over an open set) and a possibly nonsmooth term. The approach, referred to as the Variable Bregman Majorization-Minimization (VBMM) algorithm, extends the Bregman Proximal Gradient method by allowing the Bregman function used in the divergence to adaptively vary at each iteration, provided it satisfies a majorizing condition on the objective function. This adaptive framework enables the algorithm to approximate the objective more precisely at each iteration, thereby allowing for accelerated convergence compared to the traditional Bregman Proximal Gradient descent. We establish the convergence of the VBMM algorithm to a minimizer under mild assumptions on the family of metrics used. Furthermore, we introduce a novel application of both the Bregman Proximal Gradient method and the VBMM algorithm to the estimation of the multidimensional parameters of a Dirichlet distribution through the maximization of its log-likelihood. Numerical experiments confirm that the VBMM algorithm outperforms existing approaches in terms of convergence speed.
☆ Code and Pixels: Multi-Modal Contrastive Pre-training for Enhanced Tabular Data Analysis
Learning from tabular data is of paramount importance, as it complements the conventional analysis of image and video data by providing a rich source of structured information that is often critical for comprehensive understanding and decision-making processes. We present Multi-task Contrastive Masked Tabular Modeling (MT-CMTM), a novel method aiming to enhance tabular models by leveraging the correlation between tabular data and corresponding images. MT-CMTM employs a dual strategy combining contrastive learning with masked tabular modeling, optimizing the synergy between these data modalities. Central to our approach is a 1D Convolutional Neural Network with residual connections and an attention mechanism (1D-ResNet-CBAM), designed to efficiently process tabular data without relying on images. This enables MT-CMTM to handle purely tabular data for downstream tasks, eliminating the need for potentially costly image acquisition and processing. We evaluated MT-CMTM on the DVM car dataset, which is uniquely suited for this particular scenario, and the newly developed HIPMP dataset, which connects membrane fabrication parameters with image data. Our MT-CMTM model outperforms the proposed tabular 1D-ResNet-CBAM, which is trained from scratch, achieving a relative 1.48% improvement in relative MSE on HIPMP and a 2.38% increase in absolute accuracy on DVM. These results demonstrate MT-CMTM's robustness and its potential to advance the field of multi-modal learning.
☆ The Lessons of Developing Process Reward Models in Mathematical Reasoning
Process Reward Models (PRMs) emerge as a promising approach for process supervision in mathematical reasoning of Large Language Models (LLMs), which aim to identify and mitigate intermediate errors in the reasoning processes. However, the development of effective PRMs faces significant challenges, particularly in data annotation and evaluation methodologies. In this paper, through extensive experiments, we demonstrate that commonly used Monte Carlo (MC) estimation-based data synthesis for PRMs typically yields inferior performance and generalization compared to LLM-as-a-judge and human annotation methods. MC estimation relies on completion models to evaluate current-step correctness, leading to inaccurate step verification. Furthermore, we identify potential biases in conventional Best-of-N (BoN) evaluation strategies for PRMs: (1) The unreliable policy models generate responses with correct answers but flawed processes, leading to a misalignment between the evaluation criteria of BoN and the PRM objectives of process verification. (2) The tolerance of PRMs of such responses leads to inflated BoN scores. (3) Existing PRMs have a significant proportion of minimum scores concentrated on the final answer steps, revealing the shift from process to outcome-based assessment in BoN Optimized PRMs. To address these challenges, we develop a consensus filtering mechanism that effectively integrates MC estimation with LLM-as-a-judge and advocates a more comprehensive evaluation framework that combines response-level and step-level metrics. Based on the mechanisms, we significantly improve both model performance and data efficiency in the BoN evaluation and the step-wise error identification task. Finally, we release a new state-of-the-art PRM that outperforms existing open-source alternatives and provides practical guidelines for future research in building process supervision models.
Dataset-Agnostic Recommender Systems
[This is a position paper and does not contain any empirical or theoretical results] Recommender systems have become a cornerstone of personalized user experiences, yet their development typically involves significant manual intervention, including dataset-specific feature engineering, hyperparameter tuning, and configuration. To this end, we introduce a novel paradigm: Dataset-Agnostic Recommender Systems (DAReS) that aims to enable a single codebase to autonomously adapt to various datasets without the need for fine-tuning, for a given recommender system task. Central to this approach is the Dataset Description Language (DsDL), a structured format that provides metadata about the dataset's features and labels, and allow the system to understand dataset's characteristics, allowing it to autonomously manage processes like feature selection, missing values imputation, noise removal, and hyperparameter optimization. By reducing the need for domain-specific expertise and manual adjustments, DAReS offers a more efficient and scalable solution for building recommender systems across diverse application domains. It addresses critical challenges in the field, such as reusability, reproducibility, and accessibility for non-expert users or entry-level researchers.
☆ Estimating quantum relative entropies on quantum computers
Quantum relative entropy, a quantum generalization of the well-known Kullback-Leibler divergence, serves as a fundamental measure of the distinguishability between quantum states and plays a pivotal role in quantum information science. Despite its importance, efficiently estimating quantum relative entropy between two quantum states on quantum computers remains a significant challenge. In this work, we propose the first quantum algorithm for estimating quantum relative entropy and Petz R\'{e}nyi divergence from two unknown quantum states on quantum computers, addressing open problems highlighted in [Phys. Rev. A 109, 032431 (2024)] and [IEEE Trans. Inf. Theory 70, 5653-5680 (2024)]. This is achieved by combining quadrature approximations of relative entropies, the variational representation of quantum f-divergences, and a new technique for parameterizing Hermitian polynomial operators to estimate their traces with quantum states. Notably, the circuit size of our algorithm is at most 2n+1 with n being the number of qubits in the quantum states and it is directly applicable to distributed scenarios, where quantum states to be compared are hosted on cross-platform quantum computers. We validate our algorithm through numerical simulations, laying the groundwork for its future deployment on quantum hardware devices.
comment: 24 pages, 10 figures; comments are welcome
☆ Bridging Smart Meter Gaps: A Benchmark of Statistical, Machine Learning and Time Series Foundation Models for Data Imputation
The integrity of time series data in smart grids is often compromised by missing values due to sensor failures, transmission errors, or disruptions. Gaps in smart meter data can bias consumption analyses and hinder reliable predictions, causing technical and economic inefficiencies. As smart meter data grows in volume and complexity, conventional techniques struggle with its nonlinear and nonstationary patterns. In this context, Generative Artificial Intelligence offers promising solutions that may outperform traditional statistical methods. In this paper, we evaluate two general-purpose Large Language Models and five Time Series Foundation Models for smart meter data imputation, comparing them with conventional Machine Learning and statistical models. We introduce artificial gaps (30 minutes to one day) into an anonymized public dataset to test inference capabilities. Results show that Time Series Foundation Models, with their contextual understanding and pattern recognition, could significantly enhance imputation accuracy in certain cases. However, the trade-off between computational cost and performance gains remains a critical consideration.
☆ Generating Poisoning Attacks against Ridge Regression Models with Categorical Features
Machine Learning (ML) models have become a very powerful tool to extract information from large datasets and use it to make accurate predictions and automated decisions. However, ML models can be vulnerable to external attacks, causing them to underperform or deviate from their expected tasks. One way to attack ML models is by injecting malicious data to mislead the algorithm during the training phase, which is referred to as a poisoning attack. We can prepare for such situations by designing anticipated attacks, which are later used for creating and testing defence strategies. In this paper, we propose an algorithm to generate strong poisoning attacks for a ridge regression model containing both numerical and categorical features that explicitly models and poisons categorical features. We model categorical features as SOS-1 sets and formulate the problem of designing poisoning attacks as a bilevel optimization problem that is nonconvex mixed-integer in the upper-level and unconstrained convex quadratic in the lower-level. We present the mathematical formulation of the problem, introduce a single-level reformulation based on the Karush-Kuhn-Tucker (KKT) conditions of the lower level, find bounds for the lower-level variables to accelerate solver performance, and propose a new algorithm to poison categorical features. Numerical experiments show that our method improves the mean squared error of all datasets compared to the previous benchmark in the literature.
☆ MOS-Attack: A Scalable Multi-objective Adversarial Attack Framework CVPR 2025
Crafting adversarial examples is crucial for evaluating and enhancing the robustness of Deep Neural Networks (DNNs), presenting a challenge equivalent to maximizing a non-differentiable 0-1 loss function. However, existing single objective methods, namely adversarial attacks focus on a surrogate loss function, do not fully harness the benefits of engaging multiple loss functions, as a result of insufficient understanding of their synergistic and conflicting nature. To overcome these limitations, we propose the Multi-Objective Set-based Attack (MOS Attack), a novel adversarial attack framework leveraging multiple loss functions and automatically uncovering their interrelations. The MOS Attack adopts a set-based multi-objective optimization strategy, enabling the incorporation of numerous loss functions without additional parameters. It also automatically mines synergistic patterns among various losses, facilitating the generation of potent adversarial attacks with fewer objectives. Extensive experiments have shown that our MOS Attack outperforms single-objective attacks. Furthermore, by harnessing the identified synergistic patterns, MOS Attack continues to show superior results with a reduced number of loss functions.
comment: Under Review of CVPR 2025
☆ Interpretable machine-learning for predicting molecular weight of PLA based on artificial bee colony optimization algorithm and adaptive neurofuzzy inference system
This article discusses the integration of the Artificial Bee Colony (ABC) algorithm with two supervised learning methods, namely Artificial Neural Networks (ANNs) and Adaptive Network-based Fuzzy Inference System (ANFIS), for feature selection from Near-Infrared (NIR) spectra for predicting the molecular weight of medical-grade Polylactic Acid (PLA). During extrusion processing of PLA, in-line NIR spectra were captured along with extrusion process and machine setting data. With a dataset comprising 63 observations and 512 input features, appropriate machine learning tools are essential for interpreting data and selecting features to improve prediction accuracy. Initially, the ABC optimization algorithm is coupled with ANN/ANFIS to forecast PLA molecular weight. The objective functions of the ABC algorithm are to minimize the root mean square error (RMSE) between experimental and predicted PLA molecular weights while also minimizing the number of input features. Results indicate that employing ABC-ANFIS yields the lowest RMSE of 282 Da and identifies four significant parameters (NIR wavenumbers 6158 cm-1, 6310 cm-1, 6349 cm-1, and melt temperature) for prediction. These findings demonstrate the effectiveness of using the ABC algorithm with ANFIS for selecting a minimal set of features to predict PLA molecular weight with high accuracy during processing
☆ Breaking Memory Limits: Gradient Wavelet Transform Enhances LLMs Training
Large language models (LLMs) have shown impressive performance across a range of natural language processing tasks. However, their vast number of parameters introduces significant memory challenges during training, particularly when using memory-intensive optimizers like Adam. Existing memory-efficient algorithms often rely on techniques such as singular value decomposition projection or weight freezing. While these approaches help alleviate memory constraints, they generally produce suboptimal results compared to full-rank updates. In this paper, we investigate the memory-efficient method beyond low-rank training, proposing a novel solution called Gradient Wavelet Transform (GWT), which applies wavelet transforms to gradients in order to significantly reduce the memory requirements for maintaining optimizer states. We demonstrate that GWT can be seamlessly integrated with memory-intensive optimizers, enabling efficient training without sacrificing performance. Through extensive experiments on both pre-training and fine-tuning tasks, we show that GWT achieves state-of-the-art performance compared with advanced memory-efficient optimizers and full-rank approaches in terms of both memory usage and training performance.
☆ A data-driven approach to discover and quantify systemic lupus erythematosus etiological heterogeneity from electronic health records
Systemic lupus erythematosus (SLE) is a complex heterogeneous disease with many manifestational facets. We propose a data-driven approach to discover probabilistic independent sources from multimodal imperfect EHR data. These sources represent exogenous variables in the data generation process causal graph that estimate latent root causes of the presence of SLE in the health record. We objectively evaluated the sources against the original variables from which they were discovered by training supervised models to discriminate SLE from negative health records using a reduced set of labelled instances. We found 19 predictive sources with high clinical validity and whose EHR signatures define independent factors of SLE heterogeneity. Using the sources as input patient data representation enables models to provide with rich explanations that better capture the clinical reasons why a particular record is (not) an SLE case. Providers may be willing to trade patient-level interpretability for discrimination especially in challenging cases.
comment: Received Runner-up Knowledge Discovery and Data Mining Innovation Award at the American Medical Informatics Association Annual Symposium 2024
☆ An Enhanced Zeroth-Order Stochastic Frank-Wolfe Framework for Constrained Finite-Sum Optimization
We propose an enhanced zeroth-order stochastic Frank-Wolfe framework to address constrained finite-sum optimization problems, a structure prevalent in large-scale machine-learning applications. Our method introduces a novel double variance reduction framework that effectively reduces the gradient approximation variance induced by zeroth-order oracles and the stochastic sampling variance from finite-sum objectives. By leveraging this framework, our algorithm achieves significant improvements in query efficiency, making it particularly well-suited for high-dimensional optimization tasks. Specifically, for convex objectives, the algorithm achieves a query complexity of O(d \sqrt{n}/\epsilon ) to find an epsilon-suboptimal solution, where d is the dimensionality and n is the number of functions in the finite-sum objective. For non-convex objectives, it achieves a query complexity of O(d^{3/2}\sqrt{n}/\epsilon^2 ) without requiring the computation ofd partial derivatives at each iteration. These complexities are the best known among zeroth-order stochastic Frank-Wolfe algorithms that avoid explicit gradient calculations. Empirical experiments on convex and non-convex machine learning tasks, including sparse logistic regression, robust classification, and adversarial attacks on deep networks, validate the computational efficiency and scalability of our approach. Our algorithm demonstrates superior performance in both convergence rate and query complexity compared to existing methods.
comment: 35 pages, 4 figures, 3 tables
☆ Lung Cancer detection using Deep Learning
In this paper we discuss lung cancer detection using hybrid model of Convolutional-Neural-Networks (CNNs) and Support-Vector-Machines-(SVMs) in order to gain early detection of tumors, benign or malignant. The work uses this hybrid model by training upon the Computed Tomography scans (CT scans) as dataset. Using deep learning for detecting lung cancer early is a cutting-edge method.
Pre-Trained Large Language Model Based Remaining Useful Life Transfer Prediction of Bearing
Accurately predicting the remaining useful life (RUL) of rotating machinery, such as bearings, is essential for ensuring equipment reliability and minimizing unexpected industrial failures. Traditional data-driven deep learning methods face challenges in practical settings due to inconsistent training and testing data distributions and limited generalization for long-term predictions.
☆ Generalizable Graph Neural Networks for Robust Power Grid Topology Control
The energy transition necessitates new congestion management methods. One such method is controlling the grid topology with machine learning (ML). This approach has gained popularity following the Learning to Run a Power Network (L2RPN) competitions. Graph neural networks (GNNs) are a class of ML models that reflect graph structure in their computation, which makes them suitable for power grid modeling. Various GNN approaches for topology control have thus been proposed. We propose the first GNN model for grid topology control that uses only GNN layers. Additionally, we identify the busbar information asymmetry problem that the popular homogeneous graph representation suffers from, and propose a heterogeneous graph representation to resolve it. We train both homogeneous and heterogeneous GNNs and fully connected neural networks (FCNN) baselines on an imitation learning task. We evaluate the models according to their classification accuracy and grid operation ability. We find that the heterogeneous GNNs perform best on in-distribution networks, followed by the FCNNs, and lastly, the homogeneous GNNs. We also find that both GNN types generalize better to out-of-distribution networks than FCNNs.
☆ Uncertainty Guarantees on Automated Precision Weeding using Conformal Prediction
Precision agriculture in general, and precision weeding in particular, have greatly benefited from the major advancements in deep learning and computer vision. A large variety of commercial robotic solutions are already available and deployed. However, the adoption by farmers of such solutions is still low for many reasons, an important one being the lack of trust in these systems. This is in great part due to the opaqueness and complexity of deep neural networks and the manufacturers' inability to provide valid guarantees on their performance. Conformal prediction, a well-established methodology in the machine learning community, is an efficient and reliable strategy for providing trustworthy guarantees on the predictions of any black-box model under very minimal constraints. Bridging the gap between the safe machine learning and precision agriculture communities, this article showcases conformal prediction in action on the task of precision weeding through deep learning-based image classification. After a detailed presentation of the conformal prediction methodology and the development of a precision spraying pipeline based on a ''conformalized'' neural network and well-defined spraying decision rules, the article evaluates this pipeline on two real-world scenarios: one under in-distribution conditions, the other reflecting a near out-of-distribution setting. The results show that we are able to provide formal, i.e. certifiable, guarantees on spraying at least 90% of the weeds.
☆ Knowledge Distillation and Enhanced Subdomain Adaptation Using Graph Convolutional Network for Resource-Constrained Bearing Fault Diagnosis
Bearing fault diagnosis under varying working conditions faces challenges, including a lack of labeled data, distribution discrepancies, and resource constraints. To address these issues, we propose a progressive knowledge distillation framework that transfers knowledge from a complex teacher model, utilizing a Graph Convolutional Network (GCN) with Autoregressive moving average (ARMA) filters, to a compact and efficient student model. To mitigate distribution discrepancies and labeling uncertainty, we introduce Enhanced Local Maximum Mean Squared Discrepancy (ELMMSD), which leverages mean and variance statistics in the Reproducing Kernel Hilbert Space (RKHS) and incorporates a priori probability distributions between labels. This approach increases the distance between clustering centers, bridges subdomain gaps, and enhances subdomain alignment reliability. Experimental results on benchmark datasets (CWRU and JNU) demonstrate that the proposed method achieves superior diagnostic accuracy while significantly reducing computational costs. Comprehensive ablation studies validate the effectiveness of each component, highlighting the robustness and adaptability of the approach across diverse working conditions.
☆ Anomalous Agreement: How to find the Ideal Number of Anomaly Classes in Correlated, Multivariate Time Series Data AAAI
Detecting and classifying abnormal system states is critical for condition monitoring, but supervised methods often fall short due to the rarity of anomalies and the lack of labeled data. Therefore, clustering is often used to group similar abnormal behavior. However, evaluating cluster quality without ground truth is challenging, as existing measures such as the Silhouette Score (SSC) only evaluate the cohesion and separation of clusters and ignore possible prior knowledge about the data. To address this challenge, we introduce the Synchronized Anomaly Agreement Index (SAAI), which exploits the synchronicity of anomalies across multivariate time series to assess cluster quality. We demonstrate the effectiveness of SAAI by showing that maximizing SAAI improves accuracy on the task of finding the true number of anomaly classes K in correlated time series by 0.23 compared to SSC and by 0.32 compared to X-Means. We also show that clusters obtained by maximizing SAAI are easier to interpret compared to SSC.
comment: Acccepted at AAAI Workshop on AI for Time Series Analysis (AI4TS) 2025
☆ AlphaNet: Scaling Up Local Frame-based Atomistic Foundation Model
We present AlphaNet, a local frame-based equivariant model designed to achieve both accurate and efficient simulations for atomistic systems. Recently, machine learning force fields (MLFFs) have gained prominence in molecular dynamics simulations due to their advantageous efficiency-accuracy balance compared to classical force fields and quantum mechanical calculations, alongside their transferability across various systems. Despite the advancements in improving model accuracy, the efficiency and scalability of MLFFs remain significant obstacles in practical applications. AlphaNet enhances computational efficiency and accuracy by leveraging the local geometric structures of atomic environments through the construction of equivariant local frames and learnable frame transitions. We substantiate the efficacy of AlphaNet across diverse datasets, including defected graphene, formate decomposition, zeolites, and surface reactions. AlphaNet consistently surpasses well-established models, such as NequIP and DeepPot, in terms of both energy and force prediction accuracy. Notably, AlphaNet offers one of the best trade-offs between computational efficiency and accuracy among existing models. Moreover, AlphaNet exhibits scalability across a broad spectrum of system and dataset sizes, affirming its versatility.
comment: 14 pages, 5 figures
☆ TIMRL: A Novel Meta-Reinforcement Learning Framework for Non-Stationary and Multi-Task Environments
In recent years, meta-reinforcement learning (meta-RL) algorithm has been proposed to improve sample efficiency in the field of decision-making and control, enabling agents to learn new knowledge from a small number of samples. However, most research uses the Gaussian distribution to extract task representation, which is poorly adapted to tasks that change in non-stationary environment. To address this problem, we propose a novel meta-reinforcement learning method by leveraging Gaussian mixture model and the transformer network to construct task inference model. The Gaussian mixture model is utilized to extend the task representation and conduct explicit encoding of tasks. Specifically, the classification of tasks is encoded through transformer network to determine the Gaussian component corresponding to the task. By leveraging task labels, the transformer network is trained using supervised learning. We validate our method on MuJoCo benchmarks with non-stationary and multi-task environments. Experimental results demonstrate that the proposed method dramatically improves sample efficiency and accurately recognizes the classification of the tasks, while performing excellently in the environment.
☆ LLM360 K2: Scaling Up 360-Open-Source Large Language Models
We detail the training of the LLM360 K2-65B model, scaling up our 360-degree OPEN SOURCE approach to the largest and most powerful models under project LLM360. While open-source LLMs continue to advance, the answer to "How are the largest LLMs trained?" remains unclear within the community. The implementation details for such high-capacity models are often protected due to business considerations associated with their high cost. This lack of transparency prevents LLM researchers from leveraging valuable insights from prior experience, e.g., "What are the best practices for addressing loss spikes?" The LLM360 K2 project addresses this gap by providing full transparency and access to resources accumulated during the training of LLMs at the largest scale. This report highlights key elements of the K2 project, including our first model, K2 DIAMOND, a 65 billion-parameter LLM that surpasses LLaMA-65B and rivals LLaMA2-70B, while requiring fewer FLOPs and tokens. We detail the implementation steps and present a longitudinal analysis of K2 DIAMOND's capabilities throughout its training process. We also outline ongoing projects such as TXT360, setting the stage for future models in the series. By offering previously unavailable resources, the K2 project also resonates with the 360-degree OPEN SOURCE principles of transparency, reproducibility, and accessibility, which we believe are vital in the era of resource-intensive AI research.
☆ Inferring Interpretable Models of Fragmentation Functions using Symbolic Regression
Machine learning is rapidly making its path into natural sciences, including high-energy physics. We present the first study that infers, directly from experimental data, a functional form of fragmentation functions. The latter represent a key ingredient to describe physical observables measured in high-energy physics processes that involve hadron production, and predict their values at different energy. Fragmentation functions can not be calculated in theory and have to be determined instead from data. Traditional approaches rely on global fits of experimental data using a pre-assumed functional form inspired from phenomenological models to learn its parameters. This novel approach uses a ML technique, namely symbolic regression, to learn an analytical model from measured charged hadron multiplicities. The function learned by symbolic regression resembles the Lund string function and describes the data well, thus representing a potential candidate for use in global FFs fits. This study represents an approach to follow in such QCD-related phenomenology studies and more generally in sciences.
☆ D3MES: Diffusion Transformer with multihead equivariant self-attention for 3D molecule generation
Understanding and predicting the diverse conformational states of molecules is crucial for advancing fields such as chemistry, material science, and drug development. Despite significant progress in generative models, accurately generating complex and biologically or material-relevant molecular structures remains a major challenge. In this work, we introduce a diffusion model for three-dimensional (3D) molecule generation that combines a classifiable diffusion model, Diffusion Transformer, with multihead equivariant self-attention. This method addresses two key challenges: correctly attaching hydrogen atoms in generated molecules through learning representations of molecules after hydrogen atoms are removed; and overcoming the limitations of existing models that cannot generate molecules across multiple classes simultaneously. The experimental results demonstrate that our model not only achieves state-of-the-art performance across several key metrics but also exhibits robustness and versatility, making it highly suitable for early-stage large-scale generation processes in molecular design, followed by validation and further screening to obtain molecules with specific properties.
☆ SFC-GAN: A Generative Adversarial Network for Brain Functional and Structural Connectome Translation
Modern brain imaging technologies have enabled the detailed reconstruction of human brain connectomes, capturing structural connectivity (SC) from diffusion MRI and functional connectivity (FC) from functional MRI. Understanding the intricate relationships between SC and FC is vital for gaining deeper insights into the brain's functional and organizational mechanisms. However, obtaining both SC and FC modalities simultaneously remains challenging, hindering comprehensive analyses. Existing deep generative models typically focus on synthesizing a single modality or unidirectional translation between FC and SC, thereby missing the potential benefits of bi-directional translation, especially in scenarios where only one connectome is available. Therefore, we propose Structural-Functional Connectivity GAN (SFC-GAN), a novel framework for bidirectional translation between SC and FC. This approach leverages the CycleGAN architecture, incorporating convolutional layers to effectively capture the spatial structures of brain connectomes. To preserve the topological integrity of these connectomes, we employ a structure-preserving loss that guides the model in capturing both global and local connectome patterns while maintaining symmetry. Our framework demonstrates superior performance in translating between SC and FC, outperforming baseline models in similarity and graph property evaluations compared to ground truth data, each translated modality can be effectively utilized for downstream classification.
comment: 5 pages, 2 figures
☆ Differentially Private Kernelized Contextual Bandits
We consider the problem of contextual kernel bandits with stochastic contexts, where the underlying reward function belongs to a known Reproducing Kernel Hilbert Space (RKHS). We study this problem under the additional constraint of joint differential privacy, where the agents needs to ensure that the sequence of query points is differentially private with respect to both the sequence of contexts and rewards. We propose a novel algorithm that improves upon the state of the art and achieves an error rate of $\mathcal{O}\left(\sqrt{\frac{\gamma_T}{T}} + \frac{\gamma_T}{T \varepsilon}\right)$ after $T$ queries for a large class of kernel families, where $\gamma_T$ represents the effective dimensionality of the kernel and $\varepsilon > 0$ is the privacy parameter. Our results are based on a novel estimator for the reward function that simultaneously enjoys high utility along with a low-sensitivity to observed rewards and contexts, which is crucial to obtain an order optimal learning performance with improved dependence on the privacy parameter.
☆ ACCon: Angle-Compensated Contrastive Regularizer for Deep Regression AAAI-2025
In deep regression, capturing the relationship among continuous labels in feature space is a fundamental challenge that has attracted increasing interest. Addressing this issue can prevent models from converging to suboptimal solutions across various regression tasks, leading to improved performance, especially for imbalanced regression and under limited sample sizes. However, existing approaches often rely on order-aware representation learning or distance-based weighting. In this paper, we hypothesize a linear negative correlation between label distances and representation similarities in regression tasks. To implement this, we propose an angle-compensated contrastive regularizer for deep regression, which adjusts the cosine distance between anchor and negative samples within the contrastive learning framework. Our method offers a plug-and-play compatible solution that extends most existing contrastive learning methods for regression tasks. Extensive experiments and theoretical analysis demonstrate that our proposed angle-compensated contrastive regularizer not only achieves competitive regression performance but also excels in data efficiency and effectiveness on imbalanced datasets.
comment: Accept by AAAI-2025 (The 39th Annual AAAI Conference on Artificial Intelligence)
☆ Protego: Detecting Adversarial Examples for Vision Transformers via Intrinsic Capabilities
Transformer models have excelled in natural language tasks, prompting the vision community to explore their implementation in computer vision problems. However, these models are still influenced by adversarial examples. In this paper, we investigate the attack capabilities of six common adversarial attacks on three pretrained ViT models to reveal the vulnerability of ViT models. To understand and analyse the bias in neural network decisions when the input is adversarial, we use two visualisation techniques that are attention rollout and grad attention rollout. To prevent ViT models from adversarial attack, we propose Protego, a detection framework that leverages the transformer intrinsic capabilities to detection adversarial examples of ViT models. Nonetheless, this is challenging due to a diversity of attack strategies that may be adopted by adversaries. Inspired by the attention mechanism, we know that the token of prediction contains all the information from the input sample. Additionally, the attention region for adversarial examples differs from that of normal examples. Given these points, we can train a detector that achieves superior performance than existing detection methods to identify adversarial examples. Our experiments have demonstrated the high effectiveness of our detection method. For these six adversarial attack methods, our detector's AUC scores all exceed 0.95. Protego may advance investigations in metaverse security.
comment: Accepted by IEEE MetaCom 2024
☆ Explore the Use of Time Series Foundation Model for Car-Following Behavior Analysis
Modeling car-following behavior is essential for traffic simulation, analyzing driving patterns, and understanding complex traffic flows with varying levels of autonomous vehicles. Traditional models like the Safe Distance Model and Intelligent Driver Model (IDM) require precise parameter calibration and often lack generality due to simplified assumptions about driver behavior. While machine learning and deep learning methods capture complex patterns, they require large labeled datasets. Foundation models provide a more efficient alternative. Pre-trained on vast, diverse time series datasets, they can be applied directly to various tasks without the need for extensive re-training. These models generalize well across domains, and with minimal fine-tuning, they can be adapted to specific tasks like car-following behavior prediction. In this paper, we apply Chronos, a state-of-the-art public time series foundation model, to analyze car-following behavior using the Open ACC dataset. Without fine-tuning, Chronos outperforms traditional models like IDM and Exponential smoothing with trend and seasonality (ETS), and achieves similar results to deep learning models such as DeepAR and TFT, with an RMSE of 0.60. After fine-tuning, Chronos reduces the error to an RMSE of 0.53, representing a 33.75% improvement over IDM and a 12-37% reduction compared to machine learning models like ETS and deep learning models including DeepAR, WaveNet, and TFT. This demonstrates the potential of foundation models to significantly advance transportation research, offering a scalable, adaptable, and highly accurate approach to predicting and simulating car-following behaviors.
☆ Detection of AI Deepfake and Fraud in Online Payments Using GAN-Based Models
This study explores the use of Generative Adversarial Networks (GANs) to detect AI deepfakes and fraudulent activities in online payment systems. With the growing prevalence of deepfake technology, which can manipulate facial features in images and videos, the potential for fraud in online transactions has escalated. Traditional security systems struggle to identify these sophisticated forms of fraud. This research proposes a novel GAN-based model that enhances online payment security by identifying subtle manipulations in payment images. The model is trained on a dataset consisting of real-world online payment images and deepfake images generated using advanced GAN architectures, such as StyleGAN and DeepFake. The results demonstrate that the proposed model can accurately distinguish between legitimate transactions and deepfakes, achieving a high detection rate above 95%. This approach significantly improves the robustness of payment systems against AI-driven fraud. The paper contributes to the growing field of digital security, offering insights into the application of GANs for fraud detection in financial services. Keywords- Payment Security, Image Recognition, Generative Adversarial Networks, AI Deepfake, Fraudulent Activities
comment: The paper will be published and indexed by IEEE at 2025 8th International Conference on Advanced Algorithms and Control Engineering (ICAACE 2025)
☆ PRKAN: Parameter-Reduced Kolmogorov-Arnold Networks
Kolmogorov-Arnold Networks (KANs) represent an innovation in neural network architectures, offering a compelling alternative to Multi-Layer Perceptrons (MLPs) in models such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Transformers. By advancing network design, KANs are driving groundbreaking research and enabling transformative applications across various scientific domains involving neural networks. However, existing KANs often require significantly more parameters in their network layers compared to MLPs. To address this limitation, this paper introduces PRKANs (\textbf{P}arameter-\textbf{R}educed \textbf{K}olmogorov-\textbf{A}rnold \textbf{N}etworks), which employ several methods to reduce the parameter count in KAN layers, making them comparable to MLP layers. Experimental results on the MNIST and Fashion-MNIST datasets demonstrate that PRKANs with attention mechanisms outperform several existing KANs and rival the performance of MLPs, albeit with slightly longer training times. Furthermore, the study highlights the advantages of Gaussian Radial Basis Functions (GRBFs) and layer normalization in KAN designs. The repository for this work is available at: \url{https://github.com/hoangthangta/All-KAN}.
comment: 23 pages
☆ Erasing Noise in Signal Detection with Diffusion Model: From Theory to Application
In this paper, a signal detection method based on the denoise diffusion model (DM) is proposed, which outperforms the maximum likelihood (ML) estimation method that has long been regarded as the optimal signal detection technique. Theoretically, a novel mathematical theory for intelligent signal detection based on stochastic differential equations (SDEs) is established in this paper, demonstrating the effectiveness of DM in reducing the additive white Gaussian noise in received signals. Moreover, a mathematical relationship between the signal-to-noise ratio (SNR) and the timestep in DM is established, revealing that for any given SNR, a corresponding optimal timestep can be identified. Furthermore, to address potential issues with out-of-distribution inputs in the DM, we employ a mathematical scaling technique that allows the trained DM to handle signal detection across a wide range of SNRs without any fine-tuning. Building on the above theoretical foundation, we propose a DM-based signal detection method, with the diffusion transformer (DiT) serving as the backbone neural network, whose computational complexity of this method is $\mathcal{O}(n^2)$. Simulation results demonstrate that, for BPSK and QAM modulation schemes, the DM-based method achieves a significantly lower symbol error rate (SER) compared to ML estimation, while maintaining a much lower computational complexity.
♻ ☆ SecAlign: Defending Against Prompt Injection with Preference Optimization
Large language models (LLMs) are becoming increasingly prevalent in modern software systems, interfacing between the user and the Internet to assist with tasks that require advanced language understanding. To accomplish these tasks, the LLM often uses external data sources such as user documents, web retrieval, results from API calls, etc. This opens up new avenues for attackers to manipulate the LLM via prompt injection. Adversarial prompts can be injected into external data sources to override the system's intended instruction and instead execute a malicious instruction. To mitigate this vulnerability, we propose a new defense called SecAlign based on the technique of preference optimization. Our defense first constructs a preference dataset with prompt-injected inputs, secure outputs (ones that respond to the legitimate instruction), and insecure outputs (ones that respond to the injection). We then perform preference optimization on this dataset to teach the LLM to prefer the secure output over the insecure one. This provides the first known method that reduces the success rates of various prompt injections to around 0%, even against attacks much more sophisticated than ones seen during training. This indicates our defense generalizes well against unknown and yet-to-come attacks. Also, our defended models are still practical with similar utility to the one before our defensive training. Our code is at https://github.com/facebookresearch/SecAlign
comment: Key words: prompt injection defense, LLM security, LLM-integrated applications
♻ ☆ Few-Shot Task Learning through Inverse Generative Modeling
Learning the intents of an agent, defined by its goals or motion style, is often extremely challenging from just a few examples. We refer to this problem as task concept learning and present our approach, Few-Shot Task Learning through Inverse Generative Modeling (FTL-IGM), which learns new task concepts by leveraging invertible neural generative models. The core idea is to pretrain a generative model on a set of basic concepts and their demonstrations. Then, given a few demonstrations of a new concept (such as a new goal or a new action), our method learns the underlying concepts through backpropagation without updating the model weights, thanks to the invertibility of the generative model. We evaluate our method in five domains -- object rearrangement, goal-oriented navigation, motion caption of human actions, autonomous driving, and real-world table-top manipulation. Our experimental results demonstrate that via the pretrained generative model, we successfully learn novel concepts and generate agent plans or motion corresponding to these concepts in (1) unseen environments and (2) in composition with training concepts.
comment: Added acknowledgment
♻ ☆ Improving the Performance of Echo State Networks Through State Feedback
Reservoir computing, using nonlinear dynamical systems, offers a cost-effective alternative to neural networks for complex tasks involving processing of sequential data, time series modeling, and system identification. Echo state networks (ESNs), a type of reservoir computer, mirror neural networks but simplify training. They apply fixed, random linear transformations to the internal state, followed by nonlinear changes. This process, guided by input signals and linear regression, adapts the system to match target characteristics, reducing computational demands. A potential drawback of ESNs is that the fixed reservoir may not offer the complexity needed for specific problems. While directly altering (training) the internal ESN would reintroduce the computational burden, an indirect modification can be achieved by redirecting some output as input. This feedback can influence the internal reservoir state, yielding ESNs with enhanced complexity suitable for broader challenges. In this paper, we demonstrate that by feeding some component of the reservoir state back into the network through the input, we can drastically improve upon the performance of a given ESN. We rigorously prove that, for any given ESN, feedback will almost always improve the accuracy of the output. For a set of three tasks, each representing different problem classes, we find that with feedback the average error measures are reduced by $30\%-60\%$. Remarkably, feedback provides at least an equivalent performance boost to doubling the initial number of computational nodes, a computationally expensive and technologically challenging alternative. These results demonstrate the broad applicability and substantial usefulness of this feedback scheme.
comment: 36 pages, 6 figures
♻ ☆ Directional Smoothness and Gradient Methods: Convergence and Adaptivity NeurIPS 2024
We develop new sub-optimality bounds for gradient descent (GD) that depend on the conditioning of the objective along the path of optimization rather than on global, worst-case constants. Key to our proofs is directional smoothness, a measure of gradient variation that we use to develop upper-bounds on the objective. Minimizing these upper-bounds requires solving implicit equations to obtain a sequence of strongly adapted step-sizes; we show that these equations are straightforward to solve for convex quadratics and lead to new guarantees for two classical step-sizes. For general functions, we prove that the Polyak step-size and normalized GD obtain fast, path-dependent rates despite using no knowledge of the directional smoothness. Experiments on logistic regression show our convergence guarantees are tighter than the classical theory based on $L$-smoothness.
comment: Published as a poster at NeurIPS 2024
♻ ☆ Divergences between Language Models and Human Brains
Do machines and humans process language in similar ways? Recent research has hinted at the affirmative, showing that human neural activity can be effectively predicted using the internal representations of language models (LMs). Although such results are thought to reflect shared computational principles between LMs and human brains, there are also clear differences in how LMs and humans represent and use language. In this work, we systematically explore the divergences between human and machine language processing by examining the differences between LM representations and human brain responses to language as measured by Magnetoencephalography (MEG) across two datasets in which subjects read and listened to narrative stories. Using an LLM-based data-driven approach, we identify two domains that LMs do not capture well: social/emotional intelligence and physical commonsense. We validate these findings with human behavioral experiments and hypothesize that the gap is due to insufficient representations of social/emotional and physical knowledge in LMs. Our results show that fine-tuning LMs on these domains can improve their alignment with human brain responses.
♻ ☆ A Closer Look at AUROC and AUPRC under Class Imbalance NeurIPS 2024
In machine learning (ML), a widespread claim is that the area under the precision-recall curve (AUPRC) is a superior metric for model comparison to the area under the receiver operating characteristic (AUROC) for tasks with class imbalance. This paper refutes this notion on two fronts. First, we theoretically characterize the behavior of AUROC and AUPRC in the presence of model mistakes, establishing clearly that AUPRC is not generally superior in cases of class imbalance. We further show that AUPRC can be a harmful metric as it can unduly favor model improvements in subpopulations with more frequent positive labels, heightening algorithmic disparities. Next, we empirically support our theory using experiments on both semi-synthetic and real-world fairness datasets. Prompted by these insights, we conduct a review of over 1.5 million scientific papers to understand the origin of this invalid claim, finding that it is often made without citation, misattributed to papers that do not argue this point, and aggressively over-generalized from source arguments. Our findings represent a dual contribution: a significant technical advancement in understanding the relationship between AUROC and AUPRC and a stark warning about unchecked assumptions in the ML community.
comment: NeurIPS 2024 (https://openreview.net/forum?id=S3HvA808gk)
♻ ☆ Pre-trained Vision-Language Models Learn Discoverable Visual Concepts
Do vision-language models (VLMs) pre-trained to caption an image of a "durian" learn visual concepts such as "brown" (color) and "spiky" (texture) at the same time? We aim to answer this question as visual concepts learned "for free" would enable wide applications such as neuro-symbolic reasoning or human-interpretable object classification. We assume that the visual concepts, if captured by pre-trained VLMs, can be extracted by their vision-language interface with text-based concept prompts. We observe that recent works prompting VLMs with concepts often differ in their strategies to define and evaluate the visual concepts, leading to conflicting conclusions. We propose a new concept definition strategy based on two observations: First, certain concept prompts include shortcuts that recognize correct concepts for wrong reasons; Second, multimodal information (e.g. visual discriminativeness, and textual knowledge) should be leveraged when selecting the concepts. Our proposed concept discovery and learning (CDL) framework is thus designed to identify a diverse list of generic visual concepts (e.g. "spiky" as opposed to "spiky durian"), which are ranked and selected based on visual and language mutual information. We carefully design quantitative and human evaluations of the discovered concepts on six diverse visual recognition datasets, which confirm that pre-trained VLMs do learn visual concepts that provide accurate and thorough descriptions for the recognized objects. All code and models are publicly released.
comment: Transactions on Machine Learning Research, 2025
♻ ☆ Inhomogeneous graph trend filtering via a l2,0 cardinality penalty
We study estimation of piecewise smooth signals over a graph. We propose a $\ell_{2,0}$-norm penalized Graph Trend Filtering (GTF) model to estimate piecewise smooth graph signals that exhibit inhomogeneous levels of smoothness across the nodes. We prove that the proposed GTF model is simultaneously a k-means clustering on the signal over the nodes and a minimum graph cut on the edges of the graph, where the clustering and the cut share the same assignment matrix. We propose two methods to solve the proposed GTF model: a spectral decomposition method and a method based on simulated annealing. In the experiment on synthetic and real-world datasets, we show that the proposed GTF model has a better performances compared with existing approaches on the tasks of denoising, support recovery and semi-supervised classification. We also show that the proposed GTF model can be solved more efficiently than existing models for the dataset with a large edge set.
comment: 14 pages, 3 figures, 4 tables
♻ ☆ Deep Learning-Based Residual Useful Lifetime Prediction for Assets with Uncertain Failure Modes
Industrial prognostics focuses on utilizing degradation signals to forecast and continually update the residual useful life of complex engineering systems. However, existing prognostic models for systems with multiple failure modes face several challenges in real-world applications, including overlapping degradation signals from multiple components, the presence of unlabeled historical data, and the similarity of signals across different failure modes. To tackle these issues, this research introduces two prognostic models that integrate the mixture (log)-location-scale distribution with deep learning. This integration facilitates the modeling of overlapping degradation signals, eliminates the need for explicit failure mode identification, and utilizes deep learning to capture complex nonlinear relationships between degradation signals and residual useful lifetimes. Numerical studies validate the superior performance of these proposed models compared to existing methods.
♻ ☆ Context Matters: Leveraging Contextual Features for Time Series Forecasting
Time series forecasts are often influenced by exogenous contextual features in addition to their corresponding history. For example, in financial settings, it is hard to accurately predict a stock price without considering public sentiments and policy decisions in the form of news articles, tweets, etc. Though this is common knowledge, the current state-of-the-art (SOTA) forecasting models fail to incorporate such contextual information, owing to its heterogeneity and multimodal nature. To address this, we introduce ContextFormer, a novel plug-and-play method to surgically integrate multimodal contextual information into existing pre-trained forecasting models. ContextFormer effectively distills forecast-specific information from rich multimodal contexts, including categorical, continuous, time-varying, and even textual information, to significantly enhance the performance of existing base forecasters. ContextFormer outperforms SOTA forecasting models by up to 30% on a range of real-world datasets spanning energy, traffic, environmental, and financial domains.
♻ ☆ Generative Assignment Flows for Representing and Learning Joint Distributions of Discrete Data
We introduce a novel generative model for the representation of joint probability distributions of a possibly large number of discrete random variables. The approach uses measure transport by randomized assignment flows on the statistical submanifold of factorizing distributions, which enables to represent and sample efficiently from any target distribution and to assess the likelihood of unseen data points. The complexity of the target distribution only depends on the parametrization of the affinity function of the dynamical assignment flow system. Our model can be trained in a simulation-free manner by conditional Riemannian flow matching, using the training data encoded as geodesics on the assignment manifold in closed-form, with respect to the e-connection of information geometry. Numerical experiments devoted to distributions of structured image labelings demonstrate the applicability to large-scale problems, which may include discrete distributions in other application areas. Performance measures show that our approach scales better with the increasing number of classes than recent related work.
♻ ☆ Remove that Square Root: A New Efficient Scale-Invariant Version of AdaGrad
Adaptive methods are extremely popular in machine learning as they make learning rate tuning less expensive. This paper introduces a novel optimization algorithm named KATE, which presents a scale-invariant adaptation of the well-known AdaGrad algorithm. We prove the scale-invariance of KATE for the case of Generalized Linear Models. Moreover, for general smooth non-convex problems, we establish a convergence rate of $O \left(\frac{\log T}{\sqrt{T}} \right)$ for KATE, matching the best-known ones for AdaGrad and Adam. We also compare KATE to other state-of-the-art adaptive algorithms Adam and AdaGrad in numerical experiments with different problems, including complex machine learning tasks like image classification and text classification on real data. The results indicate that KATE consistently outperforms AdaGrad and matches/surpasses the performance of Adam in all considered scenarios.
comment: 32 pages, 12 figures
♻ ☆ Geometric Scattering on Measure Spaces
The scattering transform is a multilayered, wavelet-based transform initially introduced as a model of convolutional neural networks (CNNs) that has played a foundational role in our understanding of these networks' stability and invariance properties. Subsequently, there has been widespread interest in extending the success of CNNs to data sets with non-Euclidean structure, such as graphs and manifolds, leading to the emerging field of geometric deep learning. In order to improve our understanding of the architectures used in this new field, several papers have proposed generalizations of the scattering transform for non-Euclidean data structures such as undirected graphs and compact Riemannian manifolds without boundary. In this paper, we introduce a general, unified model for geometric scattering on measure spaces. Our proposed framework includes previous work on geometric scattering as special cases but also applies to more general settings such as directed graphs, signed graphs, and manifolds with boundary. We propose a new criterion that identifies to which groups a useful representation should be invariant and show that this criterion is sufficient to guarantee that the scattering transform has desirable stability and invariance properties. Additionally, we consider finite measure spaces that are obtained from randomly sampling an unknown manifold. We propose two methods for constructing a data-driven graph on which the associated graph scattering transform approximates the scattering transform on the underlying manifold. Moreover, we use a diffusion-maps based approach to prove quantitative estimates on the rate of convergence of one of these approximations as the number of sample points tends to infinity. Lastly, we showcase the utility of our method on spherical images, directed graphs, and on high-dimensional single-cell data.
♻ ☆ Barcodes as Summary of Loss Function Topology
We propose to study neural networks' loss surfaces by methods of topological data analysis. We suggest to apply barcodes of Morse complexes to explore topology of loss surfaces. An algorithm for calculations of the loss function's barcodes of local minima is described. We have conducted experiments for calculating barcodes of local minima for benchmark functions and for loss surfaces of small neural networks. Our experiments confirm our two principal observations for neural networks' loss surfaces. First, the barcodes of local minima are located in a small lower part of the range of values of neural networks' loss function. Secondly, increase of the neural network's depth and width lowers the barcodes of local minima. This has some natural implications for the neural network's learning and for its generalization properties.
♻ ☆ Quilt-1M: One Million Image-Text Pairs for Histopathology
Recent accelerations in multi-modal applications have been made possible with the plethora of image and text data available online. However, the scarcity of analogous data in the medical field, specifically in histopathology, has slowed comparable progress. To enable similar representation learning for histopathology, we turn to YouTube, an untapped resource of videos, offering $1,087$ hours of valuable educational histopathology videos from expert clinicians. From YouTube, we curate QUILT: a large-scale vision-language dataset consisting of $802, 144$ image and text pairs. QUILT was automatically curated using a mixture of models, including large language models, handcrafted algorithms, human knowledge databases, and automatic speech recognition. In comparison, the most comprehensive datasets curated for histopathology amass only around $200$K samples. We combine QUILT with datasets from other sources, including Twitter, research papers, and the internet in general, to create an even larger dataset: QUILT-1M, with $1$M paired image-text samples, marking it as the largest vision-language histopathology dataset to date. We demonstrate the value of QUILT-1M by fine-tuning a pre-trained CLIP model. Our model outperforms state-of-the-art models on both zero-shot and linear probing tasks for classifying new histopathology images across $13$ diverse patch-level datasets of $8$ different sub-pathologies and cross-modal retrieval tasks.
♻ ☆ Higher-Order Topological Directionality and Directed Simplicial Neural Networks
Topological Deep Learning (TDL) has emerged as a paradigm to process and learn from signals defined on higher-order combinatorial topological spaces, such as simplicial or cell complexes. Although many complex systems have an asymmetric relational structure, most TDL models forcibly symmetrize these relationships. In this paper, we first introduce a novel notion of higher-order directionality and we then design Directed Simplicial Neural Networks (Dir-SNNs) based on it. Dir-SNNs are message-passing networks operating on directed simplicial complexes able to leverage directed and possibly asymmetric interactions among the simplices. To our knowledge, this is the first TDL model using a notion of higher-order directionality. We theoretically and empirically prove that Dir-SNNs are more expressive than their directed graph counterpart in distinguishing isomorphic directed graphs. Experiments on a synthetic source localization task demonstrate that Dir-SNNs outperform undirected SNNs when the underlying complex is directed, and perform comparably when the underlying complex is undirected.
comment: 7 pages, 8 figures, 1 table
♻ ☆ Enhance Eye Disease Detection using Learnable Probabilistic Discrete Latents in Machine Learning Architectures
Ocular diseases, including diabetic retinopathy and glaucoma, present a significant public health challenge due to their high prevalence and potential for causing vision impairment. Early and accurate diagnosis is crucial for effective treatment and management. In recent years, deep learning models have emerged as powerful tools for analysing medical images, such as retina imaging. However, challenges persist in model relibability and uncertainty estimation, which are critical for clinical decision-making. This study leverages the probabilistic framework of Generative Flow Networks (GFlowNets) to learn the posterior distribution over latent discrete dropout masks for the classification and analysis of ocular diseases using fundus images. We develop a robust and generalizable method that utilizes GFlowOut integrated with ResNet18 and ViT models as the backbone in identifying various ocular conditions. This study employs a unique set of dropout masks - none, random, bottomup, and topdown - to enhance model performance in analyzing these fundus images. Our results demonstrate that our learnable probablistic latents significantly improves accuracy, outperforming the traditional dropout approach. We utilize a gradient map calculation method, Grad-CAM, to assess model explainability, observing that the model accurately focuses on critical image regions for predictions. The integration of GFlowOut in neural networks presents a promising advancement in the automated diagnosis of ocular diseases, with implications for improving clinical workflows and patient outcomes.
♻ ☆ Path Loss Prediction Using Deep Learning
Radio deployments and spectrum planning benefit from path loss predictions. Obstructions along a communications link are often considered implicitly or through derived metrics such as representative clutter height or total obstruction depth. In this paper, we propose a path-specific path loss prediction method that uses convolutional neural networks to automatically perform feature extraction from high-resolution obstruction height maps. Our methods result in low prediction error in a variety of environments without requiring derived metrics.
comment: 5 pages, 3 figures, 4 tables
♻ ☆ FlashRNN: Optimizing Traditional RNNs on Modern Hardware
While Transformers and other sequence-parallelizable neural network architectures seem like the current state of the art in sequence modeling, they specifically lack state-tracking capabilities. These are important for time-series tasks and logical reasoning. Traditional RNNs like LSTMs and GRUs, as well as modern variants like sLSTM do have these capabilities at the cost of strictly sequential processing. While this is often seen as a strong limitation, we show how fast these networks can get with our hardware-optimization FlashRNN in Triton and CUDA, optimizing kernels to the register level on modern GPUs. We extend traditional RNNs with a parallelization variant that processes multiple RNNs of smaller hidden state in parallel, similar to the head-wise processing in Transformers. To enable flexibility on different GPU variants, we introduce a new optimization framework for hardware-internal cache sizes, memory and compute handling. It models the hardware in a setting using polyhedral-like constraints, including the notion of divisibility. This speeds up the solution process in our ConstrINT library for general integer constraint satisfaction problems (integer CSPs). We show that our kernels can achieve 50x speed-ups over a vanilla PyTorch implementation and allow 40x larger hidden sizes compared to our Triton implementation. Our open-source kernels and the optimization library are released here to boost research in the direction of state-tracking enabled RNNs and sequence modeling: \url{https://github.com/NX-AI/flashrnn}
♻ ☆ Hybrid Top-Down Global Causal Discovery with Local Search for Linear and Nonlinear Additive Noise Models NeurIPS 2024
Learning the unique directed acyclic graph corresponding to an unknown causal model is a challenging task. Methods based on functional causal models can identify a unique graph, but either suffer from the curse of dimensionality or impose strong parametric assumptions. To address these challenges, we propose a novel hybrid approach for global causal discovery in observational data that leverages local causal substructures. We first present a topological sorting algorithm that leverages ancestral relationships in linear structural causal models to establish a compact top-down hierarchical ordering, encoding more causal information than linear orderings produced by existing methods. We demonstrate that this approach generalizes to nonlinear settings with arbitrary noise. We then introduce a nonparametric constraint-based algorithm that prunes spurious edges by searching for local conditioning sets, achieving greater accuracy than current methods. We provide theoretical guarantees for correctness and worst-case polynomial time complexities, with empirical validation on synthetic data.
comment: To appear at the Thirty-Eighth Annual Conference on Neural Information Processing Systems (NeurIPS 2024)
♻ ☆ A Unified Approach to Extract Interpretable Rules from Tree Ensembles via Integer Programming
Tree ensembles are very popular machine learning models, known for their effectiveness in supervised classification and regression tasks. Their performance derives from aggregating predictions of multiple decision trees, which are renowned for their interpretability properties. However, tree ensemble models do not reliably exhibit interpretable output. Our work aims to extract an optimized list of rules from a trained tree ensemble, providing the user with a condensed, interpretable model that retains most of the predictive power of the full model. Our approach consists of solving a set partitioning problem formulated through Integer Programming. The proposed method works with either tabular or time series data, for both classification and regression tasks, and its flexible formulation can include any arbitrary loss or regularization functions. Our extensive computational experiments offer statistically significant evidence that our method is competitive with other rule extraction methods in terms of predictive performance and fidelity towards the tree ensemble. Moreover, we empirically show that the proposed method effectively extracts interpretable rules from tree ensemble that are designed for time series data.
comment: - Improved overall manuscript flow and clearness - Added related work on explanation fidelity - Added computational results on fidelity - Fixed some flaws on data inference - Optimization problem with weighted objectives - Added appendix containing qualitative examples - New computational results
♻ ☆ Steering Large Language Models using Conceptors: Improving Addition-Based Activation Engineering NeurIPS 2024
Large language models have transformed AI, yet reliably controlling their outputs remains a challenge. This paper explores activation engineering, where outputs of pre-trained LLMs are controlled by manipulating their activations at inference time. Unlike traditional methods using a single steering vector, we introduce conceptors - mathematical constructs that represent sets of activation vectors as ellipsoidal regions. Conceptors act as soft projection matrices and offer more precise control over complex activation patterns. Our experiments demonstrate that conceptors outperform traditional methods across multiple steering tasks. We further use Boolean operations on conceptors for combined steering goals that empirically outperform additively combining steering vectors on a set of tasks. These results highlight conceptors as a promising tool for more effective steering of LLMs. Our code is available on github.com/jorispos/conceptorsteering.
comment: Presented at the MINT workshop at NeurIPS 2024
♻ ☆ Automation of Quantum Dot Measurement Analysis via Explainable Machine Learning AAAI 2024
The rapid development of quantum dot (QD) devices for quantum computing has necessitated more efficient and automated methods for device characterization and tuning. This work demonstrates the feasibility and advantages of applying explainable machine learning techniques to the analysis of quantum dot measurements, paving the way for further advances in automated and transparent QD device tuning. Many of the measurements acquired during the tuning process come in the form of images that need to be properly analyzed to guide the subsequent tuning steps. By design, features present in such images capture certain behaviors or states of the measured QD devices. When considered carefully, such features can aid the control and calibration of QD devices. An important example of such images are so-called $\textit{triangle plots}$, which visually represent current flow and reveal characteristics important for QD device calibration. While image-based classification tools, such as convolutional neural networks (CNNs), can be used to verify whether a given measurement is $\textit{good}$ and thus warrants the initiation of the next phase of tuning, they do not provide any insights into how the device should be adjusted in the case of $\textit{bad}$ images. This is because CNNs sacrifice prediction and model intelligibility for high accuracy. To ameliorate this trade-off, a recent study introduced an image vectorization approach that relies on the Gabor wavelet transform (Schug $\textit{et al.}$ 2024 $\textit{Proc. XAI4Sci: Explainable Machine Learning for Sciences Workshop (AAAI 2024) (Vancouver, Canada)}$ pp 1-6). Here we propose an alternative vectorization method that involves mathematical modeling of synthetic triangles to mimic the experimental data. Using explainable boosting machines, we show that this new method offers superior explainability of model prediction without sacrificing accuracy.
comment: 20 pages, 5 figures, abbreviated version published in Proceedings of the XAI4Sci: Explainable machine learning for sciences workshop at AAAI 2024, (Vancouver, Canada)
♻ ☆ Explainable AI for Classifying UTI Risk Groups Using a Real-World Linked EHR and Pathology Lab Dataset
The use of machine learning and AI on electronic health records (EHRs) holds substantial potential for clinical insight. However, this approach faces challenges due to data heterogeneity, sparsity, temporal misalignment, and limited labeled outcomes. In this context, we leverage a linked EHR dataset of approximately one million de-identified individuals from Bristol, North Somerset, and South Gloucestershire, UK, to characterize urinary tract infections (UTIs). We implemented a data pre-processing and curation pipeline that transforms the raw EHR data into a structured format suitable for developing predictive models focused on data fairness, accountability and transparency. Given the limited availability and biases of ground truth UTI outcomes, we introduce a UTI risk estimation framework informed by clinical expertise to estimate UTI risk across individual patient timelines. Pairwise XGBoost models are trained using this framework to differentiate UTI risk categories with explainable AI techniques applied to identify key predictors and support interpretability. Our findings reveal differences in clinical and demographic predictors across risk groups. While this study highlights the potential of AI-driven insights to support UTI clinical decision-making, further investigation of patient sub-strata and extensive validation are needed to ensure robustness and applicability in clinical practice.
♻ ☆ Light Transport-aware Diffusion Posterior Sampling for Single-View Reconstruction of 3D Volumes
We introduce a single-view reconstruction technique of volumetric fields in which multiple light scattering effects are omnipresent, such as in clouds. We model the unknown distribution of volumetric fields using an unconditional diffusion model trained on a novel benchmark dataset comprising 1,000 synthetically simulated volumetric density fields. The neural diffusion model is trained on the latent codes of a novel, diffusion-friendly, monoplanar representation. The generative model is used to incorporate a tailored parametric diffusion posterior sampling technique into different reconstruction tasks. A physically-based differentiable volume renderer is employed to provide gradients with respect to light transport in the latent space. This stands in contrast to classic NeRF approaches and makes the reconstructions better aligned with observed data. Through various experiments, we demonstrate single-view reconstruction of volumetric clouds at a previously unattainable quality.
♻ ☆ Towards an Information Theoretic Framework of Context-Based Offline Meta-Reinforcement Learning
As a marriage between offline RL and meta-RL, the advent of offline meta-reinforcement learning (OMRL) has shown great promise in enabling RL agents to multi-task and quickly adapt while acquiring knowledge safely. Among which, context-based OMRL (COMRL) as a popular paradigm, aims to learn a universal policy conditioned on effective task representations. In this work, by examining several key milestones in the field of COMRL, we propose to integrate these seemingly independent methodologies into a unified framework. Most importantly, we show that the pre-existing COMRL algorithms are essentially optimizing the same mutual information objective between the task variable $M$ and its latent representation $Z$ by implementing various approximate bounds. Such theoretical insight offers ample design freedom for novel algorithms. As demonstrations, we propose a supervised and a self-supervised implementation of $I(Z; M)$, and empirically show that the corresponding optimization algorithms exhibit remarkable generalization across a broad spectrum of RL benchmarks, context shift scenarios, data qualities and deep learning architectures. This work lays the information theoretic foundation for COMRL methods, leading to a better understanding of task representation learning in the context of reinforcement learning. Given its generality, we envision our framework as a promising offline pre-training paradigm of foundation models for decision making.
comment: 26 pages, 8 figures, 7 tables. TLDR: We propose a novel information theoretic framework of the context-based offline meta-RL paradigm, which unifies several mainstream methods and leads to two robust algorithm implementations
♻ ☆ Project Tracyn: Generative Artificial Intelligence based Peripherals Trace Synthesizer
Peripheral Component Interconnect Express (PCIe) is the de facto interconnect standard for high-speed peripherals and CPUs. Prototyping and optimizing PCIe devices for emerging scenarios is an ongoing challenge. Since Transaction Layer Packets (TLPs) capture device-CPU interactions, it is crucial to analyze and generate realistic TLP traces for effective device design and optimization. Generative AI offers a promising approach for creating intricate, custom TLP traces necessary for PCIe hardware and software development. However, existing models often generate impractical traces due to the absence of PCIe-specific constraints, such as TLP ordering and causality. This paper presents Phantom, the first framework that treats TLP trace generation as a generative AI problem while incorporating PCIe-specific constraints. We validate Phantom's effectiveness by generating TLP traces for an actual PCIe network interface card. Experimental results show that Phantom produces practical, large-scale TLP traces, significantly outperforming existing models, with improvements of up to 1000$\times$ in task-specific metrics and up to 2.19$\times$ in Frechet Inception Distance (FID) compared to backbone-only methods.
♻ ☆ Design of 2D Skyrmionic Metamaterial Through Controlled Assembly
Despite extensive research on magnetic skyrmions and antiskyrmions, a significant challenge remains in crafting nontrivial high-order skyrmionic textures with varying, or even tailor-made, topologies. We address this challenge, by focusing on a construction pathway of skyrmionic metamaterials within a monolayer thin film and suggest several skyrmionic metamaterials that are surprisingly stable, i.e., long-lived, due to a self-stabilization mechanism. This makes these new textures promising for applications. Central to our approach is the concept of 'simulated controlled assembly', in short, a protocol inspired by 'click chemistry' that allows for positioning topological magnetic structures where one likes, and then allowing for energy minimization to elucidate the stability. Utilizing high-throughput atomistic-spin-dynamic simulations alongside state-of-the-art AI-driven tools, we have isolated skyrmions (topological charge Q=1), antiskyrmions (Q=-1), and skyrmionium (Q=0). These entities serve as foundational 'skyrmionic building blocks' to form the here reported intricate textures. In this work, two key contributions are introduced to the field of skyrmionic systems. First, we present a a novel combination of atomistic spin dynamics simulations and controlled assembly protocols for the stabilization and investigation of new topological magnets. Second, using the aforementioned methods we report on the discovery of skyrmionic metamaterials.
♻ ☆ BayesAdapter: enhanced uncertainty estimation in CLIP few-shot adaptation
The emergence of large pre-trained vision-language models (VLMs) represents a paradigm shift in machine learning, with unprecedented results in a broad span of visual recognition tasks. CLIP, one of the most popular VLMs, has exhibited remarkable zero-shot and transfer learning capabilities in classification. To transfer CLIP to downstream tasks, adapters constitute a parameter-efficient approach that avoids backpropagation through the large model (unlike related prompt learning methods). However, CLIP adapters have been developed to target discriminative performance, and the quality of their uncertainty estimates has been overlooked. In this work we show that the discriminative performance of state-of-the-art CLIP adapters does not always correlate with their uncertainty estimation capabilities, which are essential for a safe deployment in real-world scenarios. We also demonstrate that one of such adapters is obtained through MAP inference from a more general probabilistic framework. Based on this observation we introduce BayesAdapter, which leverages Bayesian inference to estimate a full probability distribution instead of a single point, better capturing the variability inherent in the parameter space. In a comprehensive empirical evaluation we show that our approach obtains high quality uncertainty estimates in the predictions, standing out in calibration and selective classification. Our code will be publicly available upon acceptance of the paper.
comment: 30 pages, 5 figures, 23 tables
♻ ☆ Exploring energy minimization to model strain localization as a strong discontinuity using Physics Informed Neural Networks
We explore the possibilities of using energy minimization for the numerical modeling of strain localization in solids as a sharp discontinuity in the displacement field. For this purpose, we consider (regularized) strong discontinuity kinematics in elastoplastic solids. The corresponding mathematical model is discretized using Artificial Neural Networks (ANNs), aiming to predict both the magnitude and location of the displacement jump from energy minimization, $\textit{i.e.}$, within a variational setting. The architecture takes care of the kinematics, while the loss function takes care of the variational statement of the boundary value problem. The main idea behind this approach is to solve both the equilibrium problem and the location of the localization band by means of trainable parameters in the ANN. As a proof of concept, we show through both 1D and 2D numerical examples that the computational modeling of strain localization for elastoplastic solids using energy minimization is feasible.
♻ ☆ QuadWBG: Generalizable Quadrupedal Whole-Body Grasping
Legged robots with advanced manipulation capabilities have the potential to significantly improve household duties and urban maintenance. Despite considerable progress in developing robust locomotion and precise manipulation methods, seamlessly integrating these into cohesive whole-body control for real-world applications remains challenging. In this paper, we present a modular framework for robust and generalizable whole-body loco-manipulation controller based on a single arm-mounted camera. By using reinforcement learning (RL), we enable a robust low-level policy for command execution over 5 dimensions (5D) and a grasp-aware high-level policy guided by a novel metric, Generalized Oriented Reachability Map (GORM). The proposed system achieves state-of-the-art one-time grasping accuracy of 89% in the real world, including challenging tasks such as grasping transparent objects. Through extensive simulations and real-world experiments, we demonstrate that our system can effectively manage a large workspace, from floor level to above body height, and perform diverse whole-body loco-manipulation tasks.
♻ ☆ AI-Driven Early Mental Health Screening: Analyzing Selfies of Pregnant Women ALT
Major Depressive Disorder and anxiety disorders affect millions globally, contributing significantly to the burden of mental health issues. Early screening is crucial for effective intervention, as timely identification of mental health issues can significantly improve treatment outcomes. Artificial intelligence (AI) can be valuable for improving the screening of mental disorders, enabling early intervention and better treatment outcomes. AI-driven screening can leverage the analysis of multiple data sources, including facial features in digital images. However, existing methods often rely on controlled environments or specialized equipment, limiting their broad applicability. This study explores the potential of AI models for ubiquitous depression-anxiety screening given face-centric selfies. The investigation focuses on high-risk pregnant patients, a population that is particularly vulnerable to mental health issues. To cope with limited training data resulting from our clinical setup, pre-trained models were utilized in two different approaches: fine-tuning convolutional neural networks (CNNs) originally designed for facial expression recognition and employing vision-language models (VLMs) for zero-shot analysis of facial expressions. Experimental results indicate that the proposed VLM-based method significantly outperforms CNNs, achieving an accuracy of 77.6%. Although there is significant room for improvement, the results suggest that VLMs can be a promising approach for mental health screening.
comment: This article has been accepted for publication in HEALTHINF25 at the 18th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2025)
♻ ☆ Spectral complexity of deep neural networks
It is well-known that randomly initialized, push-forward, fully-connected neural networks weakly converge to isotropic Gaussian processes, in the limit where the width of all layers goes to infinity. In this paper, we propose to use the angular power spectrum of the limiting field to characterize the complexity of the network architecture. In particular, we define sequences of random variables associated with the angular power spectrum, and provide a full characterization of the network complexity in terms of the asymptotic distribution of these sequences as the depth diverges. On this basis, we classify neural networks as low-disorder, sparse, or high-disorder; we show how this classification highlights a number of distinct features for standard activation functions, and in particular, sparsity properties of ReLU networks. Our theoretical results are also validated by numerical simulations.
♻ ☆ Improving Forward Compatibility in Class Incremental Learning by Increasing Representation Rank and Feature Richness
Class Incremental Learning (CIL) constitutes a pivotal subfield within continual learning, aimed at enabling models to progressively learn new classification tasks while retaining knowledge obtained from prior tasks. Although previous studies have predominantly focused on backward compatible approaches to mitigate catastrophic forgetting, recent investigations have introduced forward compatible methods to enhance performance on novel tasks and complement existing backward compatible methods. In this study, we introduce an effective-Rank based Feature Richness enhancement (RFR) method, designed for improving forward compatibility. Specifically, this method increases the effective rank of representations during the base session, thereby facilitating the incorporation of more informative features pertinent to unseen novel tasks. Consequently, RFR achieves dual objectives in backward and forward compatibility: minimizing feature extractor modifications and enhancing novel task performance, respectively. To validate the efficacy of our approach, we establish a theoretical connection between effective rank and the Shannon entropy of representations. Subsequently, we conduct comprehensive experiments by integrating RFR into eleven well-known CIL methods. Our results demonstrate the effectiveness of our approach in enhancing novel-task performance while mitigating catastrophic forgetting. Furthermore, our method notably improves the average incremental accuracy across all eleven cases examined.
♻ ☆ QUACK: Quantum Aligned Centroid Kernel
Quantum computing (QC) seems to show potential for application in machine learning (ML). In particular quantum kernel methods (QKM) exhibit promising properties for use in supervised ML tasks. However, a major disadvantage of kernel methods is their unfavorable quadratic scaling with the number of training samples. Together with the limits imposed by currently available quantum hardware (NISQ devices) with their low qubit coherence times, small number of qubits, and high error rates, the use of QC in ML at an industrially relevant scale is currently impossible. As a small step in improving the potential applications of QKMs, we introduce QUACK, a quantum kernel algorithm whose time complexity scales linear with the number of samples during training, and independent of the number of training samples in the inference stage. In the training process, only the kernel entries for the samples and the centers of the classes are calculated, i.e. the maximum shape of the kernel for n samples and c classes is (n, c). During training, the parameters of the quantum kernel and the positions of the centroids are optimized iteratively. In the inference stage, for every new sample the circuit is only evaluated for every centroid, i.e. c times. We show that the QUACK algorithm nevertheless provides satisfactory results and can perform at a similar level as classical kernel methods with quadratic scaling during training. In addition, our (simulated) algorithm is able to handle high-dimensional datasets such as MNIST with 784 features without any dimensionality reduction.
comment: 2nd place Best Paper award in QML track @ IEEE International Conference on Quantum Computing and Engineering (QCE) 2024
♻ ☆ Quantifying Aleatoric Uncertainty of the Treatment Effect: A Novel Orthogonal Learner
Estimating causal quantities from observational data is crucial for understanding the safety and effectiveness of medical treatments. However, to make reliable inferences, medical practitioners require not only estimating averaged causal quantities, such as the conditional average treatment effect, but also understanding the randomness of the treatment effect as a random variable. This randomness is referred to as aleatoric uncertainty and is necessary for understanding the probability of benefit from treatment or quantiles of the treatment effect. Yet, the aleatoric uncertainty of the treatment effect has received surprisingly little attention in the causal machine learning community. To fill this gap, we aim to quantify the aleatoric uncertainty of the treatment effect at the covariate-conditional level, namely, the conditional distribution of the treatment effect (CDTE). Unlike average causal quantities, the CDTE is not point identifiable without strong additional assumptions. As a remedy, we employ partial identification to obtain sharp bounds on the CDTE and thereby quantify the aleatoric uncertainty of the treatment effect. We then develop a novel, orthogonal learner for the bounds on the CDTE, which we call AU-learner. We further show that our AU-learner has several strengths in that it satisfies Neyman-orthogonality and, thus, quasi-oracle efficiency. Finally, we propose a fully-parametric deep learning instantiation of our AU-learner.
♻ ☆ Benchmarking Counterfactual Image Generation NeurIPS 2024
Generative AI has revolutionised visual content editing, empowering users to effortlessly modify images and videos. However, not all edits are equal. To perform realistic edits in domains such as natural image or medical imaging, modifications must respect causal relationships inherent to the data generation process. Such image editing falls into the counterfactual image generation regime. Evaluating counterfactual image generation is substantially complex: not only it lacks observable ground truths, but also requires adherence to causal constraints. Although several counterfactual image generation methods and evaluation metrics exist, a comprehensive comparison within a unified setting is lacking. We present a comparison framework to thoroughly benchmark counterfactual image generation methods. We integrate all models that have been used for the task at hand and expand them to novel datasets and causal graphs, demonstrating the superiority of Hierarchical VAEs across most datasets and metrics. Our framework is implemented in a user-friendly Python package that can be extended to incorporate additional SCMs, causal methods, generative models, and datasets for the community to build on. Code: https://github.com/gulnazaki/counterfactual-benchmark.
comment: Published as a conference paper at NeurIPS 2024 Datasets and Benchmarks Track https://openreview.net/forum?id=0T8xRFrScB Project page: https://gulnazaki.github.io/counterfactual-benchmark
♻ ☆ Imitating from auxiliary imperfect demonstrations via Adversarial Density Weighted Regression
We propose a novel one-step supervised imitation learning (IL) framework called Adversarial Density Regression (ADR). This IL framework aims to correct the policy learned on unknown-quality to match the expert distribution by utilizing demonstrations, without relying on the Bellman operator. Specifically, ADR addresses several limitations in previous IL algorithms: First, most IL algorithms are based on the Bellman operator, which inevitably suffer from cumulative offsets from sub-optimal rewards during multi-step update processes. Additionally, off-policy training frameworks suffer from Out-of-Distribution (OOD) state-actions. Second, while conservative terms help solve the OOD issue, balancing the conservative term is difficult. To address these limitations, we fully integrate a one-step density-weighted Behavioral Cloning (BC) objective for IL with auxiliary imperfect demonstration. Theoretically, we demonstrate that this adaptation can effectively correct the distribution of policies trained on unknown-quality datasets to align with the expert policy's distribution. Moreover, the difference between the empirical and the optimal value function is proportional to the upper bound of ADR's objective, indicating that minimizing ADR's objective is akin to approaching the optimal value. Experimentally, we validated the performance of ADR by conducting extensive evaluations. Specifically, ADR outperforms all of the selected IL algorithms on tasks from the Gym-Mujoco domain. Meanwhile, it achieves an 89.5% improvement over IQL when utilizing ground truth rewards on tasks from the Adroit and Kitchen domains. Our codebase will be released at: https://github.com/stevezhangzA/Adverserial_Density_Regression.
♻ ☆ D3RM: A Discrete Denoising Diffusion Refinement Model for Piano Transcription ICASSP 2025
Diffusion models have been widely used in the generative domain due to their convincing performance in modeling complex data distributions. Moreover, they have shown competitive results on discriminative tasks, such as image segmentation. While diffusion models have also been explored for automatic music transcription, their performance has yet to reach a competitive level. In this paper, we focus on discrete diffusion model's refinement capabilities and present a novel architecture for piano transcription. Our model utilizes Neighborhood Attention layers as the denoising module, gradually predicting the target high-resolution piano roll, conditioned on the finetuned features of a pretrained acoustic model. To further enhance refinement, we devise a novel strategy which applies distinct transition states during training and inference stage of discrete diffusion models. Experiments on the MAESTRO dataset show that our approach outperforms previous diffusion-based piano transcription models and the baseline model in terms of F1 score. Our code is available in https://github.com/hanshounsu/d3rm.
comment: Accepted to ICASSP 2025
♻ ☆ Are LLMs Good Cryptic Crossword Solvers?
Cryptic crosswords are puzzles that rely not only on general knowledge but also on the solver's ability to manipulate language on different levels and deal with various types of wordplay. Previous research suggests that solving such puzzles is a challenge even for modern NLP models. However, the abilities of large language models (LLMs) have not yet been tested on this task. In this paper, we establish the benchmark results for three popular LLMs -- LLaMA2, Mistral, and ChatGPT -- showing that their performance on this task is still far from that of humans.
♻ ☆ SyncDiff: Synchronized Motion Diffusion for Multi-Body Human-Object Interaction Synthesis
Synthesizing realistic human-object interaction motions is a critical problem in VR/AR and human animation. Unlike the commonly studied scenarios involving a single human or hand interacting with one object, we address a more generic multi-body setting with arbitrary numbers of humans, hands, and objects. This complexity introduces significant challenges in synchronizing motions due to the high correlations and mutual influences among bodies. To address these challenges, we introduce SyncDiff, a novel method for multi-body interaction synthesis using a synchronized motion diffusion strategy. SyncDiff employs a single diffusion model to capture the joint distribution of multi-body motions. To enhance motion fidelity, we propose a frequency-domain motion decomposition scheme. Additionally, we introduce a new set of alignment scores to emphasize the synchronization of different body motions. SyncDiff jointly optimizes both data sample likelihood and alignment likelihood through an explicit synchronization strategy. Extensive experiments across four datasets with various multi-body configurations demonstrate the superiority of SyncDiff over existing state-of-the-art motion synthesis methods.
♻ ☆ Initialization is Critical to Whether Transformers Fit Composite Functions by Reasoning or Memorizing
Transformers have shown impressive capabilities across various tasks, but their performance on compositional problems remains a topic of debate. In this work, we investigate the mechanisms of how transformers behave on unseen compositional tasks. We discover that the parameter initialization scale plays a critical role in determining whether the model learns inferential (reasoning-based) solutions, which capture the underlying compositional primitives, or symmetric (memory-based) solutions, which simply memorize mappings without understanding the compositional structure. By analyzing the information flow and vector representations within the model, we reveal the distinct mechanisms underlying these solution types. We further find that inferential (reasoning-based) solutions exhibit low complexity bias, which we hypothesize is a key factor enabling them to learn individual mappings for single anchors. We validate our conclusions on various real-world datasets. Our findings provide valuable insights into the role of initialization scale in tuning the reasoning and memorizing ability and we propose the initialization rate $\gamma$ to be a convenient tunable hyper-parameter in common deep learning frameworks, where $1/d_{\mathrm{in}}^\gamma$ is the standard deviation of parameters of the layer with $d_{\mathrm{in}}$ input neurons.
♻ ☆ GFairHint: Improving Individual Fairness for Graph Neural Networks via Fairness Hint KDD 2025
Given the growing concerns about fairness in machine learning and the impressive performance of Graph Neural Networks (GNNs) on graph data learning, algorithmic fairness in GNNs has attracted significant attention. While many existing studies improve fairness at the group level, only a few works promote individual fairness, which renders similar outcomes for similar individuals. A desirable framework that promotes individual fairness should (1) balance between fairness and performance, (2) accommodate two commonly-used individual similarity measures (externally annotated and computed from input features), (3) generalize across various GNN models, and (4) be computationally efficient. Unfortunately, none of the prior work achieves all the desirables. In this work, we propose a novel method, GFairHint, which promotes individual fairness in GNNs and achieves all aforementioned desirables. GFairHint learns fairness representations through an auxiliary link prediction task, and then concatenates the representations with the learned node embeddings in original GNNs as a "fairness hint". Through extensive experimental investigations on five real-world graph datasets under three prevalent GNN models covering both individual similarity measures above, GFairHint achieves the best fairness results in almost all combinations of datasets with various backbone models, while generating comparable utility results, with much less computational cost compared to the previous state-of-the-art (SoTA) method.
comment: Accepted by the ACM Transactions on Knowledge Discovery from Data (TKDD 2025)
♻ ☆ CoNOAir: A Neural Operator for Forecasting Carbon Monoxide Evolution in Cities
Carbon Monoxide (CO) is a dominant pollutant in urban areas due to the energy generation from fossil fuels for industry, automobile, and domestic requirements. Forecasting the evolution of CO in real-time can enable the deployment of effective early warning systems and intervention strategies. However, the computational cost associated with the physics and chemistry-based simulation makes it prohibitive to implement such a model at the city and country scale. To address this challenge, here, we present a machine learning model based on neural operator, namely, Complex Neural Operator for Air Quality (CoNOAir), that can effectively forecast CO concentrations. We demonstrate this by developing a country-level model for short-term (hourly) and long-term (72-hour) forecasts of CO concentrations. Our model outperforms state-of-the-art models such as Fourier neural operators (FNO) and provides reliable predictions for both short and long-term forecasts. We further analyse the capability of the model to capture extreme events and generate forecasts in urban cities in India. Interestingly, we observe that the model predicts the next hour CO concentrations with R2 values greater than 0.95 for all the cities considered. The deployment of such a model can greatly assist the governing bodies to provide early warning, plan intervention strategies, and develop effective strategies by considering several what-if scenarios. Altogether, the present approach could provide a fillip to real-time predictions of CO pollution in urban cities.
comment: 28 pages, 14 figures, under submission process
♻ ☆ A monthly sub-national Harmonized Food Insecurity Dataset for comprehensive analysis and predictive modeling
Food security is a complex, multidimensional concept challenging to measure comprehensively. Effective anticipation, monitoring, and mitigation of food crises require timely and comprehensive global data. This paper introduces the Harmonized Food Insecurity Dataset (HFID), an open-source resource consolidating four key data sources: the Integrated Food Security Phase Classification (IPC)/Cadre Harmonis\'e (CH) phases, the Famine Early Warning Systems Network (FEWS NET) IPC-compatible phases, and the World Food Program's (WFP) Food Consumption Score (FCS) and reduced Coping Strategy Index (rCSI). Updated monthly and using a common reference system for administrative units, the HFID offers extensive spatial and temporal coverage. It serves as a vital tool for food security experts and humanitarian agencies, providing a unified resource for analyzing food security conditions and highlighting global data disparities. The scientific community can also leverage the HFID to develop data-driven predictive models, enhancing the capacity to forecast and prevent future food crises.
comment: The authors Melissande Machefer and Michele Ronco have contributed equally as both first authors to this work. This work is currently being reviewed in a peer-reviewed journal
♻ ☆ Bandit Pareto Set Identification: the Fixed Budget Setting AISTATS 2024
We study a multi-objective pure exploration problem in a multi-armed bandit model. Each arm is associated to an unknown multi-variate distribution and the goal is to identify the distributions whose mean is not uniformly worse than that of another distribution: the Pareto optimal set. We propose and analyze the first algorithms for the \emph{fixed budget} Pareto Set Identification task. We propose Empirical Gap Elimination, a family of algorithms combining a careful estimation of the ``hardness to classify'' each arm in or out of the Pareto set with a generic elimination scheme. We prove that two particular instances, EGE-SR and EGE-SH, have a probability of error that decays exponentially fast with the budget, with an exponent supported by an information theoretic lower-bound. We complement these findings with an empirical study using real-world and synthetic datasets, which showcase the good performance of our algorithms.
comment: In Proceedings of AISTATS 2024
♻ ☆ MusicLIME: Explainable Multimodal Music Understanding ICASSP 2025
Multimodal models are critical for music understanding tasks, as they capture the complex interplay between audio and lyrics. However, as these models become more prevalent, the need for explainability grows-understanding how these systems make decisions is vital for ensuring fairness, reducing bias, and fostering trust. In this paper, we introduce MusicLIME, a model-agnostic feature importance explanation method designed for multimodal music models. Unlike traditional unimodal methods, which analyze each modality separately without considering the interaction between them, often leading to incomplete or misleading explanations, MusicLIME reveals how audio and lyrical features interact and contribute to predictions, providing a holistic view of the model's decision-making. Additionally, we enhance local explanations by aggregating them into global explanations, giving users a broader perspective of model behavior. Through this work, we contribute to improving the interpretability of multimodal music models, empowering users to make informed choices, and fostering more equitable, fair, and transparent music understanding systems.
comment: GitHub repository: https://github.com/IamTheo2000/MusicLIME. To be presented at ICASSP 2025
♻ ☆ CAB: Comprehensive Attention Benchmarking on Long Sequence Modeling
Transformer has achieved remarkable success in language, image, and speech processing. Recently, various efficient attention architectures have been proposed to improve transformer's efficiency while largely preserving its efficacy, especially in modeling long sequences. A widely-used benchmark to test these efficient methods' capability on long-range modeling is Long Range Arena (LRA). However, LRA only focuses on the standard bidirectional (or noncausal) self attention, and completely ignores cross attentions and unidirectional (or causal) attentions, which are equally important to downstream applications. In this paper, we propose Comprehensive Attention Benchmark (CAB) under a fine-grained attention taxonomy with four distinguishable attention patterns, namely, noncausal self, causal self, noncausal cross, and causal cross attentions. CAB collects seven real-world tasks from different research areas to evaluate efficient attentions under the four attention patterns. Among these tasks, CAB validates efficient attentions in eight backbone networks to show their generalization across neural architectures. We conduct exhaustive experiments to benchmark the performances of nine widely-used efficient attention architectures designed with different philosophies on CAB. Extensive experimental results also shed light on the fundamental problems of efficient attentions, such as efficiency length against vanilla attention, performance consistency across attention patterns, the benefit of attention mechanisms, and interpolation/extrapolation on long-context language modeling.
Amortizing intractable inference in diffusion models for vision, language, and control NeurIPS 2024
Diffusion models have emerged as effective distribution estimators in vision, language, and reinforcement learning, but their use as priors in downstream tasks poses an intractable posterior inference problem. This paper studies amortized sampling of the posterior over data, $\mathbf{x}\sim p^{\rm post}(\mathbf{x})\propto p(\mathbf{x})r(\mathbf{x})$, in a model that consists of a diffusion generative model prior $p(\mathbf{x})$ and a black-box constraint or likelihood function $r(\mathbf{x})$. We state and prove the asymptotic correctness of a data-free learning objective, relative trajectory balance, for training a diffusion model that samples from this posterior, a problem that existing methods solve only approximately or in restricted cases. Relative trajectory balance arises from the generative flow network perspective on diffusion models, which allows the use of deep reinforcement learning techniques to improve mode coverage. Experiments illustrate the broad potential of unbiased inference of arbitrary posteriors under diffusion priors: in vision (classifier guidance), language (infilling under a discrete diffusion LLM), and multimodal data (text-to-image generation). Beyond generative modeling, we apply relative trajectory balance to the problem of continuous control with a score-based behavior prior, achieving state-of-the-art results on benchmarks in offline reinforcement learning.
comment: NeurIPS 2024; code: https://github.com/GFNOrg/diffusion-finetuning
♻ ☆ Efficient Large Foundation Models Design: A Perspective From Model and System Co-Design
This paper focuses on modern efficient training and inference technologies on foundation models and illustrates them from two perspectives: model and system design. Model and System Design optimize LLM training and inference from different aspects to save computational resources, making LLMs more efficient, affordable, and more accessible. The paper list repository is available at \url{https://github.com/NoakLiu/Efficient-Foundation-Models-Survey}
Improved off-policy training of diffusion samplers NeurIPS 2024
We study the problem of training diffusion models to sample from a distribution with a given unnormalized density or energy function. We benchmark several diffusion-structured inference methods, including simulation-based variational approaches and off-policy methods (continuous generative flow networks). Our results shed light on the relative advantages of existing algorithms while bringing into question some claims from past work. We also propose a novel exploration strategy for off-policy methods, based on local search in the target space with the use of a replay buffer, and show that it improves the quality of samples on a variety of target distributions. Our code for the sampling methods and benchmarks studied is made public at https://github.com/GFNOrg/gfn-diffusion as a base for future work on diffusion models for amortized inference.
comment: NeurIPS 2024; code: https://github.com/GFNOrg/gfn-diffusion
♻ ☆ EVA-S2PLoR: A Secure Element-wise Multiplication Meets Logistic Regression on Heterogeneous Database
Accurate nonlinear computation is a key challenge in privacy-preserving machine learning (PPML). Most existing frameworks approximate it through linear operations, resulting in significant precision loss. This paper proposes an efficient, verifiable and accurate security 2-party logistic regression framework (EVA-S2PLoR), which achieves accurate nonlinear function computation through a novel secure element-wise multiplication protocol and its derived protocols. Our framework primarily includes secure 2-party vector element-wise multiplication, addition to multiplication, reciprocal, and sigmoid function based on data disguising technology, where high efficiency and accuracy are guaranteed by the simple computation flow based on the real number domain and the few number of fixed communication rounds. We provide secure and robust anomaly detection through dimension transformation and Monte Carlo methods. EVA-S2PLoR outperforms many advanced frameworks in terms of precision (improving the performance of the sigmoid function by about 10 orders of magnitude compared to most frameworks) and delivers the best overall performance in secure logistic regression experiments.
♻ ☆ Optimally Solving Simultaneous-Move Dec-POMDPs: The Sequential Central Planning Approach
The centralized training for decentralized execution paradigm emerged as the state-of-the-art approach to $\epsilon$-optimally solving decentralized partially observable Markov decision processes. However, scalability remains a significant issue. This paper presents a novel and more scalable alternative, namely the sequential-move centralized training for decentralized execution. This paradigm further pushes the applicability of the Bellman's principle of optimality, raising three new properties. First, it allows a central planner to reason upon sufficient sequential-move statistics instead of prior simultaneous-move ones. Next, it proves that $\epsilon$-optimal value functions are piecewise linear and convex in such sufficient sequential-move statistics. Finally, it drops the complexity of the backup operators from double exponential to polynomial at the expense of longer planning horizons. Besides, it makes it easy to use single-agent methods, e.g., SARSA algorithm enhanced with these findings, while still preserving convergence guarantees. Experiments on two- as well as many-agent domains from the literature against $\epsilon$-optimal simultaneous-move solvers confirm the superiority of our novel approach. This paradigm opens the door for efficient planning and reinforcement learning methods for multi-agent systems.
♻ ☆ Exploring Feature-based Knowledge Distillation for Recommender System: A Frequency Perspective KDD 2025
In this paper, we analyze the feature-based knowledge distillation for recommendation from the frequency perspective. By defining knowledge as different frequency components of the features, we theoretically demonstrate that regular feature-based knowledge distillation is equivalent to equally minimizing losses on all knowledge and further analyze how this equal loss weight allocation method leads to important knowledge being overlooked. In light of this, we propose to emphasize important knowledge by redistributing knowledge weights. Furthermore, we propose FreqD, a lightweight knowledge reweighting method, to avoid the computational cost of calculating losses on each knowledge. Extensive experiments demonstrate that FreqD consistently and significantly outperforms state-of-the-art knowledge distillation methods for recommender systems. Our code is available at https://github.com/woriazzc/KDs.
comment: ACM KDD 2025 Accepted
♻ ☆ Explainable Metrics for the Assessment of Neurodegenerative Diseases through Handwriting Analysis
Motor dysfunction is a common sign of neurodegenerative diseases (NDs) such as Parkinson's disease (PD) and Alzheimer's disease (AD), but may be difficult to detect, especially in the early stages. In this work, we examine the behavior of a wide array of explainable metrics extracted from the handwriting signals of 113 subjects performing multiple tasks on a digital tablet, as part of the Neurological Signals dataset. The aim is to measure their effectiveness in characterizing NDs, including AD and PD. To this end, task-agnostic and task-specific metrics are extracted from 14 distinct tasks. Subsequently, through statistical analysis and a series of classification experiments, we investigate which metrics provide greater discriminative power between NDs and healthy controls and amongst different NDs. Preliminary results indicate that the tasks at hand can all be effectively leveraged to distinguish between the considered set of NDs, specifically by measuring the stability, the speed of writing, the time spent not writing, and the pressure variations between groups from our handcrafted explainable metrics, which shows p-values lower than 0.0001 for multiple tasks. Using various binary classification algorithms on the computed metrics, we obtain up to 87 % accuracy for the discrimination between AD and healthy controls (CTL), and up to 69 % for the discrimination between PD and CTL.
comment: 14 pages including references, under review in IEEE JHBI
♻ ☆ An empirical study of LLaMA3 quantization: from LLMs to MLLMs
The LLaMA family, a collection of foundation language models ranging from 7B to 65B parameters, has become one of the most powerful open-source large language models (LLMs) and the popular LLM backbone of multi-modal large language models (MLLMs), widely used in computer vision and natural language understanding tasks. In particular, LLaMA3 models have recently been released and have achieved impressive performance in various domains with super-large scale pre-training on over 15T tokens of data. Given the wide application of low-bit quantization for LLMs in resource-constrained scenarios, we explore LLaMA3's capabilities when quantized to low bit-width. This exploration can potentially provide new insights and challenges for the low-bit quantization of LLaMA3 and other future LLMs, especially in addressing performance degradation issues that suffer in LLM compression. Specifically, we comprehensively evaluate the 10 existing post-training quantization and LoRA fine-tuning (LoRA-FT) methods of LLaMA3 on 1-8 bits and various datasets to reveal the low-bit quantization performance of LLaMA3. To uncover the capabilities of low-bit quantized MLLM, we assessed the performance of the LLaMA3-based LLaVA-Next-8B model under 2-4 ultra-low bits with post-training quantization methods. Our experimental results indicate that LLaMA3 still suffers from non-negligible degradation in linguistic and visual contexts, particularly under ultra-low bit widths. This highlights the significant performance gap at low bit-width that needs to be addressed in future developments. We expect that this empirical study will prove valuable in advancing future models, driving LLMs and MLLMs to achieve higher accuracy at lower bit to enhance practicality. Our project is released on https://github.com/Macaronlin/LLaMA3-Quantization , and quantized models are released at https://huggingface.co/Efficient-ML .
♻ ☆ Continual Learning with Strategic Selection and Forgetting for Network Intrusion Detection
Intrusion Detection Systems (IDS) are crucial for safeguarding digital infrastructure. In dynamic network environments, both threat landscapes and normal operational behaviors are constantly changing, resulting in concept drift. While continuous learning mitigates the adverse effects of concept drift, insufficient attention to drift patterns and excessive preservation of outdated knowledge can still hinder the IDS's adaptability. In this paper, we propose SSF (Strategic Selection and Forgetting), a novel continual learning method for IDS, providing continuous model updates with a constantly refreshed memory buffer. Our approach features a strategic sample selection algorithm to select representative new samples and a strategic forgetting mechanism to drop outdated samples. The proposed strategic sample selection algorithm prioritizes new samples that cause the `drifted' pattern, enabling the model to better understand the evolving landscape. Additionally, we introduce strategic forgetting upon detecting significant drift by discarding outdated samples to free up memory, allowing the incorporation of more recent data. SSF captures evolving patterns effectively and ensures the model is aligned with the change of data patterns, significantly enhancing the IDS's adaptability to concept drift. The state-of-the-art performance of SSF on NSL-KDD and UNSW-NB15 datasets demonstrates its superior adaptability to concept drift for network intrusion detection.
comment: Accepted by IEEE International Conference on Computer Communications (INFOCOM) 2025
♻ ☆ Model-Agnostic Cosmological Inference with SDSS-IV eBOSS: Simultaneous Probing for Background and Perturbed Universe
Here we explore certain subtle features imprinted in data from the completed Sloan Digital Sky Survey IV (SDSS-IV) extended Baryon Oscillation Spectroscopic Survey (eBOSS) as a combined probe for the background and perturbed Universe. We reconstruct the baryon Acoustic Oscillation (BAO) and Redshift Space Distortion (RSD) observables as functions of redshift, using measurements from SDSS alone. We apply the Multi-Task Gaussian Process (MTGP) framework to model the interdependencies of cosmological observables $D_M(z)/r_d$, $D_H(z)/r_d$, and $f\sigma_8(z)$, and track their evolution across different redshifts. Subsequently, we obtain constrained three-dimensional phase space containing $D_M(z)/r_d$, $D_H(z)/r_d$, and $f\sigma_8(z)$ at different redshifts probed by the SDSS-IV eBOSS survey. Furthermore, assuming the $\Lambda$CDM model, we obtain constraints on model parameters $\Omega_{m}$, $H_{0}r_{d}$, $\sigma_{8}$ and $S_{8}$ at each redshift probed by SDSS-IV eBOSS. This indicates redshift-dependent trends in $H_0$, $\Omega_m$, $\sigma_8$ and $S_8$ in the $\Lambda$CDM model, suggesting a possible inconsistency in the $\Lambda$CDM model. Ours is a template for model-independent extraction of information for both background and perturbed Universe using a single galaxy survey taking into account all the existing correlations between background and perturbed observables and this can be easily extended to future DESI-3YR as well as Euclid results.
comment: 14 pages, 7 sets of figures, 3 tables. Comments are welcome. New references added
♻ ☆ AdaPRL: Adaptive Pairwise Regression Learning with Uncertainty Estimation for Universal Regression Tasks
Current deep regression models usually learn in point-wise way that treat each sample as an independent input, neglecting the relative ordering among different data. Consequently, the regression model could neglect the data 's interrelationships, potentially resulting in suboptimal performance. Moreover, the existence of aleatoric uncertainty in the training data may drive the model to capture non-generalizable patterns, contributing to increased overfitting. To address these issues, we propose a novel adaptive pairwise learning framework (AdaPRL) for regression tasks which leverages the relative differences between data points and integrates with deep probabilistic models to quantify the uncertainty associated with the predictions. Additionally, we adapt AdaPRL for applications in multi-task learning and multivariate time series forecasting. Extensive experiments with several real-world regression datasets including recommendation systems, age estimation, time series forecasting, natural language understanding, finance, and industry datasets show that AdaPRL is compatible with different backbone networks in various tasks and achieves state-of-the-art performance on the vast majority of tasks, highlighting its notable potential including enhancing prediction accuracy and ranking ability, increasing generalization capability, improving robustness to noisy data, improving resilience to reduced data, and enhancing interpretability, etc.
comment: 22 pages, 11 figures
♻ ☆ MIO: A Foundation Model on Multimodal Tokens
In this paper, we introduce MIO, a novel foundation model built on multimodal tokens, capable of understanding and generating speech, text, images, and videos in an end-to-end, autoregressive manner. While the emergence of large language models (LLMs) and multimodal large language models (MM-LLMs) propels advancements in artificial general intelligence through their versatile capabilities, they still lack true any-to-any understanding and generation. Recently, the release of GPT-4o has showcased the remarkable potential of any-to-any LLMs for complex real-world tasks, enabling omnidirectional input and output across images, speech, and text. However, it is closed-source and does not support the generation of multimodal interleaved sequences. To address this gap, we present MIO, which is trained on a mixture of discrete tokens across four modalities using causal multimodal modeling. MIO undergoes a four-stage training process: (1) alignment pre-training, (2) interleaved pre-training, (3) speech-enhanced pre-training, and (4) comprehensive supervised fine-tuning on diverse textual, visual, and speech tasks. Our experimental results indicate that MIO exhibits competitive, and in some cases superior, performance compared to previous dual-modal baselines, any-to-any model baselines, and even modality-specific baselines. Moreover, MIO demonstrates advanced capabilities inherent to its any-to-any feature, such as interleaved video-text generation, chain-of-visual-thought reasoning, visual guideline generation, instructional image editing, etc.
comment: Technical Report. Codes and models are available in https://github.com/MIO-Team/MIO
♻ ☆ Simplifying CLIP: Unleashing the Power of Large-Scale Models on Consumer-level Computers
Contrastive Language-Image Pre-training (CLIP) has attracted a surge of attention for its superior zero-shot performance and excellent transferability to downstream tasks. However, training such large-scale models usually requires substantial computation and storage, which poses barriers for general users with consumer-level computers. Motivated by this observation, in this paper we investigate how to achieve competitive performance on only one Nvidia RTX3090 GPU and with one terabyte for storing dataset. On one hand, we simplify the transformer block structure and combine Weight Inheritance with multi-stage Knowledge Distillation (WIKD), thereby reducing the parameters and improving the inference speed during training along with deployment. On the other hand, confronted with the convergence challenge posed by small dataset, we generate synthetic captions for each sample as data augmentation, and devise a novel Pair Matching (PM) loss to fully exploit the distinguishment among positive and negative image-text pairs. Extensive experiments demonstrate that our model can achieve a new state-of-the-art datascale-parameter-accuracy tradeoff, which could further popularize the CLIP model in the related research community.
♻ ☆ Buster: Implanting Semantic Backdoor into Text Encoder to Mitigate NSFW Content Generation
The rise of deep learning models in the digital era has raised substantial concerns regarding the generation of Not-Safe-for-Work (NSFW) content. Existing defense methods primarily involve model fine-tuning and post-hoc content moderation. Nevertheless, these approaches largely lack scalability in eliminating harmful content, degrade the quality of benign image generation, or incur high inference costs. To address these challenges, we propose an innovative framework named \textit{Buster}, which injects backdoors into the text encoder to prevent NSFW content generation. Buster leverages deep semantic information rather than explicit prompts as triggers, redirecting NSFW prompts towards targeted benign prompts. Additionally, Buster employs energy-based training data generation through Langevin dynamics for adversarial knowledge augmentation, thereby ensuring robustness in harmful concept definition. This approach demonstrates exceptional resilience and scalability in mitigating NSFW content. Particularly, Buster fine-tunes the text encoder of Text-to-Image models within merely five minutes, showcasing its efficiency. Our extensive experiments denote that Buster outperforms nine state-of-the-art baselines, achieving a superior NSFW content removal rate of at least 91.2\% while preserving the quality of harmless images.
♻ ☆ Critical Tokens Matter: Token-Level Contrastive Estimation Enhances LLM's Reasoning Capability
Mathematical reasoning tasks pose significant challenges for large language models (LLMs) because they require precise logical deduction and sequence analysis. In this work, we introduce the concept of critical tokens -- elements within reasoning trajectories that significantly influence incorrect outcomes. We present a novel framework for identifying these tokens through rollout sampling and demonstrate their substantial divergence from traditional error tokens. Through extensive experiments on datasets such as GSM8K and MATH500, we show that identifying and replacing critical tokens significantly improves model accuracy. We propose an efficient methodology for pinpointing these tokens in large-scale datasets using contrastive estimation and extend this framework to enhance model training processes with direct preference optimization (DPO). Experimental results on GSM8K and MATH500 benchmarks with the widely used models Llama-3 (8B and 70B) and Deepseek-math (7B) demonstrate the effectiveness of the proposed approach, cDPO. Our results underscore the potential of leveraging critical tokens to reduce errors in reasoning tasks, advancing the development of AI systems capable of robust logical deduction. Our code, annotated datasets, and trained models are available at https://github.com/chenzhiling9954/Critical-Tokens-Matter to support and encourage future research in this promising field.
comment: Work in progress
♻ ☆ Fast and reliable uncertainty quantification with neural network ensembles for industrial image classification
Image classification with neural networks (NNs) is widely used in industrial processes, situations where the model likely encounters unknown objects during deployment, i.e., out-of-distribution (OOD) data. Worryingly, NNs tend to make confident yet incorrect predictions when confronted with OOD data. To increase the models' reliability, they should quantify the uncertainty in their own predictions, communicating when the output should (not) be trusted. Deep ensembles, composed of multiple independent NNs, have been shown to perform strongly but are computationally expensive. Recent research has proposed more efficient NN ensembles, namely the snapshot, batch, and multi-input multi-output ensemble. This study investigates the predictive and uncertainty performance of efficient NN ensembles in the context of image classification for industrial processes. It is the first to provide a comprehensive comparison and it proposes a novel Diversity Quality metric to quantify the ensembles' performance on the in-distribution and OOD sets in one single metric. The results highlight the batch ensemble as a cost-effective and competitive alternative to the deep ensemble. It matches the deep ensemble in both uncertainty and accuracy while exhibiting considerable savings in training time, test time, and memory storage.
comment: Accepted Manuscript version of an article published in Annals of Operations Research
♻ ☆ Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling
Data-driven artificial intelligence (AI) models have made significant advancements in weather forecasting, particularly in medium-range and nowcasting. However, most data-driven weather forecasting models are black-box systems that focus on learning data mapping rather than fine-grained physical evolution in the time dimension. Consequently, the limitations in the temporal scale of datasets prevent these models from forecasting at finer time scales. This paper proposes a physics-AI hybrid model (i.e., WeatherGFT) which generalizes weather forecasts to finer-grained temporal scales beyond training dataset. Specifically, we employ a carefully designed PDE kernel to simulate physical evolution on a small time scale (e.g., 300 seconds) and use a parallel neural networks with a learnable router for bias correction. Furthermore, we introduce a lead time-aware training framework to promote the generalization of the model at different lead times. The weight analysis of physics-AI modules indicates that physics conducts major evolution while AI performs corrections adaptively. Extensive experiments show that WeatherGFT trained on an hourly dataset, effectively generalizes forecasts across multiple time scales, including 30-minute, which is even smaller than the dataset's temporal resolution.
♻ ☆ On the Convergence of Continual Federated Learning Using Incrementally Aggregated Gradients
The holy grail of machine learning is to enable Continual Federated Learning (CFL) to enhance the efficiency, privacy, and scalability of AI systems while learning from streaming data. The primary challenge of a CFL system is to overcome global catastrophic forgetting, wherein the accuracy of the global model trained on new tasks declines on the old tasks. In this work, we propose Continual Federated Learning with Aggregated Gradients (C-FLAG), a novel replay-memory based federated strategy consisting of edge-based gradient updates on memory and aggregated gradients on the current data. We provide convergence analysis of the C-FLAG approach which addresses forgetting and bias while converging at a rate of $O(1/\sqrt{T})$ over $T$ communication rounds. We formulate an optimization sub-problem that minimizes catastrophic forgetting, translating CFL into an iterative algorithm with adaptive learning rates that ensure seamless learning across tasks. We empirically show that C-FLAG outperforms several state-of-the-art baselines on both task and class-incremental settings with respect to metrics such as accuracy and forgetting.
comment: 30 pages, 7 figures
♻ ☆ Probabilistic Forecasting of Irregular Time Series via Conditional Flows
Probabilistic forecasting of irregularly sampled multivariate time series with missing values is an important problem in many fields, including health care, astronomy, and climate. State-of-the-art methods for the task estimate only marginal distributions of observations in single channels and at single timepoints, assuming a fixed-shape parametric distribution. In this work, we propose a novel model, ProFITi, for probabilistic forecasting of irregularly sampled time series with missing values using conditional normalizing flows. The model learns joint distributions over the future values of the time series conditioned on past observations and queried channels and times, without assuming any fixed shape of the underlying distribution. As model components, we introduce a novel invertible triangular attention layer and an invertible non-linear activation function on and onto the whole real line. We conduct extensive experiments on four datasets and demonstrate that the proposed model provides $4$ times higher likelihood over the previously best model.
♻ ☆ Hardware implementation of timely reliable Bayesian decision-making using memristors
Brains perform decision-making by Bayes theorem. The theorem quantifies events as probabilities and, based on probability rules, renders the decisions. Learning from this, Bayes theorem can be applied to enable efficient user-scene interactions. However, given the probabilistic nature, implementing Bayes theorem in hardware using conventional deterministic computing can incur excessive computational cost and decision latency. Though challenging, here we present a probabilistic computing approach based on memristors to implement the Bayes theorem. We integrate memristors with Boolean logics and, by exploiting the volatile stochastic switching of the memristors, realise probabilistic logic operations, key for hardware Bayes theorem implementation. To empirically validate the efficacy of the hardware Bayes theorem in user-scene interactions, we develop lightweight Bayesian inference and fusion hardware operators using the probabilistic logics and apply the operators in road scene parsing for self-driving, including route planning and obstacle detection. The results show our operators can achieve reliable decisions in less than 0.4 ms (or equivalently 2,500 fps), outperforming human decision-making and the existing driving assistance systems.
♻ ☆ A Spatio-Temporal Neural Network Forecasting Approach for Emulation of Firefront Models
Computational simulations of wildfire spread typically employ empirical rate-of-spread calculations under various conditions (such as terrain, fuel type, weather). Small perturbations in conditions can often lead to significant changes in fire spread (such as speed and direction), necessitating a computationally expensive large set of simulations to quantify uncertainty. Model emulation seeks alternative representations of physical models using machine learning, aiming to provide more efficient and/or simplified surrogate models. We propose a dedicated spatio-temporal neural network based framework for model emulation, able to capture the complex behaviour of fire spread models. The proposed approach can approximate forecasts at fine spatial and temporal resolutions that are often challenging for neural network based approaches. Furthermore, the proposed approach is robust even with small training sets, due to novel data augmentation methods. Empirical experiments show good agreement between simulated and emulated firefronts, with an average Jaccard score of 0.76.
♻ ☆ Learning Spectral Methods by Transformers
Transformers demonstrate significant advantages as the building block of modern LLMs. In this work, we study the capacities of Transformers in performing unsupervised learning. We show that multi-layered Transformers, given a sufficiently large set of pre-training instances, are able to learn the algorithms themselves and perform statistical estimation tasks given new instances. This learning paradigm is distinct from the in-context learning setup and is similar to the learning procedure of human brains where skills are learned through past experience. Theoretically, we prove that pre-trained Transformers can learn the spectral methods and use the classification of bi-class Gaussian mixture model as an example. Our proof is constructive using algorithmic design techniques. Our results are built upon the similarities of multi-layered Transformer architecture with the iterative recovery algorithms used in practice. Empirically, we verify the strong capacity of the multi-layered (pre-trained) Transformer on unsupervised learning through the lens of both the PCA and the Clustering tasks performed on the synthetic and real-world datasets.
comment: 77 pages, 12 figures
♻ ☆ Beyond the Power Law: Estimation, Goodness-of-Fit, and a Semiparametric Extension in Complex Networks
Scale-free networks play a fundamental role in the study of complex networks and various applied fields due to their ability to model a wide range of real-world systems. A key characteristic of these networks is their degree distribution, which often follows a power-law distribution, where the probability mass function is proportional to $x^{-\alpha}$, with $\alpha$ typically ranging between $2 < \alpha < 3$. In this paper, we introduce Bayesian inference methods to obtain more accurate estimates than those obtained using traditional methods, which often yield biased estimates, and precise credible intervals. Through a simulation study, we demonstrate that our approach provides nearly unbiased estimates for the scaling parameter, enhancing the reliability of inferences. We also evaluate new goodness-of-fit tests to improve the effectiveness of the Kolmogorov-Smirnov test, commonly used for this purpose. Our findings show that the Watson test offers superior power while maintaining a controlled type I error rate, enabling us to better determine whether data adheres to a power-law distribution. Finally, we propose a piecewise extension of this model to provide greater flexibility, evaluating the estimation and its goodness-of-fit features as well. In the complex networks field, this extension allows us to model the full degree distribution, instead of just focusing on the tail, as is commonly done. We demonstrate the utility of these novel methods through applications to two real-world datasets, showcasing their practical relevance and potential to advance the analysis of power-law behavior.
comment: 33 pages, 11 figures
♻ ☆ Intelligent System for Automated Molecular Patent Infringement Assessment
Automated drug discovery offers significant potential for accelerating the development of novel therapeutics by substituting labor-intensive human workflows with machine-driven processes. However, molecules generated by artificial intelligence may unintentionally infringe on existing patents, posing legal and financial risks that impede the full automation of drug discovery pipelines. This paper introduces PatentFinder, a novel multi-agent and tool-enhanced intelligence system that can accurately and comprehensively evaluate small molecules for patent infringement. PatentFinder features five specialized agents that collaboratively analyze patent claims and molecular structures with heuristic and model-based tools, generating interpretable infringement reports. To support systematic evaluation, we curate MolPatent-240, a benchmark dataset tailored for patent infringement assessment algorithms. On this benchmark, PatentFinder outperforms baseline methods that rely solely on large language models or specialized chemical tools, achieving a 13.8% improvement in F1-score and a 12% increase in accuracy. Additionally, PatentFinder autonomously generates detailed and interpretable patent infringement reports, showcasing enhanced accuracy and improved interpretability. The high accuracy and interpretability of PatentFinder make it a valuable and reliable tool for automating patent infringement assessments, offering a practical solution for integrating patent protection analysis into the drug discovery pipeline.
Multimedia 7
☆ Audio-CoT: Exploring Chain-of-Thought Reasoning in Large Audio Language Model
Large Audio-Language Models (LALMs) have demonstrated remarkable performance in tasks involving audio perception and understanding, such as speech recognition and audio captioning. However, their reasoning capabilities - critical for solving complex real-world problems - remain underexplored. In this work, we conduct the first exploration into integrating Chain-of-Thought (CoT) reasoning into LALMs to enhance their reasoning ability across auditory modalities. We evaluate representative CoT methods, analyzing their performance in both information extraction and reasoning tasks across sound, music, and speech domains. Our findings reveal that CoT methods significantly improve performance on easy and medium tasks but encounter challenges with hard tasks, where reasoning chains can confuse the model rather than improve accuracy. Additionally, we identify a positive correlation between reasoning path length and accuracy, demonstrating the potential of scaling inference for advanced instruction-following and reasoning. This study not only highlights the promise of CoT in enhancing LALM reasoning capabilities but also identifies key limitations and provides actionable directions for future research.
☆ Depth and Image Fusion for Road Obstacle Detection Using Stereo Camera
This paper is devoted to the detection of objects on a road, performed with a combination of two methods based on both the use of depth information and video analysis of data from a stereo camera. Since neither the time of the appearance of an object on the road, nor its size and shape is known in advance, ML/DL-based approaches are not applicable. The task becomes more complicated due to variations in artificial illumination, inhomogeneous road surface texture, and unknown character and features of the object. To solve this problem we developed the depth and image fusion method that complements a search of small contrast objects by RGB-based method, and obstacle detection by stereo image-based approach with SLIC superpixel segmentation. We conducted experiments with static and low speed obstacles in an underground parking lot and demonstrated the successful work of the developed technique for detecting and even tracking small objects, which can be parking infrastructure objects, things left on the road, wheels, dropped boxes, etc.
comment: 8 pages, 15 figures
☆ Dynamic Multimodal Fusion via Meta-Learning Towards Micro-Video Recommendation
Multimodal information (e.g., visual, acoustic, and textual) has been widely used to enhance representation learning for micro-video recommendation. For integrating multimodal information into a joint representation of micro-video, multimodal fusion plays a vital role in the existing micro-video recommendation approaches. However, the static multimodal fusion used in previous studies is insufficient to model the various relationships among multimodal information of different micro-videos. In this paper, we develop a novel meta-learning-based multimodal fusion framework called Meta Multimodal Fusion (MetaMMF), which dynamically assigns parameters to the multimodal fusion function for each micro-video during its representation learning. Specifically, MetaMMF regards the multimodal fusion of each micro-video as an independent task. Based on the meta information extracted from the multimodal features of the input task, MetaMMF parameterizes a neural network as the item-specific fusion function via a meta learner. We perform extensive experiments on three benchmark datasets, demonstrating the significant improvements over several state-of-the-art multimodal recommendation models, like MMGCN, LATTICE, and InvRL. Furthermore, we lighten our model by adopting canonical polyadic decomposition to improve the training efficiency, and validate its effectiveness through experimental results. Codes are available at https://github.com/hanliu95/MetaMMF.
comment: This paper has been accepted by ACM Transactions on Information Systems
☆ Pedestrian Trajectory Prediction Based on Social Interactions Learning With Random Weights
Pedestrian trajectory prediction is a critical technology in the evolution of self-driving cars toward complete artificial intelligence. Over recent years, focusing on the trajectories of pedestrians to model their social interactions has surged with great interest in more accurate trajectory predictions. However, existing methods for modeling pedestrian social interactions rely on pre-defined rules, struggling to capture non-explicit social interactions. In this work, we propose a novel framework named DTGAN, which extends the application of Generative Adversarial Networks (GANs) to graph sequence data, with the primary objective of automatically capturing implicit social interactions and achieving precise predictions of pedestrian trajectory. DTGAN innovatively incorporates random weights within each graph to eliminate the need for pre-defined interaction rules. We further enhance the performance of DTGAN by exploring diverse task loss functions during adversarial training, which yields improvements of 16.7\% and 39.3\% on metrics ADE and FDE, respectively. The effectiveness and accuracy of our framework are verified on two public datasets. The experimental results show that our proposed DTGAN achieves superior performance and is well able to understand pedestrians' intentions.
comment: 13 pages,7 figures,Accepted to IEEE Transactions on Multimedia (TMM)
☆ An Efficient NVoD Scheme Using Implicit Error Correction and Subchannels for Wireless Networks
Implicit Error Correction (IEC) is a near Video-on-Demand (nVoD) scheme that trades bandwidth utilization for initial playback delay to potentially support an infinite number of users. Additionally, it provides error protection without any further bandwidth increase by exploiting the implicit redundancy of nVoD protocols, using linear combinations of the segments transmitted in a given time slot. However, IEC packet loss protection is weaker at the beginning of the playback due to the lack of implicit redundancy and lower decoding efficiency, resulting in worse subjective playback quality. In tackling this issue, this paper contributes with an extension of the original nVoD architecture, enhancing its performance by adding a new element namely, subchannels. These subdivisions of the original channels do not provide further packet loss protection but significantly improve the decoding efficiency, which in turn increases playback quality, especially at the beginning. Even for very high packet loss probabilities, subchannels are designed to obtain higher decoding efficiency which results in greater packet loss protection than that provided by IEC. The proposed scheme is especially useful in wireless cooperative networks using techniques such as network coding, as content transmissions can be split into different subchannels in order to maximize network efficiency.
♻ ☆ The Sound of Water: Inferring Physical Properties from Pouring Liquids ICASSP 2025
We study the connection between audio-visual observations and the underlying physics of a mundane yet intriguing everyday activity: pouring liquids. Given only the sound of liquid pouring into a container, our objective is to automatically infer physical properties such as the liquid level, the shape and size of the container, the pouring rate and the time to fill. To this end, we: (i) show in theory that these properties can be determined from the fundamental frequency (pitch); (ii) train a pitch detection model with supervision from simulated data and visual data with a physics-inspired objective; (iii) introduce a new large dataset of real pouring videos for a systematic study; (iv) show that the trained model can indeed infer these physical properties for real data; and finally, (v) we demonstrate strong generalization to various container shapes, other datasets, and in-the-wild YouTube videos. Our work presents a keen understanding of a narrow yet rich problem at the intersection of acoustics, physics, and learning. It opens up applications to enhance multisensory perception in robotic pouring.
comment: Project page at https://bpiyush.github.io/pouring-water-website. Short version accepted to ICASSP 2025
♻ ☆ BeFA: A General Behavior-driven Feature Adapter for Multimedia Recommendation AAAI2025
Multimedia recommender systems focus on utilizing behavioral information and content information to model user preferences. Typically, it employs pre-trained feature encoders to extract content features, then fuses them with behavioral features. However, pre-trained feature encoders often extract features from the entire content simultaneously, including excessive preference-irrelevant details. We speculate that it may result in the extracted features not containing sufficient features to accurately reflect user preferences. To verify our hypothesis, we introduce an attribution analysis method for visually and intuitively analyzing the content features. The results indicate that certain products' content features exhibit the issues of information drift}and information omission,reducing the expressive ability of features. Building upon this finding, we propose an effective and efficient general Behavior-driven Feature Adapter (BeFA) to tackle these issues. This adapter reconstructs the content feature with the guidance of behavioral information, enabling content features accurately reflecting user preferences. Extensive experiments demonstrate the effectiveness of the adapter across all multimedia recommendation methods. Our code is made publicly available on https://github.com/fqldom/BeFA.
comment: This paper is accepted by AAAI2025
Artificial Intelligence 140
Dataset Distillation via Committee Voting
Dataset distillation aims to synthesize a smaller, representative dataset that preserves the essential properties of the original data, enabling efficient model training with reduced computational resources. Prior work has primarily focused on improving the alignment or matching process between original and synthetic data, or on enhancing the efficiency of distilling large datasets. In this work, we introduce ${\bf C}$ommittee ${\bf V}$oting for ${\bf D}$ataset ${\bf D}$istillation (CV-DD), a novel and orthogonal approach that leverages the collective wisdom of multiple models or experts to create high-quality distilled datasets. We start by showing how to establish a strong baseline that already achieves state-of-the-art accuracy through leveraging recent advancements and thoughtful adjustments in model design and optimization processes. By integrating distributions and predictions from a committee of models while generating high-quality soft labels, our method captures a wider spectrum of data features, reduces model-specific biases and the adverse effects of distribution shifts, leading to significant improvements in generalization. This voting-based strategy not only promotes diversity and robustness within the distilled dataset but also significantly reduces overfitting, resulting in improved performance on post-eval tasks. Extensive experiments across various datasets and IPCs (images per class) demonstrate that Committee Voting leads to more reliable and adaptable distilled data compared to single/multi-model distillation methods, demonstrating its potential for efficient and accurate dataset distillation. Code is available at: https://github.com/Jiacheng8/CV-DD.
comment: Code at: https://github.com/Jiacheng8/CV-DD
☆ UnCommon Objects in 3D
We introduce Uncommon Objects in 3D (uCO3D), a new object-centric dataset for 3D deep learning and 3D generative AI. uCO3D is the largest publicly-available collection of high-resolution videos of objects with 3D annotations that ensures full-360$^{\circ}$ coverage. uCO3D is significantly more diverse than MVImgNet and CO3Dv2, covering more than 1,000 object categories. It is also of higher quality, due to extensive quality checks of both the collected videos and the 3D annotations. Similar to analogous datasets, uCO3D contains annotations for 3D camera poses, depth maps and sparse point clouds. In addition, each object is equipped with a caption and a 3D Gaussian Splat reconstruction. We train several large 3D models on MVImgNet, CO3Dv2, and uCO3D and obtain superior results using the latter, showing that uCO3D is better for learning applications.
☆ WebWalker: Benchmarking LLMs in Web Traversal
Retrieval-augmented generation (RAG) demonstrates remarkable performance across tasks in open-domain question-answering. However, traditional search engines may retrieve shallow content, limiting the ability of LLMs to handle complex, multi-layered information. To address it, we introduce WebWalkerQA, a benchmark designed to assess the ability of LLMs to perform web traversal. It evaluates the capacity of LLMs to traverse a website's subpages to extract high-quality data systematically. We propose WebWalker, which is a multi-agent framework that mimics human-like web navigation through an explore-critic paradigm. Extensive experimental results show that WebWalkerQA is challenging and demonstrates the effectiveness of RAG combined with WebWalker, through the horizontal and vertical integration in real-world scenarios.
☆ Evaluating Agent-based Program Repair at Google
Agent-based program repair offers to automatically resolve complex bugs end-to-end by combining the planning, tool use, and code generation abilities of modern LLMs. Recent work has explored the use of agent-based repair approaches on the popular open-source SWE-Bench, a collection of bugs from highly-rated GitHub Python projects. In addition, various agentic approaches such as SWE-Agent have been proposed to solve bugs in this benchmark. This paper explores the viability of using an agentic approach to address bugs in an enterprise context. To investigate this, we curate an evaluation set of 178 bugs drawn from Google's issue tracking system. This dataset spans both human-reported (78) and machine-reported bugs (100). To establish a repair performance baseline on this benchmark, we implement Passerine, an agent similar in spirit to SWE-Agent that can work within Google's development environment. We show that with 20 trajectory samples and Gemini 1.5 Pro, Passerine can produce a patch that passes bug tests (i.e., plausible) for 73% of machine-reported and 25.6% of human-reported bugs in our evaluation set. After manual examination, we found that 43% of machine-reported bugs and 17.9% of human-reported bugs have at least one patch that is semantically equivalent to the ground-truth patch. These results establish a baseline on an industrially relevant benchmark, which as we show, contains bugs drawn from a different distribution -- in terms of language diversity, size, and spread of changes, etc. -- compared to those in the popular SWE-Bench dataset.
☆ Performance Optimization of Ratings-Based Reinforcement Learning AAAI 2025
This paper explores multiple optimization methods to improve the performance of rating-based reinforcement learning (RbRL). RbRL, a method based on the idea of human ratings, has been developed to infer reward functions in reward-free environments for the subsequent policy learning via standard reinforcement learning, which requires the availability of reward functions. Specifically, RbRL minimizes the cross entropy loss that quantifies the differences between human ratings and estimated ratings derived from the inferred reward. Hence, a low loss means a high degree of consistency between human ratings and estimated ratings. Despite its simple form, RbRL has various hyperparameters and can be sensitive to various factors. Therefore, it is critical to provide comprehensive experiments to understand the impact of various hyperparameters on the performance of RbRL. This paper is a work in progress, providing users some general guidelines on how to select hyperparameters in RbRL.
comment: Accepted to the Collaborative AI and Modeling of Humans Bridge Program at AAAI 2025
☆ Rethinking AI Cultural Evaluation
As AI systems become more integrated into society, evaluating their capacity to align with diverse cultural values is crucial for their responsible deployment. Current evaluation methods predominantly rely on multiple-choice question (MCQ) datasets. In this study, we demonstrate that MCQs are insufficient for capturing the complexity of cultural values expressed in open-ended scenarios. Our findings highlight significant discrepancies between MCQ-based assessments and the values conveyed in unconstrained interactions. Based on these findings, we recommend moving beyond MCQs to adopt more open-ended, context-specific assessments that better reflect how AI models engage with cultural values in realistic settings.
☆ CDS: Data Synthesis Method Guided by Cognitive Diagnosis Theory
Large Language Models (LLMs) have demonstrated outstanding capabilities across various domains, but the increasing complexity of new challenges demands enhanced performance and adaptability. Traditional benchmarks, although comprehensive, often lack the granularity needed for detailed capability analysis. This study introduces the Cognitive Diagnostic Synthesis (CDS) method, which employs Cognitive Diagnosis Theory (CDT) for precise evaluation and targeted enhancement of LLMs. By decomposing complex tasks into discrete knowledge points, CDS accurately identifies and synthesizes data targeting model weaknesses, thereby enhancing the model's performance. This framework proposes a comprehensive pipeline driven by knowledge point evaluation, synthesis, data augmentation, and filtering, which significantly improves the model's mathematical and coding capabilities, achieving up to an 11.12% improvement in optimal scenarios.
☆ Large Language Models for Interpretable Mental Health Diagnosis AAAI 2025
We propose a clinical decision support system (CDSS) for mental health diagnosis that combines the strengths of large language models (LLMs) and constraint logic programming (CLP). Having a CDSS is important because of the high complexity of diagnostic manuals used by mental health professionals and the danger of diagnostic errors. Our CDSS is a software tool that uses an LLM to translate diagnostic manuals to a logic program and solves the program using an off-the-shelf CLP engine to query a patient's diagnosis based on the encoded rules and provided data. By giving domain experts the opportunity to inspect the LLM-generated logic program, and making modifications when needed, our CDSS ensures that the diagnosis is not only accurate but also interpretable. We experimentally compare it with two baseline approaches of using LLMs: diagnosing patients using the LLM-only approach, and using the LLM-generated logic program but without expert inspection. The results show that, while LLMs are extremely useful in generating candidate logic programs, these programs still require expert inspection and modification to guarantee faithfulness to the official diagnostic manuals. Additionally, ethical concerns arise from the direct use of patient data in LLMs, underscoring the need for a safer hybrid approach like our proposed method.
comment: Accepted at AAAI 2025 Workshop on Large Language Models and Generative AI for Health (GenAI4Health)
☆ BlobGEN-Vid: Compositional Text-to-Video Generation with Blob Video Representations
Existing video generation models struggle to follow complex text prompts and synthesize multiple objects, raising the need for additional grounding input for improved controllability. In this work, we propose to decompose videos into visual primitives - blob video representation, a general representation for controllable video generation. Based on blob conditions, we develop a blob-grounded video diffusion model named BlobGEN-Vid that allows users to control object motions and fine-grained object appearance. In particular, we introduce a masked 3D attention module that effectively improves regional consistency across frames. In addition, we introduce a learnable module to interpolate text embeddings so that users can control semantics in specific frames and obtain smooth object transitions. We show that our framework is model-agnostic and build BlobGEN-Vid based on both U-Net and DiT-based video diffusion models. Extensive experimental results show that BlobGEN-Vid achieves superior zero-shot video generation ability and state-of-the-art layout controllability on multiple benchmarks. When combined with an LLM for layout planning, our framework even outperforms proprietary text-to-video generators in terms of compositional accuracy.
comment: Project page: https://blobgen-vid2.github.io/
☆ SafePowerGraph-LLM: Novel Power Grid Graph Embedding and Optimization with Large Language Models
Efficiently solving Optimal Power Flow (OPF) problems in power systems is crucial for operational planning and grid management. There is a growing need for scalable algorithms capable of handling the increasing variability, constraints, and uncertainties in modern power networks while providing accurate and fast solutions. To address this, machine learning techniques, particularly Graph Neural Networks (GNNs) have emerged as promising approaches. This letter introduces SafePowerGraph-LLM, the first framework explicitly designed for solving OPF problems using Large Language Models (LLM)s. The proposed approach combines graph and tabular representations of power grids to effectively query LLMs, capturing the complex relationships and constraints in power systems. A new implementation of in-context learning and fine-tuning protocols for LLMs is introduced, tailored specifically for the OPF problem. SafePowerGraph-LLM demonstrates reliable performances using off-the-shelf LLM. Our study reveals the impact of LLM architecture, size, and fine-tuning and demonstrates our framework's ability to handle realistic grid components and constraints.
☆ RadAlign: Advancing Radiology Report Generation with Vision-Language Concept Alignment
Automated chest radiographs interpretation requires both accurate disease classification and detailed radiology report generation, presenting a significant challenge in the clinical workflow. Current approaches either focus on classification accuracy at the expense of interpretability or generate detailed but potentially unreliable reports through image captioning techniques. In this study, we present RadAlign, a novel framework that combines the predictive accuracy of vision-language models (VLMs) with the reasoning capabilities of large language models (LLMs). Inspired by the radiologist's workflow, RadAlign first employs a specialized VLM to align visual features with key medical concepts, achieving superior disease classification with an average AUC of 0.885 across multiple diseases. These recognized medical conditions, represented as text-based concepts in the aligned visual-language space, are then used to prompt LLM-based report generation. Enhanced by a retrieval-augmented generation mechanism that grounds outputs in similar historical cases, RadAlign delivers superior report quality with a GREEN score of 0.678, outperforming state-of-the-art methods' 0.634. Our framework maintains strong clinical interpretability while reducing hallucinations, advancing automated medical imaging and report analysis through integrated predictive and generative AI. Code is available at https://github.com/difeigu/RadAlign.
☆ Parallel Key-Value Cache Fusion for Position Invariant RAG
Recent advancements in Large Language Models (LLMs) underscore the necessity of Retrieval Augmented Generation (RAG) to leverage external information. However, LLMs are sensitive to the position of relevant information within contexts and tend to generate incorrect responses when such information is placed in the middle, known as `Lost in the Middle' phenomenon. In this paper, we introduce a framework that generates consistent outputs for decoder-only models, irrespective of the input context order. Experimental results for three open domain question answering tasks demonstrate position invariance, where the model is not sensitive to input context order, and superior robustness to irrelevent passages compared to prevailing approaches for RAG pipelines.
comment: 5 pages
☆ The Paradox of Success in Evolutionary and Bioinspired Optimization: Revisiting Critical Issues, Key Studies, and Methodological Pathways
Evolutionary and bioinspired computation are crucial for efficiently addressing complex optimization problems across diverse application domains. By mimicking processes observed in nature, like evolution itself, these algorithms offer innovative solutions beyond the reach of traditional optimization methods. They excel at finding near-optimal solutions in large, complex search spaces, making them invaluable in numerous fields. However, both areas are plagued by challenges at their core, including inadequate benchmarking, problem-specific overfitting, insufficient theoretical grounding, and superfluous proposals justified only by their biological metaphor. This overview recapitulates and analyzes in depth the criticisms concerning the lack of innovation and rigor in experimental studies within the field. To this end, we examine the judgmental positions of the existing literature in an informed attempt to guide the research community toward directions of solid contribution and advancement in these areas. We summarize guidelines for the design of evolutionary and bioinspired optimizers, the development of experimental comparisons, and the derivation of novel proposals that take a step further in the field. We provide a brief note on automating the process of creating these algorithms, which may help align metaheuristic optimization research with its primary objective (solving real-world problems), provided that our identified pathways are followed. Our conclusions underscore the need for a sustained push towards innovation and the enforcement of methodological rigor in prospective studies to fully realize the potential of these advanced computational techniques.
comment: 38 pages, 1 figure
☆ Inductive Learning of Robot Task Knowledge from Raw Data and Online Expert Feedback
The increasing level of autonomy of robots poses challenges of trust and social acceptance, especially in human-robot interaction scenarios. This requires an interpretable implementation of robotic cognitive capabilities, possibly based on formal methods as logics for the definition of task specifications. However, prior knowledge is often unavailable in complex realistic scenarios. In this paper, we propose an offline algorithm based on inductive logic programming from noisy examples to extract task specifications (i.e., action preconditions, constraints and effects) directly from raw data of few heterogeneous (i.e., not repetitive) robotic executions. Our algorithm leverages on the output of any unsupervised action identification algorithm from video-kinematic recordings. Combining it with the definition of very basic, almost task-agnostic, commonsense concepts about the environment, which contribute to the interpretability of our methodology, we are able to learn logical axioms encoding preconditions of actions, as well as their effects in the event calculus paradigm. Since the quality of learned specifications depends mainly on the accuracy of the action identification algorithm, we also propose an online framework for incremental refinement of task knowledge from user feedback, guaranteeing safe execution. Results in a standard manipulation task and benchmark for user training in the safety-critical surgical robotic scenario, show the robustness, data- and time-efficiency of our methodology, with promising results towards the scalability in more complex domains.
☆ RbRL2.0: Integrated Reward and Policy Learning for Rating-based Reinforcement Learning AAAI 2025
Reinforcement learning (RL), a common tool in decision making, learns policies from various experiences based on the associated cumulative return/rewards without treating them differently. On the contrary, humans often learn to distinguish from different levels of performance and extract the underlying trends towards improving their decision making for best performance. Motivated by this, this paper proposes a novel RL method that mimics humans' decision making process by differentiating among collected experiences for effective policy learning. The main idea is to extract important directional information from experiences with different performance levels, named ratings, so that policies can be updated towards desired deviation from these experiences with different ratings. Specifically, we propose a new policy loss function that penalizes distribution similarities between the current policy and failed experiences with different ratings, and assign different weights to the penalty terms based on the rating classes. Meanwhile, reward learning from these rated samples can be integrated with the new policy loss towards an integrated reward and policy learning from rated samples. Optimizing the integrated reward and policy loss function will lead to the discovery of directions for policy improvement towards maximizing cumulative rewards and penalizing most from the lowest performance level while least from the highest performance level. To evaluate the effectiveness of the proposed method, we present results for experiments on a few typical environments that show improved convergence and overall performance over the existing rating-based reinforcement learning method with only reward learning.
comment: Accepted to the Collaborative AI and Modeling of Humans Bridge Program at AAAI 2025
☆ Data and System Perspectives of Sustainable Artificial Intelligence
Sustainable AI is a subfield of AI for concerning developing and using AI systems in ways of aiming to reduce environmental impact and achieve sustainability. Sustainable AI is increasingly important given that training of and inference with AI models such as large langrage models are consuming a large amount of computing power. In this article, we discuss current issues, opportunities and example solutions for addressing these issues, and future challenges to tackle, from the data and system perspectives, related to data acquisition, data processing, and AI model training and inference.
☆ Smart Learning in the 21st Century: Advancing Constructionism Across Three Digital Epochs
This article explores the evolution of constructionism as an educational framework, tracing its relevance and transformation across three pivotal eras: the advent of personal computing, the networked society, and the current era of generative AI. Rooted in Seymour Papert constructionist philosophy, this study examines how constructionist principles align with the expanding role of digital technology in personal and collective learning. We discuss the transformation of educational environments from hierarchical instructionism to constructionist models that emphasize learner autonomy and interactive, creative engagement. Central to this analysis is the concept of an expanded personality, wherein digital tools and AI integration fundamentally reshape individual self-perception and social interactions. By integrating constructionism into the paradigm of smart education, we propose it as a foundational approach to personalized and democratized learning. Our findings underscore constructionism enduring relevance in navigating the complexities of technology-driven education, providing insights for educators and policymakers seeking to harness digital innovations to foster adaptive, student-centered learning experiences.
comment: 22 pages
☆ TiEBe: A Benchmark for Assessing the Current Knowledge of Large Language Models
In a rapidly evolving knowledge landscape and the increasing adoption of large language models, a need has emerged to keep these models continuously updated with current events. While existing benchmarks evaluate general factual recall, they often overlook two critical aspects: the ability of models to integrate evolving knowledge through continual learning and the significant regional disparities in their performance. To address these gaps, we introduce the Timely Events Benchmark (TiEBe), a dataset containing over 11,000 question-answer pairs focused on globally and regionally significant events. TiEBe leverages structured retrospective data from Wikipedia, enabling continuous updates to assess LLMs' knowledge of evolving global affairs and their understanding of events across different regions. Our benchmark demonstrates that LLMs exhibit substantial geographic disparities in factual recall, emphasizing the need for more balanced global knowledge representation. Furthermore, TiEBe serves as a tool for evaluating continual learning strategies, providing insights into models' ability to acquire new information without forgetting past knowledge.
☆ Estimating Musical Surprisal in Audio ICASSP 2025
In modeling musical surprisal expectancy with computational methods, it has been proposed to use the information content (IC) of one-step predictions from an autoregressive model as a proxy for surprisal in symbolic music. With an appropriately chosen model, the IC of musical events has been shown to correlate with human perception of surprise and complexity aspects, including tonal and rhythmic complexity. This work investigates whether an analogous methodology can be applied to music audio. We train an autoregressive Transformer model to predict compressed latent audio representations of a pretrained autoencoder network. We verify learning effects by estimating the decrease in IC with repetitions. We investigate the mean IC of musical segment types (e.g., A or B) and find that segment types appearing later in a piece have a higher IC than earlier ones on average. We investigate the IC's relation to audio and musical features and find it correlated with timbral variations and loudness and, to a lesser extent, dissonance, rhythmic complexity, and onset density related to audio and musical features. Finally, we investigate if the IC can predict EEG responses to songs and thus model humans' surprisal in music. We provide code for our method on github.com/sonycslparis/audioic.
comment: 5 pages, 2 figures, 1 table. Accepted at the 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2025), Hyderabad, India
☆ A Survey of Embodied AI in Healthcare: Techniques, Applications, and Opportunities
Healthcare systems worldwide face persistent challenges in efficiency, accessibility, and personalization. Powered by modern AI technologies such as multimodal large language models and world models, Embodied AI (EmAI) represents a transformative frontier, offering enhanced autonomy and the ability to interact with the physical world to address these challenges. As an interdisciplinary and rapidly evolving research domain, "EmAI in healthcare" spans diverse fields such as algorithms, robotics, and biomedicine. This complexity underscores the importance of timely reviews and analyses to track advancements, address challenges, and foster cross-disciplinary collaboration. In this paper, we provide a comprehensive overview of the "brain" of EmAI for healthcare, wherein we introduce foundational AI algorithms for perception, actuation, planning, and memory, and focus on presenting the healthcare applications spanning clinical interventions, daily care & companionship, infrastructure support, and biomedical research. Despite its promise, the development of EmAI for healthcare is hindered by critical challenges such as safety concerns, gaps between simulation platforms and real-world applications, the absence of standardized benchmarks, and uneven progress across interdisciplinary domains. We discuss the technical barriers and explore ethical considerations, offering a forward-looking perspective on the future of EmAI in healthcare. A hierarchical framework of intelligent levels for EmAI systems is also introduced to guide further development. By providing systematic insights, this work aims to inspire innovation and practical applications, paving the way for a new era of intelligent, patient-centered healthcare.
comment: 44 pages, 11 figures
☆ Understanding and Benchmarking Artificial Intelligence: OpenAI's o3 Is Not AGI
OpenAI's o3 achieves a high score of 87.5 % on ARC-AGI, a benchmark proposed to measure intelligence. This raises the question whether systems based on Large Language Models (LLMs), particularly o3, demonstrate intelligence and progress towards artificial general intelligence (AGI). Building on the distinction between skills and intelligence made by Fran\c{c}ois Chollet, the creator of ARC-AGI, a new understanding of intelligence is introduced: an agent is the more intelligent, the more efficiently it can achieve the more diverse goals in the more diverse worlds with the less knowledge. An analysis of the ARC-AGI benchmark shows that its tasks represent a very specific type of problem that can be solved by massive trialling of combinations of predefined operations. This method is also applied by o3, achieving its high score through the extensive use of computing power. However, for most problems in the physical world and in the human domain, solutions cannot be tested in advance and predefined operations are not available. Consequently, massive trialling of predefined operations, as o3 does, cannot be a basis for AGI - instead, new approaches are required that can reliably solve a wide variety of problems without existing skills. To support this development, a new benchmark for intelligence is outlined that covers a much higher diversity of unknown tasks to be solved, thus enabling a comprehensive assessment of intelligence and of progress towards AGI.
comment: 15 pages
☆ Online inductive learning from answer sets for efficient reinforcement learning exploration
This paper presents a novel approach combining inductive logic programming with reinforcement learning to improve training performance and explainability. We exploit inductive learning of answer set programs from noisy examples to learn a set of logical rules representing an explainable approximation of the agent policy at each batch of experience. We then perform answer set reasoning on the learned rules to guide the exploration of the learning agent at the next batch, without requiring inefficient reward shaping and preserving optimality with soft bias. The entire procedure is conducted during the online execution of the reinforcement learning algorithm. We preliminarily validate the efficacy of our approach by integrating it into the Q-learning algorithm for the Pac-Man scenario in two maps of increasing complexity. Our methodology produces a significant boost in the discounted return achieved by the agent, even in the first batches of training. Moreover, inductive learning does not compromise the computational time required by Q-learning and learned rules quickly converge to an explanation of the agent policy.
☆ Attention when you need
Being attentive to task-relevant features can improve task performance, but paying attention comes with its own metabolic cost. Therefore, strategic allocation of attention is crucial in performing the task efficiently. This work aims to understand this strategy. Recently, de Gee et al. conducted experiments involving mice performing an auditory sustained attention-value task. This task required the mice to exert attention to identify whether a high-order acoustic feature was present amid the noise. By varying the trial duration and reward magnitude, the task allows us to investigate how an agent should strategically deploy their attention to maximize their benefits and minimize their costs. In our work, we develop a reinforcement learning-based normative model of the mice to understand how it balances attention cost against its benefits. The model is such that at each moment the mice can choose between two levels of attention and decide when to take costly actions that could obtain rewards. Our model suggests that efficient use of attentional resources involves alternating blocks of high attention with blocks of low attention. In the extreme case where the agent disregards sensory input during low attention states, we see that high attention is used rhythmically. Our model provides evidence about how one should deploy attention as a function of task utility, signal statistics, and how attention affects sensory evidence.
☆ Empirical Evaluation of the Implicit Hitting Set Approach for Weighted CSPs
SAT technology has proven to be surprisingly effective in a large variety of domains. However, for the Weighted CSP problem dedicated algorithms have always been superior. One approach not well-studied so far is the use of SAT in conjunction with the Implicit Hitting Set approach. In this work, we explore some alternatives to the existing algorithm of reference. The alternatives, mostly borrowed from related boolean frameworks, consider trade-offs for the two main components of the IHS approach: the computation of low-cost hitting vectors, and their transformation into high-cost cores. For each one, we propose 4 levels of intensity. Since we also test the usefulness of cost function merging, our experiments consider 32 different implementations. Our empirical study shows that for WCSP it is not easy to identify the best alternative. Nevertheless, the cost-function merging encoding and extracting maximal cores seems to be a robust approach.
☆ Diff-Ensembler: Learning to Ensemble 2D Diffusion Models for Volume-to-Volume Medical Image Translation
Despite success in volume-to-volume translations in medical images, most existing models struggle to effectively capture the inherent volumetric distribution using 3D representations. The current state-of-the-art approach combines multiple 2D-based networks through weighted averaging, thereby neglecting the 3D spatial structures. Directly training 3D models in medical imaging presents significant challenges due to high computational demands and the need for large-scale datasets. To address these challenges, we introduce Diff-Ensembler, a novel hybrid 2D-3D model for efficient and effective volumetric translations by ensembling perpendicularly trained 2D diffusion models with a 3D network in each diffusion step. Moreover, our model can naturally be used to ensemble diffusion models conditioned on different modalities, allowing flexible and accurate fusion of input conditions. Extensive experiments demonstrate that Diff-Ensembler attains superior accuracy and volumetric realism in 3D medical image super-resolution and modality translation. We further demonstrate the strength of our model's volumetric realism using tumor segmentation as a downstream task.
☆ An Investigation into Seasonal Variations in Energy Forecasting for Student Residences
This research provides an in-depth evaluation of various machine learning models for energy forecasting, focusing on the unique challenges of seasonal variations in student residential settings. The study assesses the performance of baseline models, such as LSTM and GRU, alongside state-of-the-art forecasting methods, including Autoregressive Feedforward Neural Networks, Transformers, and hybrid approaches. Special attention is given to predicting energy consumption amidst challenges like seasonal patterns, vacations, meteorological changes, and irregular human activities that cause sudden fluctuations in usage. The findings reveal that no single model consistently outperforms others across all seasons, emphasizing the need for season-specific model selection or tailored designs. Notably, the proposed Hyper Network based LSTM and MiniAutoEncXGBoost models exhibit strong adaptability to seasonal variations, effectively capturing abrupt changes in energy consumption during summer months. This study advances the energy forecasting field by emphasizing the critical role of seasonal dynamics and model-specific behavior in achieving accurate predictions.
☆ Initial Findings on Sensor based Open Vocabulary Activity Recognition via Text Embedding Inversion
Conventional human activity recognition (HAR) relies on classifiers trained to predict discrete activity classes, inherently limiting recognition to activities explicitly present in the training set. Such classifiers would invariably fail, putting zero likelihood, when encountering unseen activities. We propose Open Vocabulary HAR (OV-HAR), a framework that overcomes this limitation by first converting each activity into natural language and breaking it into a sequence of elementary motions. This descriptive text is then encoded into a fixed-size embedding. The model is trained to regress this embedding, which is subsequently decoded back into natural language using a pre-trained embedding inversion model. Unlike other works that rely on auto-regressive large language models (LLMs) at their core, OV-HAR achieves open vocabulary recognition without the computational overhead of such models. The generated text can be transformed into a single activity class using LLM prompt engineering. We have evaluated our approach on different modalities, including vision (pose), IMU, and pressure sensors, demonstrating robust generalization across unseen activities and modalities, offering a fundamentally different paradigm from contemporary classifiers.
☆ PROTECT: Protein circadian time prediction using unsupervised learning
Circadian rhythms regulate the physiology and behavior of humans and animals. Despite advancements in understanding these rhythms and predicting circadian phases at the transcriptional level, predicting circadian phases from proteomic data remains elusive. This challenge is largely due to the scarcity of time labels in proteomic datasets, which are often characterized by small sample sizes, high dimensionality, and significant noise. Furthermore, existing methods for predicting circadian phases from transcriptomic data typically rely on prior knowledge of known rhythmic genes, making them unsuitable for proteomic datasets. To address this gap, we developed a novel computational method using unsupervised deep learning techniques to predict circadian sample phases from proteomic data without requiring time labels or prior knowledge of proteins or genes. Our model involves a two-stage training process optimized for robust circadian phase prediction: an initial greedy one-layer-at-a-time pre-training which generates informative initial parameters followed by fine-tuning. During fine-tuning, a specialized loss function guides the model to align protein expression levels with circadian patterns, enabling it to accurately capture the underlying rhythmic structure within the data. We tested our method on both time-labeled and unlabeled proteomic data. For labeled data, we compared our predictions to the known time labels, achieving high accuracy, while for unlabeled human datasets, including postmortem brain regions and urine samples, we explored circadian disruptions. Notably, our analysis identified disruptions in rhythmic proteins between Alzheimer's disease and control subjects across these samples.
☆ Derivation of effective gradient flow equations and dynamical truncation of training data in Deep Learning
We derive explicit equations governing the cumulative biases and weights in Deep Learning with ReLU activation function, based on gradient descent for the Euclidean cost in the input layer, and under the assumption that the weights are, in a precise sense, adapted to the coordinate system distinguished by the activations. We show that gradient descent corresponds to a dynamical process in the input layer, whereby clusters of data are progressively reduced in complexity ("truncated") at an exponential rate that increases with the number of data points that have already been truncated. We provide a detailed discussion of several types of solutions to the gradient flow equations. A main motivation for this work is to shed light on the interpretability question in supervised learning.
comment: AMS Latex, 35 pages
☆ The Essentials of AI for Life and Society: An AI Literacy Course for the University Community AAAI-25
We describe the development of a one-credit course to promote AI literacy at The University of Texas at Austin. In response to a call for the rapid deployment of class to serve a broad audience in Fall of 2023, we designed a 14-week seminar-style course that incorporated an interdisciplinary group of speakers who lectured on topics ranging from the fundamentals of AI to societal concerns including disinformation and employment. University students, faculty, and staff, and even community members outside of the University, were invited to enroll in this online offering: The Essentials of AI for Life and Society. We collected feedback from course participants through weekly reflections and a final survey. Satisfyingly, we found that attendees reported gains in their AI literacy. We sought critical feedback through quantitative and qualitative analysis, which uncovered challenges in designing a course for this general audience. We utilized the course feedback to design a three-credit version of the course that is being offered in Fall of 2024. The lessons we learned and our plans for this new iteration may serve as a guide to instructors designing AI courses for a broad audience.
comment: Accepted to EAAI-25: The 15th Symposium on Educational Advances in Artificial Intelligence, collocated with AAAI-25
☆ Enhancing Retrieval-Augmented Generation: A Study of Best Practices
Retrieval-Augmented Generation (RAG) systems have recently shown remarkable advancements by integrating retrieval mechanisms into language models, enhancing their ability to produce more accurate and contextually relevant responses. However, the influence of various components and configurations within RAG systems remains underexplored. A comprehensive understanding of these elements is essential for tailoring RAG systems to complex retrieval tasks and ensuring optimal performance across diverse applications. In this paper, we develop several advanced RAG system designs that incorporate query expansion, various novel retrieval strategies, and a novel Contrastive In-Context Learning RAG. Our study systematically investigates key factors, including language model size, prompt design, document chunk size, knowledge base size, retrieval stride, query expansion techniques, Contrastive In-Context Learning knowledge bases, multilingual knowledge bases, and Focus Mode retrieving relevant context at sentence-level. Through extensive experimentation, we provide a detailed analysis of how these factors influence response quality. Our findings offer actionable insights for developing RAG systems, striking a balance between contextual richness and retrieval-generation efficiency, thereby paving the way for more adaptable and high-performing RAG frameworks in diverse real-world scenarios. Our code and implementation details are publicly available.
☆ Information-Theoretic Dual Memory System for Continual Learning
Continuously acquiring new knowledge from a dynamic environment is a fundamental capability for animals, facilitating their survival and ability to address various challenges. This capability is referred to as continual learning, which focuses on the ability to learn a sequence of tasks without the detriment of previous knowledge. A prevalent strategy to tackle continual learning involves selecting and storing numerous essential data samples from prior tasks within a fixed-size memory buffer. However, the majority of current memory-based techniques typically utilize a single memory buffer, which poses challenges in concurrently managing newly acquired and previously learned samples. Drawing inspiration from the Complementary Learning Systems (CLS) theory, which defines rapid and gradual learning mechanisms for processing information, we propose an innovative dual memory system called the Information-Theoretic Dual Memory System (ITDMS). This system comprises a fast memory buffer designed to retain temporary and novel samples, alongside a slow memory buffer dedicated to preserving critical and informative samples. The fast memory buffer is optimized employing an efficient reservoir sampling process. Furthermore, we introduce a novel information-theoretic memory optimization strategy that selectively identifies and retains diverse and informative data samples for the slow memory buffer. Additionally, we propose a novel balanced sample selection procedure that automatically identifies and eliminates redundant memorized samples, thus freeing up memory capacity for new data acquisitions, which can deal with a growing array of tasks. Our methodology is rigorously assessed through a series of continual learning experiments, with empirical results underscoring the effectiveness of the proposed system.
comment: 35 pages, 9 figures, submitted to Knowledge-Based Systems
☆ Emergent effects of scaling on the functional hierarchies within large language models
Large language model (LLM) architectures are often described as functionally hierarchical: Early layers process syntax, middle layers begin to parse semantics, and late layers integrate information. The present work revisits these ideas. This research submits simple texts to an LLM (e.g., "A church and organ") and extracts the resulting activations. Then, for each layer, support vector machines and ridge regressions are fit to predict a text's label and thus examine whether a given layer encodes some information. Analyses using a small model (Llama-3.2-3b; 28 layers) partly bolster the common hierarchical perspective: Item-level semantics are most strongly represented early (layers 2-7), then two-item relations (layers 8-12), and then four-item analogies (layers 10-15). Afterward, the representation of items and simple relations gradually decreases in deeper layers that focus on more global information. However, several findings run counter to a steady hierarchy view: First, although deep layers can represent document-wide abstractions, deep layers also compress information from early portions of the context window without meaningful abstraction. Second, when examining a larger model (Llama-3.3-70b-Instruct), stark fluctuations in abstraction level appear: As depth increases, two-item relations and four-item analogies initially increase in their representation, then markedly decrease, and afterward increase again momentarily. This peculiar pattern consistently emerges across several experiments. Third, another emergent effect of scaling is coordination between the attention mechanisms of adjacent layers. Across multiple experiments using the larger model, adjacent layers fluctuate between what information they each specialize in representing. In sum, an abstraction hierarchy often manifests across layers, but large models also deviate from this structure in curious ways.
☆ TempoGPT: Enhancing Temporal Reasoning via Quantizing Embedding
Multi-modal language model has made advanced progress in vision and audio, but still faces significant challenges in dealing with complex reasoning tasks in the time series domain. The reasons are twofold. First, labels for multi-modal time series data are coarse and devoid of analysis or reasoning processes. Training with these data cannot improve the model's reasoning capabilities. Second, due to the lack of precise tokenization in processing time series, the representation patterns for temporal and textual information are inconsistent, which hampers the effectiveness of multi-modal alignment. To address these challenges, we propose a multi-modal time series data construction approach and a multi-modal time series language model (TLM), TempoGPT. Specially, we construct multi-modal data for complex reasoning tasks by analyzing the variable-system relationships within a white-box system. Additionally, proposed TempoGPT achieves consistent representation between temporal and textual information by quantizing temporal embeddings, where temporal embeddings are quantized into a series of discrete tokens using a predefined codebook; subsequently, a shared embedding layer processes both temporal and textual tokens. Extensive experiments demonstrate that TempoGPT accurately perceives temporal information, logically infers conclusions, and achieves state-of-the-art in the constructed complex time series reasoning tasks. Moreover, we quantitatively demonstrate the effectiveness of quantizing temporal embeddings in enhancing multi-modal alignment and the reasoning capabilities of TLMs. Code and data are available at https://github.com/zhanghaochuan20/TempoGPT.
☆ Anonymization of Documents for Law Enforcement with Machine Learning
The steadily increasing utilization of data-driven methods and approaches in areas that handle sensitive personal information such as in law enforcement mandates an ever increasing effort in these institutions to comply with data protection guidelines. In this work, we present a system for automatically anonymizing images of scanned documents, reducing manual effort while ensuring data protection compliance. Our method considers the viability of further forensic processing after anonymization by minimizing automatically redacted areas by combining automatic detection of sensitive regions with knowledge from a manually anonymized reference document. Using a self-supervised image model for instance retrieval of the reference document, our approach requires only one anonymized example to efficiently redact all documents of the same type, significantly reducing processing time. We show that our approach outperforms both a purely automatic redaction system and also a naive copy-paste scheme of the reference anonymization to other documents on a hand-crafted dataset of ground truth redactions.
comment: Accepted at IEEE Symposium on CI in Security, Defence and Biometrics 2025 (IEEE CISDB)
☆ The Lessons of Developing Process Reward Models in Mathematical Reasoning
Process Reward Models (PRMs) emerge as a promising approach for process supervision in mathematical reasoning of Large Language Models (LLMs), which aim to identify and mitigate intermediate errors in the reasoning processes. However, the development of effective PRMs faces significant challenges, particularly in data annotation and evaluation methodologies. In this paper, through extensive experiments, we demonstrate that commonly used Monte Carlo (MC) estimation-based data synthesis for PRMs typically yields inferior performance and generalization compared to LLM-as-a-judge and human annotation methods. MC estimation relies on completion models to evaluate current-step correctness, leading to inaccurate step verification. Furthermore, we identify potential biases in conventional Best-of-N (BoN) evaluation strategies for PRMs: (1) The unreliable policy models generate responses with correct answers but flawed processes, leading to a misalignment between the evaluation criteria of BoN and the PRM objectives of process verification. (2) The tolerance of PRMs of such responses leads to inflated BoN scores. (3) Existing PRMs have a significant proportion of minimum scores concentrated on the final answer steps, revealing the shift from process to outcome-based assessment in BoN Optimized PRMs. To address these challenges, we develop a consensus filtering mechanism that effectively integrates MC estimation with LLM-as-a-judge and advocates a more comprehensive evaluation framework that combines response-level and step-level metrics. Based on the mechanisms, we significantly improve both model performance and data efficiency in the BoN evaluation and the step-wise error identification task. Finally, we release a new state-of-the-art PRM that outperforms existing open-source alternatives and provides practical guidelines for future research in building process supervision models.
☆ Principles for Responsible AI Consciousness Research
Recent research suggests that it may be possible to build conscious AI systems now or in the near future. Conscious AI systems would arguably deserve moral consideration, and it may be the case that large numbers of conscious systems could be created and caused to suffer. Furthermore, AI systems or AI-generated characters may increasingly give the impression of being conscious, leading to debate about their moral status. Organisations involved in AI research must establish principles and policies to guide research and deployment choices and public communication concerning consciousness. Even if an organisation chooses not to study AI consciousness as such, it will still need policies in place, as those developing advanced AI systems risk inadvertently creating conscious entities. Responsible research and deployment practices are essential to address this possibility. We propose five principles for responsible research and argue that research organisations should make voluntary, public commitments to principles on these lines. Our principles concern research objectives and procedures, knowledge sharing and public communications.
☆ LLM-Net: Democratizing LLMs-as-a-Service through Blockchain-based Expert Networks
The centralization of Large Language Models (LLMs) development has created significant barriers to AI advancement, limiting the democratization of these powerful technologies. This centralization, coupled with the scarcity of high-quality training data and mounting complexity of maintaining comprehensive expertise across rapidly expanding knowledge domains, poses critical challenges to the continued growth of LLMs. While solutions like Retrieval-Augmented Generation (RAG) offer potential remedies, maintaining up-to-date expert knowledge across diverse domains remains a significant challenge, particularly given the exponential growth of specialized information. This paper introduces LLMs Networks (LLM-Net), a blockchain-based framework that democratizes LLMs-as-a-Service through a decentralized network of specialized LLM providers. By leveraging collective computational resources and distributed domain expertise, LLM-Net incorporates fine-tuned expert models for various specific domains, ensuring sustained knowledge growth while maintaining service quality through collaborative prompting mechanisms. The framework's robust design includes blockchain technology for transparent transaction and performance validation, establishing an immutable record of service delivery. Our simulation, built on top of state-of-the-art LLMs such as Claude 3.5 Sonnet, Llama 3.1, Grok-2, and GPT-4o, validates the effectiveness of the reputation-based mechanism in maintaining service quality by selecting high-performing respondents (LLM providers). Thereby it demonstrates the potential of LLM-Net to sustain AI advancement through the integration of decentralized expertise and blockchain-based accountability.
☆ Lifelong Learning of Large Language Model based Agents: A Roadmap
Lifelong learning, also known as continual or incremental learning, is a crucial component for advancing Artificial General Intelligence (AGI) by enabling systems to continuously adapt in dynamic environments. While large language models (LLMs) have demonstrated impressive capabilities in natural language processing, existing LLM agents are typically designed for static systems and lack the ability to adapt over time in response to new challenges. This survey is the first to systematically summarize the potential techniques for incorporating lifelong learning into LLM-based agents. We categorize the core components of these agents into three modules: the perception module for multimodal input integration, the memory module for storing and retrieving evolving knowledge, and the action module for grounded interactions with the dynamic environment. We highlight how these pillars collectively enable continuous adaptation, mitigate catastrophic forgetting, and improve long-term performance. This survey provides a roadmap for researchers and practitioners working to develop lifelong learning capabilities in LLM agents, offering insights into emerging trends, evaluation metrics, and application scenarios. Relevant literature and resources are available at \href{this url}{https://github.com/qianlima-lab/awesome-lifelong-llm-agent}.
comment: 46 pages
☆ Bridging Smart Meter Gaps: A Benchmark of Statistical, Machine Learning and Time Series Foundation Models for Data Imputation
The integrity of time series data in smart grids is often compromised by missing values due to sensor failures, transmission errors, or disruptions. Gaps in smart meter data can bias consumption analyses and hinder reliable predictions, causing technical and economic inefficiencies. As smart meter data grows in volume and complexity, conventional techniques struggle with its nonlinear and nonstationary patterns. In this context, Generative Artificial Intelligence offers promising solutions that may outperform traditional statistical methods. In this paper, we evaluate two general-purpose Large Language Models and five Time Series Foundation Models for smart meter data imputation, comparing them with conventional Machine Learning and statistical models. We introduce artificial gaps (30 minutes to one day) into an anonymized public dataset to test inference capabilities. Results show that Time Series Foundation Models, with their contextual understanding and pattern recognition, could significantly enhance imputation accuracy in certain cases. However, the trade-off between computational cost and performance gains remains a critical consideration.
☆ Skip Mamba Diffusion for Monocular 3D Semantic Scene Completion AAAI 2025
3D semantic scene completion is critical for multiple downstream tasks in autonomous systems. It estimates missing geometric and semantic information in the acquired scene data. Due to the challenging real-world conditions, this task usually demands complex models that process multi-modal data to achieve acceptable performance. We propose a unique neural model, leveraging advances from the state space and diffusion generative modeling to achieve remarkable 3D semantic scene completion performance with monocular image input. Our technique processes the data in the conditioned latent space of a variational autoencoder where diffusion modeling is carried out with an innovative state space technique. A key component of our neural network is the proposed Skimba (Skip Mamba) denoiser, which is adept at efficiently processing long-sequence data. The Skimba diffusion model is integral to our 3D scene completion network, incorporating a triple Mamba structure, dimensional decomposition residuals and varying dilations along three directions. We also adopt a variant of this network for the subsequent semantic segmentation stage of our method. Extensive evaluation on the standard SemanticKITTI and SSCBench-KITTI360 datasets show that our approach not only outperforms other monocular techniques by a large margin, it also achieves competitive performance against stereo methods. The code is available at https://github.com/xrkong/skimba
comment: Accepted by AAAI 2025
☆ MOS-Attack: A Scalable Multi-objective Adversarial Attack Framework CVPR 2025
Crafting adversarial examples is crucial for evaluating and enhancing the robustness of Deep Neural Networks (DNNs), presenting a challenge equivalent to maximizing a non-differentiable 0-1 loss function. However, existing single objective methods, namely adversarial attacks focus on a surrogate loss function, do not fully harness the benefits of engaging multiple loss functions, as a result of insufficient understanding of their synergistic and conflicting nature. To overcome these limitations, we propose the Multi-Objective Set-based Attack (MOS Attack), a novel adversarial attack framework leveraging multiple loss functions and automatically uncovering their interrelations. The MOS Attack adopts a set-based multi-objective optimization strategy, enabling the incorporation of numerous loss functions without additional parameters. It also automatically mines synergistic patterns among various losses, facilitating the generation of potent adversarial attacks with fewer objectives. Extensive experiments have shown that our MOS Attack outperforms single-objective attacks. Furthermore, by harnessing the identified synergistic patterns, MOS Attack continues to show superior results with a reduced number of loss functions.
comment: Under Review of CVPR 2025
☆ Lessons From Red Teaming 100 Generative AI Products
In recent years, AI red teaming has emerged as a practice for probing the safety and security of generative AI systems. Due to the nascency of the field, there are many open questions about how red teaming operations should be conducted. Based on our experience red teaming over 100 generative AI products at Microsoft, we present our internal threat model ontology and eight main lessons we have learned: 1. Understand what the system can do and where it is applied 2. You don't have to compute gradients to break an AI system 3. AI red teaming is not safety benchmarking 4. Automation can help cover more of the risk landscape 5. The human element of AI red teaming is crucial 6. Responsible AI harms are pervasive but difficult to measure 7. LLMs amplify existing security risks and introduce new ones 8. The work of securing AI systems will never be complete By sharing these insights alongside case studies from our operations, we offer practical recommendations aimed at aligning red teaming efforts with real world risks. We also highlight aspects of AI red teaming that we believe are often misunderstood and discuss open questions for the field to consider.
☆ Breaking Memory Limits: Gradient Wavelet Transform Enhances LLMs Training
Large language models (LLMs) have shown impressive performance across a range of natural language processing tasks. However, their vast number of parameters introduces significant memory challenges during training, particularly when using memory-intensive optimizers like Adam. Existing memory-efficient algorithms often rely on techniques such as singular value decomposition projection or weight freezing. While these approaches help alleviate memory constraints, they generally produce suboptimal results compared to full-rank updates. In this paper, we investigate the memory-efficient method beyond low-rank training, proposing a novel solution called Gradient Wavelet Transform (GWT), which applies wavelet transforms to gradients in order to significantly reduce the memory requirements for maintaining optimizer states. We demonstrate that GWT can be seamlessly integrated with memory-intensive optimizers, enabling efficient training without sacrificing performance. Through extensive experiments on both pre-training and fine-tuning tasks, we show that GWT achieves state-of-the-art performance compared with advanced memory-efficient optimizers and full-rank approaches in terms of both memory usage and training performance.
☆ Exploring the Use of Contrastive Language-Image Pre-Training for Human Posture Classification: Insights from Yoga Pose Analysis
Accurate human posture classification in images and videos is crucial for automated applications across various fields, including work safety, physical rehabilitation, sports training, or daily assisted living. Recently, multimodal learning methods, such as Contrastive Language-Image Pretraining (CLIP), have advanced significantly in jointly understanding images and text. This study aims to assess the effectiveness of CLIP in classifying human postures, focusing on its application in yoga. Despite the initial limitations of the zero-shot approach, applying transfer learning on 15,301 images (real and synthetic) with 82 classes has shown promising results. The article describes the full procedure for fine-tuning, including the choice for image description syntax, models and hyperparameters adjustment. The fine-tuned CLIP model, tested on 3826 images, achieves an accuracy of over 85%, surpassing the current state-of-the-art of previous works on the same dataset by approximately 6%, its training time being 3.5 times lower than what is needed to fine-tune a YOLOv8-based model. For more application-oriented scenarios, with smaller datasets of six postures each, containing 1301 and 401 training images, the fine-tuned models attain an accuracy of 98.8% and 99.1%, respectively. Furthermore, our experiments indicate that training with as few as 20 images per pose can yield around 90% accuracy in a six-class dataset. This study demonstrates that this multimodal technique can be effectively used for yoga pose classification, and possibly for human posture classification, in general. Additionally, CLIP inference time (around 7 ms) supports that the model can be integrated into automated systems for posture evaluation, e.g., for developing a real-time personal yoga assistant for performance assessment.
☆ Multi-face emotion detection for effective Human-Robot Interaction
The integration of dialogue interfaces in mobile devices has become ubiquitous, providing a wide array of services. As technology progresses, humanoid robots designed with human-like features to interact effectively with people are gaining prominence, and the use of advanced human-robot dialogue interfaces is continually expanding. In this context, emotion recognition plays a crucial role in enhancing human-robot interaction by enabling robots to understand human intentions. This research proposes a facial emotion detection interface integrated into a mobile humanoid robot, capable of displaying real-time emotions from multiple individuals on a user interface. To this end, various deep neural network models for facial expression recognition were developed and evaluated under consistent computer-based conditions, yielding promising results. Afterwards, a trade-off between accuracy and memory footprint was carefully considered to effectively implement this application on a mobile humanoid robot.
comment: 9 pages, 8 figures and 1 table. Accepted at the 17th International Conference on Agents and Artificial Intelligence (ICAART 2025), Porto, Portugal
☆ Crowdsourced human-based computational approach for tagging peripheral blood smear sample images from Sickle Cell Disease patients using non-expert users
In this paper, we present a human-based computation approach for the analysis of peripheral blood smear (PBS) images images in patients with Sickle Cell Disease (SCD). We used the Mechanical Turk microtask market to crowdsource the labeling of PBS images. We then use the expert-tagged erythrocytesIDB dataset to assess the accuracy and reliability of our proposal. Our results showed that when a robust consensus is achieved among the Mechanical Turk workers, probability of error is very low, based on comparison with expert analysis. This suggests that our proposed approach can be used to annotate datasets of PBS images, which can then be used to train automated methods for the diagnosis of SCD. In future work, we plan to explore the potential integration of our findings with outcomes obtained through automated methodologies. This could lead to the development of more accurate and reliable methods for the diagnosis of SCD
☆ Generalizable Graph Neural Networks for Robust Power Grid Topology Control
The energy transition necessitates new congestion management methods. One such method is controlling the grid topology with machine learning (ML). This approach has gained popularity following the Learning to Run a Power Network (L2RPN) competitions. Graph neural networks (GNNs) are a class of ML models that reflect graph structure in their computation, which makes them suitable for power grid modeling. Various GNN approaches for topology control have thus been proposed. We propose the first GNN model for grid topology control that uses only GNN layers. Additionally, we identify the busbar information asymmetry problem that the popular homogeneous graph representation suffers from, and propose a heterogeneous graph representation to resolve it. We train both homogeneous and heterogeneous GNNs and fully connected neural networks (FCNN) baselines on an imitation learning task. We evaluate the models according to their classification accuracy and grid operation ability. We find that the heterogeneous GNNs perform best on in-distribution networks, followed by the FCNNs, and lastly, the homogeneous GNNs. We also find that both GNN types generalize better to out-of-distribution networks than FCNNs.
☆ Kriging and Gaussian Process Interpolation for Georeferenced Data Augmentation
Data augmentation is a crucial step in the development of robust supervised learning models, especially when dealing with limited datasets. This study explores interpolation techniques for the augmentation of geo-referenced data, with the aim of predicting the presence of Commelina benghalensis L. in sugarcane plots in La R{\'e}union. Given the spatial nature of the data and the high cost of data collection, we evaluated two interpolation approaches: Gaussian processes (GPs) with different kernels and kriging with various variograms. The objectives of this work are threefold: (i) to identify which interpolation methods offer the best predictive performance for various regression algorithms, (ii) to analyze the evolution of performance as a function of the number of observations added, and (iii) to assess the spatial consistency of augmented datasets. The results show that GP-based methods, in particular with combined kernels (GP-COMB), significantly improve the performance of regression algorithms while requiring less additional data. Although kriging shows slightly lower performance, it is distinguished by a more homogeneous spatial coverage, a potential advantage in certain contexts.
☆ The Spoils of Algorithmic Collusion: Profit Allocation Among Asymmetric Firms
We study the propensity of independent algorithms to collude in repeated Cournot duopoly games. Specifically, we investigate the predictive power of different oligopoly and bargaining solutions regarding the effect of asymmetry between firms. We find that both consumers and firms can benefit from asymmetry. Algorithms produce more competitive outcomes when firms are symmetric, but less when they are very asymmetric. Although the static Nash equilibrium underestimates the effect on total quantity and overestimates the effect on profits, it delivers surprisingly accurate predictions in terms of total welfare. The best description of our results is provided by the equal relative gains solution. In particular, we find algorithms to agree on profits that are on or close to the Pareto frontier for all degrees of asymmetry. Our results suggest that the common belief that symmetric industries are more prone to collusion may no longer hold when algorithms increasingly drive managerial decisions.
☆ Anomalous Agreement: How to find the Ideal Number of Anomaly Classes in Correlated, Multivariate Time Series Data AAAI
Detecting and classifying abnormal system states is critical for condition monitoring, but supervised methods often fall short due to the rarity of anomalies and the lack of labeled data. Therefore, clustering is often used to group similar abnormal behavior. However, evaluating cluster quality without ground truth is challenging, as existing measures such as the Silhouette Score (SSC) only evaluate the cohesion and separation of clusters and ignore possible prior knowledge about the data. To address this challenge, we introduce the Synchronized Anomaly Agreement Index (SAAI), which exploits the synchronicity of anomalies across multivariate time series to assess cluster quality. We demonstrate the effectiveness of SAAI by showing that maximizing SAAI improves accuracy on the task of finding the true number of anomaly classes K in correlated time series by 0.23 compared to SSC and by 0.32 compared to X-Means. We also show that clusters obtained by maximizing SAAI are easier to interpret compared to SSC.
comment: Acccepted at AAAI Workshop on AI for Time Series Analysis (AI4TS) 2025
☆ Natural Language-Assisted Multi-modal Medication Recommendation
Combinatorial medication recommendation(CMR) is a fundamental task of healthcare, which offers opportunities for clinical physicians to provide more precise prescriptions for patients with intricate health conditions, particularly in the scenarios of long-term medical care. Previous research efforts have sought to extract meaningful information from electronic health records (EHRs) to facilitate combinatorial medication recommendations. Existing learning-based approaches further consider the chemical structures of medications, but ignore the textual medication descriptions in which the functionalities are clearly described. Furthermore, the textual knowledge derived from the EHRs of patients remains largely underutilized. To address these issues, we introduce the Natural Language-Assisted Multi-modal Medication Recommendation(NLA-MMR), a multi-modal alignment framework designed to learn knowledge from the patient view and medication view jointly. Specifically, NLA-MMR formulates CMR as an alignment problem from patient and medication modalities. In this vein, we employ pretrained language models(PLMs) to extract in-domain knowledge regarding patients and medications, serving as the foundational representation for both modalities. In the medication modality, we exploit both chemical structures and textual descriptions to create medication representations. In the patient modality, we generate the patient representations based on textual descriptions of diagnosis, procedure, and symptom. Extensive experiments conducted on three publicly accessible datasets demonstrate that NLA-MMR achieves new state-of-the-art performance, with a notable average improvement of 4.72% in Jaccard score. Our source code is publicly available on https://github.com/jtan1102/NLA-MMR_CIKM_2024.
comment: 10 pages
☆ QuantuneV2: Compiler-Based Local Metric-Driven Mixed Precision Quantization for Practical Embedded AI Applications
Mixed-precision quantization methods have been proposed to reduce model size while minimizing accuracy degradation. However, existing studies require retraining and do not consider the computational overhead and intermediate representations (IR) generated during the compilation process, limiting their application at the compiler level. This computational overhead refers to the runtime latency caused by frequent quantization and dequantization operations during inference. Performing these operations at the individual operator level causes significant runtime delays. To address these issues, we propose QuantuneV2, a compiler-based mixed-precision quantization method designed for practical embedded AI applications. QuantuneV2 performs inference only twice, once before quantization and once after quantization, and operates with a computational complexity of O(n) that increases linearly with the number of model parameters. We also made the sensitivity analysis more stable by using local metrics like weights, activation values, the Signal to Quantization Noise Ratio, and the Mean Squared Error. We also cut down on computational overhead by choosing the best IR and using operator fusion. Experimental results show that QuantuneV2 achieved up to a 10.28 percent improvement in accuracy and a 12.52 percent increase in speed compared to existing methods across five models: ResNet18v1, ResNet50v1, SqueezeNetv1, VGGNet, and MobileNetv2. This demonstrates that QuantuneV2 enhances model performance while maintaining computational efficiency, making it suitable for deployment in embedded AI environments.
comment: 18 pages, 10 figures, Accepted in Future Generation Computer Systems Journal
☆ Eye Sclera for Fair Face Image Quality Assessment
Fair operational systems are crucial in gaining and maintaining society's trust in face recognition systems (FRS). FRS start with capturing an image and assessing its quality before using it further for enrollment or verification. Fair Face Image Quality Assessment (FIQA) schemes therefore become equally important in the context of fair FRS. This work examines the sclera as a quality assessment region for obtaining a fair FIQA. The sclera region is agnostic to demographic variations and skin colour for assessing the quality of a face image. We analyze three skin tone related ISO/IEC face image quality assessment measures and assess the sclera region as an alternative area for assessing FIQ. Our analysis of the face dataset of individuals from different demographic groups representing different skin tones indicates sclera as an alternative to measure dynamic range, over- and under-exposure of face using sclera region alone. The sclera region being agnostic to skin tone, i.e., demographic factors, provides equal utility as a fair FIQA as shown by our Error-vs-Discard Characteristic (EDC) curve analysis.
☆ CureGraph: Contrastive Multi-Modal Graph Representation Learning for Urban Living Circle Health Profiling and Prediction
The early detection and prediction of health status decline among the elderly at the neighborhood level are of great significance for urban planning and public health policymaking. While existing studies affirm the connection between living environments and health outcomes, most rely on single data modalities or simplistic feature concatenation of multi-modal information, limiting their ability to comprehensively profile the health-oriented urban environments. To fill this gap, we propose CureGraph, a contrastive multi-modal representation learning framework for urban health prediction that employs graph-based techniques to infer the prevalence of common chronic diseases among the elderly within the urban living circles of each neighborhood. CureGraph leverages rich multi-modal information, including photos and textual reviews of residential areas and their surrounding points of interest, to generate urban neighborhood embeddings. By integrating pre-trained visual and textual encoders with graph modeling techniques, CureGraph captures cross-modal spatial dependencies, offering a comprehensive understanding of urban environments tailored to elderly health considerations. Extensive experiments on real-world datasets demonstrate that CureGraph improves the best baseline by $28\%$ on average in terms of $R^2$ across elderly disease risk prediction tasks. Moreover, the model enables the identification of stage-wise chronic disease progression and supports comparative public health analysis across neighborhoods, offering actionable insights for sustainable urban development and enhanced quality of life. The code is publicly available at https://github.com/jinlin2021/CureGraph.
☆ TIMRL: A Novel Meta-Reinforcement Learning Framework for Non-Stationary and Multi-Task Environments
In recent years, meta-reinforcement learning (meta-RL) algorithm has been proposed to improve sample efficiency in the field of decision-making and control, enabling agents to learn new knowledge from a small number of samples. However, most research uses the Gaussian distribution to extract task representation, which is poorly adapted to tasks that change in non-stationary environment. To address this problem, we propose a novel meta-reinforcement learning method by leveraging Gaussian mixture model and the transformer network to construct task inference model. The Gaussian mixture model is utilized to extend the task representation and conduct explicit encoding of tasks. Specifically, the classification of tasks is encoded through transformer network to determine the Gaussian component corresponding to the task. By leveraging task labels, the transformer network is trained using supervised learning. We validate our method on MuJoCo benchmarks with non-stationary and multi-task environments. Experimental results demonstrate that the proposed method dramatically improves sample efficiency and accurately recognizes the classification of the tasks, while performing excellently in the environment.
☆ FlexQuant: Elastic Quantization Framework for Locally Hosted LLM on Edge Devices
Deploying LLMs on edge devices presents serious technical challenges. Memory elasticity is crucial for edge devices with unified memory, where memory is shared and fluctuates dynamically. Existing solutions suffer from either poor transition granularity or high storage costs. We propose FlexQuant, a novel elasticity framework that generates an ensemble of quantized models, providing an elastic hosting solution with 15x granularity improvement and 10x storage reduction compared to SoTA methods. FlexQuant works with most quantization methods and creates a family of trade-off options under various storage limits through our pruning method. It brings great performance and flexibility to the edge deployment of LLMs.
☆ How GPT learns layer by layer
Large Language Models (LLMs) excel at tasks like language processing, strategy games, and reasoning but struggle to build generalizable internal representations essential for adaptive decision-making in agents. For agents to effectively navigate complex environments, they must construct reliable world models. While LLMs perform well on specific benchmarks, they often fail to generalize, leading to brittle representations that limit their real-world effectiveness. Understanding how LLMs build internal world models is key to developing agents capable of consistent, adaptive behavior across tasks. We analyze OthelloGPT, a GPT-based model trained on Othello gameplay, as a controlled testbed for studying representation learning. Despite being trained solely on next-token prediction with random valid moves, OthelloGPT shows meaningful layer-wise progression in understanding board state and gameplay. Early layers capture static attributes like board edges, while deeper layers reflect dynamic tile changes. To interpret these representations, we compare Sparse Autoencoders (SAEs) with linear probes, finding that SAEs offer more robust, disentangled insights into compositional features, whereas linear probes mainly detect features useful for classification. We use SAEs to decode features related to tile color and tile stability, a previously unexamined feature that reflects complex gameplay concepts like board control and long-term planning. We study the progression of linear probe accuracy and tile color using both SAE's and linear probes to compare their effectiveness at capturing what the model is learning. Although we begin with a smaller language model, OthelloGPT, this study establishes a framework for understanding the internal representations learned by GPT models, transformers, and LLMs more broadly. Our code is publicly available: https://github.com/ALT-JS/OthelloSAE.
☆ AdaCS: Adaptive Normalization for Enhanced Code-Switching ASR ICASSP 2025
Intra-sentential code-switching (CS) refers to the alternation between languages that happens within a single utterance and is a significant challenge for Automatic Speech Recognition (ASR) systems. For example, when a Vietnamese speaker uses foreign proper names or specialized terms within their speech. ASR systems often struggle to accurately transcribe intra-sentential CS due to their training on monolingual data and the unpredictable nature of CS. This issue is even more pronounced for low-resource languages, where limited data availability hinders the development of robust models. In this study, we propose AdaCS, a normalization model integrates an adaptive bias attention module (BAM) into encoder-decoder network. This novel approach provides a robust solution to CS ASR in unseen domains, thereby significantly enhancing our contribution to the field. By utilizing BAM to both identify and normalize CS phrases, AdaCS enhances its adaptive capabilities with a biased list of words provided during inference. Our method demonstrates impressive performance and the ability to handle unseen CS phrases across various domains. Experiments show that AdaCS outperforms previous state-of-the-art method on Vietnamese CS ASR normalization by considerable WER reduction of 56.2% and 36.8% on the two proposed test sets.
comment: Accepted at ICASSP 2025
☆ Collaborative Learning for 3D Hand-Object Reconstruction and Compositional Action Recognition from Egocentric RGB Videos Using Superquadrics AAAI 2025
With the availability of egocentric 3D hand-object interaction datasets, there is increasing interest in developing unified models for hand-object pose estimation and action recognition. However, existing methods still struggle to recognise seen actions on unseen objects due to the limitations in representing object shape and movement using 3D bounding boxes. Additionally, the reliance on object templates at test time limits their generalisability to unseen objects. To address these challenges, we propose to leverage superquadrics as an alternative 3D object representation to bounding boxes and demonstrate their effectiveness on both template-free object reconstruction and action recognition tasks. Moreover, as we find that pure appearance-based methods can outperform the unified methods, the potential benefits from 3D geometric information remain unclear. Therefore, we study the compositionality of actions by considering a more challenging task where the training combinations of verbs and nouns do not overlap with the testing split. We extend H2O and FPHA datasets with compositional splits and design a novel collaborative learning framework that can explicitly reason about the geometric relations between hands and the manipulated object. Through extensive quantitative and qualitative evaluations, we demonstrate significant improvements over the state-of-the-arts in (compositional) action recognition.
comment: Accepted to AAAI 2025
☆ MathReader : Text-to-Speech for Mathematical Documents ICASSP 2025
TTS (Text-to-Speech) document reader from Microsoft, Adobe, Apple, and OpenAI have been serviced worldwide. They provide relatively good TTS results for general plain text, but sometimes skip contents or provide unsatisfactory results for mathematical expressions. This is because most modern academic papers are written in LaTeX, and when LaTeX formulas are compiled, they are rendered as distinctive text forms within the document. However, traditional TTS document readers output only the text as it is recognized, without considering the mathematical meaning of the formulas. To address this issue, we propose MathReader, which effectively integrates OCR, a fine-tuned T5 model, and TTS. MathReader demonstrated a lower Word Error Rate (WER) than existing TTS document readers, such as Microsoft Edge and Adobe Acrobat, when processing documents containing mathematical formulas. MathReader reduced the WER from 0.510 to 0.281 compared to Microsoft Edge, and from 0.617 to 0.281 compared to Adobe Acrobat. This will significantly contribute to alleviating the inconvenience faced by users who want to listen to documents, especially those who are visually impaired. The code is available at https://github.com/hyeonsieun/MathReader.
comment: Accepted at ICASSP 2025
☆ Video Quality Assessment for Online Processing: From Spatial to Temporal Sampling
With the rapid development of multimedia processing and deep learning technologies, especially in the field of video understanding, video quality assessment (VQA) has achieved significant progress. Although researchers have moved from designing efficient video quality mapping models to various research directions, in-depth exploration of the effectiveness-efficiency trade-offs of spatio-temporal modeling in VQA models is still less sufficient. Considering the fact that videos have highly redundant information, this paper investigates this problem from the perspective of joint spatial and temporal sampling, aiming to seek the answer to how little information we should keep at least when feeding videos into the VQA models while with acceptable performance sacrifice. To this end, we drastically sample the video's information from both spatial and temporal dimensions, and the heavily squeezed video is then fed into a stable VQA model. Comprehensive experiments regarding joint spatial and temporal sampling are conducted on six public video quality databases, and the results demonstrate the acceptable performance of the VQA model when throwing away most of the video information. Furthermore, with the proposed joint spatial and temporal sampling strategy, we make an initial attempt to design an online VQA model, which is instantiated by as simple as possible a spatial feature extractor, a temporal feature fusion module, and a global quality regression module. Through quantitative and qualitative experiments, we verify the feasibility of online VQA model by simplifying itself and reducing input.
☆ ADKGD: Anomaly Detection in Knowledge Graphs with Dual-Channel Training
In the current development of large language models (LLMs), it is important to ensure the accuracy and reliability of the underlying data sources. LLMs are critical for various applications, but they often suffer from hallucinations and inaccuracies due to knowledge gaps in the training data. Knowledge graphs (KGs), as a powerful structural tool, could serve as a vital external information source to mitigate the aforementioned issues. By providing a structured and comprehensive understanding of real-world data, KGs enhance the performance and reliability of LLMs. However, it is common that errors exist in KGs while extracting triplets from unstructured data to construct KGs. This could lead to degraded performance in downstream tasks such as question-answering and recommender systems. Therefore, anomaly detection in KGs is essential to identify and correct these errors. This paper presents an anomaly detection algorithm in knowledge graphs with dual-channel learning (ADKGD). ADKGD leverages a dual-channel learning approach to enhance representation learning from both the entity-view and triplet-view perspectives. Furthermore, using a cross-layer approach, our framework integrates internal information aggregation and context information aggregation. We introduce a kullback-leibler (KL)-loss component to improve the accuracy of the scoring function between the dual channels. To evaluate ADKGD's performance, we conduct empirical studies on three real-world KGs: WN18RR, FB15K, and NELL-995. Experimental results demonstrate that ADKGD outperforms the state-of-the-art anomaly detection algorithms. The source code and datasets are publicly available at https://github.com/csjywu1/ADKGD.
comment: Preprint. 11 figures, 6 tables
☆ Representation Learning of Point Cloud Upsampling in Global and Local Inputs
In recent years, point cloud upsampling has been widely applied in fields such as 3D reconstruction. Our study investigates the factors influencing point cloud upsampling on both global and local levels through representation learning. Specifically, the paper inputs global and local information of the same point cloud model object into two encoders to extract these features, fuses them, and then feeds the combined features into an upsampling decoder. The goal is to address issues of sparsity and noise in point clouds by leveraging prior knowledge from both global and local inputs. And the proposed framework can be applied to any state-of-the-art point cloud upsampling neural network. Experiments were conducted on a series of autoencoder-based models utilizing deep learning, yielding interpretability for both global and local inputs, and it has been proven in the results that our proposed framework can further improve the upsampling effect in previous SOTA works. At the same time, the Saliency Map reflects the differences between global and local feature inputs, as well as the effectiveness of training with both inputs in parallel.
☆ Value Compass Leaderboard: A Platform for Fundamental and Validated Evaluation of LLMs Values
As Large Language Models (LLMs) achieve remarkable breakthroughs, aligning their values with humans has become imperative for their responsible development and customized applications. However, there still lack evaluations of LLMs values that fulfill three desirable goals. (1) Value Clarification: We expect to clarify the underlying values of LLMs precisely and comprehensively, while current evaluations focus narrowly on safety risks such as bias and toxicity. (2) Evaluation Validity: Existing static, open-source benchmarks are prone to data contamination and quickly become obsolete as LLMs evolve. Additionally, these discriminative evaluations uncover LLMs' knowledge about values, rather than valid assessments of LLMs' behavioral conformity to values. (3) Value Pluralism: The pluralistic nature of human values across individuals and cultures is largely ignored in measuring LLMs value alignment. To address these challenges, we presents the Value Compass Leaderboard, with three correspondingly designed modules. It (i) grounds the evaluation on motivationally distinct \textit{basic values to clarify LLMs' underlying values from a holistic view; (ii) applies a \textit{generative evolving evaluation framework with adaptive test items for evolving LLMs and direct value recognition from behaviors in realistic scenarios; (iii) propose a metric that quantifies LLMs alignment with a specific value as a weighted sum over multiple dimensions, with weights determined by pluralistic values.
☆ Logic Meets Magic: LLMs Cracking Smart Contract Vulnerabilities
Smart contract vulnerabilities caused significant economic losses in blockchain applications. Large Language Models (LLMs) provide new possibilities for addressing this time-consuming task. However, state-of-the-art LLM-based detection solutions are often plagued by high false-positive rates. In this paper, we push the boundaries of existing research in two key ways. First, our evaluation is based on Solidity v0.8, offering the most up-to-date insights compared to prior studies that focus on older versions (v0.4). Second, we leverage the latest five LLM models (across companies), ensuring comprehensive coverage across the most advanced capabilities in the field. We conducted a series of rigorous evaluations. Our experiments demonstrate that a well-designed prompt can reduce the false-positive rate by over 60%. Surprisingly, we also discovered that the recall rate for detecting some specific vulnerabilities in Solidity v0.8 has dropped to just 13% compared to earlier versions (i.e., v0.4). Further analysis reveals the root cause of this decline: the reliance of LLMs on identifying changes in newly introduced libraries and frameworks during detection.
☆ PoAct: Policy and Action Dual-Control Agent for Generalized Applications
Based on their superior comprehension and reasoning capabilities, Large Language Model (LLM) driven agent frameworks have achieved significant success in numerous complex reasoning tasks. ReAct-like agents can solve various intricate problems step-by-step through progressive planning and tool calls, iteratively optimizing new steps based on environmental feedback. However, as the planning capabilities of LLMs improve, the actions invoked by tool calls in ReAct-like frameworks often misalign with complex planning and challenging data organization. Code Action addresses these issues while also introducing the challenges of a more complex action space and more difficult action organization. To leverage Code Action and tackle the challenges of its complexity, this paper proposes Policy and Action Dual-Control Agent (PoAct) for generalized applications. The aim is to achieve higher-quality code actions and more accurate reasoning paths by dynamically switching reasoning policies and modifying the action space. Experimental results on the Agent Benchmark for both legal and generic scenarios demonstrate the superior reasoning capabilities and reduced token consumption of our approach in complex tasks. On the LegalAgentBench, our method shows a 20 percent improvement over the baseline while requiring fewer tokens. We conducted experiments and analyses on the GPT-4o and GLM-4 series models, demonstrating the significant potential and scalability of our approach to solve complex problems.
☆ Unveiling the Potential of Text in High-Dimensional Time Series Forecasting NeurIPS24
Time series forecasting has traditionally focused on univariate and multivariate numerical data, often overlooking the benefits of incorporating multimodal information, particularly textual data. In this paper, we propose a novel framework that integrates time series models with Large Language Models to improve high-dimensional time series forecasting. Inspired by multimodal models, our method combines time series and textual data in the dual-tower structure. This fusion of information creates a comprehensive representation, which is then processed through a linear layer to generate the final forecast. Extensive experiments demonstrate that incorporating text enhances high-dimensional time series forecasting performance. This work paves the way for further research in multimodal time series forecasting.
comment: Accepted by NeurIPS24 TSALM Workshop
☆ ACCon: Angle-Compensated Contrastive Regularizer for Deep Regression AAAI-2025
In deep regression, capturing the relationship among continuous labels in feature space is a fundamental challenge that has attracted increasing interest. Addressing this issue can prevent models from converging to suboptimal solutions across various regression tasks, leading to improved performance, especially for imbalanced regression and under limited sample sizes. However, existing approaches often rely on order-aware representation learning or distance-based weighting. In this paper, we hypothesize a linear negative correlation between label distances and representation similarities in regression tasks. To implement this, we propose an angle-compensated contrastive regularizer for deep regression, which adjusts the cosine distance between anchor and negative samples within the contrastive learning framework. Our method offers a plug-and-play compatible solution that extends most existing contrastive learning methods for regression tasks. Extensive experiments and theoretical analysis demonstrate that our proposed angle-compensated contrastive regularizer not only achieves competitive regression performance but also excels in data efficiency and effectiveness on imbalanced datasets.
comment: Accept by AAAI-2025 (The 39th Annual AAAI Conference on Artificial Intelligence)
☆ A Proposed Large Language Model-Based Smart Search for Archive System
This study presents a novel framework for smart search in digital archival systems, leveraging the capabilities of Large Language Models (LLMs) to enhance information retrieval. By employing a Retrieval-Augmented Generation (RAG) approach, the framework enables the processing of natural language queries and transforming non-textual data into meaningful textual representations. The system integrates advanced metadata generation techniques, a hybrid retrieval mechanism, a router query engine, and robust response synthesis, the results proved search precision and relevance. We present the architecture and implementation of the system and evaluate its performance in four experiments concerning LLM efficiency, hybrid retrieval optimizations, multilingual query handling, and the impacts of individual components. Obtained results show significant improvements over conventional approaches and have demonstrated the potential of AI-powered systems to transform modern archival practices.
comment: The 13th International Symposium on Information and Communication Technology (SOICT 2024)
☆ Neural Probabilistic Circuits: Enabling Compositional and Interpretable Predictions through Logical Reasoning
End-to-end deep neural networks have achieved remarkable success across various domains but are often criticized for their lack of interpretability. While post hoc explanation methods attempt to address this issue, they often fail to accurately represent these black-box models, resulting in misleading or incomplete explanations. To overcome these challenges, we propose an inherently transparent model architecture called Neural Probabilistic Circuits (NPCs), which enable compositional and interpretable predictions through logical reasoning. In particular, an NPC consists of two modules: an attribute recognition model, which predicts probabilities for various attributes, and a task predictor built on a probabilistic circuit, which enables logical reasoning over recognized attributes to make class predictions. To train NPCs, we introduce a three-stage training algorithm comprising attribute recognition, circuit construction, and joint optimization. Moreover, we theoretically demonstrate that an NPC's error is upper-bounded by a linear combination of the errors from its modules. To further demonstrate the interpretability of NPC, we provide both the most probable explanations and the counterfactual explanations. Empirical results on four benchmark datasets show that NPCs strike a balance between interpretability and performance, achieving results competitive even with those of end-to-end black-box models while providing enhanced interpretability.
☆ ViSoLex: An Open-Source Repository for Vietnamese Social Media Lexical Normalization COLING 2025
ViSoLex is an open-source system designed to address the unique challenges of lexical normalization for Vietnamese social media text. The platform provides two core services: Non-Standard Word (NSW) Lookup and Lexical Normalization, enabling users to retrieve standard forms of informal language and standardize text containing NSWs. ViSoLex's architecture integrates pre-trained language models and weakly supervised learning techniques to ensure accurate and efficient normalization, overcoming the scarcity of labeled data in Vietnamese. This paper details the system's design, functionality, and its applications for researchers and non-technical users. Additionally, ViSoLex offers a flexible, customizable framework that can be adapted to various datasets and research requirements. By publishing the source code, ViSoLex aims to contribute to the development of more robust Vietnamese natural language processing tools and encourage further research in lexical normalization. Future directions include expanding the system's capabilities for additional languages and improving the handling of more complex non-standard linguistic patterns.
comment: The 31st International Conference on Computational Linguistics (COLING 2025)
☆ UNetVL: Enhancing 3D Medical Image Segmentation with Chebyshev KAN Powered Vision-LSTM
3D medical image segmentation has progressed considerably due to Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs), yet these methods struggle to balance long-range dependency acquisition with computational efficiency. To address this challenge, we propose UNETVL (U-Net Vision-LSTM), a novel architecture that leverages recent advancements in temporal information processing. UNETVL incorporates Vision-LSTM (ViL) for improved scalability and memory functions, alongside an efficient Chebyshev Kolmogorov-Arnold Networks (KAN) to handle complex and long-range dependency patterns more effectively. We validated our method on the ACDC and AMOS2022 (post challenge Task 2) benchmark datasets, showing a significant improvement in mean Dice score compared to recent state-of-the-art approaches, especially over its predecessor, UNETR, with increases of 7.3% on ACDC and 15.6% on AMOS, respectively. Extensive ablation studies were conducted to demonstrate the impact of each component in UNETVL, providing a comprehensive understanding of its architecture. Our code is available at https://github.com/tgrex6/UNETVL, facilitating further research and applications in this domain.
☆ A Multi-Modal Deep Learning Framework for Pan-Cancer Prognosis
Prognostic task is of great importance as it closely related to the survival analysis of patients, the optimization of treatment plans and the allocation of resources. The existing prognostic models have shown promising results on specific datasets, but there are limitations in two aspects. On the one hand, they merely explore certain types of modal data, such as patient histopathology WSI and gene expression analysis. On the other hand, they adopt the per-cancer-per-model paradigm, which means the trained models can only predict the prognostic effect of a single type of cancer, resulting in weak generalization ability. In this paper, a deep-learning based model, named UMPSNet, is proposed. Specifically, to comprehensively understand the condition of patients, in addition to constructing encoders for histopathology images and genomic expression profiles respectively, UMPSNet further integrates four types of important meta data (demographic information, cancer type information, treatment protocols, and diagnosis results) into text templates, and then introduces a text encoder to extract textual features. In addition, the optimal transport OT-based attention mechanism is utilized to align and fuse features of different modalities. Furthermore, a guided soft mixture of experts (GMoE) mechanism is introduced to effectively address the issue of distribution differences among multiple cancer datasets. By incorporating the multi-modality of patient data and joint training, UMPSNet outperforms all SOTA approaches, and moreover, it demonstrates the effectiveness and generalization ability of the proposed learning paradigm of a single model for multiple cancer types. The code of UMPSNet is available at https://github.com/binging512/UMPSNet.
☆ AlgoRxplorers | Precision in Mutation -- Enhancing Drug Design with Advanced Protein Stability Prediction Tools
Predicting the impact of single-point amino acid mutations on protein stability is essential for understanding disease mechanisms and advancing drug development. Protein stability, quantified by changes in Gibbs free energy ($\Delta\Delta G$), is influenced by these mutations. However, the scarcity of data and the complexity of model interpretation pose challenges in accurately predicting stability changes. This study proposes the application of deep neural networks, leveraging transfer learning and fusing complementary information from different models, to create a feature-rich representation of the protein stability landscape. We developed four models, with our third model, ThermoMPNN+, demonstrating the best performance in predicting $\Delta\Delta G$ values. This approach, which integrates diverse feature sets and embeddings through latent transfusion techniques, aims to refine $\Delta\Delta G$ predictions and contribute to a deeper understanding of protein dynamics, potentially leading to advancements in disease research and drug discovery.
☆ Likelihood Training of Cascaded Diffusion Models via Hierarchical Volume-preserving Maps ICLR 2024
Cascaded models are multi-scale generative models with a marked capacity for producing perceptually impressive samples at high resolutions. In this work, we show that they can also be excellent likelihood models, so long as we overcome a fundamental difficulty with probabilistic multi-scale models: the intractability of the likelihood function. Chiefly, in cascaded models each intermediary scale introduces extraneous variables that cannot be tractably marginalized out for likelihood evaluation. This issue vanishes by modeling the diffusion process on latent spaces induced by a class of transformations we call hierarchical volume-preserving maps, which decompose spatially structured data in a hierarchical fashion without introducing local distortions in the latent space. We demonstrate that two such maps are well-known in the literature for multiscale modeling: Laplacian pyramids and wavelet transforms. Not only do such reparameterizations allow the likelihood function to be directly expressed as a joint likelihood over the scales, we show that the Laplacian pyramid and wavelet transform also produces significant improvements to the state-of-the-art on a selection of benchmarks in likelihood modeling, including density estimation, lossless compression, and out-of-distribution detection. Investigating the theoretical basis of our empirical gains we uncover deep connections to score matching under the Earth Mover's Distance (EMD), which is a well-known surrogate for perceptual similarity. Code can be found at \href{https://github.com/lihenryhfl/pcdm}{this https url}.
comment: Spotlight at ICLR 2024
☆ Motion Tracks: A Unified Representation for Human-Robot Transfer in Few-Shot Imitation Learning
Teaching robots to autonomously complete everyday tasks remains a challenge. Imitation Learning (IL) is a powerful approach that imbues robots with skills via demonstrations, but is limited by the labor-intensive process of collecting teleoperated robot data. Human videos offer a scalable alternative, but it remains difficult to directly train IL policies from them due to the lack of robot action labels. To address this, we propose to represent actions as short-horizon 2D trajectories on an image. These actions, or motion tracks, capture the predicted direction of motion for either human hands or robot end-effectors. We instantiate an IL policy called Motion Track Policy (MT-pi) which receives image observations and outputs motion tracks as actions. By leveraging this unified, cross-embodiment action space, MT-pi completes tasks with high success given just minutes of human video and limited additional robot demonstrations. At test time, we predict motion tracks from two camera views, recovering 6DoF trajectories via multi-view synthesis. MT-pi achieves an average success rate of 86.5% across 4 real-world tasks, outperforming state-of-the-art IL baselines which do not leverage human data or our action space by 40%, and generalizes to scenarios seen only in human videos. Code and videos are available on our website https://portal-cornell.github.io/motion_track_policy/.
☆ Graph Contrastive Learning on Multi-label Classification for Recommendations
In business analysis, providing effective recommendations is essential for enhancing company profits. The utilization of graph-based structures, such as bipartite graphs, has gained popularity for their ability to analyze complex data relationships. Link prediction is crucial for recommending specific items to users. Traditional methods in this area often involve identifying patterns in the graph structure or using representational techniques like graph neural networks (GNNs). However, these approaches encounter difficulties as the volume of data increases. To address these challenges, we propose a model called Graph Contrastive Learning for Multi-label Classification (MCGCL). MCGCL leverages contrastive learning to enhance recommendation effectiveness. The model incorporates two training stages: a main task and a subtask. The main task is holistic user-item graph learning to capture user-item relationships. The homogeneous user-user (item-item) subgraph is constructed to capture user-user and item-item relationships in the subtask. We assessed the performance using real-world datasets from Amazon Reviews in multi-label classification tasks. Comparative experiments with state-of-the-art methods confirm the effectiveness of MCGCL, highlighting its potential for improving recommendation systems.
comment: Preprint. 10 figures, 5 tables
☆ Data Enrichment Work and AI Labor in Latin America and the Caribbean
The global AI surge demands crowdworkers from diverse languages and cultures. They are pivotal in labeling data for enabling global AI systems. Despite global significance, research has primarily focused on understanding the perspectives and experiences of US and India crowdworkers, leaving a notable gap. To bridge this, we conducted a survey with 100 crowdworkers across 16 Latin American and Caribbean countries. We discovered that these workers exhibited pride and respect for their digital labor, with strong support and admiration from their families. Notably, crowd work was also seen as a stepping stone to financial and professional independence. Surprisingly, despite wanting more connection, these workers also felt isolated from peers and doubtful of others' labor quality. They resisted collaboration and gender-based tools, valuing gender-neutrality. Our work advances HCI understanding of Latin American and Caribbean crowdwork, offering insights for digital resistance tools for the region.
comment: 17 pages of content with 2 figures
☆ Combining LLM decision and RL action selection to improve RL policy for adaptive interventions
Reinforcement learning (RL) is increasingly being used in the healthcare domain, particularly for the development of personalized health adaptive interventions. Inspired by the success of Large Language Models (LLMs), we are interested in using LLMs to update the RL policy in real time, with the goal of accelerating personalization. We use the text-based user preference to influence the action selection on the fly, in order to immediately incorporate the user preference. We use the term "user preference" as a broad term to refer to a user personal preference, constraint, health status, or a statement expressing like or dislike, etc. Our novel approach is a hybrid method that combines the LLM response and the RL action selection to improve the RL policy. Given an LLM prompt that incorporates the user preference, the LLM acts as a filter in the typical RL action selection. We investigate different prompting strategies and action selection strategies. To evaluate our approach, we implement a simulation environment that generates the text-based user preferences and models the constraints that impact behavioral dynamics. We show that our approach is able to take into account the text-based user preferences, while improving the RL policy, thus improving personalization in adaptive intervention.
♻ ☆ Few-Shot Task Learning through Inverse Generative Modeling
Learning the intents of an agent, defined by its goals or motion style, is often extremely challenging from just a few examples. We refer to this problem as task concept learning and present our approach, Few-Shot Task Learning through Inverse Generative Modeling (FTL-IGM), which learns new task concepts by leveraging invertible neural generative models. The core idea is to pretrain a generative model on a set of basic concepts and their demonstrations. Then, given a few demonstrations of a new concept (such as a new goal or a new action), our method learns the underlying concepts through backpropagation without updating the model weights, thanks to the invertibility of the generative model. We evaluate our method in five domains -- object rearrangement, goal-oriented navigation, motion caption of human actions, autonomous driving, and real-world table-top manipulation. Our experimental results demonstrate that via the pretrained generative model, we successfully learn novel concepts and generate agent plans or motion corresponding to these concepts in (1) unseen environments and (2) in composition with training concepts.
comment: Added acknowledgment
♻ ☆ Sparse Attention Vectors: Generative Multimodal Model Features Are Discriminative Vision-Language Classifiers
Generative Large Multimodal Models (LMMs) like LLaVA and Qwen-VL excel at a wide variety of vision-language (VL) tasks such as image captioning or visual question answering. Despite strong performance, LMMs are not directly suited for foundational discriminative vision-language tasks (i.e., tasks requiring discrete label predictions) such as image classification and multiple-choice VQA. One key challenge in utilizing LMMs for discriminative tasks is the extraction of useful features from generative models. To overcome this issue, we propose an approach for finding features in the model's latent space to more effectively leverage LMMs for discriminative tasks. Toward this end, we present Sparse Attention Vectors (SAVs) -- a finetuning-free method that leverages sparse attention head activations (fewer than 1\% of the heads) in LMMs as strong features for VL tasks. With only few-shot examples, SAVs demonstrate state-of-the-art performance compared to a variety of few-shot and finetuned baselines on a collection of discriminative tasks. Our experiments also imply that SAVs can scale in performance with additional examples and generalize to similar tasks, establishing SAVs as both effective and robust multimodal feature representations.
♻ ☆ The infrastructure powering IBM's Gen AI model development
AI Infrastructure plays a key role in the speed and cost-competitiveness of developing and deploying advanced AI models. The current demand for powerful AI infrastructure for model training is driven by the emergence of generative AI and foundational models, where on occasion thousands of GPUs must cooperate on a single training job for the model to be trained in a reasonable time. Delivering efficient and high-performing AI training requires an end-to-end solution that combines hardware, software and holistic telemetry to cater for multiple types of AI workloads. In this report, we describe IBM's hybrid cloud infrastructure that powers our generative AI model development. This infrastructure includes (1) Vela: an AI-optimized supercomputing capability directly integrated into the IBM Cloud, delivering scalable, dynamic, multi-tenant and geographically distributed infrastructure for large-scale model training and other AI workflow steps and (2) Blue Vela: a large-scale, purpose-built, on-premises hosting environment that is optimized to support our largest and most ambitious AI model training tasks. Vela provides IBM with the dual benefit of high performance for internal use along with the flexibility to adapt to an evolving commercial landscape. Blue Vela provides us with the benefits of rapid development of our largest and most ambitious models, as well as future-proofing against the evolving model landscape in the industry. Taken together, they provide IBM with the ability to rapidly innovate in the development of both AI models and commercial offerings.
comment: Corresponding Authors: Talia Gershon, Seetharami Seelam,Brian Belgodere, Milton Bonilla
♻ ☆ Scideator: Human-LLM Scientific Idea Generation Grounded in Research-Paper Facet Recombination
The scientific ideation process often involves blending salient aspects of existing papers to create new ideas. To see if large language models (LLMs) can assist this process, we contribute Scideator, a novel mixed-initiative tool for scientific ideation. Starting from a user-provided set of papers, Scideator extracts key facets (purposes, mechanisms, and evaluations) from these and relevant papers, allowing users to explore the idea space by interactively recombining facets to synthesize inventive ideas. Scideator also helps users to gauge idea novelty by searching the literature for potential overlaps and showing automated novelty assessments and explanations. To support these tasks, Scideator introduces four LLM-powered retrieval-augmented generation (RAG) modules: Analogous Paper Facet Finder, Faceted Idea Generator, Idea Novelty Checker, and Idea Novelty Iterator. In a within-subjects user study, 19 computer-science researchers identified significantly more interesting ideas using Scideator compared to a strong baseline combining a scientific search engine with LLM interaction.
comment: Added supplementary material
♻ ☆ Divergences between Language Models and Human Brains
Do machines and humans process language in similar ways? Recent research has hinted at the affirmative, showing that human neural activity can be effectively predicted using the internal representations of language models (LMs). Although such results are thought to reflect shared computational principles between LMs and human brains, there are also clear differences in how LMs and humans represent and use language. In this work, we systematically explore the divergences between human and machine language processing by examining the differences between LM representations and human brain responses to language as measured by Magnetoencephalography (MEG) across two datasets in which subjects read and listened to narrative stories. Using an LLM-based data-driven approach, we identify two domains that LMs do not capture well: social/emotional intelligence and physical commonsense. We validate these findings with human behavioral experiments and hypothesize that the gap is due to insufficient representations of social/emotional and physical knowledge in LMs. Our results show that fine-tuning LMs on these domains can improve their alignment with human brain responses.
♻ ☆ Pre-trained Vision-Language Models Learn Discoverable Visual Concepts
Do vision-language models (VLMs) pre-trained to caption an image of a "durian" learn visual concepts such as "brown" (color) and "spiky" (texture) at the same time? We aim to answer this question as visual concepts learned "for free" would enable wide applications such as neuro-symbolic reasoning or human-interpretable object classification. We assume that the visual concepts, if captured by pre-trained VLMs, can be extracted by their vision-language interface with text-based concept prompts. We observe that recent works prompting VLMs with concepts often differ in their strategies to define and evaluate the visual concepts, leading to conflicting conclusions. We propose a new concept definition strategy based on two observations: First, certain concept prompts include shortcuts that recognize correct concepts for wrong reasons; Second, multimodal information (e.g. visual discriminativeness, and textual knowledge) should be leveraged when selecting the concepts. Our proposed concept discovery and learning (CDL) framework is thus designed to identify a diverse list of generic visual concepts (e.g. "spiky" as opposed to "spiky durian"), which are ranked and selected based on visual and language mutual information. We carefully design quantitative and human evaluations of the discovered concepts on six diverse visual recognition datasets, which confirm that pre-trained VLMs do learn visual concepts that provide accurate and thorough descriptions for the recognized objects. All code and models are publicly released.
comment: Transactions on Machine Learning Research, 2025
♻ ☆ Cocoa: Co-Planning and Co-Execution with AI Agents
We present Cocoa, a system that implements a novel interaction design pattern -- interactive plans -- for users to collaborate with an AI agent on complex, multi-step tasks in a document editor. Cocoa harmonizes human and AI efforts and enables flexible delegation of agency through two actions: Co-planning (where users collaboratively compose a plan of action with the agent) and Co-execution (where users collaboratively execute plan steps with the agent). Using scientific research as a sample domain, we motivate the design of Cocoa through a formative study with 9 researchers while also drawing inspiration from the design of computational notebooks. We evaluate Cocoa through a user study with 16 researchers and find that when compared to a strong chat baseline, Cocoa improved agent steerability without sacrificing ease of use. A deeper investigation of the general utility of both systems uncovered insights into usage contexts where interactive plans may be more appropriate than chat, and vice versa. Our work surfaces numerous practical implications and paves new paths for interactive interfaces that foster more effective collaboration between humans and agentic AI systems.
♻ ☆ Context Matters: Leveraging Contextual Features for Time Series Forecasting
Time series forecasts are often influenced by exogenous contextual features in addition to their corresponding history. For example, in financial settings, it is hard to accurately predict a stock price without considering public sentiments and policy decisions in the form of news articles, tweets, etc. Though this is common knowledge, the current state-of-the-art (SOTA) forecasting models fail to incorporate such contextual information, owing to its heterogeneity and multimodal nature. To address this, we introduce ContextFormer, a novel plug-and-play method to surgically integrate multimodal contextual information into existing pre-trained forecasting models. ContextFormer effectively distills forecast-specific information from rich multimodal contexts, including categorical, continuous, time-varying, and even textual information, to significantly enhance the performance of existing base forecasters. ContextFormer outperforms SOTA forecasting models by up to 30% on a range of real-world datasets spanning energy, traffic, environmental, and financial domains.
♻ ☆ A Mixed-Integer Conic Program for the Moving-Target Traveling Salesman Problem based on a Graph of Convex Sets
This paper introduces a new formulation that finds the optimum for the Moving-Target Traveling Salesman Problem (MT-TSP), which seeks to find a shortest path for an agent, that starts at a depot, visits a set of moving targets exactly once within their assigned time-windows, and returns to the depot. The formulation relies on the key idea that when the targets move along lines, their trajectories become convex sets within the space-time coordinate system. The problem then reduces to finding the shortest path within a graph of convex sets, subject to some speed constraints. We compare our formulation with the current state-of-the-art Mixed Integer Conic Program (MICP) solver for the MT-TSP. The experimental results show that our formulation outperforms the MICP for instances with up to 20 targets, with up to two orders of magnitude reduction in runtime, and up to a 60\% tighter optimality gap. We also show that the solution cost from the convex relaxation of our formulation provides significantly tighter lower bounds for the MT-TSP than the ones from the MICP.
comment: 7 pages, 4 figures
♻ ☆ Remove that Square Root: A New Efficient Scale-Invariant Version of AdaGrad
Adaptive methods are extremely popular in machine learning as they make learning rate tuning less expensive. This paper introduces a novel optimization algorithm named KATE, which presents a scale-invariant adaptation of the well-known AdaGrad algorithm. We prove the scale-invariance of KATE for the case of Generalized Linear Models. Moreover, for general smooth non-convex problems, we establish a convergence rate of $O \left(\frac{\log T}{\sqrt{T}} \right)$ for KATE, matching the best-known ones for AdaGrad and Adam. We also compare KATE to other state-of-the-art adaptive algorithms Adam and AdaGrad in numerical experiments with different problems, including complex machine learning tasks like image classification and text classification on real data. The results indicate that KATE consistently outperforms AdaGrad and matches/surpasses the performance of Adam in all considered scenarios.
comment: 32 pages, 12 figures
♻ ☆ Harnessing Multimodal Large Language Models for Multimodal Sequential Recommendation
Recent advances in Large Language Models (LLMs) have demonstrated significant potential in the field of Recommendation Systems (RSs). Most existing studies have focused on converting user behavior logs into textual prompts and leveraging techniques such as prompt tuning to enable LLMs for recommendation tasks. Meanwhile, research interest has recently grown in multimodal recommendation systems that integrate data from images, text, and other sources using modality fusion techniques. This introduces new challenges to the existing LLM-based recommendation paradigm which relies solely on text modality information. Moreover, although Multimodal Large Language Models (MLLMs) capable of processing multi-modal inputs have emerged, how to equip MLLMs with multi-modal recommendation capabilities remains largely unexplored. To this end, in this paper, we propose the Multimodal Large Language Model-enhanced Multimodaln Sequential Recommendation (MLLM-MSR) model. To capture the dynamic user preference, we design a two-stage user preference summarization method. Specifically, we first utilize an MLLM-based item-summarizer to extract image feature given an item and convert the image into text. Then, we employ a recurrent user preference summarization generation paradigm to capture the dynamic changes in user preferences based on an LLM-based user-summarizer. Finally, to enable the MLLM for multi-modal recommendation task, we propose to fine-tune a MLLM-based recommender using Supervised Fine-Tuning (SFT) techniques. Extensive evaluations across various datasets validate the effectiveness of MLLM-MSR, showcasing its superior ability to capture and adapt to the evolving dynamics of user preferences.
♻ ☆ The importance of visual modelling languages in generative software engineering
Multimodal GPTs represent a watershed in the interplay between Software Engineering and Generative Artificial Intelligence. GPT-4 accepts image and text inputs, rather than simply natural language. We investigate relevant use cases stemming from these enhanced capabilities of GPT-4. To the best of our knowledge, no other work has investigated similar use cases involving Software Engineering tasks carried out via multimodal GPTs prompted with a mix of diagrams and natural language.
comment: 9 pages, working paper
♻ ☆ FlashRNN: Optimizing Traditional RNNs on Modern Hardware
While Transformers and other sequence-parallelizable neural network architectures seem like the current state of the art in sequence modeling, they specifically lack state-tracking capabilities. These are important for time-series tasks and logical reasoning. Traditional RNNs like LSTMs and GRUs, as well as modern variants like sLSTM do have these capabilities at the cost of strictly sequential processing. While this is often seen as a strong limitation, we show how fast these networks can get with our hardware-optimization FlashRNN in Triton and CUDA, optimizing kernels to the register level on modern GPUs. We extend traditional RNNs with a parallelization variant that processes multiple RNNs of smaller hidden state in parallel, similar to the head-wise processing in Transformers. To enable flexibility on different GPU variants, we introduce a new optimization framework for hardware-internal cache sizes, memory and compute handling. It models the hardware in a setting using polyhedral-like constraints, including the notion of divisibility. This speeds up the solution process in our ConstrINT library for general integer constraint satisfaction problems (integer CSPs). We show that our kernels can achieve 50x speed-ups over a vanilla PyTorch implementation and allow 40x larger hidden sizes compared to our Triton implementation. Our open-source kernels and the optimization library are released here to boost research in the direction of state-tracking enabled RNNs and sequence modeling: \url{https://github.com/NX-AI/flashrnn}
♻ ☆ Explainable AI for Classifying UTI Risk Groups Using a Real-World Linked EHR and Pathology Lab Dataset
The use of machine learning and AI on electronic health records (EHRs) holds substantial potential for clinical insight. However, this approach faces challenges due to data heterogeneity, sparsity, temporal misalignment, and limited labeled outcomes. In this context, we leverage a linked EHR dataset of approximately one million de-identified individuals from Bristol, North Somerset, and South Gloucestershire, UK, to characterize urinary tract infections (UTIs). We implemented a data pre-processing and curation pipeline that transforms the raw EHR data into a structured format suitable for developing predictive models focused on data fairness, accountability and transparency. Given the limited availability and biases of ground truth UTI outcomes, we introduce a UTI risk estimation framework informed by clinical expertise to estimate UTI risk across individual patient timelines. Pairwise XGBoost models are trained using this framework to differentiate UTI risk categories with explainable AI techniques applied to identify key predictors and support interpretability. Our findings reveal differences in clinical and demographic predictors across risk groups. While this study highlights the potential of AI-driven insights to support UTI clinical decision-making, further investigation of patient sub-strata and extensive validation are needed to ensure robustness and applicability in clinical practice.
♻ ☆ Small Language Models can Outperform Humans in Short Creative Writing: A Study Comparing SLMs with Humans and LLMs COLING 2025
In this paper, we evaluate the creative fiction writing abilities of a fine-tuned small language model (SLM), BART-large, and compare its performance to human writers and two large language models (LLMs): GPT-3.5 and GPT-4o. Our evaluation consists of two experiments: (i) a human study in which 68 participants rated short stories from humans and the SLM on grammaticality, relevance, creativity, and attractiveness, and (ii) a qualitative linguistic analysis examining the textual characteristics of stories produced by each model. In the first experiment, BART-large outscored average human writers overall (2.11 vs. 1.85), a 14% relative improvement, though the slight human advantage in creativity was not statistically significant. In the second experiment, qualitative analysis showed that while GPT-4o demonstrated near-perfect coherence and used less cliche phrases, it tended to produce more predictable language, with only 3% of its synopses featuring surprising associations (compared to 15% for BART). These findings highlight how model size and fine-tuning influence the balance between creativity, fluency, and coherence in creative writing tasks, and demonstrate that smaller models can, in certain contexts, rival both humans and larger models.
comment: Accepted as Main Conference Paper at COLING 2025
♻ ☆ Zero-Shot Pupil Segmentation with SAM 2: A Case Study of Over 14 Million Images
We explore the transformative potential of SAM 2, a vision foundation model, in advancing gaze estimation and eye tracking technologies. By significantly reducing annotation time, lowering technical barriers through its ease of deployment, and enhancing segmentation accuracy, SAM 2 addresses critical challenges faced by researchers and practitioners. Utilizing its zero-shot segmentation capabilities with minimal user input-a single click per video-we tested SAM 2 on over 14 million eye images from diverse datasets, including virtual reality setups and the world's largest unified dataset recorded using wearable eye trackers. Remarkably, in pupil segmentation tasks, SAM 2 matches the performance of domain-specific models trained solely on eye images, achieving competitive mean Intersection over Union (mIoU) scores of up to 93% without fine-tuning. Additionally, we provide our code and segmentation masks for these widely used datasets to promote further research.
comment: Virmarie Maquiling and Sean Anthony Byrne contributed equally to this paper, 8 pages, 3 figures, ETRA 2025, pre-print
♻ ☆ Distributed Representations Enable Robust Multi-Timescale Symbolic Computation in Neuromorphic Hardware
Programming recurrent spiking neural networks (RSNNs) to robustly perform multi-timescale computation remains a difficult challenge. To address this, we describe a single-shot weight learning scheme to embed robust multi-timescale dynamics into attractor-based RSNNs, by exploiting the properties of high-dimensional distributed representations. We embed finite state machines into the RSNN dynamics by superimposing a symmetric autoassociative weight matrix and asymmetric transition terms, which are each formed by the vector binding of an input and heteroassociative outer-products between states. Our approach is validated through simulations with highly nonideal weights; an experimental closed-loop memristive hardware setup; and on Loihi 2, where it scales seamlessly to large state machines. This work introduces a scalable approach to embed robust symbolic computation through recurrent dynamics into neuromorphic hardware, without requiring parameter fine-tuning or significant platform-specific optimisation. Moreover, it demonstrates that distributed symbolic representations serve as a highly capable representation-invariant language for cognitive algorithms in neuromorphic hardware.
comment: 19 pages, 7 figures. Supplementary material: 13 pages, 8 figures. Accepted for publication in Neuromorphic Computing and Engineering
♻ ☆ Constructing and explaining machine learning models for chemistry: example of the exploration and design of boron-based Lewis acids
The integration of machine learning (ML) into chemistry offers transformative potential in the design of molecules with targeted properties. However, the focus has often been on creating highly efficient predictive models, sometimes at the expense of interpretability. In this study, we leverage explainable AI techniques to explore the rational design of boron-based Lewis acids, which play a pivotal role in organic reactions due to their electron-ccepting properties. Using Fluoride Ion Affinity as a proxy for Lewis acidity, we developed interpretable ML models based on chemically meaningful descriptors, including ab initio computed features and substituent-based parameters derived from the Hammett linear free-energy relationship. By constraining the chemical space to well-defined molecular scaffolds, we achieved highly accurate predictions (mean absolute error < 6 kJ/mol), surpassing conventional black-box deep learning models in low-data regimes. Interpretability analyses of the models shed light on the origin of Lewis acidity in these compounds and identified actionable levers to modulate it through the nature and positioning of substituents on the molecular scaffold. This work bridges ML and chemist's way of thinking, demonstrating how explainable models can inspire molecular design and enhance scientific understanding of chemical reactivity.
comment: Main text is 14 pages, 7 figures, 1 scheme. Supporting information is 25 pages. For associated code and datasets, see https://github.com/jfenogli/XAI_boron_LA
♻ ☆ Project Tracyn: Generative Artificial Intelligence based Peripherals Trace Synthesizer
Peripheral Component Interconnect Express (PCIe) is the de facto interconnect standard for high-speed peripherals and CPUs. Prototyping and optimizing PCIe devices for emerging scenarios is an ongoing challenge. Since Transaction Layer Packets (TLPs) capture device-CPU interactions, it is crucial to analyze and generate realistic TLP traces for effective device design and optimization. Generative AI offers a promising approach for creating intricate, custom TLP traces necessary for PCIe hardware and software development. However, existing models often generate impractical traces due to the absence of PCIe-specific constraints, such as TLP ordering and causality. This paper presents Phantom, the first framework that treats TLP trace generation as a generative AI problem while incorporating PCIe-specific constraints. We validate Phantom's effectiveness by generating TLP traces for an actual PCIe network interface card. Experimental results show that Phantom produces practical, large-scale TLP traces, significantly outperforming existing models, with improvements of up to 1000$\times$ in task-specific metrics and up to 2.19$\times$ in Frechet Inception Distance (FID) compared to backbone-only methods.
♻ ☆ Mitigating Out-of-Entity Errors in Named Entity Recognition: A Sentence-Level Strategy COLING 2025
Many previous models of named entity recognition (NER) suffer from the problem of Out-of-Entity (OOE), i.e., the tokens in the entity mentions of the test samples have not appeared in the training samples, which hinders the achievement of satisfactory performance. To improve OOE-NER performance, in this paper, we propose a new framework, namely S+NER, which fully leverages sentence-level information. Our S+NER achieves better OOE-NER performance mainly due to the following two particular designs. 1) It first exploits the pre-trained language model's capability of understanding the target entity's sentence-level context with a template set. 2) Then, it refines the sentence-level representation based on the positive and negative templates, through a contrastive learning strategy and template pooling method, to obtain better NER results. Our extensive experiments on five benchmark datasets have demonstrated that, our S+NER outperforms some state-of-the-art OOE-NER models.
comment: Accepted by COLING 2025
♻ ☆ QuadWBG: Generalizable Quadrupedal Whole-Body Grasping
Legged robots with advanced manipulation capabilities have the potential to significantly improve household duties and urban maintenance. Despite considerable progress in developing robust locomotion and precise manipulation methods, seamlessly integrating these into cohesive whole-body control for real-world applications remains challenging. In this paper, we present a modular framework for robust and generalizable whole-body loco-manipulation controller based on a single arm-mounted camera. By using reinforcement learning (RL), we enable a robust low-level policy for command execution over 5 dimensions (5D) and a grasp-aware high-level policy guided by a novel metric, Generalized Oriented Reachability Map (GORM). The proposed system achieves state-of-the-art one-time grasping accuracy of 89% in the real world, including challenging tasks such as grasping transparent objects. Through extensive simulations and real-world experiments, we demonstrate that our system can effectively manage a large workspace, from floor level to above body height, and perform diverse whole-body loco-manipulation tasks.
♻ ☆ SCC-YOLO: An Improved Object Detector for Assisting in Brain Tumor Diagnosis
Brain tumors can result in neurological dysfunction, alterations in cognitive and psychological states, increased intracranial pressure, and the occurrence of seizures, thereby presenting a substantial risk to human life and health. The You Only Look Once(YOLO) series models have demonstrated superior accuracy in object detection for medical imaging. In this paper, we develop a novel SCC-YOLO architecture by integrating the SCConv attention mechanism into YOLOv9. The SCConv module reconstructs an efficient convolutional module by reducing spatial and channel redundancy among features, thereby enhancing the learning of image features. We investigate the impact of intergrating different attention mechanisms with the YOLOv9 model on brain tumor image detection using both the Br35H dataset and our self-made dataset(Brain_Tumor_Dataset). Experimental results show that on the Br35H dataset, SCC-YOLO achieved a 0.3% improvement in mAp50 compared to YOLOv9, while on our self-made dataset, SCC-YOLO exhibited a 0.5% improvement over YOLOv9. SCC-YOLO has reached state-of-the-art performance in brain tumor detection. Source code is available at : https://jihulab.com/healthcare-information-studio/SCC-YOLO/-/tree/master
♻ ☆ AI-Driven Early Mental Health Screening: Analyzing Selfies of Pregnant Women ALT
Major Depressive Disorder and anxiety disorders affect millions globally, contributing significantly to the burden of mental health issues. Early screening is crucial for effective intervention, as timely identification of mental health issues can significantly improve treatment outcomes. Artificial intelligence (AI) can be valuable for improving the screening of mental disorders, enabling early intervention and better treatment outcomes. AI-driven screening can leverage the analysis of multiple data sources, including facial features in digital images. However, existing methods often rely on controlled environments or specialized equipment, limiting their broad applicability. This study explores the potential of AI models for ubiquitous depression-anxiety screening given face-centric selfies. The investigation focuses on high-risk pregnant patients, a population that is particularly vulnerable to mental health issues. To cope with limited training data resulting from our clinical setup, pre-trained models were utilized in two different approaches: fine-tuning convolutional neural networks (CNNs) originally designed for facial expression recognition and employing vision-language models (VLMs) for zero-shot analysis of facial expressions. Experimental results indicate that the proposed VLM-based method significantly outperforms CNNs, achieving an accuracy of 77.6%. Although there is significant room for improvement, the results suggest that VLMs can be a promising approach for mental health screening.
comment: This article has been accepted for publication in HEALTHINF25 at the 18th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2025)
♻ ☆ DrLLM: Prompt-Enhanced Distributed Denial-of-Service Resistance Method with Large Language Models ICASSP2025
The increasing number of Distributed Denial of Service (DDoS) attacks poses a major threat to the Internet, highlighting the importance of DDoS mitigation. Most existing approaches require complex training methods to learn data features, which increases the complexity and generality of the application. In this paper, we propose DrLLM, which aims to mine anomalous traffic information in zero-shot scenarios through Large Language Models (LLMs). To bridge the gap between DrLLM and existing approaches, we embed the global and local information of the traffic data into the reasoning paradigm and design three modules, namely Knowledge Embedding, Token Embedding, and Progressive Role Reasoning, for data representation and reasoning. In addition we explore the generalization of prompt engineering in the cybersecurity domain to improve the classification capability of DrLLM. Our ablation experiments demonstrate the applicability of DrLLM in zero-shot scenarios and further demonstrate the potential of LLMs in the network domains. DrLLM implementation code has been open-sourced at https://github.com/liuup/DrLLM.
comment: Accepted by ICASSP2025
♻ ☆ Multi-Head Explainer: A General Framework to Improve Explainability in CNNs and Transformers
In this study, we introduce the Multi-Head Explainer (MHEX), a versatile and modular framework that enhances both the explainability and accuracy of Convolutional Neural Networks (CNNs) and Transformer-based models. MHEX consists of three core components: an Attention Gate that dynamically highlights task-relevant features, Deep Supervision that guides early layers to capture fine-grained details pertinent to the target class, and an Equivalent Matrix that unifies refined local and global representations to generate comprehensive saliency maps. Our approach demonstrates superior compatibility, enabling effortless integration into existing residual networks like ResNet and Transformer architectures such as BERT with minimal modifications. Extensive experiments on benchmark datasets in medical imaging and text classification show that MHEX not only improves classification accuracy but also produces highly interpretable and detailed saliency scores.
♻ ☆ Tiny Models are the Computational Saver for Large Models
This paper introduces TinySaver, an early-exit-like dynamic model compression approach which employs tiny models to substitute large models adaptively. Distinct from traditional compression techniques, dynamic methods like TinySaver can leverage the difficulty differences to allow certain inputs to complete their inference processes early, thereby conserving computational resources. Most existing early exit designs are implemented by attaching additional network branches to the model's backbone. Our study, however, reveals that completely independent tiny models can replace a substantial portion of the larger models' job with minimal impact on performance. Employing them as the first exit can remarkably enhance computational efficiency. By searching and employing the most appropriate tiny model as the computational saver for a given large model, the proposed approaches work as a novel and generic method to model compression. This finding will help the research community in exploring new compression methods to address the escalating computational demands posed by rapidly evolving AI models. Our evaluation of this approach in ImageNet-1k classification demonstrates its potential to reduce the number of compute operations by up to 90\%, with only negligible losses in performance, across various modern vision models.
♻ ☆ Imitating from auxiliary imperfect demonstrations via Adversarial Density Weighted Regression
We propose a novel one-step supervised imitation learning (IL) framework called Adversarial Density Regression (ADR). This IL framework aims to correct the policy learned on unknown-quality to match the expert distribution by utilizing demonstrations, without relying on the Bellman operator. Specifically, ADR addresses several limitations in previous IL algorithms: First, most IL algorithms are based on the Bellman operator, which inevitably suffer from cumulative offsets from sub-optimal rewards during multi-step update processes. Additionally, off-policy training frameworks suffer from Out-of-Distribution (OOD) state-actions. Second, while conservative terms help solve the OOD issue, balancing the conservative term is difficult. To address these limitations, we fully integrate a one-step density-weighted Behavioral Cloning (BC) objective for IL with auxiliary imperfect demonstration. Theoretically, we demonstrate that this adaptation can effectively correct the distribution of policies trained on unknown-quality datasets to align with the expert policy's distribution. Moreover, the difference between the empirical and the optimal value function is proportional to the upper bound of ADR's objective, indicating that minimizing ADR's objective is akin to approaching the optimal value. Experimentally, we validated the performance of ADR by conducting extensive evaluations. Specifically, ADR outperforms all of the selected IL algorithms on tasks from the Gym-Mujoco domain. Meanwhile, it achieves an 89.5% improvement over IQL when utilizing ground truth rewards on tasks from the Adroit and Kitchen domains. Our codebase will be released at: https://github.com/stevezhangzA/Adverserial_Density_Regression.
♻ ☆ D3RM: A Discrete Denoising Diffusion Refinement Model for Piano Transcription ICASSP 2025
Diffusion models have been widely used in the generative domain due to their convincing performance in modeling complex data distributions. Moreover, they have shown competitive results on discriminative tasks, such as image segmentation. While diffusion models have also been explored for automatic music transcription, their performance has yet to reach a competitive level. In this paper, we focus on discrete diffusion model's refinement capabilities and present a novel architecture for piano transcription. Our model utilizes Neighborhood Attention layers as the denoising module, gradually predicting the target high-resolution piano roll, conditioned on the finetuned features of a pretrained acoustic model. To further enhance refinement, we devise a novel strategy which applies distinct transition states during training and inference stage of discrete diffusion models. Experiments on the MAESTRO dataset show that our approach outperforms previous diffusion-based piano transcription models and the baseline model in terms of F1 score. Our code is available in https://github.com/hanshounsu/d3rm.
comment: Accepted to ICASSP 2025
♻ ☆ Are LLMs Good Cryptic Crossword Solvers?
Cryptic crosswords are puzzles that rely not only on general knowledge but also on the solver's ability to manipulate language on different levels and deal with various types of wordplay. Previous research suggests that solving such puzzles is a challenge even for modern NLP models. However, the abilities of large language models (LLMs) have not yet been tested on this task. In this paper, we establish the benchmark results for three popular LLMs -- LLaMA2, Mistral, and ChatGPT -- showing that their performance on this task is still far from that of humans.
♻ ☆ SyncDiff: Synchronized Motion Diffusion for Multi-Body Human-Object Interaction Synthesis
Synthesizing realistic human-object interaction motions is a critical problem in VR/AR and human animation. Unlike the commonly studied scenarios involving a single human or hand interacting with one object, we address a more generic multi-body setting with arbitrary numbers of humans, hands, and objects. This complexity introduces significant challenges in synchronizing motions due to the high correlations and mutual influences among bodies. To address these challenges, we introduce SyncDiff, a novel method for multi-body interaction synthesis using a synchronized motion diffusion strategy. SyncDiff employs a single diffusion model to capture the joint distribution of multi-body motions. To enhance motion fidelity, we propose a frequency-domain motion decomposition scheme. Additionally, we introduce a new set of alignment scores to emphasize the synchronization of different body motions. SyncDiff jointly optimizes both data sample likelihood and alignment likelihood through an explicit synchronization strategy. Extensive experiments across four datasets with various multi-body configurations demonstrate the superiority of SyncDiff over existing state-of-the-art motion synthesis methods.
♻ ☆ VaeDiff-DocRE: End-to-end Data Augmentation Framework for Document-level Relation Extraction COLING 2025
Document-level Relation Extraction (DocRE) aims to identify relationships between entity pairs within a document. However, most existing methods assume a uniform label distribution, resulting in suboptimal performance on real-world, imbalanced datasets. To tackle this challenge, we propose a novel data augmentation approach using generative models to enhance data from the embedding space. Our method leverages the Variational Autoencoder (VAE) architecture to capture all relation-wise distributions formed by entity pair representations and augment data for underrepresented relations. To better capture the multi-label nature of DocRE, we parameterize the VAE's latent space with a Diffusion Model. Additionally, we introduce a hierarchical training framework to integrate the proposed VAE-based augmentation module into DocRE systems. Experiments on two benchmark datasets demonstrate that our method outperforms state-of-the-art models, effectively addressing the long-tail distribution problem in DocRE.
comment: COLING 2025
♻ ☆ PSA-VLM: Enhancing Vision-Language Model Safety through Progressive Concept-Bottleneck-Driven Alignment
Benefiting from the powerful capabilities of Large Language Models (LLMs), pre-trained visual encoder models connected to LLMs form Vision Language Models (VLMs). However, recent research shows that the visual modality in VLMs is highly vulnerable, allowing attackers to bypass safety alignment in LLMs through visually transmitted content, launching harmful attacks. To address this challenge, we propose a progressive concept-based alignment strategy, PSA-VLM, which incorporates safety modules as concept bottlenecks to enhance visual modality safety alignment. By aligning model predictions with specific safety concepts, we improve defenses against risky images, enhancing explainability and controllability while minimally impacting general performance. Our method is obtained through two-stage training. The low computational cost of the first stage brings very effective performance improvement, and the fine-tuning of the language model in the second stage further improves the safety performance. Our method achieves state-of-the-art results on popular VLM safety benchmark.
comment: arXiv admin note: substantial text overlap with arXiv:2405.13581
♻ ☆ Migician: Revealing the Magic of Free-Form Multi-Image Grounding in Multimodal Large Language Models
The recent advancement of Multimodal Large Language Models (MLLMs) has significantly improved their fine-grained perception of single images and general comprehension across multiple images. However, existing MLLMs still face challenges in achieving precise grounding in complex multi-image scenarios. To address this, we first explore a Chain-of-Thought (CoT) framework that integrates single-image grounding with multi-image comprehension. While partially effective, it remains unstable and struggles to capture abstract visual information due to its non-end-to-end nature. Therefore, we introduce Migician, the first multi-image grounding model capable of performing free-form and accurate grounding across multiple images. To support this, we present the MGrounding-630k dataset, which comprises data for several multi-image grounding tasks derived from existing datasets, along with newly generated free-form grounding instruction-following data. Furthermore, we propose MIG-Bench, a comprehensive benchmark specifically designed for evaluating multi-image grounding capabilities. Experimental results demonstrate that our model achieves significantly superior multi-image grounding capabilities, outperforming the best existing MLLMs by 21.61% and even surpassing much larger 70B models. Our code, model, dataset, and benchmark are fully open-sourced at https://migician-vg.github.io/.
comment: 20 pages, 8 figures
♻ ☆ MusicLIME: Explainable Multimodal Music Understanding ICASSP 2025
Multimodal models are critical for music understanding tasks, as they capture the complex interplay between audio and lyrics. However, as these models become more prevalent, the need for explainability grows-understanding how these systems make decisions is vital for ensuring fairness, reducing bias, and fostering trust. In this paper, we introduce MusicLIME, a model-agnostic feature importance explanation method designed for multimodal music models. Unlike traditional unimodal methods, which analyze each modality separately without considering the interaction between them, often leading to incomplete or misleading explanations, MusicLIME reveals how audio and lyrical features interact and contribute to predictions, providing a holistic view of the model's decision-making. Additionally, we enhance local explanations by aggregating them into global explanations, giving users a broader perspective of model behavior. Through this work, we contribute to improving the interpretability of multimodal music models, empowering users to make informed choices, and fostering more equitable, fair, and transparent music understanding systems.
comment: GitHub repository: https://github.com/IamTheo2000/MusicLIME. To be presented at ICASSP 2025
♻ ☆ Assessment and manipulation of latent constructs in pre-trained language models using psychometric scales
Human-like personality traits have recently been discovered in large language models, raising the hypothesis that their (known and as yet undiscovered) biases conform with human latent psychological constructs. While large conversational models may be tricked into answering psychometric questionnaires, the latent psychological constructs of thousands of simpler transformers, trained for other tasks, cannot be assessed because appropriate psychometric methods are currently lacking. Here, we show how standard psychological questionnaires can be reformulated into natural language inference prompts, and we provide a code library to support the psychometric assessment of arbitrary models. We demonstrate, using a sample of 88 publicly available models, the existence of human-like mental health-related constructs (including anxiety, depression, and Sense of Coherence) which conform with standard theories in human psychology and show similar correlations and mitigation strategies. The ability to interpret and rectify the performance of language models by using psychological tools can boost the development of more explainable, controllable, and trustworthy models.
♻ ☆ InstructOCR: Instruction Boosting Scene Text Spotting AAAI2025
In the field of scene text spotting, previous OCR methods primarily relied on image encoders and pre-trained text information, but they often overlooked the advantages of incorporating human language instructions. To address this gap, we propose InstructOCR, an innovative instruction-based scene text spotting model that leverages human language instructions to enhance the understanding of text within images. Our framework employs both text and image encoders during training and inference, along with instructions meticulously designed based on text attributes. This approach enables the model to interpret text more accurately and flexibly. Extensive experiments demonstrate the effectiveness of our model and we achieve state-of-the-art results on widely used benchmarks. Furthermore, the proposed framework can be seamlessly applied to scene text VQA tasks. By leveraging instruction strategies during pre-training, the performance on downstream VQA tasks can be significantly improved, with a 2.6% increase on the TextVQA dataset and a 2.1% increase on the ST-VQA dataset. These experimental results provide insights into the benefits of incorporating human language instructions for OCR-related tasks.
comment: Accepted by AAAI2025
♻ ☆ II-Bench: An Image Implication Understanding Benchmark for Multimodal Large Language Models
The rapid advancements in the development of multimodal large language models (MLLMs) have consistently led to new breakthroughs on various benchmarks. In response, numerous challenging and comprehensive benchmarks have been proposed to more accurately assess the capabilities of MLLMs. However, there is a dearth of exploration of the higher-order perceptual capabilities of MLLMs. To fill this gap, we propose the Image Implication understanding Benchmark, II-Bench, which aims to evaluate the model's higher-order perception of images. Through extensive experiments on II-Bench across multiple MLLMs, we have made significant findings. Initially, a substantial gap is observed between the performance of MLLMs and humans on II-Bench. The pinnacle accuracy of MLLMs attains 74.8%, whereas human accuracy averages 90%, peaking at an impressive 98%. Subsequently, MLLMs perform worse on abstract and complex images, suggesting limitations in their ability to understand high-level semantics and capture image details. Finally, it is observed that most models exhibit enhanced accuracy when image sentiment polarity hints are incorporated into the prompts. This observation underscores a notable deficiency in their inherent understanding of image sentiment. We believe that II-Bench will inspire the community to develop the next generation of MLLMs, advancing the journey towards expert artificial general intelligence (AGI). II-Bench is publicly available at https://huggingface.co/datasets/m-a-p/II-Bench.
comment: 100 pages, 82 figures, add citations
♻ ☆ Exploring Feature-based Knowledge Distillation for Recommender System: A Frequency Perspective KDD 2025
In this paper, we analyze the feature-based knowledge distillation for recommendation from the frequency perspective. By defining knowledge as different frequency components of the features, we theoretically demonstrate that regular feature-based knowledge distillation is equivalent to equally minimizing losses on all knowledge and further analyze how this equal loss weight allocation method leads to important knowledge being overlooked. In light of this, we propose to emphasize important knowledge by redistributing knowledge weights. Furthermore, we propose FreqD, a lightweight knowledge reweighting method, to avoid the computational cost of calculating losses on each knowledge. Extensive experiments demonstrate that FreqD consistently and significantly outperforms state-of-the-art knowledge distillation methods for recommender systems. Our code is available at https://github.com/woriazzc/KDs.
comment: ACM KDD 2025 Accepted
♻ ☆ WeCromCL: Weakly Supervised Cross-Modality Contrastive Learning for Transcription-only Supervised Text Spotting ECCV 2024
Transcription-only Supervised Text Spotting aims to learn text spotters relying only on transcriptions but no text boundaries for supervision, thus eliminating expensive boundary annotation. The crux of this task lies in locating each transcription in scene text images without location annotations. In this work, we formulate this challenging problem as a Weakly Supervised Cross-modality Contrastive Learning problem, and design a simple yet effective model dubbed WeCromCL that is able to detect each transcription in a scene image in a weakly supervised manner. Unlike typical methods for cross-modality contrastive learning that focus on modeling the holistic semantic correlation between an entire image and a text description, our WeCromCL conducts atomistic contrastive learning to model the character-wise appearance consistency between a text transcription and its correlated region in a scene image to detect an anchor point for the transcription in a weakly supervised manner. The detected anchor points by WeCromCL are further used as pseudo location labels to guide the learning of text spotting. Extensive experiments on four challenging benchmarks demonstrate the superior performance of our model over other methods. Code will be released.
comment: Accepted by ECCV 2024
♻ ☆ AI-Driven Diabetic Retinopathy Screening: Multicentric Validation of AIDRSS in India
Purpose: Diabetic retinopathy (DR) is a major cause of vision loss, particularly in India, where access to retina specialists is limited in rural areas. This study aims to evaluate the Artificial Intelligence-based Diabetic Retinopathy Screening System (AIDRSS) for DR detection and prevalence assessment, addressing the growing need for scalable, automated screening solutions in resource-limited settings. Approach: A multicentric, cross-sectional study was conducted in Kolkata, India, involving 5,029 participants and 10,058 macula-centric retinal fundus images. The AIDRSS employed a deep learning algorithm with 50 million trainable parameters, integrated with Contrast Limited Adaptive Histogram Equalization (CLAHE) preprocessing for enhanced image quality. DR was graded using the International Clinical Diabetic Retinopathy (ICDR) Scale, categorizing disease into five stages (DR0 to DR4). Statistical metrics including sensitivity, specificity, and prevalence rates were evaluated against expert retina specialist assessments. Results: The prevalence of DR in the general population was 13.7%, rising to 38.2% among individuals with elevated random blood glucose levels. The AIDRSS achieved an overall sensitivity of 92%, specificity of 88%, and 100% sensitivity for detecting referable DR (DR3 and DR4). These results demonstrate the system's robust performance in accurately identifying and grading DR in a diverse population. Conclusions: AIDRSS provides a reliable, scalable solution for early DR detection in resource-constrained environments. Its integration of advanced AI techniques ensures high diagnostic accuracy, with potential to significantly reduce the burden of diabetes-related vision loss in underserved regions.
comment: 22 pages, 5 figures. arXiv admin note: substantial text overlap with arXiv:1812.07105 by other authors without attribution
♻ ☆ Quilt-LLaVA: Visual Instruction Tuning by Extracting Localized Narratives from Open-Source Histopathology Videos
Diagnosis in histopathology requires a global whole slide images (WSIs) analysis, requiring pathologists to compound evidence from different WSI patches. The gigapixel scale of WSIs poses a challenge for histopathology multi-modal models. Training multi-model models for histopathology requires instruction tuning datasets, which currently contain information for individual image patches, without a spatial grounding of the concepts within each patch and without a wider view of the WSI. Therefore, they lack sufficient diagnostic capacity for histopathology. To bridge this gap, we introduce Quilt-Instruct, a large-scale dataset of 107,131 histopathology-specific instruction question/answer pairs, grounded within diagnostically relevant image patches that make up the WSI. Our dataset is collected by leveraging educational histopathology videos from YouTube, which provides spatial localization of narrations by automatically extracting the narrators' cursor positions. Quilt-Instruct supports contextual reasoning by extracting diagnosis and supporting facts from the entire WSI. Using Quilt-Instruct, we train Quilt-LLaVA, which can reason beyond the given single image patch, enabling diagnostic reasoning across patches. To evaluate Quilt-LLaVA, we propose a comprehensive evaluation dataset created from 985 images and 1283 human-generated question-answers. We also thoroughly evaluate Quilt-LLaVA using public histopathology datasets, where Quilt-LLaVA significantly outperforms SOTA by over 10% on relative GPT-4 score and 4% and 9% on open and closed set VQA. Our code, data, and model are publicly accessible at quilt-llava.github.io.
♻ ☆ Continual Learning with Strategic Selection and Forgetting for Network Intrusion Detection
Intrusion Detection Systems (IDS) are crucial for safeguarding digital infrastructure. In dynamic network environments, both threat landscapes and normal operational behaviors are constantly changing, resulting in concept drift. While continuous learning mitigates the adverse effects of concept drift, insufficient attention to drift patterns and excessive preservation of outdated knowledge can still hinder the IDS's adaptability. In this paper, we propose SSF (Strategic Selection and Forgetting), a novel continual learning method for IDS, providing continuous model updates with a constantly refreshed memory buffer. Our approach features a strategic sample selection algorithm to select representative new samples and a strategic forgetting mechanism to drop outdated samples. The proposed strategic sample selection algorithm prioritizes new samples that cause the `drifted' pattern, enabling the model to better understand the evolving landscape. Additionally, we introduce strategic forgetting upon detecting significant drift by discarding outdated samples to free up memory, allowing the incorporation of more recent data. SSF captures evolving patterns effectively and ensures the model is aligned with the change of data patterns, significantly enhancing the IDS's adaptability to concept drift. The state-of-the-art performance of SSF on NSL-KDD and UNSW-NB15 datasets demonstrates its superior adaptability to concept drift for network intrusion detection.
comment: Accepted by IEEE International Conference on Computer Communications (INFOCOM) 2025
♻ ☆ MIO: A Foundation Model on Multimodal Tokens
In this paper, we introduce MIO, a novel foundation model built on multimodal tokens, capable of understanding and generating speech, text, images, and videos in an end-to-end, autoregressive manner. While the emergence of large language models (LLMs) and multimodal large language models (MM-LLMs) propels advancements in artificial general intelligence through their versatile capabilities, they still lack true any-to-any understanding and generation. Recently, the release of GPT-4o has showcased the remarkable potential of any-to-any LLMs for complex real-world tasks, enabling omnidirectional input and output across images, speech, and text. However, it is closed-source and does not support the generation of multimodal interleaved sequences. To address this gap, we present MIO, which is trained on a mixture of discrete tokens across four modalities using causal multimodal modeling. MIO undergoes a four-stage training process: (1) alignment pre-training, (2) interleaved pre-training, (3) speech-enhanced pre-training, and (4) comprehensive supervised fine-tuning on diverse textual, visual, and speech tasks. Our experimental results indicate that MIO exhibits competitive, and in some cases superior, performance compared to previous dual-modal baselines, any-to-any model baselines, and even modality-specific baselines. Moreover, MIO demonstrates advanced capabilities inherent to its any-to-any feature, such as interleaved video-text generation, chain-of-visual-thought reasoning, visual guideline generation, instructional image editing, etc.
comment: Technical Report. Codes and models are available in https://github.com/MIO-Team/MIO
♻ ☆ A Comprehensive Study of Structural Pruning for Vision Models
Structural pruning has emerged as a promising approach for producing more efficient models. Nevertheless, the community suffers from a lack of standardized benchmarks and metrics, leaving the progress in this area not fully comprehended.To fill this gap, we present the first comprehensive benchmark, termed PruningBench, for structural pruning. PruningBench showcases the following three characteristics: 1) PruningBench employs a unified and consistent framework for evaluating the effectiveness of diverse structural pruning techniques; 2) PruningBench systematically evaluates 16 existing pruning methods, encompassing a wide array of models (e.g., CNNs and ViTs) and tasks (e.g., classification and detection); 3) PruningBench provides easily implementable interfaces to facilitate the implementation of future pruning methods, and enables the subsequent researchers to incorporate their work into our leaderboards. We provide an online pruning platform for customizing pruning tasks and reproducing all results in this paper. Leaderboard results can also be available.
comment: This is a paper aims to present a evaluation benchmark for structural pruning. The full text is 25 pages
♻ ☆ Buster: Implanting Semantic Backdoor into Text Encoder to Mitigate NSFW Content Generation
The rise of deep learning models in the digital era has raised substantial concerns regarding the generation of Not-Safe-for-Work (NSFW) content. Existing defense methods primarily involve model fine-tuning and post-hoc content moderation. Nevertheless, these approaches largely lack scalability in eliminating harmful content, degrade the quality of benign image generation, or incur high inference costs. To address these challenges, we propose an innovative framework named \textit{Buster}, which injects backdoors into the text encoder to prevent NSFW content generation. Buster leverages deep semantic information rather than explicit prompts as triggers, redirecting NSFW prompts towards targeted benign prompts. Additionally, Buster employs energy-based training data generation through Langevin dynamics for adversarial knowledge augmentation, thereby ensuring robustness in harmful concept definition. This approach demonstrates exceptional resilience and scalability in mitigating NSFW content. Particularly, Buster fine-tunes the text encoder of Text-to-Image models within merely five minutes, showcasing its efficiency. Our extensive experiments denote that Buster outperforms nine state-of-the-art baselines, achieving a superior NSFW content removal rate of at least 91.2\% while preserving the quality of harmless images.
♻ ☆ DiReCT: Diagnostic Reasoning for Clinical Notes via Large Language Models
Large language models (LLMs) have recently showcased remarkable capabilities, spanning a wide range of tasks and applications, including those in the medical domain. Models like GPT-4 excel in medical question answering but may face challenges in the lack of interpretability when handling complex tasks in real clinical settings. We thus introduce the diagnostic reasoning dataset for clinical notes (DiReCT), aiming at evaluating the reasoning ability and interpretability of LLMs compared to human doctors. It contains 511 clinical notes, each meticulously annotated by physicians, detailing the diagnostic reasoning process from observations in a clinical note to the final diagnosis. Additionally, a diagnostic knowledge graph is provided to offer essential knowledge for reasoning, which may not be covered in the training data of existing LLMs. Evaluations of leading LLMs on DiReCT bring out a significant gap between their reasoning ability and that of human doctors, highlighting the critical need for models that can reason effectively in real-world clinical scenarios.
comment: 9 pages,6 figures
♻ ☆ Critical Tokens Matter: Token-Level Contrastive Estimation Enhances LLM's Reasoning Capability
Mathematical reasoning tasks pose significant challenges for large language models (LLMs) because they require precise logical deduction and sequence analysis. In this work, we introduce the concept of critical tokens -- elements within reasoning trajectories that significantly influence incorrect outcomes. We present a novel framework for identifying these tokens through rollout sampling and demonstrate their substantial divergence from traditional error tokens. Through extensive experiments on datasets such as GSM8K and MATH500, we show that identifying and replacing critical tokens significantly improves model accuracy. We propose an efficient methodology for pinpointing these tokens in large-scale datasets using contrastive estimation and extend this framework to enhance model training processes with direct preference optimization (DPO). Experimental results on GSM8K and MATH500 benchmarks with the widely used models Llama-3 (8B and 70B) and Deepseek-math (7B) demonstrate the effectiveness of the proposed approach, cDPO. Our results underscore the potential of leveraging critical tokens to reduce errors in reasoning tasks, advancing the development of AI systems capable of robust logical deduction. Our code, annotated datasets, and trained models are available at https://github.com/chenzhiling9954/Critical-Tokens-Matter to support and encourage future research in this promising field.
comment: Work in progress
♻ ☆ Large Action Models: From Inception to Implementation
As AI continues to advance, there is a growing demand for systems that go beyond language-based assistance and move toward intelligent agents capable of performing real-world actions. This evolution requires the transition from traditional Large Language Models (LLMs), which excel at generating textual responses, to Large Action Models (LAMs), designed for action generation and execution within dynamic environments. Enabled by agent systems, LAMs hold the potential to transform AI from passive language understanding to active task completion, marking a significant milestone in the progression toward artificial general intelligence. In this paper, we present a comprehensive framework for developing LAMs, offering a systematic approach to their creation, from inception to deployment. We begin with an overview of LAMs, highlighting their unique characteristics and delineating their differences from LLMs. Using a Windows OS-based agent as a case study, we provide a detailed, step-by-step guide on the key stages of LAM development, including data collection, model training, environment integration, grounding, and evaluation. This generalizable workflow can serve as a blueprint for creating functional LAMs in various application domains. We conclude by identifying the current limitations of LAMs and discussing directions for future research and industrial deployment, emphasizing the challenges and opportunities that lie ahead in realizing the full potential of LAMs in real-world applications. The code for the data collection process utilized in this paper is publicly available at: https://github.com/microsoft/UFO/tree/main/dataflow, and comprehensive documentation can be found at https://microsoft.github.io/UFO/dataflow/overview/.
comment: 25pages,12 figures
♻ ☆ Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling
Data-driven artificial intelligence (AI) models have made significant advancements in weather forecasting, particularly in medium-range and nowcasting. However, most data-driven weather forecasting models are black-box systems that focus on learning data mapping rather than fine-grained physical evolution in the time dimension. Consequently, the limitations in the temporal scale of datasets prevent these models from forecasting at finer time scales. This paper proposes a physics-AI hybrid model (i.e., WeatherGFT) which generalizes weather forecasts to finer-grained temporal scales beyond training dataset. Specifically, we employ a carefully designed PDE kernel to simulate physical evolution on a small time scale (e.g., 300 seconds) and use a parallel neural networks with a learnable router for bias correction. Furthermore, we introduce a lead time-aware training framework to promote the generalization of the model at different lead times. The weight analysis of physics-AI modules indicates that physics conducts major evolution while AI performs corrections adaptively. Extensive experiments show that WeatherGFT trained on an hourly dataset, effectively generalizes forecasts across multiple time scales, including 30-minute, which is even smaller than the dataset's temporal resolution.
♻ ☆ Topic-Aware Knowledge Graph with Large Language Models for Interoperability in Recommender Systems
The use of knowledge graphs in recommender systems has become one of the common approaches to addressing data sparsity and cold start problems. Recent advances in large language models (LLMs) offer new possibilities for processing side and context information within knowledge graphs. However, consistent integration across various systems remains challenging due to the need for domain expert intervention and differences in system characteristics. To address these issues, we propose a consistent approach that extracts both general and specific topics from both side and context information using LLMs. First, general topics are iteratively extracted and updated from side information. Then, specific topics are extracted using context information. Finally, to address synonymous topics generated during the specific topic extraction process, a refining algorithm processes and resolves these issues effectively. This approach allows general topics to capture broad knowledge across diverse item characteristics, while specific topics emphasize detailed attributes, providing a more comprehensive understanding of the semantic features of items and the preferences of users. Experimental results demonstrate significant improvements in recommendation performance across diverse knowledge graphs.
comment: Accepted in The 40th ACM/SIGAPP Symposium On Applied Computing(SAC) 2025
♻ ☆ LLM4Vuln: A Unified Evaluation Framework for Decoupling and Enhancing LLMs' Vulnerability Reasoning
Large language models (LLMs) have demonstrated significant potential in various tasks, including those requiring human-level intelligence, such as vulnerability detection. However, recent efforts to use LLMs for vulnerability detection remain preliminary, as they lack a deep understanding of whether a subject LLM's vulnerability reasoning capability stems from the model itself or from external aids such as knowledge retrieval and tooling support. In this paper, we aim to decouple LLMs' vulnerability reasoning from other capabilities, such as vulnerability knowledge adoption, context information retrieval, and advanced prompt schemes. We introduce LLM4Vuln, a unified evaluation framework that separates and assesses LLMs' vulnerability reasoning capabilities and examines improvements when combined with other enhancements. We conduct controlled experiments using 147 ground-truth vulnerabilities and 147 non-vulnerable cases in Solidity, Java and C/C++, testing them in a total of 3,528 scenarios across four LLMs (GPT-3.5, GPT-4, Phi-3, and Llama 3). Our findings reveal the varying impacts of knowledge enhancement, context supplementation, and prompt schemes. We also identify 14 zero-day vulnerabilities in four pilot bug bounty programs, resulting in $3,576 in bounties.
comment: This is a technical report by Nanyang Technological University. Updated to support Solidity, Java and C/C++
♻ ☆ Step-by-Step Mastery: Enhancing Soft Constraint Following Ability of Large Language Models
It is crucial for large language models (LLMs) to follow instructions that involve multiple constraints. However, soft constraints are semantically related and difficult to verify through automated methods. These constraints remain a significant challenge for LLMs. To enhance the ability of LLMs to follow soft constraints, we initially design a pipeline to obtain high-quality outputs automatically. Additionally, to fully utilize the acquired data, we introduce a training paradigm based on curriculum learning. We experimentally evaluate the effectiveness of our methods in improving LLMs' soft constraint following ability and analyze the factors driving the improvements. The datasets and code are publicly available at https://github.com/Rainier-rq/FollowSoftConstraints.
♻ ☆ MLLM-CompBench: A Comparative Reasoning Benchmark for Multimodal LLMs NeurIPS 2024
The ability to compare objects, scenes, or situations is crucial for effective decision-making and problem-solving in everyday life. For instance, comparing the freshness of apples enables better choices during grocery shopping while comparing sofa designs helps optimize the aesthetics of our living space. Despite its significance, the comparative capability is largely unexplored in artificial general intelligence (AGI). In this paper, we introduce MLLM-CompBench, a benchmark designed to evaluate the comparative reasoning capability of multimodal large language models (MLLMs). MLLM-CompBench mines and pairs images through visually oriented questions covering eight dimensions of relative comparison: visual attribute, existence, state, emotion, temporality, spatiality, quantity, and quality. We curate a collection of around 40K image pairs using metadata from diverse vision datasets and CLIP similarity scores. These image pairs span a broad array of visual domains, including animals, fashion, sports, and both outdoor and indoor scenes. The questions are carefully crafted to discern relative characteristics between two images and are labeled by human annotators for accuracy and relevance. We use MLLM-CompBench to evaluate recent MLLMs, including GPT-4V(ision), Gemini-Pro, and LLaVA-1.6. Our results reveal notable shortcomings in their comparative abilities. We believe MLLM-COMPBENCH not only sheds light on these limitations but also establishes a solid foundation for future enhancements in the comparative capability of MLLMs.
comment: This paper has been accepted to NeurIPS 2024. The first two authors contributed equally to this work
♻ ☆ A minimal coalition logic
Coalition Logic is a central logic in logical studies of strategic reasoning, whose models are concurrent game models. In this paper, first, we systematically discuss three assumptions of concurrent game models and argue that they are too strong. The first is seriality; that is, every coalition always has an available joint action. The second is the independence of agents; that is, the merge of two available joint actions of two disjoint coalitions is always an available joint action of the union of the two coalitions. The third is determinism; that is, all available joint actions of the grand coalition always have a unique outcome. Second, we present a coalition logic based on general concurrent game models which do not have the three assumptions and show its completeness. This logic seems minimal for reasoning about coalitional powers.
♻ ☆ HADES: Hardware Accelerated Decoding for Efficient Speculation in Large Language Models
Large Language Models (LLMs) have revolutionized natural language processing by understanding and generating human-like text. However, the increasing demand for more sophisticated LLMs presents significant computational challenges due to their scale and complexity. This paper introduces Hardware Accelerated Decoding (HADES), a novel approach to enhance the performance and energy efficiency of LLMs. We address the design of an LLM accelerator with hardware-level speculative decoding support, a concept not previously explored in existing literature. Our work demonstrates how speculative decoding can significantly improve the efficiency of LLM operations, paving the way for more advanced and practical applications of these models.
comment: Accepted to ICCEA 2025
♻ ☆ Map Imagination Like Blind Humans: Group Diffusion Model for Robotic Map Generation
Can robots imagine or generate maps like humans do, especially when only limited information can be perceived like blind people? To address this challenging task, we propose a novel group diffusion model (GDM) based architecture for robots to generate point cloud maps with very limited input information.Inspired from the blind humans' natural capability of imagining or generating mental maps, the proposed method can generate maps without visual perception data or depth data. With additional limited super-sparse spatial positioning data, like the extra contact-based positioning information the blind individuals can obtain, the map generation quality can be improved even more.Experiments on public datasets are conducted, and the results indicate that our method can generate reasonable maps solely based on path data, and produce even more refined maps upon incorporating exiguous LiDAR data.Compared to conventional mapping approaches, our novel method significantly mitigates sensor dependency, enabling the robots to imagine and generate elementary maps without heavy onboard sensory devices.
♻ ☆ Intelligent System for Automated Molecular Patent Infringement Assessment
Automated drug discovery offers significant potential for accelerating the development of novel therapeutics by substituting labor-intensive human workflows with machine-driven processes. However, molecules generated by artificial intelligence may unintentionally infringe on existing patents, posing legal and financial risks that impede the full automation of drug discovery pipelines. This paper introduces PatentFinder, a novel multi-agent and tool-enhanced intelligence system that can accurately and comprehensively evaluate small molecules for patent infringement. PatentFinder features five specialized agents that collaboratively analyze patent claims and molecular structures with heuristic and model-based tools, generating interpretable infringement reports. To support systematic evaluation, we curate MolPatent-240, a benchmark dataset tailored for patent infringement assessment algorithms. On this benchmark, PatentFinder outperforms baseline methods that rely solely on large language models or specialized chemical tools, achieving a 13.8% improvement in F1-score and a 12% increase in accuracy. Additionally, PatentFinder autonomously generates detailed and interpretable patent infringement reports, showcasing enhanced accuracy and improved interpretability. The high accuracy and interpretability of PatentFinder make it a valuable and reliable tool for automating patent infringement assessments, offering a practical solution for integrating patent protection analysis into the drug discovery pipeline.
♻ ☆ Proactive Distributed Emergency Response with Heterogeneous Tasks Allocation
Traditionally, traffic incident management (TIM) programs coordinate the deployment of emergency resources to immediate incident requests without accommodating the interdependencies on incident evolutions in the environment. However, ignoring inherent interdependencies on the evolution of incidents in the environment while making current deployment decisions is shortsighted, and the resulting naive deployment strategy can significantly worsen the overall incident delay impact on the network. The interdependencies on incident evolution in the environment, including those between incident occurrences, and those between resource availability in near-future requests and the anticipated duration of the immediate incident request, should be considered through a look-ahead model when making current-stage deployment decisions. This study develops a new proactive framework based on the distributed constraint optimization problem (DCOP) to address the above limitations, overcoming conventional TIM models that cannot accommodate the dependencies in the TIM problem. Furthermore, the optimization objective is formulated to incorporate Unmanned Aerial Vehicles (UAVs). The UAVs' role in TIM includes exploring uncertain traffic conditions, detecting unexpected events, and augmenting information from roadway traffic sensors. Robustness analysis of our model for multiple TIM scenarios shows satisfactory performance using local search exploration heuristics. Overall, our model reports a significant reduction in total incident delay compared to conventional TIM models. With UAV support, we demonstrate a further decrease in the total incident delay ranging between 5% and 45% for the different number of incidents. UAV's active sensing can shorten response time of emergency vehicles, and a reduction in uncertainties associated with the estimated incident delay impact.
comment: 16 pages, 13 figures, 3 tables, journal
♻ ☆ Seeing the Unseen: Learning Basis Confounder Representations for Robust Traffic Prediction KDD 2025
Traffic prediction is essential for intelligent transportation systems and urban computing. It aims to establish a relationship between historical traffic data X and future traffic states Y by employing various statistical or deep learning methods. However, the relations of X -> Y are often influenced by external confounders that simultaneously affect both X and Y , such as weather, accidents, and holidays. Existing deep-learning traffic prediction models adopt the classic front-door and back-door adjustments to address the confounder issue. However, these methods have limitations in addressing continuous or undefined confounders, as they depend on predefined discrete values that are often impractical in complex, real-world scenarios. To overcome this challenge, we propose the Spatial-Temporal sElf-superVised confoundEr learning (STEVE) model. This model introduces a basis vector approach, creating a base confounder bank to represent any confounder as a linear combination of a group of basis vectors. It also incorporates self-supervised auxiliary tasks to enhance the expressive power of the base confounder bank. Afterward, a confounder-irrelevant relation decoupling module is adopted to separate the confounder effects from direct X -> Y relations. Extensive experiments across four large-scale datasets validate our model's superior performance in handling spatial and temporal distribution shifts and underscore its adaptability to unseen confounders. Our model implementation is available at https://github.com/bigscity/STEVE_CODE.
comment: 12 pages, 10 figures, Accepted by KDD 2025
♻ ☆ Explainable Artificial Intelligence: A Survey of Needs, Techniques, Applications, and Future Direction
Artificial intelligence models encounter significant challenges due to their black-box nature, particularly in safety-critical domains such as healthcare, finance, and autonomous vehicles. Explainable Artificial Intelligence (XAI) addresses these challenges by providing explanations for how these models make decisions and predictions, ensuring transparency, accountability, and fairness. Existing studies have examined the fundamental concepts of XAI, its general principles, and the scope of XAI techniques. However, there remains a gap in the literature as there are no comprehensive reviews that delve into the detailed mathematical representations, design methodologies of XAI models, and other associated aspects. This paper provides a comprehensive literature review encompassing common terminologies and definitions, the need for XAI, beneficiaries of XAI, a taxonomy of XAI methods, and the application of XAI methods in different application areas. The survey is aimed at XAI researchers, XAI practitioners, AI model developers, and XAI beneficiaries who are interested in enhancing the trustworthiness, transparency, accountability, and fairness of their AI models.
Robotics 17
☆ Learning Implicit Social Navigation Behavior using Deep Inverse Reinforcement Learning
This paper reports on learning a reward map for social navigation in dynamic environments where the robot can reason about its path at any time, given agents' trajectories and scene geometry. Humans navigating in dense and dynamic indoor environments often work with several implied social rules. A rule-based approach fails to model all possible interactions between humans, robots, and scenes. We propose a novel Smooth Maximum Entropy Deep Inverse Reinforcement Learning (S-MEDIRL) algorithm that can extrapolate beyond expert demos to better encode scene navigability from few-shot demonstrations. The agent learns to predict the cost maps reasoning on trajectory data and scene geometry. The agent samples a trajectory that is then executed using a local crowd navigation controller. We present results in a photo-realistic simulation environment, with a robot and a human navigating a narrow crossing scenario. The robot implicitly learns to exhibit social behaviors such as yielding to oncoming traffic and avoiding deadlocks. We compare the proposed approach to the popular model-based crowd navigation algorithm ORCA and a rule-based agent that exhibits yielding.
comment: 8 pages, Submitted to IEEE Robotics and Automation Letters (RAL)
☆ Shake-VLA: Vision-Language-Action Model-Based System for Bimanual Robotic Manipulations and Liquid Mixing
This paper introduces Shake-VLA, a Vision-Language-Action (VLA) model-based system designed to enable bimanual robotic manipulation for automated cocktail preparation. The system integrates a vision module for detecting ingredient bottles and reading labels, a speech-to-text module for interpreting user commands, and a language model to generate task-specific robotic instructions. Force Torque (FT) sensors are employed to precisely measure the quantity of liquid poured, ensuring accuracy in ingredient proportions during the mixing process. The system architecture includes a Retrieval-Augmented Generation (RAG) module for accessing and adapting recipes, an anomaly detection mechanism to address ingredient availability issues, and bimanual robotic arms for dexterous manipulation. Experimental evaluations demonstrated a high success rate across system components, with the speech-to-text module achieving a 93% success rate in noisy environments, the vision module attaining a 91% success rate in object and label detection in cluttered environment, the anomaly module successfully identified 95% of discrepancies between detected ingredients and recipe requirements, and the system achieved an overall success rate of 100% in preparing cocktails, from recipe formulation to action generation.
comment: Accepted to IEEE/ACM HRI 2025
☆ From Simulation to Field: Learning Terrain Traversability for Real-World Deployment
The challenge of traversability estimation is a crucial aspect of autonomous navigation in unstructured outdoor environments such as forests. It involves determining whether certain areas are passable or risky for robots, taking into account factors like terrain irregularities, slopes, and potential obstacles. The majority of current methods for traversability estimation operate on the assumption of an offline computation, overlooking the significant influence of the robot's heading direction on accurate traversability estimates. In this work, we introduce a deep neural network that uses detailed geometric environmental data together with the robot's recent movement characteristics. This fusion enables the generation of robot direction awareness and continuous traversability estimates, essential for enhancing robot autonomy in challenging terrains like dense forests. The efficacy and significance of our approach are underscored by experiments conducted on both simulated and real robotic platforms in various environments, yielding quantitatively superior performance results compared to existing methods. Moreover, we demonstrate that our method, trained exclusively in a high-fidelity simulated setting, can accurately predict traversability in real-world applications without any real data collection. Our experiments showcase the advantages of our method for optimizing path-planning and exploration tasks within difficult outdoor environments, underscoring its practicality for effective, real-world robotic navigation. In the spirit of collaborative advancement, we have made the code implementation available to the public.
comment: 38 pages
☆ ActiveGAMER: Active GAussian Mapping through Efficient Rendering
We introduce ActiveGAMER, an active mapping system that utilizes 3D Gaussian Splatting (3DGS) to achieve high-quality, real-time scene mapping and exploration. Unlike traditional NeRF-based methods, which are computationally demanding and restrict active mapping performance, our approach leverages the efficient rendering capabilities of 3DGS, allowing effective and efficient exploration in complex environments. The core of our system is a rendering-based information gain module that dynamically identifies the most informative viewpoints for next-best-view planning, enhancing both geometric and photometric reconstruction accuracy. ActiveGAMER also integrates a carefully balanced framework, combining coarse-to-fine exploration, post-refinement, and a global-local keyframe selection strategy to maximize reconstruction completeness and fidelity. Our system autonomously explores and reconstructs environments with state-of-the-art geometric and photometric accuracy and completeness, significantly surpassing existing approaches in both aspects. Extensive evaluations on benchmark datasets such as Replica and MP3D highlight ActiveGAMER's effectiveness in active mapping tasks.
☆ Toward a Universal Concept of Artificial Personality: Implementing Robotic Personality in a Kinova Arm
The fundamental role of personality in shaping interactions is increasingly being exploited in robotics. A carefully designed robotic personality has been shown to improve several key aspects of Human-Robot Interaction (HRI). However, the fragmentation and rigidity of existing approaches reveal even greater challenges when applied to non-humanoid robots. On one hand, the state of the art is very dispersed; on the other hand, Industry 4.0 is moving towards a future where humans and industrial robots are going to coexist. In this context, the proper design of a robotic personality can lead to more successful interactions. This research takes a first step in that direction by integrating a comprehensive cognitive architecture built upon the definition of robotic personality - validated on humanoid robots - into a robotic Kinova Jaco2 arm. The robot personality is defined through the cognitive architecture as a vector in the three-dimensional space encompassing Conscientiousness, Extroversion, and Agreeableness, affecting how actions are executed, the action selection process, and the internal reaction to environmental stimuli. Our main objective is to determine whether users perceive distinct personalities in the robot, regardless of its shape, and to understand the role language plays in shaping these perceptions. To achieve this, we conducted a user study comprising 144 sessions of a collaborative game between a Kinova Jaco2 arm and participants, where the robot's behavior was influenced by its assigned personality. Furthermore, we compared two conditions: in the first, the robot communicated solely through gestures and action choices, while in the second, it also utilized verbal interaction.
☆ Accelerating Discovery in Natural Science Laboratories with AI and Robotics: Perspectives and Challenges from the 2024 IEEE ICRA Workshop, Yokohama, Japan
Science laboratory automation enables accelerated discovery in life sciences and materials. However, it requires interdisciplinary collaboration to address challenges such as robust and flexible autonomy, reproducibility, throughput, standardization, the role of human scientists, and ethics. This article highlights these issues, reflecting perspectives from leading experts in laboratory automation across different disciplines of the natural sciences.
☆ Soft Vision-Based Tactile-Enabled SixthFinger: Advancing Daily Objects Manipulation for Stroke Survivors
The presence of post-stroke grasping deficiencies highlights the critical need for the development and implementation of advanced compensatory strategies. This paper introduces a novel system to aid chronic stroke survivors through the development of a soft, vision-based, tactile-enabled extra robotic finger. By incorporating vision-based tactile sensing, the system autonomously adjusts grip force in response to slippage detection. This synergy not only ensures mechanical stability but also enriches tactile feedback, mimicking the dynamics of human-object interactions. At the core of our approach is a transformer-based framework trained on a comprehensive tactile dataset encompassing objects with a wide range of morphological properties, including variations in shape, size, weight, texture, and hardness. Furthermore, we validated the system's robustness in real-world applications, where it successfully manipulated various everyday objects. The promising results highlight the potential of this approach to improve the quality of life for stroke survivors.
comment: Robosoft 2025 conference
☆ Cost-Effective Robotic Handwriting System with AI Integration
This paper introduces a cost-effective robotic handwriting system designed to replicate human-like handwriting with high precision. Combining a Raspberry Pi Pico microcontroller, 3D-printed components, and a machine learning-based handwriting generation model implemented via TensorFlow.js, the system converts user-supplied text into realistic stroke trajectories. By leveraging lightweight 3D-printed materials and efficient mechanical designs, the system achieves a total hardware cost of approximately \$56, significantly undercutting commercial alternatives. Experimental evaluations demonstrate handwriting precision within $\pm$0.3 millimeters and a writing speed of approximately 200 mm/min, positioning the system as a viable solution for educational, research, and assistive applications. This study seeks to lower the barriers to personalized handwriting technologies, making them accessible to a broader audience.
comment: This is an updated version of a paper originally presented at the 2024 IEEE Long Island Systems, Applications and Technology Conference (LISAT)
☆ Hierarchical Sampling-based Planner with LTL Constraints and Text Prompting
This project introduces a hierarchical planner integrating Linear Temporal Logic (LTL) constraints with natural language prompting for robot motion planning. The framework decomposes maps into regions, generates directed graphs, and converts them into transition systems for high-level planning. Text instructions are translated into LTL formulas and converted to Deterministic Finite Automata (DFA) for sequential goal-reaching tasks while adhering to safety constraints. High-level plans, derived via Breadth-First Search (BFS), guide low-level planners like Exploring Random Trees (RRT) and Probabilistic Roadmaps (PRM) for obstacle-avoidant navigation along with LTL tasks. The approach demonstrates adaptability to various task complexities, though challenges such as graph construction overhead and suboptimal path generation remain. Future directions include extending to considering terrain conditions and incorporating higher-order dynamics.
comment: 8 pages, 17 figures
☆ Vid2Sim: Realistic and Interactive Simulation from Video for Urban Navigation
Sim-to-real gap has long posed a significant challenge for robot learning in simulation, preventing the deployment of learned models in the real world. Previous work has primarily focused on domain randomization and system identification to mitigate this gap. However, these methods are often limited by the inherent constraints of the simulation and graphics engines. In this work, we propose Vid2Sim, a novel framework that effectively bridges the sim2real gap through a scalable and cost-efficient real2sim pipeline for neural 3D scene reconstruction and simulation. Given a monocular video as input, Vid2Sim can generate photorealistic and physically interactable 3D simulation environments to enable the reinforcement learning of visual navigation agents in complex urban environments. Extensive experiments demonstrate that Vid2Sim significantly improves the performance of urban navigation in the digital twins and real world by 31.2% and 68.3% in success rate compared with agents trained with prior simulation methods.
comment: Project page: https://metadriverse.github.io/vid2sim/
☆ Application of Vision-Language Model to Pedestrians Behavior and Scene Understanding in Autonomous Driving
Autonomous driving (AD) has experienced significant improvements in recent years and achieved promising 3D detection, classification, and localization results. However, many challenges remain, e.g. semantic understanding of pedestrians' behaviors, and downstream handling for pedestrian interactions. Recent studies in applications of Large Language Models (LLM) and Vision-Language Models (VLM) have achieved promising results in scene understanding and high-level maneuver planning in diverse traffic scenarios. However, deploying the billion-parameter LLMs to vehicles requires significant computation and memory resources. In this paper, we analyzed effective knowledge distillation of semantic labels to smaller Vision networks, which can be used for the semantic representation of complex scenes for downstream decision-making for planning and control.
♻ ☆ High-Sensitivity Vision-Based Tactile Sensing Enhanced by Microstructures and Lightweight CNN
Tactile sensing is critical in advanced interactive systems by emulating the human sense of touch to detect stimuli. Vision-based tactile sensors (VBTSs) are promising for their ability to provide rich information, robustness, adaptability, low cost, and multimodal capabilities. However, current technologies still have limitations in sensitivity, spatial resolution, and the high computational demands of deep learning-based image processing. This paper presents a comprehensive approach combining a novel sensor structure with micromachined structures and an efficient image processing method, and demonstrates that carefully engineered microstructures within the sensor hardware can significantly enhance sensitivity while reducing computational load. Unlike traditional designs with tracking markers, our sensor incorporates an interface surface with micromachined trenches, as an example of microstructures, which modulate light transmission and amplify the variation in response to applied force. By capturing variations in brightness, wire width, and cross pattern locations with a camera, the sensor accurately infers the contact location, the magnitude of displacement and applied force with a lightweight convolutional neural network (CNN). Theoretical and experimental results demonstrated that the microstructures significantly enhance sensitivity by amplifying the visual effects of shape distortion. The sensor system effectively detected forces below 10 mN, and achieved a millimetre-level single-point spatial resolution. Using a model with only one convolutional layer, a mean absolute error (MAE) below 0.05 mm have been achieved. Its soft sensor body ensures compatibility with soft robots and wearable electronics, while its immunity to electrical crosstalk and interference guarantees reliability in complex human-machine environments.
comment: 27 pages, 13 figures, 2 tables; rearranged figures; corrected typos
♻ ☆ A Survey on Reinforcement Learning Applications in SLAM
The emergence of mobile robotics, particularly in the automotive industry, introduces a promising era of enriched user experiences and adept handling of complex navigation challenges. The realization of these advancements necessitates a focused technological effort and the successful execution of numerous intricate tasks, particularly in the critical domain of Simultaneous Localization and Mapping (SLAM). Various artificial intelligence (AI) methodologies, such as deep learning and reinforcement learning, present viable solutions to address the challenges in SLAM. This study specifically explores the application of reinforcement learning in the context of SLAM. By enabling the agent (the robot) to iteratively interact with and receive feedback from its environment, reinforcement learning facilitates the acquisition of navigation and mapping skills, thereby enhancing the robot's decision-making capabilities. This approach offers several advantages, including improved navigation proficiency, increased resilience, reduced dependence on sensor precision, and refinement of the decision-making process. The findings of this study, which provide an overview of reinforcement learning's utilization in SLAM, reveal significant advancements in the field. The investigation also highlights the evolution and innovative integration of these techniques.
♻ ☆ Beyond Sight: Finetuning Generalist Robot Policies with Heterogeneous Sensors via Language Grounding
Interacting with the world is a multi-sensory experience: achieving effective general-purpose interaction requires making use of all available modalities -- including vision, touch, and audio -- to fill in gaps from partial observation. For example, when vision is occluded reaching into a bag, a robot should rely on its senses of touch and sound. However, state-of-the-art generalist robot policies are typically trained on large datasets to predict robot actions solely from visual and proprioceptive observations. In this work, we propose FuSe, a novel approach that enables finetuning visuomotor generalist policies on heterogeneous sensor modalities for which large datasets are not readily available by leveraging natural language as a common cross-modal grounding. We combine a multimodal contrastive loss with a sensory-grounded language generation loss to encode high-level semantics. In the context of robot manipulation, we show that FuSe enables performing challenging tasks that require reasoning jointly over modalities such as vision, touch, and sound in a zero-shot setting, such as multimodal prompting, compositional cross-modal prompting, and descriptions of objects it interacts with. We show that the same recipe is applicable to widely different generalist policies, including both diffusion-based generalist policies and large vision-language-action (VLA) models. Extensive experiments in the real world show that FuSeis able to increase success rates by over 20% compared to all considered baselines.
♻ ☆ An Accurate and Real-time Relative Pose Estimation from Triple Point-line Images by Decoupling Rotation and Translation
Line features are valid complements for point features in man-made environments. 3D-2D constraints provided by line features have been widely used in Visual Odometry (VO) and Structure-from-Motion (SfM) systems. However, how to accurately solve three-view relative motion only with 2D observations of points and lines in real time has not been fully explored. In this paper, we propose a novel three-view pose solver based on rotation-translation decoupled estimation. First, a high-precision rotation estimation method based on normal vector coplanarity constraints that consider the uncertainty of observations is proposed, which can be solved by Levenberg-Marquardt (LM) algorithm efficiently. Second, a robust linear translation constraint that minimizes the degree of the rotation components and feature observation components in equations is elaborately designed for estimating translations accurately. Experiments on synthetic data and real-world data show that the proposed approach improves both rotation and translation accuracy compared to the classical trifocal-tensor-based method and the state-of-the-art two-view algorithm in outdoor and indoor environments.
♻ ☆ USV-AUV Collaboration Framework for Underwater Tasks under Extreme Sea Conditions
Autonomous underwater vehicles (AUVs) are valuable for ocean exploration due to their flexibility and ability to carry communication and detection units. Nevertheless, AUVs alone often face challenges in harsh and extreme sea conditions. This study introduces a unmanned surface vehicle (USV)-AUV collaboration framework, which includes high-precision multi-AUV positioning using USV path planning via Fisher information matrix optimization and reinforcement learning for multi-AUV cooperative tasks. Applied to a multi-AUV underwater data collection task scenario, extensive simulations validate the framework's feasibility and superior performance, highlighting exceptional coordination and robustness under extreme sea conditions. To accelerate relevant research in this field, we have made the simulation code (demo version) available as open-source.
♻ ☆ Speedup Techniques for Switchable Temporal Plan Graph Optimization AAAI 2025
Multi-Agent Path Finding (MAPF) focuses on planning collision-free paths for multiple agents. However, during the execution of a MAPF plan, agents may encounter unexpected delays, which can lead to inefficiencies, deadlocks, or even collisions. To address these issues, the Switchable Temporal Plan Graph provides a framework for finding an acyclic Temporal Plan Graph with the minimum execution cost under delays, ensuring deadlock- and collision-free execution. Unfortunately, existing optimal algorithms, such as Mixed Integer Linear Programming and Graph-Based Switchable Edge Search (GSES), are often too slow for practical use. This paper introduces Improved GSES, which significantly accelerates GSES through four speedup techniques: stronger admissible heuristics, edge grouping, prioritized branching, and incremental implementation. Experiments conducted on four different map types with varying numbers of agents demonstrate that Improved GSES consistently achieves over twice the success rate of GSES and delivers up to a 30-fold speedup on instances where both methods successfully find solutions.
comment: Accepted by AAAI 2025. This version contains the appendix
Systems and Control 10
☆ TensorConvolutionPlus: A python package for distribution system flexibility area estimation
Power system operators need new, efficient operational tools to use the flexibility of distributed resources and deal with the challenges of highly uncertain and variable power systems. Transmission system operators can consider the available flexibility in distribution systems (DSs) without breaching the DS constraints through flexibility areas. However, there is an absence of open-source packages for flexibility area estimation. This paper introduces TensorConvolutionPlus, a user-friendly Python-based package for flexibility area estimation. The main features of TensorConvolutionPlus include estimating flexibility areas using the TensorConvolution+ algorithm, the power flow-based algorithm, an exhaustive PF-based algorithm, and an optimal power flow-based algorithm. Additional features include adapting flexibility area estimations from different operating conditions and including flexibility service providers offering discrete setpoints of flexibility. The TensorConvolutionPlus package facilitates a broader adaptation of flexibility estimation algorithms by system operators and power system researchers.
comment: 9 pages, 10 figures,
☆ Collaborative Human Activity Recognition with Passive Inter-Body Electrostatic Field
The passive body-area electrostatic field has recently been aspiringly explored for wearable motion sensing, harnessing its two thrilling characteristics: full-body motion sensitivity and environmental sensitivity, which potentially empowers human activity recognition both independently and jointly from a single sensing front-end and theoretically brings significant competition against traditional inertial sensor that is incapable in environmental variations sensing. While most works focus on exploring the electrostatic field of a single body as the target, this work, for the first time, quantitatively evaluates the mutual effect of inter-body electrostatic fields and its contribution to collaborative activity recognition. A wearable electrostatic field sensing front-end and wrist-worn prototypes are built, and a sixteen-hour, manually annotated dataset is collected, involving an experiment of manipulating objects both independently and collaboratively. A regression model is finally used to recognize the collaborative activities among users. Despite the theoretical advantages of the body electrostatic field, the recognition of both single and collaborative activities shows unanticipated less-competitive recognition performance compared with the accelerometer. However, It is worth mentioning that this novel sensing modality improves the recognition F-score of user collaboration by 16\% in the fusion result of the two wearable motion sensing modalities, demonstrating the potential of bringing body electrostatic field as a complementary power-efficient signal for collaborative activity tracking using wearables.
☆ Optimizing Phase Allocation in Unbalanced Power Distribution Networks using a Linearized DistFlow Formulation
Power distribution networks, especially in North America, are often unbalanced but are designed to keep unbalance levels within the limits specified by IEEE, IEC, and NEMA standards. However, rapid integration of unbalanced devices, such as electric vehicle (EV) chargers and single-phase solar plants, can exacerbate these imbalances. This increase can trigger protection devices, increase losses, and potentially damage devices. To address this issue, phase swapping (or phase allocation) has been proposed. Existing approaches predominantly rely on heuristic methods. In this work, we develop a mixed integer linear programming (MILP) approach for phase allocation. Our approach uses linearized DistFlow equations to represent the distribution network and incorporates a phase consistency constraint, enforced with binary variables, to ensure that downstream phase configurations align with upstream configurations. We validate the proposed approach on multiple benchmark test cases and demonstrate that it effectively improves network balance, as quantified by various metrics.
comment: 5 pages
☆ Differentially Private Gradient-Tracking-Based Distributed Stochastic Optimization over Directed Graphs
This paper proposes a new differentially private gradient-tracking-based distributed stochastic optimization algorithm over directed graphs. Specifically, privacy noises are added to each agent's state and tracking variable to prevent information leakage, and then perturbed states and tracking variables are transmitted to neighbors. We design two novel schemes of the iteration step-sizes and the sampling number for the algorithm. By using the sampling parameter-controlled subsampling method, both schemes enhance the differential privacy level, and achieve the finite cumulative privacy budget even over infinite iterations. The convergence rate of the algorithm is shown for both nonconvex with the Polyak-Lojasiewicz condition and strongly convex objectives: Scheme (S1) achieves the polynomial convergence rate, and Scheme (S2) achieves the exponential convergence rate. The trade-off between the privacy and the convergence rate is presented. The algorithm's effectiveness and superior performance over the existing works are demonstrated through numerical examples of distributed training on benchmark datasets "MNIST" and "CIFAR-10".
☆ Cost-Effective Robotic Handwriting System with AI Integration
This paper introduces a cost-effective robotic handwriting system designed to replicate human-like handwriting with high precision. Combining a Raspberry Pi Pico microcontroller, 3D-printed components, and a machine learning-based handwriting generation model implemented via TensorFlow.js, the system converts user-supplied text into realistic stroke trajectories. By leveraging lightweight 3D-printed materials and efficient mechanical designs, the system achieves a total hardware cost of approximately \$56, significantly undercutting commercial alternatives. Experimental evaluations demonstrate handwriting precision within $\pm$0.3 millimeters and a writing speed of approximately 200 mm/min, positioning the system as a viable solution for educational, research, and assistive applications. This study seeks to lower the barriers to personalized handwriting technologies, making them accessible to a broader audience.
comment: This is an updated version of a paper originally presented at the 2024 IEEE Long Island Systems, Applications and Technology Conference (LISAT)
☆ Generative AI Enabled Robust Sensor Placement in Cyber-Physical Power Systems: A Graph Diffusion Approach
With advancements in physical power systems and network technologies, integrated Cyber-Physical Power Systems (CPPS) have significantly enhanced system monitoring and control efficiency and reliability. This integration, however, introduces complex challenges in designing coherent CPPS, particularly as few studies concurrently address the deployment of physical layers and communication connections in the cyber layer. This paper addresses these challenges by proposing a framework for robust sensor placement to optimize anomaly detection in the physical layer and enhance communication resilience in the cyber layer. We model the CPPS as an interdependent network via a graph, allowing for simultaneous consideration of both layers. Then, we adopt the Log-normal Shadowing Path Loss (LNSPL) model to ensure reliable data transmission. Additionally, we leverage the Fiedler value to measure graph resilience against line failures and three anomaly detectors to fortify system safety. However, the optimization problem is NP-hard. Therefore, we introduce the Experience Feedback Graph Diffusion (EFGD) algorithm, which utilizes a diffusion process to generate optimal sensor placement strategies. This algorithm incorporates cross-entropy gradient and experience feedback mechanisms to expedite convergence and generate higher reward strategies. Extensive simulations demonstrate that the EFGD algorithm enhances model convergence by 18.9% over existing graph diffusion methods and improves average reward by 22.90% compared to Denoising Diffusion Policy Optimization (DDPO) and 19.57% compared to Graph Diffusion Policy Optimization (GDPO), thereby significantly bolstering the robustness and reliability of CPPS operations.
comment: 14 pages, 9 figures
☆ Hierarchical Sampling-based Planner with LTL Constraints and Text Prompting
This project introduces a hierarchical planner integrating Linear Temporal Logic (LTL) constraints with natural language prompting for robot motion planning. The framework decomposes maps into regions, generates directed graphs, and converts them into transition systems for high-level planning. Text instructions are translated into LTL formulas and converted to Deterministic Finite Automata (DFA) for sequential goal-reaching tasks while adhering to safety constraints. High-level plans, derived via Breadth-First Search (BFS), guide low-level planners like Exploring Random Trees (RRT) and Probabilistic Roadmaps (PRM) for obstacle-avoidant navigation along with LTL tasks. The approach demonstrates adaptability to various task complexities, though challenges such as graph construction overhead and suboptimal path generation remain. Future directions include extending to considering terrain conditions and incorporating higher-order dynamics.
comment: 8 pages, 17 figures
☆ Coordinated Deliverable Energy Flexibility from EV Aggregators in Distribution Networks
This paper presents a coordinated framework to optimize electric vehicle (EV) charging considering grid constraints and system uncertainties. The proposed framework consists of two optimization models. In particular, the distribution system operator (DSO) solves the first model to optimize the amount of deliverable energy flexibility that can be obtained from EV aggregators. To address the uncertainties of loads and solar energy generation, a hybrid robust/stochastic approach is employed, enabling the transformation of uncertainty-related constraints into a set of equivalent deterministic constraints. Once the DSO has computed the optimal energy flexibility, each aggregator utilizes the second optimization model to optimize the charging schedule for its respective fleet of EVs. Numerical simulations are performed on a modified IEEE 33-bus distribution network to illustrate the efficiency of the proposed framework.
comment: This Paper has been accepted for presentation in 2025 IEEE Green Technologies Conference
♻ ☆ USV-AUV Collaboration Framework for Underwater Tasks under Extreme Sea Conditions
Autonomous underwater vehicles (AUVs) are valuable for ocean exploration due to their flexibility and ability to carry communication and detection units. Nevertheless, AUVs alone often face challenges in harsh and extreme sea conditions. This study introduces a unmanned surface vehicle (USV)-AUV collaboration framework, which includes high-precision multi-AUV positioning using USV path planning via Fisher information matrix optimization and reinforcement learning for multi-AUV cooperative tasks. Applied to a multi-AUV underwater data collection task scenario, extensive simulations validate the framework's feasibility and superior performance, highlighting exceptional coordination and robustness under extreme sea conditions. To accelerate relevant research in this field, we have made the simulation code (demo version) available as open-source.
♻ ☆ Zeroth-Order Actor-Critic: An Evolutionary Framework for Sequential Decision Problems
Evolutionary algorithms (EAs) have shown promise in solving sequential decision problems (SDPs) by simplifying them to static optimization problems and searching for the optimal policy parameters in a zeroth-order way. While these methods are highly versatile, they often suffer from high sample complexity due to their ignorance of the underlying temporal structures. In contrast, reinforcement learning (RL) methods typically formulate SDPs as Markov Decision Process (MDP). Although more sample efficient than EAs, RL methods are restricted to differentiable policies and prone to getting stuck in local optima. To address these issues, we propose a novel evolutionary framework Zeroth-Order Actor-Critic (ZOAC). We propose to use step-wise exploration in parameter space and theoretically derive the zeroth-order policy gradient. We further utilize the actor-critic architecture to effectively leverage the Markov property of SDPs and reduce the variance of gradient estimators. In each iteration, ZOAC employs samplers to collect trajectories with parameter space exploration, and alternates between first-order policy evaluation (PEV) and zeroth-order policy improvement (PIM). To evaluate the effectiveness of ZOAC, we apply it to a challenging multi-lane driving task, optimizing the parameters in a rule-based, non-differentiable driving policy that consists of three sub-modules: behavior selection, path planning, and trajectory tracking. We also compare it with gradient-based RL methods on three Gymnasium tasks, optimizing neural network policies with thousands of parameters. Experimental results demonstrate the strong capability of ZOAC in solving SDPs. ZOAC significantly outperforms EAs that treat the problem as static optimization and matches the performance of gradient-based RL methods even without first-order information, in terms of total average return across all tasks.
comment: Accepted by IEEE Transactions on Evolutionary Computation, Copyright @IEEE
Multimedia 2
♻ ☆ Exploring Transferability of Multimodal Adversarial Samples for Vision-Language Pre-training Models with Contrastive Learning
The integration of visual and textual data in Vision-Language Pre-training (VLP) models is crucial for enhancing vision-language understanding. However, the adversarial robustness of these models, especially in the alignment of image-text features, has not yet been sufficiently explored. In this paper, we introduce a novel gradient-based multimodal adversarial attack method, underpinned by contrastive learning, to improve the transferability of multimodal adversarial samples in VLP models. This method concurrently generates adversarial texts and images within imperceptive perturbation, employing both image-text and intra-modal contrastive loss. We evaluate the effectiveness of our approach on image-text retrieval and visual entailment tasks, using publicly available datasets in a black-box setting. Extensive experiments indicate a significant advancement over existing single-modal transfer-based adversarial attack methods and current multimodal adversarial attack approaches.
♻ ☆ CAMSIC: Content-aware Masked Image Modeling Transformer for Stereo Image Compression AAAI 2025
Existing learning-based stereo image codec adopt sophisticated transformation with simple entropy models derived from single image codecs to encode latent representations. However, those entropy models struggle to effectively capture the spatial-disparity characteristics inherent in stereo images, which leads to suboptimal rate-distortion results. In this paper, we propose a stereo image compression framework, named CAMSIC. CAMSIC independently transforms each image to latent representation and employs a powerful decoder-free Transformer entropy model to capture both spatial and disparity dependencies, by introducing a novel content-aware masked image modeling (MIM) technique. Our content-aware MIM facilitates efficient bidirectional interaction between prior information and estimated tokens, which naturally obviates the need for an extra Transformer decoder. Experiments show that our stereo image codec achieves state-of-the-art rate-distortion performance on two stereo image datasets Cityscapes and InStereo2K with fast encoding and decoding speed. Code is available at https://github.com/Xinjie-Q/CAMSIC.
comment: Accepted by AAAI 2025
Optimization and Control 8
☆ Discrete lossless convexification for pointing constraints
Discrete Lossless Convexification (DLCvx) formulates a convex relaxation for a specific class of discrete-time non-convex optimal control problems. It establishes sufficient conditions under which the solution of the relaxed problem satisfies the original non-convex constraints at specified time grid points. Furthermore, it provides an upper bound on the number of time grid points where these sufficient conditions may not hold, and thus the original constraints could be violated. This paper extends DLCvx to problems with control pointing constraints. Additionally, it introduces a novel DLCvx formulation for mixed-integer optimal control problems in which the control is either inactive or constrained within an annular sector. This formulation broadens the feasible space for problems with pointing constraints. A numerical example is provided to illustrate its application.
comment: 6 pages, 3 figures
☆ Optimal Online Bookmaking for Binary Games
In online betting, the bookmaker can update the payoffs it offers on a particular event many times before the event takes place, and the updated payoffs may depend on the bets accumulated thus far. We study the problem of bookmaking with the goal of maximizing the return in the worst-case, with respect to the gamblers' behavior and the event's outcome. We formalize this problem as the \emph{Optimal Online Bookmaking game}, and provide the exact solution for the binary case. To this end, we develop the optimal bookmaking strategy, which relies on a new technique called bi-balancing trees, that assures that the house loss is the same for all \emph{decisive} betting sequences, where the gambler bets all its money on a single outcome in each round.
☆ A Smoothing Consensus-Based Optimization Algorithm for Nonsmooth Nonconvex Optimization
Lately, a novel swarm intelligence model, namely the consensus-based optimization (CBO) algorithm, was introduced to deal with the global optimization problems. Limited by the conditions of Ito's formula, the convergence analysis of the previous CBO finite particle system mainly focuses on the problem with smooth objective function. With the help of smoothing method, this paper achieves a breakthrough by proposing an effective CBO algorithm for solving the global solution of a nonconvex, nonsmooth, and possible non-Lipschitz continuous minimization problem with theoretical analysis, which dose not rely on the mean-field limit. We indicate that the proposed algorithm exhibits a global consensus and converges to a common state with any initial data. Then, we give a more detailed error estimation on the objective function values along the state of the proposed algorithm towards the global minimum. Finally, some numerical examples are presented to illustrate the appreciable performance of the proposed method on solving the nonsmooth, nonconvex minimization problems.
☆ How Low Can We Go? Minimizing Interaction Samples for Configurable Systems
Modern software systems are typically configurable, a fundamental prerequisite for wide applicability and reusability. This flexibility poses an extraordinary challenge for quality assurance, as the enormous number of possible configurations makes it impractical to test each of them separately. This is where t-wise interaction sampling can be used to systematically cover the configuration space and detect unknown feature interactions. Over the last two decades, numerous algorithms for computing small interaction samples have been studied, providing improvements for a range of heuristic results; nevertheless, it has remained unclear how much these results can still be improved. We present a significant breakthrough: a fundamental framework, based on the mathematical principle of duality, for combining near-optimal solutions with provable lower bounds on the required sample size. This implies that we no longer need to work on heuristics with marginal or no improvement, but can certify the solution quality by establishing a limit on the remaining gap; in many cases, we can even prove optimality of achieved solutions. This theoretical contribution also provides extensive practical improvements: Our algorithm SampLNS was tested on 47 small and medium-sized configurable systems from the existing literature. SampLNS can reliably find samples of smaller size than previous methods in 85% of the cases; moreover, we can achieve and prove optimality of solutions for 63% of all instances. This makes it possible to avoid cumbersome efforts of minimizing samples by researchers as well as practitioners, and substantially save testing resources for most configurable systems.
☆ Initial Guess Generation for Low-Thrust Trajectory Design with Robustness to Missed-Thrust-Events
The growing interest in cislunar space exploration in recent years has driven an increasing demand for efficient low-thrust missions to key cislunar orbits. These missions, typically possessing long thrust arcs, are particularly susceptible to operational uncertainties such as missed thrust events. Addressing these challenges requires efficient robust trajectory design frameworks during the preliminary mission design phase, where it is necessary to explore the solution space at a rapid cadence under evolving operational constraints. However, existing methods for missed thrust design rely on solving high-dimensional nonlinear programs, where generating effective initial guesses becomes challenging. To enhance computational efficiency, quality, and depth of robustness of solutions from global search, we compare two initial guess strategies: a baseline non-conditional global search, which samples from a static distribution with global support, and a conditional global search, which generates initial guesses conditioned on solutions to problems with less depth of robustness. The conditional search provides a sequential procedure for solving increasingly robust problems. We validate the improvements in the conditional approach using a low-thrust case study for the Lunar Gateway Power and Propulsion Element, where our results demonstrate that it significantly improves convergence rate and solution quality, highlighting its potential in preliminary robust trajectory design.
comment: This manuscript has been submitted for publication in the AIAA Journal of Guidance, Control, and Dynamics. It represents a significant evolution of our previous arXiv pre-print submission entitled "Algorithmic Considerations for Effective Global Search of Robust Low-Thrust Trajectories", reflecting substantial advancements and refinements
♻ ☆ Distributionally Robust Gaussian Process Regression and Bayesian Inverse Problems
We study a distributionally robust optimization formulation (i.e., a min-max game) for two representative problems in Bayesian nonparametric estimation: Gaussian process regression and, more generally, linear inverse problems. Our formulation seeks the best mean-squared error predictor, in an infinite-dimensional space, against an adversary who chooses the worst-case model in a Wasserstein ball around a nominal infinite-dimensional Bayesian model. The transport cost is chosen to control features such as the degree of roughness of the sample paths that the adversary is allowed to inject. We show that the game has a well-defined value (i.e., strong duality holds in the sense that max-min equals min-max) and that there exists a unique Nash equilibrium which can be computed by a sequence of finite-dimensional approximations. Crucially, the worst-case distribution is itself Gaussian. We explore properties of the Nash equilibrium and the effects of hyperparameters through a set of numerical experiments, demonstrating the versatility of our modeling framework.
♻ ☆ Pontryagin-Guided Policy Optimization for Merton's Portfolio Problem
We present a Pontryagin-Guided Direct Policy Optimization (PG-DPO) framework for Merton's portfolio problem, unifying modern neural-network-based policy parameterization with the adjoint viewpoint from Pontryagin's maximum principle (PMP). Instead of approximating the value function (as done in deep BSDE methods), we track a policy-fixed BSDE for the adjoint processes, which allows each gradient update to align with continuous-time PMP conditions. This setup yields locally optimal consumption and investment policies that are closely tied to classical stochastic control. We further incorporate an alignment penalty that nudges the learned policy toward Pontryagin-derived solutions, enhancing both convergence speed and training stability. Numerical experiments confirm that PG-DPO effectively handles both consumption and investment, achieving strong performance and interpretability without requiring large offline datasets or model-free reinforcement learning.
♻ ☆ Monotone Lipschitz-Gradient Denoiser: Explainability of Operator Regularization Approaches Free From Lipschitz Constant Control
This paper addresses explainability of the operator-regularization approach under the use of monotone Lipschitz-gradient (MoL-Grad) denoiser -- an operator that can be expressed as the Lipschitz continuous gradient of a differentiable convex function. We prove that an operator is a MoL-Grad denoiser if and only if it is the ``single-valued'' proximity operator of a weakly convex function. An extension of Moreau's decomposition is also shown with respect to a weakly convex function and the conjugate of its convexified function. Under these arguments, two specific algorithms, the forward-backward splitting algorithm and the primal-dual splitting algorithm, are considered, both employing MoL-Grad denoisers. These algorithms generate a sequence of vectors converging weakly, under conditions, to a minimizer of a certain cost function which involves an ``implicit regularizer'' induced by the denoiser. Unlike the previous studies of operator regularization, our framework requires no control of the Lipschitz constant in learning the denoiser. The theoretical findings are supported by simulations.
comment: 16 pages, 6 figures
Computer Vision and Pattern Recognition 29
☆ Comparison of Autoencoders for tokenization of ASL datasets
Generative AI, powered by large language models (LLMs), has revolutionized applications across text, audio, images, and video. This study focuses on developing and evaluating encoder-decoder architectures for the American Sign Language (ASL) image dataset, consisting of 87,000 images across 29 hand sign classes. Three approaches were compared: Feedforward Autoencoders, Convolutional Autoencoders, and Diffusion Autoencoders. The Diffusion Autoencoder outperformed the others, achieving the lowest mean squared error (MSE) and highest Mean Opinion Score (MOS) due to its probabilistic noise modeling and iterative denoising capabilities. The Convolutional Autoencoder demonstrated effective spatial feature extraction but lacked the robustness of the diffusion process, while the Feedforward Autoencoder served as a baseline with limitations in handling complex image data. Objective and subjective evaluations confirmed the superiority of the Diffusion Autoencoder for high-fidelity image reconstruction, emphasizing its potential in multimodal AI applications such as sign language recognition and generation. This work provides critical insights into designing robust encoder-decoder systems to advance multimodal AI capabilities.
comment: 9 pages, 2 tables, 4 figures
☆ Super-Resolution of 3D Micro-CT Images Using Generative Adversarial Networks: Enhancing Resolution and Segmentation Accuracy
We develop a procedure for substantially improving the quality of segmented 3D micro-Computed Tomography (micro-CT) images of rocks with a Machine Learning (ML) Generative Model. The proposed model enhances the resolution eightfold (8x) and addresses segmentation inaccuracies due to the overlapping X-ray attenuation in micro-CT measurement for different rock minerals and phases. The proposed generative model is a 3D Deep Convolutional Wasserstein Generative Adversarial Network with Gradient Penalty (3D DC WGAN-GP). The algorithm is trained on segmented 3D low-resolution micro-CT images and segmented unpaired complementary 2D high-resolution Laser Scanning Microscope (LSM) images. The algorithm was demonstrated on multiple samples of Berea sandstones. We achieved high-quality super-resolved 3D images with a resolution of 0.4375 micro-m/voxel and accurate segmentation for constituting minerals and pore space. The described procedure can significantly expand the modern capabilities of digital rock physics.
comment: 24 pages, 9 figures
☆ Evaluating unsupervised contrastive learning framework for MRI sequences classification
The automatic identification of Magnetic Resonance Imaging (MRI) sequences can streamline clinical workflows by reducing the time radiologists spend manually sorting and identifying sequences, thereby enabling faster diagnosis and treatment planning for patients. However, the lack of standardization in the parameters of MRI scans poses challenges for automated systems and complicates the generation and utilization of datasets for machine learning research. To address this issue, we propose a system for MRI sequence identification using an unsupervised contrastive deep learning framework. By training a convolutional neural network based on the ResNet-18 architecture, our system classifies nine common MRI sequence types as a 9-class classification problem. The network was trained using an in-house internal dataset and validated on several public datasets, including BraTS, ADNI, Fused Radiology-Pathology Prostate Dataset, the Breast Cancer Dataset (ACRIN), among others, encompassing diverse acquisition protocols and requiring only 2D slices for training. Our system achieves a classification accuracy of over 0.95 across the nine most common MRI sequence types.
☆ CULTURE3D: Cultural Landmarks and Terrain Dataset for 3D Applications
In this paper, we present a large-scale fine-grained dataset using high-resolution images captured from locations worldwide. Compared to existing datasets, our dataset offers a significantly larger size and includes a higher level of detail, making it uniquely suited for fine-grained 3D applications. Notably, our dataset is built using drone-captured aerial imagery, which provides a more accurate perspective for capturing real-world site layouts and architectural structures. By reconstructing environments with these detailed images, our dataset supports applications such as the COLMAP format for Gaussian Splatting and the Structure-from-Motion (SfM) method. It is compatible with widely-used techniques including SLAM, Multi-View Stereo, and Neural Radiance Fields (NeRF), enabling accurate 3D reconstructions and point clouds. This makes it a benchmark for reconstruction and segmentation tasks. The dataset enables seamless integration with multi-modal data, supporting a range of 3D applications, from architectural reconstruction to virtual tourism. Its flexibility promotes innovation, facilitating breakthroughs in 3D modeling and analysis.
☆ Benchmarking YOLOv8 for Optimal Crack Detection in Civil Infrastructure
Ensuring the structural integrity and safety of bridges is crucial for the reliability of transportation networks and public safety. Traditional crack detection methods are increasingly being supplemented or replaced by advanced artificial intelligence (AI) techniques. However, most of the models rely on two-stage target detection algorithms, which pose concerns for real-time applications due to their lower speed. While models such as YOLO (You Only Look Once) have emerged as transformative tools due to their remarkable speed and accuracy. However, the potential of the latest YOLOv8 framework in this domain remains underexplored. This study bridges that gap by rigorously evaluating YOLOv8's performance across five model scales (nano, small, medium, large, and extra-large) using a high-quality Roboflow dataset. A comprehensive hyperparameter optimization was performed, testing six state-of-the-art optimizers-Stochastic Gradient Descent, Adaptive Moment Estimation, Adam with Decoupled Weight Decay, Root Mean Square Propagation, Rectified Adam, and Nesterov-accelerated Adam. Results revealed that YOLOv8, optimized with Stochastic Gradient Descent, delivered exceptional accuracy and speed, setting a new benchmark for real-time crack detection. Beyond its immediate application, this research positions YOLOv8 as a foundational approach for integrating advanced computer vision techniques into infrastructure monitoring. By enabling more reliable and proactive maintenance of aging bridge networks, this work paves the way for safer, more efficient transportation systems worldwide.
comment: Accepted at 104th TRB Annual Meeting 2025
☆ Driver Age and Its Effect on Key Driving Metrics: Insights from Dynamic Vehicle Data
By 2030, the senior population aged 65 and older is expected to increase by over 50%, significantly raising the number of older drivers on the road. Drivers over 70 face higher crash death rates compared to those in their forties and fifties, underscoring the importance of developing more effective safety interventions for this demographic. Although the impact of aging on driving behavior has been studied, there is limited research on how these behaviors translate into real-world driving scenarios. This study addresses this need by leveraging Naturalistic Driving Data (NDD) to analyze driving performance measures - specifically, speed limit adherence on interstates and deceleration at stop intersections, both of which may be influenced by age-related declines. Using NDD, we developed Cumulative Distribution Functions (CDFs) to establish benchmarks for key driving behaviors among senior and young drivers. Our analysis, which included anomaly detection, benchmark comparisons, and accuracy evaluations, revealed significant differences in driving patterns primarily related to speed limit adherence at 75mph. While our approach shows promising potential for enhancing Advanced Driver Assistance Systems (ADAS) by providing tailored interventions based on age-specific adherence to speed limit driving patterns, we recognize the need for additional data to refine and validate metrics for other driving behaviors. By establishing precise benchmarks for various driving performance metrics, ADAS can effectively identify anomalies, such as abrupt deceleration, which may indicate impaired driving or other safety concerns. This study lays a strong foundation for future research aimed at improving safety interventions through detailed driving behavior analysis.
comment: 21 pages, 9 figures, 4 Tables, 104th TRB Annual Meeting 2025, Washington DC
☆ Local Foreground Selection aware Attentive Feature Reconstruction for few-shot fine-grained plant species classification
Plant species exhibit significant intra-class variation and minimal inter-class variation. To enhance classification accuracy, it is essential to reduce intra-class variation while maximizing inter-class variation. This paper addresses plant species classification using a limited number of labelled samples and introduces a novel Local Foreground Selection(LFS) attention mechanism. LFS is a straightforward module designed to generate discriminative support and query feature maps. It operates by integrating two types of attention: local attention, which captures local spatial details to enhance feature discrimination and increase inter-class differentiation, and foreground selection attention, which emphasizes the foreground plant object while mitigating background interference. By focusing on the foreground, the query and support features selectively highlight relevant feature sequences and disregard less significant background sequences, thereby reducing intra-class differences. Experimental results from three plant species datasets demonstrate the effectiveness of the proposed LFS attention mechanism and its complementary advantages over previous feature reconstruction methods.
☆ Synthetic Prior for Few-Shot Drivable Head Avatar Inversion
We present SynShot, a novel method for the few-shot inversion of a drivable head avatar based on a synthetic prior. We tackle two major challenges. First, training a controllable 3D generative network requires a large number of diverse sequences, for which pairs of images and high-quality tracked meshes are not always available. Second, state-of-the-art monocular avatar models struggle to generalize to new views and expressions, lacking a strong prior and often overfitting to a specific viewpoint distribution. Inspired by machine learning models trained solely on synthetic data, we propose a method that learns a prior model from a large dataset of synthetic heads with diverse identities, expressions, and viewpoints. With few input images, SynShot fine-tunes the pretrained synthetic prior to bridge the domain gap, modeling a photorealistic head avatar that generalizes to novel expressions and viewpoints. We model the head avatar using 3D Gaussian splatting and a convolutional encoder-decoder that outputs Gaussian parameters in UV texture space. To account for the different modeling complexities over parts of the head (e.g., skin vs hair), we embed the prior with explicit control for upsampling the number of per-part primitives. Compared to state-of-the-art monocular methods that require thousands of real training images, SynShot significantly improves novel view and expression synthesis.
comment: Website https://zielon.github.io/synshot/
☆ ActiveGAMER: Active GAussian Mapping through Efficient Rendering
We introduce ActiveGAMER, an active mapping system that utilizes 3D Gaussian Splatting (3DGS) to achieve high-quality, real-time scene mapping and exploration. Unlike traditional NeRF-based methods, which are computationally demanding and restrict active mapping performance, our approach leverages the efficient rendering capabilities of 3DGS, allowing effective and efficient exploration in complex environments. The core of our system is a rendering-based information gain module that dynamically identifies the most informative viewpoints for next-best-view planning, enhancing both geometric and photometric reconstruction accuracy. ActiveGAMER also integrates a carefully balanced framework, combining coarse-to-fine exploration, post-refinement, and a global-local keyframe selection strategy to maximize reconstruction completeness and fidelity. Our system autonomously explores and reconstructs environments with state-of-the-art geometric and photometric accuracy and completeness, significantly surpassing existing approaches in both aspects. Extensive evaluations on benchmark datasets such as Replica and MP3D highlight ActiveGAMER's effectiveness in active mapping tasks.
☆ MedGrad E-CLIP: Enhancing Trust and Transparency in AI-Driven Skin Lesion Diagnosis WACV
As deep learning models gain attraction in medical data, ensuring transparent and trustworthy decision-making is essential. In skin cancer diagnosis, while advancements in lesion detection and classification have improved accuracy, the black-box nature of these methods poses challenges in understanding their decision processes, leading to trust issues among physicians. This study leverages the CLIP (Contrastive Language-Image Pretraining) model, trained on different skin lesion datasets, to capture meaningful relationships between visual features and diagnostic criteria terms. To further enhance transparency, we propose a method called MedGrad E-CLIP, which builds on gradient-based E-CLIP by incorporating a weighted entropy mechanism designed for complex medical imaging like skin lesions. This approach highlights critical image regions linked to specific diagnostic descriptions. The developed integrated pipeline not only classifies skin lesions by matching corresponding descriptions but also adds an essential layer of explainability developed especially for medical data. By visually explaining how different features in an image relates to diagnostic criteria, this approach demonstrates the potential of advanced vision-language models in medical image analysis, ultimately improving transparency, robustness, and trust in AI-driven diagnostic systems.
comment: Accepted to 2025 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW)
☆ Transforming Vision Transformer: Towards Efficient Multi-Task Asynchronous Learning NeurIPS 2024
Multi-Task Learning (MTL) for Vision Transformer aims at enhancing the model capability by tackling multiple tasks simultaneously. Most recent works have predominantly focused on designing Mixture-of-Experts (MoE) structures and in tegrating Low-Rank Adaptation (LoRA) to efficiently perform multi-task learning. However, their rigid combination hampers both the optimization of MoE and the ef fectiveness of reparameterization of LoRA, leading to sub-optimal performance and low inference speed. In this work, we propose a novel approach dubbed Efficient Multi-Task Learning (EMTAL) by transforming a pre-trained Vision Transformer into an efficient multi-task learner during training, and reparameterizing the learned structure for efficient inference. Specifically, we firstly develop the MoEfied LoRA structure, which decomposes the pre-trained Transformer into a low-rank MoE structure and employ LoRA to fine-tune the parameters. Subsequently, we take into account the intrinsic asynchronous nature of multi-task learning and devise a learning Quality Retaining (QR) optimization mechanism, by leveraging the historical high-quality class logits to prevent a well-trained task from performance degradation. Finally, we design a router fading strategy to integrate the learned parameters into the original Transformer, archiving efficient inference. Extensive experiments on public benchmarks demonstrate the superiority of our method, compared to the state-of-the-art multi-task learning approaches.
comment: Accepted by the 38th Conference on Neural Information Processing Systems (NeurIPS 2024)
☆ Real-Time Neural-Enhancement for Online Cloud Gaming
Online Cloud gaming demands real-time, high-quality video transmission across variable wide-area networks (WANs). Neural-enhanced video transmission algorithms employing super-resolution (SR) for video quality enhancement have effectively challenged WAN environments. However, these SR-based methods require intensive fine-tuning for the whole video, making it infeasible in diverse online cloud gaming. To address this, we introduce River, a cloud gaming delivery framework designed based on the observation that video segment features in cloud gaming are typically repetitive and redundant. This permits a significant opportunity to reuse fine-tuned SR models, reducing the fine-tuning latency of minutes to query latency of milliseconds. To enable the idea, we design a practical system that addresses several challenges, such as model organization, online model scheduler, and transfer strategy. River first builds a content-aware encoder that fine-tunes SR models for diverse video segments and stores them in a lookup table. When delivering cloud gaming video streams online, River checks the video features and retrieves the most relevant SR models to enhance the frame quality. Meanwhile, if no existing SR model performs well enough for some video segments, River will further fine-tune new models and update the lookup table. Finally, to avoid the overhead of streaming model weight to the clients, River designs a prefetching strategy that predicts the models with the highest possibility of being retrieved. Our evaluation based on real video game streaming demonstrates River can reduce redundant training overhead by 44% and improve the Peak-Signal-to-Noise-Ratio by 1.81dB compared to the SOTA solutions. Practical deployment shows River meets real-time requirements, achieving approximately 720p 20fps on mobile devices.
☆ Defect Detection Network In PCB Circuit Devices Based on GAN Enhanced YOLOv11
This study proposes an advanced method for surface defect detection in printed circuit boards (PCBs) using an improved YOLOv11 model enhanced with a generative adversarial network (GAN). The approach focuses on identifying six common defect types: missing hole, rat bite, open circuit, short circuit, burr, and virtual welding. By employing GAN to generate synthetic defect images, the dataset is augmented with diverse and realistic patterns, improving the model's ability to generalize, particularly for complex and infrequent defects like burrs. The enhanced YOLOv11 model is evaluated on a PCB defect dataset, demonstrating significant improvements in accuracy, recall, and robustness, especially when dealing with defects in complex environments or small targets. This research contributes to the broader field of electronic design automation (EDA), where efficient defect detection is a crucial step in ensuring high-quality PCB manufacturing. By integrating advanced deep learning techniques, this approach enhances the automation and precision of defect detection, reducing reliance on manual inspection and accelerating design-to-production workflows. The findings underscore the importance of incorporating GAN-based data augmentation and optimized detection architectures in EDA processes, providing valuable insights for improving reliability and efficiency in PCB defect detection within industrial applications.
☆ Uncertainty-Aware Online Extrinsic Calibration: A Conformal Prediction Approach WACV 2025
Accurate sensor calibration is crucial for autonomous systems, yet its uncertainty quantification remains underexplored. We present the first approach to integrate uncertainty awareness into online extrinsic calibration, combining Monte Carlo Dropout with Conformal Prediction to generate prediction intervals with a guaranteed level of coverage. Our method proposes a framework to enhance existing calibration models with uncertainty quantification, compatible with various network architectures. Validated on KITTI (RGB Camera-LiDAR) and DSEC (Event Camera-LiDAR) datasets, we demonstrate effectiveness across different visual sensor types, measuring performance with adapted metrics to evaluate the efficiency and reliability of the intervals. By providing calibration parameters with quantifiable confidence measures, we offer insights into the reliability of calibration estimates, which can greatly improve the robustness of sensor fusion in dynamic environments and usefully serve the Computer Vision community.
comment: Accepted for publication at WACV 2025
☆ A Foundational Generative Model for Breast Ultrasound Image Analysis
Foundational models have emerged as powerful tools for addressing various tasks in clinical settings. However, their potential development to breast ultrasound analysis remains untapped. In this paper, we present BUSGen, the first foundational generative model specifically designed for breast ultrasound image analysis. Pretrained on over 3.5 million breast ultrasound images, BUSGen has acquired extensive knowledge of breast structures, pathological features, and clinical variations. With few-shot adaptation, BUSGen can generate repositories of realistic and informative task-specific data, facilitating the development of models for a wide range of downstream tasks. Extensive experiments highlight BUSGen's exceptional adaptability, significantly exceeding real-data-trained foundational models in breast cancer screening, diagnosis, and prognosis. In breast cancer early diagnosis, our approach outperformed all board-certified radiologists (n=9), achieving an average sensitivity improvement of 16.5% (P-value<0.0001). Additionally, we characterized the scaling effect of using generated data which was as effective as the collected real-world data for training diagnostic models. Moreover, extensive experiments demonstrated that our approach improved the generalization ability of downstream models. Importantly, BUSGen protected patient privacy by enabling fully de-identified data sharing, making progress forward in secure medical data utilization. An online demo of BUSGen is available at https://aibus.bio.
comment: Peking University; Stanford University; Peking University Cancer Hospital & Institute; Peking Union Medical College Hospital; Cancer Hospital, Chinese Academy of Medical Sciences
☆ LarvSeg: Exploring Image Classification Data For Large Vocabulary Semantic Segmentation via Category-wise Attentive Classifier
Scaling up the vocabulary of semantic segmentation models is extremely challenging because annotating large-scale mask labels is labour-intensive and time-consuming. Recently, language-guided segmentation models have been proposed to address this challenge. However, their performance drops significantly when applied to out-of-distribution categories. In this paper, we propose a new large vocabulary semantic segmentation framework, called LarvSeg. Different from previous works, LarvSeg leverages image classification data to scale the vocabulary of semantic segmentation models as large-vocabulary classification datasets usually contain balanced categories and are much easier to obtain. However, for classification tasks, the category is image-level, while for segmentation we need to predict the label at pixel level. To address this issue, we first propose a general baseline framework to incorporate image-level supervision into the training process of a pixel-level segmentation model, making the trained network perform semantic segmentation on newly introduced categories in the classification data. We then observe that a model trained on segmentation data can group pixel features of categories beyond the training vocabulary. Inspired by this finding, we design a category-wise attentive classifier to apply supervision to the precise regions of corresponding categories to improve the model performance. Extensive experiments demonstrate that LarvSeg significantly improves the large vocabulary semantic segmentation performance, especially in the categories without mask labels. For the first time, we provide a 21K-category semantic segmentation model with the help of ImageNet21K. The code is available at https://github.com/HaojunYu1998/large_voc_seg.
comment: PRCV 2024
☆ A General Framework for Inference-time Scaling and Steering of Diffusion Models
Diffusion models produce impressive results in modalities ranging from images and video to protein design and text. However, generating samples with user-specified properties remains a challenge. Recent research proposes fine-tuning models to maximize rewards that capture desired properties, but these methods require expensive training and are prone to mode collapse. In this work, we propose Feynman Kac (FK) steering, an inference-time framework for steering diffusion models with reward functions. FK steering works by sampling a system of multiple interacting diffusion processes, called particles, and resampling particles at intermediate steps based on scores computed using functions called potentials. Potentials are defined using rewards for intermediate states and are selected such that a high value indicates that the particle will yield a high-reward sample. We explore various choices of potentials, intermediate rewards, and samplers. We evaluate FK steering on text-to-image and text diffusion models. For steering text-to-image models with a human preference reward, we find that FK steering a 0.8B parameter model outperforms a 2.6B parameter fine-tuned model on prompt fidelity, with faster sampling and no training. For steering text diffusion models with rewards for text quality and specific text attributes, we find that FK steering generates lower perplexity, more linguistically acceptable outputs and enables gradient-free control of attributes like toxicity. Our results demonstrate that inference-time scaling and steering of diffusion models, even with off-the-shelf rewards, can provide significant sample quality gains and controllability benefits. Code is available at https://github.com/zacharyhorvitz/Fk-Diffusion-Steering .
☆ Faithful Counterfactual Visual Explanations (FCVE)
Deep learning models in computer vision have made remarkable progress, but their lack of transparency and interpretability remains a challenge. The development of explainable AI can enhance the understanding and performance of these models. However, existing techniques often struggle to provide convincing explanations that non-experts easily understand, and they cannot accurately identify models' intrinsic decision-making processes. To address these challenges, we propose to develop a counterfactual explanation (CE) model that balances plausibility and faithfulness. This model generates easy-to-understand visual explanations by making minimum changes necessary in images without altering the pixel data. Instead, the proposed method identifies internal concepts and filters learned by models and leverages them to produce plausible counterfactual explanations. The provided explanations reflect the internal decision-making process of the model, thus ensuring faithfulness to the model.
☆ SAM-DA: Decoder Adapter for Efficient Medical Domain Adaptation WACV25
This paper addresses the domain adaptation challenge for semantic segmentation in medical imaging. Despite the impressive performance of recent foundational segmentation models like SAM on natural images, they struggle with medical domain images. Beyond this, recent approaches that perform end-to-end fine-tuning of models are simply not computationally tractable. To address this, we propose a novel SAM adapter approach that minimizes the number of trainable parameters while achieving comparable performances to full fine-tuning. The proposed SAM adapter is strategically placed in the mask decoder, offering excellent and broad generalization capabilities and improved segmentation across both fully supervised and test-time domain adaptation tasks. Extensive validation on four datasets showcases the adapter's efficacy, outperforming existing methods while training less than 1% of SAM's total parameters.
comment: WACV25
☆ X-LeBench: A Benchmark for Extremely Long Egocentric Video Understanding
Long-form egocentric video understanding provides rich contextual information and unique insights into long-term human behaviors, holding significant potential for applications in embodied intelligence, long-term activity analysis, and personalized assistive technologies. However, existing benchmark datasets primarily focus on single, short-duration videos or moderately long videos up to dozens of minutes, leaving a substantial gap in evaluating extensive, ultra-long egocentric video recordings. To address this, we introduce X-LeBench, a novel benchmark dataset specifically crafted for evaluating tasks on extremely long egocentric video recordings. Leveraging the advanced text processing capabilities of large language models (LLMs), X-LeBench develops a life-logging simulation pipeline that produces realistic, coherent daily plans aligned with real-world video data. This approach enables the flexible integration of synthetic daily plans with real-world footage from Ego4D-a massive-scale egocentric video dataset covers a wide range of daily life scenarios-resulting in 432 simulated video life logs that mirror realistic daily activities in contextually rich scenarios. The video life-log durations span from 23 minutes to 16.4 hours. The evaluation of several baseline systems and multimodal large language models (MLLMs) reveals their poor performance across the board, highlighting the inherent challenges of long-form egocentric video understanding and underscoring the need for more advanced models.
♻ ☆ DoubleDiffusion: Combining Heat Diffusion with Denoising Diffusion for Generative Learning on 3D Meshes
This paper proposes DoubleDiffusion, a novel framework that combines heat dissipation diffusion and denoising diffusion for direct generative learning on 3D mesh surfaces. Our approach addresses the challenges of generating continuous signal distributions residing on a curve manifold surface. Unlike previous methods that rely on unrolling 3D meshes into 2D or adopting field representations, DoubleDiffusion leverages the Laplacian-Beltrami operator to process features respecting the mesh structure. This combination enables effective geometry-aware signal diffusion across the underlying geometry. As shown in Fig.1, we demonstrate that DoubleDiffusion has the ability to generate RGB signal distributions on complex 3D mesh surfaces and achieves per-category shape-conditioned texture generation across different shape geometry. Our work contributes a new direction in diffusion-based generative modeling on 3D surfaces, with potential applications in the field of 3D asset generation.
comment: Codes: https://github.com/Wxyxixixi/DoubleDiffusion_3D_Mesh
♻ ☆ Artificial Intelligence for Cochlear Implants: Review of Strategies, Challenges, and Perspectives
Automatic speech recognition (ASR) plays a pivotal role in our daily lives, offering utility not only for interacting with machines but also for facilitating communication for individuals with partial or profound hearing impairments. The process involves receiving the speech signal in analog form, followed by various signal processing algorithms to make it compatible with devices of limited capacities, such as cochlear implants (CIs). Unfortunately, these implants, equipped with a finite number of electrodes, often result in speech distortion during synthesis. Despite efforts by researchers to enhance received speech quality using various state-of-the-art (SOTA) signal processing techniques, challenges persist, especially in scenarios involving multiple sources of speech, environmental noise, and other adverse conditions. The advent of new artificial intelligence (AI) methods has ushered in cutting-edge strategies to address the limitations and difficulties associated with traditional signal processing techniques dedicated to CIs. This review aims to comprehensively cover advancements in CI-based ASR and speech enhancement, among other related aspects. The primary objective is to provide a thorough overview of metrics and datasets, exploring the capabilities of AI algorithms in this biomedical field, and summarizing and commenting on the best results obtained. Additionally, the review will delve into potential applications and suggest future directions to bridge existing research gaps in this domain.
♻ ☆ Exploring Superpixel Segmentation Methods in the Context of Citizen Science and Deforestation Detection
Tropical forests play an essential role in the planet's ecosystem, making the conservation of these biomes a worldwide priority. However, ongoing deforestation and degradation pose a significant threat to their existence, necessitating effective monitoring and the proposal of actions to mitigate the damage caused by these processes. In this regard, initiatives range from government and private sector monitoring programs to solutions based on citizen science campaigns, for example. Particularly in the context of citizen science campaigns, the segmentation of remote sensing images to identify deforested areas and subsequently submit them to analysis by non-specialized volunteers is necessary. Thus, segmentation using superpixel-based techniques proves to be a viable solution for this important task. Therefore, this paper presents an analysis of 22 superpixel-based segmentation methods applied to remote sensing images, aiming to identify which of them are more suitable for generating segments for citizen science campaigns. The results reveal that seven of the segmentation methods outperformed the baseline method (SLIC) currently employed in the ForestEyes citizen science project, indicating an opportunity for improvement in this important stage of campaign development.
comment: This paper is under review
♻ ☆ Fresh-CL: Feature Realignment through Experts on Hypersphere in Continual Learning ICASSP 2025
Continual Learning enables models to learn and adapt to new tasks while retaining prior knowledge. Introducing new tasks, however, can naturally lead to feature entanglement across tasks, limiting the model's capability to distinguish between new domain data. In this work, we propose a method called Feature Realignment through Experts on hyperSpHere in Continual Learning (Fresh-CL). By leveraging predefined and fixed simplex equiangular tight frame (ETF) classifiers on a hypersphere, our model improves feature separation both intra and inter tasks. However, the projection to a simplex ETF shifts with new tasks, disrupting structured feature representation of previous tasks and degrading performance. Therefore, we propose a dynamic extension of ETF through mixture of experts, enabling adaptive projections onto diverse subspaces to enhance feature representation. Experiments on 11 datasets demonstrate a 2% improvement in accuracy compared to the strongest baseline, particularly in fine-grained datasets, confirming the efficacy of combining ETF and MoE to improve feature distinction in continual learning scenarios.
comment: Accepted by ICASSP 2025
♻ ☆ Mitigating Low-Frequency Bias: Feature Recalibration and Frequency Attention Regularization for Adversarial Robustness
Ensuring the robustness of deep neural networks against adversarial attacks remains a fundamental challenge in computer vision. While adversarial training (AT) has emerged as a promising defense strategy, our analysis reveals a critical limitation: AT-trained models exhibit a bias toward low-frequency features while neglecting high-frequency components. This bias is particularly concerning as each frequency component carries distinct and crucial information: low-frequency features encode fundamental structural patterns, while high-frequency features capture intricate details and textures. To address this limitation, we propose High-Frequency Feature Disentanglement and Recalibration (HFDR), a novel module that strategically separates and recalibrates frequency-specific features to capture latent semantic cues. We further introduce frequency attention regularization to harmonize feature extraction across the frequency spectrum and mitigate the inherent low-frequency bias of AT. Extensive experiments demonstrate our method's superior performance against white-box attacks and transfer attacks, while exhibiting strong generalization capabilities across diverse scenarios.
♻ ☆ SELMA3D challenge: Self-supervised learning for 3D light-sheet microscopy image segmentation
Recent innovations in light sheet microscopy, paired with developments in tissue clearing techniques, enable the 3D imaging of large mammalian tissues with cellular resolution. Combined with the progress in large-scale data analysis, driven by deep learning, these innovations empower researchers to rapidly investigate the morphological and functional properties of diverse biological samples. Segmentation, a crucial preliminary step in the analysis process, can be automated using domain-specific deep learning models with expert-level performance. However, these models exhibit high sensitivity to domain shifts, leading to a significant drop in accuracy when applied to data outside their training distribution. To address this limitation, and inspired by the recent success of self-supervised learning in training generalizable models, we organized the SELMA3D Challenge during the MICCAI 2024 conference. SELMA3D provides a vast collection of light-sheet images from cleared mice and human brains, comprising 35 large 3D images-each with over 1000^3 voxels-and 315 annotated small patches for finetuning, preliminary testing and final testing. The dataset encompasses diverse biological structures, including vessel-like and spot-like structures. Five teams participated in all phases of the challenge, and their proposed methods are reviewed in this paper. Quantitative and qualitative results from most participating teams demonstrate that self-supervised learning on large datasets improves segmentation model performance and generalization. We will continue to support and extend SELMA3D as an inaugural MICCAI challenge focused on self-supervised learning for 3D microscopy image segmentation.
comment: 2st version
♻ ☆ Swin fMRI Transformer Predicts Early Neurodevelopmental Outcomes from Neonatal fMRI
Brain development in the first few months of human life is a critical phase characterized by rapid structural growth and functional organization. Accurately predicting developmental outcomes during this time is crucial for identifying delays and enabling timely interventions. This study introduces the SwiFT (Swin 4D fMRI Transformer) model, designed to predict Bayley-III composite scores using neonatal fMRI data from the Developing Human Connectome Project (dHCP). To enhance predictive accuracy, we apply dimensionality reduction via group independent component analysis (ICA) and pretrain SwiFT on large adult fMRI datasets to address the challenges of limited neonatal data. Our analysis shows that SwiFT significantly outperforms baseline models in predicting cognitive, motor, and language outcomes, leveraging both single-label and multi-label prediction strategies. The model's attention-based architecture processes spatiotemporal data end-to-end, delivering superior predictive performance. Additionally, we use Integrated Gradients with Smoothgrad sQuare (IG-SQ) to interpret predictions, identifying neural spatial representations linked to early cognitive and behavioral development. These findings underscore the potential of Transformer models to advance neurodevelopmental research and clinical practice.
comment: fMRI Transformer, Developing Human Connectome Project, Bayley Scales of Infant Development, Personalized Therapy, XAI
♻ ☆ Semantic Prompt Learning for Weakly-Supervised Semantic Segmentation WACV 2025
Weakly-Supervised Semantic Segmentation (WSSS) aims to train segmentation models using image data with only image-level supervision. Since precise pixel-level annotations are not accessible, existing methods typically focus on producing pseudo masks for training segmentation models by refining CAM-like heatmaps. However, the produced heatmaps may capture only the discriminative image regions of object categories or the associated co-occurring backgrounds. To address the issues, we propose a Semantic Prompt Learning for WSSS (SemPLeS) framework, which learns to effectively prompt the CLIP latent space to enhance the semantic alignment between the segmented regions and the target object categories. More specifically, we propose Contrastive Prompt Learning and Prompt-guided Semantic Refinement to learn the prompts that adequately describe and suppress the co-occurring backgrounds associated with each object category. In this way, SemPLeS can perform better semantic alignment between object regions and class labels, resulting in desired pseudo masks for training segmentation models. The proposed SemPLeS framework achieves competitive performance on standard WSSS benchmarks, PASCAL VOC 2012 and MS COCO 2014, and shows compatibility with other WSSS methods. Code: https://github.com/NVlabs/SemPLeS.
comment: WACV 2025. Code: https://github.com/NVlabs/SemPLeS. Project page: https://projectdisr.github.io/semples/
♻ ☆ PointSAM: Pointly-Supervised Segment Anything Model for Remote Sensing Images
Segment Anything Model (SAM) is an advanced foundational model for image segmentation, which is gradually being applied to remote sensing images (RSIs). Due to the domain gap between RSIs and natural images, traditional methods typically use SAM as a source pre-trained model and fine-tune it with fully supervised masks. Unlike these methods, our work focuses on fine-tuning SAM using more convenient and challenging point annotations. Leveraging SAM's zero-shot capabilities, we adopt a self-training framework that iteratively generates pseudo-labels for training. However, if the pseudo-labels contain noisy labels, there is a risk of error accumulation. To address this issue, we extract target prototypes from the target dataset and use the Hungarian algorithm to match them with prediction prototypes, preventing the model from learning in the wrong direction. Additionally, due to the complex backgrounds and dense distribution of objects in RSI, using point prompts may result in multiple objects being recognized as one. To solve this problem, we propose a negative prompt calibration method based on the non-overlapping nature of instance masks. In brief, we use the prompts of overlapping masks as corresponding negative signals, resulting in refined masks. Combining the above methods, we propose a novel Pointly-supervised Segment Anything Model named PointSAM. We conduct experiments on RSI datasets, including WHU, HRSID, and NWPU VHR-10, and the results show that our method significantly outperforms direct testing with SAM, SAM2, and other comparison methods. Furthermore, we introduce PointSAM as a point-to-box converter and achieve encouraging results, suggesting that this method can be extended to other point-supervised tasks. The code is available at https://github.com/Lans1ng/PointSAM.
comment: Accepted by IEEE TGRS
Information Retrieval 4
☆ Patent Novelty Assessment Accelerating Innovation and Patent Prosecution
In the rapidly evolving landscape of technological innovation, safeguarding intellectual property rights through patents is crucial for fostering progress and stimulating research and development investments. This report introduces a ground-breaking Patent Novelty Assessment and Claim Generation System, meticulously crafted to dissect the inventive aspects of intellectual property and simplify access to extensive patent claim data. Addressing a crucial gap in academic institutions, our system provides college students and researchers with an intuitive platform to navigate and grasp the intricacies of patent claims, particularly tailored for the nuances of Chinese patents. Unlike conventional analysis systems, our initiative harnesses a proprietary Chinese API to ensure unparalleled precision and relevance. The primary challenge lies in the complexity of accessing and comprehending diverse patent claims, inhibiting effective innovation upon existing ideas. Our solution aims to overcome these barriers by offering a bespoke approach that seamlessly retrieves comprehensive claim information, finely tuned to the specifics of the Chinese patent landscape. By equipping users with efficient access to comprehensive patent claim information, our transformative platform seeks to ignite informed exploration and innovation in the ever-evolving domain of intellectual property. Its envisioned impact transcends individual colleges, nurturing an environment conducive to research and development while deepening the understanding of patented concepts within the academic community.
☆ Causal Claims in Economics
We analyze over 44,000 NBER and CEPR working papers from 1980 to 2023 using a custom language model to construct knowledge graphs that map economic concepts and their relationships. We distinguish between general claims and those documented via causal inference methods (e.g., DiD, IV, RDD, RCTs). We document a substantial rise in the share of causal claims-from roughly 4% in 1990 to nearly 28% in 2020-reflecting the growing influence of the "credibility revolution." We find that causal narrative complexity (e.g., the depth of causal chains) strongly predicts both publication in top-5 journals and higher citation counts, whereas non-causal complexity tends to be uncorrelated or negatively associated with these outcomes. Novelty is also pivotal for top-5 publication, but only when grounded in credible causal methods: introducing genuinely new causal edges or paths markedly increases both the likelihood of acceptance at leading outlets and long-run citations, while non-causal novelty exhibits weak or even negative effects. Papers engaging with central, widely recognized concepts tend to attract more citations, highlighting a divergence between factors driving publication success and long-term academic impact. Finally, bridging underexplored concept pairs is rewarded primarily when grounded in causal methods, yet such gap filling exhibits no consistent link with future citations. Overall, our findings suggest that methodological rigor and causal innovation are key drivers of academic recognition, but sustained impact may require balancing novel contributions with conceptual integration into established economic discourse.
comment: For data, interactive tools, and additional project information, visit https://www.causal.claims/. The website contains resources such as data downloads, interactive author and paper-level knowledge graphs, and more
☆ Unveiling Temporal Trends in 19th Century Literature: An Information Retrieval Approach
In English literature, the 19th century witnessed a significant transition in styles, themes, and genres. Consequently, the novels from this period display remarkable diversity. This paper explores these variations by examining the evolution of term usage in 19th century English novels through the lens of information retrieval. By applying a query expansion-based approach to a decade-segmented collection of fiction from the British Library, we examine how related terms vary over time. Our analysis employs multiple standard metrics including Kendall's tau, Jaccard similarity, and Jensen-Shannon divergence to assess overlaps and shifts in expanded query term sets. Our results indicate a significant degree of divergence in the related terms across decades as selected by the query expansion technique, suggesting substantial linguistic and conceptual changes throughout the 19th century novels.
comment: Accepted at JCDL 2024
☆ Large Language Models, Knowledge Graphs and Search Engines: A Crossroads for Answering Users' Questions
Much has been discussed about how Large Language Models, Knowledge Graphs and Search Engines can be combined in a synergistic manner. A dimension largely absent from current academic discourse is the user perspective. In particular, there remain many open questions regarding how best to address the diverse information needs of users, incorporating varying facets and levels of difficulty. This paper introduces a taxonomy of user information needs, which guides us to study the pros, cons and possible synergies of Large Language Models, Knowledge Graphs and Search Engines. From this study, we derive a roadmap for future research.
Artificial Intelligence 8
☆ Kolmogorov-Arnold Recurrent Network for Short Term Load Forecasting Across Diverse Consumers
Load forecasting plays a crucial role in energy management, directly impacting grid stability, operational efficiency, cost reduction, and environmental sustainability. Traditional Vanilla Recurrent Neural Networks (RNNs) face issues such as vanishing and exploding gradients, whereas sophisticated RNNs such as LSTMs have shown considerable success in this domain. However, these models often struggle to accurately capture complex and sudden variations in energy consumption, and their applicability is typically limited to specific consumer types, such as offices or schools. To address these challenges, this paper proposes the Kolmogorov-Arnold Recurrent Network (KARN), a novel load forecasting approach that combines the flexibility of Kolmogorov-Arnold Networks with RNN's temporal modeling capabilities. KARN utilizes learnable temporal spline functions and edge-based activations to better model non-linear relationships in load data, making it adaptable across a diverse range of consumer types. The proposed KARN model was rigorously evaluated on a variety of real-world datasets, including student residences, detached homes, a home with electric vehicle charging, a townhouse, and industrial buildings. Across all these consumer categories, KARN consistently outperformed traditional Vanilla RNNs, while it surpassed LSTM and Gated Recurrent Units (GRUs) in six buildings. The results demonstrate KARN's superior accuracy and applicability, making it a promising tool for enhancing load forecasting in diverse energy management scenarios.
☆ Enhancing Patient-Centric Communication: Leveraging LLMs to Simulate Patient Perspectives
Large Language Models (LLMs) have demonstrated impressive capabilities in role-playing scenarios, particularly in simulating domain-specific experts using tailored prompts. This ability enables LLMs to adopt the persona of individuals with specific backgrounds, offering a cost-effective and efficient alternative to traditional, resource-intensive user studies. By mimicking human behavior, LLMs can anticipate responses based on concrete demographic or professional profiles. In this paper, we evaluate the effectiveness of LLMs in simulating individuals with diverse backgrounds and analyze the consistency of these simulated behaviors compared to real-world outcomes. In particular, we explore the potential of LLMs to interpret and respond to discharge summaries provided to patients leaving the Intensive Care Unit (ICU). We evaluate and compare with human responses the comprehensibility of discharge summaries among individuals with varying educational backgrounds, using this analysis to assess the strengths and limitations of LLM-driven simulations. Notably, when LLMs are primed with educational background information, they deliver accurate and actionable medical guidance 88% of the time. However, when other information is provided, performance significantly drops, falling below random chance levels. This preliminary study shows the potential benefits and pitfalls of automatically generating patient-specific health information from diverse populations. While LLMs show promise in simulating health personas, our results highlight critical gaps that must be addressed before they can be reliably used in clinical settings. Our findings suggest that a straightforward query-response model could outperform a more tailored approach in delivering health information. This is a crucial first step in understanding how LLMs can be optimized for personalized health communication while maintaining accuracy.
☆ Generative Artificial Intelligence-Supported Pentesting: A Comparison between Claude Opus, GPT-4, and Copilot
The advent of Generative Artificial Intelligence (GenAI) has brought a significant change to our society. GenAI can be applied across numerous fields, with particular relevance in cybersecurity. Among the various areas of application, its use in penetration testing (pentesting) or ethical hacking processes is of special interest. In this paper, we have analyzed the potential of leading generic-purpose GenAI tools-Claude Opus, GPT-4 from ChatGPT, and Copilot-in augmenting the penetration testing process as defined by the Penetration Testing Execution Standard (PTES). Our analysis involved evaluating each tool across all PTES phases within a controlled virtualized environment. The findings reveal that, while these tools cannot fully automate the pentesting process, they provide substantial support by enhancing efficiency and effectiveness in specific tasks. Notably, all tools demonstrated utility; however, Claude Opus consistently outperformed the others in our experimental scenarios.
☆ Compact Bayesian Neural Networks via pruned MCMC sampling
Bayesian Neural Networks (BNNs) offer robust uncertainty quantification in model predictions, but training them presents a significant computational challenge. This is mainly due to the problem of sampling multimodal posterior distributions using Markov Chain Monte Carlo (MCMC) sampling and variational inference algorithms. Moreover, the number of model parameters scales exponentially with additional hidden layers, neurons, and features in the dataset. Typically, a significant portion of these densely connected parameters are redundant and pruning a neural network not only improves portability but also has the potential for better generalisation capabilities. In this study, we address some of the challenges by leveraging MCMC sampling with network pruning to obtain compact probabilistic models having removed redundant parameters. We sample the posterior distribution of model parameters (weights and biases) and prune weights with low importance, resulting in a compact model. We ensure that the compact BNN retains its ability to estimate uncertainty via the posterior distribution while retaining the model training and generalisation performance accuracy by adapting post-pruning resampling. We evaluate the effectiveness of our MCMC pruning strategy on selected benchmark datasets for regression and classification problems through empirical result analysis. We also consider two coral reef drill-core lithology classification datasets to test the robustness of the pruning model in complex real-world datasets. We further investigate if refining compact BNN can retain any loss of performance. Our results demonstrate the feasibility of training and pruning BNNs using MCMC whilst retaining generalisation performance with over 75% reduction in network size. This paves the way for developing compact BNN models that provide uncertainty estimates for real-world applications.
comment: 22 pages, 11 figures
☆ Patent Novelty Assessment Accelerating Innovation and Patent Prosecution
In the rapidly evolving landscape of technological innovation, safeguarding intellectual property rights through patents is crucial for fostering progress and stimulating research and development investments. This report introduces a ground-breaking Patent Novelty Assessment and Claim Generation System, meticulously crafted to dissect the inventive aspects of intellectual property and simplify access to extensive patent claim data. Addressing a crucial gap in academic institutions, our system provides college students and researchers with an intuitive platform to navigate and grasp the intricacies of patent claims, particularly tailored for the nuances of Chinese patents. Unlike conventional analysis systems, our initiative harnesses a proprietary Chinese API to ensure unparalleled precision and relevance. The primary challenge lies in the complexity of accessing and comprehending diverse patent claims, inhibiting effective innovation upon existing ideas. Our solution aims to overcome these barriers by offering a bespoke approach that seamlessly retrieves comprehensive claim information, finely tuned to the specifics of the Chinese patent landscape. By equipping users with efficient access to comprehensive patent claim information, our transformative platform seeks to ignite informed exploration and innovation in the ever-evolving domain of intellectual property. Its envisioned impact transcends individual colleges, nurturing an environment conducive to research and development while deepening the understanding of patented concepts within the academic community.
☆ The Einstein Test: Towards a Practical Test of a Machine's Ability to Exhibit Superintelligence
Creative and disruptive insights (CDIs), such as the development of the theory of relativity, have punctuated human history, marking pivotal shifts in our intellectual trajectory. Recent advancements in artificial intelligence (AI) have sparked debates over whether state of the art models possess the capacity to generate CDIs. We argue that the ability to create CDIs should be regarded as a significant feature of machine superintelligence (SI).To this end, we propose a practical test to evaluate whether an approach to AI targeting SI can yield novel insights of this kind. We propose the Einstein test: given the data available prior to the emergence of a known CDI, can an AI independently reproduce that insight (or one that is formally equivalent)? By achieving such a milestone, a machine can be considered to at least match humanity's past top intellectual achievements, and therefore to have the potential to surpass them.
☆ An Empirical Study of Deep Reinforcement Learning in Continuing Tasks
In reinforcement learning (RL), continuing tasks refer to tasks where the agent-environment interaction is ongoing and can not be broken down into episodes. These tasks are suitable when environment resets are unavailable, agent-controlled, or predefined but where all rewards-including those beyond resets-are critical. These scenarios frequently occur in real-world applications and can not be modeled by episodic tasks. While modern deep RL algorithms have been extensively studied and well understood in episodic tasks, their behavior in continuing tasks remains underexplored. To address this gap, we provide an empirical study of several well-known deep RL algorithms using a suite of continuing task testbeds based on Mujoco and Atari environments, highlighting several key insights concerning continuing tasks. Using these testbeds, we also investigate the effectiveness of a method for improving temporal-difference-based RL algorithms in continuing tasks by centering rewards, as introduced by Naik et al. (2024). While their work primarily focused on this method in conjunction with Q-learning, our results extend their findings by demonstrating that this method is effective across a broader range of algorithms, scales to larger tasks, and outperforms two other reward-centering approaches.
♻ ☆ Artificial Intelligence for Cochlear Implants: Review of Strategies, Challenges, and Perspectives
Automatic speech recognition (ASR) plays a pivotal role in our daily lives, offering utility not only for interacting with machines but also for facilitating communication for individuals with partial or profound hearing impairments. The process involves receiving the speech signal in analog form, followed by various signal processing algorithms to make it compatible with devices of limited capacities, such as cochlear implants (CIs). Unfortunately, these implants, equipped with a finite number of electrodes, often result in speech distortion during synthesis. Despite efforts by researchers to enhance received speech quality using various state-of-the-art (SOTA) signal processing techniques, challenges persist, especially in scenarios involving multiple sources of speech, environmental noise, and other adverse conditions. The advent of new artificial intelligence (AI) methods has ushered in cutting-edge strategies to address the limitations and difficulties associated with traditional signal processing techniques dedicated to CIs. This review aims to comprehensively cover advancements in CI-based ASR and speech enhancement, among other related aspects. The primary objective is to provide a thorough overview of metrics and datasets, exploring the capabilities of AI algorithms in this biomedical field, and summarizing and commenting on the best results obtained. Additionally, the review will delve into potential applications and suggest future directions to bridge existing research gaps in this domain.
Robotics 10
☆ MapGS: Generalizable Pretraining and Data Augmentation for Online Mapping via Novel View Synthesis
Online mapping reduces the reliance of autonomous vehicles on high-definition (HD) maps, significantly enhancing scalability. However, recent advancements often overlook cross-sensor configuration generalization, leading to performance degradation when models are deployed on vehicles with different camera intrinsics and extrinsics. With the rapid evolution of novel view synthesis methods, we investigate the extent to which these techniques can be leveraged to address the sensor configuration generalization challenge. We propose a novel framework leveraging Gaussian splatting to reconstruct scenes and render camera images in target sensor configurations. The target config sensor data, along with labels mapped to the target config, are used to train online mapping models. Our proposed framework on the nuScenes and Argoverse 2 datasets demonstrates a performance improvement of 18% through effective dataset augmentation, achieves faster convergence and efficient training, and exceeds state-of-the-art performance when using only 25% of the original training data. This enables data reuse and reduces the need for laborious data labeling. Project page at https://henryzhangzhy.github.io/mapgs.
☆ Enhancing Path Planning Performance through Image Representation Learning of High-Dimensional Configuration Spaces
This paper presents a novel method for accelerating path-planning tasks in unknown scenes with obstacles by utilizing Wasserstein Generative Adversarial Networks (WGANs) with Gradient Penalty (GP) to approximate the distribution of waypoints for a collision-free path using the Rapidly-exploring Random Tree algorithm. Our approach involves conditioning the WGAN-GP with a forward diffusion process in a continuous latent space to handle multimodal datasets effectively. We also propose encoding the waypoints of a collision-free path as a matrix, where the multidimensional ordering of the waypoints is naturally preserved. This method not only improves model learning but also enhances training convergence. Furthermore, we propose a method to assess whether the trained model fails to accurately capture the true waypoints. In such cases, we revert to uniform sampling to ensure the algorithm's probabilistic completeness; a process that traditionally involves manually determining an optimal ratio for each scenario in other machine learning-based methods. Our experiments demonstrate promising results in accelerating path-planning tasks under critical time constraints. The source code is openly available at https://bitbucket.org/joro3001/imagewgangpplanning/src/master/.
☆ RoboHorizon: An LLM-Assisted Multi-View World Model for Long-Horizon Robotic Manipulation
Efficient control in long-horizon robotic manipulation is challenging due to complex representation and policy learning requirements. Model-based visual reinforcement learning (RL) has shown great potential in addressing these challenges but still faces notable limitations, particularly in handling sparse rewards and complex visual features in long-horizon environments. To address these limitations, we propose the Recognize-Sense-Plan-Act (RSPA) pipeline for long-horizon tasks and further introduce RoboHorizon, an LLM-assisted multi-view world model tailored for long-horizon robotic manipulation. In RoboHorizon, pre-trained LLMs generate dense reward structures for multi-stage sub-tasks based on task language instructions, enabling robots to better recognize long-horizon tasks. Keyframe discovery is then integrated into the multi-view masked autoencoder (MAE) architecture to enhance the robot's ability to sense critical task sequences, strengthening its multi-stage perception of long-horizon processes. Leveraging these dense rewards and multi-view representations, a robotic world model is constructed to efficiently plan long-horizon tasks, enabling the robot to reliably act through RL algorithms. Experiments on two representative benchmarks, RLBench and FurnitureBench, show that RoboHorizon outperforms state-of-the-art visual model-based RL methods, achieving a 23.35% improvement in task success rates on RLBench's 4 short-horizon tasks and a 29.23% improvement on 6 long-horizon tasks from RLBench and 3 furniture assembly tasks from FurnitureBench.
comment: Under review
☆ Cooperative Aerial Robot Inspection Challenge: A Benchmark for Heterogeneous Multi-UAV Planning and Lessons Learned
We propose the Cooperative Aerial Robot Inspection Challenge (CARIC), a simulation-based benchmark for motion planning algorithms in heterogeneous multi-UAV systems. CARIC features UAV teams with complementary sensors, realistic constraints, and evaluation metrics prioritizing inspection quality and efficiency. It offers a ready-to-use perception-control software stack and diverse scenarios to support the development and evaluation of task allocation and motion planning algorithms. Competitions using CARIC were held at IEEE CDC 2023 and the IROS 2024 Workshop on Multi-Robot Perception and Navigation, attracting innovative solutions from research teams worldwide. This paper examines the top three teams from CDC 2023, analyzing their exploration, inspection, and task allocation strategies while drawing insights into their performance across scenarios. The results highlight the task's complexity and suggest promising directions for future research in cooperative multi-UAV systems.
comment: Please find our website at https://ntu-aris.github.io/caric
☆ Safe Circumnavigation of a Hostile Target Using Range-Based Measurements
Robotic systems are frequently deployed in missions that are dull, dirty, and dangerous, where ensuring their safety is of paramount importance when designing stabilizing controllers to achieve their desired goals. This paper addresses the problem of safe circumnavigation around a hostile target by a nonholonomic robot, with the objective of maintaining a desired safe distance from the target. Our solution approach involves incorporating an auxiliary circle into the problem formulation, which assists in navigating the robot around the target using available range-based measurements. By leveraging the concept of a barrier Lyapunov function, we propose a novel control law that ensures stable circumnavigation around the target while preventing the robot from entering the safety circle. This controller is designed based on a parameter that depends on the radii of three circles, namely the stabilizing circle, the auxiliary circle, and the safety circle. By identifying an appropriate range for this design parameter, we rigorously prove the stability of the desired equilibrium of the closed-loop system. Additionally, we provide an analysis of the robot's motion within the auxiliary circle, which is influenced by a gain parameter in the proposed controller. Simulation and experimental results are presented to illustrate the key theoretical developments.
☆ Whole-Body Integrated Motion Planning for Aerial Manipulators
Efficient motion planning for Aerial Manipulators (AMs) is essential for tackling complex manipulation tasks, yet achieving coupled trajectory planning remains challenging. In this work, we propose, to the best of our knowledge, the first whole-body integrated motion planning framework for aerial manipulators, which is facilitated by an improved Safe Flight Corridor (SFC) generation strategy and high-dimensional collision-free trajectory planning. In particular, we formulate an optimization problem to generate feasible trajectories for both the quadrotor and manipulator while ensuring collision avoidance, dynamic feasibility, kinematic feasibility, and waypoint constraints. To achieve collision avoidance, we introduce a variable geometry approximation method, which dynamically models the changing collision volume induced by different manipulator configurations. Moreover, waypoint constraints in our framework are defined in $\mathrm{SE(3)\times\mathbb{R}^3}$, allowing the aerial manipulator to traverse specified positions while maintaining desired attitudes and end-effector states. The effectiveness of our framework is validated through comprehensive simulations and real-world experiments across various environments.
comment: 15 pages, 13 figures
☆ Aug3D: Augmenting large scale outdoor datasets for Generalizable Novel View Synthesis IROS 2024
Recent photorealistic Novel View Synthesis (NVS) advances have increasingly gained attention. However, these approaches remain constrained to small indoor scenes. While optimization-based NVS models have attempted to address this, generalizable feed-forward methods, offering significant advantages, remain underexplored. In this work, we train PixelNeRF, a feed-forward NVS model, on the large-scale UrbanScene3D dataset. We propose four training strategies to cluster and train on this dataset, highlighting that performance is hindered by limited view overlap. To address this, we introduce Aug3D, an augmentation technique that leverages reconstructed scenes using traditional Structure-from-Motion (SfM). Aug3D generates well-conditioned novel views through grid and semantic sampling to enhance feed-forward NVS model learning. Our experiments reveal that reducing the number of views per cluster from 20 to 10 improves PSNR by 10%, but the performance remains suboptimal. Aug3D further addresses this by combining the newly generated novel views with the original dataset, demonstrating its effectiveness in improving the model's ability to predict novel views.
comment: IROS 2024 Workshop, 9 Pages, 7 Figures
♻ ☆ Model-Free and Real-Time Bioinspired Unicycle-Based Source Seeking: Differential Wheeled Robotic Experiments
Bioinspred robots aimed at source-seeking are often studied, and their controls designed, using unicycle modeling and formulation. This is true not only for model-based controllers, but also for model-free, real-time control methods such as extremum seeking control (ESC). In this paper, we propose a unicycle-based ESC design applicable to differential wheeled robots that: (1) is very simple design, based on one simple control-affine law, and without state integrators; (2) attenuates oscillations known to persist in ESC designs (i.e., fully stop at the source); and (3) operates in a model-free, real-time setting, tolerating environmental/sensor noise. We provide simulation and real-world robotic experimental results for fixed and moving light source seeking by a differential wheeled robot using our proposed design. Results indicate clear advantages of our proposed design when compared to the literature, including attenuation of undesired oscillations, improved convergence speed, and better handling of noise.
♻ ☆ 3D Printable Gradient Lattice Design for Multi-Stiffness Robotic Fingers
Human fingers achieve exceptional dexterity and adaptability by combining structures with varying stiffness levels, from soft tissues (low) to tendons and cartilage (medium) to bones (high). This paper explores developing a robotic finger with similar multi-stiffness characteristics. Specifically, we propose using a lattice configuration, parameterized by voxel size and unit cell geometry, to optimize and achieve fine-tuned stiffness properties with high granularity. A significant advantage of this approach is the feasibility of 3D printing the designs in a single process, eliminating the need for manual assembly of elements with differing stiffness. Based on this method, we present a novel, human-like finger, and a soft gripper. We integrate the latter with a rigid manipulator and demonstrate the effectiveness in pick and place tasks.
♻ ☆ Splat-Nav: Safe Real-Time Robot Navigation in Gaussian Splatting Maps
We present Splat-Nav, a real-time robot navigation pipeline for Gaussian Splatting (GSplat) scenes, a powerful new 3D scene representation. Splat-Nav consists of two components: 1) Splat-Plan, a safe planning module, and 2) Splat-Loc, a robust vision-based pose estimation module. Splat-Plan builds a safe-by-construction polytope corridor through the map based on mathematically rigorous collision constraints and then constructs a B\'ezier curve trajectory through this corridor. Splat-Loc provides real-time recursive state estimates given only an RGB feed from an on-board camera, leveraging the point-cloud representation inherent in GSplat scenes. Working together, these modules give robots the ability to recursively re-plan smooth and safe trajectories to goal locations. Goals can be specified with position coordinates, or with language commands by using a semantic GSplat. We demonstrate improved safety compared to point cloud-based methods in extensive simulation experiments. In a total of 126 hardware flights, we demonstrate equivalent safety and speed compared to motion capture and visual odometry, but without a manual frame alignment required by those methods. We show online re-planning at more than 2 Hz and pose estimation at about 25 Hz, an order of magnitude faster than Neural Radiance Field (NeRF)-based navigation methods, thereby enabling real-time navigation. We provide experiment videos on our project page at https://chengine.github.io/splatnav/. Our codebase and ROS nodes can be found at https://github.com/chengine/splatnav.
Systems and Control 15
☆ A Geometric Analysis-Based Safety Assessment Framework for MASS Route Decision-Making in Restricted Waters
To enhance the safety of Maritime Autonomous Surface Ships (MASS) navigating in restricted waters, this paper aims to develop a geometric analysis-based route safety assessment (GARSA) framework, specifically designed for their route decision-making in irregularly shaped waterways. Utilizing line and point geometric elements to define waterway boundaries, the framework enables to construct a dynamic width characterization function to quantify spatial safety along intricate waterways. An iterative method is developed to calculate this function, enabling an abstracted spatial property representation of the waterways. Based on this, we introduce a navigational safety index that balances global navigational safety and local risk to determine the safest route. To accommodate ship kinematic constraints, path modifications are applied using a dynamic window approach. A case study in a simulated Port of Hamburg environment shows that GARSA effectively identifies safe routes and avoids the risk of entering narrow waterways in an autonomous manner, thereby prioritizing safety in route decision-making for MASS in confined waters.
☆ A Reduced Order Iterative Linear Quadratic Regulator (ILQR) Technique for the Optimal Control of Nonlinear Partial Differential Equations
In this paper, we introduce a reduced order model-based reinforcement learning (MBRL) approach, utilizing the Iterative Linear Quadratic Regulator (ILQR) algorithm for the optimal control of nonlinear partial differential equations (PDEs). The approach proposes a novel modification of the ILQR technique: it uses the Method of Snapshots to identify a reduced order Linear Time Varying (LTV) approximation of the nonlinear PDE dynamics around a current estimate of the optimal trajectory, utilizes the identified LTV model to solve a time-varying reduced order LQR problem to obtain an improved estimate of the optimal trajectory along with a new reduced basis, and iterates till convergence. The convergence behavior of the reduced order approach is analyzed and the algorithm is shown to converge to a limit set that is dependent on the truncation error in the reduction. The proposed approach is tested on the viscous Burger's equation and two phase-field models for microstructure evolution in materials, and the results show that there is a significant reduction in the computational burden over the standard ILQR approach, without significantly sacrificing performance.
☆ Optimizing wheel loader performance: an end-to-end approach
Wheel loaders in mines and construction sites repeatedly load soil from a pile to load receivers. This task presents a challenging optimization problem since each loading's performance depends on the pile state, which depends on previous loadings. We investigate an end-to-end optimization approach considering future loading outcomes and V-cycle transportation costs. To predict the evolution of the pile state and the loading performance, we use world models that leverage deep neural networks trained on numerous simulated loading cycles. A look-ahead tree search optimizes the sequence of loading actions by evaluating the performance of thousands of action candidates, which expand into subsequent action candidates under the predicted pile states recursively. Test results demonstrate that, over a horizon of 15 sequential loadings, the look-ahead tree search is 6% more efficient than a greedy strategy, which always selects the action that maximizes the current single loading performance, and 14% more efficient than using a fixed loading controller optimized for the nominal case.
comment: 25 pages, 11 figures
☆ Modeling the residual queue and queue-dependent capacity in a static traffic assignment problem
The residual queue during a given study period (e.g., peak hour) is an important feature that should be considered when solving a traffic assignment problem under equilibrium for strategic traffic planning. Although studies have focused extensively on static or quasi-dynamic traffic assignment models considering the residual queue, they have failed to capture the situation wherein the equilibrium link flow passing through the link is less than the link physical capacity under congested conditions. To address this critical issue, we introduce a novel static traffic assignment model that explicitly incorporates the residual queue and queue-dependent link capacity. The proposed model ensures that equilibrium link flows remain within the physical capacity bounds, yielding estimations more aligned with data observed by traffic detectors, especially in oversaturated scenarios. A generalized link cost function considering queue-dependent capacity, with an additional queuing delay term is proposed. The queuing delay term represents the added travel cost under congestion, offering a framework wherein conventional static models, both with and without physical capacity constraints, become special cases of our model. Our study rigorously analyzes the mathematical properties of the new model, establishing the theoretical uniqueness of solutions for link flow and residual queue under certain conditions. We also introduce a gradient projection-based alternating minimization algorithm tailored for the proposed model. Numerical examples are conducted to demonstrate the superiority and merit of the proposed model and solution algorithm.
☆ Cooperative Aerial Robot Inspection Challenge: A Benchmark for Heterogeneous Multi-UAV Planning and Lessons Learned
We propose the Cooperative Aerial Robot Inspection Challenge (CARIC), a simulation-based benchmark for motion planning algorithms in heterogeneous multi-UAV systems. CARIC features UAV teams with complementary sensors, realistic constraints, and evaluation metrics prioritizing inspection quality and efficiency. It offers a ready-to-use perception-control software stack and diverse scenarios to support the development and evaluation of task allocation and motion planning algorithms. Competitions using CARIC were held at IEEE CDC 2023 and the IROS 2024 Workshop on Multi-Robot Perception and Navigation, attracting innovative solutions from research teams worldwide. This paper examines the top three teams from CDC 2023, analyzing their exploration, inspection, and task allocation strategies while drawing insights into their performance across scenarios. The results highlight the task's complexity and suggest promising directions for future research in cooperative multi-UAV systems.
comment: Please find our website at https://ntu-aris.github.io/caric
☆ When xURLLC Meets NOMA: A Stochastic Network Calculus Perspective
The advent of next-generation ultra-reliable and low-latency communications (xURLLC) presents stringent and unprecedented requirements for key performance indicators (KPIs). As a disruptive technology, non-orthogonal multiple access (NOMA) harbors the potential to fulfill these stringent KPIs essential for xURLLC. However, the immaturity of research on the tail distributions of these KPIs significantly impedes the application of NOMA to xURLLC. Stochastic network calculus (SNC), as a potent methodology, is leveraged to provide dependable theoretical insights into tail distribution analysis and statistical QoS provisioning (SQP). In this article, we develop a NOMA-assisted uplink xURLLC network architecture that incorporates an SNC-based SQP theoretical framework (SNC-SQP) to support tail distribution analysis in terms of delay, age-of-information (AoI), and reliability. Based on SNC-SQP, an SQP-driven power optimization problem is proposed to minimize transmit power while guaranteeing xURLLC's KPIs on delay, AoI, reliability, and power consumption. Extensive simulations validate our proposed theoretical framework and demonstrate that the proposed power allocation scheme significantly reduces uplink transmit power and outperforms conventional schemes in terms of SQP performance.
comment: 7 pages, 5 figures, accepted by IEEE Communications Magazine
☆ Safe Circumnavigation of a Hostile Target Using Range-Based Measurements
Robotic systems are frequently deployed in missions that are dull, dirty, and dangerous, where ensuring their safety is of paramount importance when designing stabilizing controllers to achieve their desired goals. This paper addresses the problem of safe circumnavigation around a hostile target by a nonholonomic robot, with the objective of maintaining a desired safe distance from the target. Our solution approach involves incorporating an auxiliary circle into the problem formulation, which assists in navigating the robot around the target using available range-based measurements. By leveraging the concept of a barrier Lyapunov function, we propose a novel control law that ensures stable circumnavigation around the target while preventing the robot from entering the safety circle. This controller is designed based on a parameter that depends on the radii of three circles, namely the stabilizing circle, the auxiliary circle, and the safety circle. By identifying an appropriate range for this design parameter, we rigorously prove the stability of the desired equilibrium of the closed-loop system. Additionally, we provide an analysis of the robot's motion within the auxiliary circle, which is influenced by a gain parameter in the proposed controller. Simulation and experimental results are presented to illustrate the key theoretical developments.
☆ Cooperative Optimal Output Tracking for Discrete-Time Multiagent Systems: Stabilizing Policy Iteration Frameworks and Analysis
In this paper, two model-free optimal output tracking frameworks based on policy iteration for discrete-time multi-agent systems are proposed. First, we establish a framework of stabilizing policy iteration that can start from any initial feedback control policy, relaxing the dependence of traditional policy iteration on the initial stabilizing control policy. Then, another efficient and equivalent $Q$-learning policy iteration framework is developed, which is shown to require only less system data to get the same results as the stabilizing policy iteration. Both frameworks obtain stabilizing control policy by iterating the stabilizing virtual closed-loop system step-by-step to the actual closed-loop system. Multiple explicit schemes for the iteration step-size/coefficient are designed and their stability during the above iterations is analyzed. By using the generated closed-loop stabilizing control policy and two frameworks, the optimal feedback control gain is obtained. The approximate solution of the regulator equations is found by model-free iteration, which leads to the optimal feedforward gain. Finally, the cooperative optimal output tracking is realized by a distributed feedforward-feedback controller. The proposed algorithms are validated by simulation.
☆ Improving Requirements Classification with SMOTE-Tomek Preprocessing
This study emphasizes the domain of requirements engineering by applying the SMOTE-Tomek preprocessing technique, combined with stratified K-fold cross-validation, to address class imbalance in the PROMISE dataset. This dataset comprises 969 categorized requirements, classified into functional and non-functional types. The proposed approach enhances the representation of minority classes while maintaining the integrity of validation folds, leading to a notable improvement in classification accuracy. Logistic regression achieved 76.16\%, significantly surpassing the baseline of 58.31\%. These results highlight the applicability and efficiency of machine learning models as scalable and interpretable solutions.
comment: 8 pages, 5 figures
☆ Prediction Model of Aqua Fisheries Using IoT Devices
Aquaculture involves cultivating marine and freshwater organisms, with real-time monitoring of aquatic parameters being crucial in fish farming. This thesis proposes an IoT-based framework using sensors and Arduino for efficient monitoring and control of water quality. Different sensors including pH, temperature, and turbidity are placed in cultivating pond water and each of them is connected to a common microcontroller board built on an Arduino Uno. The sensors read the data from the water and store it as a CSV file in an IoT cloud named Thingspeak through the Arduino Microcontroller. In the experimental part, we collected data from 5 ponds with various sizes and environments. After getting the real-time data, we compared these with the standard reference values. As a result, we can make the decision about which ponds are satisfactory for cultivating fish and what is not. After that, we labeled the data with 11 fish categories including Katla, sing, prawn, rui, koi, pangas, tilapia, silvercarp, karpio, magur, and shrimp. In addition, the data were analyzed using 10 machine learning (ML) algorithms containing J48, Random Forest, K-NN, K*, LMT, REPTree, JRIP, PART, Decision Table, and Logit boost. After experimental evaluation, it was observed among 5 ponds, only three ponds were perfect for fish farming, where these 3 ponds only satisfied the standard reference values of pH (6.5-8.5), Temperature (16-24)oC, Turbidity (below 10)ntu, Conductivity (970-1825){\mu}S/cm, and Depth (1-4) meter. Among the state-of-the-art machine learning algorithms, Random Forest achieved the highest score of performance metrics as accuracy 94.42%, kappa statistics 93.5%, and Avg. TP Rate 94.4%. In addition, we calculated the BOD, COD, and DO for one scenario. This study includes details of the proposed IoT system's prototype hardware.
☆ Recent Advances of 6G Ultra-Massive MIMO Technologies in Spatial and Beam Domains
To explore the full potential of ultra-massive multiple-input multiple-output (MIMO) communication systems, it is fundamental to understand new ultra-massive MIMO channel characteristics and establish pervasive channel models. On this basis, large dimensional spatial-temporal transmission and random access technologies need to be investigated and evaluated for better practical implementation. Firstly, this paper reviews recent advances of ultra-massive MIMO technologies in the traditional spatial domain, including wireless channel characterization and modeling, channel estimation, spatial multiplexing, and precoding. Secondly, considering the dramatic increase of base station (BS) antennas and access users in ultra-massive MIMO systems, the confronted high dimensional complexity and computing burden of these ultra-massive MIMO technologies are indicated. To provide efficient and systematic solution, the emerging tendency to transform related technologies from the traditional spatial domain to beam domain is introduced. The utilities of large sparsity merit, reduced energy consumption, and improved usage of radio frequency (RF) chains in the beam domain channel are elaborated. At last, future challenges of ultra-massive MIMO communication systems are discussed.
♻ ☆ Adaptive Relaxation based Non-Conservative Chance Constrained Stochastic MPC
Chance constrained stochastic model predictive controllers (CC-SMPC) trade off full constraint satisfaction for economical plant performance under uncertainty. Previous CC-SMPC works are over-conservative in constraint violations leading to worse economic performance. Other past works require a-priori information about the uncertainty set, limiting their application. This paper considers a discrete LTI system with hard constraints on inputs and chance constraints on states, with unknown uncertainty distribution, statistics, or samples. This work proposes a novel adaptive online update rule to relax the state constraints based on the time-average of past constraint violations, to achieve reduced conservativeness in closed-loop. Under an ideal control policy assumption, it is proven that the time-average of constraint violations asymptotically converges to the maximum allowed violation probability. The method is applied for optimal battery energy storage system (BESS) dispatch in a grid connected microgrid with PV generation and load demand, with chance constraints on BESS state-of-charge (SOC). Realistic simulations show the superior electricity cost saving potential of the proposed method as compared to the traditional economic MPC without chance constraints, and a state-of-the-art approach with chance constraints. We satisfy the chance constraints non-conservatively in closed-loop, effectively trading off increased cost savings with minimal adverse effects on BESS lifetime.
comment: 16 pages, 3 figures, 3 tables, Submitted to IEEE Transactions on Control Systems Technology; Minor addition to footnote 6 from last version
♻ ☆ Asynchronous Federated Learning: A Scalable Approach for Decentralized Machine Learning
Federated Learning (FL) has emerged as a powerful paradigm for decentralized machine learning, enabling collaborative model training across diverse clients without sharing raw data. However, traditional FL approaches often face limitations in scalability and efficiency due to their reliance on synchronous client updates, which can result in significant delays and increased communication overhead, particularly in heterogeneous and dynamic environments. To address these challenges in this paper, we propose an Asynchronous Federated Learning (AFL) algorithm, which allows clients to update the global model independently and asynchronously. Our key contributions include a comprehensive convergence analysis of AFL in the presence of client delays and model staleness. By leveraging martingale difference sequence theory and variance bounds, we ensure robust convergence despite asynchronous updates. Assuming strongly convex local objective functions, we establish bounds on gradient variance under random client sampling and derive a recursion formula quantifying the impact of client delays on convergence. The proposed AFL algorithm addresses key limitations of traditional FL methods, such as inefficiency due to global synchronization and susceptibility to client drift. It enhances scalability, robustness, and efficiency in real-world settings with heterogeneous client populations and dynamic network conditions. Our results underscore the potential of AFL to drive advancements in distributed learning systems, particularly for large-scale, privacy-preserving applications in resource-constrained environments.
♻ ☆ Quantum Reinforcement Learning-Based Two-Stage Unit Commitment Framework for Enhanced Power Systems Robustness
The volatility of renewable energy sources and fluctuations in real-time electricity demand present significant challenges to traditional unit commitment (UC) methods, often causing system constraint violations. Conventional optimization algorithms face substantial difficulties in responding quickly to these variations, frequently requiring the relaxation of constraints or producing infeasible solutions. To address these challenges, a robust two-stage UC framework based on quantum reinforcement learning (QRL) is proposed in this work, which improves both decision-making speed and solution feasibility. In the first stage, the day-ahead scheduling of thermal generators is optimized. In the second stage, real-time adjustments are made to account for changes in renewable generation and load, with microgrids integrated to reduce the impact of uncertainties on the power system. Both stages are formulated as Markov decision processes (MDPs), and QRL is used to efficiently solve the problem. QRL provides key advantages, including more effective navigation of the high-dimensional solution space and faster convergence compared to classical methods, thus enhancing the robustness and computational efficiency of UC operations. The proposed QRL-based two-stage UC framework is validated using the IEEE RTS 24-bus system. Results demonstrate the effectiveness of the approach, showing improved solution feasibility and computational speed compared to conventional UC methods.
♻ ☆ Learning to Control Unknown Strongly Monotone Games
Consider a game where the players' utility functions include a reward function and a linear term for each dimension, with coefficients that are controlled by the manager. We assume that the game is strongly monotone, so gradient play converges to a unique Nash equilibrium (NE). The NE is typically globally inefficient. The global performance at NE can be improved by imposing linear constraints on the NE. We therefore want the manager to pick the controlled coefficients that impose the desired constraint on the NE. However, this requires knowing the players' reward functions and action sets. Obtaining this game information is infeasible in a large-scale network and violates user privacy. To overcome this, we propose a simple algorithm that learns to shift the NE to meet the linear constraints by adjusting the controlled coefficients online. Our algorithm only requires the linear constraints violation as feedback and does not need to know the reward functions or the action sets. We prove that our algorithm converges with probability 1 to the set of NE that satisfy target linear constraints. We then prove an L2 convergence rate of near-$O(t^{-1/4})$.
comment: Submitted to IEEE Transactions on Control of Network Systems
Multimedia 2
☆ NVS-SQA: Exploring Self-Supervised Quality Representation Learning for Neurally Synthesized Scenes without References
Neural View Synthesis (NVS), such as NeRF and 3D Gaussian Splatting, effectively creates photorealistic scenes from sparse viewpoints, typically evaluated by quality assessment methods like PSNR, SSIM, and LPIPS. However, these full-reference methods, which compare synthesized views to reference views, may not fully capture the perceptual quality of neurally synthesized scenes (NSS), particularly due to the limited availability of dense reference views. Furthermore, the challenges in acquiring human perceptual labels hinder the creation of extensive labeled datasets, risking model overfitting and reduced generalizability. To address these issues, we propose NVS-SQA, a NSS quality assessment method to learn no-reference quality representations through self-supervision without reliance on human labels. Traditional self-supervised learning predominantly relies on the "same instance, similar representation" assumption and extensive datasets. However, given that these conditions do not apply in NSS quality assessment, we employ heuristic cues and quality scores as learning objectives, along with a specialized contrastive pair preparation process to improve the effectiveness and efficiency of learning. The results show that NVS-SQA outperforms 17 no-reference methods by a large margin (i.e., on average 109.5% in SRCC, 98.6% in PLCC, and 91.5% in KRCC over the second best) and even exceeds 16 full-reference methods across all evaluation metrics (i.e., 22.9% in SRCC, 19.1% in PLCC, and 18.6% in KRCC over the second best).
♻ ☆ Visual question answering: from early developments to recent advances -- a survey
Visual Question Answering (VQA) is an evolving research field aimed at enabling machines to answer questions about visual content by integrating image and language processing techniques such as feature extraction, object detection, text embedding, natural language understanding, and language generation. With the growth of multimodal data research, VQA has gained significant attention due to its broad applications, including interactive educational tools, medical image diagnosis, customer service, entertainment, and social media captioning. Additionally, VQA plays a vital role in assisting visually impaired individuals by generating descriptive content from images. This survey introduces a taxonomy of VQA architectures, categorizing them based on design choices and key components to facilitate comparative analysis and evaluation. We review major VQA approaches, focusing on deep learning-based methods, and explore the emerging field of Large Visual Language Models (LVLMs) that have demonstrated success in multimodal tasks like VQA. The paper further examines available datasets and evaluation metrics essential for measuring VQA system performance, followed by an exploration of real-world VQA applications. Finally, we highlight ongoing challenges and future directions in VQA research, presenting open questions and potential areas for further development. This survey serves as a comprehensive resource for researchers and practitioners interested in the latest advancements and future
comment: 20 papers
Optimization and Control 18
☆ Approximate controllability for a one-dimensional wave equation with the fixed endpoint control
This paper is devoted to the study of the approximate controllability for a one-dimensional wave equation in domains with moving boundary. This equation models the motion of a string where an endpoint is fixed and the other one is moving. When the speed of the moving endpoint is less than the characteristic speed, the controllability of this equation is established. We present the following results: the existence and uniqueness of Nash equilibrium, the approximate controllability with respect to the leader control, and the optimality system for the leader control.
comment: 13 pages
☆ Hierarchical Control for the Oldroyd Equation in Memoriam to Professor Luiz Adauto Medeiros
This manuscript deals with a hierarchical control problem for Oldroyd equation under the Stackelberg-Nash strategy. The Oldroyd equation model is defined by non-regular coefficients, that is, they are bounded measurable functions. We assume that we can act in the dynamic of the system by a hierarchy of controls, where one main control (the leader) and several additional secondary control (the followers) act in order to accomplish their given tasks: controllability for the leader and optimization for followers. We obtain the existence and uniqueness of Nash equilibrium and its characterization, the approximate controllability with respect to the leader control, and the optimality system for leader control.
comment: 28 pages
☆ High-order Accurate Inference on Manifolds
We present a new framework for statistical inference on Riemannian manifolds that achieves high-order accuracy, addressing the challenges posed by non-Euclidean parameter spaces frequently encountered in modern data science. Our approach leverages a novel and computationally efficient procedure to reach higher-order asymptotic precision. In particular, we develop a bootstrap algorithm on Riemannian manifolds that is both computationally efficient and accurate for hypothesis testing and confidence region construction. Although locational hypothesis testing can be reformulated as a standard Euclidean problem, constructing high-order accurate confidence regions necessitates careful treatment of manifold geometry. To this end, we establish high-order asymptotics under a fixed normal chart centered at the true parameter, thereby enabling precise expansions that incorporate curvature effects. We demonstrate the versatility of this framework across various manifold settings-including spheres, the Stiefel manifold, fixed-rank matrices manifolds, and rank-one tensor manifolds-and, for Euclidean submanifolds, introduce a class of projection-like coordinate charts with strong consistency properties. Finally, numerical studies confirm the practical merits of the proposed procedure.
☆ Characterization of Highly Robust Solutions in Multi-Objective Programming in Banach Spaces
This paper delves into the challenging issues in uncertain multi-objective optimization, where uncertainty permeates nonsmooth nonconvex objective and constraint functions. In this context, we investigate highly robust (weakly efficient) solutions, a solution concept defined by efficiency across all scenarios. Our exploration reveals important relationships between highly robust solutions and other robustness notions, including set-based and worst-case notions, as well as connections with proper and isolated efficiency. Leveraging modern techniques from variational analysis, we establish necessary and sufficient optimality conditions for these solutions. Moreover, we explore the robustness of multi-objective optimization problems in the face of various uncertain sets, such as ball, ellipsoidal, and polyhedral sets.
comment: 20 pages
☆ On the Convergence and Complexity of the Stochastic Central Finite-Difference Based Gradient Estimation Methods
This paper presents an algorithmic framework for solving unconstrained stochastic optimization problems using only stochastic function evaluations. We employ central finite-difference based gradient estimation methods to approximate the gradients and dynamically control the accuracy of these approximations by adjusting the sample sizes used in stochastic realizations. We analyze the theoretical properties of the proposed framework on nonconvex functions. Our analysis yields sublinear convergence results to the neighborhood of the solution, and establishes the optimal worst-case iteration complexity ($\mathcal{O}(\epsilon^{-1})$) and sample complexity ($\mathcal{O}(\epsilon^{-2})$) for each gradient estimation method to achieve an $\epsilon$-accurate solution. Finally, we demonstrate the performance of the proposed framework and the quality of the gradient estimation methods through numerical experiments on nonlinear least squares problems.
☆ A Linear Complexity Algorithm for Optimal Transport Problem with Log-type Cost
In [Q. Liao et al., Commun. Math. Sci., 20(2022)], a linear-time Sinkhorn algorithm is developed based on dynamic programming, which significantly reduces the computational complexity involved in solving optimal transport problems. However, this algorithm is specifically designed for the Wasserstein-1 metric. We are curious whether the preceding dynamic programming framework can be extended to tackle optimal transport problems with different transport costs. Notably, two special kinds of optimal transport problems, the Sinkhorn ranking and the far-field reflector and refractor problems, are closely associated with the log-type transport costs. Interestingly, by employing series rearrangement and dynamic programming techniques, it is feasible to perform the matrix-vector multiplication within the Sinkhorn iteration in linear time for this type of cost. This paper provides a detailed exposition of its implementation and applications, with numerical simulations demonstrating the effectiveness and efficiency of our methods.
☆ Viscosity Iterative algorithm for solving Variational Inclusion and Fixed point problems involving Multivalued Quasi-Nonexpansive and Demicontractive Operators in real Hilbert Space
This paper presents a modified general viscosity iterative process designed to solve variational inclusion and fixed point problems involving multi-valued quasi-nonexpansive and demi-contractive operators. The modified iterative process incorporates a viscosity approximation technique to handle the nonexpansive and contractive mappings, providing a more robust and efficient solution approach. By introducing an additional sequence of iterates, the algorithm iteratively approximates the desired solution by combining fixed point iteration with viscosity approximation. The proposed method has been proven to converge strongly to the solution of the given problem, ensuring the reliability and accuracy of the results.
☆ On the general form of bimonotone operators
In a recent paper (2024) Camacho, C\'{a}novas, Mart\'{\i}nez-Legaz and Parra introduced bimonotone operators, i.e., operators $T$ such that both $T$ and $-T$ are monotone, and found some interesting applications to convex feasibility problems, especially in the case the operator is also paramonotone. In the present paper we drop paramonotonicity and examine the question of finding the most general form of a bimonotone operator in a Banach space. We show that any such operator can be reduced in some sense to a single-valued, skew symmetric linear operator. This facilitates the proof of some results involving these operators in applications.
comment: 5 pages
☆ Two Proofs of a Structural Theorem of Decreasing Minimization on Integrally Convex Sets
This paper gives two different proofs to a structural theorem of decreasing minimization (lexicographic optimization) on integrally convex sets. The theorem states that the set of decreasingly minimal elements of an integrally convex set can be represented as the intersection of a unit discrete cube and a face of the convex hull of the given integrally convex set. The first proof resorts to the Fenchel-type duality theorem in discrete convex analysis and the second is more elementary using Farkas' lemma.
comment: 16 pages
♻ ☆ ADMM for Nonsmooth Composite Optimization under Orthogonality Constraints
We consider a class of structured, nonconvex, nonsmooth optimization problems under orthogonality constraints, where the objectives combine a smooth function, a nonsmooth concave function, and a nonsmooth weakly convex function. This class of problems finds diverse applications in statistical learning and data science. Existing methods for addressing these problems often fail to exploit the specific structure of orthogonality constraints, struggle with nonsmooth functions, or result in suboptimal oracle complexity. We propose {\sf OADMM}, an Alternating Direction Method of Multipliers (ADMM) designed to solve this class of problems using efficient proximal linearized strategies. Two specific variants of {\sf OADMM} are explored: one based on Euclidean Projection ({\sf OADMM-EP}) and the other on Riemannian Retraction ({\sf OADMM-RR}). Under mild assumptions, we prove that {\sf OADMM} converges to a critical point of the problem with an ergodic convergence rate of $\mathcal{O}(1/\epsilon^{3})$. Additionally, we establish a polynomial convergence rate or super-exponential convergence rate for {\sf OADMM}, depending on the specific setting, under the Kurdyka-Lojasiewicz (KL) inequality. To the best of our knowledge, this is \textit{the first non-ergodic convergence result} for this class of nonconvex nonsmooth optimization problems. Numerical experiments demonstrate that the proposed algorithm achieves state-of-the-art performance. \textbf{Keywords:} Orthogonality Constraints; Nonconvex Optimization; Nonsmooth Composite Optimization; ADMM; Convergence Analysis
♻ ☆ Delayed Feedback in Online Non-Convex Optimization: A Non-Stationary Approach with Applications
We study non-convex delayed-noise online optimization problems by evaluating dynamic regret in the non-stationary setting when the loss functions are quasar-convex. In particular, we consider scenarios involving quasar-convex functions either with a Lipschitz gradient or weakly smooth and, for each case, we ensure bounded dynamic regret in terms of cumulative path variation achieving sub-linear regret rates. Furthermore, we illustrate the flexibility of our framework by applying it to both theoretical settings such as zeroth-order (bandit) and also to practical applications with quadratic fractional functions. Moreover, we provide new examples of non-convex functions that are quasar-convex by proving that the class of differentiable strongly quasiconvex functions (Polyak 1966) are strongly quasar-convex on convex compact sets. Finally, several numerical experiments validate our theoretical findings, illustrating the effectiveness of our approach.
comment: 31 Pages, 7 Figures, 8 Tables
♻ ☆ On the Complexity of Decentralized Smooth Nonconvex Finite-Sum Optimization ICML
We study the decentralized optimization problem $\min_{{\bf x}\in{\mathbb R}^d} f({\bf x})\triangleq \frac{1}{m}\sum_{i=1}^m f_i({\bf x})$, where the local function on the $i$-th agent has the form of $f_i({\bf x})\triangleq \frac{1}{n}\sum_{j=1}^n f_{i,j}({\bf x})$ and every individual $f_{i,j}$ is smooth but possibly nonconvex. We propose a stochastic algorithm called DEcentralized probAbilistic Recursive gradiEnt deScenT (DEAREST) method, which achieves an $\epsilon$-stationary point at each agent with the communication rounds of $\tilde{\mathcal O}(L\epsilon^{-2}/\sqrt{\gamma}\,)$, the computation rounds of $\tilde{\mathcal O}(n+(L+\min\{nL, \sqrt{n/m}\bar L\})\epsilon^{-2})$, and the local incremental first-oracle calls of ${\mathcal O}(mn + {\min\{mnL, \sqrt{mn}\bar L\}}{\epsilon^{-2}})$, where $L$ is the smoothness parameter of the objective function, $\bar L$ is the mean-squared smoothness parameter of all individual functions, and $\gamma$ is the spectral gap of the mixing matrix associated with the network. We then establish the lower bounds to show that the proposed method is near-optimal. Notice that the smoothness parameters $L$ and $\bar L$ used in our algorithm design and analysis are global, leading to sharper complexity bounds than existing results that depend on the local smoothness. We further extend DEAREST to solve the decentralized finite-sum optimization problem under the Polyak-{\L}ojasiewicz condition, also achieving the near-optimal complexity bounds.
comment: A major revision which significantly improves the results by considering the global smoothness parameters and involving the content of PL condition in ICML paper
♻ ☆ Model-Free and Real-Time Bioinspired Unicycle-Based Source Seeking: Differential Wheeled Robotic Experiments
Bioinspred robots aimed at source-seeking are often studied, and their controls designed, using unicycle modeling and formulation. This is true not only for model-based controllers, but also for model-free, real-time control methods such as extremum seeking control (ESC). In this paper, we propose a unicycle-based ESC design applicable to differential wheeled robots that: (1) is very simple design, based on one simple control-affine law, and without state integrators; (2) attenuates oscillations known to persist in ESC designs (i.e., fully stop at the source); and (3) operates in a model-free, real-time setting, tolerating environmental/sensor noise. We provide simulation and real-world robotic experimental results for fixed and moving light source seeking by a differential wheeled robot using our proposed design. Results indicate clear advantages of our proposed design when compared to the literature, including attenuation of undesired oscillations, improved convergence speed, and better handling of noise.
♻ ☆ Symmetry & Critical Points for Symmetric Tensor Decomposition Problems
We consider the nonconvex optimization problem associated with the decomposition of a real symmetric tensor into a sum of rank one terms. Use is made of the rich symmetry structure to construct infinite families of critical points represented by Puiseux series in the problem dimension, and so obtain precise analytic estimates on the value of the objective function and the Hessian spectrum. The results allow an analytic characterization of various obstructions to using local optimization methods, revealing in particular a complex array of saddles and minima differing by their symmetry, structure and analytic properties. A~desirable phenomenon, occurring for all critical points considered, concerns the number of negative Hessian eigenvalues increasing with the value of the objective function. Our approach makes use of Newton polyhedra as well as results from real algebraic geometry, notably the Curve Selection Lemma, to determine the extremal character of degenerate critical points, establishing in particular the existence of infinite families of third-order saddles which can significantly slow down the optimization process.
♻ ☆ Distributed Computing for Huge-Scale Linear Programming
This study develops an algorithm for distributed computing of linear programming problems of huge-scales. Global consensus with single common variable, multiblocks, and augmented Lagrangian are adopted. The consensus is used to partition the constraints of equality and inequality into multi-consensus blocks, and the subblocks of each consensus block are employed to partition the primal variables into $M$ sets of disjoint subvectors. The block-coordinate Gauss-Seidel method, the proximal point method, and ADMM are used to update the primal variables, and descent models used to update the dual. Under the dual sequences supposedly bounded, convergence of the algorithm to optimal solution is shown and the rate of convergence of the augmented Lagrangian, of $O(1/k)$ is obtained. It is yet to be investigated regarding the issue of the dual sequences to be bounded via initialization of the primal and dual sequences and the control parameter values.
comment: 10 pages. The issues of initialization and boundedness of dual sequences are discussed
♻ ☆ A Mean-Field Game of Market Entry: Portfolio Liquidation with Trading Constraints
We consider both $N$-player and mean-field games of optimal portfolio liquidation in which the players are not allowed to change the direction of trading. Players with an initially short position of stocks are only allowed to buy while players with an initially long position are only allowed to sell the stock. Under suitable conditions on the model parameters we show that the games are equivalent to games of timing where the players need to determine the optimal times of market entry and exit. We identify the equilibrium entry and exit times and prove that equilibrium mean-trading rates can be characterized in terms of the solutions to a highly non-linear higher-order integral equation with endogenous terminal condition. We prove the existence of a unique solution to the integral equation from which we obtain the existence of a unique equilibrium both in the mean-field and the $N$-player game.
♻ ☆ Multiple Regression for Matrix and Vector Predictors: Models, Theory, Algorithms, and Beyond
Matrix regression plays an important role in modern data analysis due to its ability to handle complex relationships involving both matrix and vector variables. We propose a class of regularized regression models capable of predicting both matrix and vector variables, accommodating various regularization techniques tailored to the inherent structures of the data. We establish the consistency of our estimator when penalizing the nuclear norm of the matrix variable and the $\ell_1$ norm of the vector variable. To tackle the general regularized regression model, we propose a unified framework based on an efficient preconditioned proximal point algorithm. Numerical experiments demonstrate the superior estimation and prediction accuracy of our proposed estimator, as well as the efficiency of our algorithm compared to the state-of-the-art solvers.
♻ ☆ Remarks on finite-approximate controllability of impulsive evolution systems via resolvent-like operator in Hilbert spaces
In this manuscript, we examine impulsive evolution systems in Hilbert spaces. Using a resolvent-like operator, we first establish the finite-approximate controllability for linear systems. Subsequently, by applying the Schauder fixed-point theorem (SFPT), we prove the existence of a solution and demonstrate the finite-approximate controllability of semilinear impulsive systems in Hilbert spaces. Finally, we extend these results to a broader application, specifically to the heat equation.
Information Retrieval 3
☆ Recommending the right academic programs: An interest mining approach using BERTopic
Prospective students face the challenging task of selecting a university program that will shape their academic and professional careers. For decision-makers and support services, it is often time-consuming and extremely difficult to match personal interests with suitable programs due to the vast and complex catalogue information available. This paper presents the first information system that provides students with efficient recommendations based on both program content and personal preferences. BERTopic, a powerful topic modeling algorithm, is used that leverages text embedding techniques to generate topic representations. It enables us to mine interest topics from all course descriptions, representing the full body of knowledge taught at the institution. Underpinned by the student's individual choice of topics, a shortlist of the most relevant programs is computed through statistical backtracking in the knowledge map, a novel characterization of the program-course relationship. This approach can be applied to a wide range of educational settings, including professional and vocational training. A case study at a post-secondary school with 80 programs and over 5,000 courses shows that the system provides immediate and effective decision support. The presented interest topics are meaningful, leading to positive effects such as serendipity, personalization, and fairness, as revealed by a qualitative study involving 65 students. Over 98% of users indicated that the recommendations aligned with their interests, and about 94% stated they would use the tool in the future. Quantitative analysis shows the system can be configured to ensure fairness, achieving 98% program coverage while maintaining a personalization score of 0.77. These findings suggest that this real-time, user-centered, data-driven system could improve the program selection process.
comment: Accepted at Data Mining and Knowledge Discovery (Springer)
☆ Analyzing the Role of Context in Forecasting with Large Language Models
This study evaluates the forecasting performance of recent language models (LLMs) on binary forecasting questions. We first introduce a novel dataset of over 600 binary forecasting questions, augmented with related news articles and their concise question-related summaries. We then explore the impact of input prompts with varying level of context on forecasting performance. The results indicate that incorporating news articles significantly improves performance, while using few-shot examples leads to a decline in accuracy. We find that larger models consistently outperform smaller models, highlighting the potential of LLMs in enhancing automated forecasting.
♻ ☆ Improving Sequential Recommendations with LLMs
The sequential recommendation problem has attracted considerable research attention in the past few years, leading to the rise of numerous recommendation models. In this work, we explore how Large Language Models (LLMs), which are nowadays introducing disruptive effects in many AI-based applications, can be used to build or improve sequential recommendation approaches. Specifically, we design three orthogonal approaches and hybrids of those to leverage the power of LLMs in different ways. In addition, we investigate the potential of each approach by focusing on its comprising technical aspects and determining an array of alternative choices for each one. We conduct extensive experiments on three datasets and explore a large variety of configurations, including different language models and baseline recommendation models, to obtain a comprehensive picture of the performance of each approach. Among other observations, we highlight that initializing state-of-the-art sequential recommendation models such as BERT4Rec or SASRec with embeddings obtained from an LLM can lead to substantial performance gains in terms of accuracy. Furthermore, we find that fine-tuning an LLM for recommendation tasks enables it to learn not only the tasks, but also concepts of a domain to some extent. We also show that fine-tuning OpenAI GPT leads to considerably better performance than fine-tuning Google PaLM 2. Overall, our extensive experiments indicate a huge potential value of leveraging LLMs in future recommendation approaches. We publicly share the code and data of our experiments to ensure reproducibility.
comment: 35 pages, 12 figures, 7 tables
Robotics 26
☆ CoDriveVLM: VLM-Enhanced Urban Cooperative Dispatching and Motion Planning for Future Autonomous Mobility on Demand Systems
The increasing demand for flexible and efficient urban transportation solutions has spotlighted the limitations of traditional Demand Responsive Transport (DRT) systems, particularly in accommodating diverse passenger needs and dynamic urban environments. Autonomous Mobility-on-Demand (AMoD) systems have emerged as a promising alternative, leveraging connected and autonomous vehicles (CAVs) to provide responsive and adaptable services. However, existing methods primarily focus on either vehicle scheduling or path planning, which often simplify complex urban layouts and neglect the necessity for simultaneous coordination and mutual avoidance among CAVs. This oversimplification poses significant challenges to the deployment of AMoD systems in real-world scenarios. To address these gaps, we propose CoDriveVLM, a novel framework that integrates high-fidelity simultaneous dispatching and cooperative motion planning for future AMoD systems. Our method harnesses Vision-Language Models (VLMs) to enhance multi-modality information processing, and this enables comprehensive dispatching and collision risk evaluation. The VLM-enhanced CAV dispatching coordinator is introduced to effectively manage complex and unforeseen AMoD conditions, thus supporting efficient scheduling decision-making. Furthermore, we propose a scalable decentralized cooperative motion planning method via consensus alternating direction method of multipliers (ADMM) focusing on collision risk evaluation and decentralized trajectory optimization. Simulation results demonstrate the feasibility and robustness of CoDriveVLM in various traffic conditions, showcasing its potential to significantly improve the fidelity and effectiveness of AMoD systems in future urban transportation networks. The code is available at https://github.com/henryhcliu/CoDriveVLM.git.
☆ A Mixed-Integer Conic Program for the Multi-Agent Moving-Target Traveling Salesman Problem
The Moving-Target Traveling Salesman Problem (MT-TSP) aims to find a shortest path for an agent that starts at a stationary depot, visits a set of moving targets exactly once, each within one of their respective time windows, and then returns to the depot. In this paper, we introduce a new Mixed-Integer Conic Program (MICP) formulation that finds the optimum for the Multi-Agent Moving-Target Traveling Salesman Problem (MA-MT-TSP), a generalization of the MT-TSP involving multiple agents. We obtain our formulation by first restating the current state-of-the-art MICP formulation for MA-MT-TSP as a Mixed-Integer Nonlinear Nonconvex Program, and then reformulating it as a new MICP. We present computational results to demonstrate the performance of our approach. The results show that our formulation significantly outperforms the state-of-the-art, with up to a two-order-of-magnitude reduction in runtime, and up to over 90% tighter optimality gap.
comment: 7 pages, 3 figures
☆ NDOB-Based Control of a UAV with Delta-Arm Considering Manipulator Dynamics
Aerial Manipulators (AMs) provide a versatile platform for various applications, including 3D printing, architecture, and aerial grasping missions. However, their operational speed is often sacrificed to uphold precision. Existing control strategies for AMs often regard the manipulator as a disturbance and employ robust control methods to mitigate its influence. This research focuses on elevating the precision of the end-effector and enhancing the agility of aerial manipulator movements. We present a composite control scheme to address these challenges. Initially, a Nonlinear Disturbance Observer (NDOB) is utilized to compensate for internal coupling effects and external disturbances. Subsequently, manipulator dynamics are processed through a high pass filter to facilitate agile movements. By integrating the proposed control method into a fully autonomous delta-arm-based AM system, we substantiate the controller's efficacy through extensive real-world experiments. The outcomes illustrate that the end-effector can achieve accuracy at the millimeter level.
☆ Development of an Advisory System for Parking of a Car and Trailer
Trailer parking is a challenging task due to the unstable nature of the vehicle-trailer system in reverse motion and the unintuitive steering actions required at the vehicle to accomplish the parking maneuver. This paper presents a strategy to tackle this kind of maneuver with an advisory graphic aid to help the human driver with the task of manually backing up the vehicle-trailer system. A kinematic vehicle-trailer model is derived to describe the low-speed motion of the vehicle-trailer system, and its inverse kinematics is established by generating an equivalent virtual trailer axle steering command. The advisory system graphics is generated based on the inverse kinematics and displays the expected trailer orientation given the current vehicle steer angle and configuration (hitch angle). Simulation study and animation are set up to test the efficacy of the approach, where the user can select both vehicle speed and vehicle steering angle freely, which allows the user to stop the vehicle-trailer system and experiment with different steering inputs to see their effect on the predicted trailer motion before proceeding with the best one according to the advisory graphics, hence creating a series of piecewise continuous control actions similar to how manual trailer reverse parking is usually carried out. The advisory graphics proves to provide the driver with an intuitive understanding of the trailer motion at any given configuration (hitch angle).
☆ Vehicle-in-Virtual-Environment (VVE) Based Autonomous Driving Function Development and Evaluation Methodology for Vulnerable Road User Safety
Traditional methods for developing and evaluating autonomous driving functions, such as model-in-the-loop (MIL) and hardware-in-the-loop (HIL) simulations, heavily depend on the accuracy of simulated vehicle models and human factors, especially for vulnerable road user safety systems. Continuation of development during public road deployment forces other road users including vulnerable ones to involuntarily participate in the development process, leading to safety risks, inefficiencies, and a decline in public trust. To address these deficiencies, the Vehicle-in-Virtual-Environment (VVE) method was proposed as a safer, more efficient, and cost-effective solution for developing and testing connected and autonomous driving technologies by operating the real vehicle and multiple other actors like vulnerable road users in different test areas while being immersed within the same highly realistic virtual environment. This VVE approach synchronizes real-world vehicle and vulnerable road user motion within the same virtual scenario, enabling the safe and realistic testing of various traffic situations in a safe and repeatable manner. In this paper, we propose a new testing pipeline that sequentially integrates MIL, HIL, and VVE methods to comprehensively develop and evaluate autonomous driving functions. The effectiveness of this testing pipeline will be demonstrated using an autonomous driving path-tracking algorithm with local deep reinforcement learning modification for vulnerable road user collision avoidance.
☆ Towards Developing Socially Compliant Automated Vehicles: State of the Art, Experts Expectations, and A Conceptual Framework
Automated Vehicles (AVs) hold promise for revolutionizing transportation by improving road safety, traffic efficiency, and overall mobility. Despite the steady advancement in high-level AVs in recent years, the transition to full automation entails a period of mixed traffic, where AVs of varying automation levels coexist with human-driven vehicles (HDVs). Making AVs socially compliant and understood by human drivers is expected to improve the safety and efficiency of mixed traffic. Thus, ensuring AVs compatibility with HDVs and social acceptance is crucial for their successful and seamless integration into mixed traffic. However, research in this critical area of developing Socially Compliant AVs (SCAVs) remains sparse. This study carries out the first comprehensive scoping review to assess the current state of the art in developing SCAVs, identifying key concepts, methodological approaches, and research gaps. An expert interview was also conducted to identify critical research gaps and expectations towards SCAVs. Based on the scoping review and expert interview input, a conceptual framework is proposed for the development of SCAVs. The conceptual framework is evaluated using an online survey targeting researchers, technicians, policymakers, and other relevant professionals worldwide. The survey results provide valuable validation and insights, affirming the significance of the proposed conceptual framework in tackling the challenges of integrating AVs into mixed-traffic environments. Additionally, future research perspectives and suggestions are discussed, contributing to the research and development agenda of SCAVs.
comment: 39 pages, 13 figures, under review by the journal of Transportation Research Part E: Logistics and Transportation Review
☆ Non-planar 3D Printing of Double Shells
We present a method to fabricate double shell structures printed in trans-versal directions using multi-axis fused-deposition-modeling (FDM) robot-ic 3D printing. Shell structures, characterized by lightweight, thin walls, fast buildup, and minimal material usage, find diverse applications in pro-totyping and architecture for uses such as fa\c{c}ade panels, molds for concrete casting, or full-scale pavilions. We leverage an underlying representation of transversal strip networks generated using existing methods and propose a methodology for converting them into printable partitions. Each partition is printed separately and assembled into a double-shell structure. We out-line the specifications and workflow that make the printing of each piece and the subsequent assembly process feasible. The versatility and robust-ness of our method are demonstrated with both digital and fabricated re-sults on surfaces of different scales and geometric complexity.
☆ Learning Affordances from Interactive Exploration using an Object-level Map
Many robotic tasks in real-world environments require physical interactions with an object such as pick up or push. For successful interactions, the robot needs to know the object's affordances, which are defined as the potential actions the robot can perform with the object. In order to learn a robot-specific affordance predictor, we propose an interactive exploration pipeline which allows the robot to collect interaction experiences while exploring an unknown environment. We integrate an object-level map in the exploration pipeline such that the robot can identify different object instances and track objects across diverse viewpoints. This results in denser and more accurate affordance annotations compared to state-of-the-art methods, which do not incorporate a map. We show that our affordance exploration approach makes exploration more efficient and results in more accurate affordance prediction models compared to baseline methods.
comment: International Symposium of Robotics Research (ISRR) 2024
☆ Environment Modeling for Service Robots From a Task Execution Perspective
Service robots are increasingly entering the home to provide domestic tasks for residents. However, when working in an open, dynamic, and unstructured home environment, service robots still face challenges such as low intelligence for task execution and poor long-term autonomy (LTA), which has limited their deployment. As the basis of robotic task execution, environment modeling has attracted significant attention. This integrates core technologies such as environment perception, understanding, and representation to accurately recognize environmental information. This paper presents a comprehensive survey of environmental modeling from a new task-executionoriented perspective. In particular, guided by the requirements of robots in performing domestic service tasks in the home environment, we systematically review the progress that has been made in task-execution-oriented environmental modeling in four respects: 1) localization, 2) navigation, 3) manipulation, and 4) LTA. Current challenges are discussed, and potential research opportunities are also highlighted.
comment: 16 pages, 9 figures; This article has been accepted for publication in a future issue of IEEE/CAA Journal of Automatica Sinica, but has not been fully edited. Content may change prior to final publication
☆ Path Planning for Multi-Copter UAV Formation Employing a Generalized Particle Swarm Optimization
The paper investigates the problem of path planning techniques for multi-copter uncrewed aerial vehicles (UAV) cooperation in a formation shape to examine surrounding surfaces. We first describe the problem as a joint objective cost for planning a path of the formation centroid working in a complicated space. The path planning algorithm, named the generalized particle swarm optimization algorithm, is then presented to construct an optimal, flyable path while avoiding obstacles and ensuring the flying mission requirements. A path-development scheme is then incorporated to generate a relevant path for each drone to maintain its position in the formation configuration. Simulation, comparison, and experiments have been conducted to verify the proposed approach. Results show the feasibility of the proposed path-planning algorithm with GEPSO.
comment: 6 pages, 8 figures, conference
☆ Semantic Mapping in Indoor Embodied AI -- A Comprehensive Survey and Future Directions
Intelligent embodied agents (e.g. robots) need to perform complex semantic tasks in unfamiliar environments. Among many skills that the agents need to possess, building and maintaining a semantic map of the environment is most crucial in long-horizon tasks. A semantic map captures information about the environment in a structured way, allowing the agent to reference it for advanced reasoning throughout the task. While existing surveys in embodied AI focus on general advancements or specific tasks like navigation and manipulation, this paper provides a comprehensive review of semantic map-building approaches in embodied AI, specifically for indoor navigation. We categorize these approaches based on their structural representation (spatial grids, topological graphs, dense point-clouds or hybrid maps) and the type of information they encode (implicit features or explicit environmental data). We also explore the strengths and limitations of the map building techniques, highlight current challenges, and propose future research directions. We identify that the field is moving towards developing open-vocabulary, queryable, task-agnostic map representations, while high memory demands and computational inefficiency still remaining to be open challenges. This survey aims to guide current and future researchers in advancing semantic mapping techniques for embodied AI systems.
☆ Robot Error Awareness Through Human Reactions: Implementation, Evaluation, and Recommendations
Effective error detection is crucial to prevent task disruption and maintain user trust. Traditional methods often rely on task-specific models or user reporting, which can be inflexible or slow. Recent research suggests social signals, naturally exhibited by users in response to robot errors, can enable more flexible, timely error detection. However, most studies rely on post hoc analysis, leaving their real-time effectiveness uncertain and lacking user-centric evaluation. In this work, we developed a proactive error detection system that combines user behavioral signals (facial action units and speech), user feedback, and error context for automatic error detection. In a study (N = 28), we compared our proactive system to a status quo reactive approach. Results show our system 1) reliably and flexibly detects error, 2) detects errors faster than the reactive approach, and 3) is perceived more favorably by users than the reactive one. We discuss recommendations for enabling robot error awareness in future HRI systems.
☆ eKalibr: Dynamic Intrinsic Calibration for Event Cameras From First Principles of Events
The bio-inspired event camera has garnered extensive research attention in recent years, owing to its significant potential derived from its high dynamic range and low latency characteristics. Similar to the standard camera, the event camera requires precise intrinsic calibration to facilitate further high-level visual applications, such as pose estimation and mapping. While several calibration methods for event cameras have been proposed, most of them are either (i) engineering-driven, heavily relying on conventional image-based calibration pipelines, or (ii) inconvenient, requiring complex instrumentation. To this end, we propose an accurate and convenient intrinsic calibration method for event cameras, named eKalibr, which builds upon a carefully designed event-based circle grid pattern recognition algorithm. To extract target patterns from events, we perform event-based normal flow estimation to identify potential events generated by circle edges, and cluster them spatially. Subsequently, event clusters associated with the same grid circles are matched and grouped using normal flows, for subsequent time-varying ellipse estimation. Fitted ellipse centers are time-synchronized, for final grid pattern recognition. We conducted extensive experiments to evaluate the performance of eKalibr in terms of pattern extraction and intrinsic calibration. The implementation of eKalibr is open-sourced at (https://github.com/Unsigned-Long/eKalibr) to benefit the research community.
☆ Scaling Safe Multi-Agent Control for Signal Temporal Logic Specifications
Existing methods for safe multi-agent control using logic specifications like Signal Temporal Logic (STL) often face scalability issues. This is because they rely either on single-agent perspectives or on Mixed Integer Linear Programming (MILP)-based planners, which are complex to optimize. These methods have proven to be computationally expensive and inefficient when dealing with a large number of agents. To address these limitations, we present a new scalable approach to multi-agent control in this setting. Our method treats the relationships between agents using a graph structure rather than in terms of a single-agent perspective. Moreover, it combines a multi-agent collision avoidance controller with a Graph Neural Network (GNN) based planner, models the system in a decentralized fashion, and trains on STL-based objectives to generate safe and efficient plans for multiple agents, thereby optimizing the satisfaction of complex temporal specifications while also facilitating multi-agent collision avoidance. Our experiments show that our approach significantly outperforms existing methods that use a state-of-the-art MILP-based planner in terms of scalability and performance. The project website is https://jeappen.com/mastl-gcbf-website/ and the code is at https://github.com/jeappen/mastl-gcbf .
comment: Accepted to CoRL 2024. arXiv admin note: text overlap with arXiv:2401.14554 by other authors
☆ Concerns and Values in Human-Robot Interactions: A Focus on Social Robotics
Robots, as AI with physical instantiation, inhabit our social and physical world, where their actions have both social and physical consequences, posing challenges for researchers when designing social robots. This study starts with a scoping review to identify discussions and potential concerns arising from interactions with robotic systems. Two focus groups of technology ethics experts then validated a comprehensive list of key topics and values in human-robot interaction (HRI) literature. These insights were integrated into the HRI Value Compass web tool, to help HRI researchers identify ethical values in robot design. The tool was evaluated in a pilot study. This work benefits the HRI community by highlighting key concerns in human-robot interactions and providing an instrument to help researchers design robots that align with human values, ensuring future robotic systems adhere to these values in social applications.
comment: 52 pages, 10 figures, 5 appendices
☆ Why Automate This? Exploring the Connection between Time Use, Well-being and Robot Automation Across Social Groups
Understanding the motivations underlying the human inclination to automate tasks is vital to developing truly helpful robots integrated into daily life. Accordingly, we ask: are individuals more inclined to automate chores based on the time they consume or the feelings experienced while performing them? This study explores these preferences and whether they vary across different social groups (i.e., gender category and income level). Leveraging data from the BEHAVIOR-1K dataset, the American Time-Use Survey, and the American Time-Use Survey Well-Being Module, we investigate the relationship between the desire for automation, time spent on daily activities, and their associated feelings - Happiness, Meaningfulness, Sadness, Painfulness, Stressfulness, or Tiredness. Our key findings show that, despite common assumptions, time spent does not strongly relate to the desire for automation for the general population. For the feelings analyzed, only happiness and pain are key indicators. Significant differences by gender and economic level also emerged: Women prefer to automate stressful activities, whereas men prefer to automate those that make them unhappy; mid-income individuals prioritize automating less enjoyable and meaningful activities, while low and high-income show no significant correlations. We hope our research helps motivate technologies to develop robots that match the priorities of potential users, moving domestic robotics toward more socially relevant solutions. We open-source all the data, including an online tool that enables the community to replicate our analysis and explore additional trends at https://hri1260.github.io/why-automate-this.
comment: 20 pages, 14 figures
☆ Learning-based Detection of GPS Spoofing Attack for Quadrotors
Safety-critical cyber-physical systems (CPS), such as quadrotor UAVs, are particularly prone to cyber attacks, which can result in significant consequences if not detected promptly and accurately. During outdoor operations, the nonlinear dynamics of UAV systems, combined with non-Gaussian noise, pose challenges to the effectiveness of conventional statistical and machine learning methods. To overcome these limitations, we present QUADFormer, an advanced attack detection framework for quadrotor UAVs leveraging a transformer-based architecture. This framework features a residue generator that produces sequences sensitive to anomalies, which are then analyzed by the transformer to capture statistical patterns for detection and classification. Furthermore, an alert mechanism ensures UAVs can operate safely even when under attack. Extensive simulations and experimental evaluations highlight that QUADFormer outperforms existing state-of-the-art techniques in detection accuracy.
comment: Accepted in IEEE Industrial Electronics Society Annual Online Conference
♻ ☆ Benchmark Evaluations, Applications, and Challenges of Large Vision Language Models: A Survey
Multimodal Vision Language Models (VLMs) have emerged as a transformative technology at the intersection of computer vision and natural language processing, enabling machines to perceive and reason about the world through both visual and textual modalities. For example, models such as CLIP, Claude, and GPT-4V demonstrate strong reasoning and understanding abilities on visual and textual data and beat classical single modality vision models on zero-shot classification. Despite their rapid advancements in research and growing popularity in applications, a comprehensive survey of existing studies on VLMs is notably lacking, particularly for researchers aiming to leverage VLMs in their specific domains. To this end, we provide a systematic overview of VLMs in the following aspects: model information of the major VLMs developed over the past five years (2019-2024); the main architectures and training methods of these VLMs; summary and categorization of the popular benchmarks and evaluation metrics of VLMs; the applications of VLMs including embodied agents, robotics, and video generation; the challenges and issues faced by current VLMs such as hallucination, fairness, and safety. Detailed collections including papers and model repository links are listed in https://github.com/zli12321/Awesome-VLM-Papers-And-Models.git.
comment: 35 pages, 3 figures
♻ ☆ A General Control Method for Human-Robot Integration
This paper introduces a new generalized control method designed for multi-degrees-of-freedom devices to help people with limited motion capabilities in their daily activities. The challenge lies in finding the most adapted strategy for the control interface to effectively map user's motions in a low-dimensional space to complex robotic assistive devices, such as prostheses, supernumerary limbs, up to remote robotic avatars. The goal is a system which integrates the human and the robotic parts into a unique system, moving so as to reach the targets decided by the human while autonomously reducing the user's effort and discomfort. We present a framework to control general multi DoFs assistive systems, which translates user-performed compensatory motions into the necessary robot commands for reaching targets while canceling or reducing compensation. The framework extends to prostheses of any number of DoF up to full robotic avatars, regarded here as a sort of whole-body prosthesis of the person who sees the robot as an artificial extension of their own body without a physical link but with a sensory-motor integration. We have validated and applied this control strategy through tests encompassing simulated scenarios and real-world trials involving a virtual twin of the robotic parts (prosthesis and robot) and a physical humanoid avatar.
comment: Submitted to the International Journal of Robotics Research (IJRR), under review since October 2024, 16 pages, 30 figures
♻ ☆ Robots in Family Routines: Development of and Initial Insights from the Family-Robot Routines Inventory
Despite advances in areas such as the personalization of robots, sustaining adoption of robots for long-term use in families remains a challenge. Recent studies have identified integrating robots into families' routines and rituals as a promising approach to support long-term adoption. However, few studies explored the integration of robots into family routines and there is a gap in systematic measures to capture family preferences for robot integration. Building upon existing routine inventories, we developed Family-Robot Routines Inventory (FRRI), with 24 family routines and 24 child routine items, to capture parents' attitudes toward and expectations from the integration of robotic technology into their family routines. Using this inventory, we collected data from 150 parents through an online survey. Our analysis indicates that parents had varying perceptions for the utility of integrating robots into their routines. For example, parents found robot integration to be more helpful in children's individual routines, than to the collective routines of their families. We discuss the design implications of these preliminary findings, and how they may serve as a first step toward understanding the diverse challenges and demands of designing and integrating household robots for families.
♻ ☆ Exploring the Use of Robots for Diary Studies
As interest in studying in-the-wild human-robot interaction grows, there is a need for methods to collect data over time and in naturalistic or potentially private environments. HRI researchers have increasingly used the diary method for these studies, asking study participants to self-administer a structured data collection instrument, i.e., a diary, over a period of time. Although the diary method offers a unique window into settings that researchers may not have access to, they also lack the interactivity and probing that interview-based methods offer. In this paper, we explore a novel data collection method in which a robot plays the role of an interactive diary. We developed the Diary Robot system and performed in-home deployments for a week to evaluate the feasibility and effectiveness of this approach. Using traditional text-based and audio-based diaries as benchmarks, we found that robots are able to effectively elicit the intended information. We reflect on our findings, and describe scenarios where the utilization of robots in diary studies as a data collection instrument may be especially applicable.
comment: Proceedings of the 20th ACM/IEEE International Conference on Human Robot Interaction (HRI 2025)
♻ ☆ The Harmonic Exponential Filter for Nonparametric Estimation on Motion Groups
Bayesian estimation is a vital tool in robotics as it allows systems to update the robot state belief using incomplete information from noisy sensors. To render the state estimation problem tractable, many systems assume that the motion and measurement noise, as well as the state distribution, are unimodal and Gaussian. However, there are numerous scenarios and systems that do not comply with these assumptions. Existing nonparametric filters that are used to model multimodal distributions have drawbacks that limit their ability to represent a diverse set of distributions. This paper introduces a novel approach to nonparametric Bayesian filtering on motion groups, designed to handle multimodal distributions using harmonic exponential distributions. This approach leverages two key insights of harmonic exponential distributions: a) the product of two distributions can be expressed as the element-wise addition of their log-likelihood Fourier coefficients, and b) the convolution of two distributions can be efficiently computed as the tensor product of their Fourier coefficients. These observations enable the development of an efficient and asymptotically exact solution to the Bayes filter up to the band limit of a Fourier transform. We demonstrate our filter's performance compared with established nonparametric filtering methods across simulated and real-world localization tasks.
comment: Accepted to the IEEE Robotics and Automation Letters (RA-L 2025) Code available at https://github.com/montrealrobotics/harmonic-filter. Webpage and additional videos at https://montrealrobotics.ca/hef/
♻ ☆ Towards the Internet of Robotic Things: Analysis, Architecture, Components and Challenges
Internet of Things (IoT) and robotics cannot be considered two separate domains these days. Internet of Robotics Things (IoRT) is a concept that has been recently introduced to describe the integration of robotics technologies in IoT scenarios. As a consequence, these two research fields have started interacting, and thus linking research communities. In this paper we intend to make further steps in joining the two communities and broaden the discussion on the development of this interdisciplinary field. The paper provides an overview, analysis and challenges of possible solutions for the Internet of Robotic Things, discussing the issues of the IoRT architecture, the integration of smart spaces and robotic applications.
♻ ☆ CloudTrack: Scalable UAV Tracking with Cloud Semantics
Nowadays, unmanned aerial vehicles (UAVs) are commonly used in search and rescue scenarios to gather information in the search area. The automatic identification of the person searched for in aerial footage could increase the autonomy of such systems, reduce the search time, and thus increase the missed person's chances of survival. In this paper, we present a novel approach to perform semantically conditioned open vocabulary object tracking that is specifically designed to cope with the limitations of UAV hardware. Our approach has several advantages. It can run with verbal descriptions of the missing person, e.g., the color of the shirt, it does not require dedicated training to execute the mission and can efficiently track a potentially moving person. Our experimental results demonstrate the versatility and efficacy of our approach.
comment: 7 pages, 3 figures
♻ ☆ VLM-driven Behavior Tree for Context-aware Task Planning
The use of Large Language Models (LLMs) for generating Behavior Trees (BTs) has recently gained attention in the robotics community, yet remains in its early stages of development. In this paper, we propose a novel framework that leverages Vision-Language Models (VLMs) to interactively generate and edit BTs that address visual conditions, enabling context-aware robot operations in visually complex environments. A key feature of our approach lies in the conditional control through self-prompted visual conditions. Specifically, the VLM generates BTs with visual condition nodes, where conditions are expressed as free-form text. Another VLM process integrates the text into its prompt and evaluates the conditions against real-world images during robot execution. We validated our framework in a real-world cafe scenario, demonstrating both its feasibility and limitations.
comment: 10 pages, 11 figures, 5 tables. Last updated on January 9th, 2024
♻ ☆ Sinkage Study in Granular Material for Space Exploration Legged Robot Gripper
Wheeled rovers have been the primary choice for lunar exploration due to their speed and efficiency. However, deeper areas, such as lunar caves and craters, require the mobility of legged robots. To do so, appropriate end effectors must be designed to enable climbing and walking on the granular surface of the Moon. This paper investigates the behavior of an underactuated soft gripper on deformable granular material when a legged robot is walking in soft soil. A modular test bench and a simulation model were developed to observe the gripper sinkage behavior under load. The gripper uses tendon-driven fingers to match its target shape and grasp on the target surface using multiple micro-spines. The sinkage of the gripper in silica sand was measured by comparing the axial displacement of the gripper with the nominal load of the robot mass. Multiple experiments were performed to observe the sinkage of the gripper over a range of slope angles. A simulation model accounting for the degrees of compliance of the gripper fingers was created using Altair MotionSolve software and coupled to Altair EDEM to compute the gripper interaction with particles utilizing the discrete element method. After validation of the model, complementary simulations using Lunar gravity and a regolith particle model were performed. The results show that a satisfactory gripper model with accurate freedom of motion can be created in simulation using the Altair simulation packages and expected sinkage under load in a particle-filled environment can be estimated using this model. By computing the sinkage of the end effector of legged robots, the results can be directly integrated into the motion control algorithm and improve the accuracy of mobility in a granular material environment.
comment: Proceedings of the 21st International and 12th Asia-Pacific Regional Conference of the ISTVS
Systems and Control 35
☆ Best Response Convergence for Zero-sum Stochastic Dynamic Games with Partial and Asymmetric Information
We analyze best response dynamics for finding a Nash equilibrium of an infinite horizon zero-sum stochastic linear quadratic dynamic game (LQDG) with partial and asymmetric information. We derive explicit expressions for each player's best response within the class of pure linear dynamic output feedback control strategies where the internal state dimension of each control strategy is an integer multiple of the system state dimension. With each best response, the players form increasingly higher-order belief states, leading to infinite-dimensional internal states. However, we observe in extensive numerical experiments that the game's value converges after just a few iterations, suggesting that strategies associated with increasingly higher-order belief states eventually provide no benefit. To help explain this convergence, our numerical analysis reveals rapid decay of the controllability and observability Gramian eigenvalues and Hankel singular values in higher-order belief dynamics, indicating that the higher-order belief dynamics become increasingly difficult for both players to control and observe. Consequently, the higher-order belief dynamics can be closely approximated by low-order belief dynamics with bounded error, and thus feedback strategies with limited internal state dimension can closely approximate a Nash equilibrium.
☆ Meta-Learning for Physically-Constrained Neural System Identification
We present a gradient-based meta-learning framework for rapid adaptation of neural state-space models (NSSMs) for black-box system identification. When applicable, we also incorporate domain-specific physical constraints to improve the accuracy of the NSSM. The major benefit of our approach is that instead of relying solely on data from a single target system, our framework utilizes data from a diverse set of source systems, enabling learning from limited target data, as well as with few online training iterations. Through benchmark examples, we demonstrate the potential of our approach, study the effect of fine-tuning subnetworks rather than full fine-tuning, and report real-world case studies to illustrate the practical application and generalizability of the approach to practical problems with physical-constraints. Specifically, we show that the meta-learned models result in improved downstream performance in model-based state estimation in indoor localization and energy systems.
comment: 30 pages
☆ Nonlinear port-Hamiltonian system identification from input-state-output data
A framework for identifying nonlinear port-Hamiltonian systems using input-state-output data is introduced. The framework utilizes neural networks' universal approximation capacity to effectively represent complex dynamics in a structured way. We show that using the structure helps to make long-term predictions compared to baselines that do not incorporate physics. We also explore different architectures based on MLPs, KANs, and using prior information. The technique is validated through examples featuring nonlinearities in either the skew-symmetric terms, the dissipative terms, or the Hamiltonian.
☆ Development of an Advisory System for Parking of a Car and Trailer
Trailer parking is a challenging task due to the unstable nature of the vehicle-trailer system in reverse motion and the unintuitive steering actions required at the vehicle to accomplish the parking maneuver. This paper presents a strategy to tackle this kind of maneuver with an advisory graphic aid to help the human driver with the task of manually backing up the vehicle-trailer system. A kinematic vehicle-trailer model is derived to describe the low-speed motion of the vehicle-trailer system, and its inverse kinematics is established by generating an equivalent virtual trailer axle steering command. The advisory system graphics is generated based on the inverse kinematics and displays the expected trailer orientation given the current vehicle steer angle and configuration (hitch angle). Simulation study and animation are set up to test the efficacy of the approach, where the user can select both vehicle speed and vehicle steering angle freely, which allows the user to stop the vehicle-trailer system and experiment with different steering inputs to see their effect on the predicted trailer motion before proceeding with the best one according to the advisory graphics, hence creating a series of piecewise continuous control actions similar to how manual trailer reverse parking is usually carried out. The advisory graphics proves to provide the driver with an intuitive understanding of the trailer motion at any given configuration (hitch angle).
☆ Vehicle-in-Virtual-Environment (VVE) Based Autonomous Driving Function Development and Evaluation Methodology for Vulnerable Road User Safety
Traditional methods for developing and evaluating autonomous driving functions, such as model-in-the-loop (MIL) and hardware-in-the-loop (HIL) simulations, heavily depend on the accuracy of simulated vehicle models and human factors, especially for vulnerable road user safety systems. Continuation of development during public road deployment forces other road users including vulnerable ones to involuntarily participate in the development process, leading to safety risks, inefficiencies, and a decline in public trust. To address these deficiencies, the Vehicle-in-Virtual-Environment (VVE) method was proposed as a safer, more efficient, and cost-effective solution for developing and testing connected and autonomous driving technologies by operating the real vehicle and multiple other actors like vulnerable road users in different test areas while being immersed within the same highly realistic virtual environment. This VVE approach synchronizes real-world vehicle and vulnerable road user motion within the same virtual scenario, enabling the safe and realistic testing of various traffic situations in a safe and repeatable manner. In this paper, we propose a new testing pipeline that sequentially integrates MIL, HIL, and VVE methods to comprehensively develop and evaluate autonomous driving functions. The effectiveness of this testing pipeline will be demonstrated using an autonomous driving path-tracking algorithm with local deep reinforcement learning modification for vulnerable road user collision avoidance.
☆ Optimizing Experiments for Accurate Battery Circuit Parameters Estimation: Reduction and Adjustment of Frequency Set Used in Electrochemical Impedance Spectroscopy
In this paper, we study a suitable experimental design of electrochemical impedance spectroscopy (EIS) to reduce the number of frequency points while not significantly affecting the uncertainties of the estimated cell's equivalent circuit model (ECM) parameters. It is based on an E-optimal experimental design that aims to maximize the information about the ECM parameters collected by EIS measurements and, at the same time, minimize the overall uncertainty. In a numerical experiment, we first analyze to which extent reducing the number of measurement points at low frequencies affects the uncertainty of the estimated parameters. Secondly, we show that applying the frequency adjustments can lead to the same or even improved global uncertainty of ECM parameter estimates as with a higher number of measurements. This is numerically verified through a case study using the ECM parameters of a commercial battery cell.
☆ Weather-Driven Priority Charging for Battery Storage Systems in Hybrid Renewable Energy Grid
The integration of renewable energy into the power grid is often hindered by its fragmented infrastructure, leading to inefficient utilization due to the variability of energy production and its reliance on weather conditions. Battery storage systems, while essential for stabilizing energy supply, face challenges like sub-optimal energy distribution, accelerating battery degradation, and reducing operational efficiency. This paper presents a novel solution to these challenges by developing a large-scale, interconnected renewable energy network that optimizes energy storage and distribution. The proposed system includes strategically placed battery storage facilities that stabilize energy production by compensating for fluctuations in renewable output. A priority charging algorithm, informed by real-time weather forecasting and load monitoring, ensures that the most suitable battery systems are charged under varying conditions. Within each storage facility, a secondary priority charging algorithm minimizes battery degradation by ranking batteries based on critical parameters such as state of health (SoH) and state of charge (SoC) and deciding which to charge. This comprehensive approach enhances the efficiency and longevity of battery storage systems, offering a more reliable and resilient renewable energy infrastructure.
☆ Molecular Communication-Inspired Particle Collector-Transmitter (PaCoT) for Heavy Metal Removal from Human Circulatory System
This study proposes a novel molecular communication (MC)-inspired nanomachine, PArticle COllector-Transmitter (PaCoT), to remove toxic heavy metals from the human circulatory system. PaCoT collects these toxic metals and transmits them to release nodes, such as lymph capillaries, before they reach critical organs. The design incorporates key physical parameters and operates through particle reception and release mechanisms. In the reception process, described as ligand-receptor binding reactions, modeled as a continuous-time Markov process (CTMP), PaCoT uses metallothionein proteins as receptors and heavy metals (e.g., Zn, Pb, Cd) as ligands. We assume that the toxicity condition (toxic (bit-1), non-toxic (bit-0)) is encoded into the concentration of heavy metal molecules. Thus, we consider that heavy metal concentration within the MC channel (e.g., human circulatory system) employs binary concentration shift keying (binary CSK). The concentration ratio of specific heavy metals is estimated to infer toxicity, i.e., a high ratio indicates toxicity and a low ratio suggests non-toxicity. Toxicity detection is achieved by monitoring the receptor bound duration in the presence of interferers and various types of heavy metals. After detecting and collecting toxic heavy metals, PaCoT securely retains them in a liquid medium (e.g., water) until release, employing two mechanisms: (1) a single-disc viscous micropump to regulate flow rate, and (2) Brownian motion to facilitate diffusion. PaCoT's performance is evaluated through MATLAB simulations, focusing on bit error probability (BEP) of the toxicity detection method, release time of molecules from PaCoT and energy consumption.
☆ Towards Developing Socially Compliant Automated Vehicles: State of the Art, Experts Expectations, and A Conceptual Framework
Automated Vehicles (AVs) hold promise for revolutionizing transportation by improving road safety, traffic efficiency, and overall mobility. Despite the steady advancement in high-level AVs in recent years, the transition to full automation entails a period of mixed traffic, where AVs of varying automation levels coexist with human-driven vehicles (HDVs). Making AVs socially compliant and understood by human drivers is expected to improve the safety and efficiency of mixed traffic. Thus, ensuring AVs compatibility with HDVs and social acceptance is crucial for their successful and seamless integration into mixed traffic. However, research in this critical area of developing Socially Compliant AVs (SCAVs) remains sparse. This study carries out the first comprehensive scoping review to assess the current state of the art in developing SCAVs, identifying key concepts, methodological approaches, and research gaps. An expert interview was also conducted to identify critical research gaps and expectations towards SCAVs. Based on the scoping review and expert interview input, a conceptual framework is proposed for the development of SCAVs. The conceptual framework is evaluated using an online survey targeting researchers, technicians, policymakers, and other relevant professionals worldwide. The survey results provide valuable validation and insights, affirming the significance of the proposed conceptual framework in tackling the challenges of integrating AVs into mixed-traffic environments. Additionally, future research perspectives and suggestions are discussed, contributing to the research and development agenda of SCAVs.
comment: 39 pages, 13 figures, under review by the journal of Transportation Research Part E: Logistics and Transportation Review
☆ The improvement in transmission resilience metrics from reduced outages or faster restoration can be calculated by rerunning historical outage data
Transmission utilities routinely collect detailed outage data, including resilience events in which outages bunch up due to weather. The resilience events and their resilience metrics can readily be extracted from this historical outage data. Improvements such as grid hardening or investments in restoration lead to reduced outages or faster restoration. We show how to rerun this history with the effects of the reduced outages or faster restoration included to find the resulting improvement in resilience metrics, thus quantifying the benefits of these investments. This is demonstrated with case studies for specific events (a derecho and a hurricane), and all large events or large thunderstorms in the Midwest USA. Instead of predicting future extreme events with models, which is very challenging, the historical rerun readily quantifies the benefits that a resilience investment would have had if it had been made in the past. The historical rerun is particularly vivid in making the case for resilience investments to stakeholders because it quantifies the benefits for events actually experienced by those stakeholders, rather than for future events predicted with uncertainty.
☆ Resiliency metrics quantifying emergency response in a distribution system
The electric distribution system is a cornerstone of modern life, playing a critical role in the daily activities and well-being of individuals. As the world transitions toward a decarbonized future, where even mobility relies on electricity, ensuring the resilience of the grid becomes paramount. This paper introduces novel resilience metrics designed to equip utilities and stakeholders with actionable tools to assess performance during storm events. The metrics focus on emergency storm response and the resources required to improve customer service. The practical calculation of the metrics from historical utility data is demonstrated for multiple storm events. Additionally, the metrics' improvement with added crews is estimated by "rerunning history" with faster restoration. By applying this resilience framework, utilities can enhance their restoration strategies and unlock potential cost savings, benefiting both providers and customers in an era of heightened energy dependency.
☆ Investigating the Impact of Observation Space Design Choices On Training Reinforcement Learning Solutions for Spacecraft Problems
Recent research using Reinforcement Learning (RL) to learn autonomous control for spacecraft operations has shown great success. However, a recent study showed their performance could be improved by changing the action space, i.e. control outputs, used in the learning environment. This has opened the door for finding more improvements through further changes to the environment. The work in this paper focuses on how changes to the environment's observation space can impact the training and performance of RL agents learning the spacecraft inspection task. The studies are split into two groups. The first looks at the impact of sensors that were designed to help agents learn the task. The second looks at the impact of reference frames, reorienting the agent to see the world from a different perspective. The results show the sensors are not necessary, but most of them help agents learn more optimal behavior, and that the reference frame does not have a large impact, but is best kept consistent.
comment: 18 pages, 10 figures, 3 tables
☆ On the Interaction in Transient Stability of Two-Inverter Power Systems containing GFL inverter Using Manifold Method
Many renewable energy resources are integrated into power systems via grid-following (GFL) inverters which rely on a phase-locked loop (PLL) for grid synchronization. During severe grid faults, GFL inverters are vulnerable to transient instability, often leading to disconnection from the grid. This paper aims to elucidate the interaction mechanisms and define the stability boundaries of systems of two inverters, including GFL, grid-forming (GFM), or grid-supporting (GSP) inverters. First, the generalized large-signal expression for the two-inverter system under various inverter combinations is derived, revealing that no energy function exists for systems containing GFL inverters. This implies that the traditional direct method cannot be applied to such systems. To overcome these challenges, a manifold method is employed to precisely determine the domain of attraction (DOA) of the system, and the transient stability margin is assessed by a new metric termed the critical clearing radius (CCR). A case study of the two-inverter system under various inverter combinations is conducted to explore large-signal interactions across different scenarios. Manifold analysis and simulation results reveal that GSP inverters using PLL for grid synchronization exhibit behavior similar to GFM inverters when the droop coefficients in the terminal voltage control loop (TVC) are sufficiently large. Compared to GFL inverters, GSP inverters incorporating a TVC significantly enhances the transient stability of other inverters. In the STATCOM case, the optimal placement of the STATCOM, realized by GSP or GFM inverters, is identified to be at the midpoint of a transmission line. All findings in this paper are validated through electromagnetic transient (EMT) simulations
☆ The Safe Trusted Autonomy for Responsible Space Program
The Safe Trusted Autonomy for Responsible Space (STARS) program aims to advance autonomy technologies for space by leveraging machine learning technologies while mitigating barriers to trust, such as uncertainty, opaqueness, brittleness, and inflexibility. This paper presents the achievements and lessons learned from the STARS program in integrating reinforcement learning-based multi-satellite control, run time assurance approaches, and flexible human-autonomy teaming interfaces, into a new integrated testing environment for collaborative autonomous satellite systems. The primary results describe analysis of the reinforcement learning multi-satellite control and run time assurance algorithms. These algorithms are integrated into a prototype human-autonomy interface using best practices from human-autonomy trust literature, however detailed analysis of the effectiveness is left to future work. References are provided with additional detailed results of individual experiments.
☆ Coverage and Spectral Efficiency of NOMA-Enabled LEO Satellite Networks with Ordering Schemes
This paper investigates an analytical model for low-earth orbit (LEO) multi-satellite downlink non-orthogonal multiple access (NOMA) networks. The satellites transmit data to multiple NOMA user terminals (UTs), each employing successive interference cancellation (SIC) for decoding. Two ordering schemes are adopted for NOMA-enabled LEO satellite networks, i.e., mean signal power (MSP)-based ordering and instantaneous-signal-to-inter-satellite-interference-plus-noise ratio (ISINR)-based ordering. For each ordering scheme, we derive the coverage probabilities of UTs under different channel conditions. Moreover, we discuss how coverage is influenced by SIC, main-lobe gain, and tradeoffs between the number of satellites and their altitudes. Additionally, two user fairness-based power allocation (PA) schemes are considered, and PA coefficients with the optimal number of UTs that maximize their sum spectral efficiency (SE) are studied. Simulation results show that there exists a maximum signal-to-inter-satellite-interference-plus-noise ratio (SINR) threshold for each PA scheme that ensures the operation of NOMA in LEO satellite networks, and the benefit of NOMA only exists when the target SINR is below a certain threshold. Compared with orthogonal multiple access (OMA), NOMA increases UTs' sum SE by as much as 35\%. Furthermore, for most SINR thresholds, the sum SE increases with the number of UTs to the highest value, whilst the maximum sum SE is obtained when there are two UTs.
☆ Koopman-Based Model Predictive Control of Functional Electrical Stimulation for Ankle Dorsiflexion and Plantarflexion Assistance
Functional Electrical Stimulation (FES) can be an effective tool to augment paretic muscle function and restore normal ankle function. Our approach incorporates a real-time, data-driven Model Predictive Control (MPC) scheme, built upon a Koopman operator theory (KOT) framework. This framework adeptly captures the complex nonlinear dynamics of ankle motion in a linearized form, enabling application of linear control approaches for highly nonlinear FES-actuated dynamics. Utilizing inertial measurement units (IMUs), our method accurately predicts the FES-induced ankle movements, while accounting for nonlinear muscle actuation dynamics, including the muscle activation for both plantarflexors, and dorsiflexors (Tibialis Anterior (TA)). The linear prediction model derived through KOT allowed us to formulate the MPC problem with linear state space dynamics, enhancing the real-time feasibility, precision and adaptability of the FES driven control. The effectiveness and applicability of our approach have been demonstrated through comprehensive simulations and experimental trials, including three participants with no disability and a participant with Multiple Sclerosis. Our findings highlight the potential of a KOT-based MPC approach for FES based gait assistance that offers effective and personalized assistance for individuals with gait impairment conditions.
☆ Orthogonal projection-based regularization for efficient model augmentation
Deep-learning-based nonlinear system identification has shown the ability to produce reliable and highly accurate models in practice. However, these black-box models lack physical interpretability, and often a considerable part of the learning effort is spent on capturing already expected/known behavior due to first-principles-based understanding of some aspects of the system. A potential solution is to integrate prior physical knowledge directly into the model structure, combining the strengths of physics-based modeling and deep-learning-based identification. The most common approach is to use an additive model augmentation structure, where the physics-based and the machine-learning (ML) components are connected in parallel. However, such models are overparametrized, training them is challenging, potentially causing the physics-based part to lose interpretability. To overcome this challenge, this paper proposes an orthogonal projection-based regularization technique to enhance parameter learning, convergence, and even model accuracy in learning-based augmentation of nonlinear baseline models.
comment: Submitted to L4DC 2025
☆ Enhanced sampled-data model predictive control via nonlinear lifting
This paper introduces a novel nonlinear model predictive control (NMPC) framework that incorporates a lifting technique to enhance control performance for nonlinear systems. While the lifting technique has been widely employed in linear systems to capture intersample behaviour, their application to nonlinear systems remains unexplored. We address this gap by formulating an NMPC scheme that combines fast-sample fast-hold (FSFH) approximations and numerical methods to approximate system dynamics and cost functions. The proposed approach is validated through two case studies: the Van der Pol oscillator and the inverted pendulum on a cart. Simulation results demonstrate that the lifted NMPC outperforms conventional NMPC in terms of reduced settling time and improved control accuracy. These findings underscore the potential of the lifting-based NMPC for efficient control of nonlinear systems, offering a practical solution for real-time applications.
☆ Real-Time Integrated Dispatching and Idle Fleet Steering with Deep Reinforcement Learning for A Meal Delivery Platform
To achieve high service quality and profitability, meal delivery platforms like Uber Eats and Grubhub must strategically operate their fleets to ensure timely deliveries for current orders while mitigating the consequential impacts of suboptimal decisions that leads to courier understaffing in the future. This study set out to solve the real-time order dispatching and idle courier steering problems for a meal delivery platform by proposing a reinforcement learning (RL)-based strategic dual-control framework. To address the inherent sequential nature of these problems, we model both order dispatching and courier steering as Markov Decision Processes. Trained via a deep reinforcement learning (DRL) framework, we obtain strategic policies by leveraging the explicitly predicted demands as part of the inputs. In our dual-control framework, the dispatching and steering policies are iteratively trained in an integrated manner. These forward-looking policies can be executed in real-time and provide decisions while jointly considering the impacts on local and network levels. To enhance dispatching fairness, we propose convolutional deep Q networks to construct fair courier embeddings. To simultaneously rebalance the supply and demand within the service network, we propose to utilize mean-field approximated supply-demand knowledge to reallocate idle couriers at the local level. Utilizing the policies generated by the RL-based strategic dual-control framework, we find the delivery efficiency and fairness of workload distribution among couriers have been improved, and under-supplied conditions have been alleviated within the service network. Our study sheds light on designing an RL-based framework to enable forward-looking real-time operations for meal delivery platforms and other on-demand services.
☆ Formally Verified Neural Lyapunov Function for Incremental Input-to-State Stability of Unknown Systems
This work presents an approach to synthesize a Lyapunov-like function to ensure incrementally input-to-state stability ($\delta$-ISS) property for an unknown discrete-time system. To deal with challenges posed by unknown system dynamics, we parameterize the Lyapunov-like function as a neural network, which we train using the data samples collected from the unknown system along with appropriately designed loss functions. We propose a validity condition to test the obtained function and incorporate it into the training framework to ensure provable correctness at the end of the training. Finally, the usefulness of the proposed technique is proved using two case studies: a scalar non-linear dynamical system and a permanent magnet DC motor.
☆ Path Planning for Multi-Copter UAV Formation Employing a Generalized Particle Swarm Optimization
The paper investigates the problem of path planning techniques for multi-copter uncrewed aerial vehicles (UAV) cooperation in a formation shape to examine surrounding surfaces. We first describe the problem as a joint objective cost for planning a path of the formation centroid working in a complicated space. The path planning algorithm, named the generalized particle swarm optimization algorithm, is then presented to construct an optimal, flyable path while avoiding obstacles and ensuring the flying mission requirements. A path-development scheme is then incorporated to generate a relevant path for each drone to maintain its position in the formation configuration. Simulation, comparison, and experiments have been conducted to verify the proposed approach. Results show the feasibility of the proposed path-planning algorithm with GEPSO.
comment: 6 pages, 8 figures, conference
☆ Non-intrusive Data-driven ADI-based Low-rank Balanced Truncation
In this short note, a non-intrusive data-driven formulation of ADI-based low-rank balanced truncation is provided. The proposed algorithm only requires transfer function samples at the mirror images of ADI shifts. If some shifts are used in both approximating the controllability Gramian and the observability Gramian, then samples of the transfer function's derivative at these shifts are also needed to enforce Hermite interpolation in the Loewner framework. It is noted that ADI-based low-rank balanced truncation can be viewed as a two-step process. The first step involves constructing an interpolant of the original model at the mirror images of the ADI shifts, which can be done non-intrusively within the Loewner framework. The second step involves reducing this interpolant using low-rank factors of Gramians associated with the interpolation data through the balanced square-root algorithm. This second step does not require any system information, making the overall process non-intrusive with the only required information being samples of the transfer function and/or its derivative at the mirror images of ADI shifts. Furthermore, it is shown that when the order of the reduced model in ADI-based low-rank balanced truncation is selected to match the numerical rank of the low-rank factors of the Gramians, it effectively reduces to standard interpolation at the mirror images of the ADI shift. An illustrative example is provided to explain the proposed approach.
☆ Fully Decentralized Computation Offloading in Priority-Driven Edge Computing Systems
We develop a novel framework for fully decentralized offloading policy design in multi-access edge computing (MEC) systems. The system comprises $N$ power-constrained user equipments (UEs) assisted by an edge server (ES) to process incoming tasks. Tasks are labeled with urgency flags, and in this paper, we classify them under three urgency levels, namely, high, moderate, and low urgency. We formulate the problem of designing computation decisions for the UEs within a large population noncooperative game framework, where each UE selfishly decides on how to split task execution between its local onboard processor and the ES. We employ the weighted average age of information (AoI) metric to quantify information freshness at the UEs. Increased onboard processing consumes more local power, while increased offloading may potentially incur a higher average AoI due to other UEs' packets being offloaded to the same ES. Thus, we use the mean-field game (MFG) formulation to compute approximate decentralized Nash equilibrium offloading and local computation policies for the UEs to balance between the information freshness and local power consumption. Finally, we provide a projected gradient descent-based algorithm to numerically assess the merits of our approach.
comment: Submitted to IEEE for possible publication
☆ Downlink Performance of Cell-Free Massive MIMO for LEO Satellite Mega-Constellation
Low-earth orbit (LEO) satellite communication (SatCom) has emerged as a promising technology for improving wireless connectivity in global areas. Cell-free massive multiple-input multiple-output (CF-mMIMO), an architecture recently proposed for next-generation networks, has yet to be fully explored for LEO satellites. In this paper, we investigate the downlink performance of a CF-mMIMO LEO SatCom network, where many satellite access points (SAPs) simultaneously serve the corresponding ground user terminals (UTs). Using tools from stochastic geometry, we model the locations of SAPs and UTs on surfaces of concentric spheres using Poisson point processes (PPPs) and present expressions based on linear minimum-mean-square-error (LMMSE) channel estimation and conjugate beamforming. Then, we derive the coverage probabilities in both fading and non-fading scenarios, with significant system parameters such as the Nakagami fading parameter, number of UTs, number of SAPs, orbital altitude, and service range brought by the dome angle. Finally, the analytical model is verified by extensive Monte Carlo simulations. Simulation results show that stronger line-of-sight (LoS) effects and a more comprehensive service range of the UT bring higher coverage probability despite existing multi-user interference. Moreover, we found that there exist optimal numbers of UTs for different orbital altitudes and dome angles, which provides valuable system design insights.
☆ Event Constrained Programming
In this paper, we present event constraints as a new modeling paradigm that generalizes joint chance constraints from stochastic optimization to (1) enforce a constraint on the probability of satisfying a set of constraints aggregated via application-specific logic (constituting an event) and (2) to be applied to general infinite-dimensional optimization (InfiniteOpt) problems (i.e., time, space, and/or uncertainty domains). This new constraint class offers significant modeling flexibility in posing InfiniteOpt constraints that are enforced over a certain portion of their domain (e.g., to a certain probability level), but can be challenging to reformulate/solve due to difficulties in representing arbitrary logical conditions and specifying a probabilistic measure on a collection of constraints. To address these challenges, we derive a generalized disjunctive programming (GDP) representation of event constrained optimization problems, which readily enables us to pose logical event conditions in a standard form and allows us to draw from a suite of GDP solution strategies that leverage the special structure of this problem class. We also extend several approximation techniques from the chance constraint literature to provide a means to reformulate certain event constraints without the use of binary variables. We illustrate these findings with case studies in stochastic optimal power flow, dynamic disease control, and optimal 2D diffusion.
☆ A Comparison of Strategies to Embed Physics-Informed Neural Networks in Nonlinear Model Predictive Control Formulations Solved via Direct Transcription
This study aims to benchmark candidate strategies for embedding neural network (NN) surrogates in nonlinear model predictive control (NMPC) formulations that are subject to systems described with partial differential equations and that are solved via direct transcription (i.e., simultaneous methods). This study focuses on the use of physics-informed NNs and physics-informed convolutional NNs as the internal (surrogate) models within the NMPC formulation. One strategy embeds NN models as explicit algebraic constraints, leveraging the automatic differentiation (AD) of an algebraic modelling language (AML) to evaluate the derivatives. Alternatively, the solver can be provided with derivatives computed external to the AML via the AD routines of the machine learning environment the NN is trained in. The three numerical experiments considered in this work reveal that replacing mechanistic models with NN surrogates may not always offer computational advantages when smooth activation functions are used in conjunction with a local nonlinear solver (e.g., Ipopt), even with highly nonlinear systems. Moreover, in this context, the external function evaluation of the NN surrogates often outperforms the embedding strategies that rely on explicit algebraic constraints, likely due to the difficulty in initializing the auxiliary variables and constraints introduced by explicit algebraic reformulations.
☆ Real-Time Decision-Making for Digital Twin in Additive Manufacturing with Model Predictive Control using Time-Series Deep Neural Networks
Digital Twin-a virtual replica of a physical system enabling real-time monitoring, model updating, prediction, and decision-making-combined with recent advances in machine learning (ML), offers new opportunities for proactive control strategies in autonomous manufacturing. However, achieving real-time decision-making with Digital Twins requires efficient optimization driven by accurate predictions of highly nonlinear manufacturing systems. This paper presents a simultaneous multi-step Model Predictive Control (MPC) framework for real-time decision-making, using a multi-variate deep neural network (DNN), named Time-Series Dense Encoder (TiDE), as the surrogate model. Different from the models in conventional MPC which only provide one-step ahead prediction, TiDE is capable of predicting future states within the prediction horizon in one shot (multi-step), significantly accelerating MPC. Using Directed Energy Deposition additive manufacturing as a case study, we demonstrate the effectiveness of the proposed MPC in achieving melt pool temperature tracking to ensure part quality, while reducing porosity defects by regulating laser power to maintain melt pool depth constraints. In this work, we first show that TiDE is capable of accurately predicting melt pool temperature and depth. Second, we demonstrate that the proposed MPC achieves precise temperature tracking while satisfying melt pool depth constraints within a targeted dilution range (10%-30%), reducing potential porosity defects. Compared to the PID controller, MPC results in smoother and less fluctuating laser power profiles with competitive or superior melt pool temperature control performance. This demonstrates MPC's proactive control capabilities, leveraging time-series prediction and real-time optimization, positioning it as a powerful tool for future Digital Twin applications and real-time process optimization in manufacturing.
♻ ☆ Privacy-Preserving Distributed Defense Framework for DC Microgrids Against Exponentially Unbounded False Data Injection Attacks
This paper introduces a novel, fully distributed control framework for DC microgrids, enhancing resilience against exponentially unbounded false data injection (EU-FDI) attacks. Our framework features a consensus-based secondary control for each converter, effectively addressing these advanced threats. To further safeguard sensitive operational data, a privacy-preserving mechanism is incorporated into the control design, ensuring that critical information remains secure even under adversarial conditions. Rigorous Lyapunov stability analysis confirms the framework's ability to maintain critical DC microgrid operations like voltage regulation and load sharing under EU-FDI threats. The framework's practicality is validated through hardware-in-the-loop experiments, demonstrating its enhanced resilience and robust privacy protection against the complex challenges posed by quick variant FDI attacks.
♻ ☆ Integration of Cobalt Ferromagnetic Control Gates for Electrical and Magnetic Manipulation of Semiconductor Quantum Dots
The rise of electron spin qubit architectures for quantum computing processors has led to a strong interest in designing and integrating ferromagnets to induce stray magnetic fields for electron dipole spin resonance (EDSR). The integration of nanomagnets imposes however strict layout and processing constraints, challenging the arrangement of different gating layers and the control of neighboring qubit frequencies. This work reports a successful integration of nano-sized cobalt control gates into a multi-gate FD-SOI nanowire with nanometer-scale dot-to-magnet pitch, simultaneously exploiting electrical and ferromagnetic properties of the gate stack at nanoscale. The electrical characterization of the multi-gate nanowire exhibits full field effect functionality of all ferromagnetic gates from room temperature to 10 mK, proving quantum dot formation when ferromagnets are operated as barrier gates. The front-end-of-line (FEOL) compatible integration of cobalt is examined by energy dispersive X-ray spectroscopy and high/low frequency capacitance characterization, confirming the quality of interfaces and control over material diffusion. Insights into the magnetic properties of thin films and patterned control-gates are provided by vibrating sample magnetometry and electron holography measurements. Micromagnetic simulations anticipate that this structure fulfills the requirements for EDSR driving for magnetic fields higher than 1 T, where a homogeneous magnetization along the hard magnetic axis of the Co gates is expected. The FDSOI architecture showcased in this study provides a scalable alternative to micromagnets deposited in the back-end-of-line (BEOL) and middle-of-line (MOL) processes, while bringing technological insights for the FEOL-compatible integration of Co nanostructures in spin qubit devices.
comment: 15 pages, 7 figures
♻ ☆ Empowering Aggregators with Practical Data-Driven Tools: Harnessing Aggregated and Disaggregated Flexibility for Demand Response
This study explores the interaction between aggregators and building occupants in activating flexibility through Demand Response (DR) programs, with a focus on reinforcing the resilience of the energy system considering the uncertainties presented by Renewable Energy Sources (RES). Firstly, it introduces a methodology of optimizing aggregated flexibility provision strategies in environments with limited data, utilizing Discrete Fourier Transformation (DFT) and clustering techniques to identify building occupants' activity patterns. Secondly, the study assesses the disaggregated flexibility provision of Heating Ventilation and Air Conditioning (HVAC) systems during DR events, employing machine learning and optimization techniques for precise, device-level analysis. The first approach offers a non-intrusive pathway for aggregators to provide flexibility services in environments of a single smart meter for the whole building's consumption, while the second approach maximizes the amount of flexibility in the case of dedicated metering devices to the HVAC systems by carefully considering building occupants' thermal comfort profiles. Through the application of data-driven techniques and encompassing case studies from both industrial and residential buildings, this paper not only unveils pivotal opportunities for aggregators in the balancing and emerging flexibility markets but also successfully develops and demonstrates end-to-end practical tools for aggregators.
♻ ☆ Stochastic Quantum Power Flow for Risk Assessment in Power Systems
This paper introduces the first quantum computing framework for Stochastic Quantum Power Flow (SQPF) analysis in power systems. The proposed method leverages quantum states to encode power flow distributions, enabling the use of Quantum Monte Carlo (QMC) sampling to efficiently assess the probability of line overloads. Our approach significantly reduces the required sample size compared to traditional Monte Carlo methods, making it particularly suited for risk assessments in scenarios involving high uncertainty, such as renewable energy integration. We validate the method on two test systems, demonstrating the computational advantage of quantum algorithms in reducing sample complexity while maintaining accuracy. This work represents a foundational step toward scalable quantum power flow analysis, with potential applications in future power system operations and planning. The results show promising computational speedups, underscoring the potential of quantum computing in addressing the increasing uncertainty in modern power grids.
comment: Accepted by the Electric Power System Research journal
♻ ☆ Remaining Discharge Energy Prediction for Lithium-Ion Batteries Over Broad Current Ranges: A Machine Learning Approach
Lithium-ion batteries have found their way into myriad sectors of industry to drive electrification, decarbonization, and sustainability. A crucial aspect in ensuring their safe and optimal performance is monitoring their energy levels. In this paper, we present the first study on predicting the remaining energy of a battery cell undergoing discharge over wide current ranges from low to high C-rates. The complexity of the challenge arises from the cell's C-rate-dependent energy availability as well as its intricate electro-thermal dynamics especially at high C-rates. To address this, we introduce a new definition of remaining discharge energy and then undertake a systematic effort in harnessing the power of machine learning to enable its prediction. Our effort includes two parts in cascade. First, we develop an accurate dynamic model based on integration of physics with machine learning to capture a battery's voltage and temperature behaviors. Second, based on the model, we propose a machine learning approach to predict the remaining discharge energy under arbitrary C-rates and pre-specified cut-off limits in voltage and temperature. The experimental validation shows that the proposed approach can predict the remaining discharge energy with a relative error of less than 3% when the current varies between 0~8 C for an NCA cell and 0~15 C for an LFP cell. The approach, by design, is amenable to training and computation.
comment: 15 pages, 13 figures, 4 tables
♻ ☆ Log-Scale Quantization in Distributed First-Order Methods: Gradient-based Learning from Distributed Data
Decentralized strategies are of interest for learning from large-scale data over networks. This paper studies learning over a network of geographically distributed nodes/agents subject to quantization. Each node possesses a private local cost function, collectively contributing to a global cost function, which the considered methodology aims to minimize. In contrast to many existing papers, the information exchange among nodes is log-quantized to address limited network-bandwidth in practical situations. We consider a first-order computationally efficient distributed optimization algorithm (with no extra inner consensus loop) that leverages node-level gradient correction based on local data and network-level gradient aggregation only over nearby nodes. This method only requires balanced networks with no need for stochastic weight design. It can handle log-scale quantized data exchange over possibly time-varying and switching network setups. We study convergence over both structured networks (for example, training over data-centers) and ad-hoc multi-agent networks (for example, training over dynamic robotic networks). Through experimental validation, we show that (i) structured networks generally result in a smaller optimality gap, and (ii) log-scale quantization leads to a smaller optimality gap compared to uniform quantization.
comment: IEEE TASE 2025
♻ ☆ Physics-Informed Neural Network Lyapunov Functions: PDE Characterization, Learning, and Verification
We provide a systematic investigation of using physics-informed neural networks to compute Lyapunov functions. We encode Lyapunov conditions as a partial differential equation (PDE) and use this for training neural network Lyapunov functions. We analyze the analytical properties of the solutions to the Lyapunov and Zubov PDEs. In particular, we show that employing the Zubov equation in training neural Lyapunov functions can lead to approximate regions of attraction close to the true domain of attraction. We also examine approximation errors and the convergence of neural approximations to the unique solution of Zubov's equation. We then provide sufficient conditions for the learned neural Lyapunov functions that can be readily verified by satisfiability modulo theories (SMT) solvers, enabling formal verification of both local stability analysis and region-of-attraction estimates in the large. Through a number of nonlinear examples, ranging from low to high dimensions, we demonstrate that the proposed framework can outperform traditional sums-of-squares (SOS) Lyapunov functions obtained using semidefinite programming (SDP).
comment: The current version is accepted to the IFAC Journal Automatica
♻ ☆ Learning Optimal Stable Matches in Decentralized Markets with Unknown Preferences
Matching algorithms have demonstrated great success in several practical applications, but they often require centralized coordination and plentiful information. In many modern online marketplaces, agents must independently seek out and match with another using little to no information. For these kinds of settings, can we design decentralized, limited-information matching algorithms that preserve the desirable properties of standard centralized techniques? In this work, we constructively answer this question in the affirmative. We model a two-sided matching market as a game consisting of two disjoint sets of agents, referred to as proposers and acceptors, each of whom seeks to match with their most preferable partner on the opposite side of the market. However, each proposer has no knowledge of their own preferences, so they must learn their preferences while forming matches in the market. We present a simple online learning rule that guarantees a strong notion of probabilistic convergence to the welfare-maximizing equilibrium of the game, referred to as the proposer-optimal stable match. To the best of our knowledge, this represents the first completely decoupled, communication-free algorithm that guarantees probabilistic convergence to an optimal stable match, irrespective of the structure of the matching market.
Optimization and Control 35
☆ Best Response Convergence for Zero-sum Stochastic Dynamic Games with Partial and Asymmetric Information
We analyze best response dynamics for finding a Nash equilibrium of an infinite horizon zero-sum stochastic linear quadratic dynamic game (LQDG) with partial and asymmetric information. We derive explicit expressions for each player's best response within the class of pure linear dynamic output feedback control strategies where the internal state dimension of each control strategy is an integer multiple of the system state dimension. With each best response, the players form increasingly higher-order belief states, leading to infinite-dimensional internal states. However, we observe in extensive numerical experiments that the game's value converges after just a few iterations, suggesting that strategies associated with increasingly higher-order belief states eventually provide no benefit. To help explain this convergence, our numerical analysis reveals rapid decay of the controllability and observability Gramian eigenvalues and Hankel singular values in higher-order belief dynamics, indicating that the higher-order belief dynamics become increasingly difficult for both players to control and observe. Consequently, the higher-order belief dynamics can be closely approximated by low-order belief dynamics with bounded error, and thus feedback strategies with limited internal state dimension can closely approximate a Nash equilibrium.
☆ Meta-Learning for Physically-Constrained Neural System Identification
We present a gradient-based meta-learning framework for rapid adaptation of neural state-space models (NSSMs) for black-box system identification. When applicable, we also incorporate domain-specific physical constraints to improve the accuracy of the NSSM. The major benefit of our approach is that instead of relying solely on data from a single target system, our framework utilizes data from a diverse set of source systems, enabling learning from limited target data, as well as with few online training iterations. Through benchmark examples, we demonstrate the potential of our approach, study the effect of fine-tuning subnetworks rather than full fine-tuning, and report real-world case studies to illustrate the practical application and generalizability of the approach to practical problems with physical-constraints. Specifically, we show that the meta-learned models result in improved downstream performance in model-based state estimation in indoor localization and energy systems.
comment: 30 pages
☆ Nonlinear port-Hamiltonian system identification from input-state-output data
A framework for identifying nonlinear port-Hamiltonian systems using input-state-output data is introduced. The framework utilizes neural networks' universal approximation capacity to effectively represent complex dynamics in a structured way. We show that using the structure helps to make long-term predictions compared to baselines that do not incorporate physics. We also explore different architectures based on MLPs, KANs, and using prior information. The technique is validated through examples featuring nonlinearities in either the skew-symmetric terms, the dissipative terms, or the Hamiltonian.
☆ Averaged Adam accelerates stochastic optimization in the training of deep neural network approximations for partial differential equation and optimal control problems
Deep learning methods - usually consisting of a class of deep neural networks (DNNs) trained by a stochastic gradient descent (SGD) optimization method - are nowadays omnipresent in data-driven learning problems as well as in scientific computing tasks such as optimal control (OC) and partial differential equation (PDE) problems. In practically relevant learning tasks, often not the plain-vanilla standard SGD optimization method is employed to train the considered class of DNNs but instead more sophisticated adaptive and accelerated variants of the standard SGD method such as the popular Adam optimizer are used. Inspired by the classical Polyak-Ruppert averaging approach, in this work we apply averaged variants of the Adam optimizer to train DNNs to approximately solve exemplary scientific computing problems in the form of PDEs and OC problems. We test the averaged variants of Adam in a series of learning problems including physics-informed neural network (PINN), deep backward stochastic differential equation (deep BSDE), and deep Kolmogorov approximations for PDEs (such as heat, Black-Scholes, Burgers, and Allen-Cahn PDEs), including DNN approximations for OC problems, and including DNN approximations for image classification problems (ResNet for CIFAR-10). In each of the numerical examples the employed averaged variants of Adam outperform the standard Adam and the standard SGD optimizers, particularly, in the situation of the scientific machine learning problems. The Python source codes for the numerical experiments associated to this work can be found on GitHub at https://github.com/deeplearningmethods/averaged-adam.
comment: 25 pages, 10 figures
☆ Set-valued evenly convex functions: characterizations and c-conjugacy
In this work we deal with set-valued functions with values in the power set of a separated locally convex space where a nontrivial pointed convex cone induces a partial order relation. A set-valued function is evenly convex if its epigraph is an evenly convex set, i.e., it is the intersection of an arbitrary family of open half-spaces. In this paper we characterize evenly convex set-valued functions as the pointwise supremum of its set-valued e-affine minorants. Moreover, a suitable conjugation pattern will be developed for these functions, as well as the counterpart of the biconjugation Fenchel-Moreau theorem.
☆ Rank conditions for exactness of semidefinite relaxations in polynomial optimization
We consider the Moment-SOS hierarchy in polynomial optimization. We first provide a sufficient condition to solve the truncated K-moment problem associated with a given degree-$2n$ pseudo-moment sequence $\phi$ n and a semi-algebraic set $K \subset \mathbb{R}^d$. Namely, let $2v$ be the maximum degree of the polynomials that describe $K$. If the rank $r$ of its associated moment matrix is less than $nv + 1$, then $\phi^n$ has an atomic representing measure supported on at most $r$ points of $K$. When used at step-$n$ of the Moment-SOS hierarchy, it provides a sufficient condition to guarantee its finite convergence (i.e., the optimal value of the corresponding degree-n semidefinite relaxation of the hierarchy is the global minimum). For Quadratic Constrained Quadratic Problems (QCQPs) one may also recover global minimizers from the optimal pseudo-moment sequence. Our condition is in the spirit of Blekherman's rank condition and while on the one-hand it is more restrictive, on the other hand it applies to constrained POPs as it provides a localization on $K$ for the representing measure.
☆ Distributed Generalized Nash Equilibria Learning for Online Stochastic Aggregative Games
This paper investigates online stochastic aggregative games subject to local set constraints and time-varying coupled inequality constraints, where each player possesses a time-varying expectation-valued cost function relying on not only its own decision variable but also an aggregation of all the players' variables. Each player can only access its local individual cost function and constraints, necessitating partial information exchanges with neighboring players through time-varying unbalanced networks. Additionally, local cost functions and constraint functions are not prior knowledge and only revealed gradually. To learn generalized Nash equilibria of such games, a novel distributed online stochastic algorithm is devised based on push-sum and primal-dual strategies. Through rigorous analysis, high probability bounds on the regret and constraint violation are provided by appropriately selecting decreasing stepsizes. Moreover, for a time-invariant stochastic strongly monotone game, it is shown that the generated sequence by the designed algorithm converges to its variational generalized Nash equilibrium (GNE) almost surely, and the time-averaged sequence converges sublinearly with high probability. Finally, the derived theoretical results are illustrated by numerical simulations.
☆ Soft regression trees: a model variant and a decomposition training algorithm
Decision trees are widely used for classification and regression tasks in a variety of application fields due to their interpretability and good accuracy. During the past decade, growing attention has been devoted to globally optimized decision trees with deterministic or soft splitting rules at branch nodes, which are trained by optimizing the error function over all the tree parameters. In this work, we propose a new variant of soft multivariate regression trees (SRTs) where, for every input vector, the prediction is defined as the linear regression associated to a single leaf node, namely, the leaf node obtained by routing the input vector from the root along the branches with higher probability. SRTs exhibit the conditional computational property, i.e., each prediction depends on a small number of nodes (parameters), and our nonlinear optimization formulation for training them is amenable to decomposition. After showing a universal approximation result for SRTs, we present a decomposition training algorithm including a clustering-based initialization procedure and a heuristic for reassigning the input vectors along the tree. Under mild assumptions, we establish asymptotic convergence guarantees. Experiments on 15 wellknown datasets indicate that our SRTs and decomposition algorithm yield higher accuracy and robustness compared with traditional soft regression trees trained using the nonlinear optimization formulation of Blanquero et al., and a significant reduction in training times as well as a slightly better average accuracy compared with the mixed-integer optimization approach of Bertsimas and Dunn. We also report a comparison with the Random Forest ensemble method.
☆ Designing a Robust and Cost-Efficient Electrified Bus Network with Sparse Energy Consumption Data
This paper addresses the challenges of charging infrastructure design (CID) for electrified public transport networks using Battery Electric Buses (BEBs) under conditions of sparse energy consumption data. Accurate energy consumption estimation is critical for cost-effective and reliable electrification but often requires costly field experiments, resulting in limited data. To address this issue, we propose two mathematical models designed to handle uncertainty and data sparsity in energy consumption. The first is a robust optimization model with box uncertainty, addressing variability in energy consumption. The second is a data-driven distributionally robust optimization model that leverages observed data to provide more flexible and informed solutions. To evaluate these models, we apply them to the Rotterdam bus network. Our analysis reveals three key insights: (1) Ignoring variations in energy consumption can result in operational unreliability, with up to 55\% of scenarios leading to infeasible trips. (2) Designing infrastructure based on worst-case energy consumption increases costs by 67\% compared to using average estimates. (3) The data-driven distributionally robust optimization model reduces costs by 28\% compared to the box uncertainty model while maintaining reliability, especially in scenarios where extreme energy consumption values are rare and data exhibit skewness. In addition to cost savings, this approach provides robust protection against uncertainty, ensuring reliable operation under diverse conditions.
☆ Random Sparse Lifts: Construction, Analysis and Convergence of finite sparse networks
We present a framework to define a large class of neural networks for which, by construction, training by gradient flow provably reaches arbitrarily low loss when the number of parameters grows. Distinct from the fixed-space global optimality of non-convex optimization, this new form of convergence, and the techniques introduced to prove such convergence, pave the way for a usable deep learning convergence theory in the near future, without overparameterization assumptions relating the number of parameters and training samples. We define these architectures from a simple computation graph and a mechanism to lift it, thus increasing the number of parameters, generalizing the idea of increasing the widths of multi-layer perceptrons. We show that architectures similar to most common deep learning models are present in this class, obtained by sparsifying the weight tensors of usual architectures at initialization. Leveraging tools of algebraic topology and random graph theory, we use the computation graph's geometry to propagate properties guaranteeing convergence to any precision for these large sparse models.
comment: The Twelfth International Conference on Learning Representations, May 2024, Vienna, Austria
☆ Efficient Gradient Tracking Algorithms for Distributed Optimization Problems with Inexact Communication
Distributed optimization problems usually face inexact communication issues induced by communication quantization, differential privacy protection, or channels noise. Most existing algorithms need two-timescale setting of the stepsize of gradient descent and the parameter of noise suppression to ensure the convergence to the optimal solution. In this paper, we propose two single-timescale algorithms, VRA-DGT and VRA--DSGT, for distributed deterministic and stochastic optimization problems with inexact communication respectively. VRA-DGT integrates the Variance-Reduced Aggregation (VRA) mechanism with the distributed gradient tracking framework, which achieves a convergence rate of $\mathcal{O}\left(k^{-1}\right)$ in the mean-square sense when the objective function is strongly convex and smooth. For distributed stochastic optimization problem,VRA-DSGT, where a hybrid variance reduction technique has been introduced in VRA-DGT, VRA-DGT,, maintains the convergence rate of $\mathcal{O}\left(k^{-1}\right)$ for strongly convex and smooth objective function. Simulated experiments on logistic regression problem with real-world data verify the effectiveness of the proposed algorithms.
☆ A Two-timescale Primal-dual Algorithm for Decentralized Optimization with Compression
This paper proposes a two-timescale compressed primal-dual (TiCoPD) algorithm for decentralized optimization with improved communication efficiency over prior works on primal-dual decentralized optimization. The algorithm is built upon the primal-dual optimization framework and utilizes a majorization-minimization procedure. The latter naturally suggests the agents to share a compressed difference term during the iteration. Furthermore, the TiCoPD algorithm incorporates a fast timescale mirror sequence for agent consensus on nonlinearly compressed terms, together with a slow timescale primal-dual recursion for optimizing the objective function. We show that the TiCoPD algorithm converges with a constant step size. It also finds an O(1 /T ) stationary solution after T iterations. Numerical experiments on decentralized training of a neural network validate the efficacy of TiCoPD algorithm.
comment: 5 pages, 8 figures
☆ Robust Adaptive Supplementary Control for Damping Weak-Grid SSOs Involving IBRs
Subsynchronous oscillations (SSOs) involving grid-following converters (GFLCs) connected to weak grids are a relatively new phenomena observed in modern power systems. SSOs are further exacerbated when grids become weaker because lines are disconnected due to maintenance or following faults. Such undesirable oscillations have also led to curtailment of inverter-based resource (IBR) outputs. In contrast to most literature addressing the issue by retuning/redesigning of standard IBR controllers, we propose a robust adaptive supplementary control for damping of such SSOs while keeping standard controls unaltered. As a result, uncertainty in system conditions can be handled without negatively impacting the nominal IBR performance. To that end, the adaptive control law is derived for a GFLC connected to the grid, where the grid is modeled by the Thevenin's equivalent representation with uncertainty and disturbances. The theoretical result provides dissipativity certificate for the closed-loop error dynamics with sufficient conditions for stability. The effectiveness of the developed controller is validated with several case studies conducted on a single-GFLC-infinite-bus test system, the IEEE $2$-area test system, wherein some of the synchronous generators are replaced by GFLCs, and a modified IEEE $5$-area test system with two GFLCs. The findings demonstrate that under very weak grid conditions, the proposed robust adaptive control performs well in stabilizing SSO modes, which a classical state-feedback control method fails to address.
comment: 14 pages, 19 figures, 3 tables, IEEE Transactions on Power Systems
☆ Single-Loop Variance-Reduced Stochastic Algorithm for Nonconvex-Concave Minimax Optimization ICASSP 2025
Nonconvex-concave (NC-C) finite-sum minimax problems have broad applications in decentralized optimization and various machine learning tasks. However, the nonsmooth nature of NC-C problems makes it challenging to design effective variance reduction techniques. Existing vanilla stochastic algorithms using uniform samples for gradient estimation often exhibit slow convergence rates and require bounded variance assumptions. In this paper, we develop a novel probabilistic variance reduction updating scheme and propose a single-loop algorithm called the probabilistic variance-reduced smoothed gradient descent-ascent (PVR-SGDA) algorithm. The proposed algorithm achieves an iteration complexity of $O(\epsilon^{-4})$, surpassing the best-known rates of stochastic algorithms for NC-C minimax problems and matching the performance of the best deterministic algorithms in this context. Finally, we demonstrate the effectiveness of the proposed algorithm through numerical simulations.
comment: The conference version of this paper has been accepted by ICASSP 2025
☆ An Efficient Dual ADMM for Huber Regression with Fused Lasso Penalty
The ordinary least squares estimate in linear regression is sensitive to the influence of errors with large variance, which reduces its robustness, especially when dealing with heavy-tailed errors or outliers frequently encountered in real-world scenarios. To address this issue and accommodate the sparsity of coefficients along with their sequential disparities, we combine the adaptive robust Huber loss function with a fused lasso penalty. This combination yields a robust estimator capable of simultaneously achieving estimation and variable selection. Furthermore, we utilize an efficient alternating direction method of multipliers to solve this regression model from a dual perspective. The effectiveness and efficiency of our proposed approach is demonstrated through numerical experiments carried out on both simulated and real datasets.
comment: 14 pages,24 figures
☆ FIRM: Federated Image Reconstruction using Multimodal Tomographic Data
We propose a federated algorithm for reconstructing images using multimodal tomographic data sourced from dispersed locations, addressing the challenges of traditional unimodal approaches that are prone to noise and reduced image quality. Our approach formulates a joint inverse optimization problem incorporating multimodality constraints and solves it in a federated framework through local gradient computations complemented by lightweight central operations, ensuring data decentralization. Leveraging the connection between our federated algorithm and the quadratic penalty method, we introduce an adaptive step-size rule with guaranteed sublinear convergence and further suggest its extension to augmented Lagrangian framework. Numerical results demonstrate its superior computational efficiency and improved image reconstruction quality.
☆ Event Constrained Programming
In this paper, we present event constraints as a new modeling paradigm that generalizes joint chance constraints from stochastic optimization to (1) enforce a constraint on the probability of satisfying a set of constraints aggregated via application-specific logic (constituting an event) and (2) to be applied to general infinite-dimensional optimization (InfiniteOpt) problems (i.e., time, space, and/or uncertainty domains). This new constraint class offers significant modeling flexibility in posing InfiniteOpt constraints that are enforced over a certain portion of their domain (e.g., to a certain probability level), but can be challenging to reformulate/solve due to difficulties in representing arbitrary logical conditions and specifying a probabilistic measure on a collection of constraints. To address these challenges, we derive a generalized disjunctive programming (GDP) representation of event constrained optimization problems, which readily enables us to pose logical event conditions in a standard form and allows us to draw from a suite of GDP solution strategies that leverage the special structure of this problem class. We also extend several approximation techniques from the chance constraint literature to provide a means to reformulate certain event constraints without the use of binary variables. We illustrate these findings with case studies in stochastic optimal power flow, dynamic disease control, and optimal 2D diffusion.
☆ SMOP: Stochastic trust region method for multi-objective problems
The problem considered is a multi-objective optimization problem, in which the goal is to find an optimal value of a vector function representing various criteria. The aim of this work is to develop an algorithm which utilizes the trust region framework with probabilistic model functions, able to cope with noisy problems, using inaccurate functions and gradients. We prove the almost sure convergence of the proposed algorithm to a Pareto critical point if the model functions are good approximations in probabilistic sense. Numerical results demonstrate effectiveness of the probabilistic trust region by comparing it to competitive stochastic multi-objective solvers. The application in supervised machine learning is showcased by training non discriminatory Logistic Regression models on different size data groups. Additionally, we use several test examples with irregularly shaped fronts to exhibit the efficiency of the algorithm.
☆ A Comparison of Strategies to Embed Physics-Informed Neural Networks in Nonlinear Model Predictive Control Formulations Solved via Direct Transcription
This study aims to benchmark candidate strategies for embedding neural network (NN) surrogates in nonlinear model predictive control (NMPC) formulations that are subject to systems described with partial differential equations and that are solved via direct transcription (i.e., simultaneous methods). This study focuses on the use of physics-informed NNs and physics-informed convolutional NNs as the internal (surrogate) models within the NMPC formulation. One strategy embeds NN models as explicit algebraic constraints, leveraging the automatic differentiation (AD) of an algebraic modelling language (AML) to evaluate the derivatives. Alternatively, the solver can be provided with derivatives computed external to the AML via the AD routines of the machine learning environment the NN is trained in. The three numerical experiments considered in this work reveal that replacing mechanistic models with NN surrogates may not always offer computational advantages when smooth activation functions are used in conjunction with a local nonlinear solver (e.g., Ipopt), even with highly nonlinear systems. Moreover, in this context, the external function evaluation of the NN surrogates often outperforms the embedding strategies that rely on explicit algebraic constraints, likely due to the difficulty in initializing the auxiliary variables and constraints introduced by explicit algebraic reformulations.
☆ Reinforcing Infrastructure Networks with Multicriteria Portfolio Decision Analysis: An Application to Railway Stations in Finland
Advanced societies are crucially dependent on critical infrastructure networks for the reliable delivery of essential goods and services. Hence, well-founded analyses concerning disruptions are needed to guide decisions that seek to ensure the performance of these networks in the face of failures caused by vulnerabilities to external hazards or technical malfunctions. In this setting, we develop a multicriteria decision analysis approach to support the formulation of cost-efficient portfolios of preventive reinforcement actions. Our approach is general in that it (i) allows for multiple objectives, such as those that represent the volume of traffic that is enabled between alternative origin-destination pairs in a transportation network, (ii) uses methods of probabilistic risk assessment to quantify the expected performance of the network, and (iii) solves optimization problems to identify those combinations of reinforcement actions that are cost-efficient in improving the performance of the network, given the available, possibly incomplete information about the relative importance of objectives. Our methodological contributions are illustrated by a case study on the analysis of railway switches at a representative Finnish railway station.
comment: 32 pages, 7 figures
☆ Exploratory Randomization for Discrete-Time Linear Exponential Quadratic Gaussian (LEQG) Problem
We investigate exploratory randomization for an extended linear-exponential-quadratic-Gaussian (LEQG) control problem in discrete time. This extended control problem is related to the structure of risk-sensitive investment management applications. We introduce exploration through a randomization of the control. Next, we apply the duality between free energy and relative entropy to reduce the LEQG problem to an equivalent risk-neutral LQG control problem with an entropy regularization term, see, e.g. Dai Pra et al. (1996), for which we present a solution approach based on Dynamic Programming. Our approach, based on the energy-entropy duality may also be considered as leading to a justification for the use, in the literature, of an entropy regularization when applying a randomized control.
♻ ☆ On Lie-Bracket Averaging for a Class of Hybrid Dynamical Systems with Applications to Model-Free Control and Optimization
The stability of dynamical systems with oscillatory behaviors and well-defined average vector fields has traditionally been studied using averaging theory. These tools have also been applied to hybrid dynamical systems, which combine continuous and discrete dynamics. However, most averaging results for hybrid systems are limited to first-order methods, hindering their use in systems and algorithms that require high-order averaging techniques, such as hybrid Lie-bracket-based extremum seeking algorithms and hybrid vibrational controllers. To address this limitation, we introduce a novel high-order averaging theorem for analyzing the stability of hybrid dynamical systems with high-frequency periodic flow maps. These systems incorporate set-valued flow maps and jump maps, effectively modeling well-posed differential and difference inclusions. By imposing appropriate regularity conditions, we establish results on $(T,\varepsilon)$-closeness of solutions and semi-global practical asymptotic stability for sets. These theoretical results are then applied to the study of three distinct applications in the context of hybrid model-free control and optimization via Lie-bracket averaging.
♻ ☆ Monotone Causality in Opportunistically Stochastic Shortest Path Problems
When traveling through a graph with an accessible deterministic path to a target, is it ever preferable to resort to stochastic node-to-node transitions instead? And if so, what are the conditions guaranteeing that such a stochastic optimal routing policy can be computed efficiently? We aim to answer these questions here by defining a class of Opportunistically Stochastic Shortest Path (OSSP) problems and deriving sufficient conditions for applicability of non-iterative label-setting methods. The usefulness of this framework is demonstrated in two very different contexts: numerical analysis and autonomous vehicle routing. We use OSSPs to derive causality conditions for semi-Lagrangian discretizations of anisotropic Hamilton-Jacobi equations. We also use a Dijkstra-like method to solve OSSPs optimizing the timing and urgency of lane change maneuvers for an autonomous vehicle navigating road networks with a heterogeneous traffic load.
comment: Submitted to and under review for INFORMS Mathematics of Operations Research. Revised to address first round feedback from reviewers for this journal
♻ ☆ Low-Tubal-Rank Tensor Recovery via Factorized Gradient Descent
This paper considers the problem of recovering a tensor with an underlying low-tubal-rank structure from a small number of corrupted linear measurements. Traditional approaches tackling such a problem require the computation of tensor Singular Value Decomposition (t-SVD), that is a computationally intensive process, rendering them impractical for dealing with large-scale tensors. Aim to address this challenge, we propose an efficient and effective low-tubal-rank tensor recovery method based on a factorization procedure akin to the Burer-Monteiro (BM) method. Precisely, our fundamental approach involves decomposing a large tensor into two smaller factor tensors, followed by solving the problem through factorized gradient descent (FGD). This strategy eliminates the need for t-SVD computation, thereby reducing computational costs and storage requirements. We provide rigorous theoretical analysis to ensure the convergence of FGD under both noise-free and noisy situations. Additionally, it is worth noting that our method does not require the precise estimation of the tensor tubal-rank. Even in cases where the tubal-rank is slightly overestimated, our approach continues to demonstrate robust performance. A series of experiments have been carried out to demonstrate that, as compared to other popular ones, our approach exhibits superior performance in multiple scenarios, in terms of the faster computational speed and the smaller convergence error.
comment: 13 pages, 4 figures
♻ ☆ Convergence analysis of wide shallow neural operators within the framework of Neural Tangent Kernel
Neural operators are aiming at approximating operators mapping between Banach spaces of functions, achieving much success in the field of scientific computing. Compared to certain deep learning-based solvers, such as Physics-Informed Neural Networks (PINNs), Deep Ritz Method (DRM), neural operators can solve a class of Partial Differential Equations (PDEs). Although much work has been done to analyze the approximation and generalization error of neural operators, there is still a lack of analysis on their training error. In this work, we conduct the convergence analysis of gradient descent for the wide shallow neural operators and physics-informed shallow neural operators within the framework of Neural Tangent Kernel (NTK). The core idea lies on the fact that over-parameterization and random initialization together ensure that each weight vector remains near its initialization throughout all iterations, yielding the linear convergence of gradient descent. In this work, we demonstrate that under the setting of over-parametrization, gradient descent can find the global minimum regardless of whether it is in continuous time or discrete time.
♻ ☆ A stochastic first-order method with multi-extrapolated momentum for highly smooth unconstrained optimization
In this paper, we consider an unconstrained stochastic optimization problem where the objective function exhibits high-order smoothness. Specifically, we propose a new stochastic first-order method (SFOM) with multi-extrapolated momentum, in which multiple extrapolations are performed in each iteration, followed by a momentum update based on these extrapolations. We demonstrate that the proposed SFOM can accelerate optimization by exploiting the high-order smoothness of the objective function $f$. Assuming that the $p$th-order derivative of $f$ is Lipschitz continuous for some $p\ge2$, and under additional mild assumptions, we establish that our method achieves a sample complexity of $\widetilde{\mathcal{O}}(\epsilon^{-(3p+1)/p})$ for finding a point $x$ such that $\mathbb{E}[\|\nabla f(x)\|]\le\epsilon$. To the best of our knowledge, this is the first SFOM to leverage arbitrary-order smoothness of the objective function for acceleration, resulting in a sample complexity that improves upon the best-known results without assuming the mean-squared smoothness condition. Preliminary numerical experiments validate the practical performance of our method and support our theoretical findings.
♻ ☆ Wait-Less Offline Tuning and Re-solving for Online Decision Making
Online linear programming (OLP) has found broad applications in revenue management and resource allocation. State-of-the-art OLP algorithms achieve low regret by repeatedly solving linear programming (LP) subproblems that incorporate updated resource information. However, LP-based methods are computationally expensive and often inefficient for large-scale applications. In contrast, recent first-order OLP algorithms are more computationally efficient but typically suffer from worse regret guarantees. To address these shortcomings, we propose a new algorithm that combines the strengths of LP-based and first-order OLP methods. The algorithm re-solves the LP subproblems periodically at a predefined frequency $f$ and uses the latest dual prices to guide online decision-making. In addition, a first-order method runs in parallel during each interval between LP re-solves, smoothing resource consumption. Our algorithm achieves $\mathscr{O}(\log (T/f) + \sqrt{f})$ regret, delivering a "wait-less" online decision-making process that balances the computational efficiency of first-order methods and the superior regret guarantee of LP-based methods.
comment: In this version, we achieve a tighter regret bound with the warm start for the first batch. We also make the proof more elegant by manually accepting all subsequent orders once the constraint is violated. In this way, we do not need to introduce the concept of stopping time for the analysis of the LP-based method
♻ ☆ Generic controllability of equivariant systems and applications to particle systems and neural networks
There exist many examples of systems which have some symmetries, and which one may monitor with symmetry preserving controls. Since symmetries are preserved along the evolution, full controllability is not possible, and controllability has to be considered inside sets of states with same symmetries. We prove that generic systems with symmetries are controllable in this sense. This result has several applications, for instance: (i) generic controllability of particle systems when the kernel of interaction between particles plays the role of a mean-field control; (ii) generic controllability for families of vector fields on manifolds with boundary; (iii) universal interpolation for neural networks architectures with "generic" self attention-type layers - a type of layers ubiquitous in recent neural networks architectures, e.g., in the Transformers architecture. The tools we develop could help address various other questions of control of equivariant systems.
comment: To appear in Annales de l'Institut Henri Poincar\'e, Analyse non lin\'eaire
♻ ☆ Gradient descent for unbounded convex functions on Hadamard manifolds and its applications to scaling problems
In this paper, we study asymptotic behaviors of continuous-time and discrete-time gradient flows of a ``lower-unbounded" convex function $f$ on a Hadamard manifold $M$, particularly, their convergence properties to the boundary $M^{\infty}$ at infinity of $M$. We establish a duality theorem that the infimum of the gradient-norm $\|\nabla f(x)\|$ of $f$ over $M$ is equal to the supremum of the negative of the recession function $f^{\infty}$ of $f$ over the boundary $M^{\infty}$, provided the infimum is positive. Further, the infimum and the supremum are obtained by the limits of the gradient flows of $f$, Our results feature convex-optimization ingredients of the moment-weight inequality for reductive group actions by Georgoulas, Robbin, and Salamon,and are applied to noncommutative optimization by B\"urgisser et al. FOCS 2019. We show that the gradient descent of the Kempf-Ness function for an unstable orbit converges to a 1-parameter subgroup in the Hilbert-Mumford criterion, and the associated moment-map sequence converges to the mimimum-norm point of the moment polytope. We show further refinements for operator scaling -- the left-right action on a matrix tuple $A= (A_1,A_2,\ldots,A_N)$. We characterize the gradient-flow limit of operator scaling by a vector-space generalization of the classical Dulmage-Mendelsohn decomposition of a bipartite graph. Also, for a special case of $N = 2$, we reveal that this limit determines the Kronecker canonical form of matrix pencils $s A_1+A_2$.
comment: The conference version in FOCS 2024
♻ ☆ Log-Scale Quantization in Distributed First-Order Methods: Gradient-based Learning from Distributed Data
Decentralized strategies are of interest for learning from large-scale data over networks. This paper studies learning over a network of geographically distributed nodes/agents subject to quantization. Each node possesses a private local cost function, collectively contributing to a global cost function, which the considered methodology aims to minimize. In contrast to many existing papers, the information exchange among nodes is log-quantized to address limited network-bandwidth in practical situations. We consider a first-order computationally efficient distributed optimization algorithm (with no extra inner consensus loop) that leverages node-level gradient correction based on local data and network-level gradient aggregation only over nearby nodes. This method only requires balanced networks with no need for stochastic weight design. It can handle log-scale quantized data exchange over possibly time-varying and switching network setups. We study convergence over both structured networks (for example, training over data-centers) and ad-hoc multi-agent networks (for example, training over dynamic robotic networks). Through experimental validation, we show that (i) structured networks generally result in a smaller optimality gap, and (ii) log-scale quantization leads to a smaller optimality gap compared to uniform quantization.
comment: IEEE TASE 2025
♻ ☆ Prophet Inequalities: Competing with the Top $\ell$ Items is Easy
We explore a prophet inequality problem, where the values of a sequence of items are drawn i.i.d. from some distribution, and an online decision maker must select one item irrevocably. We establish that $\mathrm{CR}_{\ell}$ the worst-case competitive ratio between the expected optimal performance of an online decision maker compared to that of a prophet who uses the average of the top $\ell$ items is exactly the solution to an integral equation. This quantity $\mathrm{CR}_{\ell}$ is larger than $1-e^{-\ell}$. This implies that the bound converges exponentially fast to $1$ as $\ell$ grows. In particular for $\ell=2$, $\mathrm{CR}_{2} \approx 0.966$ which is much closer to $1$ than the classical bound of $0.745$ for $\ell=1$. Additionally, we prove asymptotic lower bounds for the competitive ratio of a more general scenario, where the decision maker is permitted to select $k$ items. This subsumes the $k$ multi-unit i.i.d. prophet problem and provides the current best asymptotic guarantees, as well as enables broader understanding in the more general framework. Finally, we prove a tight asymptotic competitive ratio when only static threshold policies are allowed.
♻ ☆ An automatic system to detect equivalence between iterative algorithms
When are two algorithms the same? How can we be sure a recently proposed algorithm is novel, and not a minor twist on an existing method? In this paper, we present a framework for reasoning about equivalence between a broad class of iterative algorithms, with a focus on algorithms designed for convex optimization. We propose several notions of what it means for two algorithms to be equivalent, and provide computationally tractable means to detect equivalence. Our main definition, oracle equivalence, states that two algorithms are equivalent if they result in the same sequence of calls to the function oracles (for suitable initialization). Borrowing from control theory, we use state-space realizations to represent algorithms and characterize algorithm equivalence via transfer functions. Our framework can also identify and characterize some algorithm transformations including permutations of the update equations, repetition of the iteration, and conjugation of some of the function oracles in the algorithm. To support the paper, we have developed a software package named Linnaeus that implements the framework to identify other iterative algorithms that are equivalent to an input algorithm. More broadly, this framework and software advances the goal of making mathematics searchable.
comment: This paper documents a software system for identifying equivalence between optimization algorithms. The analysis in this paper has been improved in arxiv:2501.04972
♻ ☆ Counter-examples in first-order optimization: a constructive approach
While many approaches were developed for obtaining worst-case complexity bounds for first-order optimization methods in the last years, there remain theoretical gaps in cases where no such bound can be found. In such cases, it is often unclear whether no such bound exists (e.g., because the algorithm might fail to systematically converge) or simply if the current techniques do not allow finding them. In this work, we propose an approach to automate the search for cyclic trajectories generated by first-order methods. This provides a constructive approach to show that no appropriate complexity bound exists, thereby complementing the approaches providing sufficient conditions for convergence. Using this tool, we provide ranges of parameters for which some of the famous heavy-ball, Nesterov accelerated gradient, inexact gradient descent, and three-operator splitting algorithms fail to systematically converge, and show that it nicely complements existing tools searching for Lyapunov functions.
♻ ☆ Physics-Informed Neural Network Lyapunov Functions: PDE Characterization, Learning, and Verification
We provide a systematic investigation of using physics-informed neural networks to compute Lyapunov functions. We encode Lyapunov conditions as a partial differential equation (PDE) and use this for training neural network Lyapunov functions. We analyze the analytical properties of the solutions to the Lyapunov and Zubov PDEs. In particular, we show that employing the Zubov equation in training neural Lyapunov functions can lead to approximate regions of attraction close to the true domain of attraction. We also examine approximation errors and the convergence of neural approximations to the unique solution of Zubov's equation. We then provide sufficient conditions for the learned neural Lyapunov functions that can be readily verified by satisfiability modulo theories (SMT) solvers, enabling formal verification of both local stability analysis and region-of-attraction estimates in the large. Through a number of nonlinear examples, ranging from low to high dimensions, we demonstrate that the proposed framework can outperform traditional sums-of-squares (SOS) Lyapunov functions obtained using semidefinite programming (SDP).
comment: The current version is accepted to the IFAC Journal Automatica
♻ ☆ Stochastic Monotone Inclusion with Closed Loop Distributions
In this paper, we study in a Hilbertian setting, first and second-order monotone inclusions related to stochastic optimization problems with decision dependent distributions. The studied dynamics are formulated as monotone inclusions governed by Lipschitz perturbations of maximally monotone operators where the concept of equilibrium plays a central role. We discuss the relationship between the $\mathbb{W}_1$-Wasserstein Lipschitz behavior of the distribution and the so-called coarse Ricci curvature. As an application, we consider the monotone inclusions associated with stochastic optimisation problems involving the sum of a smooth function with Lipschitz gradient, a proximable function and a composite term.
Computer Vision and Pattern Recognition 115
☆ Multi-subject Open-set Personalization in Video Generation
Video personalization methods allow us to synthesize videos with specific concepts such as people, pets, and places. However, existing methods often focus on limited domains, require time-consuming optimization per subject, or support only a single subject. We present Video Alchemist $-$ a video model with built-in multi-subject, open-set personalization capabilities for both foreground objects and background, eliminating the need for time-consuming test-time optimization. Our model is built on a new Diffusion Transformer module that fuses each conditional reference image and its corresponding subject-level text prompt with cross-attention layers. Developing such a large model presents two main challenges: dataset and evaluation. First, as paired datasets of reference images and videos are extremely hard to collect, we sample selected video frames as reference images and synthesize a clip of the target video. However, while models can easily denoise training videos given reference frames, they fail to generalize to new contexts. To mitigate this issue, we design a new automatic data construction pipeline with extensive image augmentations. Second, evaluating open-set video personalization is a challenge in itself. To address this, we introduce a personalization benchmark that focuses on accurate subject fidelity and supports diverse personalization scenarios. Finally, our extensive experiments show that our method significantly outperforms existing personalization methods in both quantitative and qualitative evaluations.
comment: Project page: https://snap-research.github.io/open-set-video-personalization/
☆ LlamaV-o1: Rethinking Step-by-step Visual Reasoning in LLMs
Reasoning is a fundamental capability for solving complex multi-step problems, particularly in visual contexts where sequential step-wise understanding is essential. Existing approaches lack a comprehensive framework for evaluating visual reasoning and do not emphasize step-wise problem-solving. To this end, we propose a comprehensive framework for advancing step-by-step visual reasoning in large language models (LMMs) through three key contributions. First, we introduce a visual reasoning benchmark specifically designed to evaluate multi-step reasoning tasks. The benchmark presents a diverse set of challenges with eight different categories ranging from complex visual perception to scientific reasoning with over 4k reasoning steps in total, enabling robust evaluation of LLMs' abilities to perform accurate and interpretable visual reasoning across multiple steps. Second, we propose a novel metric that assesses visual reasoning quality at the granularity of individual steps, emphasizing both correctness and logical coherence. The proposed metric offers deeper insights into reasoning performance compared to traditional end-task accuracy metrics. Third, we present a new multimodal visual reasoning model, named LlamaV-o1, trained using a multi-step curriculum learning approach, where tasks are progressively organized to facilitate incremental skill acquisition and problem-solving. The proposed LlamaV-o1 is designed for multi-step reasoning and learns step-by-step through a structured training paradigm. Extensive experiments show that our LlamaV-o1 outperforms existing open-source models and performs favorably against close-source proprietary models. Compared to the recent Llava-CoT, our LlamaV-o1 achieves an average score of 67.3 with an absolute gain of 3.8\% across six benchmarks while being 5 times faster during inference scaling. Our benchmark, model, and code are publicly available.
comment: 15 pages, 5 Figures
☆ PEACE: Empowering Geologic Map Holistic Understanding with MLLMs
Geologic map, as a fundamental diagram in geology science, provides critical insights into the structure and composition of Earth's subsurface and surface. These maps are indispensable in various fields, including disaster detection, resource exploration, and civil engineering. Despite their significance, current Multimodal Large Language Models (MLLMs) often fall short in geologic map understanding. This gap is primarily due to the challenging nature of cartographic generalization, which involves handling high-resolution map, managing multiple associated components, and requiring domain-specific knowledge. To quantify this gap, we construct GeoMap-Bench, the first-ever benchmark for evaluating MLLMs in geologic map understanding, which assesses the full-scale abilities in extracting, referring, grounding, reasoning, and analyzing. To bridge this gap, we introduce GeoMap-Agent, the inaugural agent designed for geologic map understanding, which features three modules: Hierarchical Information Extraction (HIE), Domain Knowledge Injection (DKI), and Prompt-enhanced Question Answering (PEQA). Inspired by the interdisciplinary collaboration among human scientists, an AI expert group acts as consultants, utilizing a diverse tool pool to comprehensively analyze questions. Through comprehensive experiments, GeoMap-Agent achieves an overall score of 0.811 on GeoMap-Bench, significantly outperforming 0.369 of GPT-4o. Our work, emPowering gEologic mAp holistiC undErstanding (PEACE) with MLLMs, paves the way for advanced AI applications in geology, enhancing the efficiency and accuracy of geological investigations.
☆ VideoAuteur: Towards Long Narrative Video Generation
Recent video generation models have shown promising results in producing high-quality video clips lasting several seconds. However, these models face challenges in generating long sequences that convey clear and informative events, limiting their ability to support coherent narrations. In this paper, we present a large-scale cooking video dataset designed to advance long-form narrative generation in the cooking domain. We validate the quality of our proposed dataset in terms of visual fidelity and textual caption accuracy using state-of-the-art Vision-Language Models (VLMs) and video generation models, respectively. We further introduce a Long Narrative Video Director to enhance both visual and semantic coherence in generated videos and emphasize the role of aligning visual embeddings to achieve improved overall video quality. Our method demonstrates substantial improvements in generating visually detailed and semantically aligned keyframes, supported by finetuning techniques that integrate text and image embeddings within the video generation process. Project page: https://videoauteur.github.io/
comment: Preprint, https://videoauteur.github.io/
☆ PySpatial: A High-Speed Whole Slide Image Pathomics Toolkit
Whole Slide Image (WSI) analysis plays a crucial role in modern digital pathology, enabling large-scale feature extraction from tissue samples. However, traditional feature extraction pipelines based on tools like CellProfiler often involve lengthy workflows, requiring WSI segmentation into patches, feature extraction at the patch level, and subsequent mapping back to the original WSI. To address these challenges, we present PySpatial, a high-speed pathomics toolkit specifically designed for WSI-level analysis. PySpatial streamlines the conventional pipeline by directly operating on computational regions of interest, reducing redundant processing steps. Utilizing rtree-based spatial indexing and matrix-based computation, PySpatial efficiently maps and processes computational regions, significantly accelerating feature extraction while maintaining high accuracy. Our experiments on two datasets-Perivascular Epithelioid Cell (PEC) and data from the Kidney Precision Medicine Project (KPMP)-demonstrate substantial performance improvements. For smaller and sparse objects in PEC datasets, PySpatial achieves nearly a 10-fold speedup compared to standard CellProfiler pipelines. For larger objects, such as glomeruli and arteries in KPMP datasets, PySpatial achieves a 2-fold speedup. These results highlight PySpatial's potential to handle large-scale WSI analysis with enhanced efficiency and accuracy, paving the way for broader applications in digital pathology.
☆ MS-Temba : Multi-Scale Temporal Mamba for Efficient Temporal Action Detection
Action detection in real-world scenarios is particularly challenging due to densely distributed actions in hour-long untrimmed videos. It requires modeling both short- and long-term temporal relationships while handling significant intra-class temporal variations. Previous state-of-the-art (SOTA) Transformer-based architectures, though effective, are impractical for real-world deployment due to their high parameter count, GPU memory usage, and limited throughput, making them unsuitable for very long videos. In this work, we innovatively adapt the Mamba architecture for action detection and propose Multi-scale Temporal Mamba (MS-Temba), comprising two key components: Temporal Mamba (Temba) Blocks and the Temporal Mamba Fuser. Temba Blocks include the Temporal Local Module (TLM) for short-range temporal modeling and the Dilated Temporal SSM (DTS) for long-range dependencies. By introducing dilations, a novel concept for Mamba, TLM and DTS capture local and global features at multiple scales. The Temba Fuser aggregates these scale-specific features using Mamba to learn comprehensive multi-scale representations of untrimmed videos. MS-Temba is validated on three public datasets, outperforming SOTA methods on long videos and matching prior methods on short videos while using only one-eighth of the parameters.
☆ Enhancing, Refining, and Fusing: Towards Robust Multi-Scale and Dense Ship Detection
Synthetic aperture radar (SAR) imaging, celebrated for its high resolution, all-weather capability, and day-night operability, is indispensable for maritime applications. However, ship detection in SAR imagery faces significant challenges, including complex backgrounds, densely arranged targets, and large scale variations. To address these issues, we propose a novel framework, Center-Aware SAR Ship Detector (CASS-Det), designed for robust multi-scale and densely packed ship detection. CASS-Det integrates three key innovations: (1) a center enhancement module (CEM) that employs rotational convolution to emphasize ship centers, improving localization while suppressing background interference; (2) a neighbor attention module (NAM) that leverages cross-layer dependencies to refine ship boundaries in densely populated scenes; and (3) a cross-connected feature pyramid network (CC-FPN) that enhances multi-scale feature fusion by integrating shallow and deep features. Extensive experiments on the SSDD, HRSID, and LS-SSDD-v1.0 datasets demonstrate the state-of-the-art performance of CASS-Det, excelling at detecting multi-scale and densely arranged ships.
☆ MSCViT: A Small-size ViT architecture with Multi-Scale Self-Attention Mechanism for Tiny Datasets
Vision Transformer (ViT) has demonstrated significant potential in various vision tasks due to its strong ability in modelling long-range dependencies. However, such success is largely fueled by training on massive samples. In real applications, the large-scale datasets are not always available, and ViT performs worse than Convolutional Neural Networks (CNNs) if it is only trained on small scale dataset (called tiny dataset), since it requires large amount of training data to ensure its representational capacity. In this paper, a small-size ViT architecture with multi-scale self-attention mechanism and convolution blocks is presented (dubbed MSCViT) to model different scales of attention at each layer. Firstly, we introduced wavelet convolution, which selectively combines the high-frequency components obtained by frequency division with our convolution channel to extract local features. Then, a lightweight multi-head attention module is developed to reduce the number of tokens and computational costs. Finally, the positional encoding (PE) in the backbone is replaced by a local feature extraction module. Compared with the original ViT, it is parameter-efficient and is particularly suitable for tiny datasets. Extensive experiments have been conducted on tiny datasets, in which our model achieves an accuracy of 84.68% on CIFAR-100 with 14.0M parameters and 2.5 GFLOPs, without pre-training on large datasets.
☆ AI-powered virtual tissues from spatial proteomics for clinical diagnostics and biomedical discovery
Spatial proteomics technologies have transformed our understanding of complex tissue architectures by enabling simultaneous analysis of multiple molecular markers and their spatial organization. The high dimensionality of these data, varying marker combinations across experiments and heterogeneous study designs pose unique challenges for computational analysis. Here, we present Virtual Tissues (VirTues), a foundation model framework for biological tissues that operates across the molecular, cellular and tissue scale. VirTues introduces innovations in transformer architecture design, including a novel tokenization scheme that captures both spatial and marker dimensions, and attention mechanisms that scale to high-dimensional multiplex data while maintaining interpretability. Trained on diverse cancer and non-cancer tissue datasets, VirTues demonstrates strong generalization capabilities without task-specific fine-tuning, enabling cross-study analysis and novel marker integration. As a generalist model, VirTues outperforms existing approaches across clinical diagnostics, biological discovery and patient case retrieval tasks, while providing insights into tissue function and disease mechanisms.
comment: 23 pages, 5 figures
☆ A Holistically Point-guided Text Framework for Weakly-Supervised Camouflaged Object Detection
Weakly-Supervised Camouflaged Object Detection (WSCOD) has gained popularity for its promise to train models with weak labels to segment objects that visually blend into their surroundings. Recently, some methods using sparsely-annotated supervision shown promising results through scribbling in WSCOD, while point-text supervision remains underexplored. Hence, this paper introduces a novel holistically point-guided text framework for WSCOD by decomposing into three phases: segment, choose, train. Specifically, we propose Point-guided Candidate Generation (PCG), where the point's foreground serves as a correction for the text path to explicitly correct and rejuvenate the loss detection object during the mask generation process (SEGMENT). We also introduce a Qualified Candidate Discriminator (QCD) to choose the optimal mask from a given text prompt using CLIP (CHOOSE), and employ the chosen pseudo mask for training with a self-supervised Vision Transformer (TRAIN). Additionally, we developed a new point-supervised dataset (P2C-COD) and a text-supervised dataset (T-COD). Comprehensive experiments on four benchmark datasets demonstrate our method outperforms state-of-the-art methods by a large margin, and also outperforms some existing fully-supervised camouflaged object detection methods.
☆ Nonisotropic Gaussian Diffusion for Realistic 3D Human Motion Prediction
Probabilistic human motion prediction aims to forecast multiple possible future movements from past observations. While current approaches report high diversity and realism, they often generate motions with undetected limb stretching and jitter. To address this, we introduce SkeletonDiffusion, a latent diffusion model that embeds an explicit inductive bias on the human body within its architecture and training. Our model is trained with a novel nonisotropic Gaussian diffusion formulation that aligns with the natural kinematic structure of the human skeleton. Results show that our approach outperforms conventional isotropic alternatives, consistently generating realistic predictions while avoiding artifacts such as limb distortion. Additionally, we identify a limitation in commonly used diversity metrics, which may inadvertently favor models that produce inconsistent limb lengths within the same sequence. SkeletonDiffusion sets a new benchmark on three real-world datasets, outperforming various baselines across multiple evaluation metrics. Visit our project page: https://ceveloper.github.io/publications/skeletondiffusion/
☆ Generate, Transduct, Adapt: Iterative Transduction with VLMs
Transductive zero-shot learning with vision-language models leverages image-image similarities within the dataset to achieve better classification accuracy compared to the inductive setting. However, there is little work that explores the structure of the language space in this context. We propose GTA-CLIP, a novel technique that incorporates supervision from language models for joint transduction in language and vision spaces. Our approach is iterative and consists of three steps: (i) incrementally exploring the attribute space by querying language models, (ii) an attribute-augmented transductive inference procedure, and (iii) fine-tuning the language and vision encoders based on inferred labels within the dataset. Through experiments with CLIP encoders, we demonstrate that GTA-CLIP, yields an average performance improvement of 8.6% and 3.7% across 12 datasets and 3 encoders, over CLIP and transductive CLIP respectively in the zero-shot setting. We also observe similar improvements in a few-shot setting. We present ablation studies that demonstrate the value of each step and visualize how the vision and language spaces evolve over iterations driven by the transductive learning.
comment: Code will be released at https://github.com/cvl-umass/GTA-CLIP
☆ Geometric-Based Nail Segmentation for Clinical Measurements
A robust segmentation method that can be used to perform measurements on toenails is presented. The proposed method is used as the first step in a clinical trial to objectively quantify the incidence of a particular pathology. For such an assessment, it is necessary to distinguish a nail, which locally appears to be similar to the skin. Many algorithms have been used, each of which leverages different aspects of toenail appearance. We used the Hough transform to locate the tip of the toe and estimate the nail location and size. Subsequently, we classified the super-pixels of the image based on their geometric and photometric information. Thereafter, the watershed transform delineated the border of the nail. The method was validated using a 348-image medical dataset, achieving an accuracy of 0.993 and an F-measure of 0.925. The proposed method is considerably robust across samples, with respect to factors such as nail shape, skin pigmentation, illumination conditions, and appearance of large regions affected by a medical condition
☆ BRIGHT: A globally distributed multimodal building damage assessment dataset with very-high-resolution for all-weather disaster response
Disaster events occur around the world and cause significant damage to human life and property. Earth observation (EO) data enables rapid and comprehensive building damage assessment (BDA), an essential capability in the aftermath of a disaster to reduce human casualties and to inform disaster relief efforts. Recent research focuses on the development of AI models to achieve accurate mapping of unseen disaster events, mostly using optical EO data. However, solutions based on optical data are limited to clear skies and daylight hours, preventing a prompt response to disasters. Integrating multimodal (MM) EO data, particularly the combination of optical and SAR imagery, makes it possible to provide all-weather, day-and-night disaster responses. Despite this potential, the development of robust multimodal AI models has been constrained by the lack of suitable benchmark datasets. In this paper, we present a BDA dataset using veRy-hIGH-resoluTion optical and SAR imagery (BRIGHT) to support AI-based all-weather disaster response. To the best of our knowledge, BRIGHT is the first open-access, globally distributed, event-diverse MM dataset specifically curated to support AI-based disaster response. It covers five types of natural disasters and two types of man-made disasters across 12 regions worldwide, with a particular focus on developing countries where external assistance is most needed. The optical and SAR imagery in BRIGHT, with a spatial resolution between 0.3-1 meters, provides detailed representations of individual buildings, making it ideal for precise BDA. In our experiments, we have tested seven advanced AI models trained with our BRIGHT to validate the transferability and robustness. The dataset and code are available at https://github.com/ChenHongruixuan/BRIGHT. BRIGHT also serves as the official dataset for the 2025 IEEE GRSS Data Fusion Contest.
☆ Pose-independent 3D Anthropometry from Sparse Data
3D digital anthropometry is the study of estimating human body measurements from 3D scans. Precise body measurements are important health indicators in the medical industry, and guiding factors in the fashion, ergonomic and entertainment industries. The measuring protocol consists of scanning the whole subject in the static A-pose, which is maintained without breathing or movement during the scanning process. However, the A-pose is not easy to maintain during the whole scanning process, which can last even up to a couple of minutes. This constraint affects the final quality of the scan, which in turn affects the accuracy of the estimated body measurements obtained from methods that rely on dense geometric data. Additionally, this constraint makes it impossible to develop a digital anthropometry method for subjects unable to assume the A-pose, such as those with injuries or disabilities. We propose a method that can obtain body measurements from sparse landmarks acquired in any pose. We make use of the sparse landmarks of the posed subject to create pose-independent features, and train a network to predict the body measurements as taken from the standard A-pose. We show that our method achieves comparable results to competing methods that use dense geometry in the standard A-pose, but has the capability of estimating the body measurements from any pose using sparse landmarks only. Finally, we address the lack of open-source 3D anthropometry methods by making our method available to the research community at https://github.com/DavidBoja/pose-independent-anthropometry.
☆ CamCtrl3D: Single-Image Scene Exploration with Precise 3D Camera Control 3DV 2025
We propose a method for generating fly-through videos of a scene, from a single image and a given camera trajectory. We build upon an image-to-video latent diffusion model. We condition its UNet denoiser on the camera trajectory, using four techniques. (1) We condition the UNet's temporal blocks on raw camera extrinsics, similar to MotionCtrl. (2) We use images containing camera rays and directions, similar to CameraCtrl. (3) We reproject the initial image to subsequent frames and use the resulting video as a condition. (4) We use 2D<=>3D transformers to introduce a global 3D representation, which implicitly conditions on the camera poses. We combine all conditions in a ContolNet-style architecture. We then propose a metric that evaluates overall video quality and the ability to preserve details with view changes, which we use to analyze the trade-offs of individual and combined conditions. Finally, we identify an optimal combination of conditions. We calibrate camera positions in our datasets for scale consistency across scenes, and we train our scene exploration model, CamCtrl3D, demonstrating state-of-theart results.
comment: To be published in 3DV 2025
☆ SeMi: When Imbalanced Semi-Supervised Learning Meets Mining Hard Examples
Semi-Supervised Learning (SSL) can leverage abundant unlabeled data to boost model performance. However, the class-imbalanced data distribution in real-world scenarios poses great challenges to SSL, resulting in performance degradation. Existing class-imbalanced semi-supervised learning (CISSL) methods mainly focus on rebalancing datasets but ignore the potential of using hard examples to enhance performance, making it difficult to fully harness the power of unlabeled data even with sophisticated algorithms. To address this issue, we propose a method that enhances the performance of Imbalanced Semi-Supervised Learning by Mining Hard Examples (SeMi). This method distinguishes the entropy differences among logits of hard and easy examples, thereby identifying hard examples and increasing the utility of unlabeled data, better addressing the imbalance problem in CISSL. In addition, we maintain a class-balanced memory bank with confidence decay for storing high-confidence embeddings to enhance the pseudo-labels' reliability. Although our method is simple, it is effective and seamlessly integrates with existing approaches. We perform comprehensive experiments on standard CISSL benchmarks and experimentally demonstrate that our proposed SeMi outperforms existing state-of-the-art methods on multiple benchmarks, especially in reversed scenarios, where our best result shows approximately a 54.8\% improvement over the baseline methods.
comment: 11 pages,6 figures, conference
Self-Supervised Partial Cycle-Consistency for Multi-View Matching
Matching objects across partially overlapping camera views is crucial in multi-camera systems and requires a view-invariant feature extraction network. Training such a network with cycle-consistency circumvents the need for labor-intensive labeling. In this paper, we extend the mathematical formulation of cycle-consistency to handle partial overlap. We then introduce a pseudo-mask which directs the training loss to take partial overlap into account. We additionally present several new cycle variants that complement each other and present a time-divergent scene sampling scheme that improves the data input for this self-supervised setting. Cross-camera matching experiments on the challenging DIVOTrack dataset show the merits of our approach. Compared to the self-supervised state-of-the-art, we achieve a 4.3 percentage point higher F1 score with our combined contributions. Our improvements are robust to reduced overlap in the training data, with substantial improvements in challenging scenes that need to make few matches between many people. Self-supervised feature networks trained with our method are effective at matching objects in a range of multi-camera settings, providing opportunities for complex tasks like large-scale multi-camera scene understanding.
comment: Accepted to VISAPP 2025
☆ Minimizing Occlusion Effect on Multi-View Camera Perception in BEV with Multi-Sensor Fusion
Autonomous driving technology is rapidly evolving, offering the potential for safer and more efficient transportation. However, the performance of these systems can be significantly compromised by the occlusion on sensors due to environmental factors like dirt, dust, rain, and fog. These occlusions severely affect vision-based tasks such as object detection, vehicle segmentation, and lane recognition. In this paper, we investigate the impact of various kinds of occlusions on camera sensor by projecting their effects from multi-view camera images of the nuScenes dataset into the Bird's-Eye View (BEV) domain. This approach allows us to analyze how occlusions spatially distribute and influence vehicle segmentation accuracy within the BEV domain. Despite significant advances in sensor technology and multi-sensor fusion, a gap remains in the existing literature regarding the specific effects of camera occlusions on BEV-based perception systems. To address this gap, we use a multi-sensor fusion technique that integrates LiDAR and radar sensor data to mitigate the performance degradation caused by occluded cameras. Our findings demonstrate that this approach significantly enhances the accuracy and robustness of vehicle segmentation tasks, leading to more reliable autonomous driving systems.
comment: Accepted form publishing at the Electronic Imaging - Autonomous Vehicles and Machines Conference
☆ An Attention-Guided Deep Learning Approach for Classifying 39 Skin Lesion Types
The skin, as the largest organ of the human body, is vulnerable to a diverse array of conditions collectively known as skin lesions, which encompass various dermatoses. Diagnosing these lesions presents significant challenges for medical practitioners due to the subtle visual differences that are often imperceptible to the naked eye. While not all skin lesions are life-threatening, certain types can act as early indicators of severe diseases, including skin cancers, underscoring the critical need for timely and accurate diagnostic methods. Deep learning algorithms have demonstrated remarkable potential in facilitating the early detection and prognosis of skin lesions. This study advances the field by curating a comprehensive and diverse dataset comprising 39 categories of skin lesions, synthesized from five publicly available datasets. Using this dataset, the performance of five state-of-the-art deep learning models -- MobileNetV2, Xception, InceptionV3, EfficientNetB1, and Vision Transformer - is rigorously evaluated. To enhance the accuracy and robustness of these models, attention mechanisms such as the Efficient Channel Attention (ECA) and the Convolutional Block Attention Module (CBAM) are incorporated into their architectures. Comprehensive evaluation across multiple performance metrics reveals that the Vision Transformer model integrated with CBAM outperforms others, achieving an accuracy of 93.46%, precision of 94%, recall of 93%, F1-score of 93%, and specificity of 93.67%. These results underscore the significant potential of the proposed system in supporting medical professionals with accurate and efficient prognostic tools for diagnosing a broad spectrum of skin lesions. The dataset and code used in this study can be found at https://github.com/akabircs/Skin-Lesions-Classification.
comment: 26 pages
☆ Swin-X2S: Reconstructing 3D Shape from 2D Biplanar X-ray with Swin Transformers
The conversion from 2D X-ray to 3D shape holds significant potential for improving diagnostic efficiency and safety. However, existing reconstruction methods often rely on hand-crafted features, manual intervention, and prior knowledge, resulting in unstable shape errors and additional processing costs. In this paper, we introduce Swin-X2S, an end-to-end deep learning method for directly reconstructing 3D segmentation and labeling from 2D biplanar orthogonal X-ray images. Swin-X2S employs an encoder-decoder architecture: the encoder leverages 2D Swin Transformer for X-ray information extraction, while the decoder employs 3D convolution with cross-attention to integrate structural features from orthogonal views. A dimension-expanding module is introduced to bridge the encoder and decoder, ensuring a smooth conversion from 2D pixels to 3D voxels. We evaluate proposed method through extensive qualitative and quantitative experiments across nine publicly available datasets covering four anatomies (femur, hip, spine, and rib), with a total of 54 categories. Significant improvements over previous methods have been observed not only in the segmentation and labeling metrics but also in the clinically relevant parameters that are of primary concern in practical applications, which demonstrates the promise of Swin-X2S to provide an effective option for anatomical shape reconstruction in clinical scenarios. Code implementation is available at: \url{https://github.com/liukuan5625/Swin-X2S}.
☆ Scalable Vision Language Model Training via High Quality Data Curation
In this paper, we introduce SAIL-VL (ScAlable Vision Language Model TraIning via High QuaLity Data Curation), an open-source vision language model (VLM) of state-of-the-art (SOTA) performance with 2B parameters. We introduce three key improvements that contribute to SAIL-VL's leading performance: (1) Scalable high-quality visual understanding data construction: We implement a visual understanding data construction pipeline, which enables hundred-million-scale high-quality recaption data annotation. Equipped with this pipeline, we curate SAIL-Caption, a large-scale caption dataset with large quantity and the highest data quality compared with opensource caption datasets. (2) Scalable Pretraining with High-Quality Visual Understanding Data: We scale SAIL-VL's pretraining budget up to 131B tokens and show that even a 2B VLM benefits from scaled up training data sizes, exhibiting expected data size scaling laws in visual understanding and instruction following performance. (3) Scalable SFT via quantity and quality scaling: We introduce general guidance for instruction data curation to scale up instruction data continuously, allowing us to construct a large SFT dataset with the highest quality. To further improve SAIL-VL's performance, we propose quality scaling, a multi-stage training recipe with curriculum learning, to improve model performance scaling curves w.r.t. data sizes from logarithmic to be near-linear. SAIL-VL obtains the highest average score in 19 commonly used benchmarks in our evaluation and achieves top1 performance among VLMs of comparable sizes on OpenCompass (https://rank.opencompass.org.cn/leaderboard-multimodal). We release our SAIL-VL-2B model at HuggingFace (https://huggingface.co/BytedanceDouyinContent/SAIL-VL-2B).
☆ Reusable specimen-level inference in computational pathology
Foundation models for computational pathology have shown great promise for specimen-level tasks and are increasingly accessible to researchers. However, specimen-level models built on these foundation models remain largely unavailable, hindering their broader utility and impact. To address this gap, we developed SpinPath, a toolkit designed to democratize specimen-level deep learning by providing a zoo of pretrained specimen-level models, a Python-based inference engine, and a JavaScript-based inference platform. We demonstrate the utility of SpinPath in metastasis detection tasks across nine foundation models. SpinPath may foster reproducibility, simplify experimentation, and accelerate the adoption of specimen-level deep learning in computational pathology research.
☆ A Multimodal Dataset for Enhancing Industrial Task Monitoring and Engagement Prediction
Detecting and interpreting operator actions, engagement, and object interactions in dynamic industrial workflows remains a significant challenge in human-robot collaboration research, especially within complex, real-world environments. Traditional unimodal methods often fall short of capturing the intricacies of these unstructured industrial settings. To address this gap, we present a novel Multimodal Industrial Activity Monitoring (MIAM) dataset that captures realistic assembly and disassembly tasks, facilitating the evaluation of key meta-tasks such as action localization, object interaction, and engagement prediction. The dataset comprises multi-view RGB, depth, and Inertial Measurement Unit (IMU) data collected from 22 sessions, amounting to 290 minutes of untrimmed video, annotated in detail for task performance and operator behavior. Its distinctiveness lies in the integration of multiple data modalities and its emphasis on real-world, untrimmed industrial workflows-key for advancing research in human-robot collaboration and operator monitoring. Additionally, we propose a multimodal network that fuses RGB frames, IMU data, and skeleton sequences to predict engagement levels during industrial tasks. Our approach improves the accuracy of recognizing engagement states, providing a robust solution for monitoring operator performance in dynamic industrial environments. The dataset and code can be accessed from https://github.com/navalkishoremehta95/MIAM/.
comment: Accepted at the 20th International Conference on Human-Robot Interaction (HRI) 2025
☆ Weakly Supervised Segmentation of Hyper-Reflective Foci with Compact Convolutional Transformers and SAM2
Weakly supervised segmentation has the potential to greatly reduce the annotation effort for training segmentation models for small structures such as hyper-reflective foci (HRF) in optical coherence tomography (OCT). However, most weakly supervised methods either involve a strong downsampling of input images, or only achieve localization at a coarse resolution, both of which are unsatisfactory for small structures. We propose a novel framework that increases the spatial resolution of a traditional attention-based Multiple Instance Learning (MIL) approach by using Layer-wise Relevance Propagation (LRP) to prompt the Segment Anything Model (SAM~2), and increases recall with iterative inference. Moreover, we demonstrate that replacing MIL with a Compact Convolutional Transformer (CCT), which adds a positional encoding, and permits an exchange of information between different regions of the OCT image, leads to a further and substantial increase in segmentation accuracy.
comment: 7 pages, 1 figure, accepted at German Conference on Medical Image Computing 2025
☆ Binary Event-Driven Spiking Transformer
Transformer-based Spiking Neural Networks (SNNs) introduce a novel event-driven self-attention paradigm that combines the high performance of Transformers with the energy efficiency of SNNs. However, the larger model size and increased computational demands of the Transformer structure limit their practicality in resource-constrained scenarios. In this paper, we integrate binarization techniques into Transformer-based SNNs and propose the Binary Event-Driven Spiking Transformer, i.e. BESTformer. The proposed BESTformer can significantly reduce storage and computational demands by representing weights and attention maps with a mere 1-bit. However, BESTformer suffers from a severe performance drop from its full-precision counterpart due to the limited representation capability of binarization. To address this issue, we propose a Coupled Information Enhancement (CIE) method, which consists of a reversible framework and information enhancement distillation. By maximizing the mutual information between the binary model and its full-precision counterpart, the CIE method effectively mitigates the performance degradation of the BESTformer. Extensive experiments on static and neuromorphic datasets demonstrate that our method achieves superior performance to other binary SNNs, showcasing its potential as a compact yet high-performance model for resource-limited edge devices.
comment: 11 pages, 5 figures
☆ Valley2: Exploring Multimodal Models with Scalable Vision-Language Design
Recently, vision-language models have made remarkable progress, demonstrating outstanding capabilities in various tasks such as image captioning and video understanding. We introduce Valley2, a novel multimodal large language model designed to enhance performance across all domains and extend the boundaries of practical applications in e-commerce and short video scenarios. Notably, Valley2 achieves state-of-the-art (SOTA) performance on e-commerce benchmarks, surpassing open-source models of similar size by a large margin (79.66 vs. 72.76). Additionally, Valley2 ranks second on the OpenCompass leaderboard among models with fewer than 10B parameters, with an impressive average score of 67.4. The code and model weights are open-sourced at https://github.com/bytedance/Valley.
☆ Beyond Flat Text: Dual Self-inherited Guidance for Visual Text Generation
In real-world images, slanted or curved texts, especially those on cans, banners, or badges, appear as frequently, if not more so, than flat texts due to artistic design or layout constraints. While high-quality visual text generation has become available with the advanced generative capabilities of diffusion models, these models often produce distorted text and inharmonious text background when given slanted or curved text layouts due to training data limitation. In this paper, we introduce a new training-free framework, STGen, which accurately generates visual texts in challenging scenarios (\eg, slanted or curved text layouts) while harmonizing them with the text background. Our framework decomposes the visual text generation process into two branches: (i) \textbf{Semantic Rectification Branch}, which leverages the ability in generating flat but accurate visual texts of the model to guide the generation of challenging scenarios. The generated latent of flat text is abundant in accurate semantic information related both to the text itself and its background. By incorporating this, we rectify the semantic information of the texts and harmonize the integration of the text with its background in complex layouts. (ii) \textbf{Structure Injection Branch}, which reinforces the visual text structure during inference. We incorporate the latent information of the glyph image, rich in glyph structure, as a new condition to further strengthen the text structure. To enhance image harmony, we also apply an effective combination method to merge the priors, providing a solid foundation for generation. Extensive experiments across a variety of visual text layouts demonstrate that our framework achieves superior accuracy and outstanding quality.
☆ EDNet: Edge-Optimized Small Target Detection in UAV Imagery -- Faster Context Attention, Better Feature Fusion, and Hardware Acceleration
Detecting small targets in drone imagery is challenging due to low resolution, complex backgrounds, and dynamic scenes. We propose EDNet, a novel edge-target detection framework built on an enhanced YOLOv10 architecture, optimized for real-time applications without post-processing. EDNet incorporates an XSmall detection head and a Cross Concat strategy to improve feature fusion and multi-scale context awareness for detecting tiny targets in diverse environments. Our unique C2f-FCA block employs Faster Context Attention to enhance feature extraction while reducing computational complexity. The WIoU loss function is employed for improved bounding box regression. With seven model sizes ranging from Tiny to XL, EDNet accommodates various deployment environments, enabling local real-time inference and ensuring data privacy. Notably, EDNet achieves up to a 5.6% gain in mAP@50 with significantly fewer parameters. On an iPhone 12, EDNet variants operate at speeds ranging from 16 to 55 FPS, providing a scalable and efficient solution for edge-based object detection in challenging drone imagery. The source code and pre-trained models are available at: https://github.com/zsniko/EDNet.
comment: Accepted in 21st IEEE International Conference on Ubiquitous Intelligence and Computing (UIC 2024) https://www.ieee-smart-world.org/2024/uic
☆ Text-to-Edit: Controllable End-to-End Video Ad Creation via Multimodal LLMs
The exponential growth of short-video content has ignited a surge in the necessity for efficient, automated solutions to video editing, with challenges arising from the need to understand videos and tailor the editing according to user requirements. Addressing this need, we propose an innovative end-to-end foundational framework, ultimately actualizing precise control over the final video content editing. Leveraging the flexibility and generalizability of Multimodal Large Language Models (MLLMs), we defined clear input-output mappings for efficient video creation. To bolster the model's capability in processing and comprehending video content, we introduce a strategic combination of a denser frame rate and a slow-fast processing technique, significantly enhancing the extraction and understanding of both temporal and spatial video information. Furthermore, we introduce a text-to-edit mechanism that allows users to achieve desired video outcomes through textual input, thereby enhancing the quality and controllability of the edited videos. Through comprehensive experimentation, our method has not only showcased significant effectiveness within advertising datasets, but also yields universally applicable conclusions on public datasets.
comment: 16pages conference
☆ TakuNet: an Energy-Efficient CNN for Real-Time Inference on Embedded UAV systems in Emergency Response Scenarios WACV
Designing efficient neural networks for embedded devices is a critical challenge, particularly in applications requiring real-time performance, such as aerial imaging with drones and UAVs for emergency responses. In this work, we introduce TakuNet, a novel light-weight architecture which employs techniques such as depth-wise convolutions and an early downsampling stem to reduce computational complexity while maintaining high accuracy. It leverages dense connections for fast convergence during training and uses 16-bit floating-point precision for optimization on embedded hardware accelerators. Experimental evaluation on two public datasets shows that TakuNet achieves near-state-of-the-art accuracy in classifying aerial images of emergency situations, despite its minimal parameter count. Real-world tests on embedded devices, namely Jetson Orin Nano and Raspberry Pi, confirm TakuNet's efficiency, achieving more than 650 fps on the 15W Jetson board, making it suitable for real-time AI processing on resource-constrained platforms and advancing the applicability of drones in emergency scenarios. The code and implementation details are publicly released.
comment: This paper has been accepted at WACVW 2025, which will take place on 28/02/2025. The official conference proceedings have not yet been published at the time of submission to arXiv. The final version of the paper, incorporating any changes based on feedback received during the conference, will be included in the proceedings once they are made available
☆ VideoRAG: Retrieval-Augmented Generation over Video Corpus
Retrieval-Augmented Generation (RAG) is a powerful strategy to address the issue of generating factually incorrect outputs in foundation models by retrieving external knowledge relevant to queries and incorporating it into their generation process. However, existing RAG approaches have primarily focused on textual information, with some recent advancements beginning to consider images, and they largely overlook videos, a rich source of multimodal knowledge capable of representing events, processes, and contextual details more effectively than any other modality. While a few recent studies explore the integration of videos in the response generation process, they either predefine query-associated videos without retrieving them according to queries, or convert videos into the textual descriptions without harnessing their multimodal richness. To tackle these, we introduce VideoRAG, a novel framework that not only dynamically retrieves relevant videos based on their relevance with queries but also utilizes both visual and textual information of videos in the output generation. Further, to operationalize this, our method revolves around the recent advance of Large Video Language Models (LVLMs), which enable the direct processing of video content to represent it for retrieval and seamless integration of the retrieved videos jointly with queries. We experimentally validate the effectiveness of VideoRAG, showcasing that it is superior to relevant baselines.
☆ Language-Inspired Relation Transfer for Few-shot Class-Incremental Learning
Depicting novel classes with language descriptions by observing few-shot samples is inherent in human-learning systems. This lifelong learning capability helps to distinguish new knowledge from old ones through the increase of open-world learning, namely Few-Shot Class-Incremental Learning (FSCIL). Existing works to solve this problem mainly rely on the careful tuning of visual encoders, which shows an evident trade-off between the base knowledge and incremental ones. Motivated by human learning systems, we propose a new Language-inspired Relation Transfer (LRT) paradigm to understand objects by joint visual clues and text depictions, composed of two major steps. We first transfer the pretrained text knowledge to the visual domains by proposing a graph relation transformation module and then fuse the visual and language embedding by a text-vision prototypical fusion module. Second, to mitigate the domain gap caused by visual finetuning, we propose context prompt learning for fast domain alignment and imagined contrastive learning to alleviate the insufficient text data during alignment. With collaborative learning of domain alignments and text-image transfer, our proposed LRT outperforms the state-of-the-art models by over $13\%$ and $7\%$ on the final session of mini-ImageNet and CIFAR-100 FSCIL benchmarks.
comment: Accepted by IEEE TPAMI
☆ MRI Patterns of the Hippocampus and Amygdala for Predicting Stages of Alzheimer's Progression: A Minimal Feature Machine Learning Framework
Alzheimer's disease (AD) progresses through distinct stages, from early mild cognitive impairment (EMCI) to late mild cognitive impairment (LMCI) and eventually to AD. Accurate identification of these stages, especially distinguishing LMCI from EMCI, is crucial for developing pre-dementia treatments but remains challenging due to subtle and overlapping imaging features. This study proposes a minimal-feature machine learning framework that leverages structural MRI data, focusing on the hippocampus and amygdala as regions of interest. The framework addresses the curse of dimensionality through feature selection, utilizes region-specific voxel information, and implements innovative data organization to enhance classification performance by reducing noise. The methodology integrates dimensionality reduction techniques such as PCA and t-SNE with state-of-the-art classifiers, achieving the highest accuracy of 88.46%. This framework demonstrates the potential for efficient and accurate staging of AD progression while providing valuable insights for clinical applications.
☆ Identity-aware Feature Decoupling Learning for Clothing-change Person Re-identification ICASSP2025
Clothing-change person re-identification (CC Re-ID) has attracted increasing attention in recent years due to its application prospect. Most existing works struggle to adequately extract the ID-related information from the original RGB images. In this paper, we propose an Identity-aware Feature Decoupling (IFD) learning framework to mine identity-related features. Particularly, IFD exploits a dual stream architecture that consists of a main stream and an attention stream. The attention stream takes the clothing-masked images as inputs and derives the identity attention weights for effectively transferring the spatial knowledge to the main stream and highlighting the regions with abundant identity-related information. To eliminate the semantic gap between the inputs of two streams, we propose a clothing bias diminishing module specific to the main stream to regularize the features of clothing-relevant regions. Extensive experimental results demonstrate that our framework outperforms other baseline models on several widely-used CC Re-ID datasets.
comment: Accepted by ICASSP2025
☆ Poetry in Pixels: Prompt Tuning for Poem Image Generation via Diffusion Models
The task of text-to-image generation has encountered significant challenges when applied to literary works, especially poetry. Poems are a distinct form of literature, with meanings that frequently transcend beyond the literal words. To address this shortcoming, we propose a PoemToPixel framework designed to generate images that visually represent the inherent meanings of poems. Our approach incorporates the concept of prompt tuning in our image generation framework to ensure that the resulting images closely align with the poetic content. In addition, we propose the PoeKey algorithm, which extracts three key elements in the form of emotions, visual elements, and themes from poems to form instructions which are subsequently provided to a diffusion model for generating corresponding images. Furthermore, to expand the diversity of the poetry dataset across different genres and ages, we introduce MiniPo, a novel multimodal dataset comprising 1001 children's poems and images. Leveraging this dataset alongside PoemSum, we conducted both quantitative and qualitative evaluations of image generation using our PoemToPixel framework. This paper demonstrates the effectiveness of our approach and offers a fresh perspective on generating images from literary sources.
☆ UltraRay: Full-Path Ray Tracing for Enhancing Realism in Ultrasound Simulation
Traditional ultrasound simulators solve the wave equation to model pressure distribution fields, achieving high accuracy but requiring significant computational time and resources. To address this, ray tracing approaches have been introduced, modeling wave propagation as rays interacting with boundaries and scatterers. However, existing models simplify ray propagation, generating echoes at interaction points without considering return paths to the sensor. This can result in unrealistic artifacts and necessitates careful scene tuning for plausible results. We propose a novel ultrasound simulation pipeline that utilizes a ray tracing algorithm to generate echo data, tracing each ray from the transducer through the scene and back to the sensor. To replicate advanced ultrasound imaging, we introduce a ray emission scheme optimized for plane wave imaging, incorporating delay and steering capabilities. Furthermore, we integrate a standard signal processing pipeline to simulate end-to-end ultrasound image formation. We showcase the efficacy of the proposed pipeline by modeling synthetic scenes featuring highly reflective objects, such as bones. In doing so, our proposed approach, UltraRay, not only enhances the overall visual quality but also improves the realism of the simulated images by accurately capturing secondary reflections and reducing unnatural artifacts. By building on top of a differentiable framework, the proposed pipeline lays the groundwork for a fast and differentiable ultrasound simulation tool necessary for gradient-based optimization, enabling advanced ultrasound beamforming strategies, neural network integration, and accurate inverse scene reconstruction.
☆ AI-Driven Diabetic Retinopathy Screening: Multicentric Validation of AIDRSS in India
Purpose: Diabetic retinopathy (DR) is a major cause of vision loss, particularly in India, where access to retina specialists is limited in rural areas. This study aims to evaluate the Artificial Intelligence-based Diabetic Retinopathy Screening System (AIDRSS) for DR detection and prevalence assessment, addressing the growing need for scalable, automated screening solutions in resource-limited settings. Approach: A multicentric, cross-sectional study was conducted in Kolkata, India, involving 5,029 participants and 10,058 macula-centric retinal fundus images. The AIDRSS employed a deep learning algorithm with 50 million trainable parameters, integrated with Contrast Limited Adaptive Histogram Equalization (CLAHE) preprocessing for enhanced image quality. DR was graded using the International Clinical Diabetic Retinopathy (ICDR) Scale, categorizing disease into five stages (DR0 to DR4). Statistical metrics including sensitivity, specificity, and prevalence rates were evaluated against expert retina specialist assessments. Results: The prevalence of DR in the general population was 13.7%, rising to 38.2% among individuals with elevated random blood glucose levels. The AIDRSS achieved an overall sensitivity of 92%, specificity of 88%, and 100% sensitivity for detecting referable DR (DR3 and DR4). These results demonstrate the system's robust performance in accurately identifying and grading DR in a diverse population. Conclusions: AIDRSS provides a reliable, scalable solution for early DR detection in resource-constrained environments. Its integration of advanced AI techniques ensures high diagnostic accuracy, with potential to significantly reduce the burden of diabetes-related vision loss in underserved regions.
comment: 22 pages, 5 figures. arXiv admin note: substantial text overlap with arXiv:1812.07105 by other authors without attribution
☆ PersonaHOI: Effortlessly Improving Personalized Face with Human-Object Interaction Generation
We introduce PersonaHOI, a training- and tuning-free framework that fuses a general StableDiffusion model with a personalized face diffusion (PFD) model to generate identity-consistent human-object interaction (HOI) images. While existing PFD models have advanced significantly, they often overemphasize facial features at the expense of full-body coherence, PersonaHOI introduces an additional StableDiffusion (SD) branch guided by HOI-oriented text inputs. By incorporating cross-attention constraints in the PFD branch and spatial merging at both latent and residual levels, PersonaHOI preserves personalized facial details while ensuring interactive non-facial regions. Experiments, validated by a novel interaction alignment metric, demonstrate the superior realism and scalability of PersonaHOI, establishing a new standard for practical personalized face with HOI generation. Our code will be available at https://github.com/JoyHuYY1412/PersonaHOI
☆ Alignment without Over-optimization: Training-Free Solution for Diffusion Models
Diffusion models excel in generative tasks, but aligning them with specific objectives while maintaining their versatility remains challenging. Existing fine-tuning methods often suffer from reward over-optimization, while approximate guidance approaches fail to optimize target rewards effectively. Addressing these limitations, we propose a training-free sampling method based on Sequential Monte Carlo (SMC) to sample from the reward-aligned target distribution. Our approach, tailored for diffusion sampling and incorporating tempering techniques, achieves comparable or superior target rewards to fine-tuning methods while preserving diversity and cross-reward generalization. We demonstrate its effectiveness in single-reward optimization, multi-objective scenarios, and online black-box optimization. This work offers a robust solution for aligning diffusion models with diverse downstream objectives without compromising their general capabilities. Code is available at https://github.com/krafton-ai/DAS .
☆ Cryptanalysis of Cancelable Biometrics Vault
Cancelable Biometrics (CB) stands for a range of biometric transformation schemes combining biometrics with user specific tokens to generate secure templates. Required properties are the irreversibility, unlikability and recognition accuracy of templates while making their revocation possible. In biometrics, a key-binding scheme is used for protecting a cryptographic key using a biometric data. The key can be recomputed only if a correct biometric data is acquired during authentication. Applications of key-binding schemes are typically disk encryption, where the cryptographic key is used to encrypt and decrypt the disk. In this paper, we cryptanalyze a recent key-binding scheme, called Cancelable Biometrics Vault (CBV) based on cancelable biometrics. More precisely, the introduced cancelable transformation, called BioEncoding scheme, for instantiating the CBV framework is attacked in terms of reversibility and linkability of templates. Subsequently, our linkability attack enables to recover the key in the vault without additional assumptions. Our cryptanalysis introduces a new perspective by uncovering the CBV scheme's revocability and linkability vulnerabilities, which were not previously identified in comparable biometric-based key-binding schemes.
comment: 17 pages, 4 figures
☆ UV-Attack: Physical-World Adversarial Attacks for Person Detection via Dynamic-NeRF-based UV Mapping ICLR2025
In recent research, adversarial attacks on person detectors using patches or static 3D model-based texture modifications have struggled with low success rates due to the flexible nature of human movement. Modeling the 3D deformations caused by various actions has been a major challenge. Fortunately, advancements in Neural Radiance Fields (NeRF) for dynamic human modeling offer new possibilities. In this paper, we introduce UV-Attack, a groundbreaking approach that achieves high success rates even with extensive and unseen human actions. We address the challenge above by leveraging dynamic-NeRF-based UV mapping. UV-Attack can generate human images across diverse actions and viewpoints, and even create novel actions by sampling from the SMPL parameter space. While dynamic NeRF models are capable of modeling human bodies, modifying clothing textures is challenging because they are embedded in neural network parameters. To tackle this, UV-Attack generates UV maps instead of RGB images and modifies the texture stacks. This approach enables real-time texture edits and makes the attack more practical. We also propose a novel Expectation over Pose Transformation loss (EoPT) to improve the evasion success rate on unseen poses and views. Our experiments show that UV-Attack achieves a 92.75% attack success rate against the FastRCNN model across varied poses in dynamic video settings, significantly outperforming the state-of-the-art AdvCamou attack, which only had a 28.50% ASR. Moreover, we achieve 49.5% ASR on the latest YOLOv8 detector in black-box settings. This work highlights the potential of dynamic NeRF-based UV mapping for creating more effective adversarial attacks on person detectors, addressing key challenges in modeling human movement and texture modification.
comment: 23 pages, 22 figures, submitted to ICLR2025
☆ StructSR: Refuse Spurious Details in Real-World Image Super-Resolution
Diffusion-based models have shown great promise in real-world image super-resolution (Real-ISR), but often generate content with structural errors and spurious texture details due to the empirical priors and illusions of these models. To address this issue, we introduce StructSR, a simple, effective, and plug-and-play method that enhances structural fidelity and suppresses spurious details for diffusion-based Real-ISR. StructSR operates without the need for additional fine-tuning, external model priors, or high-level semantic knowledge. At its core is the Structure-Aware Screening (SAS) mechanism, which identifies the image with the highest structural similarity to the low-resolution (LR) input in the early inference stage, allowing us to leverage it as a historical structure knowledge to suppress the generation of spurious details. By intervening in the diffusion inference process, StructSR seamlessly integrates with existing diffusion-based Real-ISR models. Our experimental results demonstrate that StructSR significantly improves the fidelity of structure and texture, improving the PSNR and SSIM metrics by an average of 5.27% and 9.36% on a synthetic dataset (DIV2K-Val) and 4.13% and 8.64% on two real-world datasets (RealSR and DRealSR) when integrated with four state-of-the-art diffusion-based Real-ISR methods.
☆ Conditional Diffusion Model for Electrical Impedance Tomography
Electrical impedance tomography (EIT) is a non-invasive imaging technique, which has been widely used in the fields of industrial inspection, medical monitoring and tactile sensing. However, due to the inherent non-linearity and ill-conditioned nature of the EIT inverse problem, the reconstructed image is highly sensitive to the measured data, and random noise artifacts often appear in the reconstructed image, which greatly limits the application of EIT. To address this issue, a conditional diffusion model with voltage consistency (CDMVC) is proposed in this study. The method consists of a pre-imaging module, a conditional diffusion model for reconstruction, a forward voltage constraint network and a scheme of voltage consistency constraint during sampling process. The pre-imaging module is employed to generate the initial reconstruction. This serves as a condition for training the conditional diffusion model. Finally, based on the forward voltage constraint network, a voltage consistency constraint is implemented in the sampling phase to incorporate forward information of EIT, thereby enhancing imaging quality. A more complete dataset, including both common and complex concave shapes, is generated. The proposed method is validated using both simulation and physical experiments. Experimental results demonstrate that our method can significantly improves the quality of reconstructed images. In addition, experimental results also demonstrate that our method has good robustness and generalization performance.
☆ Migician: Revealing the Magic of Free-Form Multi-Image Grounding in Multimodal Large Language Models
The recent advancement of Multimodal Large Language Models (MLLMs) has significantly improved their fine-grained perception of single images and general comprehension across multiple images. However, existing MLLMs still face challenges in achieving precise grounding in complex multi-image scenarios. To address this, we first explore a Chain-of-Thought (CoT) framework that integrates single-image grounding with multi-image comprehension. While partially effective, it remains unstable and struggles to capture abstract visual information due to its non-end-to-end nature. Therefore, we introduce Migician, the first multi-image grounding model capable of performing free-form and accurate grounding across multiple images. To support this, we present the MGrounding-630k dataset, which comprises data for several multi-image grounding tasks derived from existing datasets, along with newly generated free-form grounding instruction-following data. Furthermore, we propose MIG-Bench, a comprehensive benchmark specifically designed for evaluating multi-image grounding capabilities. Experimental results demonstrate that our model achieves significantly superior multi-image grounding capabilities, outperforming the best existing MLLMs by 21.61% and even surpassing much larger 70B models. Our code, model, dataset, and benchmark are fully open-sourced.
comment: 20 pages, 8 figures
☆ StarGen: A Spatiotemporal Autoregression Framework with Video Diffusion Model for Scalable and Controllable Scene Generation
Recent advances in large reconstruction and generative models have significantly improved scene reconstruction and novel view generation. However, due to compute limitations, each inference with these large models is confined to a small area, making long-range consistent scene generation challenging. To address this, we propose StarGen, a novel framework that employs a pre-trained video diffusion model in an autoregressive manner for long-range scene generation. The generation of each video clip is conditioned on the 3D warping of spatially adjacent images and the temporally overlapping image from previously generated clips, improving spatiotemporal consistency in long-range scene generation with precise pose control. The spatiotemporal condition is compatible with various input conditions, facilitating diverse tasks, including sparse view interpolation, perpetual view generation, and layout-conditioned city generation. Quantitative and qualitative evaluations demonstrate StarGen's superior scalability, fidelity, and pose accuracy compared to state-of-the-art methods.
☆ Locality-aware Gaussian Compression for Fast and High-quality Rendering
We present LocoGS, a locality-aware 3D Gaussian Splatting (3DGS) framework that exploits the spatial coherence of 3D Gaussians for compact modeling of volumetric scenes. To this end, we first analyze the local coherence of 3D Gaussian attributes, and propose a novel locality-aware 3D Gaussian representation that effectively encodes locally-coherent Gaussian attributes using a neural field representation with a minimal storage requirement. On top of the novel representation, LocoGS is carefully designed with additional components such as dense initialization, an adaptive spherical harmonics bandwidth scheme and different encoding schemes for different Gaussian attributes to maximize compression performance. Experimental results demonstrate that our approach outperforms the rendering quality of existing compact Gaussian representations for representative real-world 3D datasets while achieving from 54.6$\times$ to 96.6$\times$ compressed storage size and from 2.1$\times$ to 2.4$\times$ rendering speed than 3DGS. Even our approach also demonstrates an averaged 2.4$\times$ higher rendering speed than the state-of-the-art compression method with comparable compression performance.
comment: 28 pages, 15 figures, and 14 tables
☆ Semantic Mapping in Indoor Embodied AI -- A Comprehensive Survey and Future Directions
Intelligent embodied agents (e.g. robots) need to perform complex semantic tasks in unfamiliar environments. Among many skills that the agents need to possess, building and maintaining a semantic map of the environment is most crucial in long-horizon tasks. A semantic map captures information about the environment in a structured way, allowing the agent to reference it for advanced reasoning throughout the task. While existing surveys in embodied AI focus on general advancements or specific tasks like navigation and manipulation, this paper provides a comprehensive review of semantic map-building approaches in embodied AI, specifically for indoor navigation. We categorize these approaches based on their structural representation (spatial grids, topological graphs, dense point-clouds or hybrid maps) and the type of information they encode (implicit features or explicit environmental data). We also explore the strengths and limitations of the map building techniques, highlight current challenges, and propose future research directions. We identify that the field is moving towards developing open-vocabulary, queryable, task-agnostic map representations, while high memory demands and computational inefficiency still remaining to be open challenges. This survey aims to guide current and future researchers in advancing semantic mapping techniques for embodied AI systems.
☆ LLVD: LSTM-based Explicit Motion Modeling in Latent Space for Blind Video Denoising
Video restoration plays a pivotal role in revitalizing degraded video content by rectifying imperfections caused by various degradations introduced during capturing (sensor noise, motion blur, etc.), saving/sharing (compression, resizing, etc.) and editing. This paper introduces a novel algorithm designed for scenarios where noise is introduced during video capture, aiming to enhance the visual quality of videos by reducing unwanted noise artifacts. We propose the Latent space LSTM Video Denoiser (LLVD), an end-to-end blind denoising model. LLVD uniquely combines spatial and temporal feature extraction, employing Long Short Term Memory (LSTM) within the encoded feature domain. This integration of LSTM layers is crucial for maintaining continuity and minimizing flicker in the restored video. Moreover, processing frames in the encoded feature domain significantly reduces computations, resulting in a very lightweight architecture. LLVD's blind nature makes it versatile for real, in-the-wild denoising scenarios where prior information about noise characteristics is not available. Experiments reveal that LLVD demonstrates excellent performance for both synthetic and captured noise. Specifically, LLVD surpasses the current State-Of-The-Art (SOTA) in RAW denoising by 0.3dB, while also achieving a 59\% reduction in computational complexity.
☆ TB-Bench: Training and Testing Multi-Modal AI for Understanding Spatio-Temporal Traffic Behaviors from Dashcam Images/Videos
The application of Multi-modal Large Language Models (MLLMs) in Autonomous Driving (AD) faces significant challenges due to their limited training on traffic-specific data and the absence of dedicated benchmarks for spatiotemporal understanding. This study addresses these issues by proposing TB-Bench, a comprehensive benchmark designed to evaluate MLLMs on understanding traffic behaviors across eight perception tasks from ego-centric views. We also introduce vision-language instruction tuning datasets, TB-100k and TB-250k, along with simple yet effective baselines for the tasks. Through extensive experiments, we show that existing MLLMs underperform in these tasks, with even a powerful model like GPT-4o achieving less than 35% accuracy on average. In contrast, when fine-tuned with TB-100k or TB-250k, our baseline models achieve average accuracy up to 85%, significantly enhancing performance on the tasks. Additionally, we demonstrate performance transfer by co-training TB-100k with another traffic dataset, leading to improved performance on the latter. Overall, this study represents a step forward by introducing a comprehensive benchmark, high-quality datasets, and baselines, thus supporting the gradual integration of MLLMs into the perception, prediction, and planning stages of AD.
comment: Main Paper: 8 pages, Supplementary Materials: 15 pages
☆ Super-class guided Transformer for Zero-Shot Attribute Classification AAAI25
Attribute classification is crucial for identifying specific characteristics within image regions. Vision-Language Models (VLMs) have been effective in zero-shot tasks by leveraging their general knowledge from large-scale datasets. Recent studies demonstrate that transformer-based models with class-wise queries can effectively address zero-shot multi-label classification. However, poor utilization of the relationship between seen and unseen attributes makes the model lack generalizability. Additionally, attribute classification generally involves many attributes, making maintaining the model's scalability difficult. To address these issues, we propose Super-class guided transFormer (SugaFormer), a novel framework that leverages super-classes to enhance scalability and generalizability for zero-shot attribute classification. SugaFormer employs Super-class Query Initialization (SQI) to reduce the number of queries, utilizing common semantic information from super-classes, and incorporates Multi-context Decoding (MD) to handle diverse visual cues. To strengthen generalizability, we introduce two knowledge transfer strategies that utilize VLMs. During training, Super-class guided Consistency Regularization (SCR) aligns SugaFormer's features with VLMs using region-specific prompts, and during inference, Zero-shot Retrieval-based Score Enhancement (ZRSE) refines predictions for unseen attributes. Extensive experiments demonstrate that SugaFormer achieves state-of-the-art performance across three widely-used attribute classification benchmarks under zero-shot, and cross-dataset transfer settings. Our code is available at https://github.com/mlvlab/SugaFormer.
comment: AAAI25
☆ Zero-shot Shark Tracking and Biometrics from Aerial Imagery
The recent widespread adoption of drones for studying marine animals provides opportunities for deriving biological information from aerial imagery. The large scale of imagery data acquired from drones is well suited for machine learning (ML) analysis. Development of ML models for analyzing marine animal aerial imagery has followed the classical paradigm of training, testing, and deploying a new model for each dataset, requiring significant time, human effort, and ML expertise. We introduce Frame Level ALIgment and tRacking (FLAIR), which leverages the video understanding of Segment Anything Model 2 (SAM2) and the vision-language capabilities of Contrastive Language-Image Pre-training (CLIP). FLAIR takes a drone video as input and outputs segmentation masks of the species of interest across the video. Notably, FLAIR leverages a zero-shot approach, eliminating the need for labeled data, training a new model, or fine-tuning an existing model to generalize to other species. With a dataset of 18,000 drone images of Pacific nurse sharks, we trained state-of-the-art object detection models to compare against FLAIR. We show that FLAIR massively outperforms these object detectors and performs competitively against two human-in-the-loop methods for prompting SAM2, achieving a Dice score of 0.81. FLAIR readily generalizes to other shark species without additional human effort and can be combined with novel heuristics to automatically extract relevant information including length and tailbeat frequency. FLAIR has significant potential to accelerate aerial imagery analysis workflows, requiring markedly less human effort and expertise than traditional machine learning workflows, while achieving superior accuracy. By reducing the effort required for aerial imagery analysis, FLAIR allows scientists to spend more time interpreting results and deriving insights about marine ecosystems.
☆ From My View to Yours: Ego-Augmented Learning in Large Vision Language Models for Understanding Exocentric Daily Living Activities
Large Vision Language Models (LVLMs) have demonstrated impressive capabilities in video understanding, yet their adoption for Activities of Daily Living (ADL) remains limited by their inability to capture fine-grained interactions and spatial relationships. This limitation is particularly evident in ADL tasks, where understanding detailed human-object interaction and human-centric motion is crucial for applications such as elderly monitoring and cognitive assessment. To address this, we aim to leverage the complementary nature of egocentric views to enhance LVLM's understanding of exocentric ADL videos. Consequently, we propose an online ego2exo distillation approach to learn ego-augmented exo representations in LVLMs. While effective, this approach requires paired ego-exo training data, which is impractical to collect for real-world ADL scenarios. Consequently, we develop EgoMimic, a skeleton-guided method that can generate mimicked ego views from exocentric videos. We find that the exo representations of our ego-augmented LVLMs successfully learn to extract ego-perspective cues, demonstrated through comprehensive evaluation on six ADL benchmarks and our proposed EgoPerceptionMCQ benchmark designed specifically to assess egocentric understanding from exocentric videos. Code, models, and data will be open-sourced at https://github.com/dominickrei/EgoExo4ADL.
☆ EmotiCrafter: Text-to-Emotional-Image Generation based on Valence-Arousal Model
Recent research shows that emotions can enhance users' cognition and influence information communication. While research on visual emotion analysis is extensive, limited work has been done on helping users generate emotionally rich image content. Existing work on emotional image generation relies on discrete emotion categories, making it challenging to capture complex and subtle emotional nuances accurately. Additionally, these methods struggle to control the specific content of generated images based on text prompts. In this work, we introduce the new task of continuous emotional image content generation (C-EICG) and present EmotiCrafter, an emotional image generation model that generates images based on text prompts and Valence-Arousal values. Specifically, we propose a novel emotion-embedding mapping network that embeds Valence-Arousal values into textual features, enabling the capture of specific emotions in alignment with intended input prompts. Additionally, we introduce a loss function to enhance emotion expression. The experimental results show that our method effectively generates images representing specific emotions with the desired content and outperforms existing techniques.
comment: 11 pages, 8 figures
☆ Overcoming Language Priors for Visual Question Answering Based on Knowledge Distillation ICME2024
Previous studies have pointed out that visual question answering (VQA) models are prone to relying on language priors for answer predictions. In this context, predictions often depend on linguistic shortcuts rather than a comprehensive grasp of multimodal knowledge, which diminishes their generalization ability. In this paper, we propose a novel method, namely, KDAR, leveraging knowledge distillation to address the prior-dependency dilemmas within the VQA task. Specifically, the regularization effect facilitated by soft labels from a well-trained teacher is employed to penalize overfitting to the most common answers. The soft labels, which serve a regularization role, also provide semantic guidance that narrows the range of candidate answers. Additionally, we design an adaptive sample-wise reweighting learning strategy to further mitigate bias by dynamically adjusting the importance of each sample. Experimental results demonstrate that our method enhances performance in both OOD and IID settings. Our method achieves state-of-the-art performance on the VQA-CPv2 out-of-distribution (OOD) benchmark, significantly outperforming previous state-of-the-art approaches.
comment: Accepted to ICME2024
☆ eKalibr: Dynamic Intrinsic Calibration for Event Cameras From First Principles of Events
The bio-inspired event camera has garnered extensive research attention in recent years, owing to its significant potential derived from its high dynamic range and low latency characteristics. Similar to the standard camera, the event camera requires precise intrinsic calibration to facilitate further high-level visual applications, such as pose estimation and mapping. While several calibration methods for event cameras have been proposed, most of them are either (i) engineering-driven, heavily relying on conventional image-based calibration pipelines, or (ii) inconvenient, requiring complex instrumentation. To this end, we propose an accurate and convenient intrinsic calibration method for event cameras, named eKalibr, which builds upon a carefully designed event-based circle grid pattern recognition algorithm. To extract target patterns from events, we perform event-based normal flow estimation to identify potential events generated by circle edges, and cluster them spatially. Subsequently, event clusters associated with the same grid circles are matched and grouped using normal flows, for subsequent time-varying ellipse estimation. Fitted ellipse centers are time-synchronized, for final grid pattern recognition. We conducted extensive experiments to evaluate the performance of eKalibr in terms of pattern extraction and intrinsic calibration. The implementation of eKalibr is open-sourced at (https://github.com/Unsigned-Long/eKalibr) to benefit the research community.
☆ UniQ: Unified Decoder with Task-specific Queries for Efficient Scene Graph Generation
Scene Graph Generation(SGG) is a scene understanding task that aims at identifying object entities and reasoning their relationships within a given image. In contrast to prevailing two-stage methods based on a large object detector (e.g., Faster R-CNN), one-stage methods integrate a fixed-size set of learnable queries to jointly reason relational triplets . This paradigm demonstrates robust performance with significantly reduced parameters and computational overhead. However, the challenge in one-stage methods stems from the issue of weak entanglement, wherein entities involved in relationships require both coupled features shared within triplets and decoupled visual features. Previous methods either adopt a single decoder for coupled triplet feature modeling or multiple decoders for separate visual feature extraction but fail to consider both. In this paper, we introduce UniQ, a Unified decoder with task-specific Queries architecture, where task-specific queries generate decoupled visual features for subjects, objects, and predicates respectively, and unified decoder enables coupled feature modeling within relational triplets. Experimental results on the Visual Genome dataset demonstrate that UniQ has superior performance to both one-stage and two-stage methods.
comment: 10 pages, 5 figures
☆ Deep Reversible Consistency Learning for Cross-modal Retrieval
Cross-modal retrieval (CMR) typically involves learning common representations to directly measure similarities between multimodal samples. Most existing CMR methods commonly assume multimodal samples in pairs and employ joint training to learn common representations, limiting the flexibility of CMR. Although some methods adopt independent training strategies for each modality to improve flexibility in CMR, they utilize the randomly initialized orthogonal matrices to guide representation learning, which is suboptimal since they assume inter-class samples are independent of each other, limiting the potential of semantic alignments between sample representations and ground-truth labels. To address these issues, we propose a novel method termed Deep Reversible Consistency Learning (DRCL) for cross-modal retrieval. DRCL includes two core modules, \ie Selective Prior Learning (SPL) and Reversible Semantic Consistency learning (RSC). More specifically, SPL first learns a transformation weight matrix on each modality and selects the best one based on the quality score as the Prior, which greatly avoids blind selection of priors learned from low-quality modalities. Then, RSC employs a Modality-invariant Representation Recasting mechanism (MRR) to recast the potential modality-invariant representations from sample semantic labels by the generalized inverse matrix of the prior. Since labels are devoid of modal-specific information, we utilize the recast features to guide the representation learning, thus maintaining semantic consistency to the fullest extent possible. In addition, a feature augmentation mechanism (FA) is introduced in RSC to encourage the model to learn over a wider data distribution for diversity. Finally, extensive experiments conducted on five widely used datasets and comparisons with 15 state-of-the-art baselines demonstrate the effectiveness and superiority of our DRCL.
☆ LPRnet: A self-supervised registration network for LiDAR and photogrammetric point clouds
LiDAR and photogrammetry are active and passive remote sensing techniques for point cloud acquisition, respectively, offering complementary advantages and heterogeneous. Due to the fundamental differences in sensing mechanisms, spatial distributions and coordinate systems, their point clouds exhibit significant discrepancies in density, precision, noise, and overlap. Coupled with the lack of ground truth for large-scale scenes, integrating the heterogeneous point clouds is a highly challenging task. This paper proposes a self-supervised registration network based on a masked autoencoder, focusing on heterogeneous LiDAR and photogrammetric point clouds. At its core, the method introduces a multi-scale masked training strategy to extract robust features from heterogeneous point clouds under self-supervision. To further enhance registration performance, a rotation-translation embedding module is designed to effectively capture the key features essential for accurate rigid transformations. Building upon the robust representations, a transformer-based architecture seamlessly integrates local and global features, fostering precise alignment across diverse point cloud datasets. The proposed method demonstrates strong feature extraction capabilities for both LiDAR and photogrammetric point clouds, addressing the challenges of acquiring ground truth at the scene level. Experiments conducted on two real-world datasets validate the effectiveness of the proposed method in solving heterogeneous point cloud registration problems.
comment: 12 pages, 9 figures, 5 tables
☆ HFMF: Hierarchical Fusion Meets Multi-Stream Models for Deepfake Detection WACV 2025
The rapid progress in deep generative models has led to the creation of incredibly realistic synthetic images that are becoming increasingly difficult to distinguish from real-world data. The widespread use of Variational Models, Diffusion Models, and Generative Adversarial Networks has made it easier to generate convincing fake images and videos, which poses significant challenges for detecting and mitigating the spread of misinformation. As a result, developing effective methods for detecting AI-generated fakes has become a pressing concern. In our research, we propose HFMF, a comprehensive two-stage deepfake detection framework that leverages both hierarchical cross-modal feature fusion and multi-stream feature extraction to enhance detection performance against imagery produced by state-of-the-art generative AI models. The first component of our approach integrates vision Transformers and convolutional nets through a hierarchical feature fusion mechanism. The second component of our framework combines object-level information and a fine-tuned convolutional net model. We then fuse the outputs from both components via an ensemble deep neural net, enabling robust classification performances. We demonstrate that our architecture achieves superior performance across diverse dataset benchmarks while maintaining calibration and interoperability.
comment: This work is accepted to WACV 2025 Workshop on AI for Multimedia Forensics & Disinformation Detection. Code is available at: https://github.com/taco-group/HFMF
♻ ☆ Decentralized Diffusion Models
Large-scale AI model training divides work across thousands of GPUs, then synchronizes gradients across them at each step. This incurs a significant network burden that only centralized, monolithic clusters can support, driving up infrastructure costs and straining power systems. We propose Decentralized Diffusion Models, a scalable framework for distributing diffusion model training across independent clusters or datacenters by eliminating the dependence on a centralized, high-bandwidth networking fabric. Our method trains a set of expert diffusion models over partitions of the dataset, each in full isolation from one another. At inference time, the experts ensemble through a lightweight router. We show that the ensemble collectively optimizes the same objective as a single model trained over the whole dataset. This means we can divide the training burden among a number of "compute islands," lowering infrastructure costs and improving resilience to localized GPU failures. Decentralized diffusion models empower researchers to take advantage of smaller, more cost-effective and more readily available compute like on-demand GPU nodes rather than central integrated systems. We conduct extensive experiments on ImageNet and LAION Aesthetics, showing that decentralized diffusion models FLOP-for-FLOP outperform standard diffusion models. We finally scale our approach to 24 billion parameters, demonstrating that high-quality diffusion models can now be trained with just eight individual GPU nodes in less than a week.
comment: Project webpage: https://decentralizeddiffusion.github.io/
♻ ☆ Guess What I Think: Streamlined EEG-to-Image Generation with Latent Diffusion Models ICASSP 2025
Generating images from brain waves is gaining increasing attention due to its potential to advance brain-computer interface (BCI) systems by understanding how brain signals encode visual cues. Most of the literature has focused on fMRI-to-Image tasks as fMRI is characterized by high spatial resolution. However, fMRI is an expensive neuroimaging modality and does not allow for real-time BCI. On the other hand, electroencephalography (EEG) is a low-cost, non-invasive, and portable neuroimaging technique, making it an attractive option for future real-time applications. Nevertheless, EEG presents inherent challenges due to its low spatial resolution and susceptibility to noise and artifacts, which makes generating images from EEG more difficult. In this paper, we address these problems with a streamlined framework based on the ControlNet adapter for conditioning a latent diffusion model (LDM) through EEG signals. We conduct experiments and ablation studies on popular benchmarks to demonstrate that the proposed method beats other state-of-the-art models. Unlike these methods, which often require extensive preprocessing, pretraining, different losses, and captioning models, our approach is efficient and straightforward, requiring only minimal preprocessing and a few components. The code is available at https://github.com/LuigiSigillo/GWIT.
comment: Accepted at ICASSP 2025
♻ ☆ Two Stage Segmentation of Cervical Tumors using PocketNet
Cervical cancer remains the fourth most common malignancy amongst women worldwide.1 Concurrent chemoradiotherapy (CRT) serves as the mainstay definitive treatment regimen for locally advanced cervical cancers and includes external beam radiation followed by brachytherapy.2 Integral to radiotherapy treatment planning is the routine contouring of both the target tumor at the level of the cervix, associated gynecologic anatomy and the adjacent organs at risk (OARs). However, manual contouring of these structures is both time and labor intensive and associated with known interobserver variability that can impact treatment outcomes. While multiple tools have been developed to automatically segment OARs and the high-risk clinical tumor volume (HR-CTV) using computed tomography (CT) images,3,4,5,6 the development of deep learning-based tumor segmentation tools using routine T2-weighted (T2w) magnetic resonance imaging (MRI) addresses an unmet clinical need to improve the routine contouring of both anatomical structures and cervical cancers, thereby increasing quality and consistency of radiotherapy planning. This work applied a novel deep-learning model (PocketNet) to segment the cervix, vagina, uterus, and tumor(s) on T2w MRI. The performance of the PocketNet architecture was evaluated, when trained on data via 5-fold cross validation. PocketNet achieved a mean Dice-Sorensen similarity coefficient (DSC) exceeding 70% for tumor segmentation and 80% for organ segmentation. These results suggest that PocketNet is robust to variations in contrast protocols, providing reliable segmentation of the regions of interest.
♻ ☆ Benchmark Evaluations, Applications, and Challenges of Large Vision Language Models: A Survey
Multimodal Vision Language Models (VLMs) have emerged as a transformative technology at the intersection of computer vision and natural language processing, enabling machines to perceive and reason about the world through both visual and textual modalities. For example, models such as CLIP, Claude, and GPT-4V demonstrate strong reasoning and understanding abilities on visual and textual data and beat classical single modality vision models on zero-shot classification. Despite their rapid advancements in research and growing popularity in applications, a comprehensive survey of existing studies on VLMs is notably lacking, particularly for researchers aiming to leverage VLMs in their specific domains. To this end, we provide a systematic overview of VLMs in the following aspects: model information of the major VLMs developed over the past five years (2019-2024); the main architectures and training methods of these VLMs; summary and categorization of the popular benchmarks and evaluation metrics of VLMs; the applications of VLMs including embodied agents, robotics, and video generation; the challenges and issues faced by current VLMs such as hallucination, fairness, and safety. Detailed collections including papers and model repository links are listed in https://github.com/zli12321/Awesome-VLM-Papers-And-Models.git.
comment: 35 pages, 3 figures
♻ ☆ Pixel Is Not A Barrier: An Effective Evasion Attack for Pixel-Domain Diffusion Models
Diffusion Models have emerged as powerful generative models for high-quality image synthesis, with many subsequent image editing techniques based on them. However, the ease of text-based image editing introduces significant risks, such as malicious editing for scams or intellectual property infringement. Previous works have attempted to safeguard images from diffusion-based editing by adding imperceptible perturbations. These methods are costly and specifically target prevalent Latent Diffusion Models (LDMs), while Pixel-domain Diffusion Models (PDMs) remain largely unexplored and robust against such attacks. Our work addresses this gap by proposing a novel attack framework, AtkPDM. AtkPDM is mainly composed of a feature representation attacking loss that exploits vulnerabilities in denoising UNets and a latent optimization strategy to enhance the naturalness of adversarial images. Extensive experiments demonstrate the effectiveness of our approach in attacking dominant PDM-based editing methods (e.g., SDEdit) while maintaining reasonable fidelity and robustness against common defense methods. Additionally, our framework is extensible to LDMs, achieving comparable performance to existing approaches.
♻ ☆ Self-Supervised Masked Mesh Learning for Unsupervised Anomaly Detection on 3D Cortical Surfaces
Unsupervised anomaly detection in brain imaging is challenging. In this paper, we propose a self-supervised masked mesh learning for unsupervised anomaly detection in 3D cortical surfaces. Our framework leverages the intrinsic geometry of the cortical surface to learn a self-supervised representation that captures the underlying structure of the brain. We introduce a masked mesh convolutional neural network (MMN) that learns to predict masked regions of the cortical surface. By training the MMN on a large dataset of healthy subjects, we learn a representation that captures the normal variation in the cortical surface. We then use this representation to detect anomalies in unseen individuals by calculating anomaly scores based on the reconstruction error of the MMN. We evaluate our framework by training on population-scale dataset UKB and HCP-Aging and testing on two datasets of Alzheimer's disease patients ADNI and OASIS3. Our results show that our framework can detect anomalies in cortical thickness, cortical volume, and cortical sulcus features, which are known to be sensitive biomarkers for Alzheimer's disease. Our proposed framework provides a promising approach for unsupervised anomaly detection based on normative variation of cortical features.
♻ ☆ Atlas: A Novel Pathology Foundation Model by Mayo Clinic, Charité, and Aignostics
Recent advances in digital pathology have demonstrated the effectiveness of foundation models across diverse applications. In this report, we present Atlas, a novel vision foundation model based on the RudolfV approach. Our model was trained on a dataset comprising 1.2 million histopathology whole slide images, collected from two medical institutions: Mayo Clinic and Charit\'e - Universt\"atsmedizin Berlin. Comprehensive evaluations show that Atlas achieves state-of-the-art performance across twenty-one public benchmark datasets, even though it is neither the largest model by parameter count nor by training dataset size.
♻ ☆ Improving Medical Visual Representations via Radiology Report Generation
Vision-language pretraining has been shown to produce high-quality visual encoders which transfer efficiently to downstream computer vision tasks. Contrastive learning approaches have increasingly been adopted for medical vision language pretraining (MVLP), yet recent developments in generative AI offer new modeling alternatives. This paper introduces RadTex, a CNN-encoder transformer-decoder architecture optimized for radiology. We explore bidirectional captioning as an alternative MVLP strategy and demonstrate that RadTex's captioning pretraining is competitive with established contrastive methods, achieving a CheXpert macro-AUC of 89.4%. Additionally, RadTex's lightweight text decoder not only generates clinically relevant radiology reports (macro-F1 score of 0.349), but also provides targeted, interactive responses, highlighting the utility of bidirectional captioning in advancing medical image analysis.
♻ ☆ ZeroComp: Zero-shot Object Compositing from Image Intrinsics via Diffusion
We present ZeroComp, an effective zero-shot 3D object compositing approach that does not require paired composite-scene images during training. Our method leverages ControlNet to condition from intrinsic images and combines it with a Stable Diffusion model to utilize its scene priors, together operating as an effective rendering engine. During training, ZeroComp uses intrinsic images based on geometry, albedo, and masked shading, all without the need for paired images of scenes with and without composite objects. Once trained, it seamlessly integrates virtual 3D objects into scenes, adjusting shading to create realistic composites. We developed a high-quality evaluation dataset and demonstrate that ZeroComp outperforms methods using explicit lighting estimations and generative techniques in quantitative and human perception benchmarks. Additionally, ZeroComp extends to real and outdoor image compositing, even when trained solely on synthetic indoor data, showcasing its effectiveness in image compositing.
comment: Project page: https://lvsn.github.io/ZeroComp, Code: https://github.com/lvsn/ZeroComp
♻ ☆ Self-supervised video pretraining yields robust and more human-aligned visual representations NeurIPS 2023
Humans learn powerful representations of objects and scenes by observing how they evolve over time. Yet, outside of specific tasks that require explicit temporal understanding, static image pretraining remains the dominant paradigm for learning visual foundation models. We question this mismatch, and ask whether video pretraining can yield visual representations that bear the hallmarks of human perception: generalisation across tasks, robustness to perturbations, and consistency with human judgements. To that end we propose a novel procedure for curating videos, and develop a contrastive framework which learns from the complex transformations therein. This simple paradigm for distilling knowledge from videos, called VITO, yields general representations that far outperform prior video pretraining methods on image understanding tasks, and image pretraining methods on video understanding tasks. Moreover, VITO representations are significantly more robust to natural and synthetic deformations than image-, video-, and adversarially-trained ones. Finally, VITO's predictions are strongly aligned with human judgements, surpassing models that were specifically trained for that purpose. Together, these results suggest that video pretraining could be a simple way of learning unified, robust, and human-aligned representations of the visual world.
comment: Accepted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023)
♻ ☆ FaceMe: Robust Blind Face Restoration with Personal Identification AAAI 2025
Blind face restoration is a highly ill-posed problem due to the lack of necessary context. Although existing methods produce high-quality outputs, they often fail to faithfully preserve the individual's identity. In this paper, we propose a personalized face restoration method, FaceMe, based on a diffusion model. Given a single or a few reference images, we use an identity encoder to extract identity-related features, which serve as prompts to guide the diffusion model in restoring high-quality and identity-consistent facial images. By simply combining identity-related features, we effectively minimize the impact of identity-irrelevant features during training and support any number of reference image inputs during inference. Additionally, thanks to the robustness of the identity encoder, synthesized images can be used as reference images during training, and identity changing during inference does not require fine-tuning the model. We also propose a pipeline for constructing a reference image training pool that simulates the poses and expressions that may appear in real-world scenarios. Experimental results demonstrate that our FaceMe can restore high-quality facial images while maintaining identity consistency, achieving excellent performance and robustness.
comment: To appear at AAAI 2025
♻ ☆ BIV-Priv-Seg: Locating Private Content in Images Taken by People With Visual Impairments
Individuals who are blind or have low vision (BLV) are at a heightened risk of sharing private information if they share photographs they have taken. To facilitate developing technologies that can help them preserve privacy, we introduce BIV-Priv-Seg, the first localization dataset originating from people with visual impairments that shows private content. It contains 1,028 images with segmentation annotations for 16 private object categories. We first characterize BIV-Priv-Seg and then evaluate modern models' performance for locating private content in the dataset. We find modern models struggle most with locating private objects that are not salient, small, and lack text as well as recognizing when private content is absent from an image. We facilitate future extensions by sharing our new dataset with the evaluation server at https://vizwiz.org/tasks-and-datasets/object-localization.
♻ ☆ Advances in Diffusion Models for Image Data Augmentation: A Review of Methods, Models, Evaluation Metrics and Future Research Directions
Image data augmentation constitutes a critical methodology in modern computer vision tasks, since it can facilitate towards enhancing the diversity and quality of training datasets; thereby, improving the performance and robustness of machine learning models in downstream tasks. In parallel, augmentation approaches can also be used for editing/modifying a given image in a context- and semantics-aware way. Diffusion Models (DMs), which comprise one of the most recent and highly promising classes of methods in the field of generative Artificial Intelligence (AI), have emerged as a powerful tool for image data augmentation, capable of generating realistic and diverse images by learning the underlying data distribution. The current study realizes a systematic, comprehensive and in-depth review of DM-based approaches for image augmentation, covering a wide range of strategies, tasks and applications. In particular, a comprehensive analysis of the fundamental principles, model architectures and training strategies of DMs is initially performed. Subsequently, a taxonomy of the relevant image augmentation methods is introduced, focusing on techniques regarding semantic manipulation, personalization and adaptation, and application-specific augmentation tasks. Then, performance assessment methodologies and respective evaluation metrics are analyzed. Finally, current challenges and future research directions in the field are discussed.
comment: 65 pages, 15 figures
♻ ☆ Dr. Tongue: Sign-Oriented Multi-label Detection for Remote Tongue Diagnosis
Tongue diagnosis is a vital tool in Western and Traditional Chinese Medicine, providing key insights into a patient's health by analyzing tongue attributes. The COVID-19 pandemic has heightened the need for accurate remote medical assessments, emphasizing the importance of precise tongue attribute recognition via telehealth. To address this, we propose a Sign-Oriented multi-label Attributes Detection framework. Our approach begins with an adaptive tongue feature extraction module that standardizes tongue images and mitigates environmental factors. This is followed by a Sign-oriented Network (SignNet) that identifies specific tongue attributes, emulating the diagnostic process of experienced practitioners and enabling comprehensive health evaluations. To validate our methodology, we developed an extensive tongue image dataset specifically designed for telemedicine. Unlike existing datasets, ours is tailored for remote diagnosis, with a comprehensive set of attribute labels. This dataset will be openly available, providing a valuable resource for research. Initial tests have shown improved accuracy in detecting various tongue attributes, highlighting our framework's potential as an essential tool for remote medical assessments.
♻ ☆ A Steerable Deep Network for Model-Free Diffusion MRI Registration
Nonrigid registration is vital to medical image analysis but remains challenging for diffusion MRI (dMRI) due to its high-dimensional, orientation-dependent nature. While classical methods are accurate, they are computationally demanding, and deep neural networks, though efficient, have been underexplored for nonrigid dMRI registration compared to structural imaging. We present a novel, deep learning framework for model-free, nonrigid registration of raw diffusion MRI data that does not require explicit reorientation. Unlike previous methods relying on derived representations such as diffusion tensors or fiber orientation distribution functions, in our approach, we formulate the registration as an equivariant diffeomorphism of position-and-orientation space. Central to our method is an $\mathsf{SE}(3)$-equivariant UNet that generates velocity fields while preserving the geometric properties of a raw dMRI's domain. We introduce a new loss function based on the maximum mean discrepancy in Fourier space, implicitly matching ensemble average propagators across images. Experimental results on Human Connectome Project dMRI data demonstrate competitive performance compared to state-of-the-art approaches, with the added advantage of bypassing the overhead for estimating derived representations. This work establishes a foundation for data-driven, geometry-aware dMRI registration directly in the acquisition space.
comment: Coauthor was inadvertently left out. This is now corrected
♻ ☆ ViM-Disparity: Bridging the Gap of Speed, Accuracy and Memory for Disparity Map Generation
In this work we propose a Visual Mamba (ViM) based architecture, to dissolve the existing trade-off for real-time and accurate model with low computation overhead for disparity map generation (DMG). Moreover, we proposed a performance measure that can jointly evaluate the inference speed, computation overhead and the accurateness of a DMG model. The code implementation and corresponding models are available at: https://github.com/MBora/ViM-Disparity.
♻ ☆ Learning a Consensus Sub-Network with Polarization Regularization and One Pass Training
The subject of green AI has been gaining attention within the deep learning community given the recent trend of ever larger and more complex neural network models. Existing solutions for reducing the computational load of training at inference time usually involve pruning the network parameters. Pruning schemes often create extra overhead either by iterative training and fine-tuning for static pruning or repeated computation of a dynamic pruning graph. We propose a new parameter pruning strategy for learning a lighter-weight sub-network that minimizes the energy cost while maintaining comparable performance to the fully parameterised network on given downstream tasks. Our proposed pruning scheme is green-oriented, as it only requires a one-off training to discover the optimal static sub-networks by dynamic pruning methods. The pruning scheme consists of a binary gating module and a polarizing loss function to uncover sub-networks with user-defined sparsity. Our method enables pruning and training simultaneously, which saves energy in both the training and inference phases and avoids extra computational overhead from gating modules at inference time. Our results on CIFAR-10, CIFAR-100, and Tiny Imagenet suggest that our scheme can remove 50% of connections in deep networks with <1% reduction in classification accuracy. Compared to other related pruning methods, our method demonstrates a lower drop in accuracy for equivalent reductions in computational cost.
♻ ☆ Strip R-CNN: Large Strip Convolution for Remote Sensing Object Detection
While witnessed with rapid development, remote sensing object detection remains challenging for detecting high aspect ratio objects. This paper shows that large strip convolutions are good feature representation learners for remote sensing object detection and can detect objects of various aspect ratios well. Based on large strip convolutions, we build a new network architecture called Strip R-CNN, which is simple, efficient, and powerful. Unlike recent remote sensing object detectors that leverage large-kernel convolutions with square shapes, our Strip R-CNN takes advantage of sequential orthogonal large strip convolutions to capture spatial information. In addition, we enhance the localization capability of remote-sensing object detectors by decoupling the detection heads and equipping the localization head with strip convolutions to better localize the target objects. Extensive experiments on several benchmarks, e.g., DOTA, FAIR1M, HRSC2016, and DIOR, show that our Strip R-CNN can largely improve previous works. Notably, our 30M model achieves 82.75% mAP on DOTA-v1.0, setting a new state-of-the-art record.Code is available at https://github.com/YXB-NKU/Strip-R-CNN.
♻ ☆ Dolphin: Closed-loop Open-ended Auto-research through Thinking, Practice, and Feedback
The scientific research paradigm is undergoing a profound transformation owing to the development of Artificial Intelligence (AI). Recent works demonstrate that various AI-assisted research methods can largely improve research efficiency by improving data analysis, accelerating computation, and fostering novel idea generation. To further move towards the ultimate goal (i.e., automatic scientific research), in this paper, we propose Dolphin, the first closed-loop open-ended auto-research framework to further build the entire process of human scientific research. Dolphin can generate research ideas, perform experiments, and get feedback from experimental results to generate higher-quality ideas. More specifically, Dolphin first generates novel ideas based on relevant papers which are ranked by the topic and task attributes. Then, the codes are automatically generated and debugged with the exception-traceback-guided local code structure. Finally, Dolphin automatically analyzes the results of each idea and feeds the results back to the next round of idea generation. Experiments are conducted on the benchmark datasets of different topics and results show that Dolphin can generate novel ideas continuously and complete the experiment in a loop. We highlight that Dolphin can automatically propose methods that are comparable to the state-of-the-art in some tasks such as 2D image classification and 3D point classification.
comment: 19 pages, 11 figures, and our homepage: https://alpha-innovator.github.io/Dolphin-project-page
♻ ☆ Class Distance Weighted Cross Entropy Loss for Classification of Disease Severity
Assessing disease severity involving ordinal classes, where each class represents increasing levels of severity, benefit from loss functions that account for this ordinal structure. Traditional categorical loss functions, like Cross-Entropy (CE), often perform suboptimally in these scenarios. To address this, we propose a novel loss function, Class Distance Weighted Cross-Entropy (CDW-CE), which penalizes misclassifications more harshly when classes are farther apart. We evaluated CDW-CE on the Labeled Images for Ulcerative Colitis (LIMUC) dataset using various deep architectures. Its performance was compared against several categorical and ordinal loss functions. To analyze the quality of latent representations, we used t-distributed stochastic neighbor embedding (t-SNE) visualizations and quantified their clustering with the Silhouette Score. We also compared Class Activation Maps (CAM) generated by models trained with CDW-CE and CE loss, incorporating domain expert feedback to evaluate alignment with expert knowledge. Our results show that CDW-CE consistently improves performance in ordinal image classification tasks. It achieves higher Silhouette Scores, indicating better differentiation of class representations, and its CAM visualizations demonstrate a stronger focus on clinically significant regions, as confirmed by domain experts.
♻ ☆ CloudTrack: Scalable UAV Tracking with Cloud Semantics
Nowadays, unmanned aerial vehicles (UAVs) are commonly used in search and rescue scenarios to gather information in the search area. The automatic identification of the person searched for in aerial footage could increase the autonomy of such systems, reduce the search time, and thus increase the missed person's chances of survival. In this paper, we present a novel approach to perform semantically conditioned open vocabulary object tracking that is specifically designed to cope with the limitations of UAV hardware. Our approach has several advantages. It can run with verbal descriptions of the missing person, e.g., the color of the shirt, it does not require dedicated training to execute the mission and can efficiently track a potentially moving person. Our experimental results demonstrate the versatility and efficacy of our approach.
comment: 7 pages, 3 figures
♻ ☆ Neural Differential Appearance Equations SIGGRAPH
We propose a method to reproduce dynamic appearance textures with space-stationary but time-varying visual statistics. While most previous work decomposes dynamic textures into static appearance and motion, we focus on dynamic appearance that results not from motion but variations of fundamental properties, such as rusting, decaying, melting, and weathering. To this end, we adopt the neural ordinary differential equation (ODE) to learn the underlying dynamics of appearance from a target exemplar. We simulate the ODE in two phases. At the "warm-up" phase, the ODE diffuses a random noise to an initial state. We then constrain the further evolution of this ODE to replicate the evolution of visual feature statistics in the exemplar during the generation phase. The particular innovation of this work is the neural ODE achieving both denoising and evolution for dynamics synthesis, with a proposed temporal training scheme. We study both relightable (BRDF) and non-relightable (RGB) appearance models. For both we introduce new pilot datasets, allowing, for the first time, to study such phenomena: For RGB we provide 22 dynamic textures acquired from free online sources; For BRDFs, we further acquire a dataset of 21 flash-lit videos of time-varying materials, enabled by a simple-to-construct setup. Our experiments show that our method consistently yields realistic and coherent results, whereas prior works falter under pronounced temporal appearance variations. A user study confirms our approach is preferred to previous work for such exemplars.
comment: SIGGRAPH Asia 2024 Journal Track. Project page at https://ryushinn.github.io/ode-appearance
♻ ☆ Chimera: Improving Generalist Model with Domain-Specific Experts
Recent advancements in Large Multi-modal Models (LMMs) underscore the importance of scaling by increasing image-text paired data, achieving impressive performance on general tasks. Despite their effectiveness in broad applications, generalist models are primarily trained on web-scale datasets dominated by natural images, resulting in the sacrifice of specialized capabilities for domain-specific tasks that require extensive domain prior knowledge. Moreover, directly integrating expert models tailored for specific domains is challenging due to the representational gap and imbalanced optimization between the generalist model and experts. To address these challenges, we introduce Chimera, a scalable and low-cost multi-modal pipeline designed to boost the ability of existing LMMs with domain-specific experts. Specifically, we design a progressive training strategy to integrate features from expert models into the input of a generalist LMM. To address the imbalanced optimization caused by the well-aligned general visual encoder, we introduce a novel Generalist-Specialist Collaboration Masking (GSCM) mechanism. This results in a versatile model that excels across the chart, table, math, and document domains, achieving state-of-the-art performance on multi-modal reasoning and visual content extraction tasks, both of which are challenging tasks for assessing existing LMMs.
comment: Chimera Homepage: https://alpha-innovator.github.io/chimera_page
♻ ☆ GeoX: Geometric Problem Solving Through Unified Formalized Vision-Language Pre-training
Despite their proficiency in general tasks, Multi-modal Large Language Models (MLLMs) struggle with automatic Geometry Problem Solving (GPS), which demands understanding diagrams, interpreting symbols, and performing complex reasoning. This limitation arises from their pre-training on natural images and texts, along with the lack of automated verification in the problem-solving process. Besides, current geometric specialists are limited by their task-specific designs, making them less effective for broader geometric problems. To this end, we present GeoX, a multi-modal large model focusing on geometric understanding and reasoning tasks. Given the significant differences between geometric diagram-symbol and natural image-text, we introduce unimodal pre-training to develop a diagram encoder and symbol decoder, enhancing the understanding of geometric images and corpora. Furthermore, we introduce geometry-language alignment, an effective pre-training paradigm that bridges the modality gap between unimodal geometric experts. We propose a Generator-And-Sampler Transformer (GS-Former) to generate discriminative queries and eliminate uninformative representations from unevenly distributed geometric signals. Finally, GeoX benefits from visual instruction tuning, empowering it to take geometric images and questions as input and generate verifiable solutions. Experiments show that GeoX outperforms both generalists and geometric specialists on publicly recognized benchmarks, such as GeoQA, UniGeo, Geometry3K, and PGPS9k.
comment: Our code is available at https://github.com/Alpha-Innovator/GeoX
♻ ☆ Backdoor Attacks against No-Reference Image Quality Assessment Models via a Scalable Trigger AAAI 2025
No-Reference Image Quality Assessment (NR-IQA), responsible for assessing the quality of a single input image without using any reference, plays a critical role in evaluating and optimizing computer vision systems, e.g., low-light enhancement. Recent research indicates that NR-IQA models are susceptible to adversarial attacks, which can significantly alter predicted scores with visually imperceptible perturbations. Despite revealing vulnerabilities, these attack methods have limitations, including high computational demands, untargeted manipulation, limited practical utility in white-box scenarios, and reduced effectiveness in black-box scenarios. To address these challenges, we shift our focus to another significant threat and present a novel poisoning-based backdoor attack against NR-IQA (BAIQA), allowing the attacker to manipulate the IQA model's output to any desired target value by simply adjusting a scaling coefficient $\alpha$ for the trigger. We propose to inject the trigger in the discrete cosine transform (DCT) domain to improve the local invariance of the trigger for countering trigger diminishment in NR-IQA models due to widely adopted data augmentations. Furthermore, the universal adversarial perturbations (UAP) in the DCT space are designed as the trigger, to increase IQA model susceptibility to manipulation and improve attack effectiveness. In addition to the heuristic method for poison-label BAIQA (P-BAIQA), we explore the design of clean-label BAIQA (C-BAIQA), focusing on $\alpha$ sampling and image data refinement, driven by theoretical insights we reveal. Extensive experiments on diverse datasets and various NR-IQA models demonstrate the effectiveness of our attacks. Code can be found at https://github.com/yuyi-sd/BAIQA.
comment: Accept by AAAI 2025
♻ ☆ PGSR: Planar-based Gaussian Splatting for Efficient and High-Fidelity Surface Reconstruction
Recently, 3D Gaussian Splatting (3DGS) has attracted widespread attention due to its high-quality rendering, and ultra-fast training and rendering speed. However, due to the unstructured and irregular nature of Gaussian point clouds, it is difficult to guarantee geometric reconstruction accuracy and multi-view consistency simply by relying on image reconstruction loss. Although many studies on surface reconstruction based on 3DGS have emerged recently, the quality of their meshes is generally unsatisfactory. To address this problem, we propose a fast planar-based Gaussian splatting reconstruction representation (PGSR) to achieve high-fidelity surface reconstruction while ensuring high-quality rendering. Specifically, we first introduce an unbiased depth rendering method, which directly renders the distance from the camera origin to the Gaussian plane and the corresponding normal map based on the Gaussian distribution of the point cloud, and divides the two to obtain the unbiased depth. We then introduce single-view geometric, multi-view photometric, and geometric regularization to preserve global geometric accuracy. We also propose a camera exposure compensation model to cope with scenes with large illumination variations. Experiments on indoor and outdoor scenes show that our method achieves fast training and rendering while maintaining high-fidelity rendering and geometric reconstruction, outperforming 3DGS-based and NeRF-based methods.
comment: project page: https://zju3dv.github.io/pgsr/
♻ ☆ VideoChat-Flash: Hierarchical Compression for Long-Context Video Modeling
Long-context modeling is a critical capability for multimodal large language models (MLLMs), enabling them to process long-form contents with implicit memorization. Despite its advances, handling extremely long videos remains challenging due to the difficulty in maintaining crucial features over extended sequences. This paper introduces a Hierarchical visual token Compression (HiCo) method designed for high-fidelity representation and a practical context modeling system VideoChat-Flash tailored for multimodal long-sequence processing. HiCo capitalizes on the redundancy of visual information in long videos to compress long video context from the clip-level to the video-level, reducing the compute significantly while preserving essential details. VideoChat-Flash features a multi-stage short-to-long learning scheme, a rich dataset of real-world long videos named LongVid, and an upgraded "Needle-In-A-video-Haystack" (NIAH) for evaluating context capacities. In extensive experiments, VideoChat-Flash shows the leading performance on both mainstream long and short video benchmarks at the 2B and 7B model scale. It firstly gets 99.1% accuracy over 10,000 frames in NIAH among open-source models.
♻ ☆ OmniCount: Multi-label Object Counting with Semantic-Geometric Priors AAAI 2025
Object counting is pivotal for understanding the composition of scenes. Previously, this task was dominated by class-specific methods, which have gradually evolved into more adaptable class-agnostic strategies. However, these strategies come with their own set of limitations, such as the need for manual exemplar input and multiple passes for multiple categories, resulting in significant inefficiencies. This paper introduces a more practical approach enabling simultaneous counting of multiple object categories using an open-vocabulary framework. Our solution, OmniCount, stands out by using semantic and geometric insights (priors) from pre-trained models to count multiple categories of objects as specified by users, all without additional training. OmniCount distinguishes itself by generating precise object masks and leveraging varied interactive prompts via the Segment Anything Model for efficient counting. To evaluate OmniCount, we created the OmniCount-191 benchmark, a first-of-its-kind dataset with multi-label object counts, including points, bounding boxes, and VQA annotations. Our comprehensive evaluation in OmniCount-191, alongside other leading benchmarks, demonstrates OmniCount's exceptional performance, significantly outpacing existing solutions. The project webpage is available at https://mondalanindya.github.io/OmniCount.
comment: Accepted to AAAI 2025
♻ ☆ Gender Bias in Text-to-Video Generation Models: A case study of Sora
The advent of text-to-video generation models has revolutionized content creation as it produces high-quality videos from textual prompts. However, concerns regarding inherent biases in such models have prompted scrutiny, particularly regarding gender representation. Our study investigates the presence of gender bias in OpenAI's Sora, a state-of-the-art text-to-video generation model. We uncover significant evidence of bias by analyzing the generated videos from a diverse set of gender-neutral and stereotypical prompts. The results indicate that Sora disproportionately associates specific genders with stereotypical behaviors and professions, which reflects societal prejudices embedded in its training data.
comment: 7 pages, 3 figures
♻ ☆ MC-VTON: Minimal Control Virtual Try-On Diffusion Transformer
Virtual try-on methods based on diffusion models achieve realistic try-on effects. They use an extra reference network or an additional image encoder to process multiple conditional image inputs, which adds complexity pre-processing and additional computational costs. Besides, they require more than 25 inference steps, bringing longer inference time. In this work, with the development of diffusion transformer (DiT), we rethink the necessity of additional reference network or image encoder and introduce MC-VTON, which leverages DiT's intrinsic backbone to seamlessly integrate minimal conditional try-on inputs. Compared to existing methods, the superiority of MC-VTON is demonstrated in four aspects: (1) Superior detail fidelity. Our DiT-based MC-VTON exhibits superior fidelity in preserving fine-grained details. (2) Simplified network and inputs. We remove any extra reference network or image encoder. We also remove unnecessary conditions like the long prompt, pose estimation, human parsing, and depth map. We require only the masked person image and the garment image. (3) Parameter-efficient training. To process the try-on task, we fine-tune the FLUX.1-dev with only 39.7M additional parameters (0.33% of the backbone parameters). (4) Less inference steps. We apply distillation diffusion on MC-VTON and only need 8 steps to generate a realistic try-on image, with only 86.8M additional parameters (0.72% of the backbone parameters). Experiments show that MC-VTON achieves superior qualitative and quantitative results with fewer condition inputs, trainable parameters, and inference steps than baseline methods.
♻ ☆ VLM-driven Behavior Tree for Context-aware Task Planning
The use of Large Language Models (LLMs) for generating Behavior Trees (BTs) has recently gained attention in the robotics community, yet remains in its early stages of development. In this paper, we propose a novel framework that leverages Vision-Language Models (VLMs) to interactively generate and edit BTs that address visual conditions, enabling context-aware robot operations in visually complex environments. A key feature of our approach lies in the conditional control through self-prompted visual conditions. Specifically, the VLM generates BTs with visual condition nodes, where conditions are expressed as free-form text. Another VLM process integrates the text into its prompt and evaluates the conditions against real-world images during robot execution. We validated our framework in a real-world cafe scenario, demonstrating both its feasibility and limitations.
comment: 10 pages, 11 figures, 5 tables. Last updated on January 9th, 2024
♻ ☆ Long Story Short: Story-level Video Understanding from 20K Short Films
Recent developments in vision-language models have significantly advanced video understanding. Existing datasets and tasks, however, have notable limitations. Most datasets are confined to short videos with limited events and narrow narratives. For example, datasets with instructional and egocentric videos often depict activities of one person in a single scene. Although existing movie datasets offer richer content, they are often limited to short-term tasks, lack publicly available videos, and frequently encounter data leakage issues given the use of subtitles and other information about commercial movies during LLM pretraining. To address the above limitations, we propose Short-Films 20K (SF20K), the largest publicly available movie dataset. SF20K is composed of 20,143 amateur films and offers long-term video tasks in the form of multiple-choice and open-ended question answering. Our extensive analysis of SF20K reveals minimal data leakage, emphasizes the need for long-term reasoning, and demonstrates the strong performance of recent VLMs. Finally, we show that instruction tuning on the SF20K-Train set substantially improves model performance, paving the way for future progress in long-term video understanding.
♻ ☆ Fractional Concepts in Neural Networks: Enhancing Activation Functions
Designing effective neural networks requires tuning architectural elements. This study integrates fractional calculus into neural networks by introducing fractional order derivatives (FDO) as tunable parameters in activation functions, allowing diverse activation functions by adjusting the FDO. We evaluate these fractional activation functions on various datasets and network architectures, comparing their performance with traditional and new activation functions. Our experiments assess their impact on accuracy, time complexity, computational overhead, and memory usage. Results suggest fractional activation functions, particularly fractional Sigmoid, offer benefits in some scenarios. Challenges related to consistency and efficiency remain. Practical implications and limitations are discussed.
comment: 8 pages, 8 figures, submitted to pattern recognition letters
♻ ☆ MoColl: Agent-Based Specific and General Model Collaboration for Image Captioning
Image captioning is a critical task at the intersection of computer vision and natural language processing, with wide-ranging applications across various domains. For complex tasks such as diagnostic report generation, deep learning models require not only domain-specific image-caption datasets but also the incorporation of relevant general knowledge to provide contextual accuracy. Existing approaches exhibit inherent limitations: specialized models excel in capturing domain-specific details but lack generalization, while vision-language models (VLMs) built on large language models (LLMs) leverage general knowledge but struggle with domain-specific adaptation. To address these limitations, this paper proposes a novel agent-enhanced model collaboration framework, which we call MoColl, designed to effectively integrate domain-specific and general knowledge. Specifically, our approach is to decompose complex image captioning tasks into a series of interconnected question-answer subtasks. A trainable visual question answering (VQA) model is employed as a specialized tool to focus on domain-specific visual analysis, answering task-specific questions based on image content. Concurrently, an LLM-based agent with general knowledge formulates these questions and synthesizes the resulting question-answer pairs into coherent captions. Beyond its role in leveraging the VQA model, the agent further guides its training to enhance its domain-specific capabilities. Experimental results on radiology report generation validate the effectiveness of the proposed framework, demonstrating significant improvements in the quality of generated reports.
♻ ☆ Towards a Multimodal Large Language Model with Pixel-Level Insight for Biomedicine AAAI2025
In recent years, Multimodal Large Language Models (MLLM) have achieved notable advancements, demonstrating the feasibility of developing an intelligent biomedical assistant. However, current biomedical MLLMs predominantly focus on image-level understanding and restrict interactions to textual commands, thus limiting their capability boundaries and the flexibility of usage. In this paper, we introduce a novel end-to-end multimodal large language model for the biomedical domain, named MedPLIB, which possesses pixel-level understanding. Excitingly, it supports visual question answering (VQA), arbitrary pixel-level prompts (points, bounding boxes, and free-form shapes), and pixel-level grounding. We propose a novel Mixture-of-Experts (MoE) multi-stage training strategy, which divides MoE into separate training phases for a visual-language expert model and a pixel-grounding expert model, followed by fine-tuning using MoE. This strategy effectively coordinates multitask learning while maintaining the computational cost at inference equivalent to that of a single expert model. To advance the research of biomedical MLLMs, we introduce the Medical Complex Vision Question Answering Dataset (MeCoVQA), which comprises an array of 8 modalities for complex medical imaging question answering and image region understanding. Experimental results indicate that MedPLIB has achieved state-of-the-art outcomes across multiple medical visual language tasks. More importantly, in zero-shot evaluations for the pixel grounding task, MedPLIB leads the best small and large models by margins of 19.7 and 15.6 respectively on the mDice metric. The codes, data, and model checkpoints will be made publicly available at https://github.com/ShawnHuang497/MedPLIB.
comment: Accepted by AAAI2025
♻ ☆ HazeCLIP: Towards Language Guided Real-World Image Dehazing
Existing methods have achieved remarkable performance in image dehazing, particularly on synthetic datasets. However, they often struggle with real-world hazy images due to domain shift, limiting their practical applicability. This paper introduces HazeCLIP, a language-guided adaptation framework designed to enhance the real-world performance of pre-trained dehazing networks. Inspired by the Contrastive Language-Image Pre-training (CLIP) model's ability to distinguish between hazy and clean images, we leverage it to evaluate dehazing results. Combined with a region-specific dehazing technique and tailored prompt sets, the CLIP model accurately identifies hazy areas, providing a high-quality, human-like prior that guides the fine-tuning process of pre-trained networks. Extensive experiments demonstrate that HazeCLIP achieves state-of-the-art performance in real-word image dehazing, evaluated through both visual quality and image quality assessment metrics. Codes are available at https://github.com/Troivyn/HazeCLIP.
♻ ☆ Static for Dynamic: Towards a Deeper Understanding of Dynamic Facial Expressions Using Static Expression Data
Dynamic facial expression recognition (DFER) infers emotions from the temporal evolution of expressions, unlike static facial expression recognition (SFER), which relies solely on a single snapshot. This temporal analysis provides richer information and promises greater recognition capability. However, current DFER methods often exhibit unsatisfied performance largely due to fewer training samples compared to SFER. Given the inherent correlation between static and dynamic expressions, we hypothesize that leveraging the abundant SFER data can enhance DFER. To this end, we propose Static-for-Dynamic (S4D), a unified dual-modal learning framework that integrates SFER data as a complementary resource for DFER. Specifically, S4D employs dual-modal self-supervised pre-training on facial images and videos using a shared Vision Transformer (ViT) encoder-decoder architecture, yielding improved spatiotemporal representations. The pre-trained encoder is then fine-tuned on static and dynamic expression datasets in a multi-task learning setup to facilitate emotional information interaction. Unfortunately, vanilla multi-task learning in our study results in negative transfer. To address this, we propose an innovative Mixture of Adapter Experts (MoAE) module that facilitates task-specific knowledge acquisition while effectively extracting shared knowledge from both static and dynamic expression data. Extensive experiments demonstrate that S4D achieves a deeper understanding of DFER, setting new state-of-the-art performance on FERV39K, MAFW, and DFEW benchmarks, with weighted average recall (WAR) of 53.65\%, 58.44\%, and 76.68\%, respectively. Additionally, a systematic correlation analysis between SFER and DFER tasks is presented, which further elucidates the potential benefits of leveraging SFER.
comment: The code and model are publicly available here https://github.com/MSA-LMC/S4D
♻ ☆ Efficient Progressive Image Compression with Variance-aware Masking WACV 2025
Learned progressive image compression is gaining momentum as it allows improved image reconstruction as more bits are decoded at the receiver. We propose a progressive image compression method in which an image is first represented as a pair of base-quality and top-quality latent representations. Next, a residual latent representation is encoded as the element-wise difference between the top and base representations. Our scheme enables progressive image compression with element-wise granularity by introducing a masking system that ranks each element of the residual latent representation from most to least important, dividing it into complementary components, which can be transmitted separately to the decoder in order to obtain different reconstruction quality. The masking system does not add further parameters nor complexity. At the receiver, any elements of the top latent representation excluded from the transmitted components can be independently replaced with the mean predicted by the hyperprior architecture, ensuring reliable reconstructions at any intermediate quality level. We also introduced Rate Enhancement Modules (REMs), which refine the estimation of entropy parameters using already decoded components. We obtain results competitive with state-of-the-art competitors, while significantly reducing computational complexity, decoding time, and number of parameters.
comment: 9 pages. Accepted at WACV 2025
♻ ☆ Image-based Multimodal Models as Intruders: Transferable Multimodal Attacks on Video-based MLLMs
Video-based multimodal large language models (V-MLLMs) have shown vulnerability to adversarial examples in video-text multimodal tasks. However, the transferability of adversarial videos to unseen models--a common and practical real world scenario--remains unexplored. In this paper, we pioneer an investigation into the transferability of adversarial video samples across V-MLLMs. We find that existing adversarial attack methods face significant limitations when applied in black-box settings for V-MLLMs, which we attribute to the following shortcomings: (1) lacking generalization in perturbing video features, (2) focusing only on sparse key-frames, and (3) failing to integrate multimodal information. To address these limitations and deepen the understanding of V-MLLM vulnerabilities in black-box scenarios, we introduce the Image-to-Video MLLM (I2V-MLLM) attack. In I2V-MLLM, we utilize an image-based multimodal model (IMM) as a surrogate model to craft adversarial video samples. Multimodal interactions and temporal information are integrated to disrupt video representations within the latent space, improving adversarial transferability. In addition, a perturbation propagation technique is introduced to handle different unknown frame sampling strategies. Experimental results demonstrate that our method can generate adversarial examples that exhibit strong transferability across different V-MLLMs on multiple video-text multimodal tasks. Compared to white-box attacks on these models, our black-box attacks (using BLIP-2 as surrogate model) achieve competitive performance, with average attack success rates of 55.48% on MSVD-QA and 58.26% on MSRVTT-QA for VideoQA tasks, respectively. Our code will be released upon acceptance.
♻ ☆ ResPanDiff: Diffusion Model for Pansharpening by Inferring Residual Inference
The implementation of diffusion-based pansharpening task is predominantly constrained by its slow inference speed, which results from numerous sampling steps. Despite the existing techniques aiming to accelerate sampling, they often compromise performance when fusing multi-source images. To ease this limitation, we introduce a novel and efficient diffusion model named Diffusion Model for Pansharpening by Inferring Residual Inference (ResPanDiff), which significantly reduces the number of diffusion steps without sacrificing the performance to tackle pansharpening task. In ResPanDiff, we innovatively propose a Markov chain that transits from noisy residuals to the residuals between the LRMS and HRMS images, thereby reducing the number of sampling steps and enhancing performance. Additionally, we design the latent space to help model extract more features at the encoding stage, Shallow Cond-Injection~(SC-I) to help model fetch cond-injected hidden features with higher dimensions, and loss functions to give a better guidance for the residual generation task. enabling the model to achieve superior performance in residual generation. Furthermore, experimental evaluations on pansharpening datasets demonstrate that the proposed method achieves superior outcomes compared to recent state-of-the-art~(SOTA) techniques, requiring only 15 sampling steps, which reduces over $90\%$ step compared with the benchmark diffusion models. Our experiments also include thorough discussions and ablation studies to underscore the effectiveness of our approach.
♻ ☆ Balanced Multi-view Clustering
Multi-view clustering (MvC) aims to integrate information from different views to enhance the capability of the model in capturing the underlying data structures. The widely used joint training paradigm in MvC is potentially not fully leverage the multi-view information, since the imbalanced and under-optimized view-specific features caused by the uniform learning objective for all views. For instance, particular views with more discriminative information could dominate the learning process in the joint training paradigm, leading to other views being under-optimized. To alleviate this issue, we first analyze the imbalanced phenomenon in the joint-training paradigm of multi-view clustering from the perspective of gradient descent for each view-specific feature extractor. Then, we propose a novel balanced multi-view clustering (BMvC) method, which introduces a view-specific contrastive regularization (VCR) to modulate the optimization of each view. Concretely, VCR preserves the sample similarities captured from the joint features and view-specific ones into the clustering distributions corresponding to view-specific features to enhance the learning process of view-specific feature extractors. Additionally, a theoretical analysis is provided to illustrate that VCR adaptively modulates the magnitudes of gradients for updating the parameters of view-specific feature extractors to achieve a balanced multi-view learning procedure. In such a manner, BMvC achieves a better trade-off between the exploitation of view-specific patterns and the exploration of view-invariance patterns to fully learn the multi-view information for the clustering task. Finally, a set of experiments are conducted to verify the superiority of the proposed method compared with state-of-the-art approaches both on eight benchmark MvC datasets and two spatially resolved transcriptomics datasets.
comment: We are withdrawing this paper due to issues in the experimental section related to the Application for Spatially Resolved Transcriptomics Data Clustering. These issues affect the validity of the results presented. We believe it is necessary to withdraw the paper to address these problems adequately before resubmission.
♻ ☆ Aria: An Open Multimodal Native Mixture-of-Experts Model
Information comes in diverse modalities. Multimodal native AI models are essential to integrate real-world information and deliver comprehensive understanding. While proprietary multimodal native models exist, their lack of openness imposes obstacles for adoptions, let alone adaptations. To fill this gap, we introduce Aria, an open multimodal native model with best-in-class performance across a wide range of multimodal, language, and coding tasks. Aria is a mixture-of-expert model with 3.9B and 3.5B activated parameters per visual token and text token, respectively. It outperforms Pixtral-12B and Llama3.2-11B, and is competitive against the best proprietary models on various multimodal tasks. We pre-train Aria from scratch following a 4-stage pipeline, which progressively equips the model with strong capabilities in language understanding, multimodal understanding, long context window, and instruction following. We open-source the model weights along with a codebase that facilitates easy adoptions and adaptations of Aria in real-world applications.
♻ ☆ ViPOcc: Leveraging Visual Priors from Vision Foundation Models for Single-View 3D Occupancy Prediction AAAI25
Inferring the 3D structure of a scene from a single image is an ill-posed and challenging problem in the field of vision-centric autonomous driving. Existing methods usually employ neural radiance fields to produce voxelized 3D occupancy, lacking instance-level semantic reasoning and temporal photometric consistency. In this paper, we propose ViPOcc, which leverages the visual priors from vision foundation models (VFMs) for fine-grained 3D occupancy prediction. Unlike previous works that solely employ volume rendering for RGB and depth image reconstruction, we introduce a metric depth estimation branch, in which an inverse depth alignment module is proposed to bridge the domain gap in depth distribution between VFM predictions and the ground truth. The recovered metric depth is then utilized in temporal photometric alignment and spatial geometric alignment to ensure accurate and consistent 3D occupancy prediction. Additionally, we also propose a semantic-guided non-overlapping Gaussian mixture sampler for efficient, instance-aware ray sampling, which addresses the redundant and imbalanced sampling issue that still exists in previous state-of-the-art methods. Extensive experiments demonstrate the superior performance of ViPOcc in both 3D occupancy prediction and depth estimation tasks on the KITTI-360 and KITTI Raw datasets. Our code is available at: \url{https://mias.group/ViPOcc}.
comment: accepted to AAAI25
♻ ☆ GridShow: Omni Visual Generation
In this paper, we introduce GRID, a novel paradigm that reframes a broad range of visual generation tasks as the problem of arranging grids, akin to film strips. At its core, GRID transforms temporal sequences into grid layouts, enabling image generation models to process visual sequences holistically. To achieve both layout consistency and motion coherence, we develop a parallel flow-matching training strategy that combines layout matching and temporal losses, guided by a coarse-to-fine schedule that evolves from basic layouts to precise motion control. Our approach demonstrates remarkable efficiency, achieving up to 35 faster inference speeds while using 1/1000 of the computational resources compared to specialized models. Extensive experiments show that GRID exhibits exceptional versatility across diverse visual generation tasks, from Text-to-Video to 3D Editing, while maintaining its foundational image generation capabilities. This dual strength in both expanded applications and preserved core competencies establishes GRID as an efficient and versatile omni-solution for visual generation.
comment: Codes: https://github.com/Should-AI-Lab/GRID
♻ ☆ Infrared Image Super-Resolution: Systematic Review, and Future Trends
Image Super-Resolution (SR) is essential for a wide range of computer vision and image processing tasks. Investigating infrared (IR) image (or thermal images) super-resolution is a continuing concern within the development of deep learning. This survey aims to provide a comprehensive perspective of IR image super-resolution, including its applications, hardware imaging system dilemmas, and taxonomy of image processing methodologies. In addition, the datasets and evaluation metrics in IR image super-resolution tasks are also discussed. Furthermore, the deficiencies in current technologies and possible promising directions for the community to explore are highlighted. To cope with the rapid development in this field, we intend to regularly update the relevant excellent work at \url{https://github.com/yongsongH/Infrared_Image_SR_Survey
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ Factorized Diffusion: Perceptual Illusions by Noise Decomposition ECCV 2024
Given a factorization of an image into a sum of linear components, we present a zero-shot method to control each individual component through diffusion model sampling. For example, we can decompose an image into low and high spatial frequencies and condition these components on different text prompts. This produces hybrid images, which change appearance depending on viewing distance. By decomposing an image into three frequency subbands, we can generate hybrid images with three prompts. We also use a decomposition into grayscale and color components to produce images whose appearance changes when they are viewed in grayscale, a phenomena that naturally occurs under dim lighting. And we explore a decomposition by a motion blur kernel, which produces images that change appearance under motion blurring. Our method works by denoising with a composite noise estimate, built from the components of noise estimates conditioned on different prompts. We also show that for certain decompositions, our method recovers prior approaches to compositional generation and spatial control. Finally, we show that we can extend our approach to generate hybrid images from real images. We do this by holding one component fixed and generating the remaining components, effectively solving an inverse problem.
comment: ECCV 2024 camera ready version + more readable size
♻ ☆ Plug-and-Play DISep: Separating Dense Instances for Scene-to-Pixel Weakly-Supervised Change Detection in High-Resolution Remote Sensing Images SP
Existing Weakly-Supervised Change Detection (WSCD) methods often encounter the problem of "instance lumping" under scene-level supervision, particularly in scenarios with a dense distribution of changed instances (i.e., changed objects). In these scenarios, unchanged pixels between changed instances are also mistakenly identified as changed, causing multiple changes to be mistakenly viewed as one. In practical applications, this issue prevents the accurate quantification of the number of changes. To address this issue, we propose a Dense Instance Separation (DISep) method as a plug-and-play solution, refining pixel features from a unified instance perspective under scene-level supervision. Specifically, our DISep comprises a three-step iterative training process: 1) Instance Localization: We locate instance candidate regions for changed pixels using high-pass class activation maps. 2) Instance Retrieval: We identify and group these changed pixels into different instance IDs through connectivity searching. Then, based on the assigned instance IDs, we extract corresponding pixel-level features on a per-instance basis. 3) Instance Separation: We introduce a separation loss to enforce intra-instance pixel consistency in the embedding space, thereby ensuring separable instance feature representations. The proposed DISep adds only minimal training cost and no inference cost. It can be seamlessly integrated to enhance existing WSCD methods. We achieve state-of-the-art performance by enhancing {three Transformer-based and four ConvNet-based methods} on the LEVIR-CD, WHU-CD, DSIFN-CD, SYSU-CD, and CDD datasets. Additionally, our DISep can be used to improve fully-supervised change detection methods. Code is available at https://github.com/zhenghuizhao/Plug-and-Play-DISep-for-Change-Detection.
comment: Accepted by ISPRS Journal of Photogrammetry and Remote Sensing
♻ ☆ MiM: Mask in Mask Self-Supervised Pre-Training for 3D Medical Image Analysis
The Vision Transformer (ViT) has demonstrated remarkable performance in Self-Supervised Learning (SSL) for 3D medical image analysis. Masked AutoEncoder (MAE) for feature pre-training can further unleash the potential of ViT on various medical vision tasks. However, due to large spatial sizes with much higher dimensions of 3D medical images, the lack of hierarchical design for MAE may hinder the performance of downstream tasks. In this paper, we propose a novel \textit{Mask in Mask (MiM)} pre-training framework for 3D medical images, which aims to advance MAE by learning discriminative representation from hierarchical visual tokens across varying scales. We introduce multiple levels of granularity for masked inputs from the volume, which are then reconstructed simultaneously ranging at both fine and coarse levels. Additionally, a cross-level alignment mechanism is applied to adjacent level volumes to enforce anatomical similarity hierarchically. Furthermore, we adopt a hybrid backbone to enhance the hierarchical representation learning efficiently during the pre-training. MiM was pre-trained on a large scale of available 3D volumetric images, \textit{i.e.,} Computed Tomography (CT) images containing various body parts. Extensive experiments on thirteen public datasets demonstrate the superiority of MiM over other SSL methods in organ/lesion/tumor segmentation and disease classification. We further scale up the MiM to large pre-training datasets with more than 10k volumes, showing that large-scale pre-training can further enhance the performance of downstream tasks. The improvement also concluded that the research community should pay more attention to the scale of the pre-training dataset towards the healthcare foundation model for 3D medical images.
comment: submitted to a journal, updated v2
♻ ☆ Towards Automatic Evaluation for Image Transcreation
Beyond conventional paradigms of translating speech and text, recently, there has been interest in automated transcreation of images to facilitate localization of visual content across different cultures. Attempts to define this as a formal Machine Learning (ML) problem have been impeded by the lack of automatic evaluation mechanisms, with previous work relying solely on human evaluation. In this paper, we seek to close this gap by proposing a suite of automatic evaluation metrics inspired by machine translation (MT) metrics, categorized into: a) Object-based, b) Embedding-based, and c) VLM-based. Drawing on theories from translation studies and real-world transcreation practices, we identify three critical dimensions of image transcreation: cultural relevance, semantic equivalence and visual similarity, and design our metrics to evaluate systems along these axes. Our results show that proprietary VLMs best identify cultural relevance and semantic equivalence, while vision-encoder representations are adept at measuring visual similarity. Meta-evaluation across 7 countries shows our metrics agree strongly with human ratings, with average segment-level correlations ranging from 0.55-0.87. Finally, through a discussion of the merits and demerits of each metric, we offer a robust framework for automated image transcreation evaluation, grounded in both theoretical foundations and practical application. Our code can be found here: https://github.com/simran-khanuja/automatic-eval-transcreation
♻ ☆ FMRFT: Fusion Mamba and DETR for Query Time Sequence Intersection Fish Tracking
Early detection of abnormal fish behavior caused by disease or hunger can be achieved through fish tracking using deep learning techniques, which holds significant value for industrial aquaculture. However, underwater reflections and some reasons with fish, such as the high similarity, rapid swimming caused by stimuli and mutual occlusion bring challenges to multi-target tracking of fish. To address these challenges, this paper establishes a complex multi-scenario sturgeon tracking dataset and introduces the FMRFT model, a real-time end-to-end fish tracking solution. The model incorporates the low video memory consumption Mamba In Mamba (MIM) architecture, which facilitates multi-frame temporal memory and feature extraction, thereby addressing the challenges to track multiple fish across frames. Additionally, the FMRFT model with the Query Time Sequence Intersection (QTSI) module effectively manages occluded objects and reduces redundant tracking frames using the superior feature interaction and prior frame processing capabilities of RT-DETR. This combination significantly enhances the accuracy and stability of fish tracking. Trained and tested on the dataset, the model achieves an IDF1 score of 90.3% and a MOTA accuracy of 94.3%. Experimental results show that the proposed FMRFT model effectively addresses the challenges of high similarity and mutual occlusion in fish populations, enabling accurate tracking in factory farming environments.
comment: 14 pages,14 figures
♻ ☆ Comprehensive Examination of Unrolled Networks for Solving Linear Inverse Problems
Unrolled networks have become prevalent in various computer vision and imaging tasks. Although they have demonstrated remarkable efficacy in solving specific computer vision and computational imaging tasks, their adaptation to other applications presents considerable challenges. This is primarily due to the multitude of design decisions that practitioners working on new applications must navigate, each potentially affecting the network's overall performance. These decisions include selecting the optimization algorithm, defining the loss function, and determining the number of convolutional layers, among others. Compounding the issue, evaluating each design choice requires time-consuming simulations to train, fine-tune the neural network, and optimize for its performance. As a result, the process of exploring multiple options and identifying the optimal configuration becomes time-consuming and computationally demanding. The main objectives of this paper are (1) to unify some ideas and methodologies used in unrolled networks to reduce the number of design choices a user has to make, and (2) to report a comprehensive ablation study to discuss the impact of each of the choices involved in designing unrolled networks and present practical recommendations based on our findings. We anticipate that this study will help scientists and engineers design unrolled networks for their applications and diagnose problems within their networks efficiently.
comment: 27 pages, 10 figures. Project Page: https://github.com/YuxiChen25/Memory-Net-Inverse
♻ ☆ JourneyBench: A Challenging One-Stop Vision-Language Understanding Benchmark of Generated Images
Existing vision-language understanding benchmarks largely consist of images of objects in their usual contexts. As a consequence, recent multimodal large language models can perform well with only a shallow visual understanding by relying on background language biases. Thus, strong performance on these benchmarks does not necessarily correlate with strong visual understanding. In this paper, we release JourneyBench, a comprehensive human-annotated benchmark of generated images designed to assess the model's fine-grained multimodal reasoning abilities across five tasks: complementary multimodal chain of thought, multi-image VQA, imaginary image captioning, VQA with hallucination triggers, and fine-grained retrieval with sample-specific distractors. Unlike existing benchmarks, JourneyBench explicitly requires fine-grained multimodal reasoning in unusual imaginary scenarios where language bias and holistic image gist are insufficient. We benchmark state-of-the-art models on JourneyBench and analyze performance along a number of fine-grained dimensions. Results across all five tasks show that JourneyBench is exceptionally challenging for even the best models, indicating that models' visual reasoning abilities are not as strong as they first appear. We discuss the implications of our findings and propose avenues for further research.
♻ ☆ CMTNet: Convolutional Meets Transformer Network for Hyperspectral Images Classification
Hyperspectral remote sensing (HIS) enables the detailed capture of spectral information from the Earth's surface, facilitating precise classification and identification of surface crops due to its superior spectral diagnostic capabilities. However, current convolutional neural networks (CNNs) focus on local features in hyperspectral data, leading to suboptimal performance when classifying intricate crop types and addressing imbalanced sample distributions. In contrast, the Transformer framework excels at extracting global features from hyperspectral imagery. To leverage the strengths of both approaches, this research introduces the Convolutional Meet Transformer Network (CMTNet). This innovative model includes a spectral-spatial feature extraction module for shallow feature capture, a dual-branch structure combining CNN and Transformer branches for local and global feature extraction, and a multi-output constraint module that enhances classification accuracy through multi-output loss calculations and cross constraints across local, international, and joint features. Extensive experiments conducted on three datasets (WHU-Hi-LongKou, WHU-Hi-HanChuan, and WHU-Hi-HongHu) demonstrate that CTDBNet significantly outperforms other state-of-the-art networks in classification performance, validating its effectiveness in hyperspectral crop classification.
comment: We have decided to withdraw this article due to significant adjustments in the research direction. The current manuscript no longer reflects the final conclusions of our study. We plan to revise and resubmit the work in the future.
♻ ☆ Adversarial Robustness for Deep Learning-based Wildfire Prediction Models
Smoke detection using Deep Neural Networks (DNNs) is an effective approach for early wildfire detection. However, because smoke is temporally and spatially anomalous, there are limitations in collecting sufficient training data. This raises overfitting and bias concerns in existing DNN-based wildfire detection models. Thus, we introduce WARP (Wildfire Adversarial Robustness Procedure), the first model-agnostic framework for evaluating the adversarial robustness of DNN-based wildfire detection models. WARP addresses limitations in smoke image diversity using global and local adversarial attack methods. The global attack method uses image-contextualized Gaussian noise, while the local attack method uses patch noise injection, tailored to address critical aspects of wildfire detection. Leveraging WARP's model-agnostic capabilities, we assess the adversarial robustness of real-time Convolutional Neural Networks (CNNs) and Transformers. The analysis revealed valuable insights into the models' limitations. Specifically, the global attack method demonstrates that the Transformer model has more than 70% precision degradation than the CNN against global noise. In contrast, the local attack method shows that both models are susceptible to cloud image injections when detecting smoke-positive instances, suggesting a need for model improvements through data augmentation. WARP's comprehensive robustness analysis contributed to the development of wildfire-specific data augmentation strategies, marking a step toward practicality.
♻ ☆ Enhancing Sample Generation of Diffusion Models using Noise Level Correction
The denoising process of diffusion models can be interpreted as an approximate projection of noisy samples onto the data manifold. Moreover, the noise level in these samples approximates their distance to the underlying manifold. Building on this insight, we propose a novel method to enhance sample generation by aligning the estimated noise level with the true distance of noisy samples to the manifold. Specifically, we introduce a noise level correction network, leveraging a pre-trained denoising network, to refine noise level estimates during the denoising process. Additionally, we extend this approach to various image restoration tasks by integrating task-specific constraints, including inpainting, deblurring, super-resolution, colorization, and compressed sensing. Experimental results demonstrate that our method significantly improves sample quality in both unconstrained and constrained generation scenarios. Notably, the proposed noise level correction framework is compatible with existing denoising schedulers (e.g., DDIM), offering additional performance improvements.
Information Retrieval 14
☆ kANNolo: Sweet and Smooth Approximate k-Nearest Neighbors Search
Approximate Nearest Neighbors (ANN) search is a crucial task in several applications like recommender systems and information retrieval. Current state-of-the-art ANN libraries, although being performance-oriented, often lack modularity and ease of use. This translates into them not being fully suitable for easy prototyping and testing of research ideas, an important feature to enable. We address these limitations by introducing kANNolo, a novel research-oriented ANN library written in Rust and explicitly designed to combine usability with performance effectively. kANNolo is the first ANN library that supports dense and sparse vector representations made available on top of different similarity measures, e.g., euclidean distance and inner product. Moreover, it also supports vector quantization techniques, e.g., Product Quantization, on top of the indexing strategies implemented. These functionalities are managed through Rust traits, allowing shared behaviors to be handled abstractly. This abstraction ensures flexibility and facilitates an easy integration of new components. In this work, we detail the architecture of kANNolo and demonstrate that its flexibility does not compromise performance. The experimental analysis shows that kANNolo achieves state-of-the-art performance in terms of speed-accuracy trade-off while allowing fast and easy prototyping, thus making kANNolo a valuable tool for advancing ANN research. Source code available on GitHub: https://github.com/TusKANNy/kannolo.
comment: 7 pages, 3 figures
☆ Recommender Systems for Social Good: The Role of Accountability and Sustainability
This work examines the role of recommender systems in promoting sustainability, social responsibility, and accountability, with a focus on alignment with the United Nations Sustainable Development Goals (SDGs). As recommender systems become increasingly integrated into daily interactions, they must go beyond personalization to support responsible consumption, reduce environmental impact, and foster social good. We explore strategies to mitigate the carbon footprint of recommendation models, ensure fairness, and implement accountability mechanisms. By adopting these approaches, recommender systems can contribute to sustainable and socially beneficial outcomes, aligning technological advancements with the SDGs focused on environmental sustainability and social well-being.
comment: First International Workshop on Recommender Systems for Sustainability and Social Good (RecSoGood'24)
☆ Navigating Tomorrow: Reliably Assessing Large Language Models Performance on Future Event Prediction
Predicting future events is an important activity with applications across multiple fields and domains. For example, the capacity to foresee stock market trends, natural disasters, business developments, or political events can facilitate early preventive measures and uncover new opportunities. Multiple diverse computational methods for attempting future predictions, including predictive analysis, time series forecasting, and simulations have been proposed. This study evaluates the performance of several large language models (LLMs) in supporting future prediction tasks, an under-explored domain. We assess the models across three scenarios: Affirmative vs. Likelihood questioning, Reasoning, and Counterfactual analysis. For this, we create a dataset1 by finding and categorizing news articles based on entity type and its popularity. We gather news articles before and after the LLMs training cutoff date in order to thoroughly test and compare model performance. Our research highlights LLMs potential and limitations in predictive modeling, providing a foundation for future improvements.
☆ Text2Playlist: Generating Personalized Playlists from Text on Deezer
The streaming service Deezer heavily relies on the search to help users navigate through its extensive music catalog. Nonetheless, it is primarily designed to find specific items and does not lead directly to a smooth listening experience. We present Text2Playlist, a stand-alone tool that addresses these limitations. Text2Playlist leverages generative AI, music information retrieval and recommendation systems to generate query-specific and personalized playlists, successfully deployed at scale.
☆ VideoRAG: Retrieval-Augmented Generation over Video Corpus
Retrieval-Augmented Generation (RAG) is a powerful strategy to address the issue of generating factually incorrect outputs in foundation models by retrieving external knowledge relevant to queries and incorporating it into their generation process. However, existing RAG approaches have primarily focused on textual information, with some recent advancements beginning to consider images, and they largely overlook videos, a rich source of multimodal knowledge capable of representing events, processes, and contextual details more effectively than any other modality. While a few recent studies explore the integration of videos in the response generation process, they either predefine query-associated videos without retrieving them according to queries, or convert videos into the textual descriptions without harnessing their multimodal richness. To tackle these, we introduce VideoRAG, a novel framework that not only dynamically retrieves relevant videos based on their relevance with queries but also utilizes both visual and textual information of videos in the output generation. Further, to operationalize this, our method revolves around the recent advance of Large Video Language Models (LVLMs), which enable the direct processing of video content to represent it for retrieval and seamless integration of the retrieved videos jointly with queries. We experimentally validate the effectiveness of VideoRAG, showcasing that it is superior to relevant baselines.
☆ Social web and Wikipedia: an opportunity to rethink the links between sources' credibility, trust and authority
The Web and its main tools (Google, Wikipedia, Facebook, Twitter) deeply raise and renew fundamental questions, that everyone asks almost every day: Is this information or content true? Can I trust this author or source? These questions are not new, they have been the same with books, newspapers, broadcasting and television, and, more fundamentally, in every human interpersonal communication. This paper is focused on two scientific problems on this issue. The first one is theoretical: to address this issue, many concepts have been used in library and information sciences, communication and psychology. The links between these concepts are not clear: sometimes two concepts are considered as synonymous, sometimes as very different. The second one is historical: sources like Wikipedia deeply challenge the epistemic evaluation of information sources, compared to previous modes of information production. This paper proposes an integrated and simple model considering the relation between a user, a document and an author as human communication. It reduces the problem to three concepts: credibility as a characteristic granted to information depending on its truth-value; trust as the ability to produce credible information; authority when the power to influence of an author is accepted, i.e., when readers accept that the source can modify their opinion, knowledge and decisions. The model describes also two kinds of relationships between the three concepts: an upward link and a downward link. The model is confronted with findings of empirical research on Wikipedia in particular.
☆ Collaboration of Large Language Models and Small Recommendation Models for Device-Cloud Recommendation KDD'25
Large Language Models (LLMs) for Recommendation (LLM4Rec) is a promising research direction that has demonstrated exceptional performance in this field. However, its inability to capture real-time user preferences greatly limits the practical application of LLM4Rec because (i) LLMs are costly to train and infer frequently, and (ii) LLMs struggle to access real-time data (its large number of parameters poses an obstacle to deployment on devices). Fortunately, small recommendation models (SRMs) can effectively supplement these shortcomings of LLM4Rec diagrams by consuming minimal resources for frequent training and inference, and by conveniently accessing real-time data on devices. In light of this, we designed the Device-Cloud LLM-SRM Collaborative Recommendation Framework (LSC4Rec) under a device-cloud collaboration setting. LSC4Rec aims to integrate the advantages of both LLMs and SRMs, as well as the benefits of cloud and edge computing, achieving a complementary synergy. We enhance the practicability of LSC4Rec by designing three strategies: collaborative training, collaborative inference, and intelligent request. During training, LLM generates candidate lists to enhance the ranking ability of SRM in collaborative scenarios and enables SRM to update adaptively to capture real-time user interests. During inference, LLM and SRM are deployed on the cloud and on the device, respectively. LLM generates candidate lists and initial ranking results based on user behavior, and SRM get reranking results based on the candidate list, with final results integrating both LLM's and SRM's scores. The device determines whether a new candidate list is needed by comparing the consistency of the LLM's and SRM's sorted lists. Our comprehensive and extensive experimental analysis validates the effectiveness of each strategy in LSC4Rec.
comment: Published on KDD'25: Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining 2025
☆ Gender-Neutral Large Language Models for Medical Applications: Reducing Bias in PubMed Abstracts
This paper presents a pipeline for mitigating gender bias in large language models (LLMs) used in medical literature by neutralizing gendered occupational pronouns. A dataset of 379,000 PubMed abstracts from 1965-1980 was processed to identify and modify pronouns tied to professions. We developed a BERT-based model, ``Modern Occupational Bias Elimination with Refined Training,'' or ``MOBERT,'' trained on these neutralized abstracts, and compared its performance with ``1965Bert,'' trained on the original dataset. MOBERT achieved a 70\% inclusive replacement rate, while 1965Bert reached only 4\%. A further analysis of MOBERT revealed that pronoun replacement accuracy correlated with the frequency of occupational terms in the training data. We propose expanding the dataset and refining the pipeline to improve performance and ensure more equitable language modeling in medical applications.
comment: 9 pages, 4 figures
☆ Repeat-bias-aware Optimization of Beyond-accuracy Metrics for Next Basket Recommendation ECIR2025
In next basket recommendation (NBR) a set of items is recommended to users based on their historical basket sequences. In many domains, the recommended baskets consist of both repeat items and explore items. Some state-of-the-art NBR methods are heavily biased to recommend repeat items so as to maximize utility. The evaluation and optimization of beyond-accuracy objectives for NBR, such as item fairness and diversity, has attracted increasing attention. How can such beyond-accuracy objectives be pursued in the presence of heavy repeat bias? We find that only optimizing diversity or item fairness without considering repeat bias may cause NBR algorithms to recommend more repeat items. To solve this problem, we propose a model-agnostic repeat-bias-aware optimization algorithm to post-process the recommended results obtained from NBR methods with the objective of mitigating repeat bias when optimizing diversity or item fairness. We consider multiple variations of our optimization algorithm to cater to multiple NBR methods. Experiments on three real-world grocery shopping datasets show that the proposed algorithms can effectively improve diversity and item fairness, and mitigate repeat bias at acceptable Recall loss.
comment: This paper has been accepted as a full paper at the 47th European Conference on Information Retrieval (ECIR2025)
☆ Environmental large language model Evaluation (ELLE) dataset: A Benchmark for Evaluating Generative AI applications in Eco-environment Domain
Generative AI holds significant potential for ecological and environmental applications such as monitoring, data analysis, education, and policy support. However, its effectiveness is limited by the lack of a unified evaluation framework. To address this, we present the Environmental Large Language model Evaluation (ELLE) question answer (QA) dataset, the first benchmark designed to assess large language models and their applications in ecological and environmental sciences. The ELLE dataset includes 1,130 question answer pairs across 16 environmental topics, categorized by domain, difficulty, and type. This comprehensive dataset standardizes performance assessments in these fields, enabling consistent and objective comparisons of generative AI performance. By providing a dedicated evaluation tool, ELLE dataset promotes the development and application of generative AI technologies for sustainable environmental outcomes. The dataset and code are available at https://elle.ceeai.net/ and https://github.com/CEEAI/elle.
☆ Optimize Incompatible Parameters through Compatibility-aware Knowledge Integration AAAI'25
Deep neural networks have become foundational to advancements in multiple domains, including recommendation systems, natural language processing, and so on. Despite their successes, these models often contain incompatible parameters that can be underutilized or detrimental to model performance, particularly when faced with specific, varying data distributions. Existing research excels in removing such parameters or merging the outputs of multiple different pretrained models. However, the former focuses on efficiency rather than performance, while the latter requires several times more computing and storage resources to support inference. In this paper, we set the goal to explicitly improve these incompatible parameters by leveraging the complementary strengths of different models, thereby directly enhancing the models without any additional parameters. Specifically, we propose Compatibility-aware Knowledge Integration (CKI), which consists of Parameter Compatibility Assessment and Parameter Splicing, which are used to evaluate the knowledge content of multiple models and integrate the knowledge into one model, respectively. The integrated model can be used directly for inference or for further fine-tuning. We conduct extensive experiments on various datasets for recommendation and language tasks, and the results show that Compatibility-aware Knowledge Integration can effectively optimize incompatible parameters under multiple tasks and settings to break through the training limit of the original model without increasing the inference cost.
comment: Published on AAAI'25: The Annual AAAI Conference on Artificial Intelligence
♻ ☆ Beyond Item Dissimilarities: Diversifying by Intent in Recommender Systems
It has become increasingly clear that recommender systems that overly focus on short-term engagement prevents users from exploring diverse interests, ultimately hurting long-term user experience. To tackle this challenge, numerous diversification algorithms have been proposed. These algorithms typically rely on measures of item similarity, aiming to maximize the dissimilarity across items in the final set of recommendations. However, in this work, we demonstrate the benefits of going beyond item-level similarities by utilizing higher-level user understanding--specifically, user intents that persist across multiple interactions--in diversification. Our approach is motivated by the observation that user behaviors on online platforms are largely driven by their underlying intents. Therefore, recommendations should ensure that diverse user intents are accurately represented. While intent has primarily been studied in the context of search, it is less clear how to incorporate real-time dynamic intent predictions into recommender systems. To address this gap, we develop a probabilistic intent-based whole-page diversification framework for the final stage of a recommender system. Starting with a prior belief of user intents, the proposed framework sequentially selects items for each position based on these beliefs and subsequently updates posterior beliefs about the intents. This approach ensures that different user intents are represented on a page, towards optimizing long-term user experience. We experiment with the intent diversification framework on YouTube, the world's largest video recommendation platform, serving billions of users daily. Live experiments on a diverse set of intents show that the proposed framework increases Daily Active Users (DAU) and overall user enjoyment, validating its effectiveness in facilitating long-term planning.
♻ ☆ Multi-granularity Interest Retrieval and Refinement Network for Long-Term User Behavior Modeling in CTR Prediction
Click-through Rate (CTR) prediction is crucial for online personalization platforms. Recent advancements have shown that modeling rich user behaviors can significantly improve the performance of CTR prediction. Current long-term user behavior modeling algorithms predominantly follow two cascading stages. The first stage retrieves subsequence related to the target item from the long-term behavior sequence, while the second stage models the relationship between the subsequence and the target item. Despite significant progress, these methods have two critical flaws. First, the retrieval query typically includes only target item information, limiting the ability to capture the user's diverse interests. Second, relational information, such as sequential and interactive information within the subsequence, is frequently overlooked. Therefore, it requires to be further mined to more accurately model user interests. To this end, we propose Multi-granularity Interest Retrieval and Refinement Network (MIRRN). Specifically, we first construct queries based on behaviors observed at different time scales to obtain subsequences, each capturing users' interest at various granularities. We then introduce an noval multi-head Fourier transformer to efficiently learn sequential and interactive information within the subsequences, leading to more accurate modeling of user interests. Finally, we employ multi-head target attention to adaptively assess the impact of these multi-granularity interests on the target item. Extensive experiments have demonstrated that MIRRN significantly outperforms state-of-the-art baselines. Furthermore, an A/B test shows that MIRRN increases the average number of listening songs by 1.32% and the average time of listening songs by 0.55% on the Huawei Music App. The implementation code is publicly available at https://github.com/USTC-StarTeam/MIRRN.
♻ ☆ THeGCN: Temporal Heterophilic Graph Convolutional Network
Graph Neural Networks (GNNs) have exhibited remarkable efficacy in diverse graph learning tasks, particularly on static homophilic graphs. Recent attention has pivoted towards more intricate structures, encompassing (1) static heterophilic graphs encountering the edge heterophily issue in the spatial domain and (2) event-based continuous graphs in the temporal domain. State-of-the-art (SOTA) has been concurrently addressing these two lines of work but tends to overlook the presence of heterophily in the temporal domain, constituting the temporal heterophily issue. Furthermore, we highlight that the edge heterophily issue and the temporal heterophily issue often co-exist in event-based continuous graphs, giving rise to the temporal edge heterophily challenge. To tackle this challenge, this paper first introduces the temporal edge heterophily measurement. Subsequently, we propose the Temporal Heterophilic Graph Convolutional Network (THeGCN), an innovative model that incorporates the low/high-pass graph signal filtering technique to accurately capture both edge (spatial) heterophily and temporal heterophily. Specifically, the THeGCN model consists of two key components: a sampler and an aggregator. The sampler selects events relevant to a node at a given moment. Then, the aggregator executes message-passing, encoding temporal information, node attributes, and edge attributes into node embeddings. Extensive experiments conducted on 5 real-world datasets validate the efficacy of THeGCN.
Machine Learning 136
☆ Machine Learning Force-Field Approach for Itinerant Electron Magnets
We review the recent development of machine-learning (ML) force-field frameworks for Landau-Lifshitz-Gilbert (LLG) dynamics simulations of itinerant electron magnets, focusing on the general theory and implementations of symmetry-invariant representations of spin configurations. The crucial properties that such magnetic descriptors must satisfy are differentiability with respect to spin rotations and invariance to both lattice point-group symmetry and internal spin rotation symmetry. We propose an efficient implementation based on the concept of reference irreducible representations, modified from the group-theoretical power-spectrum and bispectrum methods. The ML framework is demonstrated using the s-d models, which are widely applied in spintronics research. We show that LLG simulations based on local fields predicted by the trained ML models successfully reproduce representative non-collinear spin structures, including 120$^\circ$, tetrahedral, and skyrmion crystal orders of the triangular-lattice s-d models. Large-scale thermal quench simulations enabled by ML models further reveal intriguing freezing dynamics and glassy stripe states consisting of skyrmions and bi-merons. Our work highlights the utility of ML force-field approach to dynamical modeling of complex spin orders in itinerant electron magnets.
comment: 18 pages, 8 figures
☆ Meta-Learning for Physically-Constrained Neural System Identification
We present a gradient-based meta-learning framework for rapid adaptation of neural state-space models (NSSMs) for black-box system identification. When applicable, we also incorporate domain-specific physical constraints to improve the accuracy of the NSSM. The major benefit of our approach is that instead of relying solely on data from a single target system, our framework utilizes data from a diverse set of source systems, enabling learning from limited target data, as well as with few online training iterations. Through benchmark examples, we demonstrate the potential of our approach, study the effect of fine-tuning subnetworks rather than full fine-tuning, and report real-world case studies to illustrate the practical application and generalizability of the approach to practical problems with physical-constraints. Specifically, we show that the meta-learned models result in improved downstream performance in model-based state estimation in indoor localization and energy systems.
comment: 30 pages
☆ Model Alignment Search
When can we say that two neural systems are the same? The answer to this question is goal-dependent, and it is often addressed through correlative methods such as Representational Similarity Analysis (RSA) and Centered Kernel Alignment (CKA). What do we miss when we forgo causal explorations, and how can we target specific types of similarity? In this work, we introduce Model Alignment Search (MAS), a method for causally exploring distributed representational similarity. The method learns invertible linear transformations that align a subspace between two distributed networks' representations where causal information can be freely interchanged. We first show that the method can be used to transfer specific causal variables, such as the number of items in a counting task, between networks with different training seeds. We then explore open questions in number cognition by comparing different types of numeric representations in models trained on structurally different numeric tasks. We then explore differences between MAS vs preexisting causal similarity methods, showing MAS to be more resistant to unwanted exchanges. Lastly, we introduce a counterfactual latent auxiliary loss function that helps shape causally relevant alignments even in cases where we do not have causal access to one of the two models for training.
☆ Efficient Transition State Searches by Freezing String Method with Graph Neural Network Potentials
Transition states are a critical bottleneck in chemical transformations. Significant efforts have been made to develop algorithms that efficiently locate transition states on potential energy surfaces. However, the computational cost of ab-initio potential energy surface evaluation limits the size of chemical systems that can routinely studied. In this work, we develop and fine-tune a graph neural network potential energy function suitable for describing organic chemical reactions and use it to rapidly identify transition state guess structures. We successfully refine guess structures and locate a transition state in each test system considered and reduce the average number of ab-initio calculations by 47% though use of the graph neural network potential energy function. Our results show that modern machine learning models have reached levels of reliability whereby they can be used to accelerate routine computational chemistry tasks.
comment: 9 pages, 4 figures, 3 tables
☆ GenMol: A Drug Discovery Generalist with Discrete Diffusion
Drug discovery is a complex process that involves multiple scenarios and stages, such as fragment-constrained molecule generation, hit generation and lead optimization. However, existing molecular generative models can only tackle one or two of these scenarios and lack the flexibility to address various aspects of the drug discovery pipeline. In this paper, we present Generalist Molecular generative model (GenMol), a versatile framework that addresses these limitations by applying discrete diffusion to the Sequential Attachment-based Fragment Embedding (SAFE) molecular representation. GenMol generates SAFE sequences through non-autoregressive bidirectional parallel decoding, thereby allowing utilization of a molecular context that does not rely on the specific token ordering and enhanced computational efficiency. Moreover, under the discrete diffusion framework, we introduce fragment remasking, a strategy that optimizes molecules by replacing fragments with masked tokens and regenerating them, enabling effective exploration of chemical space. GenMol significantly outperforms the previous GPT-based model trained on SAFE representations in de novo generation and fragment-constrained generation, and achieves state-of-the-art performance in goal-directed hit generation and lead optimization. These experimental results demonstrate that GenMol can tackle a wide range of drug discovery tasks, providing a unified and versatile approach for molecular design.
☆ From discrete-time policies to continuous-time diffusion samplers: Asymptotic equivalences and faster training
We study the problem of training neural stochastic differential equations, or diffusion models, to sample from a Boltzmann distribution without access to target samples. Existing methods for training such models enforce time-reversal of the generative and noising processes, using either differentiable simulation or off-policy reinforcement learning (RL). We prove equivalences between families of objectives in the limit of infinitesimal discretization steps, linking entropic RL methods (GFlowNets) with continuous-time objects (partial differential equations and path space measures). We further show that an appropriate choice of coarse time discretization during training allows greatly improved sample efficiency and the use of time-local objectives, achieving competitive performance on standard sampling benchmarks with reduced computational cost.
comment: code: https://github.com/GFNOrg/gfn-diffusion/tree/stagger
☆ Emergent Symbol-like Number Variables in Artificial Neural Networks
What types of numeric representations emerge in Neural Networks (NNs)? To what degree do NNs induce abstract, mutable, slot-like numeric variables, and in what situations do these representations emerge? How do these representations change over learning, and how can we understand the neural implementations in ways that are unified across different NNs? In this work, we approach these questions by first training sequence based neural systems using Next Token Prediction (NTP) objectives on numeric tasks. We then seek to understand the neural solutions through the lens of causal abstractions or symbolic algorithms. We use a combination of causal interventions and visualization methods to find that artificial neural models do indeed develop analogs of interchangeable, mutable, latent number variables purely from the NTP objective. We then ask how variations on the tasks and model architectures affect the models' learned solutions to find that these symbol-like numeric representations do not form for every variant of the task, and transformers solve the problem in a notably different way than their recurrent counterparts. We then show how the symbol-like variables change over the course of training to find a strong correlation between the models' task performance and the alignment of their symbol-like representations. Lastly, we show that in all cases, some degree of gradience exists in these neural symbols, highlighting the difficulty of finding simple, interpretable symbolic stories of how neural networks perform numeric tasks. Taken together, our results are consistent with the view that neural networks can approximate interpretable symbolic programs of number cognition, but the particular program they approximate and the extent to which they approximate it can vary widely, depending on the network architecture, training data, extent of training, and network size.
☆ Merging Feed-Forward Sublayers for Compressed Transformers
With the rise and ubiquity of larger deep learning models, the need for high-quality compression techniques is growing in order to deploy these models widely. The sheer parameter count of these models makes it difficult to fit them into the memory constraints of different hardware. In this work, we present a novel approach to model compression by merging similar parameter groups within a model, rather than pruning away less important parameters. Specifically, we select, align, and merge separate feed-forward sublayers in Transformer models, and test our method on language modeling, image classification, and machine translation. With our method, we demonstrate performance comparable to the original models while combining more than a third of model feed-forward sublayers, and demonstrate improved performance over a strong layer-pruning baseline. For instance, we can remove over 21% of total parameters from a Vision Transformer, while maintaining 99% of its original performance. Additionally, we observe that some groups of feed-forward sublayers exhibit high activation similarity, which may help explain their surprising mergeability.
☆ Inferring High-Order Couplings with Neural Networks
Maximum-entropy methods, rooted in the inverse Ising/Potts problem from statistical mechanics, have become indispensable tools for modeling pairwise interactions in disciplines such as bioinformatics, ecology, and neuroscience. Despite their remarkable success, these methods often overlook high-order interactions that may be crucial in complex systems. Conversely, while modern machine learning approaches can capture such interactions, existing interpretable frameworks are computationally expensive, making it impractical to assess the relevance of high-order interactions in real-world scenarios. Restricted Boltzmann Machines (RBMs) offer a computationally efficient alternative by encoding statistical correlations via hidden nodes in a bipartite neural network. Here, we present a method that maps RBMs exactly onto generalized Potts models with interactions of arbitrary high order. This approach leverages large-$N$ approximations, facilitated by the simple architecture of the RBM, to enable the efficient extraction of effective many-body couplings with minimal computational cost. This mapping also enables the development of a general formal framework for the extraction of effective higher-order interactions in arbitrarily complex probabilistic models. Additionally, we introduce a robust formalism for gauge fixing within the generalized Potts model. We validate our method by accurately recovering two- and three-body interactions from synthetic datasets. Additionally, applying our framework to protein sequence data demonstrates its effectiveness in reconstructing protein contact maps, achieving performance comparable to state-of-the-art inverse Potts models. These results position RBMs as a powerful and efficient tool for investigating high-order interactions in complex systems.
comment: 13 Pages and 3 Figures
☆ Finite-Horizon Single-Pull Restless Bandits: An Efficient Index Policy For Scarce Resource Allocation AAMAS 2025
Restless multi-armed bandits (RMABs) have been highly successful in optimizing sequential resource allocation across many domains. However, in many practical settings with highly scarce resources, where each agent can only receive at most one resource, such as healthcare intervention programs, the standard RMAB framework falls short. To tackle such scenarios, we introduce Finite-Horizon Single-Pull RMABs (SPRMABs), a novel variant in which each arm can only be pulled once. This single-pull constraint introduces additional complexity, rendering many existing RMAB solutions suboptimal or ineffective. %To address this, we propose using dummy states to duplicate the system, ensuring that once an arm is activated, it transitions exclusively within the dummy states. To address this shortcoming, we propose using \textit{dummy states} that expand the system and enforce the one-pull constraint. We then design a lightweight index policy for this expanded system. For the first time, we demonstrate that our index policy achieves a sub-linearly decaying average optimality gap of $\tilde{\mathcal{O}}\left(\frac{1}{\rho^{1/2}}\right)$ for a finite number of arms, where $\rho$ is the scaling factor for each arm cluster. Extensive simulations validate the proposed method, showing robust performance across various domains compared to existing benchmarks.
comment: 17 Pages, 8 figures. Accepted by AAMAS 2025
☆ Explaining Deep Learning-based Anomaly Detection in Energy Consumption Data by Focusing on Contextually Relevant Data
Detecting anomalies in energy consumption data is crucial for identifying energy waste, equipment malfunction, and overall, for ensuring efficient energy management. Machine learning, and specifically deep learning approaches, have been greatly successful in anomaly detection; however, they are black-box approaches that do not provide transparency or explanations. SHAP and its variants have been proposed to explain these models, but they suffer from high computational complexity (SHAP) or instability and inconsistency (e.g., Kernel SHAP). To address these challenges, this paper proposes an explainability approach for anomalies in energy consumption data that focuses on context-relevant information. The proposed approach leverages existing explainability techniques, focusing on SHAP variants, together with global feature importance and weighted cosine similarity to select background dataset based on the context of each anomaly point. By focusing on the context and most relevant features, this approach mitigates the instability of explainability algorithms. Experimental results across 10 different machine learning models, five datasets, and five XAI techniques, demonstrate that our method reduces the variability of explanations providing consistent explanations. Statistical analyses confirm the robustness of our approach, showing an average reduction in variability of approximately 38% across multiple datasets.
comment: 26 pages, 8 figures
☆ Towards Developing Socially Compliant Automated Vehicles: State of the Art, Experts Expectations, and A Conceptual Framework
Automated Vehicles (AVs) hold promise for revolutionizing transportation by improving road safety, traffic efficiency, and overall mobility. Despite the steady advancement in high-level AVs in recent years, the transition to full automation entails a period of mixed traffic, where AVs of varying automation levels coexist with human-driven vehicles (HDVs). Making AVs socially compliant and understood by human drivers is expected to improve the safety and efficiency of mixed traffic. Thus, ensuring AVs compatibility with HDVs and social acceptance is crucial for their successful and seamless integration into mixed traffic. However, research in this critical area of developing Socially Compliant AVs (SCAVs) remains sparse. This study carries out the first comprehensive scoping review to assess the current state of the art in developing SCAVs, identifying key concepts, methodological approaches, and research gaps. An expert interview was also conducted to identify critical research gaps and expectations towards SCAVs. Based on the scoping review and expert interview input, a conceptual framework is proposed for the development of SCAVs. The conceptual framework is evaluated using an online survey targeting researchers, technicians, policymakers, and other relevant professionals worldwide. The survey results provide valuable validation and insights, affirming the significance of the proposed conceptual framework in tackling the challenges of integrating AVs into mixed-traffic environments. Additionally, future research perspectives and suggestions are discussed, contributing to the research and development agenda of SCAVs.
comment: 39 pages, 13 figures, under review by the journal of Transportation Research Part E: Logistics and Transportation Review
☆ All AI Models are Wrong, but Some are Optimal
AI models that predict the future behavior of a system (a.k.a. predictive AI models) are central to intelligent decision-making. However, decision-making using predictive AI models often results in suboptimal performance. This is primarily because AI models are typically constructed to best fit the data, and hence to predict the most likely future rather than to enable high-performance decision-making. The hope that such prediction enables high-performance decisions is neither guaranteed in theory nor established in practice. In fact, there is increasing empirical evidence that predictive models must be tailored to decision-making objectives for performance. In this paper, we establish formal (necessary and sufficient) conditions that a predictive model (AI-based or not) must satisfy for a decision-making policy established using that model to be optimal. We then discuss their implications for building predictive AI models for sequential decision-making.
☆ Averaged Adam accelerates stochastic optimization in the training of deep neural network approximations for partial differential equation and optimal control problems
Deep learning methods - usually consisting of a class of deep neural networks (DNNs) trained by a stochastic gradient descent (SGD) optimization method - are nowadays omnipresent in data-driven learning problems as well as in scientific computing tasks such as optimal control (OC) and partial differential equation (PDE) problems. In practically relevant learning tasks, often not the plain-vanilla standard SGD optimization method is employed to train the considered class of DNNs but instead more sophisticated adaptive and accelerated variants of the standard SGD method such as the popular Adam optimizer are used. Inspired by the classical Polyak-Ruppert averaging approach, in this work we apply averaged variants of the Adam optimizer to train DNNs to approximately solve exemplary scientific computing problems in the form of PDEs and OC problems. We test the averaged variants of Adam in a series of learning problems including physics-informed neural network (PINN), deep backward stochastic differential equation (deep BSDE), and deep Kolmogorov approximations for PDEs (such as heat, Black-Scholes, Burgers, and Allen-Cahn PDEs), including DNN approximations for OC problems, and including DNN approximations for image classification problems (ResNet for CIFAR-10). In each of the numerical examples the employed averaged variants of Adam outperform the standard Adam and the standard SGD optimizers, particularly, in the situation of the scientific machine learning problems. The Python source codes for the numerical experiments associated to this work can be found on GitHub at https://github.com/deeplearningmethods/averaged-adam.
comment: 25 pages, 10 figures
☆ Scale-up Unlearnable Examples Learning with High-Performance Computing
Recent advancements in AI models are structured to retain user interactions, which could inadvertently include sensitive healthcare data. In the healthcare field, particularly when radiologists use AI-driven diagnostic tools hosted on online platforms, there is a risk that medical imaging data may be repurposed for future AI training without explicit consent, spotlighting critical privacy and intellectual property concerns around healthcare data usage. Addressing these privacy challenges, a novel approach known as Unlearnable Examples (UEs) has been introduced, aiming to make data unlearnable to deep learning models. A prominent method within this area, called Unlearnable Clustering (UC), has shown improved UE performance with larger batch sizes but was previously limited by computational resources. To push the boundaries of UE performance with theoretically unlimited resources, we scaled up UC learning across various datasets using Distributed Data Parallel (DDP) training on the Summit supercomputer. Our goal was to examine UE efficacy at high-performance computing (HPC) levels to prevent unauthorized learning and enhance data security, particularly exploring the impact of batch size on UE's unlearnability. Utilizing the robust computational capabilities of the Summit, extensive experiments were conducted on diverse datasets such as Pets, MedMNist, Flowers, and Flowers102. Our findings reveal that both overly large and overly small batch sizes can lead to performance instability and affect accuracy. However, the relationship between batch size and unlearnability varied across datasets, highlighting the necessity for tailored batch size strategies to achieve optimal data protection. Our results underscore the critical role of selecting appropriate batch sizes based on the specific characteristics of each dataset to prevent learning and ensure data security in deep learning applications.
☆ Explaining k-Nearest Neighbors: Abductive and Counterfactual Explanations
Despite the wide use of $k$-Nearest Neighbors as classification models, their explainability properties remain poorly understood from a theoretical perspective. While nearest neighbors classifiers offer interpretability from a "data perspective", in which the classification of an input vector $\bar{x}$ is explained by identifying the vectors $\bar{v}_1, \ldots, \bar{v}_k$ in the training set that determine the classification of $\bar{x}$, we argue that such explanations can be impractical in high-dimensional applications, where each vector has hundreds or thousands of features and it is not clear what their relative importance is. Hence, we focus on understanding nearest neighbor classifications through a "feature perspective", in which the goal is to identify how the values of the features in $\bar{x}$ affect its classification. Concretely, we study abductive explanations such as "minimum sufficient reasons", which correspond to sets of features in $\bar{x}$ that are enough to guarantee its classification, and "counterfactual explanations" based on the minimum distance feature changes one would have to perform in $\bar{x}$ to change its classification. We present a detailed landscape of positive and negative complexity results for counterfactual and abductive explanations, distinguishing between discrete and continuous feature spaces, and considering the impact of the choice of distance function involved. Finally, we show that despite some negative complexity results, Integer Quadratic Programming and SAT solving allow for computing explanations in practice.
☆ Explainable Federated Bayesian Causal Inference and Its Application in Advanced Manufacturing
Causal inference has recently gained notable attention across various fields like biology, healthcare, and environmental science, especially within explainable artificial intelligence (xAI) systems, for uncovering the causal relationships among multiple variables and outcomes. Yet, it has not been fully recognized and deployed in the manufacturing systems. In this paper, we introduce an explainable, scalable, and flexible federated Bayesian learning framework, \texttt{xFBCI}, designed to explore causality through treatment effect estimation in distributed manufacturing systems. By leveraging federated Bayesian learning, we efficiently estimate posterior of local parameters to derive the propensity score for each client without accessing local private data. These scores are then used to estimate the treatment effect using propensity score matching (PSM). Through simulations on various datasets and a real-world Electrohydrodynamic (EHD) printing data, we demonstrate that our approach outperforms standard Bayesian causal inference methods and several state-of-the-art federated learning benchmarks.
comment: 26 pages
☆ A monthly sub-national Harmonized Food Insecurity Dataset for comprehensive analysis and predictive modeling
Food security is a complex, multidimensional concept challenging to measure comprehensively. Effective anticipation, monitoring, and mitigation of food crises require timely and comprehensive global data. This paper introduces the Harmonized Food Insecurity Dataset (HFID), an open-source resource consolidating four key data sources: the Integrated Food Security Phase Classification (IPC)/Cadre Harmonis\'e (CH) phases, the Famine Early Warning Systems Network (FEWS NET) IPC-compatible phases, and the World Food Program's (WFP) Food Consumption Score (FCS) and reduced Coping Strategy Index (rCSI). Updated monthly and using a common reference system for administrative units, the HFID offers extensive spatial and temporal coverage. It serves as a vital tool for food security experts and humanitarian agencies, providing a unified resource for analyzing food security conditions and highlighting global data disparities. The scientific community can also leverage the HFID to develop data-driven predictive models, enhancing the capacity to forecast and prevent future food crises.
comment: The authors Melissande Machefer and Michele Ronco have contributed equally as both first authors to this work. This work is currently being reviewed in a peer-reviewed journal
☆ Geometry and Optimization of Shallow Polynomial Networks
We study shallow neural networks with polynomial activations. The function space for these models can be identified with a set of symmetric tensors with bounded rank. We describe general features of these networks, focusing on the relationship between width and optimization. We then consider teacher-student problems, that can be viewed as a problem of low-rank tensor approximation with respect to a non-standard inner product that is induced by the data distribution. In this setting, we introduce a teacher-metric discriminant which encodes the qualitative behavior of the optimization as a function of the training data distribution. Finally, we focus on networks with quadratic activations, presenting an in-depth analysis of the optimization landscape. In particular, we present a variation of the Eckart-Young Theorem characterizing all critical points and their Hessian signatures for teacher-student problems with quadratic networks and Gaussian training data.
comment: 36 pages, 2 figures
☆ Distilling Calibration via Conformalized Credal Inference
Deploying artificial intelligence (AI) models on edge devices involves a delicate balance between meeting stringent complexity constraints, such as limited memory and energy resources, and ensuring reliable performance in sensitive decision-making tasks. One way to enhance reliability is through uncertainty quantification via Bayesian inference. This approach, however, typically necessitates maintaining and running multiple models in an ensemble, which may exceed the computational limits of edge devices. This paper introduces a low-complexity methodology to address this challenge by distilling calibration information from a more complex model. In an offline phase, predictive probabilities generated by a high-complexity cloud-based model are leveraged to determine a threshold based on the typical divergence between the cloud and edge models. At run time, this threshold is used to construct credal sets -- ranges of predictive probabilities that are guaranteed, with a user-selected confidence level, to include the predictions of the cloud model. The credal sets are obtained through thresholding of a divergence measure in the simplex of predictive probabilities. Experiments on visual and language tasks demonstrate that the proposed approach, termed Conformalized Distillation for Credal Inference (CD-CI), significantly improves calibration performance compared to low-complexity Bayesian methods, such as Laplace approximation, making it a practical and efficient solution for edge AI deployments.
comment: Under review
☆ Personalized Language Model Learning on Text Data Without User Identifiers
In many practical natural language applications, user data are highly sensitive, requiring anonymous uploads of text data from mobile devices to the cloud without user identifiers. However, the absence of user identifiers restricts the ability of cloud-based language models to provide personalized services, which are essential for catering to diverse user needs. The trivial method of replacing an explicit user identifier with a static user embedding as model input still compromises data anonymization. In this work, we propose to let each mobile device maintain a user-specific distribution to dynamically generate user embeddings, thereby breaking the one-to-one mapping between an embedding and a specific user. We further theoretically demonstrate that to prevent the cloud from tracking users via uploaded embeddings, the local distributions of different users should either be derived from a linearly dependent space to avoid identifiability or be close to each other to prevent accurate attribution. Evaluation on both public and industrial datasets using different language models reveals a remarkable improvement in accuracy from incorporating anonymous user embeddings, while preserving real-time inference requirement.
☆ COMIX: Compositional Explanations using Prototypes
Aligning machine representations with human understanding is key to improving interpretability of machine learning (ML) models. When classifying a new image, humans often explain their decisions by decomposing the image into concepts and pointing to corresponding regions in familiar images. Current ML explanation techniques typically either trace decision-making processes to reference prototypes, generate attribution maps highlighting feature importance, or incorporate intermediate bottlenecks designed to align with human-interpretable concepts. The proposed method, named COMIX, classifies an image by decomposing it into regions based on learned concepts and tracing each region to corresponding ones in images from the training dataset, assuring that explanations fully represent the actual decision-making process. We dissect the test image into selected internal representations of a neural network to derive prototypical parts (primitives) and match them with the corresponding primitives derived from the training data. In a series of qualitative and quantitative experiments, we theoretically prove and demonstrate that our method, in contrast to post hoc analysis, provides fidelity of explanations and shows that the efficiency is competitive with other inherently interpretable architectures. Notably, it shows substantial improvements in fidelity and sparsity metrics, including 48.82% improvement in the C-insertion score on the ImageNet dataset over the best state-of-the-art baseline.
☆ Learning Flexible Heterogeneous Coordination with Capability-Aware Shared Hypernetworks
Cooperative heterogeneous multi-agent tasks require agents to effectively coordinate their behaviors while accounting for their relative capabilities. Learning-based solutions to this challenge span between two extremes: i) shared-parameter methods, which encode diverse behaviors within a single architecture by assigning an ID to each agent, and are sample-efficient but result in limited behavioral diversity; ii) independent methods, which learn a separate policy for each agent, and show greater behavioral diversity but lack sample-efficiency. Prior work has also explored selective parameter-sharing, allowing for a compromise between diversity and efficiency. None of these approaches, however, effectively generalize to unseen agents or teams. We present Capability-Aware Shared Hypernetworks (CASH), a novel architecture for heterogeneous multi-agent coordination that generates sufficient diversity while maintaining sample-efficiency via soft parameter-sharing hypernetworks. Intuitively, CASH allows the team to learn common strategies using a shared encoder, which are then adapted according to the team's individual and collective capabilities with a hypernetwork, allowing for zero-shot generalization to unseen teams and agents. We present experiments across two heterogeneous coordination tasks and three standard learning paradigms (imitation learning, on- and off-policy reinforcement learning). CASH is able to outperform baseline architectures in success rate and sample efficiency when evaluated on unseen teams and agents despite using less than half of the learnable parameters.
comment: 11 pages, 6 figures, equal authorship between Pierce Howell and Shalin Jain
☆ AI-powered virtual tissues from spatial proteomics for clinical diagnostics and biomedical discovery
Spatial proteomics technologies have transformed our understanding of complex tissue architectures by enabling simultaneous analysis of multiple molecular markers and their spatial organization. The high dimensionality of these data, varying marker combinations across experiments and heterogeneous study designs pose unique challenges for computational analysis. Here, we present Virtual Tissues (VirTues), a foundation model framework for biological tissues that operates across the molecular, cellular and tissue scale. VirTues introduces innovations in transformer architecture design, including a novel tokenization scheme that captures both spatial and marker dimensions, and attention mechanisms that scale to high-dimensional multiplex data while maintaining interpretability. Trained on diverse cancer and non-cancer tissue datasets, VirTues demonstrates strong generalization capabilities without task-specific fine-tuning, enabling cross-study analysis and novel marker integration. As a generalist model, VirTues outperforms existing approaches across clinical diagnostics, biological discovery and patient case retrieval tasks, while providing insights into tissue function and disease mechanisms.
comment: 23 pages, 5 figures
☆ Investigating the Impact of Observation Space Design Choices On Training Reinforcement Learning Solutions for Spacecraft Problems
Recent research using Reinforcement Learning (RL) to learn autonomous control for spacecraft operations has shown great success. However, a recent study showed their performance could be improved by changing the action space, i.e. control outputs, used in the learning environment. This has opened the door for finding more improvements through further changes to the environment. The work in this paper focuses on how changes to the environment's observation space can impact the training and performance of RL agents learning the spacecraft inspection task. The studies are split into two groups. The first looks at the impact of sensors that were designed to help agents learn the task. The second looks at the impact of reference frames, reorienting the agent to see the world from a different perspective. The results show the sensors are not necessary, but most of them help agents learn more optimal behavior, and that the reference frame does not have a large impact, but is best kept consistent.
comment: 18 pages, 10 figures, 3 tables
☆ A Neural Operator for Forecasting Carbon Monoxide Evolution in Cities
Real-time forecasting of carbon monoxide (CO) concentrations is essential for enabling timely interventions to improve urban air quality. Conventional air quality models often require extensive computational resources for accurate, multi-scale predictions, limiting their practicality for rapid, real-time application. To address this challenge, we introduce the Complex Neural Operator for Air Quality (CoNOAir), a machine learning model that forecast CO concentrations efficiently. CoNOAir demonstrates superior performance over state-of-theart models, such as the Fourier Neural Operator (FNO), in both short-term (hourly) and extended (72-hour) forecasts at a national scale. It excels in capturing extreme pollution events and performs consistently across multiple Indian cities, achieving an R2 above 0.95 for hourly CO predictions across all evaluated locations. CoNOAir equips authorities with an effective tool for issuing early warnings and designing targeted intervention strategies. This work marks a step forward in achieving dependable, real-time CO pollution predictions for densely populated urban centres.
comment: 36 pages, 21 figures, to be published in npj Clean Air journal (accepted)
☆ Learning to generate feasible graphs using graph grammars
Generative methods for graphs need to be sufficiently flexible to model complex dependencies between sets of nodes. At the same time, the generated graphs need to satisfy domain-dependent feasibility conditions, that is, they should not violate certain constraints that would make their interpretation impossible within the given application domain (e.g. a molecular graph where an atom has a very large number of chemical bounds). Crucially, constraints can involve not only local but also long-range dependencies: for example, the maximal length of a cycle can be bounded. Currently, a large class of generative approaches for graphs, such as methods based on artificial neural networks, is based on message passing schemes. These approaches suffer from information 'dilution' issues that severely limit the maximal range of the dependencies that can be modeled. To address this problem, we propose a generative approach based on the notion of graph grammars. The key novel idea is to introduce a domain-dependent coarsening procedure to provide short-cuts for long-range dependencies. We show the effectiveness of our proposal in two domains: 1) small drugs and 2) RNA secondary structures. In the first case, we compare the quality of the generated molecular graphs via the Molecular Sets (MOSES) benchmark suite, which evaluates the distance between generated and real molecules, their lipophilicity, synthesizability, and drug-likeness. In the second case, we show that the approach can generate very large graphs (with hundreds of nodes) that are accepted as valid examples for a desired RNA family by the "Infernal" covariance model, a state-of-the-art RNA classifier. Our implementation is available on github: github.com/fabriziocosta/GraphLearn
☆ DeltaGNN: Graph Neural Network with Information Flow Control
Graph Neural Networks (GNNs) are popular deep learning models designed to process graph-structured data through recursive neighborhood aggregations in the message passing process. When applied to semi-supervised node classification, the message-passing enables GNNs to understand short-range spatial interactions, but also causes them to suffer from over-smoothing and over-squashing. These challenges hinder model expressiveness and prevent the use of deeper models to capture long-range node interactions (LRIs) within the graph. Popular solutions for LRIs detection are either too expensive to process large graphs due to high time complexity or fail to generalize across diverse graph structures. To address these limitations, we propose a mechanism called \emph{information flow control}, which leverages a novel connectivity measure, called \emph{information flow score}, to address over-smoothing and over-squashing with linear computational overhead, supported by theoretical evidence. Finally, to prove the efficacy of our methodology we design DeltaGNN, the first scalable and generalizable approach for detecting long-range and short-range interactions. We benchmark our model across 10 real-world datasets, including graphs with varying sizes, topologies, densities, and homophilic ratios, showing superior performance with limited computational complexity. The implementation of the proposed methods are publicly available at https://github.com/basiralab/DeltaGNN.
☆ An Attention-Guided Deep Learning Approach for Classifying 39 Skin Lesion Types
The skin, as the largest organ of the human body, is vulnerable to a diverse array of conditions collectively known as skin lesions, which encompass various dermatoses. Diagnosing these lesions presents significant challenges for medical practitioners due to the subtle visual differences that are often imperceptible to the naked eye. While not all skin lesions are life-threatening, certain types can act as early indicators of severe diseases, including skin cancers, underscoring the critical need for timely and accurate diagnostic methods. Deep learning algorithms have demonstrated remarkable potential in facilitating the early detection and prognosis of skin lesions. This study advances the field by curating a comprehensive and diverse dataset comprising 39 categories of skin lesions, synthesized from five publicly available datasets. Using this dataset, the performance of five state-of-the-art deep learning models -- MobileNetV2, Xception, InceptionV3, EfficientNetB1, and Vision Transformer - is rigorously evaluated. To enhance the accuracy and robustness of these models, attention mechanisms such as the Efficient Channel Attention (ECA) and the Convolutional Block Attention Module (CBAM) are incorporated into their architectures. Comprehensive evaluation across multiple performance metrics reveals that the Vision Transformer model integrated with CBAM outperforms others, achieving an accuracy of 93.46%, precision of 94%, recall of 93%, F1-score of 93%, and specificity of 93.67%. These results underscore the significant potential of the proposed system in supporting medical professionals with accurate and efficient prognostic tools for diagnosing a broad spectrum of skin lesions. The dataset and code used in this study can be found at https://github.com/akabircs/Skin-Lesions-Classification.
comment: 26 pages
☆ Comparing Self-Supervised Learning Models Pre-Trained on Human Speech and Animal Vocalizations for Bioacoustics Processing ICASSP 2025
Self-supervised learning (SSL) foundation models have emerged as powerful, domain-agnostic, general-purpose feature extractors applicable to a wide range of tasks. Such models pre-trained on human speech have demonstrated high transferability for bioacoustic processing. This paper investigates (i) whether SSL models pre-trained directly on animal vocalizations offer a significant advantage over those pre-trained on speech, and (ii) whether fine-tuning speech-pretrained models on automatic speech recognition (ASR) tasks can enhance bioacoustic classification. We conduct a comparative analysis using three diverse bioacoustic datasets and two different bioacoustic tasks. Results indicate that pre-training on bioacoustic data provides only marginal improvements over speech-pretrained models, with comparable performance in most scenarios. Fine-tuning on ASR tasks yields mixed outcomes, suggesting that the general-purpose representations learned during SSL pre-training are already well-suited for bioacoustic tasks. These findings highlight the robustness of speech-pretrained SSL models for bioacoustics and imply that extensive fine-tuning may not be necessary for optimal performance.
comment: Accepted at ICASSP 2025
☆ Deep Variational Sequential Monte Carlo for High-Dimensional Observations
Sequential Monte Carlo (SMC), or particle filtering, is widely used in nonlinear state-space systems, but its performance often suffers from poorly approximated proposal and state-transition distributions. This work introduces a differentiable particle filter that leverages the unsupervised variational SMC objective to parameterize the proposal and transition distributions with a neural network, designed to learn from high-dimensional observations. Experimental results demonstrate that our approach outperforms established baselines in tracking the challenging Lorenz attractor from high-dimensional and partial observations. Furthermore, an evidence lower bound based evaluation indicates that our method offers a more accurate representation of the posterior distribution.
☆ A Brain Age Residual Biomarker (BARB): Leveraging MRI-Based Models to Detect Latent Health Conditions in U.S. Veterans
Age prediction using brain imaging, such as MRIs, has achieved promising results, with several studies identifying the model's residual as a potential biomarker for chronic disease states. In this study, we developed a brain age predictive model using a dataset of 1,220 U.S. veterans (18--80 years) and convolutional neural networks (CNNs) trained on two-dimensional slices of axial T2-weighted fast spin-echo and T2-weighted fluid attenuated inversion recovery MRI images. The model, incorporating a degree-3 polynomial ensemble, achieved an $R^{2}$ of 0.816 on the testing set. Images were acquired at the level of the anterior commissure and the frontal horns of the lateral ventricles. Residual analysis was performed to assess its potential as a biomarker for five ICD-coded conditions: hypertension (HTN), diabetes mellitus (DM), mild traumatic brain injury (mTBI), illicit substance abuse/dependence (SAD), and alcohol abuse/dependence (AAD). Residuals grouped by the number of ICD-coded conditions demonstrated different trends that were statistically significant ($p = 0.002$), suggesting a relationship between disease states and predicted brain age. This association was particularly pronounced in patients over 49 years, where negative residuals (indicating advanced brain aging) correlated with the presence of multiple ICD codes. These findings support the potential of residuals as biomarkers for detecting latent health conditions.
☆ Towards Early Prediction of Self-Supervised Speech Model Performance
In Self-Supervised Learning (SSL), pre-training and evaluation are resource intensive. In the speech domain, current indicators of the quality of SSL models during pre-training, such as the loss, do not correlate well with downstream performance. Consequently, it is often difficult to gauge the final downstream performance in a cost efficient manner during pre-training. In this work, we propose unsupervised efficient methods that give insights into the quality of the pre-training of SSL speech models, namely, measuring the cluster quality and rank of the embeddings of the SSL model. Results show that measures of cluster quality and rank correlate better with downstream performance than the pre-training loss with only one hour of unlabeled audio, reducing the need for GPU hours and labeled data in SSL model evaluation.
☆ Model Inversion in Split Learning for Personalized LLMs: New Insights from Information Bottleneck Theory
Personalized Large Language Models (LLMs) have become increasingly prevalent, showcasing the impressive capabilities of models like GPT-4. This trend has also catalyzed extensive research on deploying LLMs on mobile devices. Feasible approaches for such edge-cloud deployment include using split learning. However, previous research has largely overlooked the privacy leakage associated with intermediate representations transmitted from devices to servers. This work is the first to identify model inversion attacks in the split learning framework for LLMs, emphasizing the necessity of secure defense. For the first time, we introduce mutual information entropy to understand the information propagation of Transformer-based LLMs and assess privacy attack performance for LLM blocks. To address the issue of representations being sparser and containing less information than embeddings, we propose a two-stage attack system in which the first part projects representations into the embedding space, and the second part uses a generative model to recover text from these embeddings. This design breaks down the complexity and achieves attack scores of 38%-75% in various scenarios, with an over 60% improvement over the SOTA. This work comprehensively highlights the potential privacy risks during the deployment of personalized LLMs on the edge side.
comment: 8 pages
☆ Soft regression trees: a model variant and a decomposition training algorithm
Decision trees are widely used for classification and regression tasks in a variety of application fields due to their interpretability and good accuracy. During the past decade, growing attention has been devoted to globally optimized decision trees with deterministic or soft splitting rules at branch nodes, which are trained by optimizing the error function over all the tree parameters. In this work, we propose a new variant of soft multivariate regression trees (SRTs) where, for every input vector, the prediction is defined as the linear regression associated to a single leaf node, namely, the leaf node obtained by routing the input vector from the root along the branches with higher probability. SRTs exhibit the conditional computational property, i.e., each prediction depends on a small number of nodes (parameters), and our nonlinear optimization formulation for training them is amenable to decomposition. After showing a universal approximation result for SRTs, we present a decomposition training algorithm including a clustering-based initialization procedure and a heuristic for reassigning the input vectors along the tree. Under mild assumptions, we establish asymptotic convergence guarantees. Experiments on 15 wellknown datasets indicate that our SRTs and decomposition algorithm yield higher accuracy and robustness compared with traditional soft regression trees trained using the nonlinear optimization formulation of Blanquero et al., and a significant reduction in training times as well as a slightly better average accuracy compared with the mixed-integer optimization approach of Bertsimas and Dunn. We also report a comparison with the Random Forest ensemble method.
☆ Encoded Spatial Attribute in Multi-Tier Federated Learning
This research presents an Encoded Spatial Multi-Tier Federated Learning approach for a comprehensive evaluation of aggregated models for geospatial data. In the client tier, encoding spatial information is introduced to better predict the target outcome. The research aims to assess the performance of these models across diverse datasets and spatial attributes, highlighting variations in predictive accuracy. Using evaluation metrics such as accuracy, our research reveals insights into the complexities of spatial granularity and the challenges of capturing underlying patterns in the data. We extended the scope of federated learning (FL) by having multi-tier along with the functionality of encoding spatial attributes. Our N-tier FL approach used encoded spatial data to aggregate in different tiers. We obtained multiple models that predicted the different granularities of spatial data. Our findings underscore the need for further research to improve predictive accuracy and model generalization, with potential avenues including incorporating additional features, refining model architectures, and exploring alternative modeling approaches. Our experiments have several tiers representing different levels of spatial aspects. We obtained accuracy of 75.62% and 89.52% for the global model without having to train the model using the data constituted with the designated tier. The research also highlights the importance of the proposed approach in real-time applications.
comment: IEEE ICCE 2025
☆ DiffuSETS: 12-lead ECG Generation Conditioned on Clinical Text Reports and Patient-Specific Information
Heart disease remains a significant threat to human health. As a non-invasive diagnostic tool, the electrocardiogram (ECG) is one of the most widely used methods for cardiac screening. However, the scarcity of high-quality ECG data, driven by privacy concerns and limited medical resources, creates a pressing need for effective ECG signal generation. Existing approaches for generating ECG signals typically rely on small training datasets, lack comprehensive evaluation frameworks, and overlook potential applications beyond data augmentation. To address these challenges, we propose DiffuSETS, a novel framework capable of generating ECG signals with high semantic alignment and fidelity. DiffuSETS accepts various modalities of clinical text reports and patient-specific information as inputs, enabling the creation of clinically meaningful ECG signals. Additionally, to address the lack of standardized evaluation in ECG generation, we introduce a comprehensive benchmarking methodology to assess the effectiveness of generative models in this domain. Our model achieve excellent results in tests, proving its superiority in the task of ECG generation. Furthermore, we showcase its potential to mitigate data scarcity while exploring novel applications in cardiology education and medical knowledge discovery, highlighting the broader impact of our work.
☆ Q-MAML: Quantum Model-Agnostic Meta-Learning for Variational Quantum Algorithms AAAI 25
In the Noisy Intermediate-Scale Quantum (NISQ) era, using variational quantum algorithms (VQAs) to solve optimization problems has become a key application. However, these algorithms face significant challenges, such as choosing an effective initial set of parameters and the limited quantum processing time that restricts the number of optimization iterations. In this study, we introduce a new framework for optimizing parameterized quantum circuits (PQCs) that employs a classical optimizer, inspired by Model-Agnostic Meta-Learning (MAML) technique. This approach aim to achieve better parameter initialization that ensures fast convergence. Our framework features a classical neural network, called Learner}, which interacts with a PQC using the output of Learner as an initial parameter. During the pre-training phase, Learner is trained with a meta-objective based on the quantum circuit cost function. In the adaptation phase, the framework requires only a few PQC updates to converge to a more accurate value, while the learner remains unchanged. This method is highly adaptable and is effectively extended to various Hamiltonian optimization problems. We validate our approach through experiments, including distribution function mapping and optimization of the Heisenberg XYZ Hamiltonian. The result implies that the Learner successfully estimates initial parameters that generalize across the problem space, enabling fast adaptation.
comment: 8 pages, 8 figures, to be published in AAAI 25
☆ Discovery of sustainable energy materials via the machine-learned material space
Does a machine learning model actually gain an understanding of the material space? We answer this question in the affirmative on the example of the OptiMate model, a graph attention network trained to predict the optical properties of semiconductors and insulators. By applying the UMAP dimensionality reduction technique to its latent embeddings, we demonstrate that the model captures a nuanced and interpretable representation of the materials space, reflecting chemical and physical principles, without any user-induced bias. This enables clustering of almost 10,000 materials based on optical properties and chemical similarities. Beyond this understanding, we demonstrate how the learned material space can be used to identify more sustainable alternatives to critical materials in energy-related technologies, such as photovoltaics. These findings demonstrate the dual utility of machine learning models in materials science: Accurately predicting material properties while providing insights into the underlying materials space. The approach demonstrates the broader potential of leveraging learned materials spaces for the discovery and design of materials for diverse applications, and is easily applicable to any state-of-the-art machine learning model.
☆ Text2Playlist: Generating Personalized Playlists from Text on Deezer
The streaming service Deezer heavily relies on the search to help users navigate through its extensive music catalog. Nonetheless, it is primarily designed to find specific items and does not lead directly to a smooth listening experience. We present Text2Playlist, a stand-alone tool that addresses these limitations. Text2Playlist leverages generative AI, music information retrieval and recommendation systems to generate query-specific and personalized playlists, successfully deployed at scale.
☆ EDNet: Edge-Optimized Small Target Detection in UAV Imagery -- Faster Context Attention, Better Feature Fusion, and Hardware Acceleration
Detecting small targets in drone imagery is challenging due to low resolution, complex backgrounds, and dynamic scenes. We propose EDNet, a novel edge-target detection framework built on an enhanced YOLOv10 architecture, optimized for real-time applications without post-processing. EDNet incorporates an XSmall detection head and a Cross Concat strategy to improve feature fusion and multi-scale context awareness for detecting tiny targets in diverse environments. Our unique C2f-FCA block employs Faster Context Attention to enhance feature extraction while reducing computational complexity. The WIoU loss function is employed for improved bounding box regression. With seven model sizes ranging from Tiny to XL, EDNet accommodates various deployment environments, enabling local real-time inference and ensuring data privacy. Notably, EDNet achieves up to a 5.6% gain in mAP@50 with significantly fewer parameters. On an iPhone 12, EDNet variants operate at speeds ranging from 16 to 55 FPS, providing a scalable and efficient solution for edge-based object detection in challenging drone imagery. The source code and pre-trained models are available at: https://github.com/zsniko/EDNet.
comment: Accepted in 21st IEEE International Conference on Ubiquitous Intelligence and Computing (UIC 2024) https://www.ieee-smart-world.org/2024/uic
☆ VideoRAG: Retrieval-Augmented Generation over Video Corpus
Retrieval-Augmented Generation (RAG) is a powerful strategy to address the issue of generating factually incorrect outputs in foundation models by retrieving external knowledge relevant to queries and incorporating it into their generation process. However, existing RAG approaches have primarily focused on textual information, with some recent advancements beginning to consider images, and they largely overlook videos, a rich source of multimodal knowledge capable of representing events, processes, and contextual details more effectively than any other modality. While a few recent studies explore the integration of videos in the response generation process, they either predefine query-associated videos without retrieving them according to queries, or convert videos into the textual descriptions without harnessing their multimodal richness. To tackle these, we introduce VideoRAG, a novel framework that not only dynamically retrieves relevant videos based on their relevance with queries but also utilizes both visual and textual information of videos in the output generation. Further, to operationalize this, our method revolves around the recent advance of Large Video Language Models (LVLMs), which enable the direct processing of video content to represent it for retrieval and seamless integration of the retrieved videos jointly with queries. We experimentally validate the effectiveness of VideoRAG, showcasing that it is superior to relevant baselines.
☆ Collaborative Content Moderation in the Fediverse
The Fediverse, a group of interconnected servers providing a variety of interoperable services (e.g. micro-blogging in Mastodon) has gained rapid popularity. This sudden growth, partly driven by Elon Musk's acquisition of Twitter, has created challenges for administrators though. This paper focuses on one particular challenge: content moderation, e.g. the need to remove spam or hate speech. While centralized platforms like Facebook and Twitter rely on automated tools for moderation, their dependence on massive labeled datasets and specialized infrastructure renders them impractical for decentralized, low-resource settings like the Fediverse. In this work, we design and evaluate FedMod, a collaborative content moderation system based on federated learning. Our system enables servers to exchange parameters of partially trained local content moderation models with similar servers, creating a federated model shared among collaborating servers. FedMod demonstrates robust performance on three different content moderation tasks: harmful content detection, bot content detection, and content warning assignment, achieving average per-server macro-F1 scores of 0.71, 0.73, and 0.58, respectively.
☆ A Neighbor-based Approach to Pitch Ownership Models in Soccer
Pitch ownership models allow many types of analysis in soccer and provide valuable assistance to tactical analysts in understanding the game's dynamics. The novelty they provide over event-based analysis is that tracking data incorporates context that event-based data does not possess, like player positioning. This paper proposes a novel approach to building pitch ownership models in soccer games using the K-Nearest Neighbors (KNN) algorithm. Our approach provides a fast inference mechanism that can model different approaches to pitch control using the same algorithm. Despite its flexibility, it uses only three hyperparameters to tune the model, facilitating the tuning process for different player skill levels. The flexibility of the approach allows for the emulation of different methods available in the literature by adjusting a small number of parameters, including adjusting for different levels of uncertainty. In summary, the proposed model provides a new and more flexible strategy for building pitch ownership models, extending beyond just replicating existing algorithms, and can provide valuable insights for tactical analysts and open up new avenues for future research. We thoroughly visualize several examples demonstrating the presented models' strengths and weaknesses. The code is available at github.com/nvsclub/KNNPitchControl.
☆ Neural Network Verification is a Programming Language Challenge
Neural network verification is a new and rapidly developing field of research. So far, the main priority has been establishing efficient verification algorithms and tools, while proper support from the programming language perspective has been considered secondary or unimportant. Yet, there is mounting evidence that insights from the programming language community may make a difference in the future development of this domain. In this paper, we formulate neural network verification challenges as programming language challenges and suggest possible future solutions.
comment: Accepted at ESOP 2025, European Symposium on Programming Languages
☆ MRI Patterns of the Hippocampus and Amygdala for Predicting Stages of Alzheimer's Progression: A Minimal Feature Machine Learning Framework
Alzheimer's disease (AD) progresses through distinct stages, from early mild cognitive impairment (EMCI) to late mild cognitive impairment (LMCI) and eventually to AD. Accurate identification of these stages, especially distinguishing LMCI from EMCI, is crucial for developing pre-dementia treatments but remains challenging due to subtle and overlapping imaging features. This study proposes a minimal-feature machine learning framework that leverages structural MRI data, focusing on the hippocampus and amygdala as regions of interest. The framework addresses the curse of dimensionality through feature selection, utilizes region-specific voxel information, and implements innovative data organization to enhance classification performance by reducing noise. The methodology integrates dimensionality reduction techniques such as PCA and t-SNE with state-of-the-art classifiers, achieving the highest accuracy of 88.46%. This framework demonstrates the potential for efficient and accurate staging of AD progression while providing valuable insights for clinical applications.
☆ Annealing Machine-assisted Learning of Graph Neural Network for Combinatorial Optimization NeurIPS 2024
While Annealing Machines (AM) have shown increasing capabilities in solving complex combinatorial problems, positioning themselves as a more immediate alternative to the expected advances of future fully quantum solutions, there are still scaling limitations. In parallel, Graph Neural Networks (GNN) have been recently adapted to solve combinatorial problems, showing competitive results and potentially high scalability due to their distributed nature. We propose a merging approach that aims at retaining both the accuracy exhibited by AMs and the representational flexibility and scalability of GNNs. Our model considers a compression step, followed by a supervised interaction where partial solutions obtained from the AM are used to guide local GNNs from where node feature representations are obtained and combined to initialize an additional GNN-based solver that handles the original graph's target problem. Intuitively, the AM can solve the combinatorial problem indirectly by infusing its knowledge into the GNN. Experiments on canonical optimization problems show that the idea is feasible, effectively allowing the AM to solve size problems beyond its original limits.
comment: Second Workshop on Machine Learning with New Compute Paradigms at NeurIPS 2024 (MLNCP 2024)
☆ "Cause" is Mechanistic Narrative within Scientific Domains: An Ordinary Language Philosophical Critique of "Causal Machine Learning"
Causal Learning has emerged as a major theme of AI in recent years, promising to use special techniques to reveal the true nature of cause and effect in a number of important domains. We consider the Epistemology of learning and recognizing true cause and effect phenomena. Through thought exercises on the customary use of the word ''cause'', especially in scientific domains, we investigate what, in practice, constitutes a valid causal claim. We recognize the word's uses across scientific domains in disparate form but consistent function within the scientific paradigm. We highlight fundamental distinctions of practice that can be performed in the natural and social sciences, highlight the importance of many systems of interest being open and irreducible and identify the important notion of Hermeneutic knowledge for social science inquiry. We posit that the distinct properties require that definitive causal claims can only come through an agglomeration of consistent evidence across multiple domains and levels of abstraction, such as empirical, physiological, biochemical, etc. We present Cognitive Science as an exemplary multi-disciplinary field providing omnipresent opportunity for such a Research Program, and highlight the main general modes of practice of scientific inquiry that can adequately merge, rather than place as incorrigibly conflictual, multi-domain multi-abstraction scientific practices and language games.
☆ Orthogonal projection-based regularization for efficient model augmentation
Deep-learning-based nonlinear system identification has shown the ability to produce reliable and highly accurate models in practice. However, these black-box models lack physical interpretability, and often a considerable part of the learning effort is spent on capturing already expected/known behavior due to first-principles-based understanding of some aspects of the system. A potential solution is to integrate prior physical knowledge directly into the model structure, combining the strengths of physics-based modeling and deep-learning-based identification. The most common approach is to use an additive model augmentation structure, where the physics-based and the machine-learning (ML) components are connected in parallel. However, such models are overparametrized, training them is challenging, potentially causing the physics-based part to lose interpretability. To overcome this challenge, this paper proposes an orthogonal projection-based regularization technique to enhance parameter learning, convergence, and even model accuracy in learning-based augmentation of nonlinear baseline models.
comment: Submitted to L4DC 2025
☆ Fine-tuning is Not Fine: Mitigating Backdoor Attacks in GNNs with Limited Clean Data
Graph Neural Networks (GNNs) have achieved remarkable performance through their message-passing mechanism. However, recent studies have highlighted the vulnerability of GNNs to backdoor attacks, which can lead the model to misclassify graphs with attached triggers as the target class. The effectiveness of recent promising defense techniques, such as fine-tuning or distillation, is heavily contingent on having comprehensive knowledge of the sufficient training dataset. Empirical studies have shown that fine-tuning methods require a clean dataset of 20% to reduce attack accuracy to below 25%, while distillation methods require a clean dataset of 15%. However, obtaining such a large amount of clean data is commonly impractical. In this paper, we propose a practical backdoor mitigation framework, denoted as GRAPHNAD, which can capture high-quality intermediate-layer representations in GNNs to enhance the distillation process with limited clean data. To achieve this, we address the following key questions: How to identify the appropriate attention representations in graphs for distillation? How to enhance distillation with limited data? By adopting the graph attention transfer method, GRAPHNAD can effectively align the intermediate-layer attention representations of the backdoored model with that of the teacher model, forcing the backdoor neurons to transform into benign ones. Besides, we extract the relation maps from intermediate-layer transformation and enforce the relation maps of the backdoored model to be consistent with that of the teacher model, thereby ensuring model accuracy while further reducing the influence of backdoors. Extensive experimental results show that by fine-tuning a teacher model with only 3% of the clean data, GRAPHNAD can reduce the attack success rate to below 5%.
☆ Diffusion Models for Smarter UAVs: Decision-Making and Modeling
Unmanned Aerial Vehicles (UAVs) are increasingly adopted in modern communication networks. However, challenges in decision-making and digital modeling continue to impede their rapid advancement. Reinforcement Learning (RL) algorithms face limitations such as low sample efficiency and limited data versatility, further magnified in UAV communication scenarios. Moreover, Digital Twin (DT) modeling introduces substantial decision-making and data management complexities. RL models, often integrated into DT frameworks, require extensive training data to achieve accurate predictions. In contrast to traditional approaches that focus on class boundaries, Diffusion Models (DMs), a new class of generative AI, learn the underlying probability distribution from the training data and can generate trustworthy new patterns based on this learned distribution. This paper explores the integration of DMs with RL and DT to effectively address these challenges. By combining the data generation capabilities of DMs with the decision-making framework of RL and the modeling accuracy of DT, the integration improves the adaptability and real-time performance of UAV communication. Moreover, the study shows how DMs can alleviate data scarcity, improve policy networks, and optimize dynamic modeling, providing a robust solution for complex UAV communication scenarios.
comment: 7 pages, 2 figures
☆ AdaPRL: Adaptive Pairwise Regression Learning with Uncertainty Estimation for Universal Regression Tasks
Current deep regression models usually learn in point-wise way that treat each sample as an independent input, neglecting the relative ordering among different data. Consequently, the regression model could neglect the data 's interrelationships, potentially resulting in suboptimal performance. Moreover, the existence of aleatoric uncertainty in the training data may drive the model to capture non-generalizable patterns, contributing to increased overfitting. To address these issues, we propose a novel adaptive pairwise learning framework (AdaPRL) for regression tasks which leverages the relative differences between data points and integrates with deep probabilistic models to quantify the uncertainty associated with the predictions. Additionally, we adapt AdaPRL for applications in multi-task learning and multivariate time series forecasting. Extensive experiments with several real-world regression datasets including recommendation systems, age estimation, time series forecasting, natural language understanding, finance, and industry datasets show that AdaPRL is compatible with different backbone networks in various tasks and achieves state-of-the-art performance on the vast majority of tasks, highlighting its notable potential including enhancing prediction accuracy and ranking ability, increasing generalization capability, improving robustness to noisy data, improving resilience to reduced data, and enhancing interpretability, etc.
comment: 22 pages, 11 figures
☆ Alignment without Over-optimization: Training-Free Solution for Diffusion Models
Diffusion models excel in generative tasks, but aligning them with specific objectives while maintaining their versatility remains challenging. Existing fine-tuning methods often suffer from reward over-optimization, while approximate guidance approaches fail to optimize target rewards effectively. Addressing these limitations, we propose a training-free sampling method based on Sequential Monte Carlo (SMC) to sample from the reward-aligned target distribution. Our approach, tailored for diffusion sampling and incorporating tempering techniques, achieves comparable or superior target rewards to fine-tuning methods while preserving diversity and cross-reward generalization. We demonstrate its effectiveness in single-reward optimization, multi-objective scenarios, and online black-box optimization. This work offers a robust solution for aligning diffusion models with diverse downstream objectives without compromising their general capabilities. Code is available at https://github.com/krafton-ai/DAS .
☆ Robust Counterfactual Explanations under Model Multiplicity Using Multi-Objective Optimization
In recent years, explainability in machine learning has gained importance. In this context, counterfactual explanation (CE), which is an explanation method that uses examples, has attracted attention. However, it has been pointed out that CE is not robust when there are multiple machine-learning models. These problems are important when using machine learning to make safe decisions. In this paper, we propose robust CEs that introduce a new viewpoint - Pareto improvement - and a method that uses multi-objective optimization to generate it. To evaluate the proposed method, we conducted experiments using both simulated and actual data. The results demonstrate that the proposed method is robust and useful. We believe that this research will contribute to a wide range of research areas, such as explainability in machine learning, decision-making, and action planning based on machine learning.
comment: 19 pages
☆ Understanding Impact of Human Feedback via Influence Functions
In Reinforcement Learning from Human Feedback (RLHF), it is crucial to learn suitable reward models from human feedback to align large language models (LLMs) with human intentions. However, human feedback can often be noisy, inconsistent, or biased, especially when evaluating complex responses. Such feedback can lead to misaligned reward signals, potentially causing unintended side effects during the RLHF process. To address these challenges, we explore the use of influence functions to measure the impact of human feedback on the performance of reward models. We propose a compute-efficient approximation method that enables the application of influence functions to LLM-based reward models and large-scale preference datasets. In our experiments, we demonstrate two key applications of influence functions: (1) detecting common forms of labeler bias in human feedback datasets and (2) guiding labelers to refine their strategies to align more closely with expert feedback. By quantifying the impact of human feedback on reward models, we believe that influence functions can enhance feedback interpretability and contribute to scalable oversight in RLHF, helping labelers provide more accurate and consistent feedback. Source code is available at https://github.com/mintaywon/IF_RLHF
comment: Source code: https://github.com/mintaywon/IF_RLHF
☆ STHFL: Spatio-Temporal Heterogeneous Federated Learning
Federated learning is a new framework that protects data privacy and allows multiple devices to cooperate in training machine learning models. Previous studies have proposed multiple approaches to eliminate the challenges posed by non-iid data and inter-domain heterogeneity issues. However, they ignore the \textbf{spatio-temporal} heterogeneity formed by different data distributions of increasing task data in the intra-domain. Moreover, the global data is generally a long-tailed distribution rather than assuming the global data is balanced in practical applications. To tackle the \textbf{spatio-temporal} dilemma, we propose a novel setting named \textbf{Spatio-Temporal Heterogeneity} Federated Learning (STHFL). Specially, the Global-Local Dynamic Prototype (GLDP) framework is designed for STHFL. In GLDP, the model in each client contains personalized layers which can dynamically adapt to different data distributions. For long-tailed data distribution, global prototypes are served as complementary knowledge for the training on classes with few samples in clients without leaking privacy. As tasks increase in clients, the knowledge of local prototypes generated in previous tasks guides for training in the current task to solve catastrophic forgetting. Meanwhile, the global-local prototypes are updated through the moving average method after training local prototypes in clients. Finally, we evaluate the effectiveness of GLDP, which achieves remarkable results compared to state-of-the-art methods in STHFL scenarios.
☆ rmlnomogram: An R package to construct an explainable nomogram for any machine learning algorithms
Background: Current nomogram can only be created for regression algorithm. Providing nomogram for any machine learning (ML) algorithms may accelerate model deployment in clinical settings or improve model availability. We developed an R package and web application to construct nomogram with model explainability of any ML algorithms. Methods: We formulated a function to transform an ML prediction model into a nomogram, requiring datasets with: (1) all possible combinations of predictor values; (2) the corresponding outputs of the model; and (3) the corresponding explainability values for each predictor (optional). Web application was also created. Results: Our R package could create 5 types of nomograms for categorical predictors and binary outcome without probability (1), categorical predictors and binary outcome with probability (2) or continuous outcome (3), and categorical with single numerical predictors and binary outcome with probability (4) or continuous outcome (5). Respectively, the first and remaining types optimally allowed maximum 15 and 5 predictors with maximum 3,200 combinations. Web application is provided with such limits. The explainability values were possible for types 2 to 5. Conclusions: Our R package and web application could construct nomogram with model explainability of any ML algorithms using a fair number of predictors.
comment: 16 pages, 2 figures, 1 table, 3 equations, 1 algorithm, 4 code snippets
☆ Halal or Not: Knowledge Graph Completion for Predicting Cultural Appropriateness of Daily Products
The growing demand for halal cosmetic products has exposed significant challenges, especially in Muslim-majority countries. Recently, various machine learning-based strategies, e.g., image-based methods, have shown remarkable success in predicting the halal status of cosmetics. However, these methods mainly focus on analyzing the discrete and specific ingredients within separate cosmetics, which ignore the high-order and complex relations between cosmetics and ingredients. To address this problem, we propose a halal cosmetic recommendation framework, namely HaCKG, that leverages a knowledge graph of cosmetics and their ingredients to explicitly model and capture the relationships between cosmetics and their components. By representing cosmetics and ingredients as entities within the knowledge graph, HaCKG effectively learns the high-order and complex relations between entities, offering a robust method for predicting halal status. Specifically, we first construct a cosmetic knowledge graph representing the relations between various cosmetics, ingredients, and their properties. We then propose a pre-trained relational graph attention network model with residual connections to learn the structural relation between entities in the knowledge graph. The pre-trained model is then fine-tuned on downstream cosmetic data to predict halal status. Extensive experiments on the cosmetic dataset over halal prediction tasks demonstrate the superiority of our model over state-of-the-art baselines.
comment: 10 pages
☆ Development and Comparison of Model-Based and Data-Driven Approaches for the Prediction of the Mechanical Properties of Lattice Structures
Lattice structures have great potential for several application fields ranging from medical and tissue engineering to aeronautical one. Their development is further speeded up by the continuing advances in additive manufacturing technologies that allow to overcome issues typical of standard processes and to propose tailored designs. However, the design of lattice structures is still challenging since their properties are considerably affected by numerous factors. The present paper aims to propose, discuss, and compare various modeling approaches to describe, understand, and predict the correlations between the mechanical properties and the void volume fraction of different types of lattice structures fabricated by fused deposition modeling 3D printing. Particularly, four approaches are proposed: (i) a simplified analytical model; (ii) a semi-empirical model combining analytical equations with experimental correction factors; (iii) an artificial neural network trained on experimental data; (iv) numerical simulations by finite element analyses. The comparison among the various approaches, and with experimental data, allows to identify the performances, advantages, and disadvantages of each approach, thus giving important guidelines for choosing the right design methodology based on the needs and available data.
comment: This work was funded by the European Union ERC CoDe4Bio Grant ID 101039467 under the funding programme Horizon Europe
☆ CognoSpeak: an automatic, remote assessment of early cognitive decline in real-world conversational speech SC
The early signs of cognitive decline are often noticeable in conversational speech, and identifying those signs is crucial in dealing with later and more serious stages of neurodegenerative diseases. Clinical detection is costly and time-consuming and although there has been recent progress in the automatic detection of speech-based cues, those systems are trained on relatively small databases, lacking detailed metadata and demographic information. This paper presents CognoSpeak and its associated data collection efforts. CognoSpeak asks memory-probing long and short-term questions and administers standard cognitive tasks such as verbal and semantic fluency and picture description using a virtual agent on a mobile or web platform. In addition, it collects multimodal data such as audio and video along with a rich set of metadata from primary and secondary care, memory clinics and remote settings like people's homes. Here, we present results from 126 subjects whose audio was manually transcribed. Several classic classifiers, as well as large language model-based classifiers, have been investigated and evaluated across the different types of prompts. We demonstrate a high level of performance; in particular, we achieved an F1-score of 0.873 using a DistilBERT model to discriminate people with cognitive impairment (dementia and people with mild cognitive impairment (MCI)) from healthy volunteers using the memory responses, fluency tasks and cookie theft picture description. CognoSpeak is an automatic, remote, low-cost, repeatable, non-invasive and less stressful alternative to existing clinical cognitive assessments.
comment: This paper has been accepted for publication in IEEE SSCI 2025. Copyright belongs to IEEE
☆ Covariate Dependent Mixture of Bayesian Networks
Learning the structure of Bayesian networks from data provides insights into underlying processes and the causal relationships that generate the data, but its usefulness depends on the homogeneity of the data population, a condition often violated in real-world applications. In such cases, using a single network structure for inference can be misleading, as it may not capture sub-population differences. To address this, we propose a novel approach of modelling a mixture of Bayesian networks where component probabilities depend on individual characteristics. Our method identifies both network structures and demographic predictors of sub-population membership, aiding personalised interventions. We evaluate our method through simulations and a youth mental health case study, demonstrating its potential to improve tailored interventions in health, education, and social policy.
☆ LLVD: LSTM-based Explicit Motion Modeling in Latent Space for Blind Video Denoising
Video restoration plays a pivotal role in revitalizing degraded video content by rectifying imperfections caused by various degradations introduced during capturing (sensor noise, motion blur, etc.), saving/sharing (compression, resizing, etc.) and editing. This paper introduces a novel algorithm designed for scenarios where noise is introduced during video capture, aiming to enhance the visual quality of videos by reducing unwanted noise artifacts. We propose the Latent space LSTM Video Denoiser (LLVD), an end-to-end blind denoising model. LLVD uniquely combines spatial and temporal feature extraction, employing Long Short Term Memory (LSTM) within the encoded feature domain. This integration of LSTM layers is crucial for maintaining continuity and minimizing flicker in the restored video. Moreover, processing frames in the encoded feature domain significantly reduces computations, resulting in a very lightweight architecture. LLVD's blind nature makes it versatile for real, in-the-wild denoising scenarios where prior information about noise characteristics is not available. Experiments reveal that LLVD demonstrates excellent performance for both synthetic and captured noise. Specifically, LLVD surpasses the current State-Of-The-Art (SOTA) in RAW denoising by 0.3dB, while also achieving a 59\% reduction in computational complexity.
☆ ELENA: Epigenetic Learning through Evolved Neural Adaptation
Despite the success of metaheuristic algorithms in solving complex network optimization problems, they often struggle with adaptation, especially in dynamic or high-dimensional search spaces. Traditional approaches can become stuck in local optima, leading to inefficient exploration and suboptimal solutions. Most of the widely accepted advanced algorithms do well either on highly complex or smaller search spaces due to the lack of adaptation. To address these limitations, we present ELENA (Epigenetic Learning through Evolved Neural Adaptation), a new evolutionary framework that incorporates epigenetic mechanisms to enhance the adaptability of the core evolutionary approach. ELENA leverages compressed representation of learning parameters improved dynamically through epigenetic tags that serve as adaptive memory. Three epigenetic tags (mutation resistance, crossover affinity, and stability score) assist with guiding solution space search, facilitating a more intelligent hypothesis landscape exploration. To assess the framework performance, we conduct experiments on three critical network optimization problems: the Traveling Salesman Problem (TSP), the Vehicle Routing Problem (VRP), and the Maximum Clique Problem (MCP). Experiments indicate that ELENA achieves competitive results, often surpassing state-of-the-art methods on network optimization tasks.
comment: 15 pages, 6 figures, 4 tables, 2 algorithms
☆ Diving Deep: Forecasting Sea Surface Temperatures and Anomalies ECML
This overview paper details the findings from the Diving Deep: Forecasting Sea Surface Temperatures and Anomalies Challenge at the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD) 2024. The challenge focused on the data-driven predictability of global sea surface temperatures (SSTs), a key factor in climate forecasting, ecosystem management, fisheries management, and climate change monitoring. The challenge involved forecasting SST anomalies (SSTAs) three months in advance using historical data and included a special task of predicting SSTAs nine months ahead for the Baltic Sea. Participants utilized various machine learning approaches to tackle the task, leveraging data from ERA5. This paper discusses the methodologies employed, the results obtained, and the lessons learned, offering insights into the future of climate-related predictive modeling.
comment: The paper contains 9 pages for the main text and 10 pages including References. 5 figures. Discovery Track, European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD) 2024
☆ Element-wise Attention Is All You Need
The self-attention (SA) mechanism has demonstrated superior performance across various domains, yet it suffers from substantial complexity during both training and inference. The next-generation architecture, aiming at retaining the competitive performance of SA while achieving low-cost inference and efficient long-sequence training, primarily focuses on three approaches: linear attention, linear RNNs, and state space models. Although these approaches achieve reduced complexity than SA, they all have built-in performance degradation factors, such as diminished “spikiness” and compression of historical information. In contrast to these approaches, we propose a novel element-wise attention mechanism, which uses the element-wise squared Euclidean distance, instead of the dot product operation, to compute similarity and approximates the quadratic complexity term $\exp(q_{ic}k_{jc})$ with a Taylor polynomial. This design achieves remarkable efficiency: during training, the element-wise attention has a complexity of $\mathcal{O}(tLD)$, making long-sequence training both computationally and memory efficient, where $L$ is the sequence length, $D$ is the feature dimension, and $t$ is the highest order of the polynomial; during inference, it can be reformulated as recurrent neural networks, achieving a inference complexity of $\mathcal{O}(tD)$. Furthermore, the element-wise attention circumvents the performance degradation factors present in these approaches and achieves performance comparable to SA in both causal and non-causal forms.
☆ Enabling Scalable Oversight via Self-Evolving Critic
Despite their remarkable performance, the development of Large Language Models (LLMs) faces a critical challenge in scalable oversight: providing effective feedback for tasks where human evaluation is difficult or where LLMs outperform humans. While there is growing interest in using LLMs for critique, current approaches still rely on human annotations or more powerful models, leaving the issue of enhancing critique capabilities without external supervision unresolved. We introduce SCRIT (Self-evolving CRITic), a framework that enables genuine self-evolution of critique abilities. Technically, SCRIT self-improves by training on synthetic data, generated by a contrastive-based self-critic that uses reference solutions for step-by-step critique, and a self-validation mechanism that ensures critique quality through correction outcomes. Implemented with Qwen2.5-72B-Instruct, one of the most powerful LLMs, SCRIT achieves up to a 10.3\% improvement on critique-correction and error identification benchmarks. Our analysis reveals that SCRIT's performance scales positively with data and model size, outperforms alternative approaches, and benefits critically from its self-validation component.
☆ Multiagent Finetuning: Self Improvement with Diverse Reasoning Chains
Large language models (LLMs) have achieved remarkable performance in recent years but are fundamentally limited by the underlying training data. To improve models beyond the training data, recent works have explored how LLMs can be used to generate synthetic data for autonomous self-improvement. However, successive steps of self-improvement can reach a point of diminishing returns. In this work, we propose a complementary approach towards self-improvement where finetuning is applied to a multiagent society of language models. A group of language models, all starting from the same base model, are independently specialized by updating each one using data generated through multiagent interactions among the models. By training each model on independent sets of data, we illustrate how this approach enables specialization across models and diversification over the set of models. As a result, our overall system is able to preserve diverse reasoning chains and autonomously improve over many more rounds of fine-tuning than single-agent self-improvement methods. We quantitatively illustrate the efficacy of the approach across a wide suite of reasoning tasks.
comment: 22 pages, 13 figures, 7 tables; Project page at https://llm-multiagent-ft.github.io/
☆ EXION: Exploiting Inter- and Intra-Iteration Output Sparsity for Diffusion Models HPCA 2025
Over the past few years, diffusion models have emerged as novel AI solutions, generating diverse multi-modal outputs from text prompts. Despite their capabilities, they face challenges in computing, such as excessive latency and energy consumption due to their iterative architecture. Although prior works specialized in transformer acceleration can be applied, the iterative nature of diffusion models remains unresolved. In this paper, we present EXION, the first SW-HW co-designed diffusion accelerator that solves the computation challenges by exploiting the unique inter- and intra-iteration output sparsity in diffusion models. To this end, we propose two SW-level optimizations. First, we introduce the FFN-Reuse algorithm that identifies and skips redundant computations in FFN layers across different iterations (inter-iteration sparsity). Second, we use a modified eager prediction method that employs two-step leading-one detection to accurately predict the attention score, skipping unnecessary computations within an iteration (intra-iteration sparsity). We also introduce a novel data compaction mechanism named ConMerge, which can enhance HW utilization by condensing and merging sparse matrices into compact forms. Finally, it has a dedicated HW architecture that supports the above sparsity-inducing algorithms, translating high output sparsity into improved energy efficiency and performance. To verify the feasibility of the EXION, we first demonstrate that it has no impact on accuracy in various types of multi-modal diffusion models. We then instantiate EXION in both server- and edge-level settings and compare its performance against GPUs with similar specifications. Our evaluation shows that EXION achieves dramatic improvements in performance and energy efficiency by 3.2-379.3x and 45.1-3067.6x compared to a server GPU and by 42.6-1090.9x and 196.9-4668.2x compared to an edge GPU.
comment: To appear in 2025 IEEE International Symposium on High-Performance Computer Architecture (HPCA 2025)
☆ Facilitate Collaboration between Large Language Model and Task-specific Model for Time Series Anomaly Detection
In anomaly detection, methods based on large language models (LLMs) can incorporate expert knowledge, while task-specific smaller models excel at extracting normal patterns and detecting value fluctuations. Inspired by the human nervous system, where the brain stores expert knowledge and the peripheral nervous system and spinal cord handle specific tasks like withdrawal and knee-jerk reflexes, we propose CoLLaTe, a framework designed to facilitate collaboration between LLMs and task-specific models, leveraging the strengths of both. In this work, we first formulate the collaboration process and identify two key challenges in the collaboration between LLMs and task-specific models: (1) the misalignment between the expression domains of LLMs and smaller models, and (2) error accumulation arising from the predictions of both models. To address these challenges, we introduce two key components in CoLLaTe: the alignment module and the collaborative loss function. Through theoretical analysis and experimental validation, we demonstrate that these components effectively mitigate the identified challenges and achieve better performance than LLM based methods and task-specific smaller model.
☆ TransPlace: Transferable Circuit Global Placement via Graph Neural Network KDD 2025
Global placement, a critical step in designing the physical layout of computer chips, is essential to optimize chip performance. Prior global placement methods optimize each circuit design individually from scratch. Their neglect of transferable knowledge limits solution efficiency and chip performance as circuit complexity drastically increases. This study presents TransPlace, a global placement framework that learns to place millions of mixed-size cells in continuous space. TransPlace introduces i) Netlist Graph to efficiently model netlist topology, ii) Cell-flow and relative position encoding to learn SE(2)-invariant representation, iii) a tailored graph neural network architecture for informed parameterization of placement knowledge, and iv) a two-stage strategy for coarse-to-fine placement. Compared to state-of-the-art placement methods, TransPlace-trained on a few high-quality placements-can place unseen circuits with 1.2x speedup while reducing congestion by 30%, timing by 9%, and wirelength by 5%.
comment: Accepted at KDD 2025
☆ Learning to Measure Quantum Neural Networks ICASSP 2025
The rapid progress in quantum computing (QC) and machine learning (ML) has attracted growing attention, prompting extensive research into quantum machine learning (QML) algorithms to solve diverse and complex problems. Designing high-performance QML models demands expert-level proficiency, which remains a significant obstacle to the broader adoption of QML. A few major hurdles include crafting effective data encoding techniques and parameterized quantum circuits, both of which are crucial to the performance of QML models. Additionally, the measurement phase is frequently overlooked-most current QML models rely on pre-defined measurement protocols that often fail to account for the specific problem being addressed. We introduce a novel approach that makes the observable of the quantum system-specifically, the Hermitian matrix-learnable. Our method features an end-to-end differentiable learning framework, where the parameterized observable is trained alongside the ordinary quantum circuit parameters simultaneously. Using numerical simulations, we show that the proposed method can identify observables for variational quantum circuits that lead to improved outcomes, such as higher classification accuracy, thereby boosting the overall performance of QML models.
comment: Accepted by ICASSP 2025 Workshop: Quantum Machine Learning in Signal Processing and Artificial Intelligence
☆ TAMER: A Test-Time Adaptive MoE-Driven Framework for EHR Representation Learning
We propose TAMER, a Test-time Adaptive MoE-driven framework for EHR Representation learning. TAMER combines a Mixture-of-Experts (MoE) with Test-Time Adaptation (TTA) to address two critical challenges in EHR modeling: patient population heterogeneity and distribution shifts. The MoE component handles diverse patient subgroups, while TTA enables real-time adaptation to evolving health status distributions when new patient samples are introduced. Extensive experiments across four real-world EHR datasets demonstrate that TAMER consistently improves predictive performance for both mortality and readmission risk tasks when combined with diverse EHR modeling backbones. TAMER offers a promising approach for dynamic and personalized EHR-based predictions in practical clinical settings. Code is publicly available at https://github.com/yhzhu99/TAMER.
comment: 8 pages, 3 figures, 7 tables
☆ Evidential Deep Learning for Uncertainty Quantification and Out-of-Distribution Detection in Jet Identification using Deep Neural Networks
Current methods commonly used for uncertainty quantification (UQ) in deep learning (DL) models utilize Bayesian methods which are computationally expensive and time-consuming. In this paper, we provide a detailed study of UQ based on evidential deep learning (EDL) for deep neural network models designed to identify jets in high energy proton-proton collisions at the Large Hadron Collider and explore its utility in anomaly detection. EDL is a DL approach that treats learning as an evidence acquisition process designed to provide confidence (or epistemic uncertainty) about test data. Using publicly available datasets for jet classification benchmarking, we explore hyperparameter optimizations for EDL applied to the challenge of UQ for jet identification. We also investigate how the uncertainty is distributed for each jet class, how this method can be implemented for the detection of anomalies, how the uncertainty compares with Bayesian ensemble methods, and how the uncertainty maps onto latent spaces for the models. Our studies uncover some pitfalls of EDL applied to anomaly detection and a more effective way to quantify uncertainty from EDL as compared with the foundational EDL setup. These studies illustrate a methodological approach to interpreting EDL in jet classification models, providing new insights on how EDL quantifies uncertainty and detects out-of-distribution data which may lead to improved EDL methods for DL models applied to classification tasks.
comment: 38 pages (including references) with 17 figures and 3 tables. Repository: https://github.com/FAIR4HEP/PFIN4UQAD . Submitted to Machine Learning: Science and Technology
☆ A Practical Cross-Layer Approach for ML-Driven Storage Placement in Warehouse-Scale Computers
Storage systems account for a major portion of the total cost of ownership (TCO) of warehouse-scale computers, and thus have a major impact on the overall system's efficiency. Machine learning (ML)-based methods for solving key problems in storage system efficiency, such as data placement, have shown significant promise. However, there are few known practical deployments of such methods. Studying this problem in the context of real-world hyperscale data center deployments at Google, we identify a number of challenges that we believe cause this lack of practical adoption. Specifically, prior work assumes a monolithic model that resides entirely within the storage layer, an unrealistic assumption in real-world data center deployments. We propose a cross-layer approach that moves ML out of the storage system and performs it in the application running on top of it, co-designed with a scheduling algorithm at the storage layer that consumes predictions from these application-level models. This approach combines small, interpretable models with a co-designed heuristic that adapts to different online environments. We build a proof-of-concept of this approach in a production distributed computation framework at Google. Evaluations in a test deployment and large-scale simulation studies using production traces show improvements of as much as 3.47x in TCO savings compared to state of the art baselines. We believe this work represents a significant step towards more practical ML-driven storage placement in warehouse-scale computers.
☆ Efficient Representations for High-Cardinality Categorical Variables in Machine Learning
High\-cardinality categorical variables pose significant challenges in machine learning, particularly in terms of computational efficiency and model interpretability. Traditional one\-hot encoding often results in high\-dimensional sparse feature spaces, increasing the risk of overfitting and reducing scalability. This paper introduces novel encoding techniques, including means encoding, low\-rank encoding, and multinomial logistic regression encoding, to address these challenges. These methods leverage sufficient representations to generate compact and informative embeddings of categorical data. We conduct rigorous theoretical analyses and empirical validations on diverse datasets, demonstrating significant improvements in model performance and computational efficiency compared to baseline methods. The proposed techniques are particularly effective in domains requiring scalable solutions for large datasets, paving the way for more robust and efficient applications in machine learning.
comment: 2025 International Conference on Advanced Machine Learning and Data Science (AMLDS 2025)
☆ Interpretable Enzyme Function Prediction via Residue-Level Detection
Predicting multiple functions labeled with Enzyme Commission (EC) numbers from the enzyme sequence is of great significance but remains a challenge due to its sparse multi-label classification nature, i.e., each enzyme is typically associated with only a few labels out of more than 6000 possible EC numbers. However, existing machine learning algorithms generally learn a fixed global representation for each enzyme to classify all functions, thereby they lack interpretability and the fine-grained information of some function-specific local residue fragments may be overwhelmed. Here we present an attention-based framework, namely ProtDETR (Protein Detection Transformer), by casting enzyme function prediction as a detection problem. It uses a set of learnable functional queries to adaptatively extract different local representations from the sequence of residue-level features for predicting different EC numbers. ProtDETR not only significantly outperforms existing deep learning-based enzyme function prediction methods, but also provides a new interpretable perspective on automatically detecting different local regions for identifying different functions through cross-attentions between queries and residue-level features. Code is available at https://github.com/yangzhao1230/ProtDETR.
☆ Enhancing Unsupervised Graph Few-shot Learning via Set Functions and Optimal Transport KDD2025
Graph few-shot learning has garnered significant attention for its ability to rapidly adapt to downstream tasks with limited labeled data, sparking considerable interest among researchers. Recent advancements in graph few-shot learning models have exhibited superior performance across diverse applications. Despite their successes, several limitations still exist. First, existing models in the meta-training phase predominantly focus on instance-level features within tasks, neglecting crucial set-level features essential for distinguishing between different categories. Second, these models often utilize query sets directly on classifiers trained with support sets containing only a few labeled examples, overlooking potential distribution shifts between these sets and leading to suboptimal performance. Finally, previous models typically require necessitate abundant labeled data from base classes to extract transferable knowledge, which is typically infeasible in real-world scenarios. To address these issues, we propose a novel model named STAR, which leverages Set funcTions and optimAl tRansport for enhancing unsupervised graph few-shot learning. Specifically, STAR utilizes expressive set functions to obtain set-level features in an unsupervised manner and employs optimal transport principles to align the distributions of support and query sets, thereby mitigating distribution shift effects. Theoretical analysis demonstrates that STAR can capture more task-relevant information and enhance generalization capabilities. Empirically, extensive experiments across multiple datasets validate the effectiveness of STAR. Our code can be found here.
comment: KDD2025
☆ Regularized Top-$k$: A Bayesian Framework for Gradient Sparsification
Error accumulation is effective for gradient sparsification in distributed settings: initially-unselected gradient entries are eventually selected as their accumulated error exceeds a certain level. The accumulation essentially behaves as a scaling of the learning rate for the selected entries. Although this property prevents the slow-down of lateral movements in distributed gradient descent, it can deteriorate convergence in some settings. This work proposes a novel sparsification scheme that controls the learning rate scaling of error accumulation. The development of this scheme follows two major steps: first, gradient sparsification is formulated as an inverse probability (inference) problem, and the Bayesian optimal sparsification mask is derived as a maximum-a-posteriori estimator. Using the prior distribution inherited from Top-$k$, we derive a new sparsification algorithm which can be interpreted as a regularized form of Top-$k$. We call this algorithm regularized Top-$k$ (RegTop-$k$). It utilizes past aggregated gradients to evaluate posterior statistics of the next aggregation. It then prioritizes the local accumulated gradient entries based on these posterior statistics. We validate our derivation through numerical experiments. In distributed linear regression, it is observed that while Top-$k$ remains at a fixed distance from the global optimum, RegTop-$k$ converges to the global optimum at significantly higher compression ratios. We further demonstrate the generalization of this observation by employing RegTop-$k$ in distributed training of ResNet-18 on CIFAR-10, where it noticeably outperforms Top-$k$.
♻ ☆ Decentralized Diffusion Models
Large-scale AI model training divides work across thousands of GPUs, then synchronizes gradients across them at each step. This incurs a significant network burden that only centralized, monolithic clusters can support, driving up infrastructure costs and straining power systems. We propose Decentralized Diffusion Models, a scalable framework for distributing diffusion model training across independent clusters or datacenters by eliminating the dependence on a centralized, high-bandwidth networking fabric. Our method trains a set of expert diffusion models over partitions of the dataset, each in full isolation from one another. At inference time, the experts ensemble through a lightweight router. We show that the ensemble collectively optimizes the same objective as a single model trained over the whole dataset. This means we can divide the training burden among a number of "compute islands," lowering infrastructure costs and improving resilience to localized GPU failures. Decentralized diffusion models empower researchers to take advantage of smaller, more cost-effective and more readily available compute like on-demand GPU nodes rather than central integrated systems. We conduct extensive experiments on ImageNet and LAION Aesthetics, showing that decentralized diffusion models FLOP-for-FLOP outperform standard diffusion models. We finally scale our approach to 24 billion parameters, demonstrating that high-quality diffusion models can now be trained with just eight individual GPU nodes in less than a week.
comment: Project webpage: https://decentralizeddiffusion.github.io/
♻ ☆ Beyond Item Dissimilarities: Diversifying by Intent in Recommender Systems
It has become increasingly clear that recommender systems that overly focus on short-term engagement prevents users from exploring diverse interests, ultimately hurting long-term user experience. To tackle this challenge, numerous diversification algorithms have been proposed. These algorithms typically rely on measures of item similarity, aiming to maximize the dissimilarity across items in the final set of recommendations. However, in this work, we demonstrate the benefits of going beyond item-level similarities by utilizing higher-level user understanding--specifically, user intents that persist across multiple interactions--in diversification. Our approach is motivated by the observation that user behaviors on online platforms are largely driven by their underlying intents. Therefore, recommendations should ensure that diverse user intents are accurately represented. While intent has primarily been studied in the context of search, it is less clear how to incorporate real-time dynamic intent predictions into recommender systems. To address this gap, we develop a probabilistic intent-based whole-page diversification framework for the final stage of a recommender system. Starting with a prior belief of user intents, the proposed framework sequentially selects items for each position based on these beliefs and subsequently updates posterior beliefs about the intents. This approach ensures that different user intents are represented on a page, towards optimizing long-term user experience. We experiment with the intent diversification framework on YouTube, the world's largest video recommendation platform, serving billions of users daily. Live experiments on a diverse set of intents show that the proposed framework increases Daily Active Users (DAU) and overall user enjoyment, validating its effectiveness in facilitating long-term planning.
♻ ☆ Guess What I Think: Streamlined EEG-to-Image Generation with Latent Diffusion Models ICASSP 2025
Generating images from brain waves is gaining increasing attention due to its potential to advance brain-computer interface (BCI) systems by understanding how brain signals encode visual cues. Most of the literature has focused on fMRI-to-Image tasks as fMRI is characterized by high spatial resolution. However, fMRI is an expensive neuroimaging modality and does not allow for real-time BCI. On the other hand, electroencephalography (EEG) is a low-cost, non-invasive, and portable neuroimaging technique, making it an attractive option for future real-time applications. Nevertheless, EEG presents inherent challenges due to its low spatial resolution and susceptibility to noise and artifacts, which makes generating images from EEG more difficult. In this paper, we address these problems with a streamlined framework based on the ControlNet adapter for conditioning a latent diffusion model (LDM) through EEG signals. We conduct experiments and ablation studies on popular benchmarks to demonstrate that the proposed method beats other state-of-the-art models. Unlike these methods, which often require extensive preprocessing, pretraining, different losses, and captioning models, our approach is efficient and straightforward, requiring only minimal preprocessing and a few components. The code is available at https://github.com/LuigiSigillo/GWIT.
comment: Accepted at ICASSP 2025
♻ ☆ Two Stage Segmentation of Cervical Tumors using PocketNet
Cervical cancer remains the fourth most common malignancy amongst women worldwide.1 Concurrent chemoradiotherapy (CRT) serves as the mainstay definitive treatment regimen for locally advanced cervical cancers and includes external beam radiation followed by brachytherapy.2 Integral to radiotherapy treatment planning is the routine contouring of both the target tumor at the level of the cervix, associated gynecologic anatomy and the adjacent organs at risk (OARs). However, manual contouring of these structures is both time and labor intensive and associated with known interobserver variability that can impact treatment outcomes. While multiple tools have been developed to automatically segment OARs and the high-risk clinical tumor volume (HR-CTV) using computed tomography (CT) images,3,4,5,6 the development of deep learning-based tumor segmentation tools using routine T2-weighted (T2w) magnetic resonance imaging (MRI) addresses an unmet clinical need to improve the routine contouring of both anatomical structures and cervical cancers, thereby increasing quality and consistency of radiotherapy planning. This work applied a novel deep-learning model (PocketNet) to segment the cervix, vagina, uterus, and tumor(s) on T2w MRI. The performance of the PocketNet architecture was evaluated, when trained on data via 5-fold cross validation. PocketNet achieved a mean Dice-Sorensen similarity coefficient (DSC) exceeding 70% for tumor segmentation and 80% for organ segmentation. These results suggest that PocketNet is robust to variations in contrast protocols, providing reliable segmentation of the regions of interest.
♻ ☆ Benchmark Evaluations, Applications, and Challenges of Large Vision Language Models: A Survey
Multimodal Vision Language Models (VLMs) have emerged as a transformative technology at the intersection of computer vision and natural language processing, enabling machines to perceive and reason about the world through both visual and textual modalities. For example, models such as CLIP, Claude, and GPT-4V demonstrate strong reasoning and understanding abilities on visual and textual data and beat classical single modality vision models on zero-shot classification. Despite their rapid advancements in research and growing popularity in applications, a comprehensive survey of existing studies on VLMs is notably lacking, particularly for researchers aiming to leverage VLMs in their specific domains. To this end, we provide a systematic overview of VLMs in the following aspects: model information of the major VLMs developed over the past five years (2019-2024); the main architectures and training methods of these VLMs; summary and categorization of the popular benchmarks and evaluation metrics of VLMs; the applications of VLMs including embodied agents, robotics, and video generation; the challenges and issues faced by current VLMs such as hallucination, fairness, and safety. Detailed collections including papers and model repository links are listed in https://github.com/zli12321/Awesome-VLM-Papers-And-Models.git.
comment: 35 pages, 3 figures
♻ ☆ Conformalised data synthesis
With the proliferation of increasingly complicated Deep Learning architectures, data synthesis is a highly promising technique to address the demand of data-hungry models. However, reliably assessing the quality of a 'synthesiser' model's output is an open research question with significant associated risks for high-stake domains. To address this challenge, we propose a unique synthesis algorithm that generates data from high-confidence feature space regions based on the Conformal Prediction framework. We support our proposed algorithm with a comprehensive exploration of the core parameter's influence, an in-depth discussion of practical advice, and an extensive empirical evaluation of five benchmark datasets. To show our approach's versatility on ubiquitous real-world challenges, the datasets were carefully selected for their variety of difficult characteristics: low sample count, class imbalance, and non-separability. In all trials, training sets extended with our confident synthesised data performed at least as well as the original set and frequently significantly improved Deep Learning performance by up to 61 percentage points F1-score.
comment: Accepted for publication in the Machine Learning journal special issue "Conformal Prediction and Distribution-Free Uncertainty Quantification"
♻ ☆ Closing the Gap: A User Study on the Real-world Usefulness of AI-powered Vulnerability Detection & Repair in the IDE ICSE 2025
This paper presents the first empirical study of a vulnerability detection and fix tool with professional software developers on real projects that they own. We implemented DeepVulGuard, an IDE-integrated tool based on state-of-the-art detection and fix models, and show that it has promising performance on benchmarks of historic vulnerability data. DeepVulGuard scans code for vulnerabilities (including identifying the vulnerability type and vulnerable region of code), suggests fixes, provides natural-language explanations for alerts and fixes, leveraging chat interfaces. We recruited 17 professional software developers at Microsoft, observed their usage of the tool on their code, and conducted interviews to assess the tool's usefulness, speed, trust, relevance, and workflow integration. We also gathered detailed qualitative feedback on users' perceptions and their desired features. Study participants scanned a total of 24 projects, 6.9k files, and over 1.7 million lines of source code, and generated 170 alerts and 50 fix suggestions. We find that although state-of-the-art AI-powered detection and fix tools show promise, they are not yet practical for real-world use due to a high rate of false positives and non-applicable fixes. User feedback reveals several actionable pain points, ranging from incomplete context to lack of customization for the user's codebase. Additionally, we explore how AI features, including confidence scores, explanations, and chat interaction, can apply to vulnerability detection and fixing. Based on these insights, we offer practical recommendations for evaluating and deploying AI detection and fix models. Our code and data are available at https://doi.org/10.6084/m9.figshare.26367139.
comment: Accepted to ICSE 2025 research track. Camera-ready version with updated acknowledgments
♻ ☆ Atlas: A Novel Pathology Foundation Model by Mayo Clinic, Charité, and Aignostics
Recent advances in digital pathology have demonstrated the effectiveness of foundation models across diverse applications. In this report, we present Atlas, a novel vision foundation model based on the RudolfV approach. Our model was trained on a dataset comprising 1.2 million histopathology whole slide images, collected from two medical institutions: Mayo Clinic and Charit\'e - Universt\"atsmedizin Berlin. Comprehensive evaluations show that Atlas achieves state-of-the-art performance across twenty-one public benchmark datasets, even though it is neither the largest model by parameter count nor by training dataset size.
♻ ☆ Self-supervised video pretraining yields robust and more human-aligned visual representations NeurIPS 2023
Humans learn powerful representations of objects and scenes by observing how they evolve over time. Yet, outside of specific tasks that require explicit temporal understanding, static image pretraining remains the dominant paradigm for learning visual foundation models. We question this mismatch, and ask whether video pretraining can yield visual representations that bear the hallmarks of human perception: generalisation across tasks, robustness to perturbations, and consistency with human judgements. To that end we propose a novel procedure for curating videos, and develop a contrastive framework which learns from the complex transformations therein. This simple paradigm for distilling knowledge from videos, called VITO, yields general representations that far outperform prior video pretraining methods on image understanding tasks, and image pretraining methods on video understanding tasks. Moreover, VITO representations are significantly more robust to natural and synthetic deformations than image-, video-, and adversarially-trained ones. Finally, VITO's predictions are strongly aligned with human judgements, surpassing models that were specifically trained for that purpose. Together, these results suggest that video pretraining could be a simple way of learning unified, robust, and human-aligned representations of the visual world.
comment: Accepted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023)
♻ ☆ The Expressive Power of Graph Neural Networks: A Survey
Graph neural networks (GNNs) are effective machine learning models for many graph-related applications. Despite their empirical success, many research efforts focus on the theoretical limitations of GNNs, i.e., the GNNs expressive power. Early works in this domain mainly focus on studying the graph isomorphism recognition ability of GNNs, and recent works try to leverage the properties such as subgraph counting and connectivity learning to characterize the expressive power of GNNs, which are more practical and closer to real-world. However, no survey papers and open-source repositories comprehensively summarize and discuss models in this important direction. To fill the gap, we conduct a first survey for models for enhancing expressive power under different forms of definition. Concretely, the models are reviewed based on three categories, i.e., Graph feature enhancement, Graph topology enhancement, and GNNs architecture enhancement.
♻ ☆ High-dimensional classification problems with Barron regular boundaries under margin conditions
We prove that a classifier with a Barron-regular decision boundary can be approximated with a rate of high polynomial degree by ReLU neural networks with three hidden layers when a margin condition is assumed. In particular, for strong margin conditions, high-dimensional discontinuous classifiers can be approximated with a rate that is typically only achievable when approximating a low-dimensional smooth function. We demonstrate how these expression rate bounds imply fast-rate learning bounds that are close to $n^{-1}$ where $n$ is the number of samples. In addition, we carry out comprehensive numerical experimentation on binary classification problems with various margins. We study three different dimensions, with the highest dimensional problem corresponding to images from the MNIST data set.
♻ ☆ Theoretical Error Analysis of Entropy Approximation for Gaussian Mixture
Gaussian mixture distributions are commonly employed to represent general probability distributions. Despite the importance of using Gaussian mixtures for uncertainty estimation, the entropy of a Gaussian mixture cannot be calculated analytically. In this paper, we study the approximate entropy represented as the sum of the entropies of unimodal Gaussian distributions with mixing coefficients. This approximation is easy to calculate analytically regardless of dimension, but there is a lack of theoretical guarantees. We theoretically analyze the approximation error between the true and the approximate entropy to reveal when this approximation works effectively. This error is essentially controlled by how far apart each Gaussian component of the Gaussian mixture is. To measure such separation, we introduce the ratios of the distances between the means to the sum of the variances of each Gaussian component of the Gaussian mixture, and we reveal that the error converges to zero as the ratios tend to infinity. In addition, the probabilistic estimate indicates that this convergence situation is more likely to occur in higher-dimensional spaces. Therefore, our results provide a guarantee that this approximation works well for high-dimensional problems, such as neural networks that involve a large number of parameters.
comment: 35 pages, 4 figures
♻ ☆ MARS: A neurosymbolic approach for interpretable drug discovery
Neurosymbolic (NeSy) artificial intelligence describes the combination of logic or rule-based techniques with neural networks. Compared to neural approaches, NeSy methods often possess enhanced interpretability, which is particularly promising for biomedical applications like drug discovery. However, since interpretability is broadly defined, there are no clear guidelines for assessing the biological plausibility of model interpretations. To assess interpretability in the context of drug discovery, we devise a novel prediction task, called drug mechanism-of-action (MoA) deconvolution, with an associated, tailored knowledge graph (KG), MoA-net. We then develop the MoA Retrieval System (MARS), a NeSy approach for drug discovery which leverages logical rules with learned rule weights. Using this interpretable feature alongside domain knowledge, we find that MARS and other NeSy approaches on KGs are susceptible to reasoning shortcuts, in which the prediction of true labels is driven by "degree-bias" rather than the domain-based rules. Subsequently, we demonstrate ways to identify and mitigate this. Thereafter, MARS achieves performance on par with current state-of-the-art models while producing model interpretations aligned with known MoAs.
comment: Under review. 10 pages, 7 supplementary pages. Corresponding code is here: https://github.com/laurendelong21/MARS and here: https://github.com/laurendelong21/MoA-Net
♻ ☆ Low-Tubal-Rank Tensor Recovery via Factorized Gradient Descent
This paper considers the problem of recovering a tensor with an underlying low-tubal-rank structure from a small number of corrupted linear measurements. Traditional approaches tackling such a problem require the computation of tensor Singular Value Decomposition (t-SVD), that is a computationally intensive process, rendering them impractical for dealing with large-scale tensors. Aim to address this challenge, we propose an efficient and effective low-tubal-rank tensor recovery method based on a factorization procedure akin to the Burer-Monteiro (BM) method. Precisely, our fundamental approach involves decomposing a large tensor into two smaller factor tensors, followed by solving the problem through factorized gradient descent (FGD). This strategy eliminates the need for t-SVD computation, thereby reducing computational costs and storage requirements. We provide rigorous theoretical analysis to ensure the convergence of FGD under both noise-free and noisy situations. Additionally, it is worth noting that our method does not require the precise estimation of the tensor tubal-rank. Even in cases where the tubal-rank is slightly overestimated, our approach continues to demonstrate robust performance. A series of experiments have been carried out to demonstrate that, as compared to other popular ones, our approach exhibits superior performance in multiple scenarios, in terms of the faster computational speed and the smaller convergence error.
comment: 13 pages, 4 figures
♻ ☆ A unified cross-attention model for predicting antigen binding specificity to both HLA and TCR molecules
The immune checkpoint inhibitors have demonstrated promising clinical efficacy across various tumor types, yet the percentage of patients who benefit from them remains low. The bindings between tumor antigens and HLA-I/TCR molecules determine the antigen presentation and T-cell activation, thereby playing an important role in the immunotherapy response. In this paper, we propose UnifyImmun, a unified cross-attention transformer model designed to simultaneously predict the bindings of peptides to both receptors, providing more comprehensive evaluation of antigen immunogenicity. We devise a two-phase strategy using virtual adversarial training that enables these two tasks to reinforce each other mutually, by compelling the encoders to extract more expressive features. Our method demonstrates superior performance in predicting both pHLA and pTCR binding on multiple independent and external test sets. Notably, on a large-scale COVID-19 pTCR binding test set without any seen peptide in training set, our method outperforms the current state-of-the-art methods by more than 10\%. The predicted binding scores significantly correlate with the immunotherapy response and clinical outcomes on two clinical cohorts. Furthermore, the cross-attention scores and integrated gradients reveal the amino-acid sites critical for peptide binding to receptors. In essence, our approach marks a significant step toward comprehensive evaluation of antigen immunogenicity.
comment: Accepted by Nature Machine Intelligence
♻ ☆ A Steerable Deep Network for Model-Free Diffusion MRI Registration
Nonrigid registration is vital to medical image analysis but remains challenging for diffusion MRI (dMRI) due to its high-dimensional, orientation-dependent nature. While classical methods are accurate, they are computationally demanding, and deep neural networks, though efficient, have been underexplored for nonrigid dMRI registration compared to structural imaging. We present a novel, deep learning framework for model-free, nonrigid registration of raw diffusion MRI data that does not require explicit reorientation. Unlike previous methods relying on derived representations such as diffusion tensors or fiber orientation distribution functions, in our approach, we formulate the registration as an equivariant diffeomorphism of position-and-orientation space. Central to our method is an $\mathsf{SE}(3)$-equivariant UNet that generates velocity fields while preserving the geometric properties of a raw dMRI's domain. We introduce a new loss function based on the maximum mean discrepancy in Fourier space, implicitly matching ensemble average propagators across images. Experimental results on Human Connectome Project dMRI data demonstrate competitive performance compared to state-of-the-art approaches, with the added advantage of bypassing the overhead for estimating derived representations. This work establishes a foundation for data-driven, geometry-aware dMRI registration directly in the acquisition space.
comment: Coauthor was inadvertently left out. This is now corrected
♻ ☆ Convergence analysis of wide shallow neural operators within the framework of Neural Tangent Kernel
Neural operators are aiming at approximating operators mapping between Banach spaces of functions, achieving much success in the field of scientific computing. Compared to certain deep learning-based solvers, such as Physics-Informed Neural Networks (PINNs), Deep Ritz Method (DRM), neural operators can solve a class of Partial Differential Equations (PDEs). Although much work has been done to analyze the approximation and generalization error of neural operators, there is still a lack of analysis on their training error. In this work, we conduct the convergence analysis of gradient descent for the wide shallow neural operators and physics-informed shallow neural operators within the framework of Neural Tangent Kernel (NTK). The core idea lies on the fact that over-parameterization and random initialization together ensure that each weight vector remains near its initialization throughout all iterations, yielding the linear convergence of gradient descent. In this work, we demonstrate that under the setting of over-parametrization, gradient descent can find the global minimum regardless of whether it is in continuous time or discrete time.
♻ ☆ CURing Large Models: Compression via CUR Decomposition
Large deep learning models have achieved remarkable success but are resource-intensive, posing challenges such as memory usage. We introduce CURing, a novel model compression method based on CUR matrix decomposition, which approximates weight matrices as the product of selected columns (C) and rows (R), and a small linking matrix (U). We apply this decomposition to weights chosen based on the combined influence of their magnitudes and activations. By identifying and retaining informative rows and columns, CURing significantly reduces model size with minimal performance loss. For example, it reduces Llama3.1-8B's parameters to 7.32B (-9%) in just 129 seconds, over 20 times faster than prior compression methods.
♻ ☆ DUET: Dual Clustering Enhanced Multivariate Time Series Forecasting KDD 2025
Multivariate time series forecasting is crucial for various applications, such as financial investment, energy management, weather forecasting, and traffic optimization. However, accurate forecasting is challenging due to two main factors. First, real-world time series often show heterogeneous temporal patterns caused by distribution shifts over time. Second, correlations among channels are complex and intertwined, making it hard to model the interactions among channels precisely and flexibly. In this study, we address these challenges by proposing a general framework called DUET, which introduces dual clustering on the temporal and channel dimensions to enhance multivariate time series forecasting. First, we design a Temporal Clustering Module (TCM) that clusters time series into fine-grained distributions to handle heterogeneous temporal patterns. For different distribution clusters, we design various pattern extractors to capture their intrinsic temporal patterns, thus modeling the heterogeneity. Second, we introduce a novel Channel-Soft-Clustering strategy and design a Channel Clustering Module (CCM), which captures the relationships among channels in the frequency domain through metric learning and applies sparsification to mitigate the adverse effects of noisy channels. Finally, DUET combines TCM and CCM to incorporate both the temporal and channel dimensions. Extensive experiments on 25 real-world datasets from 10 application domains, demonstrate the state-of-the-art performance of DUET.
comment: Accepted by KDD 2025 research track
♻ ☆ u-$μ$P: The Unit-Scaled Maximal Update Parametrization
The Maximal Update Parametrization ($\mu$P) aims to make the optimal hyperparameters (HPs) of a model independent of its size, allowing them to be swept using a cheap proxy model rather than the full-size target model. We present a new scheme, u-$\mu$P, which improves upon $\mu$P by combining it with Unit Scaling, a method for designing models that makes them easy to train in low-precision. The two techniques have a natural affinity: $\mu$P ensures that the scale of activations is independent of model size, and Unit Scaling ensures that activations, weights and gradients begin training with a scale of one. This synthesis opens the door to a simpler scheme, whose default values are near-optimal. This in turn facilitates a more efficient sweeping strategy, with u-$\mu$P models reaching a loss that is equal to or lower than comparable $\mu$P models and working out-of-the-box in FP8.
comment: 55 pages
♻ ☆ A stochastic first-order method with multi-extrapolated momentum for highly smooth unconstrained optimization
In this paper, we consider an unconstrained stochastic optimization problem where the objective function exhibits high-order smoothness. Specifically, we propose a new stochastic first-order method (SFOM) with multi-extrapolated momentum, in which multiple extrapolations are performed in each iteration, followed by a momentum update based on these extrapolations. We demonstrate that the proposed SFOM can accelerate optimization by exploiting the high-order smoothness of the objective function $f$. Assuming that the $p$th-order derivative of $f$ is Lipschitz continuous for some $p\ge2$, and under additional mild assumptions, we establish that our method achieves a sample complexity of $\widetilde{\mathcal{O}}(\epsilon^{-(3p+1)/p})$ for finding a point $x$ such that $\mathbb{E}[\|\nabla f(x)\|]\le\epsilon$. To the best of our knowledge, this is the first SFOM to leverage arbitrary-order smoothness of the objective function for acceleration, resulting in a sample complexity that improves upon the best-known results without assuming the mean-squared smoothness condition. Preliminary numerical experiments validate the practical performance of our method and support our theoretical findings.
♻ ☆ Learning a Consensus Sub-Network with Polarization Regularization and One Pass Training
The subject of green AI has been gaining attention within the deep learning community given the recent trend of ever larger and more complex neural network models. Existing solutions for reducing the computational load of training at inference time usually involve pruning the network parameters. Pruning schemes often create extra overhead either by iterative training and fine-tuning for static pruning or repeated computation of a dynamic pruning graph. We propose a new parameter pruning strategy for learning a lighter-weight sub-network that minimizes the energy cost while maintaining comparable performance to the fully parameterised network on given downstream tasks. Our proposed pruning scheme is green-oriented, as it only requires a one-off training to discover the optimal static sub-networks by dynamic pruning methods. The pruning scheme consists of a binary gating module and a polarizing loss function to uncover sub-networks with user-defined sparsity. Our method enables pruning and training simultaneously, which saves energy in both the training and inference phases and avoids extra computational overhead from gating modules at inference time. Our results on CIFAR-10, CIFAR-100, and Tiny Imagenet suggest that our scheme can remove 50% of connections in deep networks with <1% reduction in classification accuracy. Compared to other related pruning methods, our method demonstrates a lower drop in accuracy for equivalent reductions in computational cost.
♻ ☆ Neural Differential Appearance Equations SIGGRAPH
We propose a method to reproduce dynamic appearance textures with space-stationary but time-varying visual statistics. While most previous work decomposes dynamic textures into static appearance and motion, we focus on dynamic appearance that results not from motion but variations of fundamental properties, such as rusting, decaying, melting, and weathering. To this end, we adopt the neural ordinary differential equation (ODE) to learn the underlying dynamics of appearance from a target exemplar. We simulate the ODE in two phases. At the "warm-up" phase, the ODE diffuses a random noise to an initial state. We then constrain the further evolution of this ODE to replicate the evolution of visual feature statistics in the exemplar during the generation phase. The particular innovation of this work is the neural ODE achieving both denoising and evolution for dynamics synthesis, with a proposed temporal training scheme. We study both relightable (BRDF) and non-relightable (RGB) appearance models. For both we introduce new pilot datasets, allowing, for the first time, to study such phenomena: For RGB we provide 22 dynamic textures acquired from free online sources; For BRDFs, we further acquire a dataset of 21 flash-lit videos of time-varying materials, enabled by a simple-to-construct setup. Our experiments show that our method consistently yields realistic and coherent results, whereas prior works falter under pronounced temporal appearance variations. A user study confirms our approach is preferred to previous work for such exemplars.
comment: SIGGRAPH Asia 2024 Journal Track. Project page at https://ryushinn.github.io/ode-appearance
♻ ☆ Fast unsupervised ground metric learning with tree-Wasserstein distance
The performance of unsupervised methods such as clustering depends on the choice of distance metric between features, or ground metric. Commonly, ground metrics are decided with heuristics or learned via supervised algorithms. However, since many interesting datasets are unlabelled, unsupervised ground metric learning approaches have been introduced. One promising option employs Wasserstein singular vectors (WSVs), which emerge when computing optimal transport distances between features and samples simultaneously. WSVs are effective, but can be prohibitively computationally expensive in some applications: $\mathcal{O}(n^2m^2(n \log(n) + m \log(m))$ for $n$ samples and $m$ features. In this work, we propose to augment the WSV method by embedding samples and features on trees, on which we compute the tree-Wasserstein distance (TWD). We demonstrate theoretically and empirically that the algorithm converges to a better approximation of the standard WSV approach than the best known alternatives, and does so with $\mathcal{O}(n^3+m^3+mn)$ complexity. In addition, we prove that the initial tree structure can be chosen flexibly, since tree geometry does not constrain the richness of the approximation up to the number of edge weights. This proof suggests a fast and recursive algorithm for computing the tree parameter basis set, which we find crucial to realising the efficiency gains at scale. Finally, we employ the tree-WSV algorithm to several single-cell RNA sequencing genomics datasets, demonstrating its scalability and utility for unsupervised cell-type clustering problems. These results poise unsupervised ground metric learning with TWD as a low-rank approximation of WSV with the potential for widespread application.
♻ ☆ VideoChat-Flash: Hierarchical Compression for Long-Context Video Modeling
Long-context modeling is a critical capability for multimodal large language models (MLLMs), enabling them to process long-form contents with implicit memorization. Despite its advances, handling extremely long videos remains challenging due to the difficulty in maintaining crucial features over extended sequences. This paper introduces a Hierarchical visual token Compression (HiCo) method designed for high-fidelity representation and a practical context modeling system VideoChat-Flash tailored for multimodal long-sequence processing. HiCo capitalizes on the redundancy of visual information in long videos to compress long video context from the clip-level to the video-level, reducing the compute significantly while preserving essential details. VideoChat-Flash features a multi-stage short-to-long learning scheme, a rich dataset of real-world long videos named LongVid, and an upgraded "Needle-In-A-video-Haystack" (NIAH) for evaluating context capacities. In extensive experiments, VideoChat-Flash shows the leading performance on both mainstream long and short video benchmarks at the 2B and 7B model scale. It firstly gets 99.1% accuracy over 10,000 frames in NIAH among open-source models.
♻ ☆ Learning In-Distribution Representations for Anomaly Detection
Anomaly detection involves identifying data patterns that deviate from the anticipated norm. Traditional methods struggle in high-dimensional spaces due to the curse of dimensionality. In recent years, self-supervised learning, particularly through contrastive objectives, has driven advances in anomaly detection. However, vanilla contrastive learning struggles to align with the unique demands of anomaly detection, as it lacks a pretext task tailored to the homogeneous nature of In-Distribution (ID) data and the diversity of Out-of-Distribution (OOD) anomalies. Methods that attempt to address these challenges, such as introducing hard negatives through synthetic outliers, Outlier Exposure (OE), and supervised objectives, often rely on pretext tasks that fail to balance compact clustering of ID samples with sufficient separation from OOD data. In this work, we propose Focused In-distribution Representation Modeling (FIRM), a contrastive learning objective specifically designed for anomaly detection. Unlike existing approaches, FIRM incorporates synthetic outliers into its pretext task in a way that actively shapes the representation space, promoting compact clustering of ID samples while enforcing strong separation from outliers. This formulation addresses the challenges of class collision, enhancing both the compactness of ID representations and the discriminative power of the learned feature space. We show that FIRM surpasses other contrastive methods in standard benchmarks, significantly enhancing anomaly detection compared to both traditional and supervised contrastive learning objectives. Our ablation studies confirm that FIRM consistently improves the quality of representations and shows robustness across a range of scoring methods. The code is available at: https://github.com/willtl/firm.
♻ ☆ Gender Bias in Text-to-Video Generation Models: A case study of Sora
The advent of text-to-video generation models has revolutionized content creation as it produces high-quality videos from textual prompts. However, concerns regarding inherent biases in such models have prompted scrutiny, particularly regarding gender representation. Our study investigates the presence of gender bias in OpenAI's Sora, a state-of-the-art text-to-video generation model. We uncover significant evidence of bias by analyzing the generated videos from a diverse set of gender-neutral and stereotypical prompts. The results indicate that Sora disproportionately associates specific genders with stereotypical behaviors and professions, which reflects societal prejudices embedded in its training data.
comment: 7 pages, 3 figures
♻ ☆ Geometry of Linear Neural Networks: Equivariance and Invariance under Permutation Groups
The set of functions parameterized by a linear fully-connected neural network is a determinantal variety. We investigate the subvariety of functions that are equivariant or invariant under the action of a permutation group. Examples of such group actions are translations or $90^\circ$ rotations on images. We describe such equivariant or invariant subvarieties as direct products of determinantal varieties, from which we deduce their dimension, degree, Euclidean distance degree, and their singularities. We fully characterize invariance for arbitrary permutation groups, and equivariance for cyclic groups. We draw conclusions for the parameterization and the design of equivariant and invariant linear networks in terms of sparsity and weight-sharing properties. We prove that all invariant linear functions can be parameterized by a single linear autoencoder with a weight-sharing property imposed by the cycle decomposition of the considered permutation. The space of rank-bounded equivariant functions has several irreducible components, so it can not be parameterized by a single network-but each irreducible component can. Finally, we show that minimizing the squared-error loss on our invariant or equivariant networks reduces to minimizing the Euclidean distance from determinantal varieties via the Eckart-Young theorem.
comment: 42 pages, 8 figures, 1 table; comments welcome!
♻ ☆ Empowering Aggregators with Practical Data-Driven Tools: Harnessing Aggregated and Disaggregated Flexibility for Demand Response
This study explores the interaction between aggregators and building occupants in activating flexibility through Demand Response (DR) programs, with a focus on reinforcing the resilience of the energy system considering the uncertainties presented by Renewable Energy Sources (RES). Firstly, it introduces a methodology of optimizing aggregated flexibility provision strategies in environments with limited data, utilizing Discrete Fourier Transformation (DFT) and clustering techniques to identify building occupants' activity patterns. Secondly, the study assesses the disaggregated flexibility provision of Heating Ventilation and Air Conditioning (HVAC) systems during DR events, employing machine learning and optimization techniques for precise, device-level analysis. The first approach offers a non-intrusive pathway for aggregators to provide flexibility services in environments of a single smart meter for the whole building's consumption, while the second approach maximizes the amount of flexibility in the case of dedicated metering devices to the HVAC systems by carefully considering building occupants' thermal comfort profiles. Through the application of data-driven techniques and encompassing case studies from both industrial and residential buildings, this paper not only unveils pivotal opportunities for aggregators in the balancing and emerging flexibility markets but also successfully develops and demonstrates end-to-end practical tools for aggregators.
♻ ☆ Benchmarking Uncertainty Quantification Methods for Large Language Models with LM-Polygraph ACL 2025
The rapid proliferation of large language models (LLMs) has stimulated researchers to seek effective and efficient approaches to deal with LLM hallucinations and low-quality outputs. Uncertainty quantification (UQ) is a key element of machine learning applications in dealing with such challenges. However, research to date on UQ for LLMs has been fragmented in terms of techniques and evaluation methodologies. In this work, we address this issue by introducing a novel benchmark that implements a collection of state-of-the-art UQ baselines and offers an environment for controllable and consistent evaluation of novel UQ techniques over various text generation tasks. Our benchmark also supports the assessment of confidence normalization methods in terms of their ability to provide interpretable scores. Using our benchmark, we conduct a large-scale empirical investigation of UQ and normalization techniques across eleven tasks, identifying the most effective approaches. Code: https://github.com/IINemo/lm-polygraph Benchmark: https://huggingface.co/LM-Polygraph
comment: Accepted to TACL 2025, pre-MIT Press publication version. Roman Vashurin, Ekaterina Fadeeva, Artem Vazhentsev contributed equally
♻ ☆ dlordinal: a Python package for deep ordinal classification
dlordinal is a new Python library that unifies many recent deep ordinal classification methodologies available in the literature. Developed using PyTorch as underlying framework, it implements the top performing state-of-the-art deep learning techniques for ordinal classification problems. Ordinal approaches are designed to leverage the ordering information present in the target variable. Specifically, it includes loss functions, various output layers, dropout techniques, soft labelling methodologies, and other classification strategies, all of which are appropriately designed to incorporate the ordinal information. Furthermore, as the performance metrics to assess novel proposals in ordinal classification depend on the distance between target and predicted classes in the ordinal scale, suitable ordinal evaluation metrics are also included. dlordinal is distributed under the BSD-3-Clause license and is available at https://github.com/ayrna/dlordinal.
♻ ☆ Fractional Concepts in Neural Networks: Enhancing Activation Functions
Designing effective neural networks requires tuning architectural elements. This study integrates fractional calculus into neural networks by introducing fractional order derivatives (FDO) as tunable parameters in activation functions, allowing diverse activation functions by adjusting the FDO. We evaluate these fractional activation functions on various datasets and network architectures, comparing their performance with traditional and new activation functions. Our experiments assess their impact on accuracy, time complexity, computational overhead, and memory usage. Results suggest fractional activation functions, particularly fractional Sigmoid, offer benefits in some scenarios. Challenges related to consistency and efficiency remain. Practical implications and limitations are discussed.
comment: 8 pages, 8 figures, submitted to pattern recognition letters
♻ ☆ Threshold Neuron: A Brain-inspired Artificial Neuron for Efficient On-device Inference
Enhancing the computational efficiency of on-device Deep Neural Networks (DNNs) remains a significant challengein mobile and edge computing. As we aim to execute increasingly complex tasks with constrained computational resources, much of the research has focused on compressing neural network structures and optimizing systems. Although many studies have focused on compressing neural network structures and parameters or optimizing underlying systems, there has been limited attention on optimizing the fundamental building blocks of neural networks: the neurons. In this study, we deliberate on a simple but important research question: Can we design artificial neurons that offer greater efficiency than the traditional neuron paradigm? Inspired by the threshold mechanisms and the excitation-inhibition balance observed in biological neurons, we propose a novel artificial neuron model, Threshold Neurons. Using Threshold Neurons, we can construct neural networks similar to those with traditional artificial neurons, while significantly reducing hardware implementation complexity. Our extensive experiments validate the effectiveness of neural networks utilizing Threshold Neurons, achieving substantial power savings of 7.51x to 8.19x and area savings of 3.89x to 4.33x at the kernel level, with minimal loss in precision. Furthermore, FPGA-based implementations of these networks demonstrate 2.52x power savings and 1.75x speed enhancements at the system level. The source code will be made available upon publication.
comment: 14 pages, 11 figures
♻ ☆ Programmatic Reinforcement Learning: Navigating Gridworlds AAAI 2025
The field of reinforcement learning (RL) is concerned with algorithms for learning optimal policies in unknown stochastic environments. Programmatic RL studies representations of policies as programs, meaning involving higher order constructs such as control loops. Despite attracting a lot of attention at the intersection of the machine learning and formal methods communities, very little is known on the theoretical front about programmatic RL: what are good classes of programmatic policies? How large are optimal programmatic policies? How can we learn them? The goal of this paper is to give first answers to these questions, initiating a theoretical study of programmatic RL. Considering a class of gridworld environments, we define a class of programmatic policies. Our main contributions are to place upper bounds on the size of optimal programmatic policies, and to construct an algorithm for synthesizing them. These theoretical findings are complemented by a prototype implementation of the algorithm.
comment: Published in the proceedings of GenPlan, AAAI 2025 Workshop on Generlization in Planning
♻ ☆ Wait-Less Offline Tuning and Re-solving for Online Decision Making
Online linear programming (OLP) has found broad applications in revenue management and resource allocation. State-of-the-art OLP algorithms achieve low regret by repeatedly solving linear programming (LP) subproblems that incorporate updated resource information. However, LP-based methods are computationally expensive and often inefficient for large-scale applications. In contrast, recent first-order OLP algorithms are more computationally efficient but typically suffer from worse regret guarantees. To address these shortcomings, we propose a new algorithm that combines the strengths of LP-based and first-order OLP methods. The algorithm re-solves the LP subproblems periodically at a predefined frequency $f$ and uses the latest dual prices to guide online decision-making. In addition, a first-order method runs in parallel during each interval between LP re-solves, smoothing resource consumption. Our algorithm achieves $\mathscr{O}(\log (T/f) + \sqrt{f})$ regret, delivering a "wait-less" online decision-making process that balances the computational efficiency of first-order methods and the superior regret guarantee of LP-based methods.
comment: In this version, we achieve a tighter regret bound with the warm start for the first batch. We also make the proof more elegant by manually accepting all subsequent orders once the constraint is violated. In this way, we do not need to introduce the concept of stopping time for the analysis of the LP-based method
♻ ☆ A Pre-trained Data Deduplication Model based on Active Learning
In the era of big data, the issue of data quality has become increasingly prominent. One of the main challenges is the problem of duplicate data, which can arise from repeated entry or the merging of multiple data sources. These "dirty data" problems can significantly limit the effective application of big data. To address the issue of data deduplication, we propose a pre-trained deduplication model based on active learning, which is the first work that utilizes active learning to address the problem of deduplication at the semantic level. The model is built on a pre-trained Transformer and fine-tuned to solve the deduplication problem as a sequence to classification task, which firstly integrate the transformer with active learning into an end-to-end architecture to select the most valuable data for deduplication model training, and also firstly employ the R-Drop method to perform data augmentation on each round of labeled data, which can reduce the cost of manual labeling and improve the model's performance. Experimental results demonstrate that our proposed model outperforms previous state-of-the-art (SOTA) for deduplicated data identification, achieving up to a 28% improvement in Recall score on benchmark datasets.
♻ ☆ Optimal Transport-inspired Deep Learning Framework for Slow-Decaying Kolmogorov n-width Problems: Exploiting Sinkhorn Loss and Wasserstein Kernel
Reduced order models (ROMs) are widely used in scientific computing to tackle high-dimensional systems. However, traditional ROM methods may only partially capture the intrinsic geometric characteristics of the data. These characteristics encompass the underlying structure, relationships, and essential features crucial for accurate modeling. To overcome this limitation, we propose a novel ROM framework that integrates optimal transport (OT) theory and neural network-based methods. Specifically, we investigate the Kernel Proper Orthogonal Decomposition (kPOD) method exploiting the Wasserstein distance as the custom kernel, and we efficiently train the resulting neural network (NN) employing the Sinkhorn algorithm. By leveraging an OT-based nonlinear reduction, the presented framework can capture the geometric structure of the data, which is crucial for accurate learning of the reduced solution manifold. When compared with traditional metrics such as mean squared error or cross-entropy, exploiting the Sinkhorn divergence as the loss function enhances stability during training, robustness against overfitting and noise, and accelerates convergence. To showcase the approach's effectiveness, we conduct experiments on a set of challenging test cases exhibiting a slow decay of the Kolmogorov n-width. The results show that our framework outperforms traditional ROM methods in terms of accuracy and computational efficiency.
♻ ☆ CORD: Generalizable Cooperation via Role Diversity
Cooperative multi-agent reinforcement learning (MARL) aims to develop agents that can collaborate effectively. However, most cooperative MARL methods overfit training agents, making learned policies not generalize well to unseen collaborators, which is a critical issue for real-world deployment. Some methods attempt to address the generalization problem but require prior knowledge or predefined policies of new teammates, limiting real-world applications. To this end, we propose a hierarchical MARL approach to enable generalizable cooperation via role diversity, namely CORD. CORD's high-level controller assigns roles to low-level agents by maximizing the role entropy with constraints. We show this constrained objective can be decomposed into causal influence in role that enables reasonable role assignment, and role heterogeneity that yields coherent, non-redundant role clusters. Evaluated on a variety of cooperative multi-agent tasks, CORD achieves better performance than baselines, especially in generalization tests. Ablation studies further demonstrate the efficacy of the constrained objective in generalizable cooperation.
♻ ☆ Image-based Multimodal Models as Intruders: Transferable Multimodal Attacks on Video-based MLLMs
Video-based multimodal large language models (V-MLLMs) have shown vulnerability to adversarial examples in video-text multimodal tasks. However, the transferability of adversarial videos to unseen models--a common and practical real world scenario--remains unexplored. In this paper, we pioneer an investigation into the transferability of adversarial video samples across V-MLLMs. We find that existing adversarial attack methods face significant limitations when applied in black-box settings for V-MLLMs, which we attribute to the following shortcomings: (1) lacking generalization in perturbing video features, (2) focusing only on sparse key-frames, and (3) failing to integrate multimodal information. To address these limitations and deepen the understanding of V-MLLM vulnerabilities in black-box scenarios, we introduce the Image-to-Video MLLM (I2V-MLLM) attack. In I2V-MLLM, we utilize an image-based multimodal model (IMM) as a surrogate model to craft adversarial video samples. Multimodal interactions and temporal information are integrated to disrupt video representations within the latent space, improving adversarial transferability. In addition, a perturbation propagation technique is introduced to handle different unknown frame sampling strategies. Experimental results demonstrate that our method can generate adversarial examples that exhibit strong transferability across different V-MLLMs on multiple video-text multimodal tasks. Compared to white-box attacks on these models, our black-box attacks (using BLIP-2 as surrogate model) achieve competitive performance, with average attack success rates of 55.48% on MSVD-QA and 58.26% on MSRVTT-QA for VideoQA tasks, respectively. Our code will be released upon acceptance.
♻ ☆ AlgoFormer: An Efficient Transformer Framework with Algorithmic Structures
Besides natural language processing, transformers exhibit extraordinary performance in solving broader applications, including scientific computing and computer vision. Previous works try to explain this from the expressive power and capability perspectives that standard transformers are capable of performing some algorithms. To empower transformers with algorithmic capabilities and motivated by the recently proposed looped transformer, we design a novel transformer framework, dubbed Algorithm Transformer (abbreviated as AlgoFormer). We provide an insight that efficient transformer architectures can be designed by leveraging prior knowledge of tasks and the underlying structure of potential algorithms. Compared with the standard transformer and vanilla looped transformer, the proposed AlgoFormer can perform efficiently in algorithm representation in some specific tasks. In particular, inspired by the structure of human-designed learning algorithms, our transformer framework consists of a pre-transformer that is responsible for task preprocessing, a looped transformer for iterative optimization algorithms, and a post-transformer for producing the desired results after post-processing. We provide theoretical evidence of the expressive power of the AlgoFormer in solving some challenging problems, mirroring human-designed algorithms. Furthermore, some theoretical and empirical results are presented to show that the designed transformer has the potential to perform algorithm representation and learning. Experimental results demonstrate the empirical superiority of the proposed transformer in that it outperforms the standard transformer and vanilla looped transformer in some specific tasks. An extensive experiment on real language tasks (e.g., neural machine translation of German and English, and text classification) further validates the expressiveness and effectiveness of AlgoFormer.
comment: Published at Transactions on Machine Learning Research (TMLR). The paper provides insight that the Transformer architectures can mimic the algorithm structures in (in-context) algorithm learning and representation. The incorporated algorithmic structure in Algoformer shows its potential in (deep learning for) scientific computing, besides the real language tasks
♻ ☆ Balanced Multi-view Clustering
Multi-view clustering (MvC) aims to integrate information from different views to enhance the capability of the model in capturing the underlying data structures. The widely used joint training paradigm in MvC is potentially not fully leverage the multi-view information, since the imbalanced and under-optimized view-specific features caused by the uniform learning objective for all views. For instance, particular views with more discriminative information could dominate the learning process in the joint training paradigm, leading to other views being under-optimized. To alleviate this issue, we first analyze the imbalanced phenomenon in the joint-training paradigm of multi-view clustering from the perspective of gradient descent for each view-specific feature extractor. Then, we propose a novel balanced multi-view clustering (BMvC) method, which introduces a view-specific contrastive regularization (VCR) to modulate the optimization of each view. Concretely, VCR preserves the sample similarities captured from the joint features and view-specific ones into the clustering distributions corresponding to view-specific features to enhance the learning process of view-specific feature extractors. Additionally, a theoretical analysis is provided to illustrate that VCR adaptively modulates the magnitudes of gradients for updating the parameters of view-specific feature extractors to achieve a balanced multi-view learning procedure. In such a manner, BMvC achieves a better trade-off between the exploitation of view-specific patterns and the exploration of view-invariance patterns to fully learn the multi-view information for the clustering task. Finally, a set of experiments are conducted to verify the superiority of the proposed method compared with state-of-the-art approaches both on eight benchmark MvC datasets and two spatially resolved transcriptomics datasets.
comment: We are withdrawing this paper due to issues in the experimental section related to the Application for Spatially Resolved Transcriptomics Data Clustering. These issues affect the validity of the results presented. We believe it is necessary to withdraw the paper to address these problems adequately before resubmission.
♻ ☆ Extractive Structures Learned in Pretraining Enable Generalization on Finetuned Facts
Pretrained language models (LMs) can generalize to implications of facts that they are finetuned on. For example, if finetuned on ``John Doe lives in Tokyo," LMs can correctly answer ``What language do the people in John Doe's city speak?'' with ``Japanese''. However, little is known about the mechanisms that enable this generalization or how they are learned during pretraining. We introduce extractive structures as a framework for describing how components in LMs (e.g., MLPs or attention heads) coordinate to enable this generalization. The structures consist of informative components that store training facts as weight changes, and upstream and downstream extractive components that query and process the stored information to produce the correct implication. We hypothesize that extractive structures are learned during pretraining when encountering implications of previously known facts. This yields two predictions: a data ordering effect where extractive structures can be learned only if facts precede their implications, and a weight grafting effect where extractive structures can be transferred to predict counterfactual implications. We empirically demonstrate these phenomena in the OLMo-7b, Llama 3-8b, Gemma 2-9b, and Qwen 2-7b models. Of independent interest, our results also indicate that fact learning can occur at both early and late layers, which lead to different forms of generalization.
♻ ☆ KITS: Inductive Spatio-Temporal Kriging with Increment Training Strategy AAAI'25
Sensors are commonly deployed to perceive the environment. However, due to the high cost, sensors are usually sparsely deployed. Kriging is the tailored task to infer the unobserved nodes (without sensors) using the observed source nodes (with sensors). The essence of kriging task is transferability. Recently, several inductive spatio-temporal kriging methods have been proposed based on graph neural networks, being trained based on a graph built on top of observed nodes via pretext tasks such as masking nodes out and reconstructing them. However, the graph in training is inevitably much sparser than the graph in inference that includes all the observed and unobserved nodes. The learned pattern cannot be well generalized for inference, denoted as graph gap. To address this issue, we first present a novel Increment training strategy: instead of masking nodes (and reconstructing them), we add virtual nodes into the training graph so as to mitigate the graph gap issue naturally. Nevertheless, the empty-shell virtual nodes without labels could have bad-learned features and lack supervision signals. To solve these issues, we pair each virtual node with its most similar observed node and fuse their features together; to enhance the supervision signal, we construct reliable pseudo labels for virtual nodes. As a result, the learned pattern of virtual nodes could be safely transferred to real unobserved nodes for reliable kriging. We name our new Kriging model with Increment Training Strategy as KITS. Extensive experiments demonstrate that KITS consistently outperforms existing kriging methods by large margins, e.g., the improvement over MAE score could be as high as 18.33%.
comment: This paper is accepted by AAAI'25
♻ ☆ Fuzzy Information Entropy and Region Biased Matrix Factorization for Web Service QoS Prediction
Nowadays, there are many similar services available on the internet, making Quality of Service (QoS) a key concern for users. Since collecting QoS values for all services through user invocations is impractical, predicting QoS values is a more feasible approach. Matrix factorization is considered an effective prediction method. However, most existing matrix factorization algorithms focus on capturing global similarities between users and services, overlooking the local similarities between users and their similar neighbors, as well as the non-interactive effects between users and services. This paper proposes a matrix factorization approach based on user information entropy and region bias, which utilizes a similarity measurement method based on fuzzy information entropy to identify similar neighbors of users. Simultaneously, it integrates the region bias between each user and service linearly into matrix factorization to capture the non-interactive features between users and services. This method demonstrates improved predictive performance in more realistic and complex network environments. Additionally, numerous experiments are conducted on real-world QoS datasets. The experimental results show that the proposed method outperforms some of the state-of-the-art methods in the field at matrix densities ranging from 5% to 20%.
♻ ☆ TabuLa: Harnessing Language Models for Tabular Data Synthesis
Tabular data synthesis is crucial for addressing privacy and security concerns in industries reliant on tabular data. While recent advancements adopt large language models (LLMs) for realistic tabular data generation, their long training times and limited reusability hinder practical applications. In this paper, we propose Tabula, a tabular data synthesizer that leverages the structure of LLM. Unlike state-of-the-art (SOTA) LLM-based tabular data synthesizers that rely on pre-trained LLMs, Tabula discards the pre-trained weights originally designed for natural language tasks, focusing instead on a tailored approach for tabular data. In addition, Tabula introduces a token sequence compression strategy that significantly reduces training time while maintaining data quality, alongside a novel token padding method that improves sequence alignment across training batches. Experiments on six datasets show that Tabula achieves superior synthetic data utility compared to current SOTA methods. Additionally, the results demonstrate that Tabula model trained on tabular datasets serves effectively as a foundational model for synthesizing new tabular datasets. Furthermore, the proposed padding method outperforms the conventional left and right padding strategies. Finally, the results highlight that Tabula averagely reduces training time per epoch by 46.2% compared to state-of-the-art LLM approaches while achieving higher data utility. Our code is available at https://github.com/zhao-zilong/Tabula
♻ ☆ 4-bit Shampoo for Memory-Efficient Network Training NeurIPS 2024
Second-order optimizers, maintaining a matrix termed a preconditioner, are superior to first-order optimizers in both theory and practice. The states forming the preconditioner and its inverse root restrict the maximum size of models trained by second-order optimizers. To address this, compressing 32-bit optimizer states to lower bitwidths has shown promise in reducing memory usage. However, current approaches only pertain to first-order optimizers. In this paper, we propose the first 4-bit second-order optimizers, exemplified by 4-bit Shampoo, maintaining performance similar to that of 32-bit ones. We show that quantizing the eigenvector matrix of the preconditioner in 4-bit Shampoo is remarkably better than quantizing the preconditioner itself both theoretically and experimentally. By rectifying the orthogonality of the quantized eigenvector matrix, we enhance the approximation of the preconditioner's eigenvector matrix, which also benefits the computation of its inverse 4-th root. Besides, we find that linear square quantization slightly outperforms dynamic tree quantization when quantizing second-order optimizer states. Evaluation on various networks for image classification and natural language modeling demonstrates that our 4-bit Shampoo achieves comparable performance to its 32-bit counterpart while being more memory-efficient.
comment: NeurIPS 2024 final camera-ready revisions, rectify the legend in figure 9
♻ ☆ Bayesian Joint Additive Factor Models for Multiview Learning
It is increasingly common in a wide variety of applied settings to collect data of multiple different types on the same set of samples. Our particular focus in this article is on studying relationships between such multiview features and responses. A motivating application arises in the context of precision medicine where multi-omics data are collected to correlate with clinical outcomes. It is of interest to infer dependence within and across views while combining multimodal information to improve the prediction of outcomes. The signal-to-noise ratio can vary substantially across views, motivating more nuanced statistical tools beyond standard late and early fusion. This challenge comes with the need to preserve interpretability, select features, and obtain accurate uncertainty quantification. We propose a joint additive factor regression model (JAFAR) with a structured additive design, accounting for shared and view-specific components. We ensure identifiability via a novel dependent cumulative shrinkage process (D-CUSP) prior. We provide an efficient implementation via a partially collapsed Gibbs sampler and extend our approach to allow flexible feature and outcome distributions. Prediction of time-to-labor onset from immunome, metabolome, and proteome data illustrates performance gains against state-of-the-art competitors. Our open-source software (R package) is available at https://github.com/niccoloanceschi/jafar.
♻ ☆ Surrogate-based Autotuning for Randomized Sketching Algorithms in Regression Problems
Algorithms from Randomized Numerical Linear Algebra (RandNLA) are known to be effective in handling high-dimensional computational problems, providing high-quality empirical performance as well as strong probabilistic guarantees. However, their practical application is complicated by the fact that the user needs to set various algorithm-specific tuning parameters which are different than those used in traditional NLA. This paper demonstrates how a surrogate-based autotuning approach can be used to address fundamental problems of parameter selection in RandNLA algorithms. In particular, we provide a detailed investigation of surrogate-based autotuning for sketch-and-precondition (SAP) based randomized least squares methods, which have been one of the great success stories in modern RandNLA. Empirical results show that our surrogate-based autotuning approach can achieve near-optimal performance with much less tuning cost than a random search (up to about 4x fewer trials of different parameter configurations). Moreover, while our experiments focus on least squares, our results demonstrate a general-purpose autotuning pipeline applicable to any kind of RandNLA algorithm.
comment: Improved the presentation and clarity. Updated experimental results and scenarios. Accepted for publication in SIAM Journal on Matrix Analysis and Applications
♻ ☆ Infrared Image Super-Resolution: Systematic Review, and Future Trends
Image Super-Resolution (SR) is essential for a wide range of computer vision and image processing tasks. Investigating infrared (IR) image (or thermal images) super-resolution is a continuing concern within the development of deep learning. This survey aims to provide a comprehensive perspective of IR image super-resolution, including its applications, hardware imaging system dilemmas, and taxonomy of image processing methodologies. In addition, the datasets and evaluation metrics in IR image super-resolution tasks are also discussed. Furthermore, the deficiencies in current technologies and possible promising directions for the community to explore are highlighted. To cope with the rapid development in this field, we intend to regularly update the relevant excellent work at \url{https://github.com/yongsongH/Infrared_Image_SR_Survey
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ Human-In-the-Loop Software Development Agents ICSE
Recently, Large Language Models (LLMs)-based multi-agent paradigms for software engineering are introduced to automatically resolve software development tasks (e.g., from a given issue to source code). However, existing work is evaluated based on historical benchmark datasets, rarely considers human feedback at each stage of the automated software development process, and has not been deployed in practice. In this paper, we introduce a Human-in-the-loop LLM-based Agents framework (HULA) for software development that allows software engineers to refine and guide LLMs when generating coding plans and source code for a given task. We design, implement, and deploy the HULA framework into Atlassian JIRA for internal uses. Through a multi-stage evaluation of the HULA framework, Atlassian software engineers perceive that HULA can minimize the overall development time and effort, especially in initiating a coding plan and writing code for straightforward tasks. On the other hand, challenges around code quality remain a concern in some cases. We draw lessons learned and discuss opportunities for future work, which will pave the way for the advancement of LLM-based agents in software development.
comment: 10 pages, 9 figures, ICSE SEIP 2025
♻ ☆ Comprehensive Examination of Unrolled Networks for Solving Linear Inverse Problems
Unrolled networks have become prevalent in various computer vision and imaging tasks. Although they have demonstrated remarkable efficacy in solving specific computer vision and computational imaging tasks, their adaptation to other applications presents considerable challenges. This is primarily due to the multitude of design decisions that practitioners working on new applications must navigate, each potentially affecting the network's overall performance. These decisions include selecting the optimization algorithm, defining the loss function, and determining the number of convolutional layers, among others. Compounding the issue, evaluating each design choice requires time-consuming simulations to train, fine-tune the neural network, and optimize for its performance. As a result, the process of exploring multiple options and identifying the optimal configuration becomes time-consuming and computationally demanding. The main objectives of this paper are (1) to unify some ideas and methodologies used in unrolled networks to reduce the number of design choices a user has to make, and (2) to report a comprehensive ablation study to discuss the impact of each of the choices involved in designing unrolled networks and present practical recommendations based on our findings. We anticipate that this study will help scientists and engineers design unrolled networks for their applications and diagnose problems within their networks efficiently.
comment: 27 pages, 10 figures. Project Page: https://github.com/YuxiChen25/Memory-Net-Inverse
♻ ☆ Deep Switching State Space Model (DS$^3$M) for Nonlinear Time Series Forecasting with Regime Switching
Modern time series data often display complex nonlinear dependencies along with irregular regime-switching behaviors. These features present technical challenges in modeling, inference, and in offering insightful understanding into the underlying stochastic phenomena. To tackle these challenges, we introduce a novel modeling framework known as the Deep Switching State Space Model (DS$^3$M). This framework is engineered to make accurate forecasts for such time series while adeptly identifying the irregular regimes hidden within the dynamics. These identifications not only have significant economic ramifications but also contribute to a deeper understanding of the underlying phenomena. In DS$^3$M, the architecture employs discrete latent variables to represent regimes and continuous latent variables to account for random driving factors. By melding a Recurrent Neural Network (RNN) with a nonlinear Switching State Space Model (SSSM), we manage to capture the nonlinear dependencies and irregular regime-switching behaviors, governed by a Markov chain and parameterized using multilayer perceptrons. We validate the effectiveness and regime identification capabilities of DS$^3$M through short- and long-term forecasting tests on a wide array of simulated and real-world datasets, spanning sectors such as healthcare, economics, traffic, meteorology, and energy. Experimental results reveal that DS$^3$M outperforms several state-of-the-art models in terms of forecasting accuracy, while providing meaningful regime identifications.
♻ ☆ Targeted Adversarial Denoising Autoencoders (TADA) for Neural Time Series Filtration AAAI 2025
Current machine learning (ML)-based algorithms for filtering electroencephalography (EEG) time series data face challenges related to cumbersome training times, regularization, and accurate reconstruction. To address these shortcomings, we present an ML filtration algorithm driven by a logistic covariance-targeted adversarial denoising autoencoder (TADA). We hypothesize that the expressivity of a targeted, correlation-driven convolutional autoencoder will enable effective time series filtration while minimizing compute requirements (e.g., runtime, model size). Furthermore, we expect that adversarial training with covariance rescaling will minimize signal degradation. To test this hypothesis, a TADA system prototype was trained and evaluated on the task of removing electromyographic (EMG) noise from EEG data in the EEGdenoiseNet dataset, which includes EMG and EEG data from 67 subjects. The TADA filter surpasses conventional signal filtration algorithms across quantitative metrics (Correlation Coefficient, Temporal RRMSE, Spectral RRMSE), and performs competitively against other deep learning architectures at a reduced model size of less than 400,000 trainable parameters. Further experimentation will be necessary to assess the viability of TADA on a wider range of deployment cases.
comment: [Accepted] Artificial Intelligence for Time Series Analysis (AI4TS): Theory, Algorithms, and Applications @ AAAI 2025, Philadelphia, PA, USA
♻ ☆ Expected Coordinate Improvement for High-Dimensional Bayesian Optimization
Bayesian optimization (BO) algorithm is very popular for solving low-dimensional expensive optimization problems. Extending Bayesian optimization to high dimension is a meaningful but challenging task. One of the major challenges is that it is difficult to find good infill solutions as the acquisition functions are also high-dimensional. In this work, we propose the expected coordinate improvement (ECI) criterion for high-dimensional Bayesian optimization. The proposed ECI criterion measures the potential improvement we can get by moving the current best solution along one coordinate. The proposed approach selects the coordinate with the highest ECI value to refine in each iteration and covers all the coordinates gradually by iterating over the coordinates. The greatest advantage of the proposed ECI-BO (expected coordinate improvement based Bayesian optimization) algorithm over the standard BO algorithm is that the infill selection problem of the proposed algorithm is always a one-dimensional problem thus can be easily solved. Numerical experiments show that the proposed algorithm can achieve significantly better results than the standard BO algorithm and competitive results when compared with five state-of-the-art high-dimensional BOs. This work provides a simple but efficient approach for high-dimensional Bayesian optimization.
♻ ☆ Adversarial Robustness for Deep Learning-based Wildfire Prediction Models
Smoke detection using Deep Neural Networks (DNNs) is an effective approach for early wildfire detection. However, because smoke is temporally and spatially anomalous, there are limitations in collecting sufficient training data. This raises overfitting and bias concerns in existing DNN-based wildfire detection models. Thus, we introduce WARP (Wildfire Adversarial Robustness Procedure), the first model-agnostic framework for evaluating the adversarial robustness of DNN-based wildfire detection models. WARP addresses limitations in smoke image diversity using global and local adversarial attack methods. The global attack method uses image-contextualized Gaussian noise, while the local attack method uses patch noise injection, tailored to address critical aspects of wildfire detection. Leveraging WARP's model-agnostic capabilities, we assess the adversarial robustness of real-time Convolutional Neural Networks (CNNs) and Transformers. The analysis revealed valuable insights into the models' limitations. Specifically, the global attack method demonstrates that the Transformer model has more than 70% precision degradation than the CNN against global noise. In contrast, the local attack method shows that both models are susceptible to cloud image injections when detecting smoke-positive instances, suggesting a need for model improvements through data augmentation. WARP's comprehensive robustness analysis contributed to the development of wildfire-specific data augmentation strategies, marking a step toward practicality.
♻ ☆ Consistency Checks for Language Model Forecasters ICLR 2025
Forecasting is a task that is difficult to evaluate: the ground truth can only be known in the future. Recent work showing LLM forecasters rapidly approaching human-level performance begs the question: how can we benchmark and evaluate these forecasters instantaneously? Following the consistency check framework, we measure the performance of forecasters in terms of the consistency of their predictions on different logically-related questions. We propose a new, general consistency metric based on arbitrage: for example, if a forecasting AI illogically predicts that both the Democratic and Republican parties have 60% probability of winning the 2024 US presidential election, an arbitrageur can trade against the forecaster's predictions and make a profit. We build an automated evaluation system that generates a set of base questions, instantiates consistency checks from these questions, elicits the predictions of the forecaster, and measures the consistency of the predictions. We then build a standard, proper-scoring-rule forecasting benchmark, and show that our (instantaneous) consistency metrics correlate with LLM forecasters' ground truth Brier scores (which are only known in the future). We also release a consistency benchmark that resolves in 2028, providing a long-term evaluation tool for forecasting.
comment: 55 pages, 25 figures. Submitted to ICLR 2025
♻ ☆ Enhancing Sample Generation of Diffusion Models using Noise Level Correction
The denoising process of diffusion models can be interpreted as an approximate projection of noisy samples onto the data manifold. Moreover, the noise level in these samples approximates their distance to the underlying manifold. Building on this insight, we propose a novel method to enhance sample generation by aligning the estimated noise level with the true distance of noisy samples to the manifold. Specifically, we introduce a noise level correction network, leveraging a pre-trained denoising network, to refine noise level estimates during the denoising process. Additionally, we extend this approach to various image restoration tasks by integrating task-specific constraints, including inpainting, deblurring, super-resolution, colorization, and compressed sensing. Experimental results demonstrate that our method significantly improves sample quality in both unconstrained and constrained generation scenarios. Notably, the proposed noise level correction framework is compatible with existing denoising schedulers (e.g., DDIM), offering additional performance improvements.
♻ ☆ eGAD! double descent is explained by Generalized Aliasing Decomposition
A central problem in data science is to use potentially noisy samples of an unknown function to predict values for unseen inputs. In classical statistics, predictive error is understood as a trade-off between the bias and the variance that balances model simplicity with its ability to fit complex functions. However, over-parameterized models exhibit counterintuitive behaviors, such as "double descent" in which models of increasing complexity exhibit decreasing generalization error. Others may exhibit more complicated patterns of predictive error with multiple peaks and valleys. Neither double descent nor multiple descent phenomena are well explained by the bias-variance decomposition. We introduce a novel decomposition that we call the generalized aliasing decomposition (GAD) to explain the relationship between predictive performance and model complexity. The GAD decomposes the predictive error into three parts: 1) model insufficiency, which dominates when the number of parameters is much smaller than the number of data points, 2) data insufficiency, which dominates when the number of parameters is much greater than the number of data points, and 3) generalized aliasing, which dominates between these two extremes. We demonstrate the applicability of the GAD to diverse applications, including random feature models from machine learning, Fourier transforms from signal processing, solution methods for differential equations, and predictive formation enthalpy in materials discovery. Because key components of the GAD can be explicitly calculated from the relationship between model class and samples without seeing any data labels, it can answer questions related to experimental design and model selection before collecting data or performing experiments. We further demonstrate this approach on several examples and discuss implications for predictive modeling and data science.
Multimedia 1
☆ Deep Reversible Consistency Learning for Cross-modal Retrieval
Cross-modal retrieval (CMR) typically involves learning common representations to directly measure similarities between multimodal samples. Most existing CMR methods commonly assume multimodal samples in pairs and employ joint training to learn common representations, limiting the flexibility of CMR. Although some methods adopt independent training strategies for each modality to improve flexibility in CMR, they utilize the randomly initialized orthogonal matrices to guide representation learning, which is suboptimal since they assume inter-class samples are independent of each other, limiting the potential of semantic alignments between sample representations and ground-truth labels. To address these issues, we propose a novel method termed Deep Reversible Consistency Learning (DRCL) for cross-modal retrieval. DRCL includes two core modules, \ie Selective Prior Learning (SPL) and Reversible Semantic Consistency learning (RSC). More specifically, SPL first learns a transformation weight matrix on each modality and selects the best one based on the quality score as the Prior, which greatly avoids blind selection of priors learned from low-quality modalities. Then, RSC employs a Modality-invariant Representation Recasting mechanism (MRR) to recast the potential modality-invariant representations from sample semantic labels by the generalized inverse matrix of the prior. Since labels are devoid of modal-specific information, we utilize the recast features to guide the representation learning, thus maintaining semantic consistency to the fullest extent possible. In addition, a feature augmentation mechanism (FA) is introduced in RSC to encourage the model to learn over a wider data distribution for diversity. Finally, extensive experiments conducted on five widely used datasets and comparisons with 15 state-of-the-art baselines demonstrate the effectiveness and superiority of our DRCL.
Artificial Intelligence 94
☆ Model Alignment Search
When can we say that two neural systems are the same? The answer to this question is goal-dependent, and it is often addressed through correlative methods such as Representational Similarity Analysis (RSA) and Centered Kernel Alignment (CKA). What do we miss when we forgo causal explorations, and how can we target specific types of similarity? In this work, we introduce Model Alignment Search (MAS), a method for causally exploring distributed representational similarity. The method learns invertible linear transformations that align a subspace between two distributed networks' representations where causal information can be freely interchanged. We first show that the method can be used to transfer specific causal variables, such as the number of items in a counting task, between networks with different training seeds. We then explore open questions in number cognition by comparing different types of numeric representations in models trained on structurally different numeric tasks. We then explore differences between MAS vs preexisting causal similarity methods, showing MAS to be more resistant to unwanted exchanges. Lastly, we introduce a counterfactual latent auxiliary loss function that helps shape causally relevant alignments even in cases where we do not have causal access to one of the two models for training.
☆ xLSTM-SENet: xLSTM for Single-Channel Speech Enhancement
While attention-based architectures, such as Conformers, excel in speech enhancement, they face challenges such as scalability with respect to input sequence length. In contrast, the recently proposed Extended Long Short-Term Memory (xLSTM) architecture offers linear scalability. However, xLSTM-based models remain unexplored for speech enhancement. This paper introduces xLSTM-SENet, the first xLSTM-based single-channel speech enhancement system. A comparative analysis reveals that xLSTM-and notably, even LSTM-can match or outperform state-of-the-art Mamba- and Conformer-based systems across various model sizes in speech enhancement on the VoiceBank+Demand dataset. Through ablation studies, we identify key architectural design choices such as exponential gating and bidirectionality contributing to its effectiveness. Our best xLSTM-based model, xLSTM-SENet2, outperforms state-of-the-art Mamba- and Conformer-based systems on the Voicebank+DEMAND dataset.
☆ Multilingual Performance of a Multimodal Artificial Intelligence System on Multisubject Physics Concept Inventories
We investigate the multilingual and multimodal performance of a large language model-based artificial intelligence (AI) system, GPT-4o, on a diverse set of physics concept inventories spanning multiple languages and subject areas. The inventories taken from the PhysPort website cover the classical physics topics of mechanics, electromagnetism, optics, and thermodynamics as well as relativity, quantum mechanics, astronomy, mathematics, and laboratory skills. Unlike previous text-only studies, we uploaded the inventories as images mirroring what a student would see on paper, assessing the system's multimodal functionality. The AI is prompted in English and autonomously chooses the language of its response - either remaining in the nominal language of the test, switching entirely to English, or mixing languages - revealing adaptive behavior dependent on linguistic complexity and data availability. Our results indicate some variation in performance across subject areas, with laboratory skills standing out as the area of poorest performance. Furthermore, the AI's performance on questions that require visual interpretation of images is worse than on purely text-based questions. Questions that are difficult for the AI tend to be that way invariably of the inventory language. We also find large variations in performance across languages, with some appearing to benefit substantially from language switching, a phenomenon similar to code-switching ofhuman speakers. Overall, comparing the obtained AI results to the existing literature, we find that the AI system outperforms average undergraduate students post-instruction in all subject areas but laboratory skills.
☆ Emergent Symbol-like Number Variables in Artificial Neural Networks
What types of numeric representations emerge in Neural Networks (NNs)? To what degree do NNs induce abstract, mutable, slot-like numeric variables, and in what situations do these representations emerge? How do these representations change over learning, and how can we understand the neural implementations in ways that are unified across different NNs? In this work, we approach these questions by first training sequence based neural systems using Next Token Prediction (NTP) objectives on numeric tasks. We then seek to understand the neural solutions through the lens of causal abstractions or symbolic algorithms. We use a combination of causal interventions and visualization methods to find that artificial neural models do indeed develop analogs of interchangeable, mutable, latent number variables purely from the NTP objective. We then ask how variations on the tasks and model architectures affect the models' learned solutions to find that these symbol-like numeric representations do not form for every variant of the task, and transformers solve the problem in a notably different way than their recurrent counterparts. We then show how the symbol-like variables change over the course of training to find a strong correlation between the models' task performance and the alignment of their symbol-like representations. Lastly, we show that in all cases, some degree of gradience exists in these neural symbols, highlighting the difficulty of finding simple, interpretable symbolic stories of how neural networks perform numeric tasks. Taken together, our results are consistent with the view that neural networks can approximate interpretable symbolic programs of number cognition, but the particular program they approximate and the extent to which they approximate it can vary widely, depending on the network architecture, training data, extent of training, and network size.
☆ Supervision policies can shape long-term risk management in general-purpose AI models
The rapid proliferation and deployment of General-Purpose AI (GPAI) models, including large language models (LLMs), present unprecedented challenges for AI supervisory entities. We hypothesize that these entities will need to navigate an emergent ecosystem of risk and incident reporting, likely to exceed their supervision capacity. To investigate this, we develop a simulation framework parameterized by features extracted from the diverse landscape of risk, incident, or hazard reporting ecosystems, including community-driven platforms, crowdsourcing initiatives, and expert assessments. We evaluate four supervision policies: non-prioritized (first-come, first-served), random selection, priority-based (addressing the highest-priority risks first), and diversity-prioritized (balancing high-priority risks with comprehensive coverage across risk types). Our results indicate that while priority-based and diversity-prioritized policies are more effective at mitigating high-impact risks, particularly those identified by experts, they may inadvertently neglect systemic issues reported by the broader community. This oversight can create feedback loops that amplify certain types of reporting while discouraging others, leading to a skewed perception of the overall risk landscape. We validate our simulation results with several real-world datasets, including one with over a million ChatGPT interactions, of which more than 150,000 conversations were identified as risky. This validation underscores the complex trade-offs inherent in AI risk supervision and highlights how the choice of risk management policies can shape the future landscape of AI risks across diverse GPAI models used in society.
comment: 24 pages, 14 figures
☆ CoDriveVLM: VLM-Enhanced Urban Cooperative Dispatching and Motion Planning for Future Autonomous Mobility on Demand Systems
The increasing demand for flexible and efficient urban transportation solutions has spotlighted the limitations of traditional Demand Responsive Transport (DRT) systems, particularly in accommodating diverse passenger needs and dynamic urban environments. Autonomous Mobility-on-Demand (AMoD) systems have emerged as a promising alternative, leveraging connected and autonomous vehicles (CAVs) to provide responsive and adaptable services. However, existing methods primarily focus on either vehicle scheduling or path planning, which often simplify complex urban layouts and neglect the necessity for simultaneous coordination and mutual avoidance among CAVs. This oversimplification poses significant challenges to the deployment of AMoD systems in real-world scenarios. To address these gaps, we propose CoDriveVLM, a novel framework that integrates high-fidelity simultaneous dispatching and cooperative motion planning for future AMoD systems. Our method harnesses Vision-Language Models (VLMs) to enhance multi-modality information processing, and this enables comprehensive dispatching and collision risk evaluation. The VLM-enhanced CAV dispatching coordinator is introduced to effectively manage complex and unforeseen AMoD conditions, thus supporting efficient scheduling decision-making. Furthermore, we propose a scalable decentralized cooperative motion planning method via consensus alternating direction method of multipliers (ADMM) focusing on collision risk evaluation and decentralized trajectory optimization. Simulation results demonstrate the feasibility and robustness of CoDriveVLM in various traffic conditions, showcasing its potential to significantly improve the fidelity and effectiveness of AMoD systems in future urban transportation networks. The code is available at https://github.com/henryhcliu/CoDriveVLM.git.
☆ Contextual ASR Error Handling with LLMs Augmentation for Goal-Oriented Conversational AI COLING 2025
General-purpose automatic speech recognition (ASR) systems do not always perform well in goal-oriented dialogue. Existing ASR correction methods rely on prior user data or named entities. We extend correction to tasks that have no prior user data and exhibit linguistic flexibility such as lexical and syntactic variations. We propose a novel context augmentation with a large language model and a ranking strategy that incorporates contextual information from the dialogue states of a goal-oriented conversational AI and its tasks. Our method ranks (1) n-best ASR hypotheses by their lexical and semantic similarity with context and (2) context by phonetic correspondence with ASR hypotheses. Evaluated in home improvement and cooking domains with real-world users, our method improves recall and F1 of correction by 34% and 16%, respectively, while maintaining precision and false positive rate. Users rated .8-1 point (out of 5) higher when our correction method worked properly, with no decrease due to false positives.
comment: Accepted to COLING 2025 Industry Track
☆ Fleurs-SLU: A Massively Multilingual Benchmark for Spoken Language Understanding
While recent multilingual automatic speech recognition models claim to support thousands of languages, ASR for low-resource languages remains highly unreliable due to limited bimodal speech and text training data. Better multilingual spoken language understanding (SLU) can strengthen massively the robustness of multilingual ASR by levering language semantics to compensate for scarce training data, such as disambiguating utterances via context or exploiting semantic similarities across languages. Even more so, SLU is indispensable for inclusive speech technology in roughly half of all living languages that lack a formal writing system. However, the evaluation of multilingual SLU remains limited to shallower tasks such as intent classification or language identification. To address this, we present Fleurs-SLU, a multilingual SLU benchmark that encompasses topical speech classification in 102 languages and multiple-choice question answering through listening comprehension in 92 languages. We extensively evaluate both end-to-end speech classification models and cascaded systems that combine speech-to-text transcription with subsequent classification by large language models on Fleurs-SLU. Our results show that cascaded systems exhibit greater robustness in multilingual SLU tasks, though speech encoders can achieve competitive performance in topical speech classification when appropriately pre-trained. We further find a strong correlation between robust multilingual ASR, effective speech-to-text translation, and strong multilingual SLU, highlighting the mutual benefits between acoustic and semantic speech representations.
☆ Explaining Deep Learning-based Anomaly Detection in Energy Consumption Data by Focusing on Contextually Relevant Data
Detecting anomalies in energy consumption data is crucial for identifying energy waste, equipment malfunction, and overall, for ensuring efficient energy management. Machine learning, and specifically deep learning approaches, have been greatly successful in anomaly detection; however, they are black-box approaches that do not provide transparency or explanations. SHAP and its variants have been proposed to explain these models, but they suffer from high computational complexity (SHAP) or instability and inconsistency (e.g., Kernel SHAP). To address these challenges, this paper proposes an explainability approach for anomalies in energy consumption data that focuses on context-relevant information. The proposed approach leverages existing explainability techniques, focusing on SHAP variants, together with global feature importance and weighted cosine similarity to select background dataset based on the context of each anomaly point. By focusing on the context and most relevant features, this approach mitigates the instability of explainability algorithms. Experimental results across 10 different machine learning models, five datasets, and five XAI techniques, demonstrate that our method reduces the variability of explanations providing consistent explanations. Statistical analyses confirm the robustness of our approach, showing an average reduction in variability of approximately 38% across multiple datasets.
comment: 26 pages, 8 figures
☆ Towards Developing Socially Compliant Automated Vehicles: State of the Art, Experts Expectations, and A Conceptual Framework
Automated Vehicles (AVs) hold promise for revolutionizing transportation by improving road safety, traffic efficiency, and overall mobility. Despite the steady advancement in high-level AVs in recent years, the transition to full automation entails a period of mixed traffic, where AVs of varying automation levels coexist with human-driven vehicles (HDVs). Making AVs socially compliant and understood by human drivers is expected to improve the safety and efficiency of mixed traffic. Thus, ensuring AVs compatibility with HDVs and social acceptance is crucial for their successful and seamless integration into mixed traffic. However, research in this critical area of developing Socially Compliant AVs (SCAVs) remains sparse. This study carries out the first comprehensive scoping review to assess the current state of the art in developing SCAVs, identifying key concepts, methodological approaches, and research gaps. An expert interview was also conducted to identify critical research gaps and expectations towards SCAVs. Based on the scoping review and expert interview input, a conceptual framework is proposed for the development of SCAVs. The conceptual framework is evaluated using an online survey targeting researchers, technicians, policymakers, and other relevant professionals worldwide. The survey results provide valuable validation and insights, affirming the significance of the proposed conceptual framework in tackling the challenges of integrating AVs into mixed-traffic environments. Additionally, future research perspectives and suggestions are discussed, contributing to the research and development agenda of SCAVs.
comment: 39 pages, 13 figures, under review by the journal of Transportation Research Part E: Logistics and Transportation Review
☆ All AI Models are Wrong, but Some are Optimal
AI models that predict the future behavior of a system (a.k.a. predictive AI models) are central to intelligent decision-making. However, decision-making using predictive AI models often results in suboptimal performance. This is primarily because AI models are typically constructed to best fit the data, and hence to predict the most likely future rather than to enable high-performance decision-making. The hope that such prediction enables high-performance decisions is neither guaranteed in theory nor established in practice. In fact, there is increasing empirical evidence that predictive models must be tailored to decision-making objectives for performance. In this paper, we establish formal (necessary and sufficient) conditions that a predictive model (AI-based or not) must satisfy for a decision-making policy established using that model to be optimal. We then discuss their implications for building predictive AI models for sequential decision-making.
☆ Scale-up Unlearnable Examples Learning with High-Performance Computing
Recent advancements in AI models are structured to retain user interactions, which could inadvertently include sensitive healthcare data. In the healthcare field, particularly when radiologists use AI-driven diagnostic tools hosted on online platforms, there is a risk that medical imaging data may be repurposed for future AI training without explicit consent, spotlighting critical privacy and intellectual property concerns around healthcare data usage. Addressing these privacy challenges, a novel approach known as Unlearnable Examples (UEs) has been introduced, aiming to make data unlearnable to deep learning models. A prominent method within this area, called Unlearnable Clustering (UC), has shown improved UE performance with larger batch sizes but was previously limited by computational resources. To push the boundaries of UE performance with theoretically unlimited resources, we scaled up UC learning across various datasets using Distributed Data Parallel (DDP) training on the Summit supercomputer. Our goal was to examine UE efficacy at high-performance computing (HPC) levels to prevent unauthorized learning and enhance data security, particularly exploring the impact of batch size on UE's unlearnability. Utilizing the robust computational capabilities of the Summit, extensive experiments were conducted on diverse datasets such as Pets, MedMNist, Flowers, and Flowers102. Our findings reveal that both overly large and overly small batch sizes can lead to performance instability and affect accuracy. However, the relationship between batch size and unlearnability varied across datasets, highlighting the necessity for tailored batch size strategies to achieve optimal data protection. Our results underscore the critical role of selecting appropriate batch sizes based on the specific characteristics of each dataset to prevent learning and ensure data security in deep learning applications.
☆ Explaining k-Nearest Neighbors: Abductive and Counterfactual Explanations
Despite the wide use of $k$-Nearest Neighbors as classification models, their explainability properties remain poorly understood from a theoretical perspective. While nearest neighbors classifiers offer interpretability from a "data perspective", in which the classification of an input vector $\bar{x}$ is explained by identifying the vectors $\bar{v}_1, \ldots, \bar{v}_k$ in the training set that determine the classification of $\bar{x}$, we argue that such explanations can be impractical in high-dimensional applications, where each vector has hundreds or thousands of features and it is not clear what their relative importance is. Hence, we focus on understanding nearest neighbor classifications through a "feature perspective", in which the goal is to identify how the values of the features in $\bar{x}$ affect its classification. Concretely, we study abductive explanations such as "minimum sufficient reasons", which correspond to sets of features in $\bar{x}$ that are enough to guarantee its classification, and "counterfactual explanations" based on the minimum distance feature changes one would have to perform in $\bar{x}$ to change its classification. We present a detailed landscape of positive and negative complexity results for counterfactual and abductive explanations, distinguishing between discrete and continuous feature spaces, and considering the impact of the choice of distance function involved. Finally, we show that despite some negative complexity results, Integer Quadratic Programming and SAT solving allow for computing explanations in practice.
☆ Distilling Calibration via Conformalized Credal Inference
Deploying artificial intelligence (AI) models on edge devices involves a delicate balance between meeting stringent complexity constraints, such as limited memory and energy resources, and ensuring reliable performance in sensitive decision-making tasks. One way to enhance reliability is through uncertainty quantification via Bayesian inference. This approach, however, typically necessitates maintaining and running multiple models in an ensemble, which may exceed the computational limits of edge devices. This paper introduces a low-complexity methodology to address this challenge by distilling calibration information from a more complex model. In an offline phase, predictive probabilities generated by a high-complexity cloud-based model are leveraged to determine a threshold based on the typical divergence between the cloud and edge models. At run time, this threshold is used to construct credal sets -- ranges of predictive probabilities that are guaranteed, with a user-selected confidence level, to include the predictions of the cloud model. The credal sets are obtained through thresholding of a divergence measure in the simplex of predictive probabilities. Experiments on visual and language tasks demonstrate that the proposed approach, termed Conformalized Distillation for Credal Inference (CD-CI), significantly improves calibration performance compared to low-complexity Bayesian methods, such as Laplace approximation, making it a practical and efficient solution for edge AI deployments.
comment: Under review
☆ Benchmarking Rotary Position Embeddings for Automatic Speech Recognition
Rotary Position Embedding (RoPE) encodes relative and absolute positional information in Transformer-based models through rotation matrices applied to input vectors within sequences. While RoPE has demonstrated superior performance compared to other positional embedding technologies in natural language processing tasks, its effectiveness in speech processing applications remains understudied. In this work, we conduct a comprehensive evaluation of RoPE across diverse automatic speech recognition (ASR) tasks. Our experimental results demonstrate that for ASR tasks, RoPE consistently achieves lower error rates compared to the currently widely used relative positional embedding. To facilitate further research, we release the implementation and all experimental recipes through the SpeechBrain toolkit.
☆ AI-powered virtual tissues from spatial proteomics for clinical diagnostics and biomedical discovery
Spatial proteomics technologies have transformed our understanding of complex tissue architectures by enabling simultaneous analysis of multiple molecular markers and their spatial organization. The high dimensionality of these data, varying marker combinations across experiments and heterogeneous study designs pose unique challenges for computational analysis. Here, we present Virtual Tissues (VirTues), a foundation model framework for biological tissues that operates across the molecular, cellular and tissue scale. VirTues introduces innovations in transformer architecture design, including a novel tokenization scheme that captures both spatial and marker dimensions, and attention mechanisms that scale to high-dimensional multiplex data while maintaining interpretability. Trained on diverse cancer and non-cancer tissue datasets, VirTues demonstrates strong generalization capabilities without task-specific fine-tuning, enabling cross-study analysis and novel marker integration. As a generalist model, VirTues outperforms existing approaches across clinical diagnostics, biological discovery and patient case retrieval tasks, while providing insights into tissue function and disease mechanisms.
comment: 23 pages, 5 figures
☆ How to Tune a Multilingual Encoder Model for Germanic Languages: A Study of PEFT, Full Fine-Tuning, and Language Adapters
This paper investigates the optimal use of the multilingual encoder model mDeBERTa for tasks in three Germanic languages -- German, Swedish, and Icelandic -- representing varying levels of presence and likely data quality in mDeBERTas pre-training data. We compare full fine-tuning with the parameter-efficient fine-tuning (PEFT) methods LoRA and Pfeiffer bottleneck adapters, finding that PEFT is more effective for the higher-resource language, German. However, results for Swedish and Icelandic are less consistent. We also observe differences between tasks: While PEFT tends to work better for question answering, full fine-tuning is preferable for named entity recognition. Inspired by previous research on modular approaches that combine task and language adapters, we evaluate the impact of adding PEFT modules trained on unstructured text, finding that this approach is not beneficial.
comment: Accepted at NoDaLiDa Baltic-HLT 2025 Conference
☆ BRIGHT: A globally distributed multimodal building damage assessment dataset with very-high-resolution for all-weather disaster response
Disaster events occur around the world and cause significant damage to human life and property. Earth observation (EO) data enables rapid and comprehensive building damage assessment (BDA), an essential capability in the aftermath of a disaster to reduce human casualties and to inform disaster relief efforts. Recent research focuses on the development of AI models to achieve accurate mapping of unseen disaster events, mostly using optical EO data. However, solutions based on optical data are limited to clear skies and daylight hours, preventing a prompt response to disasters. Integrating multimodal (MM) EO data, particularly the combination of optical and SAR imagery, makes it possible to provide all-weather, day-and-night disaster responses. Despite this potential, the development of robust multimodal AI models has been constrained by the lack of suitable benchmark datasets. In this paper, we present a BDA dataset using veRy-hIGH-resoluTion optical and SAR imagery (BRIGHT) to support AI-based all-weather disaster response. To the best of our knowledge, BRIGHT is the first open-access, globally distributed, event-diverse MM dataset specifically curated to support AI-based disaster response. It covers five types of natural disasters and two types of man-made disasters across 12 regions worldwide, with a particular focus on developing countries where external assistance is most needed. The optical and SAR imagery in BRIGHT, with a spatial resolution between 0.3-1 meters, provides detailed representations of individual buildings, making it ideal for precise BDA. In our experiments, we have tested seven advanced AI models trained with our BRIGHT to validate the transferability and robustness. The dataset and code are available at https://github.com/ChenHongruixuan/BRIGHT. BRIGHT also serves as the official dataset for the 2025 IEEE GRSS Data Fusion Contest.
☆ Addressing speaker gender bias in large scale speech translation systems
This study addresses the issue of speaker gender bias in Speech Translation (ST) systems, which can lead to offensive and inaccurate translations. The masculine bias often found in large-scale ST systems is typically perpetuated through training data derived from Machine Translation (MT) systems. Our approach involves two key steps. First, we employ Large Language Models (LLMs) to rectify translations based on the speaker's gender in a cost-effective manner. Second, we fine-tune the ST model with the corrected data, enabling the model to generate gender-specific translations directly from audio cues, without the need for explicit gender input. Additionally, we propose a three-mode fine-tuned model for scenarios where the speaker's gender is either predefined or should not be inferred from speech cues. We demonstrate a 70% improvement in translations for female speakers compared to our baseline and other large-scale ST systems, such as Seamless M4T and Canary, on the MuST-SHE test set.
☆ Effective faking of verbal deception detection with target-aligned adversarial attacks
Background: Deception detection through analysing language is a promising avenue using both human judgments and automated machine learning judgments. For both forms of credibility assessment, automated adversarial attacks that rewrite deceptive statements to appear truthful pose a serious threat. Methods: We used a dataset of 243 truthful and 262 fabricated autobiographical stories in a deception detection task for humans and machine learning models. A large language model was tasked to rewrite deceptive statements so that they appear truthful. In Study 1, humans who made a deception judgment or used the detailedness heuristic and two machine learning models (a fine-tuned language model and a simple n-gram model) judged original or adversarial modifications of deceptive statements. In Study 2, we manipulated the target alignment of the modifications, i.e. tailoring the attack to whether the statements would be assessed by humans or computer models. Results: When adversarial modifications were aligned with their target, human (d=-0.07 and d=-0.04) and machine judgments (51% accuracy) dropped to the chance level. When the attack was not aligned with the target, both human heuristics judgments (d=0.30 and d=0.36) and machine learning predictions (63-78%) were significantly better than chance. Conclusions: Easily accessible language models can effectively help anyone fake deception detection efforts both by humans and machine learning models. Robustness against adversarial modifications for humans and machines depends on that target alignment. We close with suggestions on advancing deception research with adversarial attack designs.
comment: preprint
☆ DiffuSETS: 12-lead ECG Generation Conditioned on Clinical Text Reports and Patient-Specific Information
Heart disease remains a significant threat to human health. As a non-invasive diagnostic tool, the electrocardiogram (ECG) is one of the most widely used methods for cardiac screening. However, the scarcity of high-quality ECG data, driven by privacy concerns and limited medical resources, creates a pressing need for effective ECG signal generation. Existing approaches for generating ECG signals typically rely on small training datasets, lack comprehensive evaluation frameworks, and overlook potential applications beyond data augmentation. To address these challenges, we propose DiffuSETS, a novel framework capable of generating ECG signals with high semantic alignment and fidelity. DiffuSETS accepts various modalities of clinical text reports and patient-specific information as inputs, enabling the creation of clinically meaningful ECG signals. Additionally, to address the lack of standardized evaluation in ECG generation, we introduce a comprehensive benchmarking methodology to assess the effectiveness of generative models in this domain. Our model achieve excellent results in tests, proving its superiority in the task of ECG generation. Furthermore, we showcase its potential to mitigate data scarcity while exploring novel applications in cardiology education and medical knowledge discovery, highlighting the broader impact of our work.
☆ Towards Backdoor Stealthiness in Model Parameter Space
Recent research on backdoor stealthiness focuses mainly on indistinguishable triggers in input space and inseparable backdoor representations in feature space, aiming to circumvent backdoor defenses that examine these respective spaces. However, existing backdoor attacks are typically designed to resist a specific type of backdoor defense without considering the diverse range of defense mechanisms. Based on this observation, we pose a natural question: Are current backdoor attacks truly a real-world threat when facing diverse practical defenses? To answer this question, we examine 12 common backdoor attacks that focus on input-space or feature-space stealthiness and 17 diverse representative defenses. Surprisingly, we reveal a critical blind spot: Backdoor attacks designed to be stealthy in input and feature spaces can be mitigated by examining backdoored models in parameter space. To investigate the underlying causes behind this common vulnerability, we study the characteristics of backdoor attacks in the parameter space. Notably, we find that input- and feature-space attacks introduce prominent backdoor-related neurons in parameter space, which are not thoroughly considered by current backdoor attacks. Taking comprehensive stealthiness into account, we propose a novel supply-chain attack called Grond. Grond limits the parameter changes by a simple yet effective module, Adversarial Backdoor Injection (ABI), which adaptively increases the parameter-space stealthiness during the backdoor injection. Extensive experiments demonstrate that Grond outperforms all 12 backdoor attacks against state-of-the-art (including adaptive) defenses on CIFAR-10, GTSRB, and a subset of ImageNet. In addition, we show that ABI consistently improves the effectiveness of common backdoor attacks.
☆ The New Anticipatory Governance Culture for Innovation: Regulatory Foresight, Regulatory Experimentation and Regulatory Learning
With the rapid pace of technological innovation, traditional methods of policy formation and legislating are becoming conspicuously anachronistic. The need for regulatory choices to be made to counter the deadening effect of regulatory lag is more important to developing markets and fostering growth than achieving one off regulatory perfection. This article advances scholarship on innovation policy and the regulation of technological innovation in the European Union. It does so by considering what building an agile yet robust anticipatory governance regulatory culture involves. It systematically excavates a variety of tools and elements that are being put into use in inventive ways and argues that these need to be more cohesively and systemically integrated into the regulatory toolbox. Approaches covered include strategic foresight, the critical embrace of iterative policy development and regulatory learning in the face of uncertainty and the embrace of bottom up approaches to cocreation of policy such as Policy Labs and the testing and regulatory learning through pilot regulation and experimentation. The growing use of regulatory sandboxes as an EU policy tool to boost innovation and navigate regulatory complexity as seen in the EU AI Act is also probed
☆ Affordably Fine-tuned LLMs Provide Better Answers to Course-specific MCQs
In education, the capability of generating human-like text of Large Language Models (LLMs) inspired work on how they can increase the efficiency of learning and teaching. We study the affordability of these models for educators and students by investigating how LLMs answer multiple-choice questions (MCQs) with respect to hardware constraints and refinement techniques. We explore this space by using generic pre-trained LLMs (the 7B, 13B, and 70B variants of LLaMA-2) to answer 162 undergraduate-level MCQs from a course on Programming Languages (PL) -- the MCQ dataset is a contribution of this work, which we make publicly available. Specifically, we dissect how different factors, such as using readily-available material -- (parts of) the course's textbook -- for fine-tuning and quantisation (to decrease resource usage) can change the accuracy of the responses. The main takeaway is that smaller textbook-based fine-tuned models outperform generic larger ones (whose pre-training requires conspicuous resources), making the usage of LLMs for answering MCQs resource- and material-wise affordable.
comment: The 40th ACM/SIGAPP Symposium On Applied Computing
☆ EDNet: Edge-Optimized Small Target Detection in UAV Imagery -- Faster Context Attention, Better Feature Fusion, and Hardware Acceleration
Detecting small targets in drone imagery is challenging due to low resolution, complex backgrounds, and dynamic scenes. We propose EDNet, a novel edge-target detection framework built on an enhanced YOLOv10 architecture, optimized for real-time applications without post-processing. EDNet incorporates an XSmall detection head and a Cross Concat strategy to improve feature fusion and multi-scale context awareness for detecting tiny targets in diverse environments. Our unique C2f-FCA block employs Faster Context Attention to enhance feature extraction while reducing computational complexity. The WIoU loss function is employed for improved bounding box regression. With seven model sizes ranging from Tiny to XL, EDNet accommodates various deployment environments, enabling local real-time inference and ensuring data privacy. Notably, EDNet achieves up to a 5.6% gain in mAP@50 with significantly fewer parameters. On an iPhone 12, EDNet variants operate at speeds ranging from 16 to 55 FPS, providing a scalable and efficient solution for edge-based object detection in challenging drone imagery. The source code and pre-trained models are available at: https://github.com/zsniko/EDNet.
comment: Accepted in 21st IEEE International Conference on Ubiquitous Intelligence and Computing (UIC 2024) https://www.ieee-smart-world.org/2024/uic
☆ Solving nonograms using Neural Networks
Nonograms are logic puzzles in which cells in a grid must be colored or left blank according to the numbers that are located in its headers. In this study, we analyze different techniques to solve this type of logical problem using an Heuristic Algorithm, Genetic Algorithm, and Heuristic Algorithm with Neural Network. Furthermore, we generate a public dataset to train the neural networks. We published this dataset and the code of the algorithms. Combination of the heuristic algorithm with a neural network obtained the best results. From state of the art review, no previous works used neural network to solve nonograms, nor combined a network with other algorithms to accelerate the resolution process.
☆ VideoRAG: Retrieval-Augmented Generation over Video Corpus
Retrieval-Augmented Generation (RAG) is a powerful strategy to address the issue of generating factually incorrect outputs in foundation models by retrieving external knowledge relevant to queries and incorporating it into their generation process. However, existing RAG approaches have primarily focused on textual information, with some recent advancements beginning to consider images, and they largely overlook videos, a rich source of multimodal knowledge capable of representing events, processes, and contextual details more effectively than any other modality. While a few recent studies explore the integration of videos in the response generation process, they either predefine query-associated videos without retrieving them according to queries, or convert videos into the textual descriptions without harnessing their multimodal richness. To tackle these, we introduce VideoRAG, a novel framework that not only dynamically retrieves relevant videos based on their relevance with queries but also utilizes both visual and textual information of videos in the output generation. Further, to operationalize this, our method revolves around the recent advance of Large Video Language Models (LVLMs), which enable the direct processing of video content to represent it for retrieval and seamless integration of the retrieved videos jointly with queries. We experimentally validate the effectiveness of VideoRAG, showcasing that it is superior to relevant baselines.
☆ Annealing Machine-assisted Learning of Graph Neural Network for Combinatorial Optimization NeurIPS 2024
While Annealing Machines (AM) have shown increasing capabilities in solving complex combinatorial problems, positioning themselves as a more immediate alternative to the expected advances of future fully quantum solutions, there are still scaling limitations. In parallel, Graph Neural Networks (GNN) have been recently adapted to solve combinatorial problems, showing competitive results and potentially high scalability due to their distributed nature. We propose a merging approach that aims at retaining both the accuracy exhibited by AMs and the representational flexibility and scalability of GNNs. Our model considers a compression step, followed by a supervised interaction where partial solutions obtained from the AM are used to guide local GNNs from where node feature representations are obtained and combined to initialize an additional GNN-based solver that handles the original graph's target problem. Intuitively, the AM can solve the combinatorial problem indirectly by infusing its knowledge into the GNN. Experiments on canonical optimization problems show that the idea is feasible, effectively allowing the AM to solve size problems beyond its original limits.
comment: Second Workshop on Machine Learning with New Compute Paradigms at NeurIPS 2024 (MLNCP 2024)
☆ AI-Driven Diabetic Retinopathy Screening: Multicentric Validation of AIDRSS in India
Purpose: Diabetic retinopathy (DR) is a major cause of vision loss, particularly in India, where access to retina specialists is limited in rural areas. This study aims to evaluate the Artificial Intelligence-based Diabetic Retinopathy Screening System (AIDRSS) for DR detection and prevalence assessment, addressing the growing need for scalable, automated screening solutions in resource-limited settings. Approach: A multicentric, cross-sectional study was conducted in Kolkata, India, involving 5,029 participants and 10,058 macula-centric retinal fundus images. The AIDRSS employed a deep learning algorithm with 50 million trainable parameters, integrated with Contrast Limited Adaptive Histogram Equalization (CLAHE) preprocessing for enhanced image quality. DR was graded using the International Clinical Diabetic Retinopathy (ICDR) Scale, categorizing disease into five stages (DR0 to DR4). Statistical metrics including sensitivity, specificity, and prevalence rates were evaluated against expert retina specialist assessments. Results: The prevalence of DR in the general population was 13.7%, rising to 38.2% among individuals with elevated random blood glucose levels. The AIDRSS achieved an overall sensitivity of 92%, specificity of 88%, and 100% sensitivity for detecting referable DR (DR3 and DR4). These results demonstrate the system's robust performance in accurately identifying and grading DR in a diverse population. Conclusions: AIDRSS provides a reliable, scalable solution for early DR detection in resource-constrained environments. Its integration of advanced AI techniques ensures high diagnostic accuracy, with potential to significantly reduce the burden of diabetes-related vision loss in underserved regions.
comment: 22 pages, 5 figures. arXiv admin note: substantial text overlap with arXiv:1812.07105 by other authors without attribution
☆ Diffusion Models for Smarter UAVs: Decision-Making and Modeling
Unmanned Aerial Vehicles (UAVs) are increasingly adopted in modern communication networks. However, challenges in decision-making and digital modeling continue to impede their rapid advancement. Reinforcement Learning (RL) algorithms face limitations such as low sample efficiency and limited data versatility, further magnified in UAV communication scenarios. Moreover, Digital Twin (DT) modeling introduces substantial decision-making and data management complexities. RL models, often integrated into DT frameworks, require extensive training data to achieve accurate predictions. In contrast to traditional approaches that focus on class boundaries, Diffusion Models (DMs), a new class of generative AI, learn the underlying probability distribution from the training data and can generate trustworthy new patterns based on this learned distribution. This paper explores the integration of DMs with RL and DT to effectively address these challenges. By combining the data generation capabilities of DMs with the decision-making framework of RL and the modeling accuracy of DT, the integration improves the adaptability and real-time performance of UAV communication. Moreover, the study shows how DMs can alleviate data scarcity, improve policy networks, and optimize dynamic modeling, providing a robust solution for complex UAV communication scenarios.
comment: 7 pages, 2 figures
☆ Real-Time Integrated Dispatching and Idle Fleet Steering with Deep Reinforcement Learning for A Meal Delivery Platform
To achieve high service quality and profitability, meal delivery platforms like Uber Eats and Grubhub must strategically operate their fleets to ensure timely deliveries for current orders while mitigating the consequential impacts of suboptimal decisions that leads to courier understaffing in the future. This study set out to solve the real-time order dispatching and idle courier steering problems for a meal delivery platform by proposing a reinforcement learning (RL)-based strategic dual-control framework. To address the inherent sequential nature of these problems, we model both order dispatching and courier steering as Markov Decision Processes. Trained via a deep reinforcement learning (DRL) framework, we obtain strategic policies by leveraging the explicitly predicted demands as part of the inputs. In our dual-control framework, the dispatching and steering policies are iteratively trained in an integrated manner. These forward-looking policies can be executed in real-time and provide decisions while jointly considering the impacts on local and network levels. To enhance dispatching fairness, we propose convolutional deep Q networks to construct fair courier embeddings. To simultaneously rebalance the supply and demand within the service network, we propose to utilize mean-field approximated supply-demand knowledge to reallocate idle couriers at the local level. Utilizing the policies generated by the RL-based strategic dual-control framework, we find the delivery efficiency and fairness of workload distribution among couriers have been improved, and under-supplied conditions have been alleviated within the service network. Our study sheds light on designing an RL-based framework to enable forward-looking real-time operations for meal delivery platforms and other on-demand services.
☆ Alignment without Over-optimization: Training-Free Solution for Diffusion Models
Diffusion models excel in generative tasks, but aligning them with specific objectives while maintaining their versatility remains challenging. Existing fine-tuning methods often suffer from reward over-optimization, while approximate guidance approaches fail to optimize target rewards effectively. Addressing these limitations, we propose a training-free sampling method based on Sequential Monte Carlo (SMC) to sample from the reward-aligned target distribution. Our approach, tailored for diffusion sampling and incorporating tempering techniques, achieves comparable or superior target rewards to fine-tuning methods while preserving diversity and cross-reward generalization. We demonstrate its effectiveness in single-reward optimization, multi-objective scenarios, and online black-box optimization. This work offers a robust solution for aligning diffusion models with diverse downstream objectives without compromising their general capabilities. Code is available at https://github.com/krafton-ai/DAS .
☆ Robust Counterfactual Explanations under Model Multiplicity Using Multi-Objective Optimization
In recent years, explainability in machine learning has gained importance. In this context, counterfactual explanation (CE), which is an explanation method that uses examples, has attracted attention. However, it has been pointed out that CE is not robust when there are multiple machine-learning models. These problems are important when using machine learning to make safe decisions. In this paper, we propose robust CEs that introduce a new viewpoint - Pareto improvement - and a method that uses multi-objective optimization to generate it. To evaluate the proposed method, we conducted experiments using both simulated and actual data. The results demonstrate that the proposed method is robust and useful. We believe that this research will contribute to a wide range of research areas, such as explainability in machine learning, decision-making, and action planning based on machine learning.
comment: 19 pages
☆ Understanding Impact of Human Feedback via Influence Functions
In Reinforcement Learning from Human Feedback (RLHF), it is crucial to learn suitable reward models from human feedback to align large language models (LLMs) with human intentions. However, human feedback can often be noisy, inconsistent, or biased, especially when evaluating complex responses. Such feedback can lead to misaligned reward signals, potentially causing unintended side effects during the RLHF process. To address these challenges, we explore the use of influence functions to measure the impact of human feedback on the performance of reward models. We propose a compute-efficient approximation method that enables the application of influence functions to LLM-based reward models and large-scale preference datasets. In our experiments, we demonstrate two key applications of influence functions: (1) detecting common forms of labeler bias in human feedback datasets and (2) guiding labelers to refine their strategies to align more closely with expert feedback. By quantifying the impact of human feedback on reward models, we believe that influence functions can enhance feedback interpretability and contribute to scalable oversight in RLHF, helping labelers provide more accurate and consistent feedback. Source code is available at https://github.com/mintaywon/IF_RLHF
comment: Source code: https://github.com/mintaywon/IF_RLHF
☆ UV-Attack: Physical-World Adversarial Attacks for Person Detection via Dynamic-NeRF-based UV Mapping ICLR2025
In recent research, adversarial attacks on person detectors using patches or static 3D model-based texture modifications have struggled with low success rates due to the flexible nature of human movement. Modeling the 3D deformations caused by various actions has been a major challenge. Fortunately, advancements in Neural Radiance Fields (NeRF) for dynamic human modeling offer new possibilities. In this paper, we introduce UV-Attack, a groundbreaking approach that achieves high success rates even with extensive and unseen human actions. We address the challenge above by leveraging dynamic-NeRF-based UV mapping. UV-Attack can generate human images across diverse actions and viewpoints, and even create novel actions by sampling from the SMPL parameter space. While dynamic NeRF models are capable of modeling human bodies, modifying clothing textures is challenging because they are embedded in neural network parameters. To tackle this, UV-Attack generates UV maps instead of RGB images and modifies the texture stacks. This approach enables real-time texture edits and makes the attack more practical. We also propose a novel Expectation over Pose Transformation loss (EoPT) to improve the evasion success rate on unseen poses and views. Our experiments show that UV-Attack achieves a 92.75% attack success rate against the FastRCNN model across varied poses in dynamic video settings, significantly outperforming the state-of-the-art AdvCamou attack, which only had a 28.50% ASR. Moreover, we achieve 49.5% ASR on the latest YOLOv8 detector in black-box settings. This work highlights the potential of dynamic NeRF-based UV mapping for creating more effective adversarial attacks on person detectors, addressing key challenges in modeling human movement and texture modification.
comment: 23 pages, 22 figures, submitted to ICLR2025
☆ Halal or Not: Knowledge Graph Completion for Predicting Cultural Appropriateness of Daily Products
The growing demand for halal cosmetic products has exposed significant challenges, especially in Muslim-majority countries. Recently, various machine learning-based strategies, e.g., image-based methods, have shown remarkable success in predicting the halal status of cosmetics. However, these methods mainly focus on analyzing the discrete and specific ingredients within separate cosmetics, which ignore the high-order and complex relations between cosmetics and ingredients. To address this problem, we propose a halal cosmetic recommendation framework, namely HaCKG, that leverages a knowledge graph of cosmetics and their ingredients to explicitly model and capture the relationships between cosmetics and their components. By representing cosmetics and ingredients as entities within the knowledge graph, HaCKG effectively learns the high-order and complex relations between entities, offering a robust method for predicting halal status. Specifically, we first construct a cosmetic knowledge graph representing the relations between various cosmetics, ingredients, and their properties. We then propose a pre-trained relational graph attention network model with residual connections to learn the structural relation between entities in the knowledge graph. The pre-trained model is then fine-tuned on downstream cosmetic data to predict halal status. Extensive experiments on the cosmetic dataset over halal prediction tasks demonstrate the superiority of our model over state-of-the-art baselines.
comment: 10 pages
☆ Migician: Revealing the Magic of Free-Form Multi-Image Grounding in Multimodal Large Language Models
The recent advancement of Multimodal Large Language Models (MLLMs) has significantly improved their fine-grained perception of single images and general comprehension across multiple images. However, existing MLLMs still face challenges in achieving precise grounding in complex multi-image scenarios. To address this, we first explore a Chain-of-Thought (CoT) framework that integrates single-image grounding with multi-image comprehension. While partially effective, it remains unstable and struggles to capture abstract visual information due to its non-end-to-end nature. Therefore, we introduce Migician, the first multi-image grounding model capable of performing free-form and accurate grounding across multiple images. To support this, we present the MGrounding-630k dataset, which comprises data for several multi-image grounding tasks derived from existing datasets, along with newly generated free-form grounding instruction-following data. Furthermore, we propose MIG-Bench, a comprehensive benchmark specifically designed for evaluating multi-image grounding capabilities. Experimental results demonstrate that our model achieves significantly superior multi-image grounding capabilities, outperforming the best existing MLLMs by 21.61% and even surpassing much larger 70B models. Our code, model, dataset, and benchmark are fully open-sourced.
comment: 20 pages, 8 figures
☆ Deontic Temporal Logic for Formal Verification of AI Ethics
Ensuring ethical behavior in Artificial Intelligence (AI) systems amidst their increasing ubiquity and influence is a major concern the world over. The use of formal methods in AI ethics is a possible crucial approach for specifying and verifying the ethical behavior of AI systems. This paper proposes a formalization based on deontic logic to define and evaluate the ethical behavior of AI systems, focusing on system-level specifications, contributing to this important goal. It introduces axioms and theorems to capture ethical requirements related to fairness and explainability. The formalization incorporates temporal operators to reason about the ethical behavior of AI systems over time. The authors evaluate the effectiveness of this formalization by assessing the ethics of the real-world COMPAS and loan prediction AI systems. Various ethical properties of the COMPAS and loan prediction systems are encoded using deontic logical formulas, allowing the use of an automated theorem prover to verify whether these systems satisfy the defined properties. The formal verification reveals that both systems fail to fulfill certain key ethical properties related to fairness and non-discrimination, demonstrating the effectiveness of the proposed formalization in identifying potential ethical issues in real-world AI applications.
☆ Semantic Exploration with Adaptive Gating for Efficient Problem Solving with Language Models
Recent advancements in large language models (LLMs) have shown remarkable potential in various complex tasks requiring multi-step reasoning methods like tree search to explore diverse reasoning paths. However, existing methods often suffer from computational inefficiency and redundancy. First, they overlook the diversity of task difficulties, leading to unnecessarily extensive searches even for easy tasks. Second, they neglect the semantics of reasoning paths, resulting in redundant exploration of semantically identical paths. To address these limitations, we propose Semantic Exploration with Adaptive Gating (SEAG), a computationally efficient method. SEAG employs an adaptive gating mechanism that dynamically decides whether to conduct a tree search, based on the confidence level of answers from a preceding simple reasoning method. Furthermore, its tree-based exploration consolidates semantically identical reasoning steps, reducing redundant explorations while maintaining or even improving accuracy. Our extensive experiments demonstrate that SEAG significantly improves accuracy by 4.3% on average while requiring only 31% of computational costs compared to existing tree search-based methods on complex reasoning benchmarks including GSM8K and ARC with diverse language models such as Llama2, Llama3, and Mistral.
☆ Element-wise Attention Is All You Need
The self-attention (SA) mechanism has demonstrated superior performance across various domains, yet it suffers from substantial complexity during both training and inference. The next-generation architecture, aiming at retaining the competitive performance of SA while achieving low-cost inference and efficient long-sequence training, primarily focuses on three approaches: linear attention, linear RNNs, and state space models. Although these approaches achieve reduced complexity than SA, they all have built-in performance degradation factors, such as diminished “spikiness” and compression of historical information. In contrast to these approaches, we propose a novel element-wise attention mechanism, which uses the element-wise squared Euclidean distance, instead of the dot product operation, to compute similarity and approximates the quadratic complexity term $\exp(q_{ic}k_{jc})$ with a Taylor polynomial. This design achieves remarkable efficiency: during training, the element-wise attention has a complexity of $\mathcal{O}(tLD)$, making long-sequence training both computationally and memory efficient, where $L$ is the sequence length, $D$ is the feature dimension, and $t$ is the highest order of the polynomial; during inference, it can be reformulated as recurrent neural networks, achieving a inference complexity of $\mathcal{O}(tD)$. Furthermore, the element-wise attention circumvents the performance degradation factors present in these approaches and achieves performance comparable to SA in both causal and non-causal forms.
☆ ExPO: Explainable Phonetic Trait-Oriented Network for Speaker Verification
In speaker verification, we use computational method to verify if an utterance matches the identity of an enrolled speaker. This task is similar to the manual task of forensic voice comparison, where linguistic analysis is combined with auditory measurements to compare and evaluate voice samples. Despite much success, we have yet to develop a speaker verification system that offers explainable results comparable to those from manual forensic voice comparison. A novel approach, Explainable Phonetic Trait-Oriented (ExPO) network, is proposed in this paper to introduce the speaker's phonetic trait which describes the speaker's characteristics at the phonetic level, resembling what forensic comparison does. ExPO not only generates utterance-level speaker embeddings but also allows for fine-grained analysis and visualization of phonetic traits, offering an explainable speaker verification process. Furthermore, we investigate phonetic traits from within-speaker and between-speaker variation perspectives to determine which trait is most effective for speaker verification, marking an important step towards explainable speaker verification. Our code is available at https://github.com/mmmmayi/ExPO.
comment: Accepted by IEEE Signal Processing Letters
☆ Enabling Scalable Oversight via Self-Evolving Critic
Despite their remarkable performance, the development of Large Language Models (LLMs) faces a critical challenge in scalable oversight: providing effective feedback for tasks where human evaluation is difficult or where LLMs outperform humans. While there is growing interest in using LLMs for critique, current approaches still rely on human annotations or more powerful models, leaving the issue of enhancing critique capabilities without external supervision unresolved. We introduce SCRIT (Self-evolving CRITic), a framework that enables genuine self-evolution of critique abilities. Technically, SCRIT self-improves by training on synthetic data, generated by a contrastive-based self-critic that uses reference solutions for step-by-step critique, and a self-validation mechanism that ensures critique quality through correction outcomes. Implemented with Qwen2.5-72B-Instruct, one of the most powerful LLMs, SCRIT achieves up to a 10.3\% improvement on critique-correction and error identification benchmarks. Our analysis reveals that SCRIT's performance scales positively with data and model size, outperforms alternative approaches, and benefits critically from its self-validation component.
☆ Zero-shot Shark Tracking and Biometrics from Aerial Imagery
The recent widespread adoption of drones for studying marine animals provides opportunities for deriving biological information from aerial imagery. The large scale of imagery data acquired from drones is well suited for machine learning (ML) analysis. Development of ML models for analyzing marine animal aerial imagery has followed the classical paradigm of training, testing, and deploying a new model for each dataset, requiring significant time, human effort, and ML expertise. We introduce Frame Level ALIgment and tRacking (FLAIR), which leverages the video understanding of Segment Anything Model 2 (SAM2) and the vision-language capabilities of Contrastive Language-Image Pre-training (CLIP). FLAIR takes a drone video as input and outputs segmentation masks of the species of interest across the video. Notably, FLAIR leverages a zero-shot approach, eliminating the need for labeled data, training a new model, or fine-tuning an existing model to generalize to other species. With a dataset of 18,000 drone images of Pacific nurse sharks, we trained state-of-the-art object detection models to compare against FLAIR. We show that FLAIR massively outperforms these object detectors and performs competitively against two human-in-the-loop methods for prompting SAM2, achieving a Dice score of 0.81. FLAIR readily generalizes to other shark species without additional human effort and can be combined with novel heuristics to automatically extract relevant information including length and tailbeat frequency. FLAIR has significant potential to accelerate aerial imagery analysis workflows, requiring markedly less human effort and expertise than traditional machine learning workflows, while achieving superior accuracy. By reducing the effort required for aerial imagery analysis, FLAIR allows scientists to spend more time interpreting results and deriving insights about marine ecosystems.
☆ How to Enable Effective Cooperation Between Humans and NLP Models: A Survey of Principles, Formalizations, and Beyond
With the advancement of large language models (LLMs), intelligent models have evolved from mere tools to autonomous agents with their own goals and strategies for cooperating with humans. This evolution has birthed a novel paradigm in NLP, i.e., human-model cooperation, that has yielded remarkable progress in numerous NLP tasks in recent years. In this paper, we take the first step to present a thorough review of human-model cooperation, exploring its principles, formalizations, and open challenges. In particular, we introduce a new taxonomy that provides a unified perspective to summarize existing approaches. Also, we discuss potential frontier areas and their corresponding challenges. We regard our work as an entry point, paving the way for more breakthrough research in this regard.
comment: 23 pages
☆ Multiagent Finetuning: Self Improvement with Diverse Reasoning Chains
Large language models (LLMs) have achieved remarkable performance in recent years but are fundamentally limited by the underlying training data. To improve models beyond the training data, recent works have explored how LLMs can be used to generate synthetic data for autonomous self-improvement. However, successive steps of self-improvement can reach a point of diminishing returns. In this work, we propose a complementary approach towards self-improvement where finetuning is applied to a multiagent society of language models. A group of language models, all starting from the same base model, are independently specialized by updating each one using data generated through multiagent interactions among the models. By training each model on independent sets of data, we illustrate how this approach enables specialization across models and diversification over the set of models. As a result, our overall system is able to preserve diverse reasoning chains and autonomously improve over many more rounds of fine-tuning than single-agent self-improvement methods. We quantitatively illustrate the efficacy of the approach across a wide suite of reasoning tasks.
comment: 22 pages, 13 figures, 7 tables; Project page at https://llm-multiagent-ft.github.io/
☆ EXION: Exploiting Inter- and Intra-Iteration Output Sparsity for Diffusion Models HPCA 2025
Over the past few years, diffusion models have emerged as novel AI solutions, generating diverse multi-modal outputs from text prompts. Despite their capabilities, they face challenges in computing, such as excessive latency and energy consumption due to their iterative architecture. Although prior works specialized in transformer acceleration can be applied, the iterative nature of diffusion models remains unresolved. In this paper, we present EXION, the first SW-HW co-designed diffusion accelerator that solves the computation challenges by exploiting the unique inter- and intra-iteration output sparsity in diffusion models. To this end, we propose two SW-level optimizations. First, we introduce the FFN-Reuse algorithm that identifies and skips redundant computations in FFN layers across different iterations (inter-iteration sparsity). Second, we use a modified eager prediction method that employs two-step leading-one detection to accurately predict the attention score, skipping unnecessary computations within an iteration (intra-iteration sparsity). We also introduce a novel data compaction mechanism named ConMerge, which can enhance HW utilization by condensing and merging sparse matrices into compact forms. Finally, it has a dedicated HW architecture that supports the above sparsity-inducing algorithms, translating high output sparsity into improved energy efficiency and performance. To verify the feasibility of the EXION, we first demonstrate that it has no impact on accuracy in various types of multi-modal diffusion models. We then instantiate EXION in both server- and edge-level settings and compare its performance against GPUs with similar specifications. Our evaluation shows that EXION achieves dramatic improvements in performance and energy efficiency by 3.2-379.3x and 45.1-3067.6x compared to a server GPU and by 42.6-1090.9x and 196.9-4668.2x compared to an edge GPU.
comment: To appear in 2025 IEEE International Symposium on High-Performance Computer Architecture (HPCA 2025)
☆ Facilitate Collaboration between Large Language Model and Task-specific Model for Time Series Anomaly Detection
In anomaly detection, methods based on large language models (LLMs) can incorporate expert knowledge, while task-specific smaller models excel at extracting normal patterns and detecting value fluctuations. Inspired by the human nervous system, where the brain stores expert knowledge and the peripheral nervous system and spinal cord handle specific tasks like withdrawal and knee-jerk reflexes, we propose CoLLaTe, a framework designed to facilitate collaboration between LLMs and task-specific models, leveraging the strengths of both. In this work, we first formulate the collaboration process and identify two key challenges in the collaboration between LLMs and task-specific models: (1) the misalignment between the expression domains of LLMs and smaller models, and (2) error accumulation arising from the predictions of both models. To address these challenges, we introduce two key components in CoLLaTe: the alignment module and the collaborative loss function. Through theoretical analysis and experimental validation, we demonstrate that these components effectively mitigate the identified challenges and achieve better performance than LLM based methods and task-specific smaller model.
☆ Network Diffuser for Placing-Scheduling Service Function Chains with Inverse Demonstration
Network services are increasingly managed by considering chained-up virtual network functions and relevant traffic flows, known as the Service Function Chains (SFCs). To deal with sequential arrivals of SFCs in an online fashion, we must consider two closely-coupled problems - an SFC placement problem that maps SFCs to servers/links in the network and an SFC scheduling problem that determines when each SFC is executed. Solving the whole SFC problem targeting these two optimizations jointly is extremely challenging. In this paper, we propose a novel network diffuser using conditional generative modeling for this SFC placing-scheduling optimization. Recent advances in generative AI and diffusion models have made it possible to generate high-quality images/videos and decision trajectories from language description. We formulate the SFC optimization as a problem of generating a state sequence for planning and perform graph diffusion on the state trajectories to enable extraction of SFC decisions, with SFC optimization constraints and objectives as conditions. To address the lack of demonstration data due to NP-hardness and exponential problem space of the SFC optimization, we also propose a novel and somewhat maverick approach -- Rather than solving instances of this difficult optimization, we start with randomly-generated solutions as input, and then determine appropriate SFC optimization problems that render these solutions feasible. This inverse demonstration enables us to obtain sufficient expert demonstrations, i.e., problem-solution pairs, through further optimization. In our numerical evaluations, the proposed network diffuser outperforms learning and heuristic baselines, by $\sim$20\% improvement in SFC reward and $\sim$50\% reduction in SFC waiting time and blocking rate.
comment: Accepted to IEEE INFOCOM 2025
☆ TransPlace: Transferable Circuit Global Placement via Graph Neural Network KDD 2025
Global placement, a critical step in designing the physical layout of computer chips, is essential to optimize chip performance. Prior global placement methods optimize each circuit design individually from scratch. Their neglect of transferable knowledge limits solution efficiency and chip performance as circuit complexity drastically increases. This study presents TransPlace, a global placement framework that learns to place millions of mixed-size cells in continuous space. TransPlace introduces i) Netlist Graph to efficiently model netlist topology, ii) Cell-flow and relative position encoding to learn SE(2)-invariant representation, iii) a tailored graph neural network architecture for informed parameterization of placement knowledge, and iv) a two-stage strategy for coarse-to-fine placement. Compared to state-of-the-art placement methods, TransPlace-trained on a few high-quality placements-can place unseen circuits with 1.2x speedup while reducing congestion by 30%, timing by 9%, and wirelength by 5%.
comment: Accepted at KDD 2025
☆ Learning to Measure Quantum Neural Networks ICASSP 2025
The rapid progress in quantum computing (QC) and machine learning (ML) has attracted growing attention, prompting extensive research into quantum machine learning (QML) algorithms to solve diverse and complex problems. Designing high-performance QML models demands expert-level proficiency, which remains a significant obstacle to the broader adoption of QML. A few major hurdles include crafting effective data encoding techniques and parameterized quantum circuits, both of which are crucial to the performance of QML models. Additionally, the measurement phase is frequently overlooked-most current QML models rely on pre-defined measurement protocols that often fail to account for the specific problem being addressed. We introduce a novel approach that makes the observable of the quantum system-specifically, the Hermitian matrix-learnable. Our method features an end-to-end differentiable learning framework, where the parameterized observable is trained alongside the ordinary quantum circuit parameters simultaneously. Using numerical simulations, we show that the proposed method can identify observables for variational quantum circuits that lead to improved outcomes, such as higher classification accuracy, thereby boosting the overall performance of QML models.
comment: Accepted by ICASSP 2025 Workshop: Quantum Machine Learning in Signal Processing and Artificial Intelligence
☆ Cascaded Self-Evaluation Augmented Training for Efficient Multimodal Large Language Models
Efficient Multimodal Large Language Models (EMLLMs) have rapidly advanced recently. Incorporating Chain-of-Thought (CoT) reasoning and step-by-step self-evaluation has improved their performance. However, limited parameters often hinder EMLLMs from effectively using self-evaluation during inference. Key challenges include synthesizing evaluation data, determining its quantity, optimizing training and inference strategies, and selecting appropriate prompts. To address these issues, we introduce Self-Evaluation Augmented Training (SEAT). SEAT uses more powerful EMLLMs for CoT reasoning, data selection, and evaluation generation, then trains EMLLMs with the synthesized data. However, handling long prompts and maintaining CoT reasoning quality are problematic. Therefore, we propose Cascaded Self-Evaluation Augmented Training (Cas-SEAT), which breaks down lengthy prompts into shorter, task-specific cascaded prompts and reduces costs for resource-limited settings. During data synthesis, we employ open-source 7B-parameter EMLLMs and annotate a small dataset with short prompts. Experiments demonstrate that Cas-SEAT significantly boosts EMLLMs' self-evaluation abilities, improving performance by 19.68%, 55.57%, and 46.79% on the MathVista, Math-V, and We-Math datasets, respectively. Additionally, our Cas-SEAT Dataset serves as a valuable resource for future research in enhancing EMLLM self-evaluation.
☆ Collaboration of Large Language Models and Small Recommendation Models for Device-Cloud Recommendation KDD'25
Large Language Models (LLMs) for Recommendation (LLM4Rec) is a promising research direction that has demonstrated exceptional performance in this field. However, its inability to capture real-time user preferences greatly limits the practical application of LLM4Rec because (i) LLMs are costly to train and infer frequently, and (ii) LLMs struggle to access real-time data (its large number of parameters poses an obstacle to deployment on devices). Fortunately, small recommendation models (SRMs) can effectively supplement these shortcomings of LLM4Rec diagrams by consuming minimal resources for frequent training and inference, and by conveniently accessing real-time data on devices. In light of this, we designed the Device-Cloud LLM-SRM Collaborative Recommendation Framework (LSC4Rec) under a device-cloud collaboration setting. LSC4Rec aims to integrate the advantages of both LLMs and SRMs, as well as the benefits of cloud and edge computing, achieving a complementary synergy. We enhance the practicability of LSC4Rec by designing three strategies: collaborative training, collaborative inference, and intelligent request. During training, LLM generates candidate lists to enhance the ranking ability of SRM in collaborative scenarios and enables SRM to update adaptively to capture real-time user interests. During inference, LLM and SRM are deployed on the cloud and on the device, respectively. LLM generates candidate lists and initial ranking results based on user behavior, and SRM get reranking results based on the candidate list, with final results integrating both LLM's and SRM's scores. The device determines whether a new candidate list is needed by comparing the consistency of the LLM's and SRM's sorted lists. Our comprehensive and extensive experimental analysis validates the effectiveness of each strategy in LSC4Rec.
comment: Published on KDD'25: Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining 2025
☆ Efficient Representations for High-Cardinality Categorical Variables in Machine Learning
High\-cardinality categorical variables pose significant challenges in machine learning, particularly in terms of computational efficiency and model interpretability. Traditional one\-hot encoding often results in high\-dimensional sparse feature spaces, increasing the risk of overfitting and reducing scalability. This paper introduces novel encoding techniques, including means encoding, low\-rank encoding, and multinomial logistic regression encoding, to address these challenges. These methods leverage sufficient representations to generate compact and informative embeddings of categorical data. We conduct rigorous theoretical analyses and empirical validations on diverse datasets, demonstrating significant improvements in model performance and computational efficiency compared to baseline methods. The proposed techniques are particularly effective in domains requiring scalable solutions for large datasets, paving the way for more robust and efficient applications in machine learning.
comment: 2025 International Conference on Advanced Machine Learning and Data Science (AMLDS 2025)
☆ Iconicity in Large Language Models
Lexical iconicity, a direct relation between a word's meaning and its form, is an important aspect of every natural language, most commonly manifesting through sound-meaning associations. Since Large language models' (LLMs') access to both meaning and sound of text is only mediated (meaning through textual context, sound through written representation, further complicated by tokenization), we might expect that the encoding of iconicity in LLMs would be either insufficient or significantly different from human processing. This study addresses this hypothesis by having GPT-4 generate highly iconic pseudowords in artificial languages. To verify that these words actually carry iconicity, we had their meanings guessed by Czech and German participants (n=672) and subsequently by LLM-based participants (generated by GPT-4 and Claude 3.5 Sonnet). The results revealed that humans can guess the meanings of pseudowords in the generated iconic language more accurately than words in distant natural languages and that LLM-based participants are even more successful than humans in this task. This core finding is accompanied by several additional analyses concerning the universality of the generated language and the cues that both human and LLM-based participants utilize.
comment: Supplementary information: https://osf.io/ywjrk/
☆ The Impact of Model Scaling on Seen and Unseen Language Performance AAAI25
The rapid advancement of Large Language Models (LLMs), particularly those trained on multilingual corpora, has intensified the need for a deeper understanding of their performance across a diverse range of languages and model sizes. Our research addresses this critical need by studying the performance and scaling behavior of multilingual LLMs in text classification and machine translation tasks across 204 languages. We systematically examine both seen and unseen languages across three model families of varying sizes in zero-shot and few-shot settings. Our findings show significant differences in scaling behavior between zero-shot and two-shot scenarios, with striking disparities in performance between seen and unseen languages. Model scale has little effect on zero-shot performance, which remains mostly flat. However, in two-shot settings, larger models show clear linear improvements in multilingual text classification. For translation tasks, however, only the instruction-tuned model showed clear benefits from scaling. Our analysis also suggests that overall resource levels, not just the proportions of pretraining languages, are better predictors of model performance, shedding light on what drives multilingual LLM effectiveness.
comment: Accepted at SEAS Workshop at AAAI25
♻ ☆ Guess What I Think: Streamlined EEG-to-Image Generation with Latent Diffusion Models ICASSP 2025
Generating images from brain waves is gaining increasing attention due to its potential to advance brain-computer interface (BCI) systems by understanding how brain signals encode visual cues. Most of the literature has focused on fMRI-to-Image tasks as fMRI is characterized by high spatial resolution. However, fMRI is an expensive neuroimaging modality and does not allow for real-time BCI. On the other hand, electroencephalography (EEG) is a low-cost, non-invasive, and portable neuroimaging technique, making it an attractive option for future real-time applications. Nevertheless, EEG presents inherent challenges due to its low spatial resolution and susceptibility to noise and artifacts, which makes generating images from EEG more difficult. In this paper, we address these problems with a streamlined framework based on the ControlNet adapter for conditioning a latent diffusion model (LDM) through EEG signals. We conduct experiments and ablation studies on popular benchmarks to demonstrate that the proposed method beats other state-of-the-art models. Unlike these methods, which often require extensive preprocessing, pretraining, different losses, and captioning models, our approach is efficient and straightforward, requiring only minimal preprocessing and a few components. The code is available at https://github.com/LuigiSigillo/GWIT.
comment: Accepted at ICASSP 2025
♻ ☆ Two Stage Segmentation of Cervical Tumors using PocketNet
Cervical cancer remains the fourth most common malignancy amongst women worldwide.1 Concurrent chemoradiotherapy (CRT) serves as the mainstay definitive treatment regimen for locally advanced cervical cancers and includes external beam radiation followed by brachytherapy.2 Integral to radiotherapy treatment planning is the routine contouring of both the target tumor at the level of the cervix, associated gynecologic anatomy and the adjacent organs at risk (OARs). However, manual contouring of these structures is both time and labor intensive and associated with known interobserver variability that can impact treatment outcomes. While multiple tools have been developed to automatically segment OARs and the high-risk clinical tumor volume (HR-CTV) using computed tomography (CT) images,3,4,5,6 the development of deep learning-based tumor segmentation tools using routine T2-weighted (T2w) magnetic resonance imaging (MRI) addresses an unmet clinical need to improve the routine contouring of both anatomical structures and cervical cancers, thereby increasing quality and consistency of radiotherapy planning. This work applied a novel deep-learning model (PocketNet) to segment the cervix, vagina, uterus, and tumor(s) on T2w MRI. The performance of the PocketNet architecture was evaluated, when trained on data via 5-fold cross validation. PocketNet achieved a mean Dice-Sorensen similarity coefficient (DSC) exceeding 70% for tumor segmentation and 80% for organ segmentation. These results suggest that PocketNet is robust to variations in contrast protocols, providing reliable segmentation of the regions of interest.
♻ ☆ Benchmark Evaluations, Applications, and Challenges of Large Vision Language Models: A Survey
Multimodal Vision Language Models (VLMs) have emerged as a transformative technology at the intersection of computer vision and natural language processing, enabling machines to perceive and reason about the world through both visual and textual modalities. For example, models such as CLIP, Claude, and GPT-4V demonstrate strong reasoning and understanding abilities on visual and textual data and beat classical single modality vision models on zero-shot classification. Despite their rapid advancements in research and growing popularity in applications, a comprehensive survey of existing studies on VLMs is notably lacking, particularly for researchers aiming to leverage VLMs in their specific domains. To this end, we provide a systematic overview of VLMs in the following aspects: model information of the major VLMs developed over the past five years (2019-2024); the main architectures and training methods of these VLMs; summary and categorization of the popular benchmarks and evaluation metrics of VLMs; the applications of VLMs including embodied agents, robotics, and video generation; the challenges and issues faced by current VLMs such as hallucination, fairness, and safety. Detailed collections including papers and model repository links are listed in https://github.com/zli12321/Awesome-VLM-Papers-And-Models.git.
comment: 35 pages, 3 figures
♻ ☆ Atlas: A Novel Pathology Foundation Model by Mayo Clinic, Charité, and Aignostics
Recent advances in digital pathology have demonstrated the effectiveness of foundation models across diverse applications. In this report, we present Atlas, a novel vision foundation model based on the RudolfV approach. Our model was trained on a dataset comprising 1.2 million histopathology whole slide images, collected from two medical institutions: Mayo Clinic and Charit\'e - Universt\"atsmedizin Berlin. Comprehensive evaluations show that Atlas achieves state-of-the-art performance across twenty-one public benchmark datasets, even though it is neither the largest model by parameter count nor by training dataset size.
♻ ☆ Self-supervised video pretraining yields robust and more human-aligned visual representations NeurIPS 2023
Humans learn powerful representations of objects and scenes by observing how they evolve over time. Yet, outside of specific tasks that require explicit temporal understanding, static image pretraining remains the dominant paradigm for learning visual foundation models. We question this mismatch, and ask whether video pretraining can yield visual representations that bear the hallmarks of human perception: generalisation across tasks, robustness to perturbations, and consistency with human judgements. To that end we propose a novel procedure for curating videos, and develop a contrastive framework which learns from the complex transformations therein. This simple paradigm for distilling knowledge from videos, called VITO, yields general representations that far outperform prior video pretraining methods on image understanding tasks, and image pretraining methods on video understanding tasks. Moreover, VITO representations are significantly more robust to natural and synthetic deformations than image-, video-, and adversarially-trained ones. Finally, VITO's predictions are strongly aligned with human judgements, surpassing models that were specifically trained for that purpose. Together, these results suggest that video pretraining could be a simple way of learning unified, robust, and human-aligned representations of the visual world.
comment: Accepted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023)
♻ ☆ Advances in Diffusion Models for Image Data Augmentation: A Review of Methods, Models, Evaluation Metrics and Future Research Directions
Image data augmentation constitutes a critical methodology in modern computer vision tasks, since it can facilitate towards enhancing the diversity and quality of training datasets; thereby, improving the performance and robustness of machine learning models in downstream tasks. In parallel, augmentation approaches can also be used for editing/modifying a given image in a context- and semantics-aware way. Diffusion Models (DMs), which comprise one of the most recent and highly promising classes of methods in the field of generative Artificial Intelligence (AI), have emerged as a powerful tool for image data augmentation, capable of generating realistic and diverse images by learning the underlying data distribution. The current study realizes a systematic, comprehensive and in-depth review of DM-based approaches for image augmentation, covering a wide range of strategies, tasks and applications. In particular, a comprehensive analysis of the fundamental principles, model architectures and training strategies of DMs is initially performed. Subsequently, a taxonomy of the relevant image augmentation methods is introduced, focusing on techniques regarding semantic manipulation, personalization and adaptation, and application-specific augmentation tasks. Then, performance assessment methodologies and respective evaluation metrics are analyzed. Finally, current challenges and future research directions in the field are discussed.
comment: 65 pages, 15 figures
♻ ☆ Uncovering the Genetic Basis of Glioblastoma Heterogeneity through Multimodal Analysis of Whole Slide Images and RNA Sequencing Data
Glioblastoma is a highly aggressive form of brain cancer characterized by rapid progression and poor prognosis. Despite advances in treatment, the underlying genetic mechanisms driving this aggressiveness remain poorly understood. In this study, we employed multimodal deep learning approaches to investigate glioblastoma heterogeneity using joint image/RNA-seq analysis. Our results reveal novel genes associated with glioblastoma. By leveraging a combination of whole-slide images and RNA-seq, as well as introducing novel methods to encode RNA-seq data, we identified specific genetic profiles that may explain different patterns of glioblastoma progression. These findings provide new insights into the genetic mechanisms underlying glioblastoma heterogeneity and highlight potential targets for therapeutic intervention.
♻ ☆ MARS: A neurosymbolic approach for interpretable drug discovery
Neurosymbolic (NeSy) artificial intelligence describes the combination of logic or rule-based techniques with neural networks. Compared to neural approaches, NeSy methods often possess enhanced interpretability, which is particularly promising for biomedical applications like drug discovery. However, since interpretability is broadly defined, there are no clear guidelines for assessing the biological plausibility of model interpretations. To assess interpretability in the context of drug discovery, we devise a novel prediction task, called drug mechanism-of-action (MoA) deconvolution, with an associated, tailored knowledge graph (KG), MoA-net. We then develop the MoA Retrieval System (MARS), a NeSy approach for drug discovery which leverages logical rules with learned rule weights. Using this interpretable feature alongside domain knowledge, we find that MARS and other NeSy approaches on KGs are susceptible to reasoning shortcuts, in which the prediction of true labels is driven by "degree-bias" rather than the domain-based rules. Subsequently, we demonstrate ways to identify and mitigate this. Thereafter, MARS achieves performance on par with current state-of-the-art models while producing model interpretations aligned with known MoAs.
comment: Under review. 10 pages, 7 supplementary pages. Corresponding code is here: https://github.com/laurendelong21/MARS and here: https://github.com/laurendelong21/MoA-Net
♻ ☆ LUMIA: Linear probing for Unimodal and MultiModal Membership Inference Attacks leveraging internal LLM states
Large Language Models (LLMs) are increasingly used in a variety of applications, but concerns around membership inference have grown in parallel. Previous efforts focus on black-to-grey-box models, thus neglecting the potential benefit from internal LLM information. To address this, we propose the use of Linear Probes (LPs) as a method to detect Membership Inference Attacks (MIAs) by examining internal activations of LLMs. Our approach, dubbed LUMIA, applies LPs layer-by-layer to get fine-grained data on the model inner workings. We test this method across several model architectures, sizes and datasets, including unimodal and multimodal tasks. In unimodal MIA, LUMIA achieves an average gain of 15.71 % in Area Under the Curve (AUC) over previous techniques. Remarkably, LUMIA reaches AUC>60% in 65.33% of cases -- an increment of 46.80% against the state of the art. Furthermore, our approach reveals key insights, such as the model layers where MIAs are most detectable. In multimodal models, LPs indicate that visual inputs can significantly contribute to detect MIAs -- AUC>60% is reached in 85.90% of experiments.
♻ ☆ CURing Large Models: Compression via CUR Decomposition
Large deep learning models have achieved remarkable success but are resource-intensive, posing challenges such as memory usage. We introduce CURing, a novel model compression method based on CUR matrix decomposition, which approximates weight matrices as the product of selected columns (C) and rows (R), and a small linking matrix (U). We apply this decomposition to weights chosen based on the combined influence of their magnitudes and activations. By identifying and retaining informative rows and columns, CURing significantly reduces model size with minimal performance loss. For example, it reduces Llama3.1-8B's parameters to 7.32B (-9%) in just 129 seconds, over 20 times faster than prior compression methods.
♻ ☆ Are We Done with MMLU?
Maybe not. We identify and analyse errors in the popular Massive Multitask Language Understanding (MMLU) benchmark. Even though MMLU is widely adopted, our analysis demonstrates numerous ground truth errors that obscure the true capabilities of LLMs. For example, we find that 57% of the analysed questions in the Virology subset contain errors. To address this issue, we introduce a comprehensive framework for identifying dataset errors using a novel error annotation protocol. Then, we create MMLU-Redux, which is a subset of 5,700 manually re-annotated questions across all 57 MMLU subjects. We estimate that 6.49% of MMLU questions contain errors. Using MMLU-Redux, we demonstrate significant discrepancies with the model performance metrics that were originally reported. Our results strongly advocate for revising MMLU's error-ridden questions to enhance its future utility and reliability as a benchmark. https://huggingface.co/datasets/edinburgh-dawg/mmlu-redux-2.0.
♻ ☆ A stochastic first-order method with multi-extrapolated momentum for highly smooth unconstrained optimization
In this paper, we consider an unconstrained stochastic optimization problem where the objective function exhibits high-order smoothness. Specifically, we propose a new stochastic first-order method (SFOM) with multi-extrapolated momentum, in which multiple extrapolations are performed in each iteration, followed by a momentum update based on these extrapolations. We demonstrate that the proposed SFOM can accelerate optimization by exploiting the high-order smoothness of the objective function $f$. Assuming that the $p$th-order derivative of $f$ is Lipschitz continuous for some $p\ge2$, and under additional mild assumptions, we establish that our method achieves a sample complexity of $\widetilde{\mathcal{O}}(\epsilon^{-(3p+1)/p})$ for finding a point $x$ such that $\mathbb{E}[\|\nabla f(x)\|]\le\epsilon$. To the best of our knowledge, this is the first SFOM to leverage arbitrary-order smoothness of the objective function for acceleration, resulting in a sample complexity that improves upon the best-known results without assuming the mean-squared smoothness condition. Preliminary numerical experiments validate the practical performance of our method and support our theoretical findings.
♻ ☆ On Large Language Models in Mission-Critical IT Governance: Are We Ready Yet?
Context. The security of critical infrastructure has been a pressing concern since the advent of computers and has become even more critical in today's era of cyber warfare. Protecting mission-critical systems (MCSs), essential for national security, requires swift and robust governance, yet recent events reveal the increasing difficulty of meeting these challenges. Aim. Building on prior research showcasing the potential of Generative AI (GAI), such as Large Language Models, in enhancing risk analysis, we aim to explore practitioners' views on integrating GAI into the governance of IT MCSs. Our goal is to provide actionable insights and recommendations for stakeholders, including researchers, practitioners, and policymakers. Method. We designed a survey to collect practical experiences, concerns, and expectations of practitioners who develop and implement security solutions in the context of MCSs. Conclusions and Future Works. Our findings highlight that the safe use of LLMs in MCS governance requires interdisciplinary collaboration. Researchers should focus on designing regulation-oriented models and focus on accountability; practitioners emphasize data protection and transparency, while policymakers must establish a unified AI framework with global benchmarks to ensure ethical and secure LLMs-based MCS governance.
♻ ☆ Dolphin: Closed-loop Open-ended Auto-research through Thinking, Practice, and Feedback
The scientific research paradigm is undergoing a profound transformation owing to the development of Artificial Intelligence (AI). Recent works demonstrate that various AI-assisted research methods can largely improve research efficiency by improving data analysis, accelerating computation, and fostering novel idea generation. To further move towards the ultimate goal (i.e., automatic scientific research), in this paper, we propose Dolphin, the first closed-loop open-ended auto-research framework to further build the entire process of human scientific research. Dolphin can generate research ideas, perform experiments, and get feedback from experimental results to generate higher-quality ideas. More specifically, Dolphin first generates novel ideas based on relevant papers which are ranked by the topic and task attributes. Then, the codes are automatically generated and debugged with the exception-traceback-guided local code structure. Finally, Dolphin automatically analyzes the results of each idea and feeds the results back to the next round of idea generation. Experiments are conducted on the benchmark datasets of different topics and results show that Dolphin can generate novel ideas continuously and complete the experiment in a loop. We highlight that Dolphin can automatically propose methods that are comparable to the state-of-the-art in some tasks such as 2D image classification and 3D point classification.
comment: 19 pages, 11 figures, and our homepage: https://alpha-innovator.github.io/Dolphin-project-page
♻ ☆ LitSumm: Large language models for literature summarisation of non-coding RNAs
Curation of literature in life sciences is a growing challenge. The continued increase in the rate of publication, coupled with the relatively fixed number of curators worldwide presents a major challenge to developers of biomedical knowledgebases. Very few knowledgebases have resources to scale to the whole relevant literature and all have to prioritise their efforts. In this work, we take a first step to alleviating the lack of curator time in RNA science by generating summaries of literature for non-coding RNAs using large language models (LLMs). We demonstrate that high-quality, factually accurate summaries with accurate references can be automatically generated from the literature using a commercial LLM and a chain of prompts and checks. Manual assessment was carried out for a subset of summaries, with the majority being rated extremely high quality. We apply our tool to a selection of over 4,600 ncRNAs and make the generated summaries available via the RNAcentral resource. We conclude that automated literature summarization is feasible with the current generation of LLMs, provided careful prompting and automated checking are applied.
♻ ☆ Gender Bias in Text-to-Video Generation Models: A case study of Sora
The advent of text-to-video generation models has revolutionized content creation as it produces high-quality videos from textual prompts. However, concerns regarding inherent biases in such models have prompted scrutiny, particularly regarding gender representation. Our study investigates the presence of gender bias in OpenAI's Sora, a state-of-the-art text-to-video generation model. We uncover significant evidence of bias by analyzing the generated videos from a diverse set of gender-neutral and stereotypical prompts. The results indicate that Sora disproportionately associates specific genders with stereotypical behaviors and professions, which reflects societal prejudices embedded in its training data.
comment: 7 pages, 3 figures
♻ ☆ VLM-driven Behavior Tree for Context-aware Task Planning
The use of Large Language Models (LLMs) for generating Behavior Trees (BTs) has recently gained attention in the robotics community, yet remains in its early stages of development. In this paper, we propose a novel framework that leverages Vision-Language Models (VLMs) to interactively generate and edit BTs that address visual conditions, enabling context-aware robot operations in visually complex environments. A key feature of our approach lies in the conditional control through self-prompted visual conditions. Specifically, the VLM generates BTs with visual condition nodes, where conditions are expressed as free-form text. Another VLM process integrates the text into its prompt and evaluates the conditions against real-world images during robot execution. We validated our framework in a real-world cafe scenario, demonstrating both its feasibility and limitations.
comment: 10 pages, 11 figures, 5 tables. Last updated on January 9th, 2024
♻ ☆ Long Story Short: Story-level Video Understanding from 20K Short Films
Recent developments in vision-language models have significantly advanced video understanding. Existing datasets and tasks, however, have notable limitations. Most datasets are confined to short videos with limited events and narrow narratives. For example, datasets with instructional and egocentric videos often depict activities of one person in a single scene. Although existing movie datasets offer richer content, they are often limited to short-term tasks, lack publicly available videos, and frequently encounter data leakage issues given the use of subtitles and other information about commercial movies during LLM pretraining. To address the above limitations, we propose Short-Films 20K (SF20K), the largest publicly available movie dataset. SF20K is composed of 20,143 amateur films and offers long-term video tasks in the form of multiple-choice and open-ended question answering. Our extensive analysis of SF20K reveals minimal data leakage, emphasizes the need for long-term reasoning, and demonstrates the strong performance of recent VLMs. Finally, we show that instruction tuning on the SF20K-Train set substantially improves model performance, paving the way for future progress in long-term video understanding.
♻ ☆ MoColl: Agent-Based Specific and General Model Collaboration for Image Captioning
Image captioning is a critical task at the intersection of computer vision and natural language processing, with wide-ranging applications across various domains. For complex tasks such as diagnostic report generation, deep learning models require not only domain-specific image-caption datasets but also the incorporation of relevant general knowledge to provide contextual accuracy. Existing approaches exhibit inherent limitations: specialized models excel in capturing domain-specific details but lack generalization, while vision-language models (VLMs) built on large language models (LLMs) leverage general knowledge but struggle with domain-specific adaptation. To address these limitations, this paper proposes a novel agent-enhanced model collaboration framework, which we call MoColl, designed to effectively integrate domain-specific and general knowledge. Specifically, our approach is to decompose complex image captioning tasks into a series of interconnected question-answer subtasks. A trainable visual question answering (VQA) model is employed as a specialized tool to focus on domain-specific visual analysis, answering task-specific questions based on image content. Concurrently, an LLM-based agent with general knowledge formulates these questions and synthesizes the resulting question-answer pairs into coherent captions. Beyond its role in leveraging the VQA model, the agent further guides its training to enhance its domain-specific capabilities. Experimental results on radiology report generation validate the effectiveness of the proposed framework, demonstrating significant improvements in the quality of generated reports.
♻ ☆ Towards a Multimodal Large Language Model with Pixel-Level Insight for Biomedicine AAAI2025
In recent years, Multimodal Large Language Models (MLLM) have achieved notable advancements, demonstrating the feasibility of developing an intelligent biomedical assistant. However, current biomedical MLLMs predominantly focus on image-level understanding and restrict interactions to textual commands, thus limiting their capability boundaries and the flexibility of usage. In this paper, we introduce a novel end-to-end multimodal large language model for the biomedical domain, named MedPLIB, which possesses pixel-level understanding. Excitingly, it supports visual question answering (VQA), arbitrary pixel-level prompts (points, bounding boxes, and free-form shapes), and pixel-level grounding. We propose a novel Mixture-of-Experts (MoE) multi-stage training strategy, which divides MoE into separate training phases for a visual-language expert model and a pixel-grounding expert model, followed by fine-tuning using MoE. This strategy effectively coordinates multitask learning while maintaining the computational cost at inference equivalent to that of a single expert model. To advance the research of biomedical MLLMs, we introduce the Medical Complex Vision Question Answering Dataset (MeCoVQA), which comprises an array of 8 modalities for complex medical imaging question answering and image region understanding. Experimental results indicate that MedPLIB has achieved state-of-the-art outcomes across multiple medical visual language tasks. More importantly, in zero-shot evaluations for the pixel grounding task, MedPLIB leads the best small and large models by margins of 19.7 and 15.6 respectively on the mDice metric. The codes, data, and model checkpoints will be made publicly available at https://github.com/ShawnHuang497/MedPLIB.
comment: Accepted by AAAI2025
♻ ☆ SafetyPrompts: a Systematic Review of Open Datasets for Evaluating and Improving Large Language Model Safety AAAI 2025
The last two years have seen a rapid growth in concerns around the safety of large language models (LLMs). Researchers and practitioners have met these concerns by creating an abundance of datasets for evaluating and improving LLM safety. However, much of this work has happened in parallel, and with very different goals in mind, ranging from the mitigation of near-term risks around bias and toxic content generation to the assessment of longer-term catastrophic risk potential. This makes it difficult for researchers and practitioners to find the most relevant datasets for their use case, and to identify gaps in dataset coverage that future work may fill. To remedy these issues, we conduct a first systematic review of open datasets for evaluating and improving LLM safety. We review 144 datasets, which we identified through an iterative and community-driven process over the course of several months. We highlight patterns and trends, such as a trend towards fully synthetic datasets, as well as gaps in dataset coverage, such as a clear lack of non-English and naturalistic datasets. We also examine how LLM safety datasets are used in practice -- in LLM release publications and popular LLM benchmarks -- finding that current evaluation practices are highly idiosyncratic and make use of only a small fraction of available datasets. Our contributions are based on SafetyPrompts.com, a living catalogue of open datasets for LLM safety, which we plan to update continuously as the field of LLM safety develops.
comment: Accepted at AAAI 2025 (Special Track on AI Alignment)
♻ ☆ A Pre-trained Data Deduplication Model based on Active Learning
In the era of big data, the issue of data quality has become increasingly prominent. One of the main challenges is the problem of duplicate data, which can arise from repeated entry or the merging of multiple data sources. These "dirty data" problems can significantly limit the effective application of big data. To address the issue of data deduplication, we propose a pre-trained deduplication model based on active learning, which is the first work that utilizes active learning to address the problem of deduplication at the semantic level. The model is built on a pre-trained Transformer and fine-tuned to solve the deduplication problem as a sequence to classification task, which firstly integrate the transformer with active learning into an end-to-end architecture to select the most valuable data for deduplication model training, and also firstly employ the R-Drop method to perform data augmentation on each round of labeled data, which can reduce the cost of manual labeling and improve the model's performance. Experimental results demonstrate that our proposed model outperforms previous state-of-the-art (SOTA) for deduplicated data identification, achieving up to a 28% improvement in Recall score on benchmark datasets.
♻ ☆ CORD: Generalizable Cooperation via Role Diversity
Cooperative multi-agent reinforcement learning (MARL) aims to develop agents that can collaborate effectively. However, most cooperative MARL methods overfit training agents, making learned policies not generalize well to unseen collaborators, which is a critical issue for real-world deployment. Some methods attempt to address the generalization problem but require prior knowledge or predefined policies of new teammates, limiting real-world applications. To this end, we propose a hierarchical MARL approach to enable generalizable cooperation via role diversity, namely CORD. CORD's high-level controller assigns roles to low-level agents by maximizing the role entropy with constraints. We show this constrained objective can be decomposed into causal influence in role that enables reasonable role assignment, and role heterogeneity that yields coherent, non-redundant role clusters. Evaluated on a variety of cooperative multi-agent tasks, CORD achieves better performance than baselines, especially in generalization tests. Ablation studies further demonstrate the efficacy of the constrained objective in generalizable cooperation.
♻ ☆ AlgoFormer: An Efficient Transformer Framework with Algorithmic Structures
Besides natural language processing, transformers exhibit extraordinary performance in solving broader applications, including scientific computing and computer vision. Previous works try to explain this from the expressive power and capability perspectives that standard transformers are capable of performing some algorithms. To empower transformers with algorithmic capabilities and motivated by the recently proposed looped transformer, we design a novel transformer framework, dubbed Algorithm Transformer (abbreviated as AlgoFormer). We provide an insight that efficient transformer architectures can be designed by leveraging prior knowledge of tasks and the underlying structure of potential algorithms. Compared with the standard transformer and vanilla looped transformer, the proposed AlgoFormer can perform efficiently in algorithm representation in some specific tasks. In particular, inspired by the structure of human-designed learning algorithms, our transformer framework consists of a pre-transformer that is responsible for task preprocessing, a looped transformer for iterative optimization algorithms, and a post-transformer for producing the desired results after post-processing. We provide theoretical evidence of the expressive power of the AlgoFormer in solving some challenging problems, mirroring human-designed algorithms. Furthermore, some theoretical and empirical results are presented to show that the designed transformer has the potential to perform algorithm representation and learning. Experimental results demonstrate the empirical superiority of the proposed transformer in that it outperforms the standard transformer and vanilla looped transformer in some specific tasks. An extensive experiment on real language tasks (e.g., neural machine translation of German and English, and text classification) further validates the expressiveness and effectiveness of AlgoFormer.
comment: Published at Transactions on Machine Learning Research (TMLR). The paper provides insight that the Transformer architectures can mimic the algorithm structures in (in-context) algorithm learning and representation. The incorporated algorithmic structure in Algoformer shows its potential in (deep learning for) scientific computing, besides the real language tasks
♻ ☆ Balanced Multi-view Clustering
Multi-view clustering (MvC) aims to integrate information from different views to enhance the capability of the model in capturing the underlying data structures. The widely used joint training paradigm in MvC is potentially not fully leverage the multi-view information, since the imbalanced and under-optimized view-specific features caused by the uniform learning objective for all views. For instance, particular views with more discriminative information could dominate the learning process in the joint training paradigm, leading to other views being under-optimized. To alleviate this issue, we first analyze the imbalanced phenomenon in the joint-training paradigm of multi-view clustering from the perspective of gradient descent for each view-specific feature extractor. Then, we propose a novel balanced multi-view clustering (BMvC) method, which introduces a view-specific contrastive regularization (VCR) to modulate the optimization of each view. Concretely, VCR preserves the sample similarities captured from the joint features and view-specific ones into the clustering distributions corresponding to view-specific features to enhance the learning process of view-specific feature extractors. Additionally, a theoretical analysis is provided to illustrate that VCR adaptively modulates the magnitudes of gradients for updating the parameters of view-specific feature extractors to achieve a balanced multi-view learning procedure. In such a manner, BMvC achieves a better trade-off between the exploitation of view-specific patterns and the exploration of view-invariance patterns to fully learn the multi-view information for the clustering task. Finally, a set of experiments are conducted to verify the superiority of the proposed method compared with state-of-the-art approaches both on eight benchmark MvC datasets and two spatially resolved transcriptomics datasets.
comment: We are withdrawing this paper due to issues in the experimental section related to the Application for Spatially Resolved Transcriptomics Data Clustering. These issues affect the validity of the results presented. We believe it is necessary to withdraw the paper to address these problems adequately before resubmission.
♻ ☆ KITS: Inductive Spatio-Temporal Kriging with Increment Training Strategy AAAI'25
Sensors are commonly deployed to perceive the environment. However, due to the high cost, sensors are usually sparsely deployed. Kriging is the tailored task to infer the unobserved nodes (without sensors) using the observed source nodes (with sensors). The essence of kriging task is transferability. Recently, several inductive spatio-temporal kriging methods have been proposed based on graph neural networks, being trained based on a graph built on top of observed nodes via pretext tasks such as masking nodes out and reconstructing them. However, the graph in training is inevitably much sparser than the graph in inference that includes all the observed and unobserved nodes. The learned pattern cannot be well generalized for inference, denoted as graph gap. To address this issue, we first present a novel Increment training strategy: instead of masking nodes (and reconstructing them), we add virtual nodes into the training graph so as to mitigate the graph gap issue naturally. Nevertheless, the empty-shell virtual nodes without labels could have bad-learned features and lack supervision signals. To solve these issues, we pair each virtual node with its most similar observed node and fuse their features together; to enhance the supervision signal, we construct reliable pseudo labels for virtual nodes. As a result, the learned pattern of virtual nodes could be safely transferred to real unobserved nodes for reliable kriging. We name our new Kriging model with Increment Training Strategy as KITS. Extensive experiments demonstrate that KITS consistently outperforms existing kriging methods by large margins, e.g., the improvement over MAE score could be as high as 18.33%.
comment: This paper is accepted by AAAI'25
♻ ☆ 4-bit Shampoo for Memory-Efficient Network Training NeurIPS 2024
Second-order optimizers, maintaining a matrix termed a preconditioner, are superior to first-order optimizers in both theory and practice. The states forming the preconditioner and its inverse root restrict the maximum size of models trained by second-order optimizers. To address this, compressing 32-bit optimizer states to lower bitwidths has shown promise in reducing memory usage. However, current approaches only pertain to first-order optimizers. In this paper, we propose the first 4-bit second-order optimizers, exemplified by 4-bit Shampoo, maintaining performance similar to that of 32-bit ones. We show that quantizing the eigenvector matrix of the preconditioner in 4-bit Shampoo is remarkably better than quantizing the preconditioner itself both theoretically and experimentally. By rectifying the orthogonality of the quantized eigenvector matrix, we enhance the approximation of the preconditioner's eigenvector matrix, which also benefits the computation of its inverse 4-th root. Besides, we find that linear square quantization slightly outperforms dynamic tree quantization when quantizing second-order optimizer states. Evaluation on various networks for image classification and natural language modeling demonstrates that our 4-bit Shampoo achieves comparable performance to its 32-bit counterpart while being more memory-efficient.
comment: NeurIPS 2024 final camera-ready revisions, rectify the legend in figure 9
♻ ☆ Bayesian Joint Additive Factor Models for Multiview Learning
It is increasingly common in a wide variety of applied settings to collect data of multiple different types on the same set of samples. Our particular focus in this article is on studying relationships between such multiview features and responses. A motivating application arises in the context of precision medicine where multi-omics data are collected to correlate with clinical outcomes. It is of interest to infer dependence within and across views while combining multimodal information to improve the prediction of outcomes. The signal-to-noise ratio can vary substantially across views, motivating more nuanced statistical tools beyond standard late and early fusion. This challenge comes with the need to preserve interpretability, select features, and obtain accurate uncertainty quantification. We propose a joint additive factor regression model (JAFAR) with a structured additive design, accounting for shared and view-specific components. We ensure identifiability via a novel dependent cumulative shrinkage process (D-CUSP) prior. We provide an efficient implementation via a partially collapsed Gibbs sampler and extend our approach to allow flexible feature and outcome distributions. Prediction of time-to-labor onset from immunome, metabolome, and proteome data illustrates performance gains against state-of-the-art competitors. Our open-source software (R package) is available at https://github.com/niccoloanceschi/jafar.
♻ ☆ Takin-VC: Expressive Zero-Shot Voice Conversion via Adaptive Hybrid Content Encoding and Enhanced Timbre Modeling
Expressive zero-shot voice conversion (VC) is a critical and challenging task that aims to transform the source timbre into an arbitrary unseen speaker while preserving the original content and expressive qualities. Despite recent progress in zero-shot VC, there remains considerable potential for improvements in speaker similarity and speech naturalness. Moreover, existing zero-shot VC systems struggle to fully reproduce paralinguistic information in highly expressive speech, such as breathing, crying, and emotional nuances, limiting their practical applicability. To address these issues, we propose Takin-VC, a novel expressive zero-shot VC framework via adaptive hybrid content encoding and memory-augmented context-aware timbre modeling. Specifically, we introduce an innovative hybrid content encoder that incorporates an adaptive fusion module, capable of effectively integrating quantized features of the pre-trained WavLM and HybridFormer in an implicit manner, so as to extract precise linguistic features while enriching paralinguistic elements. For timbre modeling, we propose advanced memory-augmented and context-aware modules to generate high-quality target timbre features and fused representations that seamlessly align source content with target timbre. To enhance real-time performance, we advocate a conditional flow matching model to reconstruct the Mel-spectrogram of the source speech. Experimental results show that our Takin-VC consistently surpasses state-of-the-art VC systems, achieving notable improvements in terms of speech naturalness, speech expressiveness, and speaker similarity, while offering enhanced inference speed.
comment: Work in Progress; Under Review
♻ ☆ Surrogate-based Autotuning for Randomized Sketching Algorithms in Regression Problems
Algorithms from Randomized Numerical Linear Algebra (RandNLA) are known to be effective in handling high-dimensional computational problems, providing high-quality empirical performance as well as strong probabilistic guarantees. However, their practical application is complicated by the fact that the user needs to set various algorithm-specific tuning parameters which are different than those used in traditional NLA. This paper demonstrates how a surrogate-based autotuning approach can be used to address fundamental problems of parameter selection in RandNLA algorithms. In particular, we provide a detailed investigation of surrogate-based autotuning for sketch-and-precondition (SAP) based randomized least squares methods, which have been one of the great success stories in modern RandNLA. Empirical results show that our surrogate-based autotuning approach can achieve near-optimal performance with much less tuning cost than a random search (up to about 4x fewer trials of different parameter configurations). Moreover, while our experiments focus on least squares, our results demonstrate a general-purpose autotuning pipeline applicable to any kind of RandNLA algorithm.
comment: Improved the presentation and clarity. Updated experimental results and scenarios. Accepted for publication in SIAM Journal on Matrix Analysis and Applications
♻ ☆ SensorQA: A Question Answering Benchmark for Daily-Life Monitoring
With the rapid growth in sensor data, effectively interpreting and interfacing with these data in a human-understandable way has become crucial. While existing research primarily focuses on learning classification models, fewer studies have explored how end users can actively extract useful insights from sensor data, often hindered by the lack of a proper dataset. To address this gap, we introduce SensorQA, the first human-created question-answering (QA) dataset for long-term time-series sensor data for daily life monitoring. SensorQA is created by human workers and includes 5.6K diverse and practical queries that reflect genuine human interests, paired with accurate answers derived from sensor data. We further establish benchmarks for state-of-the-art AI models on this dataset and evaluate their performance on typical edge devices. Our results reveal a gap between current models and optimal QA performance and efficiency, highlighting the need for new contributions. The dataset and code are available at: \url{https://github.com/benjamin-reichman/SensorQA}.
♻ ☆ DiReCT: Diagnostic Reasoning for Clinical Notes via Large Language Models
Large language models (LLMs) have recently showcased remarkable capabilities, spanning a wide range of tasks and applications, including those in the medical domain. Models like GPT-4 excel in medical question answering but may face challenges in the lack of interpretability when handling complex tasks in real clinical settings. We thus introduce the diagnostic reasoning dataset for clinical notes (DiReCT), aiming at evaluating the reasoning ability and interpretability of LLMs compared to human doctors. It contains 511 clinical notes, each meticulously annotated by physicians, detailing the diagnostic reasoning process from observations in a clinical note to the final diagnosis. Additionally, a diagnostic knowledge graph is provided to offer essential knowledge for reasoning, which may not be covered in the training data of existing LLMs. Evaluations of leading LLMs on DiReCT bring out a significant gap between their reasoning ability and that of human doctors, highlighting the critical need for models that can reason effectively in real-world clinical scenarios.
comment: 9 pages,6 figures
♻ ☆ Human-In-the-Loop Software Development Agents ICSE
Recently, Large Language Models (LLMs)-based multi-agent paradigms for software engineering are introduced to automatically resolve software development tasks (e.g., from a given issue to source code). However, existing work is evaluated based on historical benchmark datasets, rarely considers human feedback at each stage of the automated software development process, and has not been deployed in practice. In this paper, we introduce a Human-in-the-loop LLM-based Agents framework (HULA) for software development that allows software engineers to refine and guide LLMs when generating coding plans and source code for a given task. We design, implement, and deploy the HULA framework into Atlassian JIRA for internal uses. Through a multi-stage evaluation of the HULA framework, Atlassian software engineers perceive that HULA can minimize the overall development time and effort, especially in initiating a coding plan and writing code for straightforward tasks. On the other hand, challenges around code quality remain a concern in some cases. We draw lessons learned and discuss opportunities for future work, which will pave the way for the advancement of LLM-based agents in software development.
comment: 10 pages, 9 figures, ICSE SEIP 2025
♻ ☆ FMRFT: Fusion Mamba and DETR for Query Time Sequence Intersection Fish Tracking
Early detection of abnormal fish behavior caused by disease or hunger can be achieved through fish tracking using deep learning techniques, which holds significant value for industrial aquaculture. However, underwater reflections and some reasons with fish, such as the high similarity, rapid swimming caused by stimuli and mutual occlusion bring challenges to multi-target tracking of fish. To address these challenges, this paper establishes a complex multi-scenario sturgeon tracking dataset and introduces the FMRFT model, a real-time end-to-end fish tracking solution. The model incorporates the low video memory consumption Mamba In Mamba (MIM) architecture, which facilitates multi-frame temporal memory and feature extraction, thereby addressing the challenges to track multiple fish across frames. Additionally, the FMRFT model with the Query Time Sequence Intersection (QTSI) module effectively manages occluded objects and reduces redundant tracking frames using the superior feature interaction and prior frame processing capabilities of RT-DETR. This combination significantly enhances the accuracy and stability of fish tracking. Trained and tested on the dataset, the model achieves an IDF1 score of 90.3% and a MOTA accuracy of 94.3%. Experimental results show that the proposed FMRFT model effectively addresses the challenges of high similarity and mutual occlusion in fish populations, enabling accurate tracking in factory farming environments.
comment: 14 pages,14 figures
♻ ☆ An Optimal, Universal and Agnostic Decoding Method for Message Reconstruction, Bio and Technosignature Detection
We present an agnostic signal reconstruction method for zero-knowledge one-way communication channels in which a receiver aims to interpret a message sent by an unknown source about which no prior knowledge is available and to which no return message can be sent. Our reconstruction method is agnostic vis-\`a-vis the arbitrarily chosen encoding-decoding scheme and other observer-dependent characteristics, such as the arbitrarily chosen computational model, probability distributions, or underlying mathematical theory. We investigate how non-random messages encode information about their intended physical properties, such as dimension and length scales of the space in which a signal or message may have been originally encoded, embedded, or generated. We focus on image data as a first illustration of the capabilities of the new method. We argue that our results have applications to life and technosignature detection, and to coding theory in general.
♻ ☆ JourneyBench: A Challenging One-Stop Vision-Language Understanding Benchmark of Generated Images
Existing vision-language understanding benchmarks largely consist of images of objects in their usual contexts. As a consequence, recent multimodal large language models can perform well with only a shallow visual understanding by relying on background language biases. Thus, strong performance on these benchmarks does not necessarily correlate with strong visual understanding. In this paper, we release JourneyBench, a comprehensive human-annotated benchmark of generated images designed to assess the model's fine-grained multimodal reasoning abilities across five tasks: complementary multimodal chain of thought, multi-image VQA, imaginary image captioning, VQA with hallucination triggers, and fine-grained retrieval with sample-specific distractors. Unlike existing benchmarks, JourneyBench explicitly requires fine-grained multimodal reasoning in unusual imaginary scenarios where language bias and holistic image gist are insufficient. We benchmark state-of-the-art models on JourneyBench and analyze performance along a number of fine-grained dimensions. Results across all five tasks show that JourneyBench is exceptionally challenging for even the best models, indicating that models' visual reasoning abilities are not as strong as they first appear. We discuss the implications of our findings and propose avenues for further research.
♻ ☆ The Oscars of AI Theater: A Survey on Role-Playing with Language Models
This survey explores the burgeoning field of role-playing with language models, focusing on their development from early persona-based models to advanced character-driven simulations facilitated by Large Language Models (LLMs). Initially confined to simple persona consistency due to limited model capabilities, role-playing tasks have now expanded to embrace complex character portrayals involving character consistency, behavioral alignment, and overall attractiveness. We provide a comprehensive taxonomy of the critical components in designing these systems, including data, models and alignment, agent architecture and evaluation. This survey not only outlines the current methodologies and challenges, such as managing dynamic personal profiles and achieving high-level persona consistency but also suggests avenues for future research in improving the depth and realism of role-playing applications. The goal is to guide future research by offering a structured overview of current methodologies and identifying potential areas for improvement. Related resources and papers are available at https://github.com/nuochenpku/Awesome-Role-Play-Papers.
comment: 28 pages
♻ ☆ Expected Coordinate Improvement for High-Dimensional Bayesian Optimization
Bayesian optimization (BO) algorithm is very popular for solving low-dimensional expensive optimization problems. Extending Bayesian optimization to high dimension is a meaningful but challenging task. One of the major challenges is that it is difficult to find good infill solutions as the acquisition functions are also high-dimensional. In this work, we propose the expected coordinate improvement (ECI) criterion for high-dimensional Bayesian optimization. The proposed ECI criterion measures the potential improvement we can get by moving the current best solution along one coordinate. The proposed approach selects the coordinate with the highest ECI value to refine in each iteration and covers all the coordinates gradually by iterating over the coordinates. The greatest advantage of the proposed ECI-BO (expected coordinate improvement based Bayesian optimization) algorithm over the standard BO algorithm is that the infill selection problem of the proposed algorithm is always a one-dimensional problem thus can be easily solved. Numerical experiments show that the proposed algorithm can achieve significantly better results than the standard BO algorithm and competitive results when compared with five state-of-the-art high-dimensional BOs. This work provides a simple but efficient approach for high-dimensional Bayesian optimization.
♻ ☆ Consistency Checks for Language Model Forecasters ICLR 2025
Forecasting is a task that is difficult to evaluate: the ground truth can only be known in the future. Recent work showing LLM forecasters rapidly approaching human-level performance begs the question: how can we benchmark and evaluate these forecasters instantaneously? Following the consistency check framework, we measure the performance of forecasters in terms of the consistency of their predictions on different logically-related questions. We propose a new, general consistency metric based on arbitrage: for example, if a forecasting AI illogically predicts that both the Democratic and Republican parties have 60% probability of winning the 2024 US presidential election, an arbitrageur can trade against the forecaster's predictions and make a profit. We build an automated evaluation system that generates a set of base questions, instantiates consistency checks from these questions, elicits the predictions of the forecaster, and measures the consistency of the predictions. We then build a standard, proper-scoring-rule forecasting benchmark, and show that our (instantaneous) consistency metrics correlate with LLM forecasters' ground truth Brier scores (which are only known in the future). We also release a consistency benchmark that resolves in 2028, providing a long-term evaluation tool for forecasting.
comment: 55 pages, 25 figures. Submitted to ICLR 2025
Robotics 41
☆ From Simple to Complex Skills: The Case of In-Hand Object Reorientation
Learning policies in simulation and transferring them to the real world has become a promising approach in dexterous manipulation. However, bridging the sim-to-real gap for each new task requires substantial human effort, such as careful reward engineering, hyperparameter tuning, and system identification. In this work, we present a system that leverages low-level skills to address these challenges for more complex tasks. Specifically, we introduce a hierarchical policy for in-hand object reorientation based on previously acquired rotation skills. This hierarchical policy learns to select which low-level skill to execute based on feedback from both the environment and the low-level skill policies themselves. Compared to learning from scratch, the hierarchical policy is more robust to out-of-distribution changes and transfers easily from simulation to real-world environments. Additionally, we propose a generalizable object pose estimator that uses proprioceptive information, low-level skill predictions, and control errors as inputs to estimate the object pose over time. We demonstrate that our system can reorient objects, including symmetrical and textureless ones, to a desired pose.
comment: website: https://dexhier.github.io
☆ RoboPanoptes: The All-seeing Robot with Whole-body Dexterity
We present RoboPanoptes, a capable yet practical robot system that achieves whole-body dexterity through whole-body vision. Its whole-body dexterity allows the robot to utilize its entire body surface for manipulation, such as leveraging multiple contact points or navigating constrained spaces. Meanwhile, whole-body vision uses a camera system distributed over the robot's surface to provide comprehensive, multi-perspective visual feedback of its own and the environment's state. At its core, RoboPanoptes uses a whole-body visuomotor policy that learns complex manipulation skills directly from human demonstrations, efficiently aggregating information from the distributed cameras while maintaining resilience to sensor failures. Together, these design aspects unlock new capabilities and tasks, allowing RoboPanoptes to unbox in narrow spaces, sweep multiple or oversized objects, and succeed in multi-step stowing in cluttered environments, outperforming baselines in adaptability and efficiency. Results are best viewed on https://robopanoptes.github.io.
comment: Project website: https://robopanoptes.github.io
☆ Virtual-Work Based Shape-Force Sensing for Continuum Instruments with Tension-Feedback Actuation
Continuum instruments are integral to robot-assisted minimally invasive surgery (MIS), with tendon-driven mechanisms being the most common. Real-time tension feedback is crucial for precise articulation but remains a challenge in compact actuation unit designs. Additionally, accurate shape and external force sensing of continuum instruments are essential for advanced control and manipulation. This paper presents a compact and modular actuation unit that integrates a torque cell directly into the pulley module to provide real-time tension feedback. Building on this unit, we propose a novel shape-force sensing framework that incorporates polynomial curvature kinematics to accurately model non-constant curvature. The framework combines pose sensor measurements at the instrument tip and actuation tension feedback at the developed actuation unit. Experimental results demonstrate the improved performance of the proposed shape-force sensing framework in terms of shape reconstruction accuracy and force estimation reliability compared to conventional constant-curvature methods.
☆ Adaptive Path-Planning for Autonomous Robots: A UCH-Enhanced Q-Learning Approach
Q-learning methods are widely used in robot path planning but often face challenges of inefficient search and slow convergence. We propose an Improved Q-learning (IQL) framework that enhances standard Q-learning in two significant ways. First, we introduce the Path Adaptive Collaborative Optimization (PACO) algorithm to optimize Q-table initialization, providing better initial estimates and accelerating learning. Second, we incorporate a Utility-Controlled Heuristic (UCH) mechanism with dynamically tuned parameters to optimize the reward function, enhancing the algorithm's accuracy and effectiveness in path-planning tasks. Extensive experiments in three different raster grid environments validate the superior performance of our IQL framework. The results demonstrate that our IQL algorithm outperforms existing methods, including FIQL, PP-QL-based CPP, DFQL, and QMABC algorithms, in terms of path-planning capabilities.
comment: 25 pages, 20 figures
☆ Knowledge Transfer in Model-Based Reinforcement Learning Agents for Efficient Multi-Task Learning AAMAS 2025
We propose an efficient knowledge transfer approach for model-based reinforcement learning, addressing the challenge of deploying large world models in resource-constrained environments. Our method distills a high-capacity multi-task agent (317M parameters) into a compact 1M parameter model, achieving state-of-the-art performance on the MT30 benchmark with a normalized score of 28.45, a substantial improvement over the original 1M parameter model's score of 18.93. This demonstrates the ability of our distillation technique to consolidate complex multi-task knowledge effectively. Additionally, we apply FP16 post-training quantization, reducing the model size by 50% while maintaining performance. Our work bridges the gap between the power of large models and practical deployment constraints, offering a scalable solution for efficient and accessible multi-task reinforcement learning in robotics and other resource-limited domains.
comment: Preprint of an extended abstract accepted to AAMAS 2025
☆ Design and Control of a Bipedal Robotic Character
Legged robots have achieved impressive feats in dynamic locomotion in challenging unstructured terrain. However, in entertainment applications, the design and control of these robots face additional challenges in appealing to human audiences. This work aims to unify expressive, artist-directed motions and robust dynamic mobility for legged robots. To this end, we introduce a new bipedal robot, designed with a focus on character-driven mechanical features. We present a reinforcement learning-based control architecture to robustly execute artistic motions conditioned on command signals. During runtime, these command signals are generated by an animation engine which composes and blends between multiple animation sources. Finally, an intuitive operator interface enables real-time show performances with the robot. The complete system results in a believable robotic character, and paves the way for enhanced human-robot engagement in various contexts, in entertainment robotics and beyond.
☆ Dexterous Manipulation of Deformable Objects via Pneumatic Gripping: Lifting by One End
Manipulating deformable objects in robotic cells is often costly and not widely accessible. However, the use of localized pneumatic gripping systems can enhance accessibility. Current methods that use pneumatic grippers to handle deformable objects struggle with effective lifting. This paper introduces a method for the dexterous lifting of textile deformable objects from one edge, utilizing a previously developed gripper designed for flexible and porous materials. By precisely adjusting the orientation and position of the gripper during the lifting process, we were able to significantly reduce necessary gripping force and minimize object vibration caused by airflow. This method was tested and validated on four materials with varying mass, friction, and flexibility. The proposed approach facilitates the lifting of deformable objects from a conveyor or automated line, even when only one edge is accessible for grasping. Future work will involve integrating a vision system to optimize the manipulation of deformable objects with more complex shapes.
comment: Submitted to RA-L
☆ State-Based Disassembly Planning AAAI 2025
It has been shown recently that physics-based simulation significantly enhances the disassembly capabilities of real-world assemblies with diverse 3D shapes and stringent motion constraints. However, the efficiency suffers when tackling intricate disassembly tasks that require numerous simulations and increased simulation time. In this work, we propose a State-Based Disassembly Planning (SBDP) approach, prioritizing physics-based simulation with translational motion over rotational motion to facilitate autonomy, reducing dependency on human input, while storing intermediate motion states to improve search scalability. We introduce two novel evaluation functions derived from new Directional Blocking Graphs (DBGs) enriched with state information to scale up the search. Our experiments show that SBDP with new evaluation functions and DBGs constraints outperforms the state-of-the-art in disassembly planning in terms of success rate and computational efficiency over benchmark datasets consisting of thousands of physically valid industrial assemblies.
comment: Accepted at AAAI 2025 (extended version)
☆ Assisting MoCap-Based Teleoperation of Robot Arm using Augmented Reality Visualisations
Teleoperating a robot arm involves the human operator positioning the robot's end-effector or programming each joint. Whereas humans can control their own arms easily by integrating visual and proprioceptive feedback, it is challenging to control an external robot arm in the same way, due to its inconsistent orientation and appearance. We explore teleoperating a robot arm through motion-capture (MoCap) of the human operator's arm with the assistance of augmented reality (AR) visualisations. We investigate how AR helps teleoperation by visualising a virtual reference of the human arm alongside the robot arm to help users understand the movement mapping. We found that the AR overlay of a humanoid arm on the robot in the same orientation helped users learn the control. We discuss findings and future work on MoCap-based robot teleoperation.
comment: 5 pages, 7 figures, accepted to HRI 2025
☆ A Systematic Literature Review on Deep Learning-based Depth Estimation in Computer Vision
Depth estimation (DE) provides spatial information about a scene and enables tasks such as 3D reconstruction, object detection, and scene understanding. Recently, there has been an increasing interest in using deep learning (DL)-based methods for DE. Traditional techniques rely on handcrafted features that often struggle to generalise to diverse scenes and require extensive manual tuning. However, DL models for DE can automatically extract relevant features from input data, adapt to various scene conditions, and generalise well to unseen environments. Numerous DL-based methods have been developed, making it necessary to survey and synthesize the state-of-the-art (SOTA). Previous reviews on DE have mainly focused on either monocular or stereo-based techniques, rather than comprehensively reviewing DE. Furthermore, to the best of our knowledge, there is no systematic literature review (SLR) that comprehensively focuses on DE. Therefore, this SLR study is being conducted. Initially, electronic databases were searched for relevant publications, resulting in 1284 publications. Using defined exclusion and quality criteria, 128 publications were shortlisted and further filtered to select 59 high-quality primary studies. These studies were analysed to extract data and answer defined research questions. Based on the results, DL methods were developed for mainly three different types of DE: monocular, stereo, and multi-view. 20 publicly available datasets were used to train, test, and evaluate DL models for DE, with KITTI, NYU Depth V2, and Make 3D being the most used datasets. 29 evaluation metrics were used to assess the performance of DE. 35 base models were reported in the primary studies, and the top five most-used base models were ResNet-50, ResNet-18, ResNet-101, U-Net, and VGG-16. Finally, the lack of ground truth data was among the most significant challenges reported by primary studies.
☆ OfficeMate: Pilot Evaluation of an Office Assistant Robot
Office Assistant Robots (OARs) offer a promising solution to proactively provide in-situ support to enhance employee well-being and productivity in office spaces. We introduce OfficeMate, a social OAR designed to assist with practical tasks, foster social interaction, and promote health and well-being. Through a pilot evaluation with seven participants in an office environment, we found that users see potential in OARs for reducing stress and promoting healthy habits and value the robot's ability to provide companionship and physical activity reminders in the office space. However, concerns regarding privacy, communication, and the robot's interaction timing were also raised. The feedback highlights the need to carefully consider the robot's appearance and behaviour to ensure it enhances user experience and aligns with office social norms. We believe these insights will better inform the development of adaptive, intelligent OAR systems for future office space integration.
comment: 5 pages, 1 figure, accepted to HRI 2025
☆ Harnessing the Power of Vibration Motors to Develop Miniature Untethered Robotic Fishes
Miniature underwater robots play a crucial role in the exploration and development of marine resources, particularly in confined spaces and high-pressure deep-sea environments. This study presents the design, optimization, and performance of a miniature robotic fish, powered by the oscillation of bio-inspired fins. These fins feature a rigid-flexible hybrid structure and use an eccentric rotating mass (ERM) vibration motor as the excitation source to generate high-frequency unidirectional oscillations that induce acoustic streaming for propulsion. The drive mechanism, powered by miniature ERM vibration motors, eliminates the need for complex mechanical drive systems, enabling complete isolation of the entire drive system from the external environment and facilitating the miniaturization of the robotic fish. A compact, untethered robotic fish, measuring 85*60*45 mm^3, is equipped with three bio-inspired fins located at the pectoral and caudal positions. Experimental results demonstrate that the robotic fish achieves a maximum forward swimming speed of 1.36 body lengths (BL) per second powered by all fins and minimum turning radius of 0.6 BL when powered by a single fin. These results underscore the significance of employing the ERM vibration motor in advancing the development of highly maneuverable, miniature untethered underwater robots for various marine exploration tasks.
comment: 8 pages, 8 figures
☆ Enhanced Quantile Regression with Spiking Neural Networks for Long-Term System Health Prognostics
This paper presents a novel predictive maintenance framework centered on Enhanced Quantile Regression Neural Networks EQRNNs, for anticipating system failures in industrial robotics. We address the challenge of early failure detection through a hybrid approach that combines advanced neural architectures. The system leverages dual computational stages: first implementing an EQRNN optimized for processing multi-sensor data streams including vibration, thermal, and power signatures, followed by an integrated Spiking Neural Network SNN, layer that enables microsecond-level response times. This architecture achieves notable accuracy rates of 92.3\% in component failure prediction with a 90-hour advance warning window. Field testing conducted on an industrial scale with 50 robotic systems demonstrates significant operational improvements, yielding a 94\% decrease in unexpected system failures and 76\% reduction in maintenance-related downtimes. The framework's effectiveness in processing complex, multi-modal sensor data while maintaining computational efficiency validates its applicability for Industry 4.0 manufacturing environments.
☆ LearningFlow: Automated Policy Learning Workflow for Urban Driving with Large Language Models
Recent advancements in reinforcement learning (RL) demonstrate the significant potential in autonomous driving. Despite this promise, challenges such as the manual design of reward functions and low sample efficiency in complex environments continue to impede the development of safe and effective driving policies. To tackle these issues, we introduce LearningFlow, an innovative automated policy learning workflow tailored to urban driving. This framework leverages the collaboration of multiple large language model (LLM) agents throughout the RL training process. LearningFlow includes a curriculum sequence generation process and a reward generation process, which work in tandem to guide the RL policy by generating tailored training curricula and reward functions. Particularly, each process is supported by an analysis agent that evaluates training progress and provides critical insights to the generation agent. Through the collaborative efforts of these LLM agents, LearningFlow automates policy learning across a series of complex driving tasks, and it significantly reduces the reliance on manual reward function design while enhancing sample efficiency. Comprehensive experiments are conducted in the high-fidelity CARLA simulator, along with comparisons with other existing methods, to demonstrate the efficacy of our proposed approach. The results demonstrate that LearningFlow excels in generating rewards and curricula. It also achieves superior performance and robust generalization across various driving tasks, as well as commendable adaptation to different RL algorithms.
☆ ECBench: Can Multi-modal Foundation Models Understand the Egocentric World? A Holistic Embodied Cognition Benchmark
The enhancement of generalization in robots by large vision-language models (LVLMs) is increasingly evident. Therefore, the embodied cognitive abilities of LVLMs based on egocentric videos are of great interest. However, current datasets for embodied video question answering lack comprehensive and systematic evaluation frameworks. Critical embodied cognitive issues, such as robotic self-cognition, dynamic scene perception, and hallucination, are rarely addressed. To tackle these challenges, we propose ECBench, a high-quality benchmark designed to systematically evaluate the embodied cognitive abilities of LVLMs. ECBench features a diverse range of scene video sources, open and varied question formats, and 30 dimensions of embodied cognition. To ensure quality, balance, and high visual dependence, ECBench uses class-independent meticulous human annotation and multi-round question screening strategies. Additionally, we introduce ECEval, a comprehensive evaluation system that ensures the fairness and rationality of the indicators. Utilizing ECBench, we conduct extensive evaluations of proprietary, open-source, and task-specific LVLMs. ECBench is pivotal in advancing the embodied cognitive capabilities of LVLMs, laying a solid foundation for developing reliable core models for embodied agents. All data and code are available at https://github.com/Rh-Dang/ECBench.
☆ UAV-VLA: Vision-Language-Action System for Large Scale Aerial Mission Generation
The UAV-VLA (Visual-Language-Action) system is a tool designed to facilitate communication with aerial robots. By integrating satellite imagery processing with the Visual Language Model (VLM) and the powerful capabilities of GPT, UAV-VLA enables users to generate general flight paths-and-action plans through simple text requests. This system leverages the rich contextual information provided by satellite images, allowing for enhanced decision-making and mission planning. The combination of visual analysis by VLM and natural language processing by GPT can provide the user with the path-and-action set, making aerial operations more efficient and accessible. The newly developed method showed the difference in the length of the created trajectory in 22% and the mean error in finding the objects of interest on a map in 34.22 m by Euclidean distance in the K-Nearest Neighbors (KNN) approach.
comment: HRI 2025
☆ A Fast Path-Planning Method for Continuous Harvesting of Table-Top Grown Strawberries
Continuous harvesting and storage of multiple fruits in a single operation allow robots to significantly reduce the travel distance required for repetitive back-and-forth movements. Traditional collision-free path planning algorithms, such as Rapidly-Exploring Random Tree (RRT) and A-star (A), often fail to meet the demands of efficient continuous fruit harvesting due to their low search efficiency and the generation of excessive redundant points. This paper presents the Interactive Local Minima Search Algorithm (ILMSA), a fast path-planning method designed for the continuous harvesting of table-top grown strawberries. The algorithm featured an interactive node expansion strategy that iteratively extended and refined collision-free path segments based on local minima points. To enable the algorithm to function in 3D, the 3D environment was projected onto multiple 2D planes, generating optimal paths on each plane. The best path was then selected, followed by integrating and smoothing the 3D path segments. Simulations demonstrated that ILMSA outperformed existing methods, reducing path length by 21.5% and planning time by 97.1% compared to 3D-RRT, while achieving 11.6% shorter paths and 25.4% fewer nodes than the Lowest Point of the Strawberry (LPS) algorithm in 3D environments. In 2D, ILMSA achieved path lengths 16.2% shorter than A, 23.4% shorter than RRT, and 20.9% shorter than RRT-Connect, while being over 96% faster and generating significantly fewer nodes. Field tests confirmed ILMSA's suitability for complex agricultural tasks, having a combined planning and execution time and an average path length that were approximately 58% and 69%, respectively, of those achieved by the LPS algorithm.
comment: Accepted by IEEE Transactions on AgriFood Electronics
☆ Intelligent Sailing Model for Open Sea Navigation
Autonomous vessels potentially enhance safety and reliability of seaborne trade. To facilitate the development of autonomous vessels, high-fidelity simulations are required to model realistic interactions with other vessels. However, modeling realistic interactive maritime traffic is challenging due to the unstructured environment, coarsely specified traffic rules, and largely varying vessel types. Currently, there is no standard for simulating interactive maritime environments in order to rigorously benchmark autonomous vessel algorithms. In this paper, we introduce the first intelligent sailing model (ISM), which simulates rule-compliant vessels for navigation on the open sea. An ISM vessel reacts to other traffic participants according to maritime traffic rules while at the same time solving a motion planning task characterized by waypoints. In particular, the ISM monitors the applicable rules, generates rule-compliant waypoints accordingly, and utilizes a model predictive control for tracking the waypoints. We evaluate the ISM in two environments: interactive traffic with only ISM vessels and mixed traffic where some vessel trajectories are from recorded real-world maritime traffic data or handcrafted for criticality. Our results show that simulations with many ISM vessels of different vessel types are rule-compliant and scalable. We tested 4,049 critical traffic scenarios. For interactive traffic with ISM vessels, no collisions occurred while goal-reaching rates of about 97 percent were achieved. We believe that our ISM can serve as a standard for challenging and realistic maritime traffic simulation to accelerate autonomous vessel development.
☆ CuRLA: Curriculum Learning Based Deep Reinforcement Learning for Autonomous Driving
In autonomous driving, traditional Computer Vision (CV) agents often struggle in unfamiliar situations due to biases in the training data. Deep Reinforcement Learning (DRL) agents address this by learning from experience and maximizing rewards, which helps them adapt to dynamic environments. However, ensuring their generalization remains challenging, especially with static training environments. Additionally, DRL models lack transparency, making it difficult to guarantee safety in all scenarios, particularly those not seen during training. To tackle these issues, we propose a method that combines DRL with Curriculum Learning for autonomous driving. Our approach uses a Proximal Policy Optimization (PPO) agent and a Variational Autoencoder (VAE) to learn safe driving in the CARLA simulator. The agent is trained using two-fold curriculum learning, progressively increasing environment difficulty and incorporating a collision penalty in the reward function to promote safety. This method improves the agent's adaptability and reliability in complex environments, and understand the nuances of balancing multiple reward components from different feedback signals in a single scalar reward function. Keywords: Computer Vision, Deep Reinforcement Learning, Variational Autoencoder, Proximal Policy Optimization, Curriculum Learning, Autonomous Driving.
comment: To be published in the 17th International Conference on Agents and Artificial Intelligence (ICAART), Feb 2025
☆ AD-L-JEPA: Self-Supervised Spatial World Models with Joint Embedding Predictive Architecture for Autonomous Driving with LiDAR Data
As opposed to human drivers, current autonomous driving systems still require vast amounts of labeled data to train. Recently, world models have been proposed to simultaneously enhance autonomous driving capabilities by improving the way these systems understand complex real-world environments and reduce their data demands via self-supervised pre-training. In this paper, we present AD-L-JEPA (aka Autonomous Driving with LiDAR data via a Joint Embedding Predictive Architecture), a novel self-supervised pre-training framework for autonomous driving with LiDAR data that, as opposed to existing methods, is neither generative nor contrastive. Our method learns spatial world models with a joint embedding predictive architecture. Instead of explicitly generating masked unknown regions, our self-supervised world models predict Bird's Eye View (BEV) embeddings to represent the diverse nature of autonomous driving scenes. Our approach furthermore eliminates the need to manually create positive and negative pairs, as is the case in contrastive learning. AD-L-JEPA leads to simpler implementation and enhanced learned representations. We qualitatively and quantitatively demonstrate high-quality of embeddings learned with AD-L-JEPA. We furthermore evaluate the accuracy and label efficiency of AD-L-JEPA on popular downstream tasks such as LiDAR 3D object detection and associated transfer learning. Our experimental evaluation demonstrates that AD-L-JEPA is a plausible approach for self-supervised pre-training in autonomous driving applications and is the best available approach outperforming SOTA, including most recently proposed Occupancy-MAE [1] and ALSO [2]. The source code of AD-L-JEPA is available at https://github.com/HaoranZhuExplorer/AD-L-JEPA-Release.
☆ What Drives You to Interact?: The Role of User Motivation for a Robot in the Wild
In this paper, we aim to understand how user motivation shapes human-robot interaction (HRI) in the wild. To explore this, we conducted a field study by deploying a fully autonomous conversational robot in a shopping mall over two days. Through sequential video analysis, we identified five patterns of interaction fluency (Smooth, Awkward, Active, Messy, and Quiet), four types of user motivation for interacting with the robot (Function, Experiment, Curiosity, and Education), and user positioning towards the robot. We further analyzed how these motivations and positioning influence interaction fluency. Our findings suggest that incorporating users' motivation types into the design of robot behavior can enhance interaction fluency, engagement, and user satisfaction in real-world HRI scenarios.
comment: 8 pages, 4 figures
☆ Towards Probabilistic Inference of Human Motor Intentions by Assistive Mobile Robots Controlled via a Brain-Computer Interface
Assistive mobile robots are a transformative technology that helps persons with disabilities regain the ability to move freely. Although autonomous wheelchairs significantly reduce user effort, they still require human input to allow users to maintain control and adapt to changing environments. Brain Computer Interface (BCI) stands out as a highly user-friendly option that does not require physical movement. Current BCI systems can understand whether users want to accelerate or decelerate, but they implement these changes in discrete speed steps rather than allowing for smooth, continuous velocity adjustments. This limitation prevents the systems from mimicking the natural, fluid speed changes seen in human self-paced motion. The authors aim to address this limitation by redesigning the perception-action cycle in a BCI controlled robotic system: improving how the robotic agent interprets the user's motion intentions (world state) and implementing these actions in a way that better reflects natural physical properties of motion, such as inertia and damping. The scope of this paper focuses on the perception aspect. We asked and answered a normative question "what computation should the robotic agent carry out to optimally perceive incomplete or noisy sensory observations?" Empirical EEG data were collected, and probabilistic representation that served as world state distributions were learned and evaluated in a Generative Adversarial Network framework. The ROS framework was established that connected with a Gazebo environment containing a digital twin of an indoor space and a virtual model of a robotic wheelchair. Signal processing and statistical analyses were implemented to identity the most discriminative features in the spatial-spectral-temporal dimensions, which are then used to construct the world model for the robotic agent to interpret user motion intentions as a Bayesian observer.
comment: 10 pages
☆ GelBelt: A Vision-based Tactile Sensor for Continuous Sensing of Large Surfaces
Scanning large-scale surfaces is widely demanded in surface reconstruction applications and detecting defects in industries' quality control and maintenance stages. Traditional vision-based tactile sensors have shown promising performance in high-resolution shape reconstruction while suffering limitations such as small sensing areas or susceptibility to damage when slid across surfaces, making them unsuitable for continuous sensing on large surfaces. To address these shortcomings, we introduce a novel vision-based tactile sensor designed for continuous surface sensing applications. Our design uses an elastomeric belt and two wheels to continuously scan the target surface. The proposed sensor showed promising results in both shape reconstruction and surface fusion, indicating its applicability. The dot product of the estimated and reference surface normal map is reported over the sensing area and for different scanning speeds. Results indicate that the proposed sensor can rapidly scan large-scale surfaces with high accuracy at speeds up to 45 mm/s.
comment: Accepted to IEEE RA-L. 8 pages, 7 figures, webpage: https://aminmirz.github.io/GelBelt/
☆ Towards smart and adaptive agents for active sensing on edge devices
TinyML has made deploying deep learning models on low-power edge devices feasible, creating new opportunities for real-time perception in constrained environments. However, the adaptability of such deep learning methods remains limited to data drift adaptation, lacking broader capabilities that account for the environment's underlying dynamics and inherent uncertainty. Deep learning's scaling laws, which counterbalance this limitation by massively up-scaling data and model size, cannot be applied when deploying on the Edge, where deep learning limitations are further amplified as models are scaled down for deployment on resource-constrained devices. This paper presents a smart agentic system capable of performing on-device perception and planning, enabling active sensing on the edge. By incorporating active inference into our solution, our approach extends beyond deep learning capabilities, allowing the system to plan in dynamic environments while operating in real time with a modest total model size of 2.3 MB. We showcase our proposed system by creating and deploying a saccade agent connected to an IoT camera with pan and tilt capabilities on an NVIDIA Jetson embedded device. The saccade agent controls the camera's field of view following optimal policies derived from the active inference principles, simulating human-like saccadic motion for surveillance and robotics applications.
♻ ☆ Adaptive Probabilistic Planning for the Uncertain and Dynamic Orienteering Problem
The Orienteering Problem (OP) is a well-studied routing problem that has been extended to incorporate uncertainties, reflecting stochastic or dynamic travel costs, prize-collection costs, and prizes. Existing approaches may, however, be inefficient in real-world applications due to insufficient modeling knowledge and initially unknowable parameters in online scenarios. Thus, we propose the Uncertain and Dynamic Orienteering Problem (UDOP), modeling travel costs as distributions with unknown and time-variant parameters. UDOP also associates uncertain travel costs with dynamic prizes and prize-collection costs for its objective and budget constraints. To address UDOP, we develop an ADaptive Approach for Probabilistic paThs - ADAPT, that iteratively performs 'execution' and 'online planning' based on an initial 'offline' solution. The execution phase updates system status and records online cost observations. The online planner employs a Bayesian approach to adaptively estimate power consumption and optimize path sequence based on safety beliefs. We evaluate ADAPT in a practical Unmanned Aerial Vehicle (UAV) charging scheduling problem for Wireless Rechargeable Sensor Networks. The UAV must optimize its path to recharge sensor nodes efficiently while managing its energy under uncertain conditions. ADAPT maintains comparable solution quality and computation time while offering superior robustness. Extensive simulations show that ADAPT achieves a 100% Mission Success Rate (MSR) across all tested scenarios, outperforming comparable heuristic-based and frequentist approaches that fail up to 70% (under challenging conditions) and averaging 67% MSR, respectively. This work advances the field of OP with uncertainties, offering a reliable and efficient approach for real-world applications in uncertain and dynamic environments.
♻ ☆ Occupation-aware planning method for robotic monitoring missions in dynamic environments
This paper presents a method for robotic monitoring missions in the presence of moving obstacles. Although the scenario map is known, the robot lacks information about the movement of dynamic obstacles during the monitoring mission. Numerous local planners have been developed in recent years for navigating highly dynamic environments. However, the absence of a global planner for these environments can result in unavoidable collisions or the inability to successfully complete missions in densely populated areas, such as a scenario monitoring in our case. This work addresses the development and evaluation of a global planner, $MADA$ (Monitoring Avoiding Dynamic Areas), aimed at enhancing the deployment of robots in such challenging conditions. The robot plans and executes the mission using the proposed two-step approach. The first step involves selecting the observation goal based on the environment's distribution and estimated monitoring costs. In the second step, the robot identifies areas with moving obstacles and obtains paths avoiding densely occupied dynamic regions based on their occupation. Quantitative and qualitative results based on simulations and on real-world experimentation, confirm that the proposed method allows the robot to effectively monitor most of the environment while avoiding densely occupied dynamic areas.
♻ ☆ Automotive Speed Estimation: Sensor Types and Error Characteristics from OBD-II to ADAS
Modern on-road navigation systems heavily depend on integrating speed measurements with inertial navigation systems (INS) and global navigation satellite systems (GNSS). Telemetry-based applications typically source speed data from the On-Board Diagnostic II (OBD-II) system. However, the method of deriving speed, as well as the types of sensors used to measure wheel speed, differs across vehicles. These differences result in varying error characteristics that must be accounted for in navigation and autonomy applications. This paper addresses this gap by examining the diverse speed-sensing technologies employed in standard automotive systems and alternative techniques used in advanced systems designed for higher levels of autonomy, such as Advanced Driver Assistance Systems (ADAS), Autonomous Driving (AD), or surveying applications. We propose a method to identify the type of speed sensor in a vehicle and present strategies for accurately modeling its error characteristics. To validate our approach, we collected and analyzed data from three long real road trajectories conducted in urban environments in Toronto and Kingston, Ontario, Canada. The results underscore the critical role of integrating multiple sensor modalities to achieve more accurate speed estimation, thus improving automotive navigation state estimation, particularly in GNSS-denied environments.
comment: 7 pages, 12 figures, to be published in conference proceedings
♻ ☆ LNS2+RL: Combining Multi-Agent Reinforcement Learning with Large Neighborhood Search in Multi-Agent Path Finding AAAI 2025
Multi-Agent Path Finding (MAPF) is a critical component of logistics and warehouse management, which focuses on planning collision-free paths for a team of robots in a known environment. Recent work introduced a novel MAPF approach, LNS2, which proposed to repair a quickly obtained set of infeasible paths via iterative replanning, by relying on a fast, yet lower-quality, prioritized planning (PP) algorithm. At the same time, there has been a recent push for Multi-Agent Reinforcement Learning (MARL) based MAPF algorithms, which exhibit improved cooperation over such PP algorithms, although inevitably remaining slower. In this paper, we introduce a new MAPF algorithm, LNS2+RL, which combines the distinct yet complementary characteristics of LNS2 and MARL to effectively balance their individual limitations and get the best from both worlds. During early iterations, LNS2+RL relies on MARL for low-level replanning, which we show eliminates collisions much more than a PP algorithm. There, our MARL-based planner allows agents to reason about past and future information to gradually learn cooperative decision-making through a finely designed curriculum learning. At later stages of planning, LNS2+RL adaptively switches to PP algorithm to quickly resolve the remaining collisions, naturally trading off solution quality (number of collisions in the solution) and computational efficiency. Our comprehensive experiments on high-agent-density tasks across various team sizes, world sizes, and map structures consistently demonstrate the superior performance of LNS2+RL compared to many MAPF algorithms, including LNS2, LaCAM, EECBS, and SCRIMP. In maps with complex structures, the advantages of LNS2+RL are particularly pronounced, with LNS2+RL achieving a success rate of over 50% in nearly half of the tested tasks, while that of LaCAM, EECBS and SCRIMP falls to 0%.
comment: Accepted for presentation at AAAI 2025
♻ ☆ LP-ICP: General Localizability-Aware Point Cloud Registration for Robust Localization in Extreme Unstructured Environments
The Iterative Closest Point (ICP) algorithm is a crucial component of LiDAR-based SLAM algorithms. However, its performance can be negatively affected in unstructured environments that lack features and geometric structures, leading to low accuracy and poor robustness in localization and mapping. It is known that degeneracy caused by the lack of geometric constraints can lead to errors in 6-DOF pose estimation along ill-conditioned directions. Therefore, there is a need for a broader and more fine-grained degeneracy detection and handling method. This paper proposes a new point cloud registration framework, LP-ICP, that combines point-to-line and point-to-plane distance metrics in the ICP algorithm, with localizability detection and handling. LP-ICP consists of a localizability detection module and an optimization module. The localizability detection module performs localizability analysis by utilizing the correspondences between edge points (with low local smoothness) to lines and planar points (with high local smoothness) to planes between the scan and the map. The localizability contribution of individual correspondence constraints can be applied to a broader range. The optimization module adds additional soft and hard constraints to the optimization equations based on the localizability category. This allows the pose to be constrained along ill-conditioned directions, with updates either tending towards the constraint value or leaving the initial estimate unchanged. This improves accuracy and reduces fluctuations. The proposed method is extensively evaluated through experiments on both simulation and real-world datasets, demonstrating higher or comparable accuracy than the state-of-the-art methods. The dataset and code of this paper will also be open-sourced at https://github.com/xuqingyuan2000/LP-ICP.
comment: 18 Pages, 8 Figures Submitted to IEEE Transactions on Automation Science and Engineering
♻ ☆ Airborne Sense and Detect of Drones using Deep Learning and LiDAR Point Clouds
The safe operation of drone swarms beyond visual line of sight requires multiple safeguards to mitigate the risk of collision between drones flying in close-proximity scenarios. Cooperative navigation and flight coordination strategies that rely on pre-planned trajectories, constant %{satellite and network connectivity and reliable Global Navigation Satellite System (GNSS) positioning are brittle to failure. Drone embedded sense and detect offers a comprehensive mode of separation between drones for deconfliction and collision avoidance. This paper presents the first airborne LiDAR based solution for drone-swarm detection and localization using 3D deep learning model. It adapts an existing deep learning neural network to the air-to-air drone scenario by expanding the scan space vertically. A new sparse convolution is proposed and applied to accelerate the backbone layer, which is the most time-consuming part of the neural network. To collect training data of safety critical, close-proximity multi-drone operations, a scenario Digital Twin is used to augment real datasets with high fidelity synthetic data. The trained model achieves over 80% recall and 96% precision when tested on real-world datasets. By incorporating a tracking-by-detection algorithm the system can reliably monitor the separation distance of multiple drones in challenging environments.
♻ ☆ Beyond Humanoid Prosthetic Hands: Modular Terminal Devices That Improve User Performance
Despite decades of research and development, myoelectric prosthetic hands lack functionality and are often rejected by users. This lack in functionality can be partially attributed to the widely accepted anthropomorphic design ideology in the field; attempting to replicate human hand form and function despite severe limitations in control and sensing technology. Instead, prosthetic hands can be tailored to perform specific tasks without increasing complexity by shedding the constraints of anthropomorphism. In this paper, we develop and evaluate four open-source modular non-humanoid devices to perform the motion required to replicate human flicking motion and to twist a screwdriver, and the functionality required to pick and place flat objects and to cut paper. Experimental results from these devices demonstrate that, versus a humanoid prosthesis, non-humanoid prosthesis design dramatically improves task performance, reduces user compensatory movement, and reduces task load. Case studies with two end users demonstrate the translational benefits of this research. We found that special attention should be paid to monitoring end-user task load to ensure positive rehabilitation outcomes.
comment: 10 pages, 10 figures, 2 tables. Accepted for publication in IEEE Transactions on Neural Systems and Rehabilitation Engineering
♻ ☆ On the role of Artificial Intelligence methods in modern force-controlled manufacturing robotic tasks
This position paper explores the integration of Artificial Intelligence (AI) into force-controlled robotic tasks within the scope of advanced manufacturing, a cornerstone of Industry 4.0. AI's role in enhancing robotic manipulators - key drivers in the Fourth Industrial Revolution - is rapidly leading to significant innovations in smart manufacturing. The objective of this article is to frame these innovations in practical force-controlled applications - e.g. deburring, polishing, and assembly tasks like peg-in-hole (PiH) - highlighting their necessity for maintaining high-quality production standards. By reporting on recent AI-based methodologies, this article contrasts them and identifies current challenges to be addressed in future research. The analysis concludes with a perspective on future research directions, emphasizing the need for common performance metrics to validate AI techniques, integration of various enhancements for performance optimization, and the importance of validating them in relevant scenarios. These future directions aim to provide consistency with already adopted approaches, so as to be compatible with manufacturing standards, increasing the relevance of AI-driven methods in both academic and industrial contexts.
comment: In Proceedings of the 21st International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, 392-399, 2024 , Porto, Portugal
♻ ☆ Visual Semantic Navigation with Real Robots
Visual Semantic Navigation (VSN) is the ability of a robot to learn visual semantic information for navigating in unseen environments. These VSN models are typically tested in those virtual environments where they are trained, mainly using reinforcement learning based approaches. Therefore, we do not yet have an in-depth analysis of how these models would behave in the real world. In this work, we propose a new solution to integrate VSN models into real robots, so that we have true embodied agents. We also release a novel ROS-based framework for VSN, ROS4VSN, so that any VSN-model can be easily deployed in any ROS-compatible robot and tested in a real setting. Our experiments with two different robots, where we have embedded two state-of-the-art VSN agents, confirm that there is a noticeable performance difference of these VSN solutions when tested in real-world and simulation environments. We hope that this research will endeavor to provide a foundation for addressing this consequential issue, with the ultimate aim of advancing the performance and efficiency of embodied agents within authentic real-world scenarios. Code to reproduce all our experiments can be found at https://github.com/gramuah/ros4vsn.
♻ ☆ Exosense: A Vision-Based Scene Understanding System For Exoskeletons
Self-balancing exoskeletons are a key enabling technology for individuals with mobility impairments. While the current challenges focus on human-compliant hardware and control, unlocking their use for daily activities requires a scene perception system. In this work, we present Exosense, a vision-centric scene understanding system for self-balancing exoskeletons. We introduce a multi-sensor visual-inertial mapping device as well as a navigation stack for state estimation, terrain mapping and long-term operation. We tested Exosense attached to both a human leg and Wandercraft's Personal Exoskeleton in real-world indoor scenarios. This enabled us to test the system during typical periodic walking gaits, as well as future uses in multi-story environments. We demonstrate that Exosense can achieve an odometry drift of about 4 cm per meter traveled, and construct terrain maps under 1 cm average reconstruction error. It can also work in a visual localization mode in a previously mapped environment, providing a step towards long-term operation of exoskeletons.
comment: 8 pages, 9 figures
♻ ☆ Generalizable Autonomous Driving System across Diverse Adverse Weather Conditions
Various adverse weather conditions pose a significant challenge to autonomous driving (AD) street scene semantic understanding (segmentation). A common strategy is to minimize the disparity between images captured in clear and adverse weather conditions. However, this technique typically relies on utilizing clear image as a reference, which is challenging to obtain in practice. Furthermore, this method typically targets a single adverse condition, and thus perform poorly when confronting a mixture of multiple adverse weather conditions. To address these issues, we introduce a reference-free and Adverse weather-Immune scheme (called AdvImmu) that leverages the invariance of weather conditions over short periods (seconds). Specifically, AdvImmu includes three components: Locally Sequential Mechanism (LSM), Globally Shuffled Mechanism (GSM), and Unfolded Regularizers (URs). LSM leverages temporal correlations between adjacent frames to enhance model performance. GSM is proposed to shuffle LSM segments to prevent overfitting of temporal patterns. URs are the deep unfolding implementation of two proposed regularizers to penalize the model complexity to enhance across-weather generalization. In addition, to overcome the over-reliance on consecutive frame-wise annotations in the training of AdvImmu (typically unavailable in AD scenarios), we incorporate a foundation model named Segment Anything Model (SAM) to assist to annotate frames, and additionally propose a cluster algorithm (denoted as SBICAC) to surmount SAM's category-agnostic issue to generate pseudo-labels. Extensive experiments demonstrate that the proposed AdvImmu outperforms existing state-of-the-art methods by 88.56% in mean Intersection over Union (mIoU).
comment: 16 Pages
♻ ☆ CoMAL: Collaborative Multi-Agent Large Language Models for Mixed-Autonomy Traffic SDM25
The integration of autonomous vehicles into urban traffic has great potential to improve efficiency by reducing congestion and optimizing traffic flow systematically. In this paper, we introduce CoMAL (Collaborative Multi-Agent LLMs), a framework designed to address the mixed-autonomy traffic problem by collaboration among autonomous vehicles to optimize traffic flow. CoMAL is built upon large language models, operating in an interactive traffic simulation environment. It utilizes a Perception Module to observe surrounding agents and a Memory Module to store strategies for each agent. The overall workflow includes a Collaboration Module that encourages autonomous vehicles to discuss the effective strategy and allocate roles, a reasoning engine to determine optimal behaviors based on assigned roles, and an Execution Module that controls vehicle actions using a hybrid approach combining rule-based models. Experimental results demonstrate that CoMAL achieves superior performance on the Flow benchmark. Additionally, we evaluate the impact of different language models and compare our framework with reinforcement learning approaches. It highlights the strong cooperative capability of LLM agents and presents a promising solution to the mixed-autonomy traffic challenge. The code is available at https://github.com/Hyan-Yao/CoMAL.
comment: 8 pages, 4 figures, accepted to SDM25
♻ ☆ Bridging Adaptivity and Safety: Learning Agile Collision-Free Locomotion Across Varied Physics
Real-world legged locomotion systems often need to reconcile agility and safety for different scenarios. Moreover, the underlying dynamics are often unknown and time-variant (e.g., payload, friction). In this paper, we introduce BAS (Bridging Adaptivity and Safety), which builds upon the pipeline of prior work Agile But Safe (ABS)(He et al.) and is designed to provide adaptive safety even in dynamic environments with uncertainties. BAS involves an agile policy to avoid obstacles rapidly and a recovery policy to prevent collisions, a physical parameter estimator that is concurrently trained with agile policy, and a learned control-theoretic RA (reach-avoid) value network that governs the policy switch. Also, the agile policy and RA network are both conditioned on physical parameters to make them adaptive. To mitigate the distribution shift issue, we further introduce an on-policy fine-tuning phase for the estimator to enhance its robustness and accuracy. The simulation results show that BAS achieves 50% better safety than baselines in dynamic environments while maintaining a higher speed on average. In real-world experiments, BAS shows its capability in complex environments with unknown physics (e.g., slippery floors with unknown frictions, unknown payloads up to 8kg), while baselines lack adaptivity, leading to collisions or. degraded agility. As a result, BAS achieves a 19.8% increase in speed and gets a 2.36 times lower collision rate than ABS in the real world. Videos: https://adaptive-safe-locomotion.github.io.
comment: 11 Pages, 6 Figures
♻ ☆ Nothing Stands Still: A Spatiotemporal Benchmark on 3D Point Cloud Registration Under Large Geometric and Temporal Change SP
Building 3D geometric maps of man-made spaces is a well-established and active field that is fundamental to computer vision and robotics. However, considering the evolving nature of built environments, it is essential to question the capabilities of current mapping efforts in handling temporal changes. In addition, spatiotemporal mapping holds significant potential for achieving sustainability and circularity goals. Existing mapping approaches focus on small changes, such as object relocation or self-driving car operation; in all cases where the main structure of the scene remains fixed. Consequently, these approaches fail to address more radical changes in the structure of the built environment, such as geometry and topology. To this end, we introduce the Nothing Stands Still (NSS) benchmark, which focuses on the spatiotemporal registration of 3D scenes undergoing large spatial and temporal change, ultimately creating one coherent spatiotemporal map. Specifically, the benchmark involves registering two or more partial 3D point clouds (fragments) from the same scene but captured from different spatiotemporal views. In addition to the standard pairwise registration, we assess the multi-way registration of multiple fragments that belong to any temporal stage. As part of NSS, we introduce a dataset of 3D point clouds recurrently captured in large-scale building indoor environments that are under construction or renovation. The NSS benchmark presents three scenarios of increasing difficulty, to quantify the generalization ability of point cloud registration methods over space (within one building and across buildings) and time. We conduct extensive evaluations of state-of-the-art methods on NSS. The results demonstrate the necessity for novel methods specifically designed to handle large spatiotemporal changes. The homepage of our benchmark is at http://nothing-stands-still.com.
comment: To appear in the ISPRS Journal of Photogrammetry and Remote Sensing. 29 pages, 26 figures. For the project page, see http://nothing-stands-still.com
♻ ☆ MobileH2R: Learning Generalizable Human to Mobile Robot Handover Exclusively from Scalable and Diverse Synthetic Data
This paper introduces MobileH2R, a framework for learning generalizable vision-based human-to-mobile-robot (H2MR) handover skills. Unlike traditional fixed-base handovers, this task requires a mobile robot to reliably receive objects in a large workspace enabled by its mobility. Our key insight is that generalizable handover skills can be developed in simulators using high-quality synthetic data, without the need for real-world demonstrations. To achieve this, we propose a scalable pipeline for generating diverse synthetic full-body human motion data, an automated method for creating safe and imitation-friendly demonstrations, and an efficient 4D imitation learning method for distilling large-scale demonstrations into closed-loop policies with base-arm coordination. Experimental evaluations in both simulators and the real world show significant improvements (at least +15% success rate) over baseline methods in all cases. Experiments also validate that large-scale and diverse synthetic data greatly enhances robot learning, highlighting our scalable framework.
♻ ☆ Constraints as Rewards: Reinforcement Learning for Robots without Reward Functions
Reinforcement learning has become an essential algorithm for generating complex robotic behaviors. However, to learn such behaviors, it is necessary to design a reward function that describes the task, which often consists of multiple objectives that needs to be balanced. This tuning process is known as reward engineering and typically involves extensive trial-and-error. In this paper, to avoid this trial-and-error process, we propose the concept of Constraints as Rewards (CaR). CaR formulates the task objective using multiple constraint functions instead of a reward function and solves a reinforcement learning problem with constraints using the Lagrangian-method. By adopting this approach, different objectives are automatically balanced, because Lagrange multipliers serves as the weights among the objectives. In addition, we will demonstrate that constraints, expressed as inequalities, provide an intuitive interpretation of the optimization target designed for the task. We apply the proposed method to the standing-up motion generation task of a six-wheeled-telescopic-legged robot and demonstrate that the proposed method successfully acquires the target behavior, even though it is challenging to learn with manually designed reward functions.
♻ ☆ GUTS: Generalized Uncertainty-Aware Thompson Sampling for Multi-Agent Active Search ICRA
Robotic solutions for quick disaster response are essential to ensure minimal loss of life, especially when the search area is too dangerous or too vast for human rescuers. We model this problem as an asynchronous multi-agent active-search task where each robot aims to efficiently seek objects of interest (OOIs) in an unknown environment. This formulation addresses the requirement that search missions should focus on quick recovery of OOIs rather than full coverage of the search region. Previous approaches fail to accurately model sensing uncertainty, account for occlusions due to foliage or terrain, or consider the requirement for heterogeneous search teams and robustness to hardware and communication failures. We present the Generalized Uncertainty-aware Thompson Sampling (GUTS) algorithm, which addresses these issues and is suitable for deployment on heterogeneous multi-robot systems for active search in large unstructured environments. We show through simulation experiments that GUTS consistently outperforms existing methods such as parallelized Thompson Sampling and exhaustive search, recovering all OOIs in 80% of all runs. In contrast, existing approaches recover all OOIs in less than 40% of all runs. We conduct field tests using our multi-robot system in an unstructured environment with a search area of approximately 75,000 sq. m. Our system demonstrates robustness to various failure modes, achieving full recovery of OOIs (where feasible) in every field run, and significantly outperforming our baseline.
comment: 7 pages, 5 figures, 1 table, for associated video see: https://youtu.be/K0jkzdQ_j2E , published in International Conference on Robotics and Automation (ICRA) 2023. Outstanding Deployed Systems Paper Winner
Systems and Control 21
☆ Pitch Plane Trajectory Tracking Control for Sounding Rockets via Adaptive Feedback Linearization
This paper proposes a pitch plane trajectory tacking control solution for suborbital launch vehicles relying on adaptive feedback linearization. Initially, the 2D dynamics and kinematics for a single-engine, thrust-vector-controlled sounding rocket are obtained for control design purposes. Then, an inner-outer control strategy, which simultaneously tackles attitude and position control, is adopted, with the inner-loop comprising the altitude and pitch control and the outer-loop addressing the horizontal (downrange) position control. Feedback linearization is used to cancel out the non-linearities in both the inner and outer dynamics. Making use of Lyapunov stability theory, an adaptation law, which provides online estimates on the inner-loop aerodynamic uncertainty, is jointly designed with the output tracking controller via adaptive backstepping, ensuring global reference tracking in the region where the feedback linearization is well-defined. The zero dynamics of the inner-stabilized system are then exploited to obtain the outerloop dynamics and derive a Linear Quadratic Regulator (LQR) with integral action, which can stabilize them as well as reject external disturbances. In the outermost loop, the estimate on the correspondent aerodynamic uncertainty is indirectly obtained by using the inner loop estimates together with known aerodynamics relations. The resulting inner-outer position control solution is proven to be asymptotically stable in the region of interest. Using a single-stage sounding rocket, propelled by a liquid engine, as reference vehicle, different mission scenarios are tested in a simulation environment to verify the adaptability of the proposed control strategy. The system is able to track the requested trajectories while rejecting external wind disturbances. Furthermore, the need to re-tune the control gains in between different mission scenarios is minimal to none.
comment: Paper accepted to the IEEE Aerospace Conference 2025. Copyright: 979-8-3503-5597-0/25/$31.00 @2025 IEEE
☆ Explainable AI based System for Supply Air Temperature Forecast
This paper explores the application of Explainable AI (XAI) techniques to improve the transparency and understanding of predictive models in control of automated supply air temperature (ASAT) of Air Handling Unit (AHU). The study focuses on forecasting of ASAT using a linear regression with Huber loss. However, having only a control curve without semantic and/or physical explanation is often not enough. The present study employs one of the XAI methods: Shapley values, which allows to reveal the reasoning and highlight the contribution of each feature to the final ASAT forecast. In comparison to other XAI methods, Shapley values have solid mathematical background, resulting in interpretation transparency. The study demonstrates the contrastive explanations--slices, for each control value of ASAT, which makes it possible to give the client objective justifications for curve changes.
comment: 5 pages, 7 figures, 1 table, conference paper
☆ Coordinated Control of Deformation and Flight for Morphing Aircraft via Meta-Learning and Coupled State-Dependent Riccati Equations
In this paper, the coordinated control problem of deformation and flight for morphing aircraft (MA) is studied by using meta-learning (ML) and coupled state-dependent Riccati equations (CSDREs). Our method is built on two principal observations that dynamic models of MA under varying morphing conditions share a morphing condition independent representation function and that the specific morphing condition part lies in a set of linear coefficients. To that end, the domain adversarially invariant meta-learning (DAIML) is employed to learn the shared representation with offline flight data. Based on the learned representation function, the coordinated control of the deformation and flight for MA is formulated as a non-cooperative differential game. The state-dependent feedback control solutions can be derived by addressing a pair of CSDREs. For this purpose, Lyapunov iterations are extended to obtain the positive semidefinite (definite) stabilizing solutions of the CSDREs, and the convergence proof of the proposed algorithm is provided. Finally, a simulation study is carried out to validate the efficacy of the developed coordinated game control strategies.
☆ Promoting Shared Energy Storage Aggregation among High Price-Tolerance Prosumer: An Incentive Deposit and Withdrawal Service
Many residential prosumers exhibit a high price-tolerance for household electricity bills and a low response to price incentives. This is because the household electricity bills are not inherently high, and the potential for saving on electricity bills through participation in conventional Shared Energy Storage (SES) is limited, which diminishes their motivation to actively engage in SES. Additionally, existing SES models often require prosumers to take additional actions, such as optimizing rental capacity and bidding prices, which happen to be capabilities that typical household prosumers do not possess. To incentivize these high price-tolerance residential prosumers to participate in SES, a novel SES aggregation framework is proposed, which does not require prosumers to take additional actions and allows them to maintain existing energy storage patterns. Compared to conventional long-term operation of SES, the proposed framework introduces an additional short-term construction step during which the energy service provider (ESP) acquires control of the energy storage systems (ESS) and offers electricity deposit and withdrawal services (DWS) with dynamic coefficients, enabling prosumers to withdraw more electricity than they deposit without additional actions. Additionally, a matching mechanism is proposed to align prosumers' electricity consumption behaviors with ESP's optimization strategies. Finally, the dynamic coefficients in DWS and trading strategies are optimized by an improved deep reinforcement learning (DRL) algorithm. Case studies are conducted to verify the effectiveness of the proposed SES aggregation framework with DWS and the matching mechanism.
☆ Generalized Linear Models with 1-Bit Measurements: Asymptotics of the Maximum Likelihood Estimator ICASSP 2025
This work establishes regularity conditions for consistency and asymptotic normality of the multiple parameter maximum likelihood estimator(MLE) from censored data, where the censoring mechanism is in the form of $1$-bit measurements. The underlying distribution of the uncensored data is assumed to belong to the exponential family, with natural parameters expressed as a linear combination of the predictors, known as generalized linear model (GLM). As part of the analysis, the Fisher information matrix is also derived for both censored and uncensored data, which helps to quantify the impact of censoring and assess the performance of the MLE. The choice of GLM allows one to consider a variety of practical examples where 1-bit estimation is of interest. In particular, it is shown how the derived results can be used to analyze two practically relevant scenarios: the Gaussian model with both unknown mean and variance, and the Poisson model with an unknown mean.
comment: ICASSP 2025
☆ Switched Optimal Control with Dwell Time Constraints
This paper presents an embedding-based approach for solving switched optimal control problems (SOCPs) with dwell time constraints. At first, an embedded optimal control problem (EOCP) is defined by replacing the discrete switching signal with a continuous embedded variable that can take intermediate values between the discrete modes. While embedding enables solutions of SOCPs via conventional techniques, optimal solutions of EOCPs often involve nonexistent modes and thus may not be feasible for the SOCP. In the modified EOCP (MEOCP), a concave function is added to the cost function to enforce a bang-bang solution in the embedded variable, which results in feasible solutions for the SOCP. However, the MEOCP cannot guarantee the satisfaction of dwell-time constraints. In this paper, a MEOCP is combined with a filter layer to remove switching times that violate the dwell time constraint. Insertion gradients are used to minimize the effect of the filter on the optimal cost.
☆ Intelligent Sailing Model for Open Sea Navigation
Autonomous vessels potentially enhance safety and reliability of seaborne trade. To facilitate the development of autonomous vessels, high-fidelity simulations are required to model realistic interactions with other vessels. However, modeling realistic interactive maritime traffic is challenging due to the unstructured environment, coarsely specified traffic rules, and largely varying vessel types. Currently, there is no standard for simulating interactive maritime environments in order to rigorously benchmark autonomous vessel algorithms. In this paper, we introduce the first intelligent sailing model (ISM), which simulates rule-compliant vessels for navigation on the open sea. An ISM vessel reacts to other traffic participants according to maritime traffic rules while at the same time solving a motion planning task characterized by waypoints. In particular, the ISM monitors the applicable rules, generates rule-compliant waypoints accordingly, and utilizes a model predictive control for tracking the waypoints. We evaluate the ISM in two environments: interactive traffic with only ISM vessels and mixed traffic where some vessel trajectories are from recorded real-world maritime traffic data or handcrafted for criticality. Our results show that simulations with many ISM vessels of different vessel types are rule-compliant and scalable. We tested 4,049 critical traffic scenarios. For interactive traffic with ISM vessels, no collisions occurred while goal-reaching rates of about 97 percent were achieved. We believe that our ISM can serve as a standard for challenging and realistic maritime traffic simulation to accelerate autonomous vessel development.
☆ LUCAS: A Low-Power Ultra-Low Jitter Compact ASIC for SiPM Targetting ToF-CT
We present LUCAS (Low power Ultra-low jitter Compact ASIC for SiPM), an analog front-end for Silicon Photomultipliers (SiPM) targeting fast timing detectors in Time-of-Flight Computed Tomography (ToF-CT). LUCAS features a very low input impedance preamplifier followed by a voltage comparator. It is designed in TSMC 65 nm low-power CMOS technology with a power supply of 1.2 V. Our first 8-channel prototype has been sent to fabrication and will be received in August 2023. Post-layout simulations predict less than 40 ps FWHM SPTR jitter and an approximate power consumption of 3.2 mW per channel. The front end is suitable for applications with rigorous jitter requirements and high event rates, thanks to its 3.9 GHz unity-gain bandwidth. The front-end compact form factor will facilitate its incorporation into systems demanding high channel densities.
☆ Formalising the intentional stance 2: a coinductive approach
Given a stochastic process with inputs and outputs, how might its behaviour be related to pursuit of a goal? We model this using 'transducers', objects that capture only the external behaviour of a system and not its internal state. A companion paper summarises our results for cognitive scientists; the current paper gives formal definitions and proofs. To formalise the concept of a system that behaves as if it were pursuing a goal, we consider what happens when a transducer (a 'policy') is coupled to another transducer that comes equipped with a success condition (a 'teleo-environment'). An optimal policy is identified with a transducer that behaves as if it were perfectly rational in the pursuit of a goal; our framework also allows us to model constrained rationality. Optimal policies obey a version of Bellman's principle: a policy that's optimal in one time step will again be optimal in the next time step, but with respect to a different teleo-environment (obtained from the original one by a modified version of Bayesian filtering). This property sometimes also applies to the bounded-rational case; we give a sufficient condition. A policy is deterministic if and only if there exists a teleo-environment for which it is uniquely optimal among the set of all policies; we relate this to classical representation theorems from decision theory. This result need not hold in the bounded-rational case; we give an example related to the absent-minded driver problem. The formalism is defined using coinduction, following the style proposed by Czajka.
comment: This is the companion paper to "Formalising the intentional stance 1: attributing goals and beliefs to stochastic processes" (uploaded as version 2 of arXiv:2405.16490). The other paper is an overview aimed at cognitive scientists while this paper gives full mathematical details. 50 pages, no figures
♻ ☆ Adaptive Probabilistic Planning for the Uncertain and Dynamic Orienteering Problem
The Orienteering Problem (OP) is a well-studied routing problem that has been extended to incorporate uncertainties, reflecting stochastic or dynamic travel costs, prize-collection costs, and prizes. Existing approaches may, however, be inefficient in real-world applications due to insufficient modeling knowledge and initially unknowable parameters in online scenarios. Thus, we propose the Uncertain and Dynamic Orienteering Problem (UDOP), modeling travel costs as distributions with unknown and time-variant parameters. UDOP also associates uncertain travel costs with dynamic prizes and prize-collection costs for its objective and budget constraints. To address UDOP, we develop an ADaptive Approach for Probabilistic paThs - ADAPT, that iteratively performs 'execution' and 'online planning' based on an initial 'offline' solution. The execution phase updates system status and records online cost observations. The online planner employs a Bayesian approach to adaptively estimate power consumption and optimize path sequence based on safety beliefs. We evaluate ADAPT in a practical Unmanned Aerial Vehicle (UAV) charging scheduling problem for Wireless Rechargeable Sensor Networks. The UAV must optimize its path to recharge sensor nodes efficiently while managing its energy under uncertain conditions. ADAPT maintains comparable solution quality and computation time while offering superior robustness. Extensive simulations show that ADAPT achieves a 100% Mission Success Rate (MSR) across all tested scenarios, outperforming comparable heuristic-based and frequentist approaches that fail up to 70% (under challenging conditions) and averaging 67% MSR, respectively. This work advances the field of OP with uncertainties, offering a reliable and efficient approach for real-world applications in uncertain and dynamic environments.
♻ ☆ Systematic interval observer design for linear systems
We first propose systematic and comprehensive interval observer designs for linear time-invariant systems, under standard assumptions involving observability and interval bounds on the initial condition and disturbances. Historically, such designs rely on transformations with certain limitations into a form that is Metzler (for continuous time) or non-negative (for discrete time). We show that they can be effectively replaced with a linear time-invariant transformation that can be easily computed offline. Next, we propose an extension to the time-varying setting, addressing the limitations of conventional transformations that lack guaranteed outcomes. We employ dynamical transformations into higher-dimensional target forms for which an interval observer can always be constructed. These transformations become left-invertible after a certain time, provided observability conditions are met and the target dynamics are sufficiently high-dimensional and fast, thus enabling the reconstruction of bounds in the original coordinates in finite time. Academic examples are presented to illustrate our methods.
comment: 7 pages, 3 figures
♻ ☆ Regret Analysis: a control perspective
Online learning and model reference adaptive control have many interesting intersections. One area where they differ however is in how the algorithms are analyzed and what objective or metric is used to discriminate "good" algorithms from "bad" algorithms. In adaptive control there are usually two objectives: 1) prove that all time varying parameters/states of the system are bounded, and 2) that the instantaneous error between the adaptively controlled system and a reference system converges to zero over time (or at least a compact set). For online learning the performance of algorithms is often characterized by the regret the algorithm incurs. Regret is defined as the cumulative loss (cost) over time from the online algorithm minus the cumulative loss (cost) of the single optimal fixed parameter choice in hindsight. Another significant difference between the two areas of research is with regard to the assumptions made in order to obtain said results. Adaptive control makes assumptions about the input-output properties of the control problem and derives solutions for a fixed error model or optimization task. In the online learning literature results are derived for classes of loss functions (i.e. convex) while a priori assuming that all time varying parameters are bounded, which for many optimization tasks is not unrealistic, but is a non starter in control applications. In this work we discuss these differences in detail through the regret based analysis of gradient descent for convex functions and the control based analysis of a streaming regression problem. We close with a discussion about the newly defined paradigm of online adaptive control and ask the following question "Are regret optimal control strategies deployable?"
comment: 10 pages no figures
♻ ☆ Formalising the intentional stance 1: attributing goals and beliefs to stochastic processes
This article presents a formalism inspired by Dennett's notion of the intentional stance. Whereas Dennett's treatment of these concepts is informal, we aim to provide a more formal analogue. We introduce a framework based on stochastic processes with inputs and outputs, in which we can talk precisely about *interpreting* systems as having *normative-epistemic states*, which combine belief-like and desire-like features. Our framework is based on optimality but nevertheless allows us to model some forms of bounded cognition. One might expect that the systems that can be described in normative-epistemic terms would be some special subset of all systems, but we show that this is not the case: every system admits a (possibly trivial) normative-epistemic interpretation, and those that can be *uniquely specified* by a normative-epistemic description are exactly the deterministic ones. Finally, we show that there is a suitable notion of Bayesian updating for normative-epistemic states, which we call *value-laden filtering*, since it involves both normative and epistemic elements. For unbounded cognition it is always permissible to attribute beliefs that update in this way. This is not always the case for bounded cognition, but we give a sufficient condition under which it is. This paper gives an overview of our framework aimed at cognitive scientists, with a formal mathematical treatment given in a companion paper.
comment: The previous version of this document included the content of the companion paper, "Formalising the intentional stance 2: a coinductive approach". The paper has now been split into two, this one (which is an overview aimed at cognitive scientists) and the companion (which contains full mathematical detail). 16 pages, one figure with two subfigures
♻ ☆ Low-Complexity Control for a Class of Uncertain MIMO Nonlinear Systems under Generalized Time-Varying Output Constraints (extended version)
This paper introduces a novel control framework to address the satisfaction of multiple time-varying output constraints in uncertain high-order MIMO nonlinear control systems. Unlike existing methods, which often assume that the constraints are always decoupled and feasible, our approach can handle coupled time-varying constraints even in the presence of potential infeasibilities. First, it is shown that satisfying multiple constraints essentially boils down to ensuring the positivity of a scalar variable, representing the signed distance from the boundary of the time-varying output-constrained set. To achieve this, a single consolidating constraint is designed that, when satisfied, guarantees convergence to and invariance of the time-varying output-constrained set within a user-defined finite time. Next, a novel robust and low-complexity feedback controller is proposed to ensure the satisfaction of the consolidating constraint. Additionally, we provide a mechanism for online modification of the consolidating constraint to find a least violating solution when the constraints become mutually infeasible for some time. Finally, simulation examples of trajectory and region tracking for a mobile robot validate the proposed approach.
comment: extended version, 21 pages, 8 figures
♻ ☆ Convex Optimization of Initial Perturbations toward Quantitative Weather Control
This study proposes introducing convex optimization to find initial perturbations of atmospheric states to realize specified changes in subsequent weather. In the proposed method, we formulate and solve an inverse problem to find effective perturbations in atmospheric variables so that controlled variables satisfy specified changes at a specified time. The proposed method first constructs a sensitivity matrix of controlled variables, such as accumulated precipitation, to the initial atmospheric variables, such as temperature and humidity, through sensitivity analysis using a numerical weather prediction (NWP) model. Then a convex optimization problem is formulated to achieve various control specifications involving not only quadratic functions but also absolute values and maximum values of the controlled variables and initial atmospheric variables in the cost function and constraints. The proposed method was validated through a benchmark warm bubble experiment using the NWP model. The experiments showed that the identified perturbations successfully realized specified spatial distributions of accumulated precipitation.
comment: shortend to improve conciseness; some figures added to Supplements for discussion about physical processes; license changed to CC BY 4.0; revised to improve readability; some figures in Appendix omitted to improve conciseness
♻ ☆ Gaming on Coincident Peak Shaving: Equilibrium and Strategic Behavior
Coincident peak demand charges are imposed by power system operators or electric utilities when the overall system demand, aggregated across multiple consumers, reaches its peak. These charges incentivize consumers to reduce their demand during peak periods, a practice known as coincident peak shaving. In this paper, we analyze the coincident peak shaving problem through the lens of game theory, developing a theoretical model to examine the impact of strategic consumer behavior on system efficiency. We demonstrate that the game structure exhibits varying characteristics - concave, quasiconcave/discontinuous, or non-concave/discontinuous - depending on the extent of consumers demand-shifting capabilities. For a two-agent, two-period setting, we derive closed-form Nash equilibrium solutions under each condition and generalize our findings to cases with multiple agents. We prove the stability of the equilibrium points and present an algorithm for computing equilibrium outcomes across all game scenarios. We also show that the peak-shaving effectiveness of the game model matches that of the centralized peak-shaving model but with increased levels of anarchy. In the cases of quasiconcave and non-concave game conditions, we analytically demonstrate in the two-agent setting that anarchy increases with consumers' flexibility and inequity, as measured by their marginal shifting costs, and we also analyze the influence of the number of agents on anarchy. Finally, we provide numerical simulations to validate our theoretical results.
♻ ☆ Collaborative Spacecraft Servicing under Partial Feedback using Lyapunov-based Deep Neural Networks
Multi-agent systems are increasingly applied in space missions, including distributed space systems, resilient constellations, and autonomous rendezvous and docking operations. A critical emerging application is collaborative spacecraft servicing, which encompasses on-orbit maintenance, space debris removal, and swarm-based satellite repositioning. These missions involve servicing spacecraft interacting with malfunctioning or defunct spacecraft under challenging conditions, such as limited state information, measurement inaccuracies, and erratic target behaviors. Existing approaches often rely on assumptions of full state knowledge or single-integrator dynamics, which are impractical for real-world applications involving second-order spacecraft dynamics. This work addresses these challenges by developing a distributed state estimation and tracking framework that requires only relative position measurements and operates under partial state information. A novel $\rho$-filter is introduced to reconstruct unknown states using locally available information, and a Lyapunov-based deep neural network adaptive controller is developed that adaptively compensates for uncertainties stemming from unknown spacecraft dynamics. To ensure the collaborative spacecraft regulation problem is well-posed, a trackability condition is defined. A Lyapunov-based stability analysis is provided to ensure exponential convergence of errors in state estimation and spacecraft regulation to a neighborhood of the origin under the trackability condition. The developed method eliminates the need for expensive velocity sensors or extensive pre-training, offering a practical and robust solution for spacecraft servicing in complex, dynamic environments.
comment: 24 pages, 4 Figures, Journal
♻ ☆ Quantifying Metrics for Wildfire Ignition Risk from Geographic Data in Power Shutoff Decision-Making
Faults on power lines and other electric equipment are known to cause wildfire ignitions. To mitigate the threat of wildfire ignitions from electric power infrastructure, many utilities preemptively de-energize power lines, which may result in power shutoffs. Data regarding wildfire ignition risks are key inputs for effective planning of power line de-energizations. However, there are multiple ways to formulate risk metrics that spatially aggregate wildfire risk map data, and there are different ways of leveraging this data to make decisions. The key contribution of this paper is to define and compare the results of employing six metrics for quantifying the wildfire ignition risks of power lines from risk maps, considering both threshold- and optimization-based methods for planning power line de-energizations. The numeric results use the California Test System (CATS), a large-scale synthetic grid model with power line corridors accurately representing California infrastructure, in combination with real Wildland Fire Potential Index data for a full year. This is the first application of optimal power shutoff planning on such a large and realistic test case. Our results show that the choice of risk metric significantly impacts the lines that are de-energized and the resulting load shed. We find that the optimization-based method results in significantly less load shed than the threshold-based method while achieving the same risk reduction.
♻ ☆ Stability and Synchronization of Kuramoto Oscillators
Imagine a group of oscillators, each endowed with their own rhythm or frequency, be it the ticking of a biological clock, the swing of a pendulum, or the glowing of fireflies. While these individual oscillators may seem independent of one another at first glance, the true magic lies in their ability to influence and synchronize with one another, like a group of fireflies glowing in unison. The Kuramoto model was motivated by this phenomenon of collective synchronization, when a group of a large number of oscillators spontaneously lock to a common frequency, despite vast differences in their individual frequencies. Inspired by Kuramoto's groundbreaking work in the 1970s, this model captures the essence of how interconnected systems, ranging from biological networks to power grids, can achieve a state of synchronization. This work aims to study the stability and synchronization of Kuramoto oscillators, starting off with an introduction to Kuramoto Oscillators and it's broader applications. We then at a graph theoretic formulation for the same and establish various criterion for the stability, synchronization of Kuramoto Oscillators. Finally, we broadly analyze and experiment with various physical systems that tend to behave like Kuramoto oscillators followed by further simulations.
♻ ☆ SMTL: A Stratified Logic for Expressive Multi-Level Temporal Specifications
We present Stratified Metric Temporal Logic (SMTL), a novel formalism for specifying and verifying properties of complex cyber-physical systems that exhibit behaviors across multiple temporal and abstraction scales. SMTL extends existing temporal logics by incorporating a stratification operator, enabling the association of temporal properties with specific abstraction levels. This allows for the natural expression of multi-scale requirements while maintaining formal reasoning about inter-level relationships. We formalize the syntax and semantics of SMTL, proving that it strictly subsumes metric temporal logic (MTL) and offers enhanced expressiveness by capturing properties unattainable in existing logics. Numerical simulations comparing agents operating under MTL and SMTL specifications show that SMTL enhances agent coordination and safety, reducing collision rates without substantial computational overhead or compromising path efficiency. These findings underscore SMTL's potential as a valuable tool for designing and verifying complex multi-agent systems operating across diverse temporal and abstraction scales.
♻ ☆ The computation of approximate feedback Stackelberg equilibria in multi-player nonlinear constrained dynamic games
Solving feedback Stackelberg games with nonlinear dynamics and coupled constraints, a common scenario in practice, presents significant challenges. This work introduces an efficient method for computing approximate local feedback Stackelberg equilibria in multi-player general-sum dynamic games, with continuous state and action spaces. Different from existing (approximate) dynamic programming solutions that are primarily designed for unconstrained problems, our approach involves reformulating a feedback Stackelberg dynamic game into a sequence of nested optimization problems, enabling the derivation of Karush-Kuhn-Tucker (KKT) conditions and the establishment of a second-order sufficient condition for local feedback Stackelberg equilibria. We propose a Newton-style primal-dual interior point method for solving constrained linear quadratic (LQ) feedback Stackelberg games, offering provable convergence guarantees. Our method is further extended to compute local feedback Stackelberg equilibria for more general nonlinear games by iteratively approximating them using LQ games, ensuring that their KKT conditions are locally aligned with those of the original nonlinear games. We prove the exponential convergence of our algorithm in constrained nonlinear games. In a feedback Stackelberg game with nonlinear dynamics and (nonconvex) coupled costs and constraints, our experimental results reveal the algorithm's ability to handle infeasible initial conditions and achieve exponential convergence towards an approximate local feedback Stackelberg equilibrium.
comment: This manuscript has been accepted by SIAM Journal on Optimization. We fix few typos in this arxiv version
Optimization and Control 39
☆ A dimension reduction procedure for the design of lattice-spring systems with minimal fabrication cost and required multi-functional properties
We show that the problem of the design of the lattices of elastoplastic current conducting springs with optimal multi-functional properties leads to an analytically tractable problem. Specifically, focusing on a lattice with a small number of springs, we use the technique of inequalities to reduce the number variables and to compute the minimal cost of lattice fabrication explicitly.
comment: 20 pages, 10 figures
☆ A fast approximate scenario addition method for two-stage robust mixed-integer programs
This paper presents a new scenario addition method for two-stage robust mixed-integer programs with finite uncertainty sets. Our method combines and extends speed-up techniques used in previous scenario addition methods (also called column-and-constraint generation methods) and introduces several new techniques. In particular, it uses dual bounds for second-stage problems in order to allow a faster identification of the next promising scenario to be added to the master problem. Moreover, adaptive time limits are imposed to avoid getting stuck on particularly hard second-stage problems, and a gap propagation between master problem and second-stage problems is used to stop solving them earlier if only a given non-zero optimality gap is to be reached overall. This makes our method particularly effective for problems where solving the second-stage problem is computationally challenging. To evaluate the method's performance, we compare it to two recent scenario addition methods from the literature on two applications: a robust capacitated location routing problem and a robust integrated berth allocation and quay crane assignment and scheduling problem. The first problem features a particularly hard second stage, and we show that our method is able to solve considerably more and larger instances in a given time limit. Using the second problem, we verify the general applicability of our method, even for problems where the second stage is relatively easy.
☆ On the emergence of almost-honeycomb structures in low-energy planar clusters
Several commonly observed physical and biological systems are arranged in shapes that closely resemble an honeycomb cluster, that is, a tessellation of the plane by regular hexagons. Although these shapes are not always the direct product of energy minimization, they can still be understood, at least phenomenologically, as low-energy configurations. In this paper, explicit quantitative estimates on the geometry of such low-energy configurations are provided, showing in particular that the vast majority of the chambers must be generalized polygons with six edges, and be closely resembling regular hexagons. Part of our arguments is a detailed revision of the estimates behind the global isoperimetric principle for honeycomb clusters due to Hales (T. C. Hales. The honeycomb conjecture. Discrete Comput. Geom., 25(1):1-22, 2001).
comment: 32 pages, 3 figures
☆ Control of Overpopulated Tails in Kinetic Epidemic Models
We introduce model-based transition rates for controlled compartmental models in mathematical epidemiology, with a focus on the effects of control strategies applied to interacting multi-agent systems describing contact formation dynamics. In the framework of kinetic control problems, we compare two prototypical control protocols: one additive control directly influencing the dynamics and another targeting the interaction strength between agents. The emerging controlled macroscopic models are derived for an SIR compartmentalization to illustrate their impact on epidemic progression and contact interaction dynamics. Numerical results show the effectiveness of this approach in steering the dynamics and controlling epidemic trends, even in scenarios where contact distributions exhibit an overpopulated tail.
☆ Isoperimetric inequalities for the fractional composite membrane problem
In this article, we investigate some isoperimetric-type inequalities related to the first eigenvalue of the fractional composite membrane problem. First, we establish an analogue of the renowned Faber-Krahn inequality for the fractional composite membrane problem. Next, we investigate an isoperimetric inequality for the first eigenvalue of the fractional composite membrane problem on the intersection of two domains-a problem that was first studied by Lieb [23] for the Laplacian. Similar results in the local case were previously obtained by Cupini-Vecchi [9] for the composite membrane problem. Our findings provide further insights into the fractional setting, offering a new perspective on these classical inequalities.
comment: 10 pages
☆ Exploring near-optimal energy systems with stakeholders: a novel approach for participatory modelling
Involving people in energy systems planning can increase the legitimacy and socio-political feasibility of energy transitions. Participatory research in energy modelling offers the opportunity to engage with stakeholders in a comprehensive way, but is limited by how results can be generated and presented without imposing assumptions and discrete scenarios on the participants. To this end, we present a methodology and a framework, based on near-optimal modelling results, that can incorporate stakeholders in a holistic and engaging way. We confront stakeholders with a continuum of modelling-based energy system designs via an interactive interface allowing them to choose essentially any combination of components that meet the system requirements. Together with information on the implications of different technologies, it is possible to assess how participants prioritise different aspects in energy systems planning while also facilitating learning in an engaging and stimulating way. We showcase the methodology for the remote Arctic settlement of Longyearbyen and illustrate how participants deviate consistently from the cost optimum. At the same time, they manage to balance different priorities such as emissions, costs, and system vulnerability leading to a better understanding of the complexity and intertwined nature of decisions.
comment: 24 pages, 7 figures and 3 tables
☆ Identifiability of Controlled Open Quantum Systems
Open quantum systems are a rich area of research on the intersection of quantum mechanics and stochastic analysis. We unify multiple views of controlled open quantum systems within the framework of bilinear dynamical systems. We define the corresponding notions of identifiability from the results of quantum state tomography, obtained in many copies of the initial quantum state, under subsequences of varying lengths of control signals. We explain and extend work on identifiability of bilinear systems using either spectral criteria, criteria based on Hankel matrix, and frequency-domain criteria, to the parameter estimation of master equations of open quantum systems. This sets the groundwork for a number of constructive approaches to the identification of open quantum systems.
☆ On Coordinated Drone-Courier Logistics for Intra-city Express Services
Problem definition: Drones, despite being acknowledged as a transformative force in the city logistics sector, are unable to execute the \textit{last-meter delivery} (unloading goods directly to customers' doorsteps) due to airspace restrictions and safety concerns. To leverage advancements and overcome the limitations of drones in providing intra-city express services, we introduce a coordinated drone-courier logistics system where drones operate within a closed network among vertiports, while couriers connect customers to the drone delivery system. This paper aims to shed light on this coordinated system in terms of system feasibility, network interactivity, and long-term sustainability. Methodology/Results: We develop an integrated optimization model to optimize the network planning of the coordinated logistics system. The interplay between network planning and tactical operations is mirrored by a queueing network model, resulting in the nonlinear and nonconvex (partially convex and partially concave) feasible region of the optimization model. An iterative exact algorithm that tightens lower and upper bounds by adaptively refining the linear approximations of nonlinear constraints is developed to provide optimality-guaranteed solutions with finite convergence. The computational experiments demonstrate the scalability and robustness of our algorithm across various network configurations and scenarios.Managerial implications: The case study, based on a real-world dataset from SF Express, a logistics giant in China, validates that the coordinated logistics system efficiently attains cost and time savings by leveraging the effective turnover of drones and the coordination between drones and couriers. The optimal network design features a concentrated structure, streamlining demand consolidation and reducing deadhead repositioning.
☆ KLAP: KYP lemma based low-rank approximation for $\mathcal{H}_2$-optimal passivation
We present a novel passivity enforcement (passivation) method, called KLAP, for linear time-invariant systems based on the Kalman-Yakubovich-Popov (KYP) lemma and the closely related Lur'e equations. The passivation problem in our framework corresponds to finding a perturbation to a given non-passive system that renders the system passive while minimizing the $\mathcal{H}_2$ or frequency-weighted $\mathcal{H}_2$ distance between the original non-passive and the resulting passive system. We show that this problem can be formulated as an unconstrained optimization problem whose objective function can be differentiated efficiently even in large-scale settings. We show that any minimizer of the unconstrained problem yields the same passive system. Furthermore, we prove that, in the absence of a feedthrough term, every local minimizer is also a global minimizer. For cases involving a non-trivial feedthrough term, we analyze global minimizers in relation to the extremal solutions of the Lur'e equations, which can serve as tools for identifying local minima. To solve the resulting numerical optimization problem efficiently, we propose an initialization strategy based on modifying the feedthrough term and a restart strategy when it is likely that the optimization has converged to a local minimum. Numerical examples illustrate the effectiveness of the proposed method.
☆ An Efficient Mixed-Integer Formulation and an Iterative Method for Optimal Control of Switched Systems Under Dwell Time Constraints
This paper presents an efficient Mixed-Integer Nonlinear Programming (MINLP) formulation for systems with discrete control inputs under dwell time constraints. By viewing such systems as a switched system, the problem is decomposed into a Sequence Optimization (SO) and a Switching Time Optimization (STO) -- the former providing the sequence of the switched system, and the latter calculating the optimal switching times. By limiting the feasible set of SO to subsequences of a master sequence, this formulation requires a small number of binary variables, independent of the number of time discretization nodes. This enables the proposed formulation to provide solutions efficiently, even for large numbers of time discretization nodes. To provide even faster solutions, an iterative algorithm is introduced to heuristically solve STO and SO. The proposed approaches are then showcased on four different switched systems and results demonstrate the efficiency of the MINLP formulation and the iterative algorithm.
☆ Cover-Relax-Search: A Primal Heuristic for Binary Quadratic Programs
Binary Quadratic Programs (BQPs) are a class of NP-hard problems that arise in a wide range of applications, including finance, machine learning, and logistics. These problems are challenging to solve due to the combinatorial search space and nonlinearity. In fact, this class of optimization problems is so challenging that, in many instances, standard algorithms struggle to identify feasible solutions within a reasonable time. Primal heuristic algorithms have been developed to quickly identify feasible solutions to BQPs. In this paper, we propose Cover-Relax-Search, an efficient primal heuristic for BQPs. This approach is inspired by multiple local search algorithms, including Undercover. We evaluate the \emph{Cover-Relax-Search} algorithm on multiple BQP benchmarks and show that our proposed heuristic identifies high-quality solutions at a faster speed and significantly reduces the primal integral compared to state-of-the-art solvers and other local search baselines.
☆ Quantum-Assisted Space Logistics Mission Planning
Quantum computing provides a novel approach to addressing conventionally intractable issues in large-scale optimization. Space logistics missions require the efficient routing of payloads, spacecraft, and resources across complex networks, often resulting in an exponential growth of the solution space that classical methods cannot efficiently solve. This paper leverages entropy quantum computing to model and solve the space logistics problem as a time-dependent multicommodity network flow, enabling the exploration of large solution spaces. The findings highlight quantum computing's potential to address complex aerospace logistics, demonstrating its suitability for complex interplanetary mission planning.
☆ Algebraic characterization of equivalence between optimization algorithms
When are two algorithms the same? How can we be sure a recently proposed algorithm is novel, and not a minor twist on an existing method? In this paper, we present a framework for reasoning about equivalence between a broad class of iterative algorithms, with a focus on algorithms designed for convex optimization. We propose several notions of what it means for two algorithms to be equivalent, and provide computationally tractable means to detect equivalence. Our main definition, oracle equivalence, states that two algorithms are equivalent if they result in the same sequence of calls to the function oracles (for suitable initialization). Borrowing from control theory, we use state-space realizations to represent algorithms and characterize algorithm equivalence via transfer functions. Our framework can also identify and characterize equivalence between algorithms that use different oracles that are related via a linear fractional transformation. Prominent examples include linear transformations and function conjugation.
comment: This paper generalizes and provides new analysis and examples compared to arxiv:2105.04684
☆ Continuous and Discrete Systems for Quasi Variational Inequalities with Application to Game Theory
A new class of projected dynamical systems of third order is investigated for quasi (parametric) variational inequalities in which the convex set in the classical variational inequality also depends upon the solution explicitly or implicitly. We study the stability of a continuous method of a gradient type. Some iterative implicit and explicit schemes are suggested as counterparts of the continuous case by inertial proximal methods. The convergence analysis of these proposed methods is established under sufficient mild conditions. Moreover, some applications dealing with the generalized Nash equilibrium problems are presented.
comment: 17 pages. arXiv admin note: text overlap with arXiv:2406.19345
☆ Projected proximal gradient trust-region algorithm for nonsmooth optimization
We consider trust-region methods for solving optimization problems where the objective is the sum of a smooth, nonconvex function and a nonsmooth, convex regularizer. We extend the global convergence theory of such methods to include worst-case complexity bounds in the case of unbounded model Hessian growth, and introduce a new, simple nonsmooth trust-region subproblem solver based on combining several iterations of proximal gradient descent with a single projection into the trust region, which meets the sufficient descent requirements for algorithm convergence and has promising numerical results.
☆ A Quadratically-Constrained Convex Approximation for the AC Optimal Power Flow
We introduce a quadratically-constrained approximation (QCAC) of the AC optimal power flow (AC-OPF) problem. Unlike existing approximations like the DC-OPF, our model does not rely on typical assumptions such as high reactance-to-resistance ratio, near-nominal voltage magnitudes, or small angle differences, and preserves the structural sparsity of the original AC power flow equations, making it suitable for decentralized power systems optimization problems. To achieve this, we reformulate the AC-OPF problem as a quadratically constrained quadratic program. The nonconvex terms are expressed as differences of convex functions, which are then convexified around a base point derived from a warm start of the nodal voltages. If this linearization results in a non-empty constraint set, the convexified constraints form an inner convex approximation. Our experimental results, based on Power Grid Library instances of up to 30,000 buses, demonstrate the effectiveness of the QCAC approximation with respect to other well-documented conic relaxations and a linear approximation. We further showcase its potential advantages over the well-documented second-order conic relaxation of the power flow equations in two proof-of-concept case studies: optimal reactive power dispatch in transmission networks and PV hosting capacity in distribution grids.
comment: 10 pages, 5 figures, 4 tables
☆ Comparative Analysis of Two-Stage Distributionally Robust Optimization over 1-Wasserstein and 2-Wasserstein Balls
This paper investigates advantages of using 2-Wasserstein ambiguity sets over 1-Wasserstein sets in two-stage distributionally robust optimization with right-hand side uncertainty. We examine the worst-case distributions within 1- and 2-Wasserstein balls under both unrestricted and nonnegative orthant supports, highlighting a pathological behavior arising in 1-Wasserstein balls. Closed-form solutions for a single-scenario newsvendor problem illustrate that 2-Wasserstein balls enable more informed decisions. Additionally, a penalty-based dual interpretation suggests that 2-Wasserstein balls may outperform 1-Wasserstein balls across a broader range of Wasserstein radii, even with general support sets.
☆ Equivariant Perturbation in Gomory and Johnson's Infinite Group Problem. IV. The General Unimodular Two-Dimensional Case
We study an abstract setting for cutting planes for integer programming called the infinite group problem. In this abstraction, cutting planes are computed via cut generating function that act on the simplex tableau. In this function space, cut generating functions are classified as minimal, extreme, and facets as a proxy for understanding the strength or potential importance of these functions. Prior work developed algorithms for testing minimality, extremality, and facetness for cut generating functions applied to 1-row tableau and to some 2-row tableau in a restricted setting. We complement and generalize this work by giving an algorithm for testing the extremality of a large class of minimal valid functions for the two-dimensional infinite group problem. Along the way, we develop results of independent interest on functional equations and infinite systems of linear equations.
☆ Switched Optimal Control with Dwell Time Constraints
This paper presents an embedding-based approach for solving switched optimal control problems (SOCPs) with dwell time constraints. At first, an embedded optimal control problem (EOCP) is defined by replacing the discrete switching signal with a continuous embedded variable that can take intermediate values between the discrete modes. While embedding enables solutions of SOCPs via conventional techniques, optimal solutions of EOCPs often involve nonexistent modes and thus may not be feasible for the SOCP. In the modified EOCP (MEOCP), a concave function is added to the cost function to enforce a bang-bang solution in the embedded variable, which results in feasible solutions for the SOCP. However, the MEOCP cannot guarantee the satisfaction of dwell-time constraints. In this paper, a MEOCP is combined with a filter layer to remove switching times that violate the dwell time constraint. Insertion gradients are used to minimize the effect of the filter on the optimal cost.
☆ Linear Algebraic Truncation Algorithm with A Posteriori Error Bounds for Computing Markov Chain Equilibrium Gradients
The numerical computation of equilibrium reward gradients for Markov chains appears in many applications for example within the policy improvement step arising in connection with average reward stochastic dynamic programming. When the state space is large or infinite, one will typically need to truncate the state space in order to arrive at a numerically tractable formulation. In this paper, we derive the first computable a posteriori error bounds for equilibrium reward gradients that account for the error induced by the truncation. Our approach uses regeneration to express equilibrium quantities in terms of the expectations of cumulative rewards over regenerative cycles. Lyapunov functions are then used to bound the contributions to these cumulative rewards and their gradients from path excursions that take the chain outside the truncation set. Our numerical results indicate that our approach can provide highly accurate bounds with truncation sets of moderate size. We further extend our approach to Markov jump processes.
☆ Formalising the intentional stance 2: a coinductive approach
Given a stochastic process with inputs and outputs, how might its behaviour be related to pursuit of a goal? We model this using 'transducers', objects that capture only the external behaviour of a system and not its internal state. A companion paper summarises our results for cognitive scientists; the current paper gives formal definitions and proofs. To formalise the concept of a system that behaves as if it were pursuing a goal, we consider what happens when a transducer (a 'policy') is coupled to another transducer that comes equipped with a success condition (a 'teleo-environment'). An optimal policy is identified with a transducer that behaves as if it were perfectly rational in the pursuit of a goal; our framework also allows us to model constrained rationality. Optimal policies obey a version of Bellman's principle: a policy that's optimal in one time step will again be optimal in the next time step, but with respect to a different teleo-environment (obtained from the original one by a modified version of Bayesian filtering). This property sometimes also applies to the bounded-rational case; we give a sufficient condition. A policy is deterministic if and only if there exists a teleo-environment for which it is uniquely optimal among the set of all policies; we relate this to classical representation theorems from decision theory. This result need not hold in the bounded-rational case; we give an example related to the absent-minded driver problem. The formalism is defined using coinduction, following the style proposed by Czajka.
comment: This is the companion paper to "Formalising the intentional stance 1: attributing goals and beliefs to stochastic processes" (uploaded as version 2 of arXiv:2405.16490). The other paper is an overview aimed at cognitive scientists while this paper gives full mathematical details. 50 pages, no figures
♻ ☆ Using Linearized Optimal Transport to Predict the Evolution of Stochastic Particle Systems
We develop an algorithm to approximate the time evolution of a probability distribution without explicitly learning an operator that governs the evolution. A particular application of interest is discrete measures $\mu_t^N$ that arise from systems of $N$ particles in $\mathbb R^d$. In many such situations, the individual particles move chaotically on short time scales, making it difficult to learn the dynamics of a governing operator, but the bulk distribution $\mu_t^N$ approximates an absolutely continuous measure $\mu_t$ that evolves ``smoothly.'' If $\mu_t$ is known on some time interval, then linearized optimal transport theory provides an Euler-like scheme for approximating the evolution of $\mu_t$ using its ``tangent vector field'' (represented as a time-dependent vector field on $\mathbb R^d$), which can be computed as a limit of optimal transport maps. We propose an analog of this Euler approximation to predict the evolution of the discrete measure $\mu_t^N$ (without knowing $\mu_t$). To approximate the analogous tangent vector field, we use a finite difference over a time step that sits between two time scales of the system -- long enough for a large-$N$ evolution ($\mu_t$) to emerge but short enough to satisfactorily approximate the derivative object used in the Euler scheme. The emergence of the limiting behavior ensures the optimal transport maps closely approximate the vector field describing the bulk distribution's smooth evolution instead of the individual particles' more chaotic movements. We demonstrate the efficacy of our approach with two illustrative examples, Gaussian diffusion and a cell chemotaxis model, and show that our method succeeds in predicting the bulk behavior over relatively large steps.
♻ ☆ Enhancing Quantum State Reconstruction with Structured Classical Shadows
Quantum state tomography (QST) remains the prevailing method for benchmarking and verifying quantum devices; however, its application to large quantum systems is rendered impractical due to the exponential growth in both the required number of total state copies and classical computational resources. Recently, the classical shadow (CS) method has been introduced as a more computationally efficient alternative, capable of accurately predicting key quantum state properties. Despite its advantages, a critical question remains as to whether the CS method can be extended to perform QST with guaranteed performance. In this paper, we address this challenge by introducing a projected classical shadow (PCS) method with guaranteed performance for QST based on Haar-random projective measurements. PCS extends the standard CS method by incorporating a projection step onto the target subspace. For a general quantum state consisting of $n$ qubits, our method requires a minimum of $O(4^n)$ total state copies to achieve a bounded recovery error in the Frobenius norm between the reconstructed and true density matrices, reducing to $O(2^n r)$ for states of rank $r<2^n$ -- meeting information-theoretic optimal bounds in both cases. For matrix product operator states, we demonstrate that the PCS method can recover the ground-truth state with $O(n^2)$ total state copies, improving upon the previously established Haar-random bound of $O(n^3)$. Simulation results further validate the effectiveness of the proposed PCS method.
♻ ☆ Bounded weak solutions for Keller-Segel equations with generalized diffusion and logistic source via an unbalanced Optimal Transport splitting scheme
We consider a parabolic-elliptic type of Keller-Segel equations with generalized diffusion and logistic source under homogeneous Neumann-Neumann boundary conditions. We construct bounded weak solutions globally in time in an unbalanced optimal transport framework, provided that the magnitude of the chemotactic sensitivity can be restricted depending on parameters. In the case of subquadratic degradation of the logistic source, we quantify the chemotactic sensitivity, in particular, in terms of the power of degradation and the pointwise bound of the initial density.
comment: 29 pages
♻ ☆ Stabilization of strictly pre-dissipative nonlinear receding horizon control by terminal costs
It is known that receding horizon control with a strictly pre-dissipative optimal control problem yields a practically asymptotically stable closed loop when suitable state constraints are imposed. In this note we show that alternatively suitably bounded terminal costs can be used for stabilizing the closed loop.
♻ ☆ Observability of the linear Zakharov--Kuznetsov equation
We study the linear Zakharov--Kuznetsov equation with periodic boundary conditions. Employing some tools from the nonharmonic Fourier series we obtain several internal observability theorems. Then we prove various exact controllability and rapid uniform stabilization results by applying a duality principle and a general feedback construction. The method presented here introduces a new insight into the control of dispersive equations in two-dimensional cases and may be adapted to more general equations.
comment: 30 pages, 2 figures. Comments are welcome
♻ ☆ Regret Analysis: a control perspective
Online learning and model reference adaptive control have many interesting intersections. One area where they differ however is in how the algorithms are analyzed and what objective or metric is used to discriminate "good" algorithms from "bad" algorithms. In adaptive control there are usually two objectives: 1) prove that all time varying parameters/states of the system are bounded, and 2) that the instantaneous error between the adaptively controlled system and a reference system converges to zero over time (or at least a compact set). For online learning the performance of algorithms is often characterized by the regret the algorithm incurs. Regret is defined as the cumulative loss (cost) over time from the online algorithm minus the cumulative loss (cost) of the single optimal fixed parameter choice in hindsight. Another significant difference between the two areas of research is with regard to the assumptions made in order to obtain said results. Adaptive control makes assumptions about the input-output properties of the control problem and derives solutions for a fixed error model or optimization task. In the online learning literature results are derived for classes of loss functions (i.e. convex) while a priori assuming that all time varying parameters are bounded, which for many optimization tasks is not unrealistic, but is a non starter in control applications. In this work we discuss these differences in detail through the regret based analysis of gradient descent for convex functions and the control based analysis of a streaming regression problem. We close with a discussion about the newly defined paradigm of online adaptive control and ask the following question "Are regret optimal control strategies deployable?"
comment: 10 pages no figures
♻ ☆ Methodology for Interpretable Reinforcement Learning for Optimizing Mechanical Ventilation
Mechanical ventilation is a critical life support intervention that delivers controlled air and oxygen to a patient's lungs, assisting or replacing spontaneous breathing. While several data-driven approaches have been proposed to optimize ventilator control strategies, they often lack interpretability and alignment with domain knowledge, hindering clinical adoption. This paper presents a methodology for interpretable reinforcement learning (RL) aimed at improving mechanical ventilation control as part of connected health systems. Using a causal, nonparametric model-based off-policy evaluation, we assess RL policies for their ability to enhance patient-specific outcomes-specifically, increasing blood oxygen levels (SpO2), while avoiding aggressive ventilator settings that may cause ventilator-induced lung injuries and other complications. Through numerical experiments on real-world ICU data from the MIMIC-III database, we demonstrate that our interpretable decision tree policy achieves performance comparable to state-of-the-art deep RL methods while outperforming standard behavior cloning approaches. The results highlight the potential of interpretable, data-driven decision support systems to improve safety and efficiency in personalized ventilation strategies, paving the way for seamless integration into connected healthcare environments.
♻ ☆ Formalising the intentional stance 1: attributing goals and beliefs to stochastic processes
This article presents a formalism inspired by Dennett's notion of the intentional stance. Whereas Dennett's treatment of these concepts is informal, we aim to provide a more formal analogue. We introduce a framework based on stochastic processes with inputs and outputs, in which we can talk precisely about *interpreting* systems as having *normative-epistemic states*, which combine belief-like and desire-like features. Our framework is based on optimality but nevertheless allows us to model some forms of bounded cognition. One might expect that the systems that can be described in normative-epistemic terms would be some special subset of all systems, but we show that this is not the case: every system admits a (possibly trivial) normative-epistemic interpretation, and those that can be *uniquely specified* by a normative-epistemic description are exactly the deterministic ones. Finally, we show that there is a suitable notion of Bayesian updating for normative-epistemic states, which we call *value-laden filtering*, since it involves both normative and epistemic elements. For unbounded cognition it is always permissible to attribute beliefs that update in this way. This is not always the case for bounded cognition, but we give a sufficient condition under which it is. This paper gives an overview of our framework aimed at cognitive scientists, with a formal mathematical treatment given in a companion paper.
comment: The previous version of this document included the content of the companion paper, "Formalising the intentional stance 2: a coinductive approach". The paper has now been split into two, this one (which is an overview aimed at cognitive scientists) and the companion (which contains full mathematical detail). 16 pages, one figure with two subfigures
♻ ☆ A matheuristic approach for an integrated lot-sizing and scheduling problem with a period-based learning effect
This research investigates a multi-product capacitated lot-sizing and scheduling problem incorporating a novel learning effect, namely the period-based learning effect. This is inspired by a real case in a core analysis laboratory under a job shop setting. Accordingly, a Mixed-Integer Linear Programming (MILP) model is extended based on the big-bucket formulation, optimizing the total tardiness and overtime costs. Given the complexity of the problem, a cutting plane method is employed to simplify the model. Afterward, three matheuristic methods based on the rolling horizon approach are devised, incorporating two lower bounds and a local search heuristic. Furthermore, a post-processing approach is implemented to incorporate lot-streaming possibility. Computational experiments demonstrate: 1) the simplified model performs effectively in terms of both solution quality and computational time; and 2) although the model encounters challenges with large-scale instances, the proposed matheuristic methods achieve satisfactory outcomes; and 3) it can be inferred that the complexity of the models and solution methods are independent of the learning effect; however, the value of learning effect may impact the performance of the lower bounds; 4) in manufacturing settings, where the lot-streaming is possible, incorporating post-processing can drastically improve the objective function; 5) the impact of the period-based learning effect in the results is significant, and the model's sensitivity to time-based parameters (e.g., learning rate) is more than cost-based ones (e.g., tardiness cost).
♻ ☆ Optimal error estimates of the stochastic parabolic optimal control problem with integral state constraint
In this paper, the optimal strong error estimates for stochastic parabolic optimal control problem with additive noise and integral state constraint are derived based on time-implicit and finite element discretization. The continuous and discrete first-order optimality conditions are deduced by constructing the Lagrange functional, which contains forward-backward stochastic parabolic equations and a variational equation. The fully discrete version of forward-backward stochastic parabolic equations is introduced as an auxiliary problem and the optimal strong convergence orders are estimated, which further allows the optimal a priori error estimates for control, state, adjoint state and multiplier to be derived. Then, a simple and yet efficient gradient projection algorithm is proposed to solve stochastic parabolic control problem and its convergence rate is proved. Numerical experiments are carried out to illustrate the theoretical findings.
♻ ☆ Convex Optimization of Initial Perturbations toward Quantitative Weather Control
This study proposes introducing convex optimization to find initial perturbations of atmospheric states to realize specified changes in subsequent weather. In the proposed method, we formulate and solve an inverse problem to find effective perturbations in atmospheric variables so that controlled variables satisfy specified changes at a specified time. The proposed method first constructs a sensitivity matrix of controlled variables, such as accumulated precipitation, to the initial atmospheric variables, such as temperature and humidity, through sensitivity analysis using a numerical weather prediction (NWP) model. Then a convex optimization problem is formulated to achieve various control specifications involving not only quadratic functions but also absolute values and maximum values of the controlled variables and initial atmospheric variables in the cost function and constraints. The proposed method was validated through a benchmark warm bubble experiment using the NWP model. The experiments showed that the identified perturbations successfully realized specified spatial distributions of accumulated precipitation.
comment: shortend to improve conciseness; some figures added to Supplements for discussion about physical processes; license changed to CC BY 4.0; revised to improve readability; some figures in Appendix omitted to improve conciseness
♻ ☆ New Lagrangian dual algorithms for solving the continuous nonlinear resource allocation problem
The continuous nonlinear resource allocation problem (CONRAP) has broad applications in economics, engineering, production and inventory management, and often serves as a subproblem in complex programming. Without relying on monotonicity assumptions for the objective and constraint functions, we propose two Lagrangian dual algorithms for solving two types of CONRAP. Both algorithms determine an update strategy for the Lagrange multiplier, utilizing the values of the objective and constraint functions at the current and previous iterations. This strategy accelerates the process of finding dual optimal solutions. Subsequently, leveraging the problem's convexity, the primal optimal solution is either directly identified or derived by solving a one-dimensional linear equation. We also prove that both algorithms converge to optimal solutions within a finite number of iterations. Numerical experiments on six types of practical test problems illustrate the superior computational efficiency of the proposed algorithms. For test problems with a general inequality constraint, the first algorithm achieves a CPU time reduction exceeding an order of magnitude compared to solvers such as Gurobi and CVX. For test problems with a linear equality constraint, the second algorithm consistently outperforms four existing algorithms, delivering an improvement of over two orders of magnitude in computational efficiency.
♻ ☆ Collaborative Spacecraft Servicing under Partial Feedback using Lyapunov-based Deep Neural Networks
Multi-agent systems are increasingly applied in space missions, including distributed space systems, resilient constellations, and autonomous rendezvous and docking operations. A critical emerging application is collaborative spacecraft servicing, which encompasses on-orbit maintenance, space debris removal, and swarm-based satellite repositioning. These missions involve servicing spacecraft interacting with malfunctioning or defunct spacecraft under challenging conditions, such as limited state information, measurement inaccuracies, and erratic target behaviors. Existing approaches often rely on assumptions of full state knowledge or single-integrator dynamics, which are impractical for real-world applications involving second-order spacecraft dynamics. This work addresses these challenges by developing a distributed state estimation and tracking framework that requires only relative position measurements and operates under partial state information. A novel $\rho$-filter is introduced to reconstruct unknown states using locally available information, and a Lyapunov-based deep neural network adaptive controller is developed that adaptively compensates for uncertainties stemming from unknown spacecraft dynamics. To ensure the collaborative spacecraft regulation problem is well-posed, a trackability condition is defined. A Lyapunov-based stability analysis is provided to ensure exponential convergence of errors in state estimation and spacecraft regulation to a neighborhood of the origin under the trackability condition. The developed method eliminates the need for expensive velocity sensors or extensive pre-training, offering a practical and robust solution for spacecraft servicing in complex, dynamic environments.
comment: 24 pages, 4 Figures, Journal
♻ ☆ Designing a Framework for Solving Multiobjective Simulation Optimization Problems
Multiobjective simulation optimization (MOSO) problems are optimization problems with multiple conflicting objectives, where evaluation of at least one of the objectives depends on a black-box numerical code or real-world experiment, which we refer to as a simulation. While an extensive body of research is dedicated to developing new algorithms and methods for solving these and related problems, it is challenging and time consuming to integrate these techniques into real world production-ready solvers. This is partly due to the diversity and complexity of modern state-of-the-art MOSO algorithms and methods and partly due to the complexity and specificity of many real-world problems and their corresponding computing environments. The complexity of this problem is only compounded when introducing potentially complex and/or domain-specific surrogate modeling techniques, problem formulations, design spaces, and data acquisition functions. This paper carefully surveys the current state-of-the-art in MOSO algorithms, techniques, and solvers; as well as problem types and computational environments where MOSO is commonly applied. We then present several key challenges in the design of a Parallel Multiobjective Simulation Optimization framework (ParMOO) and how they have been addressed. Finally, we provide two case studies demonstrating how customized ParMOO solvers can be quickly built and deployed to solve real-world MOSO problems.
♻ ☆ Regularized MIP Model for Integrating Energy Storage Systems and its Application for Solving a Trilevel Interdiction Problem
Incorporating energy storage systems (ESS) into power systems has been studied in many recent works, where binary variables are often introduced to model the complementary nature of battery charging and discharging. A conventional approach for these ESS optimization problems is to relax binary variables and convert the problem into a linear program. However, such linear programming relaxation models can yield unrealistic fractional solutions, such as simultaneous charging and discharging. In this paper, we develop a regularized Mixed-Integer Programming (MIP) model for the ESS optimal power flow (OPF) problem. We prove that under mild conditions, the proposed regularized model admits a zero integrality gap with its linear programming relaxation; hence, it can be solved efficiently. By studying the properties of the regularized MIP model, we show that its optimal solution is also near-optimal to the original ESS OPF problem, thereby providing a valid and tight upper bound for the ESS OPF problem. The use of the regularized MIP model allows us to solve a trilevel min-max-min network contingency problem which is otherwise intractable to solve.
♻ ☆ The computation of approximate feedback Stackelberg equilibria in multi-player nonlinear constrained dynamic games
Solving feedback Stackelberg games with nonlinear dynamics and coupled constraints, a common scenario in practice, presents significant challenges. This work introduces an efficient method for computing approximate local feedback Stackelberg equilibria in multi-player general-sum dynamic games, with continuous state and action spaces. Different from existing (approximate) dynamic programming solutions that are primarily designed for unconstrained problems, our approach involves reformulating a feedback Stackelberg dynamic game into a sequence of nested optimization problems, enabling the derivation of Karush-Kuhn-Tucker (KKT) conditions and the establishment of a second-order sufficient condition for local feedback Stackelberg equilibria. We propose a Newton-style primal-dual interior point method for solving constrained linear quadratic (LQ) feedback Stackelberg games, offering provable convergence guarantees. Our method is further extended to compute local feedback Stackelberg equilibria for more general nonlinear games by iteratively approximating them using LQ games, ensuring that their KKT conditions are locally aligned with those of the original nonlinear games. We prove the exponential convergence of our algorithm in constrained nonlinear games. In a feedback Stackelberg game with nonlinear dynamics and (nonconvex) coupled costs and constraints, our experimental results reveal the algorithm's ability to handle infeasible initial conditions and achieve exponential convergence towards an approximate local feedback Stackelberg equilibrium.
comment: This manuscript has been accepted by SIAM Journal on Optimization. We fix few typos in this arxiv version
♻ ☆ The Integrated Vehicle and Pollster Routing Problem
The National Statistics Bureau of Ecuador carries out monthly polls to monitor the evolution of the Consumer Price Index, a metric measuring consumer prices of essential commodities. These surveys are administered across a designated set of stores, with a fleet of vehicles transporting pollsters from the bureau headquarters to the chosen locations. Moreover, pollsters move between stores using pedestrian paths or using a vehicle to shorten the travel time. This paper introduces the Integrated Vehicle and Pollster Routing Problem and presents an integer programming model to effectively schedule pollster visits to selected stores while optimizing the routing of the vehicle fleet. Results on the computational complexity, a three-phase algorithm, and computational experience based on real-world instances are provided.
comment: 28 pages, 5 figures, 8 tables
♻ ☆ Cyber Risk Assessment for Capital Management
This paper introduces a two-pillar cyber risk management framework to address the pervasive challenges in managing cyber risk. The first pillar, cyber risk assessment, combines insurance frequency-severity models with cybersecurity cascade models to capture the unique nature of cyber risk. The second pillar, cyber capital management, facilitates informed allocation of capital for a balanced cyber risk management strategy, including cybersecurity investments, insurance coverage, and reserves. A case study, based on historical cyber incident data and realistic assumptions, demonstrates the necessity of comprehensive cost-benefit analysis for budget-constrained companies with competing objectives in cyber risk management. In addition, sensitivity analysis highlights the dependence of the optimal strategy on factors such as the price of cybersecurity controls and their effectiveness. The framework's implementation across a diverse range of companies yields general insights on cyber risk management.
comment: This paper was first presented on July 5, 2021, at the 24th International Congress on Insurance: Mathematics and Economics
Computer Vision and Pattern Recognition 134
☆ ReFocus: Visual Editing as a Chain of Thought for Structured Image Understanding
Structured image understanding, such as interpreting tables and charts, requires strategically refocusing across various structures and texts within an image, forming a reasoning sequence to arrive at the final answer. However, current multimodal large language models (LLMs) lack this multihop selective attention capability. In this work, we introduce ReFocus, a simple yet effective framework that equips multimodal LLMs with the ability to generate "visual thoughts" by performing visual editing on the input image through code, shifting and refining their visual focuses. Specifically, ReFocus enables multimodal LLMs to generate Python codes to call tools and modify the input image, sequentially drawing boxes, highlighting sections, and masking out areas, thereby enhancing the visual reasoning process. We experiment upon a wide range of structured image understanding tasks involving tables and charts. ReFocus largely improves performance on all tasks over GPT-4o without visual editing, yielding an average gain of 11.0% on table tasks and 6.8% on chart tasks. We present an in-depth analysis of the effects of different visual edits, and reasons why ReFocus can improve the performance without introducing additional information. Further, we collect a 14k training set using ReFocus, and prove that such visual chain-of-thought with intermediate information offers a better supervision than standard VQA data, reaching a 8.0% average gain over the same model trained with QA pairs and 2.6% over CoT.
comment: Project link: https://zeyofu.github.io/ReFocus/
☆ An Empirical Study of Autoregressive Pre-training from Videos
We empirically study autoregressive pre-training from videos. To perform our study, we construct a series of autoregressive video models, called Toto. We treat videos as sequences of visual tokens and train transformer models to autoregressively predict future tokens. Our models are pre-trained on a diverse dataset of videos and images comprising over 1 trillion visual tokens. We explore different architectural, training, and inference design choices. We evaluate the learned visual representations on a range of downstream tasks including image recognition, video classification, object tracking, and robotics. Our results demonstrate that, despite minimal inductive biases, autoregressive pre-training leads to competitive performance across all benchmarks. Finally, we find that scaling our video models results in similar scaling curves to those seen in language models, albeit with a different rate. More details at https://brjathu.github.io/toto/
☆ Decentralized Diffusion Models
Large-scale AI model training divides work across thousands of GPUs, then synchronizes gradients across them at each step. This incurs a significant network burden that only centralized, monolithic clusters can support, driving up infrastructure costs and straining power systems. We propose Decentralized Diffusion Models, a scalable framework for distributing diffusion model training across independent clusters or datacenters by eliminating the dependence on a centralized, high-bandwidth networking fabric. Our method trains a set of expert diffusion models over partitions of the dataset, each in full isolation from one another. At inference time, the experts ensemble through a lightweight router. We show that the ensemble collectively optimizes the same objective as a single model trained over the whole dataset. This means we can divide the training burden among a number of "compute islands," lowering infrastructure costs and improving resilience to localized GPU failures. Decentralized diffusion models empower researchers to take advantage of smaller, more cost-effective and more readily available compute like on-demand GPU nodes rather than central integrated systems. We conduct extensive experiments on ImageNet and LAION Aesthetics, showing that decentralized diffusion models FLOP-for-FLOP outperform standard diffusion models. We finally scale our approach to 24 billion parameters, demonstrating that high-quality diffusion models can now be trained with just eight individual GPU nodes in less than a week.
comment: Project webpage: https://decentralizeddiffusion.github.io/
☆ Explainable AI-Enhanced Deep Learning for Pumpkin Leaf Disease Detection: A Comparative Analysis of CNN Architectures
Pumpkin leaf diseases are significant threats to agricultural productivity, requiring a timely and precise diagnosis for effective management. Traditional identification methods are laborious and susceptible to human error, emphasizing the necessity for automated solutions. This study employs on the "Pumpkin Leaf Disease Dataset", that comprises of 2000 high-resolution images separated into five categories. Downy mildew, powdery mildew, mosaic disease, bacterial leaf spot, and healthy leaves. The dataset was rigorously assembled from several agricultural fields to ensure a strong representation for model training. We explored many proficient deep learning architectures, including DenseNet201, DenseNet121, DenseNet169, Xception, ResNet50, ResNet101 and InceptionResNetV2, and observed that ResNet50 performed most effectively, with an accuracy of 90.5% and comparable precision, recall, and F1-Score. We used Explainable AI (XAI) approaches like Grad-CAM, Grad-CAM++, Score-CAM, and Layer-CAM to provide meaningful representations of model decision-making processes, which improved understanding and trust in automated disease diagnostics. These findings demonstrate ResNet50's potential to revolutionize pumpkin leaf disease detection, allowing for earlier and more accurate treatments.
comment: Accepted in 2024 27th International Conference on Computer and Information Technology (ICCIT)
☆ Relative Pose Estimation through Affine Corrections of Monocular Depth Priors
Monocular depth estimation (MDE) models have undergone significant advancements over recent years. Many MDE models aim to predict affine-invariant relative depth from monocular images, while recent developments in large-scale training and vision foundation models enable reasonable estimation of metric (absolute) depth. However, effectively leveraging these predictions for geometric vision tasks, in particular relative pose estimation, remains relatively under explored. While depths provide rich constraints for cross-view image alignment, the intrinsic noise and ambiguity from the monocular depth priors present practical challenges to improving upon classic keypoint-based solutions. In this paper, we develop three solvers for relative pose estimation that explicitly account for independent affine (scale and shift) ambiguities, covering both calibrated and uncalibrated conditions. We further propose a hybrid estimation pipeline that combines our proposed solvers with classic point-based solvers and epipolar constraints. We find that the affine correction modeling is beneficial to not only the relative depth priors but also, surprisingly, the ``metric" ones. Results across multiple datasets demonstrate large improvements of our approach over classic keypoint-based baselines and PnP-based solutions, under both calibrated and uncalibrated setups. We also show that our method improves consistently with different feature matchers and MDE models, and can further benefit from very recent advances on both modules. Code is available at https://github.com/MarkYu98/madpose.
☆ Consistent Flow Distillation for Text-to-3D Generation
Score Distillation Sampling (SDS) has made significant strides in distilling image-generative models for 3D generation. However, its maximum-likelihood-seeking behavior often leads to degraded visual quality and diversity, limiting its effectiveness in 3D applications. In this work, we propose Consistent Flow Distillation (CFD), which addresses these limitations. We begin by leveraging the gradient of the diffusion ODE or SDE sampling process to guide the 3D generation. From the gradient-based sampling perspective, we find that the consistency of 2D image flows across different viewpoints is important for high-quality 3D generation. To achieve this, we introduce multi-view consistent Gaussian noise on the 3D object, which can be rendered from various viewpoints to compute the flow gradient. Our experiments demonstrate that CFD, through consistent flows, significantly outperforms previous methods in text-to-3D generation.
comment: Project page: https://runjie-yan.github.io/cfd/
☆ Can MLLMs Reason in Multimodality? EMMA: An Enhanced MultiModal ReAsoning Benchmark
The ability to organically reason over and with both text and images is a pillar of human intelligence, yet the ability of Multimodal Large Language Models (MLLMs) to perform such multimodal reasoning remains under-explored. Existing benchmarks often emphasize text-dominant reasoning or rely on shallow visual cues, failing to adequately assess integrated visual and textual reasoning. We introduce EMMA (Enhanced MultiModal reAsoning), a benchmark targeting organic multimodal reasoning across mathematics, physics, chemistry, and coding. EMMA tasks demand advanced cross-modal reasoning that cannot be addressed by reasoning independently in each modality, offering an enhanced test suite for MLLMs' reasoning capabilities. Our evaluation of state-of-the-art MLLMs on EMMA reveals significant limitations in handling complex multimodal and multi-step reasoning tasks, even with advanced techniques like Chain-of-Thought prompting and test-time compute scaling underperforming. These findings underscore the need for improved multimodal architectures and training paradigms to close the gap between human and model reasoning in multimodality.
☆ Progressive Growing of Video Tokenizers for Highly Compressed Latent Spaces
Video tokenizers are essential for latent video diffusion models, converting raw video data into spatiotemporally compressed latent spaces for efficient training. However, extending state-of-the-art video tokenizers to achieve a temporal compression ratio beyond 4x without increasing channel capacity poses significant challenges. In this work, we propose an alternative approach to enhance temporal compression. We find that the reconstruction quality of temporally subsampled videos from a low-compression encoder surpasses that of high-compression encoders applied to original videos. This indicates that high-compression models can leverage representations from lower-compression models. Building on this insight, we develop a bootstrapped high-temporal-compression model that progressively trains high-compression blocks atop well-trained lower-compression models. Our method includes a cross-level feature-mixing module to retain information from the pretrained low-compression model and guide higher-compression blocks to capture the remaining details from the full video sequence. Evaluation of video benchmarks shows that our method significantly improves reconstruction quality while increasing temporal compression compared to direct extensions of existing video tokenizers. Furthermore, the resulting compact latent space effectively trains a video diffusion model for high-quality video generation with a reduced token budget.
comment: Project website: https://progressive-video-tokenizer.github.io/Pro-MAG/
☆ The GAN is dead; long live the GAN! A Modern GAN Baseline NeurIPS 2024
There is a widely-spread claim that GANs are difficult to train, and GAN architectures in the literature are littered with empirical tricks. We provide evidence against this claim and build a modern GAN baseline in a more principled manner. First, we derive a well-behaved regularized relativistic GAN loss that addresses issues of mode dropping and non-convergence that were previously tackled via a bag of ad-hoc tricks. We analyze our loss mathematically and prove that it admits local convergence guarantees, unlike most existing relativistic losses. Second, our new loss allows us to discard all ad-hoc tricks and replace outdated backbones used in common GANs with modern architectures. Using StyleGAN2 as an example, we present a roadmap of simplification and modernization that results in a new minimalist baseline -- R3GAN. Despite being simple, our approach surpasses StyleGAN2 on FFHQ, ImageNet, CIFAR, and Stacked MNIST datasets, and compares favorably against state-of-the-art GANs and diffusion models.
comment: Accepted to NeurIPS 2024. Code available at https://github.com/brownvc/R3GAN/
☆ $DPF^*$: improved Depth Potential Function for scale-invariant sulcal depth estimation
The shape of human brain is complex and highly variable, with interactions between brain size, cortical folding, and age well-documented in the literature. However, few studies have explored how global brain size influences geometric features of the cortical surface derived from anatomical MRI. In this work, we focus on sulcal depth, an imaging phenotype that has gained significant attention in both basic research and clinical applications. We make key contributions to the field by: 1) providing the first quantitative analysis of how brain size affects sulcal depth measurements; 2) introducing a novel, scale-invariant method for sulcal depth estimation based on an original formalization of the problem; 3) presenting a validation framework and sharing our code and benchmark data with the community; and 4) demonstrating the biological relevance of our new sulcal depth measure using a large sample of 1,987 subjects spanning the developmental period from 26 weeks post-conception to adulthood.
comment: GA and JL contributed equally to this work
☆ Flatland Vision
When is it possible to project two sets of labeled points lying in a pair of projective planes to the same image on a projective line? We give a complete answer to this question and describe the loci of the projection centers that enable a common image. In particular, we find that there exists a solution to this problem if and only if these two sets are themselves images of a common pointset in projective space.
☆ Zero-1-to-G: Taming Pretrained 2D Diffusion Model for Direct 3D Generation
Recent advances in 2D image generation have achieved remarkable quality,largely driven by the capacity of diffusion models and the availability of large-scale datasets. However, direct 3D generation is still constrained by the scarcity and lower fidelity of 3D datasets. In this paper, we introduce Zero-1-to-G, a novel approach that addresses this problem by enabling direct single-view generation on Gaussian splats using pretrained 2D diffusion models. Our key insight is that Gaussian splats, a 3D representation, can be decomposed into multi-view images encoding different attributes. This reframes the challenging task of direct 3D generation within a 2D diffusion framework, allowing us to leverage the rich priors of pretrained 2D diffusion models. To incorporate 3D awareness, we introduce cross-view and cross-attribute attention layers, which capture complex correlations and enforce 3D consistency across generated splats. This makes Zero-1-to-G the first direct image-to-3D generative model to effectively utilize pretrained 2D diffusion priors, enabling efficient training and improved generalization to unseen objects. Extensive experiments on both synthetic and in-the-wild datasets demonstrate superior performance in 3D object generation, offering a new approach to high-quality 3D generation.
☆ From Images to Insights: Transforming Brain Cancer Diagnosis with Explainable AI
Brain cancer represents a major challenge in medical diagnostics, requisite precise and timely detection for effective treatment. Diagnosis initially relies on the proficiency of radiologists, which can cause difficulties and threats when the expertise is sparse. Despite the use of imaging resources, brain cancer remains often difficult, time-consuming, and vulnerable to intraclass variability. This study conveys the Bangladesh Brain Cancer MRI Dataset, containing 6,056 MRI images organized into three categories: Brain Tumor, Brain Glioma, and Brain Menin. The dataset was collected from several hospitals in Bangladesh, providing a diverse and realistic sample for research. We implemented advanced deep learning models, and DenseNet169 achieved exceptional results, with accuracy, precision, recall, and F1-Score all reaching 0.9983. In addition, Explainable AI (XAI) methods including GradCAM, GradCAM++, ScoreCAM, and LayerCAM were employed to provide visual representations of the decision-making processes of the models. In the context of brain cancer, these techniques highlight DenseNet169's potential to enhance diagnostic accuracy while simultaneously offering transparency, facilitating early diagnosis and better patient outcomes.
comment: Accepted in 2024 27th International Conference on Computer and Information Technology (ICCIT)
☆ Seeing Sound: Assembling Sounds from Visuals for Audio-to-Image Generation
Training audio-to-image generative models requires an abundance of diverse audio-visual pairs that are semantically aligned. Such data is almost always curated from in-the-wild videos, given the cross-modal semantic correspondence that is inherent to them. In this work, we hypothesize that insisting on the absolute need for ground truth audio-visual correspondence, is not only unnecessary, but also leads to severe restrictions in scale, quality, and diversity of the data, ultimately impairing its use in the modern generative models. That is, we propose a scalable image sonification framework where instances from a variety of high-quality yet disjoint uni-modal origins can be artificially paired through a retrieval process that is empowered by reasoning capabilities of modern vision-language models. To demonstrate the efficacy of this approach, we use our sonified images to train an audio-to-image generative model that performs competitively against state-of-the-art. Finally, through a series of ablation studies, we exhibit several intriguing auditory capabilities like semantic mixing and interpolation, loudness calibration and acoustic space modeling through reverberation that our model has implicitly developed to guide the image generation process.
☆ A Novel Pathology Foundation Model by Mayo Clinic, Charité, and Aignostics
Recent advances in digital pathology have demonstrated the effectiveness of foundation models across diverse applications. In this report, we present a novel vision foundation model based on the RudolfV approach. Our model was trained on a dataset comprising 1.2 million histopathology whole slide images, collected from two medical institutions: Mayo Clinic and Charit\'e - Universt\"atsmedizin Berlin. Comprehensive evaluations show that our model achieves state-of-the-art performance across twenty-one public benchmark datasets, even though it is neither the largest model by parameter count nor by training dataset size.
☆ Performance of YOLOv7 in Kitchen Safety While Handling Knife
Safe knife practices in the kitchen significantly reduce the risk of cuts, injuries, and serious accidents during food preparation. Using YOLOv7, an advanced object detection model, this study focuses on identifying safety risks during knife handling, particularly improper finger placement and blade contact with hand. The model's performance was evaluated using metrics such as precision, recall, mAP50, and mAP50-95. The results demonstrate that YOLOv7 achieved its best performance at epoch 31, with a mAP50-95 score of 0.7879, precision of 0.9063, and recall of 0.7503. These findings highlight YOLOv7's potential to accurately detect knife-related hazards, promoting the development of improved kitchen safety.
☆ Arc2Avatar: Generating Expressive 3D Avatars from a Single Image via ID Guidance
Inspired by the effectiveness of 3D Gaussian Splatting (3DGS) in reconstructing detailed 3D scenes within multi-view setups and the emergence of large 2D human foundation models, we introduce Arc2Avatar, the first SDS-based method utilizing a human face foundation model as guidance with just a single image as input. To achieve that, we extend such a model for diverse-view human head generation by fine-tuning on synthetic data and modifying its conditioning. Our avatars maintain a dense correspondence with a human face mesh template, allowing blendshape-based expression generation. This is achieved through a modified 3DGS approach, connectivity regularizers, and a strategic initialization tailored for our task. Additionally, we propose an optional efficient SDS-based correction step to refine the blendshape expressions, enhancing realism and diversity. Experiments demonstrate that Arc2Avatar achieves state-of-the-art realism and identity preservation, effectively addressing color issues by allowing the use of very low guidance, enabled by our strong identity prior and initialization strategy, without compromising detail.
☆ 1-2-1: Renaissance of Single-Network Paradigm for Virtual Try-On
Virtual Try-On (VTON) has become a crucial tool in ecommerce, enabling the realistic simulation of garments on individuals while preserving their original appearance and pose. Early VTON methods relied on single generative networks, but challenges remain in preserving fine-grained garment details due to limitations in feature extraction and fusion. To address these issues, recent approaches have adopted a dual-network paradigm, incorporating a complementary "ReferenceNet" to enhance garment feature extraction and fusion. While effective, this dual-network approach introduces significant computational overhead, limiting its scalability for high-resolution and long-duration image/video VTON applications. In this paper, we challenge the dual-network paradigm by proposing a novel single-network VTON method that overcomes the limitations of existing techniques. Our method, namely MNVTON, introduces a Modality-specific Normalization strategy that separately processes text, image and video inputs, enabling them to share the same attention layers in a VTON network. Extensive experimental results demonstrate the effectiveness of our approach, showing that it consistently achieves higher-quality, more detailed results for both image and video VTON tasks. Our results suggest that the single-network paradigm can rival the performance of dualnetwork approaches, offering a more efficient alternative for high-quality, scalable VTON applications.
comment: Project page: https://ningshuliang.github.io/2023/Arxiv/index.html
☆ CROPS: Model-Agnostic Training-Free Framework for Safe Image Synthesis with Latent Diffusion Models
With advances in diffusion models, image generation has shown significant performance improvements. This raises concerns about the potential abuse of image generation, such as the creation of explicit or violent images, commonly referred to as Not Safe For Work (NSFW) content. To address this, the Stable Diffusion model includes several safety checkers to censor initial text prompts and final output images generated from the model. However, recent research has shown that these safety checkers have vulnerabilities against adversarial attacks, allowing them to generate NSFW images. In this paper, we find that these adversarial attacks are not robust to small changes in text prompts or input latents. Based on this, we propose CROPS (Circular or RandOm Prompts for Safety), a model-agnostic framework that easily defends against adversarial attacks generating NSFW images without requiring additional training. Moreover, we develop an approach that utilizes one-step diffusion models for efficient NSFW detection (CROPS-1), further reducing computational resources. We demonstrate the superiority of our method in terms of performance and applicability.
☆ JAQ: Joint Efficient Architecture Design and Low-Bit Quantization with Hardware-Software Co-Exploration AAAI 2025
The co-design of neural network architectures, quantization precisions, and hardware accelerators offers a promising approach to achieving an optimal balance between performance and efficiency, particularly for model deployment on resource-constrained edge devices. In this work, we propose the JAQ Framework, which jointly optimizes the three critical dimensions. However, effectively automating the design process across the vast search space of those three dimensions poses significant challenges, especially when pursuing extremely low-bit quantization. Specifical, the primary challenges include: (1) Memory overhead in software-side: Low-precision quantization-aware training can lead to significant memory usage due to storing large intermediate features and latent weights for back-propagation, potentially causing memory exhaustion. (2) Search time-consuming in hardware-side: The discrete nature of hardware parameters and the complex interplay between compiler optimizations and individual operators make the accelerator search time-consuming. To address these issues, JAQ mitigates the memory overhead through a channel-wise sparse quantization (CSQ) scheme, selectively applying quantization to the most sensitive components of the model during optimization. Additionally, JAQ designs BatchTile, which employs a hardware generation network to encode all possible tiling modes, thereby speeding up the search for the optimal compiler mapping strategy. Extensive experiments demonstrate the effectiveness of JAQ, achieving approximately 7% higher Top-1 accuracy on ImageNet compared to previous methods and reducing the hardware search time per iteration to 0.15 seconds.
comment: Accepted by AAAI 2025
☆ Comparison Study: Glacier Calving Front Delineation in Synthetic Aperture Radar Images With Deep Learning
Calving front position variation of marine-terminating glaciers is an indicator of ice mass loss and a crucial parameter in numerical glacier models. Deep Learning (DL) systems can automatically extract this position from Synthetic Aperture Radar (SAR) imagery, enabling continuous, weather- and illumination-independent, large-scale monitoring. This study presents the first comparison of DL systems on a common calving front benchmark dataset. A multi-annotator study with ten annotators is performed to contrast the best-performing DL system against human performance. The best DL model's outputs deviate 221 m on average, while the average deviation of the human annotators is 38 m. This significant difference shows that current DL systems do not yet match human performance and that further research is needed to enable fully automated monitoring of glacier calving fronts. The study of Vision Transformers, foundation models, and the inclusion and processing strategy of more information are identified as avenues for future research.
☆ Solving the Catastrophic Forgetting Problem in Generalized Category Discovery CVPR 2024
Generalized Category Discovery (GCD) aims to identify a mix of known and novel categories within unlabeled data sets, providing a more realistic setting for image recognition. Essentially, GCD needs to remember existing patterns thoroughly to recognize novel categories. Recent state-of-the-art method SimGCD transfers the knowledge from known-class data to the learning of novel classes through debiased learning. However, some patterns are catastrophically forgot during adaptation and thus lead to poor performance in novel categories classification. To address this issue, we propose a novel learning approach, LegoGCD, which is seamlessly integrated into previous methods to enhance the discrimination of novel classes while maintaining performance on previously encountered known classes. Specifically, we design two types of techniques termed as Local Entropy Regularization (LER) and Dual-views Kullback Leibler divergence constraint (DKL). The LER optimizes the distribution of potential known class samples in unlabeled data, thus ensuring the preservation of knowledge related to known categories while learning novel classes. Meanwhile, DKL introduces Kullback Leibler divergence to encourage the model to produce a similar prediction distribution of two view samples from the same image. In this way, it successfully avoids mismatched prediction and generates more reliable potential known class samples simultaneously. Extensive experiments validate that the proposed LegoGCD effectively addresses the known category forgetting issue across all datasets, eg, delivering a 7.74% and 2.51% accuracy boost on known and novel classes in CUB, respectively. Our code is available at: https://github.com/Cliffia123/LegoGCD.
comment: Accepted by CVPR 2024
☆ CellViT++: Energy-Efficient and Adaptive Cell Segmentation and Classification Using Foundation Models
Digital Pathology is a cornerstone in the diagnosis and treatment of diseases. A key task in this field is the identification and segmentation of cells in hematoxylin and eosin-stained images. Existing methods for cell segmentation often require extensive annotated datasets for training and are limited to a predefined cell classification scheme. To overcome these limitations, we propose $\text{CellViT}^{{\scriptscriptstyle ++}}$, a framework for generalized cell segmentation in digital pathology. $\text{CellViT}^{{\scriptscriptstyle ++}}$ utilizes Vision Transformers with foundation models as encoders to compute deep cell features and segmentation masks simultaneously. To adapt to unseen cell types, we rely on a computationally efficient approach. It requires minimal data for training and leads to a drastically reduced carbon footprint. We demonstrate excellent performance on seven different datasets, covering a broad spectrum of cell types, organs, and clinical settings. The framework achieves remarkable zero-shot segmentation and data-efficient cell-type classification. Furthermore, we show that $\text{CellViT}^{{\scriptscriptstyle ++}}$ can leverage immunofluorescence stainings to generate training datasets without the need for pathologist annotations. The automated dataset generation approach surpasses the performance of networks trained on manually labeled data, demonstrating its effectiveness in creating high-quality training datasets without expert annotations. To advance digital pathology, $\text{CellViT}^{{\scriptscriptstyle ++}}$ is available as an open-source framework featuring a user-friendly, web-based interface for visualization and annotation. The code is available under https://github.com/TIO-IKIM/CellViT-plus-plus.
☆ Patch-GAN Transfer Learning with Reconstructive Models for Cloud Removal
Cloud removal plays a crucial role in enhancing remote sensing image analysis, yet accurately reconstructing cloud-obscured regions remains a significant challenge. Recent advancements in generative models have made the generation of realistic images increasingly accessible, offering new opportunities for this task. Given the conceptual alignment between image generation and cloud removal tasks, generative models present a promising approach for addressing cloud removal in remote sensing. In this work, we propose a deep transfer learning approach built on a generative adversarial network (GAN) framework to explore the potential of the novel masked autoencoder (MAE) image reconstruction model in cloud removal. Due to the complexity of remote sensing imagery, we further propose using a patch-wise discriminator to determine whether each patch of the image is real or not. The proposed reconstructive transfer learning approach demonstrates significant improvements in cloud removal performance compared to other GAN-based methods. Additionally, whilst direct comparisons with some of the state-of-the-art cloud removal techniques are limited due to unclear details regarding their train/test data splits, the proposed model achieves competitive results based on available benchmarks.
☆ Towards Balanced Continual Multi-Modal Learning in Human Pose Estimation
3D human pose estimation (3D HPE) has emerged as a prominent research topic, particularly in the realm of RGB-based methods. However, RGB images are susceptible to limitations such as sensitivity to lighting conditions and potential user discomfort. Consequently, multi-modal sensing, which leverages non-intrusive sensors, is gaining increasing attention. Nevertheless, multi-modal 3D HPE still faces challenges, including modality imbalance and the imperative for continual learning. In this work, we introduce a novel balanced continual multi-modal learning method for 3D HPE, which harnesses the power of RGB, LiDAR, mmWave, and WiFi. Specifically, we propose a Shapley value-based contribution algorithm to quantify the contribution of each modality and identify modality imbalance. To address this imbalance, we employ a re-learning strategy. Furthermore, recognizing that raw data is prone to noise contamination, we develop a novel denoising continual learning approach. This approach incorporates a noise identification and separation module to mitigate the adverse effects of noise and collaborates with the balanced learning strategy to enhance optimization. Additionally, an adaptive EWC mechanism is employed to alleviate catastrophic forgetting. We conduct extensive experiments on the widely-adopted multi-modal dataset, MM-Fi, which demonstrate the superiority of our approach in boosting 3D pose estimation and mitigating catastrophic forgetting in complex scenarios. We will release our codes.
☆ Domain-Incremental Semantic Segmentation for Autonomous Driving under Adverse Driving Conditions ICPR
Semantic segmentation for autonomous driving is an even more challenging task when faced with adverse driving conditions. Standard models trained on data recorded under ideal conditions show a deteriorated performance in unfavorable weather or illumination conditions. Fine-tuning on the new task or condition would lead to overwriting the previously learned information resulting in catastrophic forgetting. Adapting to the new conditions through traditional domain adaption methods improves the performance on the target domain at the expense of the source domain. Addressing these issues, we propose an architecture-based domain-incremental learning approach called Progressive Semantic Segmentation (PSS). PSS is a task-agnostic, dynamically growing collection of domain-specific segmentation models. The task of inferring the domain and subsequently selecting the appropriate module for segmentation is carried out using a collection of convolutional autoencoders. We extensively evaluate our proposed approach using several datasets at varying levels of granularity in the categorization of adverse driving conditions. Furthermore, we demonstrate the generalization of the proposed approach to similar and unseen domains.
comment: Accepted at ICPRAM 2025
☆ Optimized Sampling for Non-Line-of-Sight Imaging Using Modified Fast Fourier Transforms
Non-line-of-Sight (NLOS) imaging systems collect light at a diffuse relay surface and input this measurement into computational algorithms that output a 3D volumetric reconstruction. These algorithms utilize the Fast Fourier Transform (FFT) to accelerate the reconstruction process but require both input and output to be sampled spatially with uniform grids. However, the geometry of NLOS imaging inherently results in non-uniform sampling on the relay surface when using multi-pixel detector arrays, even though such arrays significantly reduce acquisition times. Furthermore, using these arrays increases the data rate required for sensor readout, posing challenges for real-world deployment. In this work, we utilize the phasor field framework to demonstrate that existing NLOS imaging setups typically oversample the relay surface spatially, explaining why the measurement can be compressed without significantly sacrificing reconstruction quality. This enables us to utilize the Non-Uniform Fast Fourier Transform (NUFFT) to reconstruct from sparse measurements acquired from irregularly sampled relay surfaces of arbitrary shapes. Furthermore, we utilize the NUFFT to reconstruct at arbitrary locations in the hidden volume, ensuring flexible sampling schemes for both the input and output. Finally, we utilize the Scaled Fast Fourier Transform (SFFT) to reconstruct larger volumes without increasing the number of samples stored in memory. All algorithms introduced in this paper preserve the computational complexity of FFT-based methods, ensuring scalability for practical NLOS imaging applications.
☆ Scaffold-SLAM: Structured 3D Gaussians for Simultaneous Localization and Photorealistic Mapping
3D Gaussian Splatting (3DGS) has recently revolutionized novel view synthesis in the Simultaneous Localization and Mapping (SLAM). However, existing SLAM methods utilizing 3DGS have failed to provide high-quality novel view rendering for monocular, stereo, and RGB-D cameras simultaneously. Notably, some methods perform well for RGB-D cameras but suffer significant degradation in rendering quality for monocular cameras. In this paper, we present Scaffold-SLAM, which delivers simultaneous localization and high-quality photorealistic mapping across monocular, stereo, and RGB-D cameras. We introduce two key innovations to achieve this state-of-the-art visual quality. First, we propose Appearance-from-Motion embedding, enabling 3D Gaussians to better model image appearance variations across different camera poses. Second, we introduce a frequency regularization pyramid to guide the distribution of Gaussians, allowing the model to effectively capture finer details in the scene. Extensive experiments on monocular, stereo, and RGB-D datasets demonstrate that Scaffold-SLAM significantly outperforms state-of-the-art methods in photorealistic mapping quality, e.g., PSNR is 16.76% higher in the TUM RGB-D datasets for monocular cameras.
comment: 12 pages, 6 figures
☆ Contrast-Free Myocardial Scar Segmentation in Cine MRI using Motion and Texture Fusion
Late gadolinium enhancement MRI (LGE MRI) is the gold standard for the detection of myocardial scars for post myocardial infarction (MI). LGE MRI requires the injection of a contrast agent, which carries potential side effects and increases scanning time and patient discomfort. To address these issues, we propose a novel framework that combines cardiac motion observed in cine MRI with image texture information to segment the myocardium and scar tissue in the left ventricle. Cardiac motion tracking can be formulated as a full cardiac image cycle registration problem, which can be solved via deep neural networks. Experimental results prove that the proposed method can achieve scar segmentation based on non-contrasted cine images with comparable accuracy to LGE MRI. This demonstrates its potential as an alternative to contrast-enhanced techniques for scar detection.
comment: 5 pages, 2figs, 2tables
☆ Is Your Autonomous Vehicle Safe? Understanding the Threat of Electromagnetic Signal Injection Attacks on Traffic Scene Perception AAAI 2025
Autonomous vehicles rely on camera-based perception systems to comprehend their driving environment and make crucial decisions, thereby ensuring vehicles to steer safely. However, a significant threat known as Electromagnetic Signal Injection Attacks (ESIA) can distort the images captured by these cameras, leading to incorrect AI decisions and potentially compromising the safety of autonomous vehicles. Despite the serious implications of ESIA, there is limited understanding of its impacts on the robustness of AI models across various and complex driving scenarios. To address this gap, our research analyzes the performance of different models under ESIA, revealing their vulnerabilities to the attacks. Moreover, due to the challenges in obtaining real-world attack data, we develop a novel ESIA simulation method and generate a simulated attack dataset for different driving scenarios. Our research provides a comprehensive simulation and evaluation framework, aiming to enhance the development of more robust AI models and secure intelligent systems, ultimately contributing to the advancement of safer and more reliable technology across various fields.
comment: To appear in AAAI 2025
☆ FOCUS: Towards Universal Foreground Segmentation
Foreground segmentation is a fundamental task in computer vision, encompassing various subdivision tasks. Previous research has typically designed task-specific architectures for each task, leading to a lack of unification. Moreover, they primarily focus on recognizing foreground objects without effectively distinguishing them from the background. In this paper, we emphasize the importance of the background and its relationship with the foreground. We introduce FOCUS, the Foreground ObjeCts Universal Segmentation framework that can handle multiple foreground tasks. We develop a multi-scale semantic network using the edge information of objects to enhance image features. To achieve boundary-aware segmentation, we propose a novel distillation method, integrating the contrastive learning strategy to refine the prediction mask in multi-modal feature space. We conduct extensive experiments on a total of 13 datasets across 5 tasks, and the results demonstrate that FOCUS consistently outperforms the state-of-the-art task-specific models on most metrics.
☆ Automated external cervical resorption segmentation in cone-beam CT using local texture features
External cervical resorption (ECR) is a resorptive process affecting teeth. While in some patients, active resorption ceases and gets replaced by osseous tissue, in other cases, the resorption progresses and ultimately results in tooth loss. For proper ECR assessment, cone-beam computed tomography (CBCT) is the recommended imaging modality, enabling a 3-D characterization of these lesions. While it is possible to manually identify and measure ECR resorption in CBCT scans, this process can be time intensive and highly subject to human error. Therefore, there is an urgent need to develop an automated method to identify and quantify the severity of ECR resorption using CBCT. Here, we present a method for ECR lesion segmentation that is based on automatic, binary classification of locally extracted voxel-wise texture features. We evaluate our method on 6 longitudinal CBCT datasets and show that certain texture-features can be used to accurately detect subtle CBCT signal changes due to ECR. We also present preliminary analyses clustering texture features within a lesion to stratify the defects and identify patterns indicative of calcification. These methods are important steps in developing prognostic biomarkers to predict whether ECR will continue to progress or cease, ultimately informing treatment decisions.
comment: 4 pages, 3 figures, 1 table
☆ Harnessing Large Language and Vision-Language Models for Robust Out-of-Distribution Detection
Out-of-distribution (OOD) detection has seen significant advancements with zero-shot approaches by leveraging the powerful Vision-Language Models (VLMs) such as CLIP. However, prior research works have predominantly focused on enhancing Far-OOD performance, while potentially compromising Near-OOD efficacy, as observed from our pilot study. To address this issue, we propose a novel strategy to enhance zero-shot OOD detection performances for both Far-OOD and Near-OOD scenarios by innovatively harnessing Large Language Models (LLMs) and VLMs. Our approach first exploit an LLM to generate superclasses of the ID labels and their corresponding background descriptions followed by feature extraction using CLIP. We then isolate the core semantic features for ID data by subtracting background features from the superclass features. The refined representation facilitates the selection of more appropriate negative labels for OOD data from a comprehensive candidate label set of WordNet, thereby enhancing the performance of zero-shot OOD detection in both scenarios. Furthermore, we introduce novel few-shot prompt tuning and visual prompt tuning to adapt the proposed framework to better align with the target distribution. Experimental results demonstrate that the proposed approach consistently outperforms current state-of-the-art methods across multiple benchmarks, with an improvement of up to 2.9% in AUROC and a reduction of up to 12.6% in FPR95. Additionally, our method exhibits superior robustness against covariate shift across different domains, further highlighting its effectiveness in real-world scenarios.
comment: 9 pages, 4 figures
☆ Light Transport-aware Diffusion Posterior Sampling for Single-View Reconstruction of 3D Volumes
We introduce a single-view reconstruction technique of volumetric fields in which multiple light scattering effects are omnipresent, such as in clouds. We model the unknown distribution of volumetric fields using an unconditional diffusion model trained on a novel benchmark dataset comprising 1,000 synthetically simulated volumetric density fields. The neural diffusion model is trained on the latent codes of a novel, diffusion-friendly, monoplanar representation. The generative model is used to incorporate a tailored parametric diffusion posterior sampling technique into different reconstruction tasks. A physically-based differentiable volume renderer is employed to provide gradients with respect to light transport in the latent space. This stands in contrast to classic NeRF approaches and makes the reconstructions better aligned with observed data. Through various experiments, we demonstrate single-view reconstruction of volumetric clouds at a previously unattainable quality.
☆ MHAFF: Multi-Head Attention Feature Fusion of CNN and Transformer for Cattle Identification
Convolutional Neural Networks (CNNs) have drawn researchers' attention to identifying cattle using muzzle images. However, CNNs often fail to capture long-range dependencies within the complex patterns of the muzzle. The transformers handle these challenges. This inspired us to fuse the strengths of CNNs and transformers in muzzle-based cattle identification. Addition and concatenation have been the most commonly used techniques for feature fusion. However, addition fails to preserve discriminative information, while concatenation results in an increase in dimensionality. Both methods are simple operations and cannot discover the relationships or interactions between fusing features. This research aims to overcome the issues faced by addition and concatenation. This research introduces a novel approach called Multi-Head Attention Feature Fusion (MHAFF) for the first time in cattle identification. MHAFF captures relations between the different types of fusing features while preserving their originality. The experiments show that MHAFF outperformed addition and concatenation techniques and the existing cattle identification methods in accuracy on two publicly available cattle datasets. MHAFF demonstrates excellent performance and quickly converges to achieve optimum accuracy of 99.88% and 99.52% in two cattle datasets simultaneously.
comment: 30 pages
☆ Discovering Hidden Visual Concepts Beyond Linguistic Input in Infant Learning
Infants develop complex visual understanding rapidly, even preceding of the acquisition of linguistic inputs. As computer vision seeks to replicate the human vision system, understanding infant visual development may offer valuable insights. In this paper, we present an interdisciplinary study exploring this question: can a computational model that imitates the infant learning process develop broader visual concepts that extend beyond the vocabulary it has heard, similar to how infants naturally learn? To investigate this, we analyze a recently published model in Science by Vong et al.,which is trained on longitudinal, egocentric images of a single child paired with transcribed parental speech. We introduce a training-free framework that can discover visual concept neurons hidden in the model's internal representations. Our findings show that these neurons can classify objects outside its original vocabulary. Furthermore, we compare the visual representations in infant-like models with those in moder computer vision models, such as CLIP or ImageNet pre-trained model, highlighting key similarities and differences. Ultimately, our work bridges cognitive science and computer vision by analyzing the internal representations of a computational model trained on an infant's visual and linguistic inputs.
comment: 12 pages, 11 figures
☆ HipyrNet: Hypernet-Guided Feature Pyramid network for mixed-exposure correction
Recent advancements in image translation for enhancing mixed-exposure images have demonstrated the transformative potential of deep learning algorithms. However, addressing extreme exposure variations in images remains a significant challenge due to the inherent complexity and contrast inconsistencies across regions. Current methods often struggle to adapt effectively to these variations, resulting in suboptimal performance. In this work, we propose HipyrNet, a novel approach that integrates a HyperNetwork within a Laplacian Pyramid-based framework to tackle the challenges of mixed-exposure image enhancement. The inclusion of a HyperNetwork allows the model to adapt to these exposure variations. HyperNetworks dynamically generates weights for another network, allowing dynamic changes during deployment. In our model, the HyperNetwork employed is used to predict optimal kernels for Feature Pyramid decomposition, which enables a tailored and adaptive decomposition process for each input image. Our enhanced translational network incorporates multiscale decomposition and reconstruction, leveraging dynamic kernel prediction to capture and manipulate features across varying scales. Extensive experiments demonstrate that HipyrNet outperforms existing methods, particularly in scenarios with extreme exposure variations, achieving superior results in both qualitative and quantitative evaluations. Our approach sets a new benchmark for mixed-exposure image enhancement, paving the way for future research in adaptive image translation.
☆ Compression with Global Guidance: Towards Training-free High-Resolution MLLMs Acceleration
Multimodal large language models (MLLMs) have attracted considerable attention due to their exceptional performance in visual content understanding and reasoning. However, their inference efficiency has been a notable concern, as the increasing length of multimodal contexts leads to quadratic complexity. Token compression techniques, which reduce the number of visual tokens, have demonstrated their effectiveness in reducing computational costs. Yet, these approaches have struggled to keep pace with the rapid advancements in MLLMs, especially the AnyRes strategy in the context of high-resolution image understanding. In this paper, we propose a novel token compression method, GlobalCom$^2$, tailored for high-resolution MLLMs that receive both the thumbnail and multiple crops. GlobalCom$^2$ treats the tokens derived from the thumbnail as the ``commander'' of the entire token compression process, directing the allocation of retention ratios and the specific compression for each crop. In this way, redundant tokens are eliminated while important local details are adaptively preserved to the highest extent feasible. Empirical results across 10 benchmarks reveal that GlobalCom$^2$ achieves an optimal balance between performance and efficiency, and consistently outperforms state-of-the-art token compression methods with LLaVA-NeXT-7B/13B models. Our code is released at \url{https://github.com/xuyang-liu16/GlobalCom2}.
comment: Our code is released at \url{https://github.com/xuyang-liu16/GlobalCom2}
☆ FaceMe: Robust Blind Face Restoration with Personal Identification AAAI 2025
Blind face restoration is a highly ill-posed problem due to the lack of necessary context. Although existing methods produce high-quality outputs, they often fail to faithfully preserve the individual's identity. In this paper, we propose a personalized face restoration method, FaceMe, based on a diffusion model. Given a single or a few reference images, we use an identity encoder to extract identity-related features, which serve as prompts to guide the diffusion model in restoring high-quality and identity-consistent facial images. By simply combining identity-related features, we effectively minimize the impact of identity-irrelevant features during training and support any number of reference image inputs during inference. Additionally, thanks to the robustness of the identity encoder, synthesized images can be used as reference images during training, and identity changing during inference does not require fine-tuning the model. We also propose a pipeline for constructing a reference image training pool that simulates the poses and expressions that may appear in real-world scenarios. Experimental results demonstrate that our FaceMe can restore high-quality facial images while maintaining identity consistency, achieving excellent performance and robustness.
comment: To appear at AAAI 2025
☆ A Systematic Literature Review on Deep Learning-based Depth Estimation in Computer Vision
Depth estimation (DE) provides spatial information about a scene and enables tasks such as 3D reconstruction, object detection, and scene understanding. Recently, there has been an increasing interest in using deep learning (DL)-based methods for DE. Traditional techniques rely on handcrafted features that often struggle to generalise to diverse scenes and require extensive manual tuning. However, DL models for DE can automatically extract relevant features from input data, adapt to various scene conditions, and generalise well to unseen environments. Numerous DL-based methods have been developed, making it necessary to survey and synthesize the state-of-the-art (SOTA). Previous reviews on DE have mainly focused on either monocular or stereo-based techniques, rather than comprehensively reviewing DE. Furthermore, to the best of our knowledge, there is no systematic literature review (SLR) that comprehensively focuses on DE. Therefore, this SLR study is being conducted. Initially, electronic databases were searched for relevant publications, resulting in 1284 publications. Using defined exclusion and quality criteria, 128 publications were shortlisted and further filtered to select 59 high-quality primary studies. These studies were analysed to extract data and answer defined research questions. Based on the results, DL methods were developed for mainly three different types of DE: monocular, stereo, and multi-view. 20 publicly available datasets were used to train, test, and evaluate DL models for DE, with KITTI, NYU Depth V2, and Make 3D being the most used datasets. 29 evaluation metrics were used to assess the performance of DE. 35 base models were reported in the primary studies, and the top five most-used base models were ResNet-50, ResNet-18, ResNet-101, U-Net, and VGG-16. Finally, the lack of ground truth data was among the most significant challenges reported by primary studies.
☆ CorrDiff: Adaptive Delay-aware Detector with Temporal Cue Inputs for Real-time Object Detection
Real-time object detection takes an essential part in the decision-making process of numerous real-world applications, including collision avoidance and path planning in autonomous driving systems. This paper presents a novel real-time streaming perception method named CorrDiff, designed to tackle the challenge of delays in real-time detection systems. The main contribution of CorrDiff lies in its adaptive delay-aware detector, which is able to utilize runtime-estimated temporal cues to predict objects' locations for multiple future frames, and selectively produce predictions that matches real-world time, effectively compensating for any communication and computational delays. The proposed model outperforms current state-of-the-art methods by leveraging motion estimation and feature enhancement, both for 1) single-frame detection for the current frame or the next frame, in terms of the metric mAP, and 2) the prediction for (multiple) future frame(s), in terms of the metric sAP (The sAP metric is to evaluate object detection algorithms in streaming scenarios, factoring in both latency and accuracy). It demonstrates robust performance across a range of devices, from powerful Tesla V100 to modest RTX 2080Ti, achieving the highest level of perceptual accuracy on all platforms. Unlike most state-of-the-art methods that struggle to complete computation within a single frame on less powerful devices, CorrDiff meets the stringent real-time processing requirements on all kinds of devices. The experimental results emphasize the system's adaptability and its potential to significantly improve the safety and reliability for many real-world systems, such as autonomous driving. Our code is completely open-sourced and is available at https://anonymous.4open.science/r/CorrDiff.
comment: Submitted to IEEE JSAC Special Issue: Intelligent Communications for Real-Time Computer Vision (Comm4CV)
☆ 3DIS-FLUX: simple and efficient multi-instance generation with DiT rendering
The growing demand for controllable outputs in text-to-image generation has driven significant advancements in multi-instance generation (MIG), enabling users to define both instance layouts and attributes. Currently, the state-of-the-art methods in MIG are primarily adapter-based. However, these methods necessitate retraining a new adapter each time a more advanced model is released, resulting in significant resource consumption. A methodology named Depth-Driven Decoupled Instance Synthesis (3DIS) has been introduced, which decouples MIG into two distinct phases: 1) depth-based scene construction and 2) detail rendering with widely pre-trained depth control models. The 3DIS method requires adapter training solely during the scene construction phase, while enabling various models to perform training-free detail rendering. Initially, 3DIS focused on rendering techniques utilizing U-Net architectures such as SD1.5, SD2, and SDXL, without exploring the potential of recent DiT-based models like FLUX. In this paper, we present 3DIS-FLUX, an extension of the 3DIS framework that integrates the FLUX model for enhanced rendering capabilities. Specifically, we employ the FLUX.1-Depth-dev model for depth map controlled image generation and introduce a detail renderer that manipulates the Attention Mask in FLUX's Joint Attention mechanism based on layout information. This approach allows for the precise rendering of fine-grained attributes of each instance. Our experimental results indicate that 3DIS-FLUX, leveraging the FLUX model, outperforms the original 3DIS method, which utilized SD2 and SDXL, and surpasses current state-of-the-art adapter-based methods in terms of both performance and image quality. Project Page: https://limuloo.github.io/3DIS/.
comment: tech report
☆ Centurio: On Drivers of Multilingual Ability of Large Vision-Language Model
Most Large Vision-Language Models (LVLMs) to date are trained predominantly on English data, which makes them struggle to understand non-English input and fail to generate output in the desired target language. Existing efforts mitigate these issues by adding multilingual training data, but do so in a largely ad-hoc manner, lacking insight into how different training mixes tip the scale for different groups of languages. In this work, we present a comprehensive investigation into the training strategies for massively multilingual LVLMs. First, we conduct a series of multi-stage experiments spanning 13 downstream vision-language tasks and 43 languages, systematically examining: (1) the number of training languages that can be included without degrading English performance and (2) optimal language distributions of pre-training as well as (3) instruction-tuning data. Further, we (4) investigate how to improve multilingual text-in-image understanding, and introduce a new benchmark for the task. Surprisingly, our analysis reveals that one can (i) include as many as 100 training languages simultaneously (ii) with as little as 25-50\% of non-English data, to greatly improve multilingual performance while retaining strong English performance. We further find that (iii) including non-English OCR data in pre-training and instruction-tuning is paramount for improving multilingual text-in-image understanding. Finally, we put all our findings together and train Centurio, a 100-language LVLM, offering state-of-the-art performance in an evaluation covering 14 tasks and 56 languages.
☆ Improving the U-Net Configuration for Automated Delineation of Head and Neck Cancer on MRI
Tumor volume segmentation on MRI is a challenging and time-consuming process that is performed manually in typical clinical settings. This work presents an approach to automated delineation of head and neck tumors on MRI scans, developed in the context of the MICCAI Head and Neck Tumor Segmentation for MR-Guided Applications (HNTS-MRG) 2024 Challenge. Rather than designing a new, task-specific convolutional neural network, the focus of this research was to propose improvements to the configuration commonly used in medical segmentation tasks, relying solely on the traditional U-Net architecture. The empirical results presented in this article suggest the superiority of patch-wise normalization used for both training and sliding window inference. They also indicate that the performance of segmentation models can be enhanced by applying a scheduled data augmentation policy during training. Finally, it is shown that a small improvement in quality can be achieved by using Gaussian weighting to combine predictions for individual patches during sliding window inference. The model with the best configuration obtained an aggregated Dice Similarity Coefficient (DSCagg) of 0.749 in Task 1 and 0.710 in Task 2 on five cross-validation folds. The ensemble of five models (one best model per validation fold) showed consistent results on a private test set of 50 patients with an DSCagg of 0.752 in Task 1 and 0.718 in Task 2 (team name: andrei.iantsen). The source code and model weights are freely available at www.github.com/iantsen/hntsmrg.
☆ Optimizing Multitask Industrial Processes with Predictive Action Guidance
Monitoring complex assembly processes is critical for maintaining productivity and ensuring compliance with assembly standards. However, variability in human actions and subjective task preferences complicate accurate task anticipation and guidance. To address these challenges, we introduce the Multi-Modal Transformer Fusion and Recurrent Units (MMTFRU) Network for egocentric activity anticipation, utilizing multimodal fusion to improve prediction accuracy. Integrated with the Operator Action Monitoring Unit (OAMU), the system provides proactive operator guidance, preventing deviations in the assembly process. OAMU employs two strategies: (1) Top-5 MMTF-RU predictions, combined with a reference graph and an action dictionary, for next-step recommendations; and (2) Top-1 MMTF-RU predictions, integrated with a reference graph, for detecting sequence deviations and predicting anomaly scores via an entropy-informed confidence mechanism. We also introduce Time-Weighted Sequence Accuracy (TWSA) to evaluate operator efficiency and ensure timely task completion. Our approach is validated on the industrial Meccano dataset and the largescale EPIC-Kitchens-55 dataset, demonstrating its effectiveness in dynamic environments.
☆ Motion-X++: A Large-Scale Multimodal 3D Whole-body Human Motion Dataset NeurIPS 2023
In this paper, we introduce Motion-X++, a large-scale multimodal 3D expressive whole-body human motion dataset. Existing motion datasets predominantly capture body-only poses, lacking facial expressions, hand gestures, and fine-grained pose descriptions, and are typically limited to lab settings with manually labeled text descriptions, thereby restricting their scalability. To address this issue, we develop a scalable annotation pipeline that can automatically capture 3D whole-body human motion and comprehensive textural labels from RGB videos and build the Motion-X dataset comprising 81.1K text-motion pairs. Furthermore, we extend Motion-X into Motion-X++ by improving the annotation pipeline, introducing more data modalities, and scaling up the data quantities. Motion-X++ provides 19.5M 3D whole-body pose annotations covering 120.5K motion sequences from massive scenes, 80.8K RGB videos, 45.3K audios, 19.5M frame-level whole-body pose descriptions, and 120.5K sequence-level semantic labels. Comprehensive experiments validate the accuracy of our annotation pipeline and highlight Motion-X++'s significant benefits for generating expressive, precise, and natural motion with paired multimodal labels supporting several downstream tasks, including text-driven whole-body motion generation,audio-driven motion generation, 3D whole-body human mesh recovery, and 2D whole-body keypoints estimation, etc.
comment: 17 pages, 14 figures, This work extends and enhances the research published in the NeurIPS 2023 paper, "Motion-X: A Large-scale 3D Expressive Whole-body Human Motion Dataset". arXiv admin note: substantial text overlap with arXiv:2307.00818
☆ A 1Mb mixed-precision quantized encoder for image classification and patch-based compression
Even if Application-Specific Integrated Circuits (ASIC) have proven to be a relevant choice for integrating inference at the edge, they are often limited in terms of applicability. In this paper, we demonstrate that an ASIC neural network accelerator dedicated to image processing can be applied to multiple tasks of different levels: image classification and compression, while requiring a very limited hardware. The key component is a reconfigurable, mixed-precision (3b/2b/1b) encoder that takes advantage of proper weight and activation quantizations combined with convolutional layer structural pruning to lower hardware-related constraints (memory and computing). We introduce an automatic adaptation of linear symmetric quantizer scaling factors to perform quantized levels equalization, aiming at stabilizing quinary and ternary weights training. In addition, a proposed layer-shared Bit-Shift Normalization significantly simplifies the implementation of the hardware-expensive Batch Normalization. For a specific configuration in which the encoder design only requires 1Mb, the classification accuracy reaches 87.5% on CIFAR-10. Besides, we also show that this quantized encoder can be used to compress image patch-by-patch while the reconstruction can performed remotely, by a dedicated full-frame decoder. This solution typically enables an end-to-end compression almost without any block artifacts, outperforming patch-based state-of-the-art techniques employing a patch-constant bitrate.
comment: Published at IEEE Transactions on Circuits and Systems for Video Technology (TCSVT)
☆ Advancing ALS Applications with Large-Scale Pre-training: Dataset Development and Downstream Assessment
The pre-training and fine-tuning paradigm has revolutionized satellite remote sensing applications. However, this approach remains largely underexplored for airborne laser scanning (ALS), an important technology for applications such as forest management and urban planning. In this study, we address this gap by constructing a large-scale ALS point cloud dataset and evaluating its impact on downstream applications. Our dataset comprises ALS point clouds collected across the contiguous United States, provided by the United States Geological Survey's 3D Elevation Program. To ensure efficient data collection while capturing diverse land cover and terrain types, we introduce a geospatial sampling method that selects point cloud tiles based on land cover maps and digital elevation models. As a baseline self-supervised learning model, we adopt BEV-MAE, a state-of-the-art masked autoencoder for 3D outdoor point clouds, and pre-train it on the constructed dataset. The pre-trained models are subsequently fine-tuned for downstream tasks, including tree species classification, terrain scene recognition, and point cloud semantic segmentation. Our results show that the pre-trained models significantly outperform their scratch counterparts across all downstream tasks, demonstrating the transferability of the representations learned from the proposed dataset. Furthermore, we observe that scaling the dataset using our geospatial sampling method consistently enhances performance, whereas pre-training on datasets constructed with random sampling fails to achieve similar improvements. These findings highlight the utility of the constructed dataset and the effectiveness of our sampling strategy in the pre-training and fine-tuning paradigm. The source code and pre-trained models will be made publicly available at \url{https://github.com/martianxiu/ALS_pretraining}.
☆ ResPanDiff: Diffusion Model with Disentangled Modulations for Image Fusion
The implementation of diffusion-based pansharpening task is predominantly constrained by its slow inference speed, which results from numerous sampling steps. Despite the existing techniques aiming to accelerate sampling, they often compromise performance when fusing multi-source images. To ease this limitation, we introduce a novel and efficient diffusion model named Diffusion Model for Pansharpening by Inferring Residual Inference (ResPanDiff), which significantly reduces the number of diffusion steps without sacrificing the performance to tackle pansharpening task. In ResPanDiff, we innovatively propose a Markov chain that transits from noisy residuals to the residuals between the LRMS and HRMS images, thereby reducing the number of sampling steps and enhancing performance. Additionally, we design the latent space to help model extract more features at the encoding stage, Shallow Cond-Injection~(SC-I) to help model fetch cond-injected hidden features with higher dimensions, and loss functions to give a better guidance for the residual generation task. enabling the model to achieve superior performance in residual generation. Furthermore, experimental evaluations on pansharpening datasets demonstrate that the proposed method achieves superior outcomes compared to recent state-of-the-art~(SOTA) techniques, requiring only 15 sampling steps, which reduces over $90\%$ step compared with the benchmark diffusion models. Our experiments also include thorough discussions and ablation studies to underscore the effectiveness of our approach.
☆ End-to-End Deep Learning for Interior Tomography with Low-Dose X-ray CT
Objective: There exist several X-ray computed tomography (CT) scanning strategies to reduce a radiation dose, such as (1) sparse-view CT, (2) low-dose CT, and (3) region-of-interest (ROI) CT (called interior tomography). To further reduce the dose, the sparse-view and/or low-dose CT settings can be applied together with interior tomography. Interior tomography has various advantages in terms of reducing the number of detectors and decreasing the X-ray radiation dose. However, a large patient or small field-of-view (FOV) detector can cause truncated projections, and then the reconstructed images suffer from severe cupping artifacts. In addition, although the low-dose CT can reduce the radiation exposure dose, analytic reconstruction algorithms produce image noise. Recently, many researchers have utilized image-domain deep learning (DL) approaches to remove each artifact and demonstrated impressive performances, and the theory of deep convolutional framelets supports the reason for the performance improvement. Approach: In this paper, we found that the image-domain convolutional neural network (CNN) is difficult to solve coupled artifacts, based on deep convolutional framelets. Significance: To address the coupled problem, we decouple it into two sub-problems: (i) image domain noise reduction inside truncated projection to solve low-dose CT problem and (ii) extrapolation of projection outside truncated projection to solve the ROI CT problem. The decoupled sub-problems are solved directly with a novel proposed end-to-end learning using dual-domain CNNs. Main results: We demonstrate that the proposed method outperforms the conventional image-domain deep learning methods, and a projection-domain CNN shows better performance than the image-domain CNNs which are commonly used by many researchers.
comment: Published by Physics in Medicine & Biology (2022.5)
☆ TipSegNet: Fingertip Segmentation in Contactless Fingerprint Imaging
Contactless fingerprint recognition systems offer a hygienic, user-friendly, and efficient alternative to traditional contact-based methods. However, their accuracy heavily relies on precise fingertip detection and segmentation, particularly under challenging background conditions. This paper introduces TipSegNet, a novel deep learning model that achieves state-of-the-art performance in segmenting fingertips directly from grayscale hand images. TipSegNet leverages a ResNeXt-101 backbone for robust feature extraction, combined with a Feature Pyramid Network (FPN) for multi-scale representation, enabling accurate segmentation across varying finger poses and image qualities. Furthermore, we employ an extensive data augmentation strategy to enhance the model's generalizability and robustness. TipSegNet outperforms existing methods, achieving a mean Intersection over Union (mIoU) of 0.987 and an accuracy of 0.999, representing a significant advancement in contactless fingerprint segmentation. This enhanced accuracy has the potential to substantially improve the reliability and effectiveness of contactless biometric systems in real-world applications.
☆ A Flexible and Scalable Framework for Video Moment Search
Video moment search, the process of finding relevant moments in a video corpus to match a user's query, is crucial for various applications. Existing solutions, however, often assume a single perfect matching moment, struggle with inefficient inference, and have limitations with hour-long videos. This paper introduces a flexible and scalable framework for retrieving a ranked list of moments from collection of videos in any length to match a text query, a task termed Ranked Video Moment Retrieval (RVMR). Our framework, called Segment-Proposal-Ranking (SPR), simplifies the search process into three independent stages: segment retrieval, proposal generation, and moment refinement with re-ranking. Specifically, videos are divided into equal-length segments with precomputed embeddings indexed offline, allowing efficient retrieval regardless of video length. For scalable online retrieval, both segments and queries are projected into a shared feature space to enable approximate nearest neighbor (ANN) search. Retrieved segments are then merged into coarse-grained moment proposals. Then a refinement and re-ranking module is designed to reorder and adjust timestamps of the coarse-grained proposals. Evaluations on the TVR-Ranking dataset demonstrate that our framework achieves state-of-the-art performance with significant reductions in computational cost and processing time. The flexible design also allows for independent improvements to each stage, making SPR highly adaptable for large-scale applications.
☆ Commonsense Video Question Answering through Video-Grounded Entailment Tree Reasoning
This paper proposes the first video-grounded entailment tree reasoning method for commonsense video question answering (VQA). Despite the remarkable progress of large visual-language models (VLMs), there are growing concerns that they learn spurious correlations between videos and likely answers, reinforced by their black-box nature and remaining benchmarking biases. Our method explicitly grounds VQA tasks to video fragments in four steps: entailment tree construction, video-language entailment verification, tree reasoning, and dynamic tree expansion. A vital benefit of the method is its generalizability to current video and image-based VLMs across reasoning types. To support fair evaluation, we devise a de-biasing procedure based on large-language models that rewrites VQA benchmark answer sets to enforce model reasoning. Systematic experiments on existing and de-biased benchmarks highlight the impact of our method components across benchmarks, VLMs, and reasoning types.
☆ LLaVA-Octopus: Unlocking Instruction-Driven Adaptive Projector Fusion for Video Understanding
In this paper, we introduce LLaVA-Octopus, a novel video multimodal large language model. LLaVA-Octopus adaptively weights features from different visual projectors based on user instructions, enabling us to leverage the complementary strengths of each projector. We observe that different visual projectors exhibit distinct characteristics when handling specific tasks. For instance, some projectors excel at capturing static details, while others are more effective at processing temporal information, and some are better suited for tasks requiring temporal coherence. By dynamically adjusting feature weights according to user instructions, LLaVA-Octopus dynamically selects and combines the most suitable features, significantly enhancing the model's performance in multimodal tasks. Experimental results demonstrate that LLaVA-Octopus achieves excellent performance across multiple benchmarks, especially in tasks such as multimodal understanding, visual question answering, and video understanding, highlighting its broad application potential.
☆ Improving Skeleton-based Action Recognition with Interactive Object Information
Human skeleton information is important in skeleton-based action recognition, which provides a simple and efficient way to describe human pose. However, existing skeleton-based methods focus more on the skeleton, ignoring the objects interacting with humans, resulting in poor performance in recognizing actions that involve object interactions. We propose a new action recognition framework introducing object nodes to supplement absent interactive object information. We also propose Spatial Temporal Variable Graph Convolutional Networks (ST-VGCN) to effectively model the Variable Graph (VG) containing object nodes. Specifically, in order to validate the role of interactive object information, by leveraging a simple self-training approach, we establish a new dataset, JXGC 24, and an extended dataset, NTU RGB+D+Object 60, including more than 2 million additional object nodes. At the same time, we designe the Variable Graph construction method to accommodate a variable number of nodes for graph structure. Additionally, we are the first to explore the overfitting issue introduced by incorporating additional object information, and we propose a VG-based data augmentation method to address this issue, called Random Node Attack. Finally, regarding the network structure, we introduce two fusion modules, CAF and WNPool, along with a novel Node Balance Loss, to enhance the comprehensive performance by effectively fusing and balancing skeleton and object node information. Our method surpasses the previous state-of-the-art on multiple skeleton-based action recognition benchmarks. The accuracy of our method on NTU RGB+D 60 cross-subject split is 96.7\%, and on cross-view split, it is 99.2\%.
☆ LongViTU: Instruction Tuning for Long-Form Video Understanding
This paper introduce LongViTU, a large-scale (~121k QA pairs, ~900h videos), automatically generated dataset for long-form video understanding. We developed a systematic approach that organizes videos into a hierarchical tree structure and incorporates self-revision mechanisms to ensure high-quality QA pairs. Each QA pair in LongViTU features: 1) long-term context (average certificate length of 4.6 minutes); 2) rich knowledge and condensed reasoning (commonsense, causality, planning, etc.); and 3) explicit timestamp labels for relevant events. LongViTU also serves as a benchmark for instruction following in long-form and streaming video understanding. We evaluate the open-source state-of-the-art long video understanding model, LongVU, and the commercial model, Gemini-1.5-Pro, on our benchmark. They achieve GPT-4 scores of 49.9 and 52.3, respectively, underscoring the substantial challenge posed by our benchmark. Further supervised fine-tuning (SFT) on LongVU led to performance improvements of 12.0% on our benchmark, 2.2% on the in-distribution (ID) benchmark EgoSchema, 1.0%, 2.2% and 1.2% on the out-of-distribution (OOD) benchmarks VideoMME (Long), WorldQA and OpenEQA, respectively. These outcomes demonstrate LongViTU's high data quality and robust OOD generalizability.
☆ Towards Fingerprint Mosaicking Artifact Detection: A Self-Supervised Deep Learning Approach
Fingerprint mosaicking, which is the process of combining multiple fingerprint images into a single master fingerprint, is an essential process in modern biometric systems. However, it is prone to errors that can significantly degrade fingerprint image quality. This paper proposes a novel deep learning-based approach to detect and score mosaicking artifacts in fingerprint images. Our method leverages a self-supervised learning framework to train a model on large-scale unlabeled fingerprint data, eliminating the need for manual artifact annotation. The proposed model effectively identifies mosaicking errors, achieving high accuracy on various fingerprint modalities, including contactless, rolled, and pressed fingerprints and furthermore proves to be robust to different data sources. Additionally, we introduce a novel mosaicking artifact score to quantify the severity of errors, enabling automated evaluation of fingerprint images. By addressing the challenges of mosaicking artifact detection, our work contributes to improving the accuracy and reliability of fingerprint-based biometric systems.
☆ ECBench: Can Multi-modal Foundation Models Understand the Egocentric World? A Holistic Embodied Cognition Benchmark
The enhancement of generalization in robots by large vision-language models (LVLMs) is increasingly evident. Therefore, the embodied cognitive abilities of LVLMs based on egocentric videos are of great interest. However, current datasets for embodied video question answering lack comprehensive and systematic evaluation frameworks. Critical embodied cognitive issues, such as robotic self-cognition, dynamic scene perception, and hallucination, are rarely addressed. To tackle these challenges, we propose ECBench, a high-quality benchmark designed to systematically evaluate the embodied cognitive abilities of LVLMs. ECBench features a diverse range of scene video sources, open and varied question formats, and 30 dimensions of embodied cognition. To ensure quality, balance, and high visual dependence, ECBench uses class-independent meticulous human annotation and multi-round question screening strategies. Additionally, we introduce ECEval, a comprehensive evaluation system that ensures the fairness and rationality of the indicators. Utilizing ECBench, we conduct extensive evaluations of proprietary, open-source, and task-specific LVLMs. ECBench is pivotal in advancing the embodied cognitive capabilities of LVLMs, laying a solid foundation for developing reliable core models for embodied agents. All data and code are available at https://github.com/Rh-Dang/ECBench.
☆ Perception-as-Control: Fine-grained Controllable Image Animation with 3D-aware Motion Representation
Motion-controllable image animation is a fundamental task with a wide range of potential applications. Recent works have made progress in controlling camera or object motion via various motion representations, while they still struggle to support collaborative camera and object motion control with adaptive control granularity. To this end, we introduce 3D-aware motion representation and propose an image animation framework, called Perception-as-Control, to achieve fine-grained collaborative motion control. Specifically, we construct 3D-aware motion representation from a reference image, manipulate it based on interpreted user intentions, and perceive it from different viewpoints. In this way, camera and object motions are transformed into intuitive, consistent visual changes. Then, the proposed framework leverages the perception results as motion control signals, enabling it to support various motion-related video synthesis tasks in a unified and flexible way. Experiments demonstrate the superiority of the proposed framework. For more details and qualitative results, please refer to our project webpage: https://chen-yingjie.github.io/projects/Perception-as-Control.
☆ Continuous Knowledge-Preserving Decomposition for Few-Shot Continual Learning SC
Few-shot class-incremental learning (FSCIL) involves learning new classes from limited data while retaining prior knowledge, and often results in catastrophic forgetting. Existing methods either freeze backbone networks to preserve knowledge, which limits adaptability, or rely on additional modules or prompts, introducing inference overhead. To this end, we propose Continuous Knowledge-Preserving Decomposition for FSCIL (CKPD-FSCIL), a framework that decomposes a model's weights into two parts: one that compacts existing knowledge (knowledge-sensitive components) and another that carries redundant capacity to accommodate new abilities (redundant-capacity components). The decomposition is guided by a covariance matrix from replay samples, ensuring principal components align with classification abilities. During adaptation, we freeze the knowledge-sensitive components and only adapt the redundant-capacity components, fostering plasticity while minimizing interference without changing the architecture or increasing overhead. Additionally, CKPD introduces an adaptive layer selection strategy to identify layers with redundant capacity, dynamically allocating adapters. Experiments on multiple benchmarks show that CKPD-FSCIL outperforms state-of-the-art methods.
comment: Code: https://github.com/xiaojieli0903/CKPD-FSCIL
☆ A Scalable System for Visual Analysis of Ocean Data
Oceanographers rely on visual analysis to interpret model simulations, identify events and phenomena, and track dynamic ocean processes. The ever increasing resolution and complexity of ocean data due to its dynamic nature and multivariate relationships demands a scalable and adaptable visualization tool for interactive exploration. We introduce pyParaOcean, a scalable and interactive visualization system designed specifically for ocean data analysis. pyParaOcean offers specialized modules for common oceanographic analysis tasks, including eddy identification and salinity movement tracking. These modules seamlessly integrate with ParaView as filters, ensuring a user-friendly and easy-to-use system while leveraging the parallelization capabilities of ParaView and a plethora of inbuilt general-purpose visualization functionalities. The creation of an auxiliary dataset stored as a Cinema database helps address I/O and network bandwidth bottlenecks while supporting the generation of quick overview visualizations. We present a case study on the Bay of Bengal (BoB) to demonstrate the utility of the system and scaling studies to evaluate the efficiency of the system.
☆ A CT Image Classification Network Framework for Lung Tumors Based on Pre-trained MobileNetV2 Model and Transfer learning, And Its Application and Market Analysis in the Medical field
In the medical field, accurate diagnosis of lung cancer is crucial for treatment. Traditional manual analysis methods have significant limitations in terms of accuracy and efficiency. To address this issue, this paper proposes a deep learning network framework based on the pre-trained MobileNetV2 model, initialized with weights from the ImageNet-1K dataset (version 2). The last layer of the model (the fully connected layer) is replaced with a new fully connected layer, and a softmax activation function is added to efficiently classify three types of lung cancer CT scan images. Experimental results show that the model achieves an accuracy of 99.6% on the test set, with significant improvements in feature extraction compared to traditional models.With the rapid development of artificial intelligence technologies, deep learning applications in medical image processing are bringing revolutionary changes to the healthcare industry. AI-based lung cancer detection systems can significantly improve diagnostic efficiency, reduce the workload of doctors, and occupy an important position in the global healthcare market. The potential of AI to improve diagnostic accuracy, reduce medical costs, and promote precision medicine will have a profound impact on the future development of the healthcare industry.
☆ IPDN: Image-enhanced Prompt Decoding Network for 3D Referring Expression Segmentation AAAI 2025
3D Referring Expression Segmentation (3D-RES) aims to segment point cloud scenes based on a given expression. However, existing 3D-RES approaches face two major challenges: feature ambiguity and intent ambiguity. Feature ambiguity arises from information loss or distortion during point cloud acquisition due to limitations such as lighting and viewpoint. Intent ambiguity refers to the model's equal treatment of all queries during the decoding process, lacking top-down task-specific guidance. In this paper, we introduce an Image enhanced Prompt Decoding Network (IPDN), which leverages multi-view images and task-driven information to enhance the model's reasoning capabilities. To address feature ambiguity, we propose the Multi-view Semantic Embedding (MSE) module, which injects multi-view 2D image information into the 3D scene and compensates for potential spatial information loss. To tackle intent ambiguity, we designed a Prompt-Aware Decoder (PAD) that guides the decoding process by deriving task-driven signals from the interaction between the expression and visual features. Comprehensive experiments demonstrate that IPDN outperforms the state-ofthe-art by 1.9 and 4.2 points in mIoU metrics on the 3D-RES and 3D-GRES tasks, respectively.
comment: AAAI 2025
☆ V2C-CBM: Building Concept Bottlenecks with Vision-to-Concept Tokenizer AAAI2025
Concept Bottleneck Models (CBMs) offer inherent interpretability by initially translating images into human-comprehensible concepts, followed by a linear combination of these concepts for classification. However, the annotation of concepts for visual recognition tasks requires extensive expert knowledge and labor, constraining the broad adoption of CBMs. Recent approaches have leveraged the knowledge of large language models to construct concept bottlenecks, with multimodal models like CLIP subsequently mapping image features into the concept feature space for classification. Despite this, the concepts produced by language models can be verbose and may introduce non-visual attributes, which hurts accuracy and interpretability. In this study, we investigate to avoid these issues by constructing CBMs directly from multimodal models. To this end, we adopt common words as base concept vocabulary and leverage auxiliary unlabeled images to construct a Vision-to-Concept (V2C) tokenizer that can explicitly quantize images into their most relevant visual concepts, thus creating a vision-oriented concept bottleneck tightly coupled with the multimodal model. This leads to our V2C-CBM which is training efficient and interpretable with high accuracy. Our V2C-CBM has matched or outperformed LLM-supervised CBMs on various visual classification benchmarks, validating the efficacy of our approach.
comment: Accepted by AAAI2025
☆ AD-L-JEPA: Self-Supervised Spatial World Models with Joint Embedding Predictive Architecture for Autonomous Driving with LiDAR Data
As opposed to human drivers, current autonomous driving systems still require vast amounts of labeled data to train. Recently, world models have been proposed to simultaneously enhance autonomous driving capabilities by improving the way these systems understand complex real-world environments and reduce their data demands via self-supervised pre-training. In this paper, we present AD-L-JEPA (aka Autonomous Driving with LiDAR data via a Joint Embedding Predictive Architecture), a novel self-supervised pre-training framework for autonomous driving with LiDAR data that, as opposed to existing methods, is neither generative nor contrastive. Our method learns spatial world models with a joint embedding predictive architecture. Instead of explicitly generating masked unknown regions, our self-supervised world models predict Bird's Eye View (BEV) embeddings to represent the diverse nature of autonomous driving scenes. Our approach furthermore eliminates the need to manually create positive and negative pairs, as is the case in contrastive learning. AD-L-JEPA leads to simpler implementation and enhanced learned representations. We qualitatively and quantitatively demonstrate high-quality of embeddings learned with AD-L-JEPA. We furthermore evaluate the accuracy and label efficiency of AD-L-JEPA on popular downstream tasks such as LiDAR 3D object detection and associated transfer learning. Our experimental evaluation demonstrates that AD-L-JEPA is a plausible approach for self-supervised pre-training in autonomous driving applications and is the best available approach outperforming SOTA, including most recently proposed Occupancy-MAE [1] and ALSO [2]. The source code of AD-L-JEPA is available at https://github.com/HaoranZhuExplorer/AD-L-JEPA-Release.
☆ Emergence of Painting Ability via Recognition-Driven Evolution
From Paleolithic cave paintings to Impressionism, human painting has evolved to depict increasingly complex and detailed scenes, conveying more nuanced messages. This paper attempts to emerge this artistic capability by simulating the evolutionary pressures that enhance visual communication efficiency. Specifically, we present a model with a stroke branch and a palette branch that together simulate human-like painting. The palette branch learns a limited colour palette, while the stroke branch parameterises each stroke using B\'ezier curves to render an image, subsequently evaluated by a high-level recognition module. We quantify the efficiency of visual communication by measuring the recognition accuracy achieved with machine vision. The model then optimises the control points and colour choices for each stroke to maximise recognition accuracy with minimal strokes and colours. Experimental results show that our model achieves superior performance in high-level recognition tasks, delivering artistic expression and aesthetic appeal, especially in abstract sketches. Additionally, our approach shows promise as an efficient bit-level image compression technique, outperforming traditional methods.
☆ Addressing Domain Shift via Imbalance-Aware Domain Adaptation in Embryo Development Assessment
Deep learning models in medical imaging face dual challenges: domain shift, where models perform poorly when deployed in settings different from their training environment, and class imbalance, where certain disease conditions are naturally underrepresented. We present Imbalance-Aware Domain Adaptation (IADA), a novel framework that simultaneously tackles both challenges through three key components: (1) adaptive feature learning with class-specific attention mechanisms, (2) balanced domain alignment with dynamic weighting, and (3) adaptive threshold optimization. Our theoretical analysis establishes convergence guarantees and complexity bounds. Through extensive experiments on embryo development assessment across four imaging modalities, IADA demonstrates significant improvements over existing methods, achieving up to 25.19\% higher accuracy while maintaining balanced performance across classes. In challenging scenarios with low-quality imaging systems, IADA shows robust generalization with AUC improvements of up to 12.56\%. These results demonstrate IADA's potential for developing reliable and equitable medical imaging systems for diverse clinical settings. The code is made public available at \url{https://github.com/yinghemedical/imbalance-aware_domain_adaptation}
comment: 15 pages
☆ MORDA: A Synthetic Dataset to Facilitate Adaptation of Object Detectors to Unseen Real-target Domain While Preserving Performance on Real-source Domain ICRA2025
Deep neural network (DNN) based perception models are indispensable in the development of autonomous vehicles (AVs). However, their reliance on large-scale, high-quality data is broadly recognized as a burdensome necessity due to the substantial cost of data acquisition and labeling. Further, the issue is not a one-time concern, as AVs might need a new dataset if they are to be deployed to another region (real-target domain) that the in-hand dataset within the real-source domain cannot incorporate. To mitigate this burden, we propose leveraging synthetic environments as an auxiliary domain where the characteristics of real domains are reproduced. This approach could enable indirect experience about the real-target domain in a time- and cost-effective manner. As a practical demonstration of our methodology, nuScenes and South Korea are employed to represent real-source and real-target domains, respectively. That means we construct digital twins for several regions of South Korea, and the data-acquisition framework of nuScenes is reproduced. Blending the aforementioned components within a simulator allows us to obtain a synthetic-fusion domain in which we forge our novel driving dataset, MORDA: Mixture Of Real-domain characteristics for synthetic-data-assisted Domain Adaptation. To verify the value of synthetic features that MORDA provides in learning about driving environments of South Korea, 2D/3D detectors are trained solely on a combination of nuScenes and MORDA. Afterward, their performance is evaluated on the unforeseen real-world dataset (AI-Hub) collected in South Korea. Our experiments present that MORDA can significantly improve mean Average Precision (mAP) on AI-Hub dataset while that on nuScenes is retained or slightly enhanced.
comment: 7 pages, 6 figures, 4 tables, This work has been submitted to the IEEE for possible publication (the paper is submitted to the conference ICRA2025 and is under review)
☆ Seeing with Partial Certainty: Conformal Prediction for Robotic Scene Recognition in Built Environments
In assistive robotics serving people with disabilities (PWD), accurate place recognition in built environments is crucial to ensure that robots navigate and interact safely within diverse indoor spaces. Language interfaces, particularly those powered by Large Language Models (LLM) and Vision Language Models (VLM), hold significant promise in this context, as they can interpret visual scenes and correlate them with semantic information. However, such interfaces are also known for their hallucinated predictions. In addition, language instructions provided by humans can also be ambiguous and lack precise details about specific locations, objects, or actions, exacerbating the hallucination issue. In this work, we introduce Seeing with Partial Certainty (SwPC) - a framework designed to measure and align uncertainty in VLM-based place recognition, enabling the model to recognize when it lacks confidence and seek assistance when necessary. This framework is built on the theory of conformal prediction to provide statistical guarantees on place recognition while minimizing requests for human help in complex indoor environment settings. Through experiments on the widely used richly-annotated scene dataset Matterport3D, we show that SwPC significantly increases the success rate and decreases the amount of human intervention required relative to the prior art. SwPC can be utilized with any VLMs directly without requiring model fine-tuning, offering a promising, lightweight approach to uncertainty modeling that complements and scales alongside the expanding capabilities of foundational models.
comment: 10 pages, 4 Figures
☆ MambaHSI: Spatial-Spectral Mamba for Hyperspectral Image Classification
Transformer has been extensively explored for hyperspectral image (HSI) classification. However, transformer poses challenges in terms of speed and memory usage because of its quadratic computational complexity. Recently, the Mamba model has emerged as a promising approach, which has strong long-distance modeling capabilities while maintaining a linear computational complexity. However, representing the HSI is challenging for the Mamba due to the requirement for an integrated spatial and spectral understanding. To remedy these drawbacks, we propose a novel HSI classification model based on a Mamba model, named MambaHSI, which can simultaneously model long-range interaction of the whole image and integrate spatial and spectral information in an adaptive manner. Specifically, we design a spatial Mamba block (SpaMB) to model the long-range interaction of the whole image at the pixel-level. Then, we propose a spectral Mamba block (SpeMB) to split the spectral vector into multiple groups, mine the relations across different spectral groups, and extract spectral features. Finally, we propose a spatial-spectral fusion module (SSFM) to adaptively integrate spatial and spectral features of a HSI. To our best knowledge, this is the first image-level HSI classification model based on the Mamba. We conduct extensive experiments on four diverse HSI datasets. The results demonstrate the effectiveness and superiority of the proposed model for HSI classification. This reveals the great potential of Mamba to be the next-generation backbone for HSI models. Codes are available at https://github.com/li-yapeng/MambaHSI .
comment: accepted by IEEE TGRS
☆ Multi-Context Temporal Consistent Modeling for Referring Video Object Segmentation
Referring video object segmentation aims to segment objects within a video corresponding to a given text description. Existing transformer-based temporal modeling approaches face challenges related to query inconsistency and the limited consideration of context. Query inconsistency produces unstable masks of different objects in the middle of the video. The limited consideration of context leads to the segmentation of incorrect objects by failing to adequately account for the relationship between the given text and instances. To address these issues, we propose the Multi-context Temporal Consistency Module (MTCM), which consists of an Aligner and a Multi-Context Enhancer (MCE). The Aligner removes noise from queries and aligns them to achieve query consistency. The MCE predicts text-relevant queries by considering multi-context. We applied MTCM to four different models, increasing performance across all of them, particularly achieving 47.6 J&F on the MeViS. Code is available at https://github.com/Choi58/MTCM.
☆ Plug-and-Play DISep: Separating Dense Instances for Scene-to-Pixel Weakly-Supervised Change Detection in High-Resolution Remote Sensing Images SP
Existing Weakly-Supervised Change Detection (WSCD) methods often encounter the problem of "instance lumping" under scene-level supervision, particularly in scenarios with a dense distribution of changed instances (i.e., changed objects). In these scenarios, unchanged pixels between changed instances are also mistakenly identified as changed, causing multiple changes to be mistakenly viewed as one. In practical applications, this issue prevents the accurate quantification of the number of changes. To address this issue, we propose a Dense Instance Separation (DISep) method as a plug-and-play solution, refining pixel features from a unified instance perspective under scene-level supervision. Specifically, our DISep comprises a three-step iterative training process: 1) Instance Localization: We locate instance candidate regions for changed pixels using high-pass class activation maps. 2) Instance Retrieval: We identify and group these changed pixels into different instance IDs through connectivity searching. Then, based on the assigned instance IDs, we extract corresponding pixel-level features on a per-instance basis. 3) Instance Separation: We introduce a separation loss to enforce intra-instance pixel consistency in the embedding space, thereby ensuring separable instance feature representations. The proposed DISep adds only minimal training cost and no inference cost. It can be seamlessly integrated to enhance existing WSCD methods. We achieve state-of-the-art performance by enhancing {three Transformer-based and four ConvNet-based methods} on the LEVIR-CD, WHU-CD, DSIFN-CD, SYSU-CD, and CDD datasets. Additionally, our DISep can be used to improve fully-supervised change detection methods. Code is available at https://github.com/zhenghuizhao/Plug-and-Play-DISep-for-Change-Detection.
comment: Accepted by ISPRS Journal of Photogrammetry and Remote Sensing
☆ Image2CADSeq: Computer-Aided Design Sequence and Knowledge Inference from Product Images
Computer-aided design (CAD) tools empower designers to design and modify 3D models through a series of CAD operations, commonly referred to as a CAD sequence. In scenarios where digital CAD files are not accessible, reverse engineering (RE) has been used to reconstruct 3D CAD models. Recent advances have seen the rise of data-driven approaches for RE, with a primary focus on converting 3D data, such as point clouds, into 3D models in boundary representation (B-rep) format. However, obtaining 3D data poses significant challenges, and B-rep models do not reveal knowledge about the 3D modeling process of designs. To this end, our research introduces a novel data-driven approach with an Image2CADSeq neural network model. This model aims to reverse engineer CAD models by processing images as input and generating CAD sequences. These sequences can then be translated into B-rep models using a solid modeling kernel. Unlike B-rep models, CAD sequences offer enhanced flexibility to modify individual steps of model creation, providing a deeper understanding of the construction process of CAD models. To quantitatively and rigorously evaluate the predictive performance of the Image2CADSeq model, we have developed a multi-level evaluation framework for model assessment. The model was trained on a specially synthesized dataset, and various network architectures were explored to optimize the performance. The experimental and validation results show great potential for the model in generating CAD sequences from 2D image data.
comment: 20 pages, 10 figures, and 6 tables
☆ From Mesh Completion to AI Designed Crown
Designing a dental crown is a time-consuming and labor intensive process. Our goal is to simplify crown design and minimize the tediousness of making manual adjustments while still ensuring the highest level of accuracy and consistency. To this end, we present a new end- to-end deep learning approach, coined Dental Mesh Completion (DMC), to generate a crown mesh conditioned on a point cloud context. The dental context includes the tooth prepared to receive a crown and its surroundings, namely the two adjacent teeth and the three closest teeth in the opposing jaw. We formulate crown generation in terms of completing this point cloud context. A feature extractor first converts the input point cloud into a set of feature vectors that represent local regions in the point cloud. The set of feature vectors is then fed into a transformer to predict a new set of feature vectors for the missing region (crown). Subsequently, a point reconstruction head, followed by a multi-layer perceptron, is used to predict a dense set of points with normals. Finally, a differentiable point-to-mesh layer serves to reconstruct the crown surface mesh. We compare our DMC method to a graph-based convolutional neural network which learns to deform a crown mesh from a generic crown shape to the target geometry. Extensive experiments on our dataset demonstrate the effectiveness of our method, which attains an average of 0.062 Chamfer Distance.The code is available at:https://github.com/Golriz-code/DMC.gi
☆ A Machine Learning Model for Crowd Density Classification in Hajj Video Frames
Managing the massive annual gatherings of Hajj and Umrah presents significant challenges, particularly as the Saudi government aims to increase the number of pilgrims. Currently, around two million pilgrims attend Hajj and 26 million attend Umrah making crowd control especially in critical areas like the Grand Mosque during Tawaf, a major concern. Additional risks arise in managing dense crowds at key sites such as Arafat where the potential for stampedes, fires and pandemics poses serious threats to public safety. This research proposes a machine learning model to classify crowd density into three levels: moderate crowd, overcrowded and very dense crowd in video frames recorded during Hajj, with a flashing red light to alert organizers in real-time when a very dense crowd is detected. While current research efforts in processing Hajj surveillance videos focus solely on using CNN to detect abnormal behaviors, this research focuses more on high-risk crowds that can lead to disasters. Hazardous crowd conditions require a robust method, as incorrect classification could trigger unnecessary alerts and government intervention, while failure to classify could result in disaster. The proposed model integrates Local Binary Pattern (LBP) texture analysis, which enhances feature extraction for differentiating crowd density levels, along with edge density and area-based features. The model was tested on the KAU-Smart Crowd 'HAJJv2' dataset which contains 18 videos from various key locations during Hajj including 'Massaa', 'Jamarat', 'Arafat' and 'Tawaf'. The model achieved an accuracy rate of 87% with a 2.14% error percentage (misclassification rate), demonstrating its ability to detect and classify various crowd conditions effectively. That contributes to enhanced crowd management and safety during large-scale events like Hajj.
☆ Bit-depth color recovery via off-the-shelf super-resolution models
Advancements in imaging technology have enabled hardware to support 10 to 16 bits per channel, facilitating precise manipulation in applications like image editing and video processing. While deep neural networks promise to recover high bit-depth representations, existing methods often rely on scale-invariant image information, limiting performance in certain scenarios. In this paper, we introduce a novel approach that integrates a super-resolution architecture to extract detailed a priori information from images. By leveraging interpolated data generated during the super-resolution process, our method achieves pixel-level recovery of fine-grained color details. Additionally, we demonstrate that spatial features learned through the super-resolution process significantly contribute to the recovery of detailed color depth information. Experiments on benchmark datasets demonstrate that our approach outperforms state-of-the-art methods, highlighting the potential of super-resolution for high-fidelity color restoration.
☆ Approximate Supervised Object Distance Estimation on Unmanned Surface Vehicles
Unmanned surface vehicles (USVs) and boats are increasingly important in maritime operations, yet their deployment is limited due to costly sensors and complexity. LiDAR, radar, and depth cameras are either costly, yield sparse point clouds or are noisy, and require extensive calibration. Here, we introduce a novel approach for approximate distance estimation in USVs using supervised object detection. We collected a dataset comprising images with manually annotated bounding boxes and corresponding distance measurements. Leveraging this data, we propose a specialized branch of an object detection model, not only to detect objects but also to predict their distances from the USV. This method offers a cost-efficient and intuitive alternative to conventional distance measurement techniques, aligning more closely with human estimation capabilities. We demonstrate its application in a marine assistance system that alerts operators to nearby objects such as boats, buoys, or other waterborne hazards.
☆ Vision-Language Models for Autonomous Driving: CLIP-Based Dynamic Scene Understanding
Scene understanding is essential for enhancing driver safety, generating human-centric explanations for Automated Vehicle (AV) decisions, and leveraging Artificial Intelligence (AI) for retrospective driving video analysis. This study developed a dynamic scene retrieval system using Contrastive Language-Image Pretraining (CLIP) models, which can be optimized for real-time deployment on edge devices. The proposed system outperforms state-of-the-art in-context learning methods, including the zero-shot capabilities of GPT-4o, particularly in complex scenarios. By conducting frame-level analysis on the Honda Scenes Dataset, which contains a collection of about 80 hours of annotated driving videos capturing diverse real-world road and weather conditions, our study highlights the robustness of CLIP models in learning visual concepts from natural language supervision. Results also showed that fine-tuning the CLIP models, such as ViT-L/14 and ViT-B/32, significantly improved scene classification, achieving a top F1 score of 91.1%. These results demonstrate the ability of the system to deliver rapid and precise scene recognition, which can be used to meet the critical requirements of Advanced Driver Assistance Systems (ADAS). This study shows the potential of CLIP models to provide scalable and efficient frameworks for dynamic scene understanding and classification. Furthermore, this work lays the groundwork for advanced autonomous vehicle technologies by fostering a deeper understanding of driver behavior, road conditions, and safety-critical scenarios, marking a significant step toward smarter, safer, and more context-aware autonomous driving systems.
☆ Improving Zero-Shot Object-Level Change Detection by Incorporating Visual Correspondence
Detecting object-level changes between two images across possibly different views is a core task in many applications that involve visual inspection or camera surveillance. Existing change-detection approaches suffer from three major limitations: (1) lack of evaluation on image pairs that contain no changes, leading to unreported false positive rates; (2) lack of correspondences (\ie, localizing the regions before and after a change); and (3) poor zero-shot generalization across different domains. To address these issues, we introduce a novel method that leverages change correspondences (a) during training to improve change detection accuracy, and (b) at test time, to minimize false positives. That is, we harness the supervision labels of where an object is added or removed to supervise change detectors, improving their accuracy over previous work by a large margin. Our work is also the first to predict correspondences between pairs of detected changes using estimated homography and the Hungarian algorithm. Our model demonstrates superior performance over existing methods, achieving state-of-the-art results in change detection and change correspondence accuracy across both in-distribution and zero-shot benchmarks.
☆ OVO-Bench: How Far is Your Video-LLMs from Real-World Online Video Understanding?
Temporal Awareness, the ability to reason dynamically based on the timestamp when a question is raised, is the key distinction between offline and online video LLMs. Unlike offline models, which rely on complete videos for static, post hoc analysis, online models process video streams incrementally and dynamically adapt their responses based on the timestamp at which the question is posed. Despite its significance, temporal awareness has not been adequately evaluated in existing benchmarks. To fill this gap, we present OVO-Bench (Online-VideO-Benchmark), a novel video benchmark that emphasizes the importance of timestamps for advanced online video understanding capability benchmarking. OVO-Bench evaluates the ability of video LLMs to reason and respond to events occurring at specific timestamps under three distinct scenarios: (1) Backward tracing: trace back to past events to answer the question. (2) Real-time understanding: understand and respond to events as they unfold at the current timestamp. (3) Forward active responding: delay the response until sufficient future information becomes available to answer the question accurately. OVO-Bench comprises 12 tasks, featuring 644 unique videos and approximately human-curated 2,800 fine-grained meta-annotations with precise timestamps. We combine automated generation pipelines with human curation. With these high-quality samples, we further developed an evaluation pipeline to systematically query video LLMs along the video timeline. Evaluations of nine Video-LLMs reveal that, despite advancements on traditional benchmarks, current models struggle with online video understanding, showing a significant gap compared to human agents. We hope OVO-Bench will drive progress in video LLMs and inspire future research in online video reasoning. Our benchmark and code can be accessed at https://github.com/JoeLeelyf/OVO-Bench.
comment: 28 pages
☆ UAV-VLA: Vision-Language-Action System for Large Scale Aerial Mission Generation
The UAV-VLA (Visual-Language-Action) system is a tool designed to facilitate communication with aerial robots. By integrating satellite imagery processing with the Visual Language Model (VLM) and the powerful capabilities of GPT, UAV-VLA enables users to generate general flight paths-and-action plans through simple text requests. This system leverages the rich contextual information provided by satellite images, allowing for enhanced decision-making and mission planning. The combination of visual analysis by VLM and natural language processing by GPT can provide the user with the path-and-action set, making aerial operations more efficient and accessible. The newly developed method showed the difference in the length of the created trajectory in 22% and the mean error in finding the objects of interest on a map in 34.22 m by Euclidean distance in the K-Nearest Neighbors (KNN) approach.
comment: HRI 2025
☆ A New Perspective on Privacy Protection in Federated Learning with Granular-Ball Computing
Federated Learning (FL) facilitates collaborative model training while prioritizing privacy by avoiding direct data sharing. However, most existing articles attempt to address challenges within the model's internal parameters and corresponding outputs, while neglecting to solve them at the input level. To address this gap, we propose a novel framework called Granular-Ball Federated Learning (GrBFL) for image classification. GrBFL diverges from traditional methods that rely on the finest-grained input data. Instead, it segments images into multiple regions with optimal coarse granularity, which are then reconstructed into a graph structure. We designed a two-dimensional binary search segmentation algorithm based on variance constraints for GrBFL, which effectively removes redundant information while preserving key representative features. Extensive theoretical analysis and experiments demonstrate that GrBFL not only safeguards privacy and enhances efficiency but also maintains robust utility, consistently outperforming other state-of-the-art FL methods. The code is available at https://github.com/AIGNLAI/GrBFL.
♻ ☆ Gradient-based facial encoding for key generation to encrypt and decrypt multimedia data
Security systems relying on passwords are vulnerable to being forgotten, guessed, or breached. Likewise, biometric systems that operate independently are at risk of template spoofing and replay incidents. This paper introduces a biocryptosystem utilizing face recognition techniques to address these issues, allowing for the encryption and decryption of various file types through the Advanced Encryption Standard (AES). The proposed system creates a distinct 32-bit encryption key derived from facial features identified by Histogram of Oriented Gradients (HOG) and categorized using Support Vector Machines (SVM). HOG efficiently identifies edge-aligned facial features, even in dim lighting, ensuring that reliable biometric keys can be generated. This key is then used with AES to encrypt and decrypt a variety of data formats, such as text, audio, and video files. This encryption key, derived from an individual's distinctive facial traits, is exceedingly challenging for adversaries to reproduce or guess. The security and performance of the system have been validated through experiments using several metrics, including correlation analysis, Shannon entropy, normalized Hamming distance, and the avalanche effect on 25 different file types. Potential uses for the proposed system include secure file sharing, online transactions, and data archiving, making it a strong and trustworthy approach to safeguarding sensitive information by integrating the uniqueness of facial biometrics with the established security of AES encryption.
comment: 12 pages, 2 figures, This work has been submitted to the IEEE for possible publication
♻ ☆ AgroGPT: Efficient Agricultural Vision-Language Model with Expert Tuning WACV
Significant progress has been made in advancing large multimodal conversational models (LMMs), capitalizing on vast repositories of image-text data available online. Despite this progress, these models often encounter substantial domain gaps, hindering their ability to engage in complex conversations across new domains. Recent efforts have aimed to mitigate this issue, albeit relying on domain-specific image-text data to curate instruction-tuning data. However, many domains, such as agriculture, lack such vision-language data. In this work, we propose an approach to construct instruction-tuning data that harnesses vision-only data for the agriculture domain. We utilize diverse agricultural datasets spanning multiple domains, curate class-specific information, and employ large language models (LLMs) to construct an expert-tuning set, resulting in a 70k expert-tuning dataset called AgroInstruct. Subsequently, we expert-tuned and created AgroGPT, an efficient LMM that can hold complex agriculture-related conversations and provide useful insights. We also develop AgroEvals for evaluation and compare {AgroGPT's} performance with large open and closed-source models. {AgroGPT} excels at identifying fine-grained agricultural concepts, can act as an agriculture expert, and provides helpful information for multimodal agriculture questions. The code, datasets, and models are available at https://github.com/awaisrauf/agroGPT.
comment: Accepted at WACV, 2025
♻ ☆ Snapshot: Towards Application-centered Models for Pedestrian Trajectory Prediction in Urban Traffic Environments
This paper explores pedestrian trajectory prediction in urban traffic while focusing on both model accuracy and real-world applicability. While promising approaches exist, they often revolve around pedestrian datasets excluding traffic-related information, or resemble architectures that are either not real-time capable or robust. To address these limitations, we first introduce a dedicated benchmark based on Argoverse 2, specifically targeting pedestrians in traffic environments. Following this, we present Snapshot, a modular, feed-forward neural network that outperforms the current state of the art, reducing the Average Displacement Error (ADE) by 8.8% while utilizing significantly less information. Despite its agent-centric encoding scheme, Snapshot demonstrates scalability, real-time performance, and robustness to varying motion histories. Moreover, by integrating Snapshot into a modular autonomous driving software stack, we showcase its real-world applicability.
comment: 8 Pages, 9 Figures
♻ ☆ GPT4Scene: Understand 3D Scenes from Videos with Vision-Language Models
In recent years, 2D Vision-Language Models (VLMs) have made significant strides in image-text understanding tasks. However, their performance in 3D spatial comprehension, which is critical for embodied intelligence, remains limited. Recent advances have leveraged 3D point clouds and multi-view images as inputs, yielding promising results. However, we propose exploring a purely vision-based solution inspired by human perception, which merely relies on visual cues for 3D spatial understanding. This paper empirically investigates the limitations of VLMs in 3D spatial knowledge, revealing that their primary shortcoming lies in the lack of global-local correspondence between the scene and individual frames. To address this, we introduce GPT4Scene, a novel visual prompting paradigm in VLM training and inference that helps build the global-local relationship, significantly improving the 3D spatial understanding of indoor scenes. Specifically, GPT4Scene constructs a 3D Bird's Eye View (BEV) image from the video and marks consistent object IDs across both frames and the BEV image. The model then inputs the concatenated BEV image and video frames with markers. In zero-shot evaluations, GPT4Scene improves performance over closed-source VLMs like GPT-4o. Additionally, we prepare a processed video dataset consisting of 165K text annotation to fine-tune open-source VLMs, achieving state-of-the-art performance on all 3D understanding tasks. Surprisingly, after training with the GPT4Scene paradigm, VLMs consistently improve during inference, even without visual prompting and BEV image as explicit correspondence. It demonstrates that the proposed paradigm helps VLMs develop an intrinsic ability to understand 3D scenes, which paves the way for a noninvasive approach to extending pre-trained VLMs for 3D scene understanding.
comment: Project page: https://gpt4scene.github.io/
♻ ☆ OpenOmni: Large Language Models Pivot Zero-shot Omnimodal Alignment across Language with Real-time Self-Aware Emotional Speech Synthesis
Recent advancements in omnimodal learning have been achieved in understanding and generation across images, text, and speech, though mainly within proprietary models. Limited omnimodal datasets and the inherent challenges associated with real-time emotional speech generation have hindered open-source progress. To address these issues, we propose openomni, a two-stage training method combining omnimodal alignment and speech generation to develop a state-of-the-art omnimodal large language model. In the alignment phase, a pre-trained speech model is further trained on text-image tasks to generalize from vision to speech in a (near) zero-shot manner, outperforming models trained on tri-modal datasets. In the speech generation phase, a lightweight decoder facilitates real-time emotional speech through training on speech tasks and preference learning. Experiments demonstrate that openomni consistently improves across omnimodal, vision-language, and speech-language evaluations, enabling natural, emotion-rich dialogues and real-time emotional speech generation.
♻ ☆ Voxel-Aggregated Feature Synthesis: Efficient Dense Mapping for Simulated 3D Reasoning CVPR 2025
We address the issue of the exploding computational requirements of recent State-of-the-art (SOTA) open set multimodel 3D mapping (dense 3D mapping) algorithms and present Voxel-Aggregated Feature Synthesis (VAFS), a novel approach to dense 3D mapping in simulation. Dense 3D mapping involves segmenting and embedding sequential RGBD frames which are then fused into 3D. This leads to redundant computation as the differences between frames are small but all are individually segmented and embedded. This makes dense 3D mapping impractical for research involving embodied agents in which the environment, and thus the mapping, must be modified with regularity. VAFS drastically reduces this computation by using the segmented point cloud computed by a simulator's physics engine and synthesizing views of each region. This reduces the number of features to embed from the number of captured RGBD frames to the number of objects in the scene, effectively allowing a "ground truth" semantic map to be computed an order of magnitude faster than traditional methods. We test the resulting representation by assessing the IoU scores of semantic queries for different objects in the simulated scene, and find that VAFS exceeds the accuracy and speed of prior dense 3D mapping techniques.
comment: 6 pages, 2 figures, CVPR 2025
♻ ☆ Less is More: The Influence of Pruning on the Explainability of CNNs
Modern, state-of-the-art Convolutional Neural Networks (CNNs) in computer vision have millions of parameters. Thus, explaining the complex decisions of such networks to humans is challenging. A technical approach to reduce CNN complexity is network pruning, where less important parameters are deleted. The work presented in this paper investigates whether this technical complexity reduction also helps with perceived explainability. To do so, we conducted a pre-study and two human-grounded experiments, assessing the effects of different pruning ratios on CNN explainability. Overall, we evaluated four different compression rates (i.e., CPR 2, 4, 8, and 32) with 37 500 tasks on Mechanical Turk. Results indicate that lower compression rates have a positive influence on explainability, while higher compression rates show negative effects. Furthermore, we were able to identify sweet spots that increase both the perceived explainability and the model's performance.
♻ ☆ Geometry Restoration and Dewarping of Camera-Captured Document Images
This research focuses on developing a method for restoring the topology of digital images of paper documents captured by a camera, using algorithms for detection, segmentation, geometry restoration, and dewarping. Our methodology employs deep learning (DL) for document outline detection, followed by computer vision (CV) to create a topological 2D grid using cubic polynomial interpolation and correct nonlinear distortions by remapping the image. Using classical CV methods makes the document topology restoration process more efficient and faster, as it requires significantly fewer computational resources and memory. We developed a new pipeline for automatic document dewarping and reconstruction, along with a framework and annotated dataset to demonstrate its efficiency. Our experiments confirm the promise of our methodology and its superiority over existing benchmarks (including mobile apps and popular DL solutions, such as RectiNet, DocGeoNet, and DocTr++) both visually and in terms of document readability via Optical Character Recognition (OCR) and geometry restoration metrics. This paves the way for creating high-quality digital copies of paper documents and enhancing the efficiency of OCR systems. Project page: https://github.com/HorizonParadox/DRCCBI
comment: 28 pages, 16 figures
♻ ☆ Identity-Preserving Video Dubbing Using Motion Warping
Video dubbing aims to synthesize realistic, lip-synced videos from a reference video and a driving audio signal. Although existing methods can accurately generate mouth shapes driven by audio, they often fail to preserve identity-specific features, largely because they do not effectively capture the nuanced interplay between audio cues and the visual attributes of reference identity . As a result, the generated outputs frequently lack fidelity in reproducing the unique textural and structural details of the reference identity. To address these limitations, we propose IPTalker, a novel and robust framework for video dubbing that achieves seamless alignment between driving audio and reference identity while ensuring both lip-sync accuracy and high-fidelity identity preservation. At the core of IPTalker is a transformer-based alignment mechanism designed to dynamically capture and model the correspondence between audio features and reference images, thereby enabling precise, identity-aware audio-visual integration. Building on this alignment, a motion warping strategy further refines the results by spatially deforming reference images to match the target audio-driven configuration. A dedicated refinement process then mitigates occlusion artifacts and enhances the preservation of fine-grained textures, such as mouth details and skin features. Extensive qualitative and quantitative evaluations demonstrate that IPTalker consistently outperforms existing approaches in terms of realism, lip synchronization, and identity retention, establishing a new state of the art for high-quality, identity-consistent video dubbing.
comment: v2, Under Review
♻ ☆ BTMTrack: Robust RGB-T Tracking via Dual-template Bridging and Temporal-Modal Candidate Elimination
RGB-T tracking leverages the complementary strengths of RGB and thermal infrared (TIR) modalities to address challenging scenarios such as low illumination and adverse weather. However, existing methods often fail to effectively integrate temporal information and perform efficient cross-modal interactions, which constrain their adaptability to dynamic targets. In this paper, we propose BTMTrack, a novel framework for RGB-T tracking. The core of our approach lies in the dual-template backbone network and the Temporal-Modal Candidate Elimination (TMCE) strategy. The dual-template backbone effectively integrates temporal information, while the TMCE strategy focuses the model on target-relevant tokens by evaluating temporal and modal correlations, reducing computational overhead and avoiding irrelevant background noise. Building upon this foundation, we propose the Temporal Dual Template Bridging (TDTB) module, which facilitates precise cross-modal fusion through dynamically filtered tokens. This approach further strengthens the interaction between templates and the search region. Extensive experiments conducted on three benchmark datasets demonstrate the effectiveness of BTMTrack. Our method achieves state-of-the-art performance, with a 72.3% precision rate on the LasHeR test set and competitive results on RGBT210 and RGBT234 datasets.
♻ ☆ Visual Semantic Navigation with Real Robots
Visual Semantic Navigation (VSN) is the ability of a robot to learn visual semantic information for navigating in unseen environments. These VSN models are typically tested in those virtual environments where they are trained, mainly using reinforcement learning based approaches. Therefore, we do not yet have an in-depth analysis of how these models would behave in the real world. In this work, we propose a new solution to integrate VSN models into real robots, so that we have true embodied agents. We also release a novel ROS-based framework for VSN, ROS4VSN, so that any VSN-model can be easily deployed in any ROS-compatible robot and tested in a real setting. Our experiments with two different robots, where we have embedded two state-of-the-art VSN agents, confirm that there is a noticeable performance difference of these VSN solutions when tested in real-world and simulation environments. We hope that this research will endeavor to provide a foundation for addressing this consequential issue, with the ultimate aim of advancing the performance and efficiency of embodied agents within authentic real-world scenarios. Code to reproduce all our experiments can be found at https://github.com/gramuah/ros4vsn.
♻ ☆ Rendering-Oriented 3D Point Cloud Attribute Compression using Sparse Tensor-based Transformer
The evolution of 3D visualization techniques has fundamentally transformed how we interact with digital content. At the forefront of this change is point cloud technology, offering an immersive experience that surpasses traditional 2D representations. However, the massive data size of point clouds presents significant challenges in data compression. Current methods for lossy point cloud attribute compression (PCAC) generally focus on reconstructing the original point clouds with minimal error. However, for point cloud visualization scenarios, the reconstructed point clouds with distortion still need to undergo a complex rendering process, which affects the final user-perceived quality. In this paper, we propose an end-to-end deep learning framework that seamlessly integrates PCAC with differentiable rendering, denoted as rendering-oriented PCAC (RO-PCAC), directly targeting the quality of rendered multiview images for viewing. In a differentiable manner, the impact of the rendering process on the reconstructed point clouds is taken into account. Moreover, we characterize point clouds as sparse tensors and propose a sparse tensor-based transformer, called SP-Trans. By aligning with the local density of the point cloud and utilizing an enhanced local attention mechanism, SP-Trans captures the intricate relationships within the point cloud, further improving feature analysis and synthesis within the framework. Extensive experiments demonstrate that the proposed RO-PCAC achieves state-of-the-art compression performance, compared to existing reconstruction-oriented methods, including traditional, learning-based, and hybrid methods.
♻ ☆ Semi-supervised 3D Semantic Scene Completion with 2D Vision Foundation Model Guidance AAAI2025
Accurate prediction of 3D semantic occupancy from 2D visual images is vital in enabling autonomous agents to comprehend their surroundings for planning and navigation. State-of-the-art methods typically employ fully supervised approaches, necessitating a huge labeled dataset acquired through expensive LiDAR sensors and meticulous voxel-wise labeling by human annotators. The resource-intensive nature of this annotating process significantly hampers the application and scalability of these methods. We introduce a novel semi-supervised framework to alleviate the dependency on densely annotated data. Our approach leverages 2D foundation models to generate essential 3D scene geometric and semantic cues, facilitating a more efficient training process. Our framework exhibits notable properties: (1) Generalizability, applicable to various 3D semantic scene completion approaches, including 2D-3D lifting and 3D-2D transformer methods. (2) Effectiveness, as demonstrated through experiments on SemanticKITTI and NYUv2, wherein our method achieves up to 85% of the fully-supervised performance using only 10% labeled data. This approach not only reduces the cost and labor associated with data annotation but also demonstrates the potential for broader adoption in camera-based systems for 3D semantic occupancy prediction.
comment: Accepted at AAAI2025. Project Page: https://vinairesearch.github.io/SemiSSC
♻ ☆ CoE: Deep Coupled Embedding for Non-Rigid Point Cloud Correspondences
The interest in matching non-rigidly deformed shapes represented as raw point clouds is rising due to the proliferation of low-cost 3D sensors. Yet, the task is challenging since point clouds are irregular and there is a lack of intrinsic shape information. We propose to tackle these challenges by learning a new shape representation -- a per-point high dimensional embedding, in an embedding space where semantically similar points share similar embeddings. The learned embedding has multiple beneficial properties: it is aware of the underlying shape geometry and is robust to shape deformations and various shape artefacts, such as noise and partiality. Consequently, this embedding can be directly employed to retrieve high-quality dense correspondences through a simple nearest neighbor search in the embedding space. Extensive experiments demonstrate new state-of-the-art results and robustness in numerous challenging non-rigid shape matching benchmarks and show its great potential in other shape analysis tasks, such as segmentation.
comment: 16 pages, 17 figures
♻ ☆ DGNN-YOLO: Interpretable Dynamic Graph Neural Networks with YOLO11 for Detecting and Tracking Small Occluded Objects in Urban Traffic
The detection and tracking of small, occluded objects such as pedestrians, cyclists, and motorbikes pose significant challenges for traffic surveillance systems because of their erratic movement, frequent occlusion, and poor visibility in dynamic urban environments. Traditional methods like YOLO11, while proficient in spatial feature extraction for precise detection, often struggle with these small and dynamically moving objects, particularly in handling real-time data updates and resource efficiency. This paper introduces DGNN-YOLO, a novel framework that integrates dynamic graph neural networks (DGNNs) with YOLO11 to address these limitations. Unlike standard GNNs, DGNNs are chosen for their superior ability to dynamically update graph structures in real-time, which enables adaptive and robust tracking of objects in highly variable urban traffic scenarios. This framework constructs and regularly updates its graph representations, capturing objects as nodes and their interactions as edges, thus effectively responding to rapidly changing conditions. Additionally, DGNN-YOLO incorporates Grad-CAM, Grad-CAM++, and Eigen-CAM visualization techniques to enhance interpretability and foster trust, offering insights into the model's decision-making process. Extensive experiments validate the framework's performance, achieving a precision of 0.8382, recall of 0.6875, and mAP@0.5:0.95 of 0.6476, significantly outperforming existing methods. This study offers a scalable and interpretable solution for real-time traffic surveillance and significantly advances intelligent transportation systems' capabilities by addressing the critical challenge of detecting and tracking small, occluded objects.
♻ ☆ CMTNet: Convolutional Meets Transformer Network for Hyperspectral Images Classification
Hyperspectral remote sensing (HIS) enables the detailed capture of spectral information from the Earth's surface, facilitating precise classification and identification of surface crops due to its superior spectral diagnostic capabilities. However, current convolutional neural networks (CNNs) focus on local features in hyperspectral data, leading to suboptimal performance when classifying intricate crop types and addressing imbalanced sample distributions. In contrast, the Transformer framework excels at extracting global features from hyperspectral imagery. To leverage the strengths of both approaches, this research introduces the Convolutional Meet Transformer Network (CMTNet). This innovative model includes a spectral-spatial feature extraction module for shallow feature capture, a dual-branch structure combining CNN and Transformer branches for local and global feature extraction, and a multi-output constraint module that enhances classification accuracy through multi-output loss calculations and cross constraints across local, international, and joint features. Extensive experiments conducted on three datasets (WHU-Hi-LongKou, WHU-Hi-HanChuan, and WHU-Hi-HongHu) demonstrate that CTDBNet significantly outperforms other state-of-the-art networks in classification performance, validating its effectiveness in hyperspectral crop classification.
comment: After submission, our research team underwent a significant shift in the project's focus and direction. As a result, the current manuscript no longer accurately reflects the revised scope or findings of our research.To prevent potential misinterpretations or misleading citations, we believe it is in the best interest of the academic community to withdraw this article
♻ ☆ Exosense: A Vision-Based Scene Understanding System For Exoskeletons
Self-balancing exoskeletons are a key enabling technology for individuals with mobility impairments. While the current challenges focus on human-compliant hardware and control, unlocking their use for daily activities requires a scene perception system. In this work, we present Exosense, a vision-centric scene understanding system for self-balancing exoskeletons. We introduce a multi-sensor visual-inertial mapping device as well as a navigation stack for state estimation, terrain mapping and long-term operation. We tested Exosense attached to both a human leg and Wandercraft's Personal Exoskeleton in real-world indoor scenarios. This enabled us to test the system during typical periodic walking gaits, as well as future uses in multi-story environments. We demonstrate that Exosense can achieve an odometry drift of about 4 cm per meter traveled, and construct terrain maps under 1 cm average reconstruction error. It can also work in a visual localization mode in a previously mapped environment, providing a step towards long-term operation of exoskeletons.
comment: 8 pages, 9 figures
♻ ☆ Differentiable Task Graph Learning: Procedural Activity Representation and Online Mistake Detection from Egocentric Videos
Procedural activities are sequences of key-steps aimed at achieving specific goals. They are crucial to build intelligent agents able to assist users effectively. In this context, task graphs have emerged as a human-understandable representation of procedural activities, encoding a partial ordering over the key-steps. While previous works generally relied on hand-crafted procedures to extract task graphs from videos, in this paper, we propose an approach based on direct maximum likelihood optimization of edges' weights, which allows gradient-based learning of task graphs and can be naturally plugged into neural network architectures. Experiments on the CaptainCook4D dataset demonstrate the ability of our approach to predict accurate task graphs from the observation of action sequences, with an improvement of +16.7% over previous approaches. Owing to the differentiability of the proposed framework, we also introduce a feature-based approach, aiming to predict task graphs from key-step textual or video embeddings, for which we observe emerging video understanding abilities. Task graphs learned with our approach are also shown to significantly enhance online mistake detection in procedural egocentric videos, achieving notable gains of +19.8% and +7.5% on the Assembly101-O and EPIC-Tent-O datasets. Code for replicating experiments is available at https://github.com/fpv-iplab/Differentiable-Task-Graph-Learning.
♻ ☆ OneLLM: One Framework to Align All Modalities with Language CVPR 2024
Multimodal large language models (MLLMs) have gained significant attention due to their strong multimodal understanding capability. However, existing works rely heavily on modality-specific encoders, which usually differ in architecture and are limited to common modalities. In this paper, we present OneLLM, an MLLM that aligns eight modalities to language using a unified framework. We achieve this through a unified multimodal encoder and a progressive multimodal alignment pipeline. In detail, we first train an image projection module to connect a vision encoder with LLM. Then, we build a universal projection module (UPM) by mixing multiple image projection modules and dynamic routing. Finally, we progressively align more modalities to LLM with the UPM. To fully leverage the potential of OneLLM in following instructions, we also curated a comprehensive multimodal instruction dataset, including 2M items from image, audio, video, point cloud, depth/normal map, IMU and fMRI brain activity. OneLLM is evaluated on 25 diverse benchmarks, encompassing tasks such as multimodal captioning, question answering and reasoning, where it delivers excellent performance. Code, data, model and online demo are available at https://github.com/csuhan/OneLLM
comment: Accepted by CVPR 2024. Code: https://github.com/csuhan/OneLLM
♻ ☆ tCURLoRA: Tensor CUR Decomposition Based Low-Rank Parameter Adaptation and Its Application in Medical Image Segmentation
Transfer learning, by leveraging knowledge from pre-trained models, has significantly enhanced the performance of target tasks. However, as deep neural networks scale up, full fine-tuning introduces substantial computational and storage challenges in resource-constrained environments, limiting its widespread adoption. To address this, parameter-efficient fine-tuning (PEFT) methods have been developed to reduce computational complexity and storage requirements by minimizing the number of updated parameters. While matrix decomposition-based PEFT methods, such as LoRA, show promise, they struggle to fully capture the high-dimensional structural characteristics of model weights. In contrast, high-dimensional tensors offer a more natural representation of neural network weights, allowing for a more comprehensive capture of higher-order features and multi-dimensional interactions. In this paper, we propose tCURLoRA, a novel fine-tuning method based on tensor CUR decomposition. By concatenating pre-trained weight matrices into a three-dimensional tensor and applying tensor CUR decomposition, we update only the lower-order tensor components during fine-tuning, effectively reducing computational and storage overhead. Experimental results demonstrate that tCURLoRA outperforms existing PEFT methods in medical image segmentation tasks.
♻ ☆ DATransNet: Dynamic Attention Transformer Network for Infrared Small Target Detection
Infrared small target detection (ISTD) is widely used in civilian and military applications. However, ISTD encounters several challenges, including the tendency for small and dim targets to be obscured by complex backgrounds.To address this issue, we propose the Dynamic Attention Transformer Network (DATransNet), which aims to extract and preserve edge information of small targets.DATransNet employs the Dynamic Attention Transformer (DATrans), simulating central difference convolutions (CDC) to extract and integrate gradient features with deeper features.Furthermore, we propose a global feature extraction module (GFEM) that offers a comprehensive perspective to prevent the network from focusing solely on details while neglecting the background information. We compare the network with state-of-the-art (SOTA) approaches, and the results demonstrate that our method performs effectively. Our source code is available at https://github.com/greekinRoma/DATransNet.
♻ ☆ TextToucher: Fine-Grained Text-to-Touch Generation AAAI 2025
Tactile sensation plays a crucial role in the development of multi-modal large models and embodied intelligence. To collect tactile data with minimal cost as possible, a series of studies have attempted to generate tactile images by vision-to-touch image translation. However, compared to text modality, visual modality-driven tactile generation cannot accurately depict human tactile sensation. In this work, we analyze the characteristics of tactile images in detail from two granularities: object-level (tactile texture, tactile shape), and sensor-level (gel status). We model these granularities of information through text descriptions and propose a fine-grained Text-to-Touch generation method (TextToucher) to generate high-quality tactile samples. Specifically, we introduce a multimodal large language model to build the text sentences about object-level tactile information and employ a set of learnable text prompts to represent the sensor-level tactile information. To better guide the tactile generation process with the built text information, we fuse the dual grains of text information and explore various dual-grain text conditioning methods within the diffusion transformer architecture. Furthermore, we propose a Contrastive Text-Touch Pre-training (CTTP) metric to precisely evaluate the quality of text-driven generated tactile data. Extensive experiments demonstrate the superiority of our TextToucher method. The source codes will be available at \url{https://github.com/TtuHamg/TextToucher}.
comment: This paper has been accepted by AAAI 2025
♻ ☆ DoubleDiffusion: Combining Heat Diffusion with Denoising Diffusion for Generative Learning on 3D Meshes
This paper proposes DoubleDiffusion, a novel framework that combines heat dissipation diffusion and denoising diffusion for direct generative learning on 3D mesh surfaces. Our approach addresses the challenges of generating continuous signal distributions residing on a curve manifold surface. Unlike previous methods that rely on unrolling 3D meshes into 2D or adopting field representations, DoubleDiffusion leverages the Laplacian-Beltrami operator to process features respecting the mesh structure. This combination enables effective geometry-aware signal diffusion across the underlying geometry. As shown in Fig.1, we demonstrate that DoubleDiffusion has the ability to generate RGB signal distributions on complex 3D mesh surfaces and achieves per-category shape-conditioned texture generation across different shape geometry. Our work contributes a new direction in diffusion-based generative modeling on 3D surfaces, with potential applications in the field of 3D asset generation.
♻ ☆ UltraCortex: Submillimeter Ultra-High Field 9.4 T Brain MR Image Collection and Manual Cortical Segmentations
The UltraCortex repository (https://www.ultracortex.org) houses magnetic resonance imaging data of the human brain obtained at an ultra-high field strength of 9.4 T. It contains 86 structural MR images with spatial resolutions ranging from 0.6 to 0.8 mm. Additionally, the repository includes segmentations of 12 brains into gray and white matter compartments. These segmentations have been independently validated by two expert neuroradiologists, thus establishing them as a reliable gold standard. This resource provides researchers with access to high-quality brain imaging data and validated segmentations, facilitating neuroimaging studies and advancing our understanding of brain structure and function. Existing repositories do not accommodate field strengths beyond 7 T, nor do they offer validated segmentations, underscoring the significance of this new resource.
♻ ☆ LLaVA-CoT: Let Vision Language Models Reason Step-by-Step
Large language models have demonstrated substantial advancements in reasoning capabilities, particularly through inference-time scaling, as illustrated by models such as OpenAI's o1. However, current Vision-Language Models (VLMs) often struggle to perform systematic and structured reasoning, especially when handling complex visual question-answering tasks. In this work, we introduce LLaVA-CoT, a novel VLM designed to conduct autonomous multistage reasoning. Unlike chain-of-thought prompting, LLaVA-CoT independently engages in sequential stages of summarization, visual interpretation, logical reasoning, and conclusion generation. This structured approach enables LLaVA-CoT to achieve marked improvements in precision on reasoning-intensive tasks. To accomplish this, we compile the LLaVA-CoT-100k dataset, integrating samples from various visual question answering sources and providing structured reasoning annotations. Besides, we propose an inference-time stage-level beam search method, which enables effective inference-time scaling. Remarkably, with only 100k training samples and a simple yet effective inference time scaling method, LLaVA-CoT not only outperforms its base model by 7.4% on a wide range of multimodal reasoning benchmarks, but also surpasses the performance of larger and even closed-source models, such as Gemini-1.5-pro, GPT-4o-mini, and Llama-3.2-90B-Vision-Instruct.
♻ ☆ INFELM: In-depth Fairness Evaluation of Large Text-To-Image Models
The rapid development of large language models (LLMs) and large vision models (LVMs) have propelled the evolution of multi-modal AI systems, which have demonstrated the remarkable potential for industrial applications by emulating human-like cognition. However, they also pose significant ethical challenges, including amplifying harmful content and reinforcing societal biases. For instance, biases in some industrial image generation models highlighted the urgent need for robust fairness assessments. Most existing evaluation frameworks focus on the comprehensiveness of various aspects of the models, but they exhibit critical limitations, including insufficient attention to content generation alignment and social bias-sensitive domains. More importantly, their reliance on pixel-detection techniques is prone to inaccuracies. To address these issues, this paper presents INFELM, an in-depth fairness evaluation on widely-used text-to-image models. Our key contributions are: (1) an advanced skintone classifier incorporating facial topology and refined skin pixel representation to enhance classification precision by at least 16.04%, (2) a bias-sensitive content alignment measurement for understanding societal impacts, (3) a generalizable representation bias evaluation for diverse demographic groups, and (4) extensive experiments analyzing large-scale text-to-image model outputs across six social-bias-sensitive domains. We find that existing models in the study generally do not meet the empirical fairness criteria, and representation bias is generally more pronounced than alignment errors. INFELM establishes a robust benchmark for fairness assessment, supporting the development of multi-modal AI systems that align with ethical and human-centric principles.
comment: Di Jin and Xing Liu contributed equally to this work
♻ ☆ McGrids: Monte Carlo-Driven Adaptive Grids for Iso-Surface Extraction
Iso-surface extraction from an implicit field is a fundamental process in various applications of computer vision and graphics. When dealing with geometric shapes with complicated geometric details, many existing algorithms suffer from high computational costs and memory usage. This paper proposes McGrids, a novel approach to improve the efficiency of iso-surface extraction. The key idea is to construct adaptive grids for iso-surface extraction rather than using a simple uniform grid as prior art does. Specifically, we formulate the problem of constructing adaptive grids as a probability sampling problem, which is then solved by Monte Carlo process. We demonstrate McGrids' capability with extensive experiments from both analytical SDFs computed from surface meshes and learned implicit fields from real multiview images. The experiment results show that our McGrids can significantly reduce the number of implicit field queries, resulting in significant memory reduction, while producing high-quality meshes with rich geometric details.
♻ ☆ MagicFace: High-Fidelity Facial Expression Editing with Action-Unit Control
We address the problem of facial expression editing by controling the relative variation of facial action-unit (AU) from the same person. This enables us to edit this specific person's expression in a fine-grained, continuous and interpretable manner, while preserving their identity, pose, background and detailed facial attributes. Key to our model, which we dub MagicFace, is a diffusion model conditioned on AU variations and an ID encoder to preserve facial details of high consistency. Specifically, to preserve the facial details with the input identity, we leverage the power of pretrained Stable-Diffusion models and design an ID encoder to merge appearance features through self-attention. To keep background and pose consistency, we introduce an efficient Attribute Controller by explicitly informing the model of current background and pose of the target. By injecting AU variations into a denoising UNet, our model can animate arbitrary identities with various AU combinations, yielding superior results in high-fidelity expression editing compared to other facial expression editing works. Code is publicly available at https://github.com/weimengting/MagicFace.
♻ ☆ UniMatch V2: Pushing the Limit of Semi-Supervised Semantic Segmentation
Semi-supervised semantic segmentation (SSS) aims at learning rich visual knowledge from cheap unlabeled images to enhance semantic segmentation capability. Among recent works, UniMatch improves its precedents tremendously by amplifying the practice of weak-to-strong consistency regularization. Subsequent works typically follow similar pipelines and propose various delicate designs. Despite the achieved progress, strangely, even in this flourishing era of numerous powerful vision models, almost all SSS works are still sticking to 1) using outdated ResNet encoders with small-scale ImageNet-1K pre-training, and 2) evaluation on simple Pascal and Cityscapes datasets. In this work, we argue that, it is necessary to switch the baseline of SSS from ResNet-based encoders to more capable ViT-based encoders (e.g., DINOv2) that are pre-trained on massive data. A simple update on the encoder (even using 2x fewer parameters) can bring more significant improvement than careful method designs. Built on this competitive baseline, we present our upgraded and simplified UniMatch V2, inheriting the core spirit of weak-to-strong consistency from V1, but requiring less training cost and providing consistently better results. Additionally, witnessing the gradually saturated performance on Pascal and Cityscapes, we appeal that we should focus on more challenging benchmarks with complex taxonomy, such as ADE20K and COCO datasets. Code, models, and logs of all reported values, are available at https://github.com/LiheYoung/UniMatch-V2.
comment: Accepted by TPAMI
♻ ☆ InfiFusion: A Unified Framework for Enhanced Cross-Model Reasoning via LLM Fusion
Large Language Models (LLMs) have demonstrated strong performance across various reasoning tasks, yet building a single model that consistently excels across all domains remains challenging. This paper addresses this problem by exploring strategies to integrate multiple domain-specialized models into an efficient pivot model.We propose two fusion strategies to combine the strengths of multiple LLMs: (1) a pairwise, multi-step fusion approach that sequentially distills each source model into the pivot model, followed by a weight merging step to integrate the distilled models into the final model. This method achieves strong performance but requires substantial training effort; and (2) a unified fusion approach that aggregates all source models' outputs simultaneously.To improve the fusion process, we introduce a novel Rate-Skewness Adaptive Fusion (RSAF) technique, which dynamically adjusts top-K ratios during parameter merging for enhanced flexibility and stability.Furthermore, we propose an uncertainty-based weighting method for the unified approach, which dynamically balances the contributions of source models and outperforms other logits/distribution ensemble methods.We achieved accuracy improvements of 9.27%, 8.80%, and 8.89% on the GSM8K, MATH, and HumanEval tasks, respectively.
comment: Under review
♻ ☆ Diffusion as Shader: 3D-aware Video Diffusion for Versatile Video Generation Control
Diffusion models have demonstrated impressive performance in generating high-quality videos from text prompts or images. However, precise control over the video generation process, such as camera manipulation or content editing, remains a significant challenge. Existing methods for controlled video generation are typically limited to a single control type, lacking the flexibility to handle diverse control demands. In this paper, we introduce Diffusion as Shader (DaS), a novel approach that supports multiple video control tasks within a unified architecture. Our key insight is that achieving versatile video control necessitates leveraging 3D control signals, as videos are fundamentally 2D renderings of dynamic 3D content. Unlike prior methods limited to 2D control signals, DaS leverages 3D tracking videos as control inputs, making the video diffusion process inherently 3D-aware. This innovation allows DaS to achieve a wide range of video controls by simply manipulating the 3D tracking videos. A further advantage of using 3D tracking videos is their ability to effectively link frames, significantly enhancing the temporal consistency of the generated videos. With just 3 days of fine-tuning on 8 H800 GPUs using less than 10k videos, DaS demonstrates strong control capabilities across diverse tasks, including mesh-to-video generation, camera control, motion transfer, and object manipulation.
comment: Project page: https://igl-hkust.github.io/das/ Codes: https://github.com/IGL-HKUST/DiffusionAsShader
♻ ☆ Nothing Stands Still: A Spatiotemporal Benchmark on 3D Point Cloud Registration Under Large Geometric and Temporal Change SP
Building 3D geometric maps of man-made spaces is a well-established and active field that is fundamental to computer vision and robotics. However, considering the evolving nature of built environments, it is essential to question the capabilities of current mapping efforts in handling temporal changes. In addition, spatiotemporal mapping holds significant potential for achieving sustainability and circularity goals. Existing mapping approaches focus on small changes, such as object relocation or self-driving car operation; in all cases where the main structure of the scene remains fixed. Consequently, these approaches fail to address more radical changes in the structure of the built environment, such as geometry and topology. To this end, we introduce the Nothing Stands Still (NSS) benchmark, which focuses on the spatiotemporal registration of 3D scenes undergoing large spatial and temporal change, ultimately creating one coherent spatiotemporal map. Specifically, the benchmark involves registering two or more partial 3D point clouds (fragments) from the same scene but captured from different spatiotemporal views. In addition to the standard pairwise registration, we assess the multi-way registration of multiple fragments that belong to any temporal stage. As part of NSS, we introduce a dataset of 3D point clouds recurrently captured in large-scale building indoor environments that are under construction or renovation. The NSS benchmark presents three scenarios of increasing difficulty, to quantify the generalization ability of point cloud registration methods over space (within one building and across buildings) and time. We conduct extensive evaluations of state-of-the-art methods on NSS. The results demonstrate the necessity for novel methods specifically designed to handle large spatiotemporal changes. The homepage of our benchmark is at http://nothing-stands-still.com.
comment: To appear in the ISPRS Journal of Photogrammetry and Remote Sensing. 29 pages, 26 figures. For the project page, see http://nothing-stands-still.com
♻ ☆ STITCH: Surface reconstrucTion using Implicit neural representations with Topology Constraints and persistent Homology
We present STITCH, a novel approach for neural implicit surface reconstruction of a sparse and irregularly spaced point cloud while enforcing topological constraints (such as having a single connected component). We develop a new differentiable framework based on persistent homology to formulate topological loss terms that enforce the prior of a single 2-manifold object. Our method demonstrates excellent performance in preserving the topology of complex 3D geometries, evident through both visual and empirical comparisons. We supplement this with a theoretical analysis, and provably show that optimizing the loss with stochastic (sub)gradient descent leads to convergence and enables reconstructing shapes with a single connected component. Our approach showcases the integration of differentiable topological data analysis tools for implicit surface reconstruction.
comment: 19 pages, 12 figures, 29 tables
♻ ☆ Multi-Task Model Merging via Adaptive Weight Disentanglement
Model merging has recently gained attention as an economical and scalable approach to incorporate task-specific weights from various tasks into a unified multi-task model. For example, in Task Arithmetic (TA), adding the fine-tuned weights of different tasks can enhance the model's performance on those tasks, while subtracting them leads to task forgetting. Although TA is highly effective, interference among task still hampers the performance of the merged model. Existing methods for handling conflicts between task generally rely on empirical selection, resulting in suboptimal performance. In this paper, we introduce an Adaptive Weight Disentanglement method. We begin by theoretically proving that task vectors employed in model merging should be orthogonal to minimize interference among tasks. Guided by this insight, we initialize redundant vectors such that, when subtracted from the original task vectors, the resulting vectors exhibit increased orthogonality. Additionally, we impose an norm constraint on the redundant vectors to preserve the performance of the task-specific models. Experimental results demonstrate the effectiveness of our proposed technique: it successfully extracts redundant vectors, and after their subtraction, the task vectors not only retain robust performance but also achieve superior fusion outcomes. Our code is available at \href{https://github.com/FarisXiong/AWD.git}{https://github.com/FarisXiong/AWD.git}.
♻ ☆ Embodied VideoAgent: Persistent Memory from Egocentric Videos and Embodied Sensors Enables Dynamic Scene Understanding
This paper investigates the problem of understanding dynamic 3D scenes from egocentric observations, a key challenge in robotics and embodied AI. Unlike prior studies that explored this as long-form video understanding and utilized egocentric video only, we instead propose an LLM-based agent, Embodied VideoAgent, which constructs scene memory from both egocentric video and embodied sensory inputs (e.g. depth and pose sensing). We further introduce a VLM-based approach to automatically update the memory when actions or activities over objects are perceived. Embodied VideoAgent attains significant advantages over counterparts in challenging reasoning and planning tasks in 3D scenes, achieving gains of 4.9% on Ego4D-VQ3D, 5.8% on OpenEQA, and 11.7% on EnvQA. We have also demonstrated its potential in various embodied AI tasks including generating embodied interactions and perception for robot manipulation. The code and demo will be made public.
comment: project page: https://embodied-videoagent.github.io/
♻ ☆ MoEE: Mixture of Emotion Experts for Audio-Driven Portrait Animation
The generation of talking avatars has achieved significant advancements in precise audio synchronization. However, crafting lifelike talking head videos requires capturing a broad spectrum of emotions and subtle facial expressions. Current methods face fundamental challenges: a) the absence of frameworks for modeling single basic emotional expressions, which restricts the generation of complex emotions such as compound emotions; b) the lack of comprehensive datasets rich in human emotional expressions, which limits the potential of models. To address these challenges, we propose the following innovations: 1) the Mixture of Emotion Experts (MoEE) model, which decouples six fundamental emotions to enable the precise synthesis of both singular and compound emotional states; 2) the DH-FaceEmoVid-150 dataset, specifically curated to include six prevalent human emotional expressions as well as four types of compound emotions, thereby expanding the training potential of emotion-driven models. Furthermore, to enhance the flexibility of emotion control, we propose an emotion-to-latents module that leverages multimodal inputs, aligning diverse control signals-such as audio, text, and labels-to ensure more varied control inputs as well as the ability to control emotions using audio alone. Through extensive quantitative and qualitative evaluations, we demonstrate that the MoEE framework, in conjunction with the DH-FaceEmoVid-150 dataset, excels in generating complex emotional expressions and nuanced facial details, setting a new benchmark in the field. These datasets will be publicly released.
♻ ☆ Magic-Boost: Boost 3D Generation with Multi-View Conditioned Diffusion
Benefiting from the rapid development of 2D diffusion models, 3D content generation has witnessed significant progress. One promising solution is to finetune the pre-trained 2D diffusion models to produce multi-view images and then reconstruct them into 3D assets via feed-forward sparse-view reconstruction models. However, limited by the 3D inconsistency in the generated multi-view images and the low reconstruction resolution of the feed-forward reconstruction models, the generated 3d assets are still limited to incorrect geometries and blurry textures. To address this problem, we present a multi-view based refine method, named Magic-Boost, to further refine the generation results. In detail, we first propose a novel multi-view conditioned diffusion model which extracts 3d prior from the synthesized multi-view images to synthesize high-fidelity novel view images and then introduce a novel iterative-update strategy to adopt it to provide precise guidance to refine the coarse generated results through a fast optimization process. Conditioned on the strong 3d priors extracted from the synthesized multi-view images, Magic-Boost is capable of providing precise optimization guidance that well aligns with the coarse generated 3D assets, enriching the local detail in both geometry and texture within a short time ($\sim15$min). Extensive experiments show Magic-Boost greatly enhances the coarse generated inputs, generates high-quality 3D assets with rich geometric and textural details. (Project Page: https://magic-research.github.io/magic-boost/)
♻ ☆ YOLO11 to Its Genesis: A Decadal and Comprehensive Review of The You Only Look Once (YOLO) Series
Given the rapid emergence and applications of Large Language This review systematically examines the progression of the You Only Look Once (YOLO) object detection algorithms from YOLOv1 to the recently unveiled YOLO11 (or YOLOv11). Employing a reverse chronological analysis, this study examines the advancements introduced by YOLO algorithms, beginning with YOLOv11 and progressing through YOLOv10, YOLOv9, YOLOv8, and subsequent versions to explore each version's contributions to enhancing speed, detection accuracy, and computational efficiency in real-time object detection. By detailing the incremental technological advancements in subsequent YOLO versions, this review chronicles the evolution of YOLO, and discusses the challenges and limitations in each earlier versions. The evolution signifies a path towards integrating YOLO with multimodal, context-aware, and Artificial General Intelligence (AGI) systems for the next YOLO decade, promising significant implications for future developments in AI-driven applications. YOLOV11 to YOLOv1
comment: 11 Figures, 7 Tables
♻ ☆ Multi-Domain Features Guided Supervised Contrastive Learning for Radar Target Detection
Detecting small targets in sea clutter is challenging due to dynamic maritime conditions. Existing solutions either model sea clutter for detection or extract target features based on clutter-target echo differences, including statistical and deep features. While more common, the latter often excels in controlled scenarios but struggles with robust detection and generalization in diverse environments, limiting practical use. In this letter, we propose a multi-domain features guided supervised contrastive learning (MDFG_SCL) method, which integrates statistical features derived from multi-domain differences with deep features obtained through supervised contrastive learning, thereby capturing both low-level domain-specific variations and high-level semantic information. This comprehensive feature integration enables the model to effectively distinguish between small targets and sea clutter, even under challenging conditions. Experiments conducted on real-world datasets demonstrate that the proposed shallow-to-deep detector not only achieves effective identification of small maritime targets but also maintains superior detection performance across varying sea conditions, outperforming the mainstream unsupervised contrastive learning and supervised contrastive learning methods.
♻ ☆ ContextMRI: Enhancing Compressed Sensing MRI through Metadata Conditioning
Compressed sensing MRI seeks to accelerate MRI acquisition processes by sampling fewer k-space measurements and then reconstructing the missing data algorithmically. The success of these approaches often relies on strong priors or learned statistical models. While recent diffusion model-based priors have shown great potential, previous methods typically ignore clinically available metadata (e.g. patient demographics, imaging parameters, slice-specific information). In practice, metadata contains meaningful cues about the anatomy and acquisition protocol, suggesting it could further constrain the reconstruction problem. In this work, we propose ContextMRI, a text-conditioned diffusion model for MRI that integrates granular metadata into the reconstruction process. We train a pixel-space diffusion model directly on minimally processed, complex-valued MRI images. During inference, metadata is converted into a structured text prompt and fed to the model via CLIP text embeddings. By conditioning the prior on metadata, we unlock more accurate reconstructions and show consistent gains across multiple datasets, acceleration factors, and undersampling patterns. Our experiments demonstrate that increasing the fidelity of metadata, ranging from slice location and contrast to patient age, sex, and pathology, systematically boosts reconstruction performance. This work highlights the untapped potential of leveraging clinical context for inverse problems and opens a new direction for metadata-driven MRI reconstruction.
comment: 29 pages, 9 figures. Code is available at https://github.com/DoHunLee1/ContextMRI
♻ ☆ Hyper-3DG: Text-to-3D Gaussian Generation via Hypergraph
Text-to-3D generation represents an exciting field that has seen rapid advancements, facilitating the transformation of textual descriptions into detailed 3D models. However, current progress often neglects the intricate high-order correlation of geometry and texture within 3D objects, leading to challenges such as over-smoothness, over-saturation and the Janus problem. In this work, we propose a method named ``3D Gaussian Generation via Hypergraph (Hyper-3DG)'', designed to capture the sophisticated high-order correlations present within 3D objects. Our framework is anchored by a well-established mainflow and an essential module, named ``Geometry and Texture Hypergraph Refiner (HGRefiner)''. This module not only refines the representation of 3D Gaussians but also accelerates the update process of these 3D Gaussians by conducting the Patch-3DGS Hypergraph Learning on both explicit attributes and latent visual features. Our framework allows for the production of finely generated 3D objects within a cohesive optimization, effectively circumventing degradation. Extensive experimentation has shown that our proposed method significantly enhances the quality of 3D generation while incurring no additional computational overhead for the underlying framework. (Project code: https://github.com/yjhboy/Hyper3DG)
comment: Accepted by IJCV
♻ ☆ EndoPerfect: A Hybrid NeRF-Stereo Vision Approach Pioneering Monocular Depth Estimation and 3D Reconstruction in Endoscopy
3D reconstruction in endoscopic sinus surgery (ESS) demands exceptional accuracy, with the mean error and standard deviation necessitating within the range of a single CT slice (0.625 mm), as the critical structures in the nasal cavity are situated within submillimeter distances from surgical instruments. This poses a formidable challenge when using conventional monocular endoscopes. Depth estimation is crucial for 3D reconstruction, yet existing depth estimation methodologies either suffer from inherent accuracy limitations or, in the case of learning-based approaches, perform poorly when applied to ESS despite succeeding on their original datasets. In this study, we present a novel, highly generalizable method that combines Neural Radiance Fields (NeRF) and stereo depth estimation for 3D reconstruction that can derive metric monocular depth. Our approach begins with an initial NeRF reconstruction yielding a coarse 3D scene, the subsequent creation of binocular pairs within coarse 3D scene, and generation of depth maps through stereo vision, These depth maps are used to supervise subsequent NeRF iteration, progressively refining NeRF and binocular depth, the refinement process continues until the depth maps converged. This recursive process generates high-accuracy depth maps from monocular endoscopic video. Evaluation in synthetic endoscopy shows a depth accuracy of 0.125 $\pm$ 0.443 mm, well within the 0.625 mm threshold. Further clinical experiments with real endoscopic data demonstrate a mean distance to CT mesh of 0.269 mm, representing the highest accuracy among monocular 3D reconstruction methods in ESS.
♻ ☆ The evolution of volumetric video: A survey of smart transcoding and compression approaches
Volumetric video, the capture and display of three-dimensional (3D) imagery, has emerged as a revolutionary technology poised to transform the media landscape, enabling immersive experiences that transcend the limitations of traditional 2D video. One of the key challenges in this domain is the efficient delivery of these high-bandwidth, data-intensive volumetric video streams, which requires innovative transcoding and compression techniques. This research paper explores the state-of-the-art in volumetric video compression and delivery, with a focus on the potential of AI-driven solutions to address the unique challenges posed by this emerging medium.
♻ ☆ Physics Based Differentiable Rendering for Inverse Problems and Beyond
Physics-based differentiable rendering (PBDR) has become an efficient method in computer vision, graphics, and machine learning for addressing an array of inverse problems. PBDR allows patterns to be generated from perceptions which can be applied to enhance object attributes like geometry, substances, and lighting by adding physical models of light propagation and materials interaction. Due to these capabilities, distinguished rendering has been employed in a wider range of sectors such as autonomous navigation, scene reconstruction, and material design. We provide an extensive overview of PBDR techniques in this study, emphasizing their creation, effectiveness, and limitations while managing inverse situations. We demonstrate modern techniques and examine their value in everyday situations.
♻ ☆ Discriminative Class Tokens for Text-to-Image Diffusion Models ICCV 2023
Recent advances in text-to-image diffusion models have enabled the generation of diverse and high-quality images. While impressive, the images often fall short of depicting subtle details and are susceptible to errors due to ambiguity in the input text. One way of alleviating these issues is to train diffusion models on class-labeled datasets. This approach has two disadvantages: (i) supervised datasets are generally small compared to large-scale scraped text-image datasets on which text-to-image models are trained, affecting the quality and diversity of the generated images, or (ii) the input is a hard-coded label, as opposed to free-form text, limiting the control over the generated images. In this work, we propose a non-invasive fine-tuning technique that capitalizes on the expressive potential of free-form text while achieving high accuracy through discriminative signals from a pretrained classifier. This is done by iteratively modifying the embedding of an added input token of a text-to-image diffusion model, by steering generated images toward a given target class according to a classifier. Our method is fast compared to prior fine-tuning methods and does not require a collection of in-class images or retraining of a noise-tolerant classifier. We evaluate our method extensively, showing that the generated images are: (i) more accurate and of higher quality than standard diffusion models, (ii) can be used to augment training data in a low-resource setting, and (iii) reveal information about the data used to train the guiding classifier. The code is available at \url{https://github.com/idansc/discriminative_class_tokens}.
comment: ICCV 2023
♻ ☆ AI-generated Image Detection: Passive or Watermark?
While text-to-image models offer numerous benefits, they also pose significant societal risks. Detecting AI-generated images is crucial for mitigating these risks. Detection methods can be broadly categorized into passive and watermark-based approaches: passive detectors rely on artifacts present in AI-generated images, whereas watermark-based detectors proactively embed watermarks into such images. A key question is which type of detector performs better in terms of effectiveness, robustness, and efficiency. However, the current literature lacks a comprehensive understanding of this issue. In this work, we aim to bridge that gap by developing ImageDetectBench, the first comprehensive benchmark to compare the effectiveness, robustness, and efficiency of passive and watermark-based detectors. Our benchmark includes four datasets, each containing a mix of AI-generated and non-AI-generated images. We evaluate five passive detectors and four watermark-based detectors against eight types of common perturbations and three types of adversarial perturbations. Our benchmark results reveal several interesting findings. For instance, watermark-based detectors consistently outperform passive detectors, both in the presence and absence of perturbations. Based on these insights, we provide recommendations for detecting AI-generated images, e.g., when both types of detectors are applicable, watermark-based detectors should be the preferred choice. Our code and data are publicly available at https://github.com/moyangkuo/ImageDetectBench.git.
♻ ☆ Masked Image Modeling: A Survey
In this work, we survey recent studies on masked image modeling (MIM), an approach that emerged as a powerful self-supervised learning technique in computer vision. The MIM task involves masking some information, e.g.~pixels, patches, or even latent representations, and training a model, usually an autoencoder, to predicting the missing information by using the context available in the visible part of the input. We identify and formalize two categories of approaches on how to implement MIM as a pretext task, one based on reconstruction and one based on contrastive learning. Then, we construct a taxonomy and review the most prominent papers in recent years. We complement the manually constructed taxonomy with a dendrogram obtained by applying a hierarchical clustering algorithm. We further identify relevant clusters via manually inspecting the resulting dendrogram. Our review also includes datasets that are commonly used in MIM research. We aggregate the performance results of various masked image modeling methods on the most popular datasets, to facilitate the comparison of competing methods. Finally, we identify research gaps and propose several interesting directions of future work. We supplement our survey with the following public repository containing organized references: https://github.com/vladhondru25/MIM-Survey.
comment: Revised version
♻ ☆ Real Time Multi Organ Classification on Computed Tomography Images
Organ segmentation is a fundamental task in medical imaging since it is useful for many clinical automation pipelines. However, some tasks do not require full segmentation. Instead, a classifier can identify the selected organ without segmenting the entire volume. In this study, we demonstrate a classifier based method to obtain organ labels in real time by using a large context size with a sparse data sampling strategy. Although our method operates as an independent classifier at query locations, it can generate full segmentations by querying grid locations at any resolution, offering faster performance than segmentation algorithms. We compared our method with existing segmentation techniques, demonstrating its superior runtime potential for practical applications in medical imaging.
comment: 11 pages, Organ Classification, Organ Segmentation
♻ ☆ Learning Transferable Features for Implicit Neural Representations
Implicit neural representations (INRs) have demonstrated success in a variety of applications, including inverse problems and neural rendering. An INR is typically trained to capture one signal of interest, resulting in learned neural features that are highly attuned to that signal. Assumed to be less generalizable, we explore the aspect of transferability of such learned neural features for fitting similar signals. We introduce a new INR training framework, STRAINER that learns transferrable features for fitting INRs to new signals from a given distribution, faster and with better reconstruction quality. Owing to the sequential layer-wise affine operations in an INR, we propose to learn transferable representations by sharing initial encoder layers across multiple INRs with independent decoder layers. At test time, the learned encoder representations are transferred as initialization for an otherwise randomly initialized INR. We find STRAINER to yield extremely powerful initialization for fitting images from the same domain and allow for $\approx +10dB$ gain in signal quality early on compared to an untrained INR itself. STRAINER also provides a simple way to encode data-driven priors in INRs. We evaluate STRAINER on multiple in-domain and out-of-domain signal fitting tasks and inverse problems and further provide detailed analysis and discussion on the transferability of STRAINER's features. Our demo can be accessed at https://kushalvyas.github.io/strainer.html .
comment: Project Website: https://kushalvyas.github.io/strainer.html
♻ ☆ Cross-Modal Mapping: Eliminating the Modality Gap for Few-Shot Image Classification
In few-shot image classification tasks, methods based on pretrained vision-language models (such as CLIP) have achieved significant progress. Many existing approaches directly utilize visual or textual features as class prototypes, however, these features fail to adequately represent their respective classes. We identify that this limitation arises from the modality gap inherent in pretrained vision-language models, which weakens the connection between the visual and textual modalities. To eliminate this modality gap and enable textual features to fully represent class prototypes, we propose a simple and efficient Cross-Modal Mapping (CMM) method. This method employs a linear transformation to map image features into the textual feature space, ensuring that both modalities are comparable within the same feature space. Nevertheless, the modality gap diminishes the effectiveness of this mapping. To address this, we further introduce a triplet loss to optimize the spatial relationships between image features and class textual features, allowing class textual features to naturally serve as class prototypes for image features. Experimental results on 11 benchmark demonstrate an average improvement of approximately 3.5% compared to conventional methods and exhibit competitive performance on 4 distribution shift benchmarks.
♻ ☆ Gaze-Informed Vision Transformers: Predicting Driving Decisions Under Uncertainty
Vision Transformers (ViT) have advanced computer vision, yet their efficacy in complex tasks like driving remains less explored. This study enhances ViT by integrating human eye gaze, captured via eye-tracking, to increase prediction accuracy in driving scenarios under uncertainty in both real-world and virtual reality scenarios. First, we establish the significance of human eye gaze in left-right driving decisions, as observed in both human subjects and a ViT model. By comparing the similarity between human fixation maps and ViT attention weights, we reveal the dynamics of overlap across individual heads and layers. This overlap demonstrates that fixation data can guide the model in distributing its attention weights more effectively. We introduce the fixation-attention intersection (FAX) loss, a novel loss function that significantly improves ViT performance under high uncertainty conditions. Our results show that ViT, when trained with FAX loss, aligns its attention with human gaze patterns. This gaze-informed approach has significant potential for driver behavior analysis, as well as broader applications in human-centered AI systems, extending ViT's use to complex visual environments.
comment: 25 pages, 9 figures, 3 tables
♻ ☆ Proactive Adversarial Defense: Harnessing Prompt Tuning in Vision-Language Models to Detect Unseen Backdoored Images
Backdoor attacks pose a critical threat by embedding hidden triggers into inputs, causing models to misclassify them into target labels. While extensive research has focused on mitigating these attacks in object recognition models through weight fine-tuning, much less attention has been given to detecting backdoored samples directly. Given the vast datasets used in training, manual inspection for backdoor triggers is impractical, and even state-of-the-art defense mechanisms fail to fully neutralize their impact. To address this gap, we introduce a groundbreaking method to detect unseen backdoored images during both training and inference. Leveraging the transformative success of prompt tuning in Vision Language Models (VLMs), our approach trains learnable text prompts to differentiate clean images from those with hidden backdoor triggers. Experiments demonstrate the exceptional efficacy of this method, achieving an impressive average accuracy of 86% across two renowned datasets for detecting unseen backdoor triggers, establishing a new standard in backdoor defense.
Information Retrieval 12
☆ Search-o1: Agentic Search-Enhanced Large Reasoning Models
Large reasoning models (LRMs) like OpenAI-o1 have demonstrated impressive long stepwise reasoning capabilities through large-scale reinforcement learning. However, their extended reasoning processes often suffer from knowledge insufficiency, leading to frequent uncertainties and potential errors. To address this limitation, we introduce \textbf{Search-o1}, a framework that enhances LRMs with an agentic retrieval-augmented generation (RAG) mechanism and a Reason-in-Documents module for refining retrieved documents. Search-o1 integrates an agentic search workflow into the reasoning process, enabling dynamic retrieval of external knowledge when LRMs encounter uncertain knowledge points. Additionally, due to the verbose nature of retrieved documents, we design a separate Reason-in-Documents module to deeply analyze the retrieved information before injecting it into the reasoning chain, minimizing noise and preserving coherent reasoning flow. Extensive experiments on complex reasoning tasks in science, mathematics, and coding, as well as six open-domain QA benchmarks, demonstrate the strong performance of Search-o1. This approach enhances the trustworthiness and applicability of LRMs in complex reasoning tasks, paving the way for more reliable and versatile intelligent systems. The code is available at \url{https://github.com/sunnynexus/Search-o1}.
☆ Unraveling the Impact of Visual Complexity on Search as Learning
Information search has become essential for learning and knowledge acquisition, offering broad access to information and learning resources. The visual complexity of web pages is known to influence search behavior, with previous work suggesting that searchers make evaluative judgments within the first second on a page. However, there is a significant gap in our understanding of how visual complexity impacts searches specifically conducted with a learning intent. This gap is particularly relevant for the development of optimized information retrieval (IR) systems that effectively support educational objectives. To address this research need, we model visual complexity and aesthetics via a diverse set of features, investigating their relationship with search behavior during learning-oriented web sessions. Our study utilizes a publicly available dataset from a lab study where participants learned about thunderstorm formation. Our findings reveal that while content relevance is the most significant predictor for knowledge gain, sessions with less visually complex pages are associated with higher learning success. This observation applies to features associated with the layout of web pages rather than to simpler features (e.g., number of images). The reported results shed light on the impact of visual complexity on learning-oriented searches, informing the design of more effective IR systems for educational contexts. To foster reproducibility, we release our source code (https://github.com/TIBHannover/sal_visual_complexity).
☆ A Novel Approach to Scalable and Automatic Topic-Controlled Question Generation in Education
The development of Automatic Question Generation (QG) models has the potential to significantly improve educational practices by reducing the teacher workload associated with creating educational content. This paper introduces a novel approach to educational question generation that controls the topical focus of questions. The proposed Topic-Controlled Question Generation (T-CQG) method enhances the relevance and effectiveness of the generated content for educational purposes. Our approach uses fine-tuning on a pre-trained T5-small model, employing specially created datasets tailored to educational needs. The research further explores the impacts of pre-training strategies, quantisation, and data augmentation on the model's performance. We specifically address the challenge of generating semantically aligned questions with paragraph-level contexts, thereby improving the topic specificity of the generated questions. In addition, we introduce and explore novel evaluation methods to assess the topical relatedness of the generated questions. Our results, validated through rigorous offline and human-backed evaluations, demonstrate that the proposed models effectively generate high-quality, topic-focused questions. These models have the potential to reduce teacher workload and support personalised tutoring systems by serving as bespoke question generators. With its relatively small number of parameters, the proposals not only advance the capabilities of question generation models for handling specific educational topics but also offer a scalable solution that reduces infrastructure costs. This scalability makes them feasible for widespread use in education without reliance on proprietary large language models like ChatGPT.
comment: To be published at ACM Conf. on Learning Analytics and Knowledge (LAK'25)
☆ De-centering the (Traditional) User: Multistakeholder Evaluation of Recommender Systems
Multistakeholder recommender systems are those that account for the impacts and preferences of multiple groups of individuals, not just the end users receiving recommendations. Due to their complexity, evaluating these systems cannot be restricted to the overall utility of a single stakeholder, as is often the case of more mainstream recommender system applications. In this article, we focus our discussion on the intricacies of the evaluation of multistakeholder recommender systems. We bring attention to the different aspects involved in the evaluation of multistakeholder recommender systems - from the range of stakeholders involved (including but not limited to producers and consumers) to the values and specific goals of each relevant stakeholder. Additionally, we discuss how to move from theoretical principles to practical implementation, providing specific use case examples. Finally, we outline open research directions for the RecSys community to explore. We aim to provide guidance to researchers and practitioners about how to think about these complex and domain-dependent issues of evaluation in the course of designing, developing, and researching applications with multistakeholder aspects.
comment: Preprint submitted to Elsevier, "Re-centering the User in Recommender System Research" special issue of the International Journal of Human-Computer Studies (IJHCS)
☆ Comparison of Feature Learning Methods for Metadata Extraction from PDF Scholarly Documents
The availability of metadata for scientific documents is pivotal in propelling scientific knowledge forward and for adhering to the FAIR principles (i.e. Findability, Accessibility, Interoperability, and Reusability) of research findings. However, the lack of sufficient metadata in published documents, particularly those from smaller and mid-sized publishers, hinders their accessibility. This issue is widespread in some disciplines, such as the German Social Sciences, where publications often employ diverse templates. To address this challenge, our study evaluates various feature learning and prediction methods, including natural language processing (NLP), computer vision (CV), and multimodal approaches, for extracting metadata from documents with high template variance. We aim to improve the accessibility of scientific documents and facilitate their wider use. To support our comparison of these methods, we provide comprehensive experimental results, analyzing their accuracy and efficiency in extracting metadata. Additionally, we provide valuable insights into the strengths and weaknesses of various feature learning and prediction methods, which can guide future research in this field.
☆ A Flexible and Scalable Framework for Video Moment Search
Video moment search, the process of finding relevant moments in a video corpus to match a user's query, is crucial for various applications. Existing solutions, however, often assume a single perfect matching moment, struggle with inefficient inference, and have limitations with hour-long videos. This paper introduces a flexible and scalable framework for retrieving a ranked list of moments from collection of videos in any length to match a text query, a task termed Ranked Video Moment Retrieval (RVMR). Our framework, called Segment-Proposal-Ranking (SPR), simplifies the search process into three independent stages: segment retrieval, proposal generation, and moment refinement with re-ranking. Specifically, videos are divided into equal-length segments with precomputed embeddings indexed offline, allowing efficient retrieval regardless of video length. For scalable online retrieval, both segments and queries are projected into a shared feature space to enable approximate nearest neighbor (ANN) search. Retrieved segments are then merged into coarse-grained moment proposals. Then a refinement and re-ranking module is designed to reorder and adjust timestamps of the coarse-grained proposals. Evaluations on the TVR-Ranking dataset demonstrate that our framework achieves state-of-the-art performance with significant reductions in computational cost and processing time. The flexible design also allows for independent improvements to each stage, making SPR highly adaptable for large-scale applications.
☆ Finding Needles in Emb(a)dding Haystacks: Legal Document Retrieval via Bagging and SVR Ensembles
We introduce a retrieval approach leveraging Support Vector Regression (SVR) ensembles, bootstrap aggregation (bagging), and embedding spaces on the German Dataset for Legal Information Retrieval (GerDaLIR). By conceptualizing the retrieval task in terms of multiple binary needle-in-a-haystack subtasks, we show improved recall over the baselines (0.849 > 0.803 | 0.829) using our voting ensemble, suggesting promising initial results, without training or fine-tuning any deep learning models. Our approach holds potential for further enhancement, particularly through refining the encoding models and optimizing hyperparameters.
☆ Harmonizing Metadata of Language Resources for Enhanced Querying and Accessibility
This paper addresses the harmonization of metadata from diverse repositories of language resources (LRs). Leveraging linked data and RDF techniques, we integrate data from multiple sources into a unified model based on DCAT and META-SHARE OWL ontology. Our methodology supports text-based search, faceted browsing, and advanced SPARQL queries through Linghub, a newly developed portal. Real user queries from the Corpora Mailing List (CML) were evaluated to assess Linghub capability to satisfy actual user needs. Results indicate that while some limitations persist, many user requests can be successfully addressed. The study highlights significant metadata issues and advocates for adherence to open vocabularies and standards to enhance metadata harmonization. This initial research underscores the importance of API-based access to LRs, promoting machine usability and data subset extraction for specific purposes, paving the way for more efficient and standardized LR utilization.
comment: 2024 5th International Conference on Computers and Artificial Intelligence Technology (CAIT 2024)
☆ Spatial Information Integration in Small Language Models for Document Layout Generation and Classification
Document layout understanding is a field of study that analyzes the spatial arrangement of information in a document hoping to understand its structure and layout. Models such as LayoutLM (and its subsequent iterations) can understand semi-structured documents with SotA results; however, the lack of open semi-structured data is a limitation in itself. While semi-structured data is common in everyday life (balance sheets, purchase orders, receipts), there is a lack of public datasets for training machine learning models for this type of document. In this investigation we propose a method to generate new, synthetic, layout information that can help overcoming this data shortage. According to our results, the proposed method performs better than LayoutTransformer, another popular layout generation method. We also show that, in some scenarios, text classification can improve when supported by bounding box information.
comment: 8 pages. Symposium on Applied Computing 2025
♻ ☆ From Lazy to Prolific: Tackling Missing Labels in Open Vocabulary Extreme Classification by Positive-Unlabeled Sequence Learning
Open-vocabulary Extreme Multi-label Classification (OXMC) extends traditional XMC by allowing prediction beyond an extremely large, predefined label set (typically $10^3$ to $10^{12}$ labels), addressing the dynamic nature of real-world labeling tasks. However, self-selection bias in data annotation leads to significant missing labels in both training and test data, particularly for less popular inputs. This creates two critical challenges: generation models learn to be "lazy'" by under-generating labels, and evaluation becomes unreliable due to insufficient annotation in the test set. In this work, we introduce Positive-Unlabeled Sequence Learning (PUSL), which reframes OXMC as an infinite keyphrase generation task, addressing the generation model's laziness. Additionally, we propose to adopt a suite of evaluation metrics, F1@$\mathcal{O}$ and newly proposed B@$k$, to reliably assess OXMC models with incomplete ground truths. In a highly imbalanced e-commerce dataset with substantial missing labels, PUSL generates 30% more unique labels, and 72% of its predictions align with actual user queries. On the less skewed EURLex-4.3k dataset, PUSL demonstrates superior F1 scores, especially as label counts increase from 15 to 30. Our approach effectively tackles both the modeling and evaluation challenges in OXMC with missing labels.
♻ ☆ Is Table Retrieval a Solved Problem? Exploring Join-Aware Multi-Table Retrieval ACL 2024
Retrieving relevant tables containing the necessary information to accurately answer a given question over tables is critical to open-domain question-answering (QA) systems. Previous methods assume the answer to such a question can be found either in a single table or multiple tables identified through question decomposition or rewriting. However, neither of these approaches is sufficient, as many questions require retrieving multiple tables and joining them through a join plan that cannot be discerned from the user query itself. If the join plan is not considered in the retrieval stage, the subsequent steps of reasoning and answering based on those retrieved tables are likely to be incorrect. To address this problem, we introduce a method that uncovers useful join relations for any query and database during table retrieval. We use a novel re-ranking method formulated as a mixed-integer program that considers not only table-query relevance but also table-table relevance that requires inferring join relationships. Our method outperforms the state-of-the-art approaches for table retrieval by up to 9.3% in F1 score and for end-to-end QA by up to 5.4% in accuracy.
comment: ACL 2024. Dataset and code are available at https://peterbaile.github.io/jar
♻ ☆ NV-Embed: Improved Techniques for Training LLMs as Generalist Embedding Models
Decoder-only large language model (LLM)-based embedding models are beginning to outperform BERT or T5-based embedding models in general-purpose text embedding tasks, including dense vector-based retrieval. In this work, we introduce the NV-Embed model, incorporating architectural designs, training procedures, and curated datasets to significantly enhance the performance of LLM as a versatile embedding model, while maintaining its simplicity and reproducibility. For model architecture, we propose a latent attention layer to obtain pooled embeddings, which consistently improves retrieval and downstream task accuracy compared to mean pooling or using the last token embedding from LLMs. To enhance representation learning, we remove the causal attention mask of LLMs during contrastive training. For training algorithm, we introduce a two-stage contrastive instruction-tuning method. It first applies contrastive training with instructions on retrieval datasets, utilizing in-batch negatives and curated hard negative examples. At stage-2, it blends various non-retrieval into instruction tuning, which not only enhances non-retrieval task accuracy but also improves retrieval performance. For training data, we utilize the hard-negative mining, synthetic data generation and existing public available datasets to boost the performance of embedding model. By combining these techniques, our NV-Embed-v1 and NV-Embed-v2 models obtained the No.1 position on the Massive Text Embedding Benchmark (MTEB) (as of May 24, 2024 and August 30, 2024, respectively) across 56 embedding tasks, demonstrating the sustained effectiveness of the proposed methods over time. Additionally, it achieved the highest scores in the Long Doc section and the second-highest scores in the QA section of the AIR Benchmark, which covers a range of out-of-domain information retrieval topics beyond those in MTEB.
comment: We open-source the model at: https://huggingface.co/nvidia/NV-Embed-v2
Machine Learning 189
☆ Decentralized Diffusion Models
Large-scale AI model training divides work across thousands of GPUs, then synchronizes gradients across them at each step. This incurs a significant network burden that only centralized, monolithic clusters can support, driving up infrastructure costs and straining power systems. We propose Decentralized Diffusion Models, a scalable framework for distributing diffusion model training across independent clusters or datacenters by eliminating the dependence on a centralized, high-bandwidth networking fabric. Our method trains a set of expert diffusion models over partitions of the dataset, each in full isolation from one another. At inference time, the experts ensemble through a lightweight router. We show that the ensemble collectively optimizes the same objective as a single model trained over the whole dataset. This means we can divide the training burden among a number of "compute islands," lowering infrastructure costs and improving resilience to localized GPU failures. Decentralized diffusion models empower researchers to take advantage of smaller, more cost-effective and more readily available compute like on-demand GPU nodes rather than central integrated systems. We conduct extensive experiments on ImageNet and LAION Aesthetics, showing that decentralized diffusion models FLOP-for-FLOP outperform standard diffusion models. We finally scale our approach to 24 billion parameters, demonstrating that high-quality diffusion models can now be trained with just eight individual GPU nodes in less than a week.
comment: Project webpage: https://decentralizeddiffusion.github.io/
☆ Consistent Flow Distillation for Text-to-3D Generation
Score Distillation Sampling (SDS) has made significant strides in distilling image-generative models for 3D generation. However, its maximum-likelihood-seeking behavior often leads to degraded visual quality and diversity, limiting its effectiveness in 3D applications. In this work, we propose Consistent Flow Distillation (CFD), which addresses these limitations. We begin by leveraging the gradient of the diffusion ODE or SDE sampling process to guide the 3D generation. From the gradient-based sampling perspective, we find that the consistency of 2D image flows across different viewpoints is important for high-quality 3D generation. To achieve this, we introduce multi-view consistent Gaussian noise on the 3D object, which can be rendered from various viewpoints to compute the flow gradient. Our experiments demonstrate that CFD, through consistent flows, significantly outperforms previous methods in text-to-3D generation.
comment: Project page: https://runjie-yan.github.io/cfd/
☆ The GAN is dead; long live the GAN! A Modern GAN Baseline NeurIPS 2024
There is a widely-spread claim that GANs are difficult to train, and GAN architectures in the literature are littered with empirical tricks. We provide evidence against this claim and build a modern GAN baseline in a more principled manner. First, we derive a well-behaved regularized relativistic GAN loss that addresses issues of mode dropping and non-convergence that were previously tackled via a bag of ad-hoc tricks. We analyze our loss mathematically and prove that it admits local convergence guarantees, unlike most existing relativistic losses. Second, our new loss allows us to discard all ad-hoc tricks and replace outdated backbones used in common GANs with modern architectures. Using StyleGAN2 as an example, we present a roadmap of simplification and modernization that results in a new minimalist baseline -- R3GAN. Despite being simple, our approach surpasses StyleGAN2 on FFHQ, ImageNet, CIFAR, and Stacked MNIST datasets, and compares favorably against state-of-the-art GANs and diffusion models.
comment: Accepted to NeurIPS 2024. Code available at https://github.com/brownvc/R3GAN/
☆ From Simple to Complex Skills: The Case of In-Hand Object Reorientation
Learning policies in simulation and transferring them to the real world has become a promising approach in dexterous manipulation. However, bridging the sim-to-real gap for each new task requires substantial human effort, such as careful reward engineering, hyperparameter tuning, and system identification. In this work, we present a system that leverages low-level skills to address these challenges for more complex tasks. Specifically, we introduce a hierarchical policy for in-hand object reorientation based on previously acquired rotation skills. This hierarchical policy learns to select which low-level skill to execute based on feedback from both the environment and the low-level skill policies themselves. Compared to learning from scratch, the hierarchical policy is more robust to out-of-distribution changes and transfers easily from simulation to real-world environments. Additionally, we propose a generalizable object pose estimator that uses proprioceptive information, low-level skill predictions, and control errors as inputs to estimate the object pose over time. We demonstrate that our system can reorient objects, including symmetrical and textureless ones, to a desired pose.
comment: website: https://dexhier.github.io
☆ Entangled Mean Estimation in High-Dimensions
We study the task of high-dimensional entangled mean estimation in the subset-of-signals model. Specifically, given $N$ independent random points $x_1,\ldots,x_N$ in $\mathbb{R}^D$ and a parameter $\alpha \in (0, 1)$ such that each $x_i$ is drawn from a Gaussian with mean $\mu$ and unknown covariance, and an unknown $\alpha$-fraction of the points have identity-bounded covariances, the goal is to estimate the common mean $\mu$. The one-dimensional version of this task has received significant attention in theoretical computer science and statistics over the past decades. Recent work [LY20; CV24] has given near-optimal upper and lower bounds for the one-dimensional setting. On the other hand, our understanding of even the information-theoretic aspects of the multivariate setting has remained limited. In this work, we design a computationally efficient algorithm achieving an information-theoretically near-optimal error. Specifically, we show that the optimal error (up to polylogarithmic factors) is $f(\alpha,N) + \sqrt{D/(\alpha N)}$, where the term $f(\alpha,N)$ is the error of the one-dimensional problem and the second term is the sub-Gaussian error rate. Our algorithmic approach employs an iterative refinement strategy, whereby we progressively learn more accurate approximations $\hat \mu$ to $\mu$. This is achieved via a novel rejection sampling procedure that removes points significantly deviating from $\hat \mu$, as an attempt to filter out unusually noisy samples. A complication that arises is that rejection sampling introduces bias in the distribution of the remaining points. To address this issue, we perform a careful analysis of the bias, develop an iterative dimension-reduction strategy, and employ a novel subroutine inspired by list-decodable learning that leverages the one-dimensional result.
☆ Using LLMs to Infer Non-Binary COVID-19 Sentiments of Chinese Micro-bloggers
Studying public sentiment during crises is crucial for understanding how opinions and sentiments shift, resulting in polarized societies. We study Weibo, the most popular microblogging site in China, using posts made during the outbreak of the COVID-19 crisis. The study period includes the pre-COVID-19 stage, the outbreak stage, and the early stage of epidemic prevention. We use Llama 3 8B, a Large Language Model, to analyze users' sentiments on the platform by classifying them into positive, negative, sarcastic, and neutral categories. Analyzing sentiment shifts on Weibo provides insights into how social events and government actions influence public opinion. This study contributes to understanding the dynamics of social sentiments during health crises, fulfilling a gap in sentiment analysis for Chinese platforms. By examining these dynamics, we aim to offer valuable perspectives on digital communication's role in shaping society's responses during unprecedented global challenges.
comment: 11 pages, 4 figures
☆ Uncertainty-aware Knowledge Tracing AAAI 2025
Knowledge Tracing (KT) is crucial in education assessment, which focuses on depicting students' learning states and assessing students' mastery of subjects. With the rise of modern online learning platforms, particularly massive open online courses (MOOCs), an abundance of interaction data has greatly advanced the development of the KT technology. Previous research commonly adopts deterministic representation to capture students' knowledge states, which neglects the uncertainty during student interactions and thus fails to model the true knowledge state in learning process. In light of this, we propose an Uncertainty-Aware Knowledge Tracing model (UKT) which employs stochastic distribution embeddings to represent the uncertainty in student interactions, with a Wasserstein self-attention mechanism designed to capture the transition of state distribution in student learning behaviors. Additionally, we introduce the aleatory uncertainty-aware contrastive learning loss, which strengthens the model's robustness towards different types of uncertainties. Extensive experiments on six real-world datasets demonstrate that UKT not only significantly surpasses existing deep learning-based models in KT prediction, but also shows unique advantages in handling the uncertainty of student interactions.
comment: Accepted by AAAI 2025
☆ A Novel Pathology Foundation Model by Mayo Clinic, Charité, and Aignostics
Recent advances in digital pathology have demonstrated the effectiveness of foundation models across diverse applications. In this report, we present a novel vision foundation model based on the RudolfV approach. Our model was trained on a dataset comprising 1.2 million histopathology whole slide images, collected from two medical institutions: Mayo Clinic and Charit\'e - Universt\"atsmedizin Berlin. Comprehensive evaluations show that our model achieves state-of-the-art performance across twenty-one public benchmark datasets, even though it is neither the largest model by parameter count nor by training dataset size.
☆ TimeRL: Efficient Deep Reinforcement Learning with Polyhedral Dependence Graphs
Modern deep learning (DL) workloads increasingly use complex deep reinforcement learning (DRL) algorithms that generate training data within the learning loop. This results in programs with several nested loops and dynamic data dependencies between tensors. While DL systems with eager execution support such dynamism, they lack the optimizations and smart scheduling of graph-based execution. Graph-based execution, however, cannot express dynamic tensor shapes, instead requiring the use of multiple static subgraphs. Either execution model for DRL thus leads to redundant computation, reduced parallelism, and less efficient memory management. We describe TimeRL, a system for executing dynamic DRL programs that combines the dynamism of eager execution with the whole-program optimizations and scheduling of graph-based execution. TimeRL achieves this by introducing the declarative programming model of recurrent tensors, which allows users to define dynamic dependencies as intuitive recurrence equations. TimeRL translates recurrent tensors into a polyhedral dependence graph (PDG) with dynamic dependencies as symbolic expressions. Through simple PDG transformations, TimeRL applies whole-program optimizations, such as automatic vectorization, incrementalization, and operator fusion. The PDG also allows for the computation of an efficient program-wide execution schedule, which decides on buffer deallocations, buffer donations, and GPU/CPU memory swapping. We show that TimeRL executes current DRL algorithms up to 47$\times$ faster than existing DRL systems, while using 16$\times$ less GPU peak memory.
comment: 17 pages, 11 figures, 5 bibliography pages
☆ On-line Policy Improvement using Monte-Carlo Search NeurIPS 1996
We present a Monte-Carlo simulation algorithm for real-time policy improvement of an adaptive controller. In the Monte-Carlo simulation, the long-term expected reward of each possible action is statistically measured, using the initial policy to make decisions in each step of the simulation. The action maximizing the measured expected reward is then taken, resulting in an improved policy. Our algorithm is easily parallelizable and has been implemented on the IBM SP1 and SP2 parallel-RISC supercomputers. We have obtained promising initial results in applying this algorithm to the domain of backgammon. Results are reported for a wide variety of initial policies, ranging from a random policy to TD-Gammon, an extremely strong multi-layer neural network. In each case, the Monte-Carlo algorithm gives a substantial reduction, by as much as a factor of 5 or more, in the error rate of the base players. The algorithm is also potentially useful in many other adaptive control applications in which it is possible to simulate the environment.
comment: Accompanied by oral presentation by Gregory Galperin at NeurIPS 1996 (then known as NIPS*96)
☆ TimeDP: Learning to Generate Multi-Domain Time Series with Domain Prompts AAAI 2025
Time series generation models are crucial for applications like data augmentation and privacy preservation. Most existing time series generation models are typically designed to generate data from one specified domain. While leveraging data from other domain for better generalization is proved to work in other application areas, this approach remains challenging for time series modeling due to the large divergence in patterns among different real world time series categories. In this paper, we propose a multi-domain time series diffusion model with domain prompts, named TimeDP. In TimeDP, we utilize a time series semantic prototype module which defines time series prototypes to represent time series basis, each prototype vector serving as "word" representing some elementary time series feature. A prototype assignment module is applied to extract the extract domain specific prototype weights, for learning domain prompts as generation condition. During sampling, we extract "domain prompt" with few-shot samples from the target domain and use the domain prompts as condition to generate time series samples. Experiments demonstrate that our method outperforms baselines to provide the state-of-the-art in-domain generation quality and strong unseen domain generation capability.
comment: AAAI 2025
☆ BRATI: Bidirectional Recurrent Attention for Time-Series Imputation
Missing data in time-series analysis poses significant challenges, affecting the reliability of downstream applications. Imputation, the process of estimating missing values, has emerged as a key solution. This paper introduces BRATI, a novel deep-learning model designed to address multivariate time-series imputation by combining Bidirectional Recurrent Networks and Attention mechanisms. BRATI processes temporal dependencies and feature correlations across long and short time horizons, utilizing two imputation blocks that operate in opposite temporal directions. Each block integrates recurrent layers and attention mechanisms to effectively resolve long-term dependencies. We evaluate BRATI on three real-world datasets under diverse missing-data scenarios: randomly missing values, fixed-length missing sequences, and variable-length missing sequences. Our findings demonstrate that BRATI consistently outperforms state-of-the-art models, delivering superior accuracy and robustness in imputing multivariate time-series data.
☆ Mechanistic understanding and validation of large AI models with SemanticLens
Unlike human-engineered systems such as aeroplanes, where each component's role and dependencies are well understood, the inner workings of AI models remain largely opaque, hindering verifiability and undermining trust. This paper introduces SemanticLens, a universal explanation method for neural networks that maps hidden knowledge encoded by components (e.g., individual neurons) into the semantically structured, multimodal space of a foundation model such as CLIP. In this space, unique operations become possible, including (i) textual search to identify neurons encoding specific concepts, (ii) systematic analysis and comparison of model representations, (iii) automated labelling of neurons and explanation of their functional roles, and (iv) audits to validate decision-making against requirements. Fully scalable and operating without human input, SemanticLens is shown to be effective for debugging and validation, summarizing model knowledge, aligning reasoning with expectations (e.g., adherence to the ABCDE-rule in melanoma classification), and detecting components tied to spurious correlations and their associated training data. By enabling component-level understanding and validation, the proposed approach helps bridge the "trust gap" between AI models and traditional engineered systems. We provide code for SemanticLens on https://github.com/jim-berend/semanticlens and a demo on https://semanticlens.hhi-research-insights.eu.
comment: 74 pages (18 pages manuscript, 7 pages references, 49 pages appendix)
☆ Integrating Explainable AI for Effective Malware Detection in Encrypted Network Traffic
Encrypted network communication ensures confidentiality, integrity, and privacy between endpoints. However, attackers are increasingly exploiting encryption to conceal malicious behavior. Detecting unknown encrypted malicious traffic without decrypting the payloads remains a significant challenge. In this study, we investigate the integration of explainable artificial intelligence (XAI) techniques to detect malicious network traffic. We employ ensemble learning models to identify malicious activity using multi-view features extracted from various aspects of encrypted communication. To effectively represent malicious communication, we compiled a robust dataset with 1,127 unique connections, more than any other available open-source dataset, and spanning 54 malware families. Our models were benchmarked against the CTU-13 dataset, achieving performance of over 99% accuracy, precision, and F1-score. Additionally, the eXtreme Gradient Boosting (XGB) model demonstrated 99.32% accuracy, 99.53% precision, and 99.43% F1-score on our custom dataset. By leveraging Shapley Additive Explanations (SHAP), we identified that the maximum packet size, mean inter-arrival time of packets, and transport layer security version used are the most critical features for the global model explanation. Furthermore, key features were identified as important for local explanations across both datasets for individual traffic samples. These insights provide a deeper understanding of the model decision-making process, enhancing the transparency and reliability of detecting malicious encrypted traffic.
comment: Accepted and presented on PanAfriCon AI 2024
☆ Accelerated Diffusion Models via Speculative Sampling
Speculative sampling is a popular technique for accelerating inference in Large Language Models by generating candidate tokens using a fast draft model and accepting or rejecting them based on the target model's distribution. While speculative sampling was previously limited to discrete sequences, we extend it to diffusion models, which generate samples via continuous, vector-valued Markov chains. In this context, the target model is a high-quality but computationally expensive diffusion model. We propose various drafting strategies, including a simple and effective approach that does not require training a draft model and is applicable out of the box to any diffusion model. Our experiments demonstrate significant generation speedup on various diffusion models, halving the number of function evaluations, while generating exact samples from the target model.
☆ Developing a Foundation of Vector Symbolic Architectures Using Category Theory
At the risk of overstating the case, connectionist approaches to machine learning, i.e. neural networks, are enjoying a small vogue right now. However, these methods require large volumes of data and produce models that are uninterpretable to humans. An alternative framework that is compatible with neural networks and gradient-based learning, but explicitly models compositionality, is Vector Symbolic Architectures (VSAs). VSAs are a family of algebras on high-dimensional vector representations. They arose in cognitive science from the need to unify neural processing and the kind of symbolic reasoning that humans perform. While machine learning methods have benefited from category theoretical analyses, VSAs have not yet received similar treatment. In this paper, we present a first attempt at applying category theory to VSAs. Specifically, we conduct a brief literature survey demonstrating the lacking intersection of these two topics, provide a list of desiderata for VSAs, and propose that VSAs may be understood as a (division) rig in a category enriched over a monoid in Met (the category of Lawvere metric spaces). This final contribution suggests that VSAs may be generalised beyond current implementations. It is our hope that grounding VSAs in category theory will lead to more rigorous connections with other research, both within and beyond, learning and cognition.
comment: 13 pages, no figures, 2 tables, one appendix
☆ No-Regret Linear Bandits under Gap-Adjusted Misspecification
This work studies linear bandits under a new notion of gap-adjusted misspecification and is an extension of Liu et al. (2023). When the underlying reward function is not linear, existing linear bandits work usually relies on a uniform misspecification parameter $\epsilon$ that measures the sup-norm error of the best linear approximation. This results in an unavoidable linear regret whenever $\epsilon > 0$. We propose a more natural model of misspecification which only requires the approximation error at each input $x$ to be proportional to the suboptimality gap at $x$. It captures the intuition that, for optimization problems, near-optimal regions should matter more and we can tolerate larger approximation errors in suboptimal regions. Quite surprisingly, we show that the classical LinUCB algorithm -- designed for the realizable case -- is automatically robust against such $\rho$-gap-adjusted misspecification with parameter $\rho$ diminishing at $O(1/(d \sqrt{\log T}))$. It achieves a near-optimal $O(\sqrt{T})$ regret for problems that the best-known regret is almost linear in time horizon $T$. We further advance this frontier by presenting a novel phased elimination-based algorithm whose gap-adjusted misspecification parameter $\rho = O(1/\sqrt{d})$ does not scale with $T$. This algorithm attains optimal $O(\sqrt{T})$ regret and is deployment-efficient, requiring only $\log T$ batches of exploration. It also enjoys an adaptive $O(\log T)$ regret when a constant suboptimality gap exists. Technically, our proof relies on a novel self-bounding argument that bounds the part of the regret due to misspecification by the regret itself, and a new inductive lemma that limits the misspecification error within the suboptimality gap for all valid actions in each batch selected by G-optimal design.
comment: arXiv admin note: substantial text overlap with arXiv:2302.13252
☆ Stream Aligner: Efficient Sentence-Level Alignment via Distribution Induction AAAI
The rapid advancement of large language models (LLMs) has led to significant improvements in their capabilities, but also to increased concerns about their alignment with human values and intentions. Current alignment strategies, including adaptive training and inference-time methods, have demonstrated potential in this area. However, these approaches still struggle to balance deployment complexity and capability across various tasks and difficulties. In this work, we introduce the Streaming Distribution Induce Aligner (Stream Aligner), a novel alignment paradigm that combines efficiency with enhanced performance in various tasks throughout the generation process. Stream Aligner achieves dynamic sentence-level correction by using a small model to learn the preferences of the suffix sentence, iteratively correcting the suffix sentence output by the upstream model, and then using the corrected sentence to replace the suffix sentence in subsequent generations. Compared to Aligner, our experiments demonstrate that Stream Aligner reduces reliance on the capabilities of additional models, enhances the reasoning abilities of LLMs, and decreases latency during user interaction. Specifically, Stream Aligner-2B model has achieved an improvement of 76.1% in helpfulness, 36.0% in harmlessness on the tested Llama2-70B-chat model, and Stream Aligner-8B has achieved an improvement of 3.5% on the math ability of the tested Llama3-70B-Instruct model.
comment: AAAI Alignment Track 2025 Poster
☆ Stability and List-Replicability for Agnostic Learners
Two seminal papers--Alon, Livni, Malliaris, Moran (STOC 2019) and Bun, Livni, and Moran (FOCS 2020)--established the equivalence between online learnability and globally stable PAC learnability in binary classification. However, Chase, Chornomaz, Moran, and Yehudayoff (STOC 2024) recently showed that this equivalence does not hold in the agnostic setting. Specifically, they proved that in the agnostic setting, only finite hypothesis classes are globally stable learnable. Therefore, agnostic global stability is too restrictive to capture interesting hypothesis classes. To address this limitation, Chase \emph{et al.} introduced two relaxations of agnostic global stability. In this paper, we characterize the classes that are learnable under their proposed relaxed conditions, resolving the two open problems raised in their work. First, we prove that in the setting where the stability parameter can depend on the excess error (the gap between the learner's error and the best achievable error by the hypothesis class), agnostic stability is fully characterized by the Littlestone dimension. Consequently, as in the realizable case, this form of learnability is equivalent to online learnability. As part of the proof of this theorem, we strengthen the celebrated result of Bun et al. by showing that classes with infinite Littlestone dimension are not stably PAC learnable, even if we allow the stability parameter to depend on the excess error. For the second relaxation proposed by Chase et al., we prove that only finite hypothesis classes are globally stable learnable even if we restrict the agnostic setting to distributions with small population loss.
☆ Knowledge Transfer in Model-Based Reinforcement Learning Agents for Efficient Multi-Task Learning AAMAS 2025
We propose an efficient knowledge transfer approach for model-based reinforcement learning, addressing the challenge of deploying large world models in resource-constrained environments. Our method distills a high-capacity multi-task agent (317M parameters) into a compact 1M parameter model, achieving state-of-the-art performance on the MT30 benchmark with a normalized score of 28.45, a substantial improvement over the original 1M parameter model's score of 18.93. This demonstrates the ability of our distillation technique to consolidate complex multi-task knowledge effectively. Additionally, we apply FP16 post-training quantization, reducing the model size by 50% while maintaining performance. Our work bridges the gap between the power of large models and practical deployment constraints, offering a scalable solution for efficient and accessible multi-task reinforcement learning in robotics and other resource-limited domains.
comment: Preprint of an extended abstract accepted to AAMAS 2025
☆ The explanation dialogues: an expert focus study to understand requirements towards explanations within the GDPR
Explainable AI (XAI) provides methods to understand non-interpretable machine learning models. However, we have little knowledge about what legal experts expect from these explanations, including their legal compliance with, and value against European Union legislation. To close this gap, we present the Explanation Dialogues, an expert focus study to uncover the expectations, reasoning, and understanding of legal experts and practitioners towards XAI, with a specific focus on the European General Data Protection Regulation. The study consists of an online questionnaire and follow-up interviews, and is centered around a use-case in the credit domain. We extract both a set of hierarchical and interconnected codes using grounded theory, and present the standpoints of the participating experts towards XAI. We find that the presented explanations are hard to understand and lack information, and discuss issues that can arise from the different interests of the data controller and subject. Finally, we present a set of recommendations for developers of XAI methods, and indications of legal areas of discussion. Among others, recommendations address the presentation, choice, and content of an explanation, technical risks as well as the end-user, while we provide legal pointers to the contestability of explanations, transparency thresholds, intellectual property rights as well as the relationship between involved parties.
comment: Artificial Intelligence and Law (Springer Nature)
☆ Distributed Learning and Inference Systems: A Networking Perspective
Machine learning models have achieved, and in some cases surpassed, human-level performance in various tasks, mainly through centralized training of static models and the use of large models stored in centralized clouds for inference. However, this centralized approach has several drawbacks, including privacy concerns, high storage demands, a single point of failure, and significant computing requirements. These challenges have driven interest in developing alternative decentralized and distributed methods for AI training and inference. Distribution introduces additional complexity, as it requires managing multiple moving parts. To address these complexities and fill a gap in the development of distributed AI systems, this work proposes a novel framework, Data and Dynamics-Aware Inference and Training Networks (DA-ITN). The different components of DA-ITN and their functions are explored, and the associated challenges and research areas are highlighted.
comment: This paper has been submitted to IEEE Network magazine and is still under review
☆ Optimizing Distributed Deployment of Mixture-of-Experts Model Inference in Serverless Computing
With the advancement of serverless computing, running machine learning (ML) inference services over a serverless platform has been advocated, given its labor-free scalability and cost effectiveness. Mixture-of-Experts (MoE) models have been a dominant type of model architectures to enable large models nowadays, with parallel expert networks. Serving large MoE models on serverless computing is potentially beneficial, but has been underexplored due to substantial challenges in handling the skewed expert popularity and scatter-gather communication bottleneck in MoE model execution, for cost-efficient serverless MoE deployment and performance guarantee. We study optimized MoE model deployment and distributed inference serving on a serverless platform, that effectively predict expert selection, pipeline communication with model execution, and minimize the overall billed cost of serving MoE models. Especially, we propose a Bayesian optimization framework with multi-dimensional epsilon-greedy search to learn expert selections and optimal MoE deployment achieving optimal billed cost, including: 1) a Bayesian decision-making method for predicting expert popularity; 2) flexibly pipelined scatter-gather communication; and 3) an optimal model deployment algorithm for distributed MoE serving. Extensive experiments on AWS Lambda show that our designs reduce the billed cost of all MoE layers by at least 75.67% compared to CPU clusters while maintaining satisfactory inference throughput. As compared to LambdaML in serverless computing, our designs achieves 43.41% lower cost with a throughput decrease of at most 18.76%.
☆ Private Selection with Heterogeneous Sensitivities
Differentially private (DP) selection involves choosing a high-scoring candidate from a finite candidate pool, where each score depends on a sensitive dataset. This problem arises naturally in a variety of contexts including model selection, hypothesis testing, and within many DP algorithms. Classical methods, such as Report Noisy Max (RNM), assume all candidates' scores are equally sensitive to changes in a single individual's data, but this often isn't the case. To address this, algorithms like the Generalised Exponential Mechanism (GEM) leverage variability in candidate sensitivities. However, we observe that while these algorithms can outperform RNM in some situations, they may underperform in others - they can even perform worse than random selection. In this work, we explore how the distribution of scores and sensitivities impacts DP selection mechanisms. In all settings we study, we find that there exists a mechanism that utilises heterogeneity in the candidate sensitivities that outperforms standard mechanisms like RNM. However, no single mechanism uniformly outperforms RNM. We propose using the correlation between the scores and sensitivities as the basis for deciding which DP selection mechanism to use. Further, we design a slight variant of GEM, modified GEM that generally performs well whenever GEM performs poorly. Relying on the correlation heuristic we propose combined GEM, which adaptively chooses between GEM and modified GEM and outperforms both in polarised settings.
comment: 21 pages, 18 figures
☆ Comparison Study: Glacier Calving Front Delineation in Synthetic Aperture Radar Images With Deep Learning
Calving front position variation of marine-terminating glaciers is an indicator of ice mass loss and a crucial parameter in numerical glacier models. Deep Learning (DL) systems can automatically extract this position from Synthetic Aperture Radar (SAR) imagery, enabling continuous, weather- and illumination-independent, large-scale monitoring. This study presents the first comparison of DL systems on a common calving front benchmark dataset. A multi-annotator study with ten annotators is performed to contrast the best-performing DL system against human performance. The best DL model's outputs deviate 221 m on average, while the average deviation of the human annotators is 38 m. This significant difference shows that current DL systems do not yet match human performance and that further research is needed to enable fully automated monitoring of glacier calving fronts. The study of Vision Transformers, foundation models, and the inclusion and processing strategy of more information are identified as avenues for future research.
☆ Learning convolution operators on compact Abelian groups
We consider the problem of learning convolution operators associated to compact Abelian groups. We study a regularization-based approach and provide corresponding learning guarantees, discussing natural regularity condition on the convolution kernel. More precisely, we assume the convolution kernel is a function in a translation invariant Hilbert space and analyze a natural ridge regression (RR) estimator. Building on existing results for RR, we characterize the accuracy of the estimator in terms of finite sample bounds. Interestingly, regularity assumptions which are classical in the analysis of RR, have a novel and natural interpretation in terms of space/frequency localization. Theoretical results are illustrated by numerical simulations.
☆ Off-Policy Evaluation and Counterfactual Methods in Dynamic Auction Environments
Counterfactual estimators are critical for learning and refining policies using logged data, a process known as Off-Policy Evaluation (OPE). OPE allows researchers to assess new policies without costly experiments, speeding up the evaluation process. Online experimental methods, such as A/B tests, are effective but often slow, thus delaying the policy selection and optimization process. In this work, we explore the application of OPE methods in the context of resource allocation in dynamic auction environments. Given the competitive nature of environments where rapid decision-making is crucial for gaining a competitive edge, the ability to quickly and accurately assess algorithmic performance is essential. By utilizing counterfactual estimators as a preliminary step before conducting A/B tests, we aim to streamline the evaluation process, reduce the time and resources required for experimentation, and enhance confidence in the chosen policies. Our investigation focuses on the feasibility and effectiveness of using these estimators to predict the outcomes of potential resource allocation strategies, evaluate their performance, and facilitate more informed decision-making in policy selection. Motivated by the outcomes of our initial study, we envision an advanced analytics system designed to seamlessly and dynamically assess new resource allocation strategies and policies.
comment: 9 pages, 15 figures, IEEE format
☆ CellViT++: Energy-Efficient and Adaptive Cell Segmentation and Classification Using Foundation Models
Digital Pathology is a cornerstone in the diagnosis and treatment of diseases. A key task in this field is the identification and segmentation of cells in hematoxylin and eosin-stained images. Existing methods for cell segmentation often require extensive annotated datasets for training and are limited to a predefined cell classification scheme. To overcome these limitations, we propose $\text{CellViT}^{{\scriptscriptstyle ++}}$, a framework for generalized cell segmentation in digital pathology. $\text{CellViT}^{{\scriptscriptstyle ++}}$ utilizes Vision Transformers with foundation models as encoders to compute deep cell features and segmentation masks simultaneously. To adapt to unseen cell types, we rely on a computationally efficient approach. It requires minimal data for training and leads to a drastically reduced carbon footprint. We demonstrate excellent performance on seven different datasets, covering a broad spectrum of cell types, organs, and clinical settings. The framework achieves remarkable zero-shot segmentation and data-efficient cell-type classification. Furthermore, we show that $\text{CellViT}^{{\scriptscriptstyle ++}}$ can leverage immunofluorescence stainings to generate training datasets without the need for pathologist annotations. The automated dataset generation approach surpasses the performance of networks trained on manually labeled data, demonstrating its effectiveness in creating high-quality training datasets without expert annotations. To advance digital pathology, $\text{CellViT}^{{\scriptscriptstyle ++}}$ is available as an open-source framework featuring a user-friendly, web-based interface for visualization and annotation. The code is available under https://github.com/TIO-IKIM/CellViT-plus-plus.
☆ Enhancing Plagiarism Detection in Marathi with a Weighted Ensemble of TF-IDF and BERT Embeddings for Low-Resource Language Processing COLING 2025
Plagiarism involves using another person's work or concepts without proper attribution, presenting them as original creations. With the growing amount of data communicated in regional languages such as Marathi -- one of India's regional languages -- it is crucial to design robust plagiarism detection systems tailored for low-resource languages. Language models like Bidirectional Encoder Representations from Transformers (BERT) have demonstrated exceptional capability in text representation and feature extraction, making them essential tools for semantic analysis and plagiarism detection. However, the application of BERT for low-resource languages remains under-explored, particularly in the context of plagiarism detection. This paper presents a method to enhance the accuracy of plagiarism detection for Marathi texts using BERT sentence embeddings in conjunction with Term Frequency-Inverse Document Frequency (TF-IDF) feature representation. This approach effectively captures statistical, semantic, and syntactic aspects of text features through a weighted voting ensemble of machine learning models.
comment: Accepted into LoResLM: The First Workshop on Language Models for Low-Resource Languages, colocated with COLING 2025 and set to be published into ACL Anthology
☆ Deriving Coding-Specific Sub-Models from LLMs using Resource-Efficient Pruning
Large Language Models (LLMs) have demonstrated their exceptional performance in various complex code generation tasks. However, their broader adoption is limited by significant computational demands and high resource requirements, particularly memory and processing power. To mitigate such requirements, model pruning techniques are used to create more compact models with significantly fewer parameters. However, current approaches do not focus on the efficient extraction of programming-language-specific sub-models. In this work, we explore the idea of efficiently deriving coding-specific sub-models through unstructured pruning (i.e., Wanda). We investigate the impact of different domain-specific calibration datasets on pruning outcomes across three distinct domains and extend our analysis to extracting four language-specific sub-models: Python, Java, C++, and JavaScript. We are the first to efficiently extract programming-language-specific sub-models using appropriate calibration datasets while maintaining acceptable accuracy w.r.t. full models. We are also the first to provide analytical evidence that domain-specific tasks activate distinct regions within LLMs, supporting the creation of specialized sub-models through unstructured pruning. We believe that this work has significant potential to enhance LLM accessibility for coding by reducing computational requirements to enable local execution on consumer-grade hardware, and supporting faster inference times critical for real-time development feedback.
☆ Optimizing Estonian TV Subtitles with Semi-supervised Learning and LLMs
This paper presents an approach for generating high-quality, same-language subtitles for Estonian TV content. We fine-tune the Whisper model on human-generated Estonian subtitles and enhance it with iterative pseudo-labeling and large language model (LLM) based post-editing. Our experiments demonstrate notable subtitle quality improvement through pseudo-labeling with an unlabeled dataset. We find that applying LLM-based editing at test time enhances subtitle accuracy, while its use during training does not yield further gains. This approach holds promise for creating subtitle quality close to human standard and could be extended to real-time applications.
☆ Light Transport-aware Diffusion Posterior Sampling for Single-View Reconstruction of 3D Volumes
We introduce a single-view reconstruction technique of volumetric fields in which multiple light scattering effects are omnipresent, such as in clouds. We model the unknown distribution of volumetric fields using an unconditional diffusion model trained on a novel benchmark dataset comprising 1,000 synthetically simulated volumetric density fields. The neural diffusion model is trained on the latent codes of a novel, diffusion-friendly, monoplanar representation. The generative model is used to incorporate a tailored parametric diffusion posterior sampling technique into different reconstruction tasks. A physically-based differentiable volume renderer is employed to provide gradients with respect to light transport in the latent space. This stands in contrast to classic NeRF approaches and makes the reconstructions better aligned with observed data. Through various experiments, we demonstrate single-view reconstruction of volumetric clouds at a previously unattainable quality.
☆ EVA-S2PLoR: A Secure Element-wise Multiplication Meets Logistic Regression on Heterogeneous Database
Accurate nonlinear computation is a key challenge in privacy-preserving machine learning (PPML). Most existing frameworks approximate it through linear operations, resulting in significant precision loss. This paper proposes an efficient, verifiable and accurate security 2-party logistic regression framework (EVA-S2PLoR), which achieves accurate nonlinear function computation through a novel secure element-wise multiplication protocol and its derived protocols. Our framework primarily includes secure 2-party vector element-wise multiplication, addition to multiplication, reciprocal, and sigmoid function based on data disguising technology, where high efficiency and accuracy are guaranteed by the simple computation flow based on the real number domain and the few number of fixed communication rounds. We provide secure and robust anomaly detection through dimension transformation and Monte Carlo methods. EVA-S2PLoR outperforms many advanced frameworks in terms of precision (improving the performance of the sigmoid function by about 10 orders of magnitude compared to most frameworks) and delivers the best overall performance in secure logistic regression experiments.
☆ CoDe: Communication Delay-Tolerant Multi-Agent Collaboration via Dual Alignment of Intent and Timeliness AAAI 2025
Communication has been widely employed to enhance multi-agent collaboration. Previous research has typically assumed delay-free communication, a strong assumption that is challenging to meet in practice. However, real-world agents suffer from channel delays, receiving messages sent at different time points, termed {\it{Asynchronous Communication}}, leading to cognitive biases and breakdowns in collaboration. This paper first defines two communication delay settings in MARL and emphasizes their harm to collaboration. To handle the above delays, this paper proposes a novel framework, Communication Delay-tolerant Multi-Agent Collaboration (CoDe). At first, CoDe learns an intent representation as messages through future action inference, reflecting the stable future behavioral trends of the agents. Then, CoDe devises a dual alignment mechanism of intent and timeliness to strengthen the fusion process of asynchronous messages. In this way, agents can extract the long-term intent of others, even from delayed messages, and selectively utilize the most recent messages that are relevant to their intent. Experimental results demonstrate that CoDe outperforms baseline algorithms in three MARL benchmarks without delay and exhibits robustness under fixed and time-varying delays.
comment: AAAI 2025 Accepted
☆ Design and Control of a Bipedal Robotic Character
Legged robots have achieved impressive feats in dynamic locomotion in challenging unstructured terrain. However, in entertainment applications, the design and control of these robots face additional challenges in appealing to human audiences. This work aims to unify expressive, artist-directed motions and robust dynamic mobility for legged robots. To this end, we introduce a new bipedal robot, designed with a focus on character-driven mechanical features. We present a reinforcement learning-based control architecture to robustly execute artistic motions conditioned on command signals. During runtime, these command signals are generated by an animation engine which composes and blends between multiple animation sources. Finally, an intuitive operator interface enables real-time show performances with the robot. The complete system results in a believable robotic character, and paves the way for enhanced human-robot engagement in various contexts, in entertainment robotics and beyond.
☆ An Algorithmic Approach for Causal Health Equity: A Look at Race Differentials in Intensive Care Unit (ICU) Outcomes
The new era of large-scale data collection and analysis presents an opportunity for diagnosing and understanding the causes of health inequities. In this study, we describe a framework for systematically analyzing health disparities using causal inference. The framework is illustrated by investigating racial and ethnic disparities in intensive care unit (ICU) outcome between majority and minority groups in Australia (Indigenous vs. Non-Indigenous) and the United States (African-American vs. White). We demonstrate that commonly used statistical measures for quantifying inequity are insufficient, and focus on attributing the observed disparity to the causal mechanisms that generate it. We find that minority patients are younger at admission, have worse chronic health, are more likely to be admitted for urgent and non-elective reasons, and have higher illness severity. At the same time, however, we find a protective direct effect of belonging to a minority group, with minority patients showing improved survival compared to their majority counterparts, with all other variables kept equal. We demonstrate that this protective effect is related to the increased probability of being admitted to ICU, with minority patients having an increased risk of ICU admission. We also find that minority patients, while showing improved survival, are more likely to be readmitted to ICU. Thus, due to worse access to primary health care, minority patients are more likely to end up in ICU for preventable conditions, causing a reduction in the mortality rates and creating an effect that appears to be protective. Since the baseline risk of ICU admission may serve as proxy for lack of access to primary care, we developed the Indigenous Intensive Care Equity (IICE) Radar, a monitoring system for tracking the over-utilization of ICU resources by the Indigenous population of Australia across geographical areas.
☆ RadioTransformer: Accurate Radio Map Construction and Coverage Prediction
Radio map, or pathloss map prediction, is a crucial method for wireless network modeling and management. By leveraging deep learning to construct pathloss patterns from geographical maps, an accurate digital replica of the transmission environment could be established with less computational overhead and lower prediction error compared to traditional model-driven techniques. While existing state-of-the-art (SOTA) methods predominantly rely on convolutional architectures, this paper introduces a hybrid transformer-convolution model, termed RadioTransformer, to enhance the accuracy of radio map prediction. The proposed model features a multi-scale transformer-based encoder for efficient feature extraction and a convolution-based decoder for precise pixel-level image reconstruction. Simulation results demonstrate that the proposed scheme significantly improves prediction accuracy, and over a 30% reduction in root mean square error (RMSE) is achieved compared to typical SOTA approaches.
comment: Submitted to IEEE VTC 2025 Spring
☆ De-centering the (Traditional) User: Multistakeholder Evaluation of Recommender Systems
Multistakeholder recommender systems are those that account for the impacts and preferences of multiple groups of individuals, not just the end users receiving recommendations. Due to their complexity, evaluating these systems cannot be restricted to the overall utility of a single stakeholder, as is often the case of more mainstream recommender system applications. In this article, we focus our discussion on the intricacies of the evaluation of multistakeholder recommender systems. We bring attention to the different aspects involved in the evaluation of multistakeholder recommender systems - from the range of stakeholders involved (including but not limited to producers and consumers) to the values and specific goals of each relevant stakeholder. Additionally, we discuss how to move from theoretical principles to practical implementation, providing specific use case examples. Finally, we outline open research directions for the RecSys community to explore. We aim to provide guidance to researchers and practitioners about how to think about these complex and domain-dependent issues of evaluation in the course of designing, developing, and researching applications with multistakeholder aspects.
comment: Preprint submitted to Elsevier, "Re-centering the User in Recommender System Research" special issue of the International Journal of Human-Computer Studies (IJHCS)
☆ Learning In-Distribution Representations for Anomaly Detection
Anomaly detection involves identifying data patterns that deviate from the anticipated norm. Traditional methods struggle in high-dimensional spaces due to the curse of dimensionality. In recent years, self-supervised learning, particularly through contrastive objectives, has driven advances in anomaly detection. However, vanilla contrastive learning struggles to align with the unique demands of anomaly detection, as it lacks a pretext task tailored to the homogeneous nature of In-Distribution (ID) data and the diversity of Out-of-Distribution (OOD) anomalies. Methods that attempt to address these challenges, such as introducing hard negatives through synthetic outliers, Outlier Exposure (OE), and supervised objectives, often rely on pretext tasks that fail to balance compact clustering of ID samples with sufficient separation from OOD data. In this work, we propose Focused In-distribution Representation Modeling (FIRM), a contrastive learning objective specifically designed for anomaly detection. Unlike existing approaches, FIRM incorporates synthetic outliers into its pretext task in a way that actively shapes the representation space, promoting compact clustering of ID samples while enforcing strong separation from outliers. This formulation addresses the challenges of class collision, enhancing both the compactness of ID representations and the discriminative power of the learned feature space. We show that FIRM surpasses other contrastive methods in standard benchmarks, significantly enhancing anomaly detection compared to both traditional and supervised contrastive learning objectives. Our ablation studies confirm that FIRM consistently improves the quality of representations and shows robustness across a range of scoring methods. The code is available at: https://github.com/willtl/firm.
☆ Constrained Optimization of Charged Particle Tracking with Multi-Agent Reinforcement Learning
Reinforcement learning demonstrated immense success in modelling complex physics-driven systems, providing end-to-end trainable solutions by interacting with a simulated or real environment, maximizing a scalar reward signal. In this work, we propose, building upon previous work, a multi-agent reinforcement learning approach with assignment constraints for reconstructing particle tracks in pixelated particle detectors. Our approach optimizes collaboratively a parametrized policy, functioning as a heuristic to a multidimensional assignment problem, by jointly minimizing the total amount of particle scattering over the reconstructed tracks in a readout frame. To satisfy constraints, guaranteeing a unique assignment of particle hits, we propose a safety layer solving a linear assignment problem for every joint action. Further, to enforce cost margins, increasing the distance of the local policies predictions to the decision boundaries of the optimizer mappings, we recommend the use of an additional component in the blackbox gradient estimation, forcing the policy to solutions with lower total assignment costs. We empirically show on simulated data, generated for a particle detector developed for proton imaging, the effectiveness of our approach, compared to multiple single- and multi-agent baselines. We further demonstrate the effectiveness of constraints with cost margins for both optimization and generalization, introduced by wider regions with high reconstruction performance as well as reduced predictive instabilities. Our results form the basis for further developments in RL-based tracking, offering both enhanced performance with constrained policies and greater flexibility in optimizing tracking algorithms through the option for individual and team rewards.
☆ EquiBoost: An Equivariant Boosting Approach to Molecular Conformation Generation
Molecular conformation generation plays key roles in computational drug design. Recently developed deep learning methods, particularly diffusion models have reached competitive performance over traditional cheminformatical approaches. However, these methods are often time-consuming or require extra support from traditional methods. We propose EquiBoost, a boosting model that stacks several equivariant graph transformers as weak learners, to iteratively refine 3D conformations of molecules. Without relying on diffusion techniques, EquiBoost balances accuracy and efficiency more effectively than diffusion-based methods. Notably, compared to the previous state-of-the-art diffusion method, EquiBoost improves generation quality and preserves diversity, achieving considerably better precision of Average Minimum RMSD (AMR) on the GEOM datasets. This work rejuvenates boosting and sheds light on its potential to be a robust alternative to diffusion models in certain scenarios.
☆ Robust Score Matching
Proposed in Hyv\"arinen (2005), score matching is a parameter estimation procedure that does not require computation of distributional normalizing constants. In this work we utilize the geometric median of means to develop a robust score matching procedure that yields consistent parameter estimates in settings where the observed data has been contaminated. A special appeal of the proposed method is that it retains convexity in exponential family models. The new method is therefore particularly attractive for non-Gaussian, exponential family graphical models where evaluation of normalizing constants is intractable. Support recovery guarantees for such models when contamination is present are provided. Additionally, support recovery is studied in numerical experiments and on a precipitation dataset. We demonstrate that the proposed robust score matching estimator performs comparably to the standard score matching estimator when no contamination is present but greatly outperforms this estimator in a setting with contamination.
☆ A 1Mb mixed-precision quantized encoder for image classification and patch-based compression
Even if Application-Specific Integrated Circuits (ASIC) have proven to be a relevant choice for integrating inference at the edge, they are often limited in terms of applicability. In this paper, we demonstrate that an ASIC neural network accelerator dedicated to image processing can be applied to multiple tasks of different levels: image classification and compression, while requiring a very limited hardware. The key component is a reconfigurable, mixed-precision (3b/2b/1b) encoder that takes advantage of proper weight and activation quantizations combined with convolutional layer structural pruning to lower hardware-related constraints (memory and computing). We introduce an automatic adaptation of linear symmetric quantizer scaling factors to perform quantized levels equalization, aiming at stabilizing quinary and ternary weights training. In addition, a proposed layer-shared Bit-Shift Normalization significantly simplifies the implementation of the hardware-expensive Batch Normalization. For a specific configuration in which the encoder design only requires 1Mb, the classification accuracy reaches 87.5% on CIFAR-10. Besides, we also show that this quantized encoder can be used to compress image patch-by-patch while the reconstruction can performed remotely, by a dedicated full-frame decoder. This solution typically enables an end-to-end compression almost without any block artifacts, outperforming patch-based state-of-the-art techniques employing a patch-constant bitrate.
comment: Published at IEEE Transactions on Circuits and Systems for Video Technology (TCSVT)
☆ Hierarchical Decomposed Dual-domain Deep Learning for Sparse-View CT Reconstruction
Objective: X-ray computed tomography employing sparse projection views has emerged as a contemporary technique to mitigate radiation dose. However, due to the inadequate number of projection views, an analytic reconstruction method utilizing filtered backprojection results in severe streaking artifacts. Recently, deep learning strategies employing image-domain networks have demonstrated remarkable performance in eliminating the streaking artifact caused by analytic reconstruction methods with sparse projection views. Nevertheless, it is difficult to clarify the theoretical justification for applying deep learning to sparse view CT reconstruction, and it has been understood as restoration by removing image artifacts, not reconstruction. Approach: By leveraging the theory of deep convolutional framelets and the hierarchical decomposition of measurement, this research reveals the constraints of conventional image- and projection-domain deep learning methodologies, subsequently, the research proposes a novel dual-domain deep learning framework utilizing hierarchical decomposed measurements. Specifically, the research elucidates how the performance of the projection-domain network can be enhanced through a low-rank property of deep convolutional framelets and a bowtie support of hierarchical decomposed measurement in the Fourier domain. Main Results: This study demonstrated performance improvement of the proposed framework based on the low-rank property, resulting in superior reconstruction performance compared to conventional analytic and deep learning methods. Significance: By providing a theoretically justified deep learning approach for sparse-view CT reconstruction, this study not only offers a superior alternative to existing methods but also opens new avenues for research in medical imaging.
comment: Published by Physics in Medicine & Biology (2024.4)
☆ Supervised Learning with Evolving Tasks and Performance Guarantees
Multiple supervised learning scenarios are composed by a sequence of classification tasks. For instance, multi-task learning and continual learning aim to learn a sequence of tasks that is either fixed or grows over time. Existing techniques for learning tasks that are in a sequence are tailored to specific scenarios, lacking adaptability to others. In addition, most of existing techniques consider situations in which the order of the tasks in the sequence is not relevant. However, it is common that tasks in a sequence are evolving in the sense that consecutive tasks often have a higher similarity. This paper presents a learning methodology that is applicable to multiple supervised learning scenarios and adapts to evolving tasks. Differently from existing techniques, we provide computable tight performance guarantees and analytically characterize the increase in the effective sample size. Experiments on benchmark datasets show the performance improvement of the proposed methodology in multiple scenarios and the reliability of the presented performance guarantees.
comment: arXiv admin note: text overlap with arXiv:2310.15974
☆ Enhanced Quantile Regression with Spiking Neural Networks for Long-Term System Health Prognostics
This paper presents a novel predictive maintenance framework centered on Enhanced Quantile Regression Neural Networks EQRNNs, for anticipating system failures in industrial robotics. We address the challenge of early failure detection through a hybrid approach that combines advanced neural architectures. The system leverages dual computational stages: first implementing an EQRNN optimized for processing multi-sensor data streams including vibration, thermal, and power signatures, followed by an integrated Spiking Neural Network SNN, layer that enables microsecond-level response times. This architecture achieves notable accuracy rates of 92.3\% in component failure prediction with a 90-hour advance warning window. Field testing conducted on an industrial scale with 50 robotic systems demonstrates significant operational improvements, yielding a 94\% decrease in unexpected system failures and 76\% reduction in maintenance-related downtimes. The framework's effectiveness in processing complex, multi-modal sensor data while maintaining computational efficiency validates its applicability for Industry 4.0 manufacturing environments.
☆ End-to-End Deep Learning for Interior Tomography with Low-Dose X-ray CT
Objective: There exist several X-ray computed tomography (CT) scanning strategies to reduce a radiation dose, such as (1) sparse-view CT, (2) low-dose CT, and (3) region-of-interest (ROI) CT (called interior tomography). To further reduce the dose, the sparse-view and/or low-dose CT settings can be applied together with interior tomography. Interior tomography has various advantages in terms of reducing the number of detectors and decreasing the X-ray radiation dose. However, a large patient or small field-of-view (FOV) detector can cause truncated projections, and then the reconstructed images suffer from severe cupping artifacts. In addition, although the low-dose CT can reduce the radiation exposure dose, analytic reconstruction algorithms produce image noise. Recently, many researchers have utilized image-domain deep learning (DL) approaches to remove each artifact and demonstrated impressive performances, and the theory of deep convolutional framelets supports the reason for the performance improvement. Approach: In this paper, we found that the image-domain convolutional neural network (CNN) is difficult to solve coupled artifacts, based on deep convolutional framelets. Significance: To address the coupled problem, we decouple it into two sub-problems: (i) image domain noise reduction inside truncated projection to solve low-dose CT problem and (ii) extrapolation of projection outside truncated projection to solve the ROI CT problem. The decoupled sub-problems are solved directly with a novel proposed end-to-end learning using dual-domain CNNs. Main results: We demonstrate that the proposed method outperforms the conventional image-domain deep learning methods, and a projection-domain CNN shows better performance than the image-domain CNNs which are commonly used by many researchers.
comment: Published by Physics in Medicine & Biology (2022.5)
☆ Comparison of Feature Learning Methods for Metadata Extraction from PDF Scholarly Documents
The availability of metadata for scientific documents is pivotal in propelling scientific knowledge forward and for adhering to the FAIR principles (i.e. Findability, Accessibility, Interoperability, and Reusability) of research findings. However, the lack of sufficient metadata in published documents, particularly those from smaller and mid-sized publishers, hinders their accessibility. This issue is widespread in some disciplines, such as the German Social Sciences, where publications often employ diverse templates. To address this challenge, our study evaluates various feature learning and prediction methods, including natural language processing (NLP), computer vision (CV), and multimodal approaches, for extracting metadata from documents with high template variance. We aim to improve the accessibility of scientific documents and facilitate their wider use. To support our comparison of these methods, we provide comprehensive experimental results, analyzing their accuracy and efficiency in extracting metadata. Additionally, we provide valuable insights into the strengths and weaknesses of various feature learning and prediction methods, which can guide future research in this field.
☆ DriVLM: Domain Adaptation of Vision-Language Models in Autonomous Driving
In recent years, large language models have had a very impressive performance, which largely contributed to the development and application of artificial intelligence, and the parameters and performance of the models are still growing rapidly. In particular, multimodal large language models (MLLM) can combine multiple modalities such as pictures, videos, sounds, texts, etc., and have great potential in various tasks. However, most MLLMs require very high computational resources, which is a major challenge for most researchers and developers. In this paper, we explored the utility of small-scale MLLMs and applied small-scale MLLMs to the field of autonomous driving. We hope that this will advance the application of MLLMs in real-world scenarios.
☆ Analyzing Memorization in Large Language Models through the Lens of Model Attribution
Large Language Models (LLMs) are prevalent in modern applications but often memorize training data, leading to privacy breaches and copyright issues. Existing research has mainly focused on posthoc analyses, such as extracting memorized content or developing memorization metrics, without exploring the underlying architectural factors that contribute to memorization. In this work, we investigate memorization from an architectural lens by analyzing how attention modules at different layers impact its memorization and generalization performance. Using attribution techniques, we systematically intervene in the LLM architecture by bypassing attention modules at specific blocks while keeping other components like layer normalization and MLP transformations intact. We provide theorems analyzing our intervention mechanism from a mathematical view, bounding the difference in layer outputs with and without our attributions. Our theoretical and empirical analyses reveal that attention modules in deeper transformer blocks are primarily responsible for memorization, whereas earlier blocks are crucial for the models generalization and reasoning capabilities. We validate our findings through comprehensive experiments on different LLM families (Pythia and GPTNeo) and five benchmark datasets. Our insights offer a practical approach to mitigate memorization in LLMs while preserving their performance, contributing to safer and more ethical deployment in real world applications.
☆ TipSegNet: Fingertip Segmentation in Contactless Fingerprint Imaging
Contactless fingerprint recognition systems offer a hygienic, user-friendly, and efficient alternative to traditional contact-based methods. However, their accuracy heavily relies on precise fingertip detection and segmentation, particularly under challenging background conditions. This paper introduces TipSegNet, a novel deep learning model that achieves state-of-the-art performance in segmenting fingertips directly from grayscale hand images. TipSegNet leverages a ResNeXt-101 backbone for robust feature extraction, combined with a Feature Pyramid Network (FPN) for multi-scale representation, enabling accurate segmentation across varying finger poses and image qualities. Furthermore, we employ an extensive data augmentation strategy to enhance the model's generalizability and robustness. TipSegNet outperforms existing methods, achieving a mean Intersection over Union (mIoU) of 0.987 and an accuracy of 0.999, representing a significant advancement in contactless fingerprint segmentation. This enhanced accuracy has the potential to substantially improve the reliability and effectiveness of contactless biometric systems in real-world applications.
☆ A Text-Based Knowledge-Embedded Soft Sensing Modeling Approach for General Industrial Process Tasks Based on Large Language Model
Data-driven soft sensors (DDSS) have become mainstream methods for predicting key performance indicators in process industries. However, DDSS development requires complex and costly customized designs tailored to various tasks during the modeling process. Moreover, DDSS are constrained to a single structured data modality, limiting their ability to incorporate additional contextual knowledge. Furthermore, DDSSs' limited representation learning leads to weak predictive performance with scarce data. To address these challenges, we propose a general framework named LLM-TKESS (large language model for text-based knowledge-embedded soft sensing), harnessing the powerful general problem-solving capabilities, cross-modal knowledge transfer abilities, and few-shot capabilities of LLM for enhanced soft sensing modeling. Specifically, an auxiliary variable series encoder (AVS Encoder) is proposed to unleash LLM's potential for capturing temporal relationships within series and spatial semantic relationships among auxiliary variables. Then, we propose a two-stage fine-tuning alignment strategy: in the first stage, employing parameter-efficient fine-tuning through autoregressive training adjusts LLM to rapidly accommodate process variable data, resulting in a soft sensing foundation model (SSFM). Subsequently, by training adapters, we adapt the SSFM to various downstream tasks without modifying its architecture. Then, we propose two text-based knowledge-embedded soft sensors, integrating new natural language modalities to overcome the limitations of pure structured data models. Furthermore, benefiting from LLM's pre-existing world knowledge, our model demonstrates outstanding predictive capabilities in small sample conditions. Using the thermal deformation of air preheater rotor as a case study, we validate through extensive experiments that LLM-TKESS exhibits outstanding performance.
☆ D3RM: A Discrete Denoising Diffusion Refinement Model for Piano Transcription ICASSP 2025
Diffusion models have been widely used in the generative domain due to their convincing performance in modeling complex data distributions. Moreover, they have shown competitive results on discriminative tasks, such as image segmentation. While diffusion models have also been explored for automatic music transcription, their performance has yet to reach a competitive level. In this paper, we focus on discrete diffusion model's refinement capabilities and present a novel architecture for piano transcription. Our model utilizes Neighborhood Attention layers as the denoising module, gradually predicting the target high-resolution piano roll, conditioned on the finetuned features of a pretrained acoustic model. To further enhance refinement, we devise a novel strategy which applies distinct transition states during training and inference stage of discrete diffusion models. Experiments on the MAESTRO dataset show that our approach outperforms previous diffusion-based piano transcription models and the baseline model in terms of F1 score. Our code is available in https://github.com/hanshounsu/d3rm.
comment: Accepted to ICASSP 2025
☆ Simultaneous emulation and downscaling with physically-consistent deep learning-based regional ocean emulators
Building on top of the success in AI-based atmospheric emulation, we propose an AI-based ocean emulation and downscaling framework focusing on the high-resolution regional ocean over Gulf of Mexico. Regional ocean emulation presents unique challenges owing to the complex bathymetry and lateral boundary conditions as well as from fundamental biases in deep learning-based frameworks, such as instability and hallucinations. In this paper, we develop a deep learning-based framework to autoregressively integrate ocean-surface variables over the Gulf of Mexico at $8$ Km spatial resolution without unphysical drifts over decadal time scales and simulataneously downscale and bias-correct it to $4$ Km resolution using a physics-constrained generative model. The framework shows both short-term skills as well as accurate long-term statistics in terms of mean and variability.
☆ LearningFlow: Automated Policy Learning Workflow for Urban Driving with Large Language Models
Recent advancements in reinforcement learning (RL) demonstrate the significant potential in autonomous driving. Despite this promise, challenges such as the manual design of reward functions and low sample efficiency in complex environments continue to impede the development of safe and effective driving policies. To tackle these issues, we introduce LearningFlow, an innovative automated policy learning workflow tailored to urban driving. This framework leverages the collaboration of multiple large language model (LLM) agents throughout the RL training process. LearningFlow includes a curriculum sequence generation process and a reward generation process, which work in tandem to guide the RL policy by generating tailored training curricula and reward functions. Particularly, each process is supported by an analysis agent that evaluates training progress and provides critical insights to the generation agent. Through the collaborative efforts of these LLM agents, LearningFlow automates policy learning across a series of complex driving tasks, and it significantly reduces the reliance on manual reward function design while enhancing sample efficiency. Comprehensive experiments are conducted in the high-fidelity CARLA simulator, along with comparisons with other existing methods, to demonstrate the efficacy of our proposed approach. The results demonstrate that LearningFlow excels in generating rewards and curricula. It also achieves superior performance and robust generalization across various driving tasks, as well as commendable adaptation to different RL algorithms.
☆ LongViTU: Instruction Tuning for Long-Form Video Understanding
This paper introduce LongViTU, a large-scale (~121k QA pairs, ~900h videos), automatically generated dataset for long-form video understanding. We developed a systematic approach that organizes videos into a hierarchical tree structure and incorporates self-revision mechanisms to ensure high-quality QA pairs. Each QA pair in LongViTU features: 1) long-term context (average certificate length of 4.6 minutes); 2) rich knowledge and condensed reasoning (commonsense, causality, planning, etc.); and 3) explicit timestamp labels for relevant events. LongViTU also serves as a benchmark for instruction following in long-form and streaming video understanding. We evaluate the open-source state-of-the-art long video understanding model, LongVU, and the commercial model, Gemini-1.5-Pro, on our benchmark. They achieve GPT-4 scores of 49.9 and 52.3, respectively, underscoring the substantial challenge posed by our benchmark. Further supervised fine-tuning (SFT) on LongVU led to performance improvements of 12.0% on our benchmark, 2.2% on the in-distribution (ID) benchmark EgoSchema, 1.0%, 2.2% and 1.2% on the out-of-distribution (OOD) benchmarks VideoMME (Long), WorldQA and OpenEQA, respectively. These outcomes demonstrate LongViTU's high data quality and robust OOD generalizability.
☆ Towards Fingerprint Mosaicking Artifact Detection: A Self-Supervised Deep Learning Approach
Fingerprint mosaicking, which is the process of combining multiple fingerprint images into a single master fingerprint, is an essential process in modern biometric systems. However, it is prone to errors that can significantly degrade fingerprint image quality. This paper proposes a novel deep learning-based approach to detect and score mosaicking artifacts in fingerprint images. Our method leverages a self-supervised learning framework to train a model on large-scale unlabeled fingerprint data, eliminating the need for manual artifact annotation. The proposed model effectively identifies mosaicking errors, achieving high accuracy on various fingerprint modalities, including contactless, rolled, and pressed fingerprints and furthermore proves to be robust to different data sources. Additionally, we introduce a novel mosaicking artifact score to quantify the severity of errors, enabling automated evaluation of fingerprint images. By addressing the challenges of mosaicking artifact detection, our work contributes to improving the accuracy and reliability of fingerprint-based biometric systems.
☆ ECBench: Can Multi-modal Foundation Models Understand the Egocentric World? A Holistic Embodied Cognition Benchmark
The enhancement of generalization in robots by large vision-language models (LVLMs) is increasingly evident. Therefore, the embodied cognitive abilities of LVLMs based on egocentric videos are of great interest. However, current datasets for embodied video question answering lack comprehensive and systematic evaluation frameworks. Critical embodied cognitive issues, such as robotic self-cognition, dynamic scene perception, and hallucination, are rarely addressed. To tackle these challenges, we propose ECBench, a high-quality benchmark designed to systematically evaluate the embodied cognitive abilities of LVLMs. ECBench features a diverse range of scene video sources, open and varied question formats, and 30 dimensions of embodied cognition. To ensure quality, balance, and high visual dependence, ECBench uses class-independent meticulous human annotation and multi-round question screening strategies. Additionally, we introduce ECEval, a comprehensive evaluation system that ensures the fairness and rationality of the indicators. Utilizing ECBench, we conduct extensive evaluations of proprietary, open-source, and task-specific LVLMs. ECBench is pivotal in advancing the embodied cognitive capabilities of LVLMs, laying a solid foundation for developing reliable core models for embodied agents. All data and code are available at https://github.com/Rh-Dang/ECBench.
☆ On Measuring Unnoticeability of Graph Adversarial Attacks: Observations, New Measure, and Applications KDD 2025
Adversarial attacks are allegedly unnoticeable. Prior studies have designed attack noticeability measures on graphs, primarily using statistical tests to compare the topology of original and (possibly) attacked graphs. However, we observe two critical limitations in the existing measures. First, because the measures rely on simple rules, attackers can readily enhance their attacks to bypass them, reducing their attack "noticeability" and, yet, maintaining their attack performance. Second, because the measures naively leverage global statistics, such as degree distributions, they may entirely overlook attacks until severe perturbations occur, letting the attacks be almost "totally unnoticeable." To address the limitations, we introduce HideNSeek, a learnable measure for graph attack noticeability. First, to mitigate the bypass problem, HideNSeek learns to distinguish the original and (potential) attack edges using a learnable edge scorer (LEO), which scores each edge on its likelihood of being an attack. Second, to mitigate the overlooking problem, HideNSeek conducts imbalance-aware aggregation of all the edge scores to obtain the final noticeability score. Using six real-world graphs, we empirically demonstrate that HideNSeek effectively alleviates the observed limitations, and LEO (i.e., our learnable edge scorer) outperforms eleven competitors in distinguishing attack edges under five different attack methods. For an additional application, we show that LEO boost the performance of robust GNNs by removing attack-like edges.
comment: KDD 2025
☆ UAV-VLA: Vision-Language-Action System for Large Scale Aerial Mission Generation
The UAV-VLA (Visual-Language-Action) system is a tool designed to facilitate communication with aerial robots. By integrating satellite imagery processing with the Visual Language Model (VLM) and the powerful capabilities of GPT, UAV-VLA enables users to generate general flight paths-and-action plans through simple text requests. This system leverages the rich contextual information provided by satellite images, allowing for enhanced decision-making and mission planning. The combination of visual analysis by VLM and natural language processing by GPT can provide the user with the path-and-action set, making aerial operations more efficient and accessible. The newly developed method showed the difference in the length of the created trajectory in 22% and the mean error in finding the objects of interest on a map in 34.22 m by Euclidean distance in the K-Nearest Neighbors (KNN) approach.
comment: HRI 2025
☆ Quantum-enhanced causal discovery for a small number of samples
The discovery of causal relationships from observed data has attracted significant interest from disciplines such as economics, social sciences, epidemiology, and biology. In practical applications, considerable knowledge of the underlying systems is often unavailable, and real data are often associated with nonlinear causal structures, which make the direct use of most conventional causality analysis methods difficult. This study proposes a novel quantum Peter-Clark (qPC) algorithm for causal discovery that does not assume any underlying model structures. Based on the independence conditional tests in a class of reproducing kernel Hilbert spaces characterized by quantum circuits, the proposed qPC algorithm can explore causal relationships from the observed data drawn from arbitrary distributions. We conducted systematic experiments on fundamental graph parts of causal structures, demonstrating that the qPC algorithm exhibits a significantly better performance, particularly with smaller sample sizes compared to its classical counterpart. Furthermore, we proposed a novel optimization approach based on Kernel Target Alignment (KTA) for determining hyperparameters of quantum kernels. This method effectively reduced the risk of false positives in causal discovery, enabling more reliable inference. Our theoretical and experimental results demonstrate that the proposed quantum algorithm can empower classical algorithms for robust and accurate inference in causal discovery, supporting them in regimes where classical algorithms typically fail. Additionally, the effectiveness of this method was validated using the Boston Housing dataset as a real-world application. These findings demonstrate the new potential of quantum circuit-based causal discovery methods in addressing practical challenges, particularly in small-sample scenarios where traditional approaches have shown limitations.
comment: 19 pages, 8 figures
☆ A High-accuracy Calibration Method of Transient TSEPs for Power Semiconductor Devices
The thermal sensitive electrical parameter (TSEP) method is crucial for enhancing the reliability of power devices through junction temperature monitoring. The TSEP method comprises three key processes: calibration, regression, and application. While significant efforts have been devoted to improving regression algorithms and increasing TSEP sensitivity to enhance junction temperature monitoring accuracy, these approaches have reached a bottleneck. In reality, the calibration method significantly influences monitoring accuracy, an aspect often overlooked in conventional TSEP methods. To address this issue, we propose a high-accuracy calibration method for transient TSEPs. First, a temperature compensation strategy based on thermal analysis is introduced to mitigate the temperature difference caused by load current during dual pulse tests. Second, the impact of stray parameters is analyzed to identify coupled parameters, which are typically neglected in existing methods. Third, it is observed that random errors follow a logarithm Gaussian distribution, covering a hidden variable. A neural network is used to obtain the junction temperature predictive model. The proposed calibration method is experimental validated in threshold voltage as an example. Compared with conventional calibration methods, the mean absolute error is reduced by over 30%. Moreover, this method does not require additional hardware cost and has good generalization.
☆ Load Forecasting for Households and Energy Communities: Are Deep Learning Models Worth the Effort?
Accurate load forecasting is crucial for predictive control in many energy domain applications, with significant economic and ecological implications. To address these implications, this study provides an extensive benchmark of state-of-the-art deep learning models for short-term load forecasting in energy communities. Namely, LSTM, xLSTM, and Transformers are compared with benchmarks such as KNNs, synthetic load models, and persistence forecasting models. This comparison considers different scales of aggregation (e.g., number of household loads) and varying training data availability (e.g., training data time spans). Further, the impact of transfer learning from synthetic (standard) load profiles and the deep learning model size (i.e., parameter count) is investigated in terms of forecasting error. Implementations are publicly available and other researchers are encouraged to benchmark models using this framework. Additionally, a comprehensive case study, comprising an energy community of 50 households and a battery storage demonstrates the beneficial financial implications of accurate predictions. Key findings of this research include: (1) Simple persistence benchmarks outperform deep learning models for short-term load forecasting when the available training data is limited to six months or less; (2) Pretraining with publicly available synthetic load profiles improves the normalized Mean Absolute Error (nMAE) by an average of 1.28%pt during the first nine months of training data; (3) Increased aggregation significantly enhances the performance of deep learning models relative to persistence benchmarks; (4) Improved load forecasting, with an nMAE reduction of 1.1%pt, translates to an economic benefit of approximately 600EUR per year in an energy community comprising 50 households.
comment: This preprint was submitted to the Elsevier journal Energy and AI on December 18, 2024
☆ GiNet: Integrating Sequential and Context-Aware Learning for Battery Capacity Prediction
The surging demand for batteries requires advanced battery management systems, where battery capacity modelling is a key functionality. In this paper, we aim to achieve accurate battery capacity prediction by learning from historical measurements of battery dynamics. We propose GiNet, a gated recurrent units enhanced Informer network, for predicting battery's capacity. The novelty and competitiveness of GiNet lies in its capability of capturing sequential and contextual information from raw battery data and reflecting the battery's complex behaviors with both temporal dynamics and long-term dependencies. We conducted an experimental study based on a publicly available dataset to showcase GiNet's strength of gaining a holistic understanding of battery behavior and predicting battery capacity accurately. GiNet achieves 0.11 mean absolute error for predicting the battery capacity in a sequence of future time slots without knowing the historical battery capacity. It also outperforms the latest algorithms significantly with 27% error reduction on average compared to Informer. The promising results highlight the importance of customized and optimized integration of algorithm and battery knowledge and shed light on other industry applications as well.
comment: 6 pages
☆ CuRLA: Curriculum Learning Based Deep Reinforcement Learning for Autonomous Driving
In autonomous driving, traditional Computer Vision (CV) agents often struggle in unfamiliar situations due to biases in the training data. Deep Reinforcement Learning (DRL) agents address this by learning from experience and maximizing rewards, which helps them adapt to dynamic environments. However, ensuring their generalization remains challenging, especially with static training environments. Additionally, DRL models lack transparency, making it difficult to guarantee safety in all scenarios, particularly those not seen during training. To tackle these issues, we propose a method that combines DRL with Curriculum Learning for autonomous driving. Our approach uses a Proximal Policy Optimization (PPO) agent and a Variational Autoencoder (VAE) to learn safe driving in the CARLA simulator. The agent is trained using two-fold curriculum learning, progressively increasing environment difficulty and incorporating a collision penalty in the reward function to promote safety. This method improves the agent's adaptability and reliability in complex environments, and understand the nuances of balancing multiple reward components from different feedback signals in a single scalar reward function. Keywords: Computer Vision, Deep Reinforcement Learning, Variational Autoencoder, Proximal Policy Optimization, Curriculum Learning, Autonomous Driving.
comment: To be published in the 17th International Conference on Agents and Artificial Intelligence (ICAART), Feb 2025
☆ Self-Adaptive Ising Machines for Constrained Optimization
Ising machines (IM) are physics-inspired alternatives to von Neumann architectures for solving hard optimization tasks. By mapping binary variables to coupled Ising spins, IMs can naturally solve unconstrained combinatorial optimization problems such as finding maximum cuts in graphs. However, despite their importance in practical applications, constrained problems remain challenging to solve for IMs that require large quadratic energy penalties to ensure the correspondence between energy ground states and constrained optimal solutions. To relax this requirement, we propose a self-adaptive IM that iteratively shapes its energy landscape using a Lagrange relaxation of constraints and avoids prior tuning of penalties. Using a probabilistic-bit (p-bit) IM emulated in software, we benchmark our algorithm with multidimensional knapsack problems (MKP) and quadratic knapsack problems (QKP), the latter being an Ising problem with linear constraints. For QKP with 300 variables, the proposed algorithm finds better solutions than state-of-the-art IMs such as Fujitsu's Digital Annealer and requires 7,500x fewer samples. Our results show that adapting the energy landscape during the search can speed up IMs for constrained optimization.
☆ Battling the Non-stationarity in Time Series Forecasting via Test-time Adaptation AAAI 2025
Deep Neural Networks have spearheaded remarkable advancements in time series forecasting (TSF), one of the major tasks in time series modeling. Nonetheless, the non-stationarity of time series undermines the reliability of pre-trained source time series forecasters in mission-critical deployment settings. In this study, we introduce a pioneering test-time adaptation framework tailored for TSF (TSF-TTA). TAFAS, the proposed approach to TSF-TTA, flexibly adapts source forecasters to continuously shifting test distributions while preserving the core semantic information learned during pre-training. The novel utilization of partially-observed ground truth and gated calibration module enables proactive, robust, and model-agnostic adaptation of source forecasters. Experiments on diverse benchmark datasets and cutting-edge architectures demonstrate the efficacy and generality of TAFAS, especially in long-term forecasting scenarios that suffer from significant distribution shifts. The code is available at https://github.com/kimanki/TAFAS.
comment: Accepted at AAAI 2025
☆ Targeted Adversarial Denoising Autoencoders (TADA) for Neural Time Series Filtration AAAI 2025
Current machine learning (ML)-based algorithms for filtering electroencephalography (EEG) time series data face challenges related to cumbersome training times, regularization, and accurate reconstruction. To address these shortcomings, we present an ML filtration algorithm driven by a logistic covariance-targeted adversarial denoising autoencoder (TADA). We hypothesize that the expressivity of a targeted, correlation-driven convolutional autoencoder will enable effective time series filtration while minimizing compute requirements (e.g., runtime, model size). Furthermore, we expect that adversarial training with covariance rescaling will minimize signal degradation. To test this hypothesis, a TADA system prototype was trained and evaluated on the task of removing electromyographic (EMG) noise from EEG data in the EEGdenoiseNet dataset, which includes EMG and EEG data from 67 subjects. The TADA filter surpasses conventional signal filtration algorithms across quantitative metrics (Correlation Coefficient, Temporal RRMSE, Spectral RRMSE), and performs competitively against other deep learning architectures at a reduced model size of less than 400,000 trainable parameters. Further experimentation will be necessary to assess the viability of TADA on a wider range of deployment cases.
comment: [Accepted] Artificial Intelligence for Time Series Analysis (AI4TS): Theory, Algorithms, and Applications @ AAAI 2025, Philadelphia, PA, USA
☆ Demystifying Domain-adaptive Post-training for Financial LLMs
Domain-adaptive post-training of large language models (LLMs) has emerged as a promising approach for specialized domains such as medicine and finance. However, significant challenges remain in identifying optimal adaptation criteria and training strategies across varying data and model configurations. To address these challenges, we introduce FINDAP, a systematic and fine-grained investigation into domain-adaptive post-training of LLMs for the finance domain. Our approach begins by identifying the core capabilities required for the target domain and designing a comprehensive evaluation suite aligned with these needs. We then analyze the effectiveness of key post-training stages, including continual pretraining, instruction tuning, and preference alignment. Building on these insights, we propose an effective training recipe centered on a novel preference data distillation method, which leverages process signals from a generative reward model. The resulting model, Llama-Fin, achieves state-of-the-art performance across a wide range of financial tasks. Our analysis also highlights how each post-training stage contributes to distinct capabilities, uncovering specific challenges and effective solutions, providing valuable insights for domain adaptation of LLMs. Project page: https://github.com/SalesforceAIResearch/FinDap
☆ Open Problems in Machine Unlearning for AI Safety
As AI systems become more capable, widely deployed, and increasingly autonomous in critical areas such as cybersecurity, biological research, and healthcare, ensuring their safety and alignment with human values is paramount. Machine unlearning -- the ability to selectively forget or suppress specific types of knowledge -- has shown promise for privacy and data removal tasks, which has been the primary focus of existing research. More recently, its potential application to AI safety has gained attention. In this paper, we identify key limitations that prevent unlearning from serving as a comprehensive solution for AI safety, particularly in managing dual-use knowledge in sensitive domains like cybersecurity and chemical, biological, radiological, and nuclear (CBRN) safety. In these contexts, information can be both beneficial and harmful, and models may combine seemingly harmless information for harmful purposes -- unlearning this information could strongly affect beneficial uses. We provide an overview of inherent constraints and open problems, including the broader side effects of unlearning dangerous knowledge, as well as previously unexplored tensions between unlearning and existing safety mechanisms. Finally, we investigate challenges related to evaluation, robustness, and the preservation of safety features during unlearning. By mapping these limitations and open challenges, we aim to guide future research toward realistic applications of unlearning within a broader AI safety framework, acknowledging its limitations and highlighting areas where alternative approaches may be required.
☆ Non-asymptotic analysis of the performance of the penalized least trimmed squares in sparse models
The least trimmed squares (LTS) estimator is a renowned robust alternative to the classic least squares estimator and is popular in location, regression, machine learning, and AI literature. Many studies exist on LTS, including its robustness, computation algorithms, extension to non-linear cases, asymptotics, etc. The LTS has been applied in the penalized regression in a high-dimensional real-data sparse-model setting where dimension $p$ (in thousands) is much larger than sample size $n$ (in tens, or hundreds). In such a practical setting, the sample size $n$ often is the count of sub-population that has a special attribute (e.g. the count of patients of Alzheimer's, Parkinson's, Leukemia, or ALS, etc.) among a population with a finite fixed size N. Asymptotic analysis assuming that $n$ tends to infinity is not practically convincing and legitimate in such a scenario. A non-asymptotic or finite sample analysis will be more desirable and feasible. This article establishes some finite sample (non-asymptotic) error bounds for estimating and predicting based on LTS with high probability for the first time.
☆ A New Perspective on Privacy Protection in Federated Learning with Granular-Ball Computing
Federated Learning (FL) facilitates collaborative model training while prioritizing privacy by avoiding direct data sharing. However, most existing articles attempt to address challenges within the model's internal parameters and corresponding outputs, while neglecting to solve them at the input level. To address this gap, we propose a novel framework called Granular-Ball Federated Learning (GrBFL) for image classification. GrBFL diverges from traditional methods that rely on the finest-grained input data. Instead, it segments images into multiple regions with optimal coarse granularity, which are then reconstructed into a graph structure. We designed a two-dimensional binary search segmentation algorithm based on variance constraints for GrBFL, which effectively removes redundant information while preserving key representative features. Extensive theoretical analysis and experiments demonstrate that GrBFL not only safeguards privacy and enhances efficiency but also maintains robust utility, consistently outperforming other state-of-the-art FL methods. The code is available at https://github.com/AIGNLAI/GrBFL.
☆ SpecTf: Transformers Enable Data-Driven Imaging Spectroscopy Cloud Detection
Current and upcoming generations of visible-shortwave infrared (VSWIR) imaging spectrometers promise unprecedented capacity to quantify Earth System processes across the globe. However, reliable cloud screening remains a fundamental challenge for these instruments, where traditional spatial and temporal approaches are limited by cloud variability and limited temporal coverage. The Spectroscopic Transformer (SpecTf) addresses these challenges with a spectroscopy-specific deep learning architecture that performs cloud detection using only spectral information (no spatial or temporal data are required). By treating spectral measurements as sequences rather than image channels, SpecTf learns fundamental physical relationships without relying on spatial context. Our experiments demonstrate that SpecTf significantly outperforms the current baseline approach implemented for the EMIT instrument, and performs comparably with other machine learning methods with orders of magnitude fewer learned parameters. Critically, we demonstrate SpecTf's inherent interpretability through its attention mechanism, revealing physically meaningful spectral features the model has learned. Finally, we present SpecTf's potential for cross-instrument generalization by applying it to a different instrument on a different platform without modifications, opening the door to instrument agnostic data driven algorithms for future imaging spectroscopy tasks.
comment: 23 pages, 5 figures, in review. Code repository: https://github.com/emit-sds/SpecTf
☆ From Mesh Completion to AI Designed Crown
Designing a dental crown is a time-consuming and labor intensive process. Our goal is to simplify crown design and minimize the tediousness of making manual adjustments while still ensuring the highest level of accuracy and consistency. To this end, we present a new end- to-end deep learning approach, coined Dental Mesh Completion (DMC), to generate a crown mesh conditioned on a point cloud context. The dental context includes the tooth prepared to receive a crown and its surroundings, namely the two adjacent teeth and the three closest teeth in the opposing jaw. We formulate crown generation in terms of completing this point cloud context. A feature extractor first converts the input point cloud into a set of feature vectors that represent local regions in the point cloud. The set of feature vectors is then fed into a transformer to predict a new set of feature vectors for the missing region (crown). Subsequently, a point reconstruction head, followed by a multi-layer perceptron, is used to predict a dense set of points with normals. Finally, a differentiable point-to-mesh layer serves to reconstruct the crown surface mesh. We compare our DMC method to a graph-based convolutional neural network which learns to deform a crown mesh from a generic crown shape to the target geometry. Extensive experiments on our dataset demonstrate the effectiveness of our method, which attains an average of 0.062 Chamfer Distance.The code is available at:https://github.com/Golriz-code/DMC.gi
☆ Towards understanding the bias in decision trees
There is a widespread and longstanding belief that machine learning models are biased towards the majority (or negative) class when learning from imbalanced data, leading them to neglect or ignore the minority (or positive) class. In this study, we show that this belief is not necessarily correct for decision trees, and that their bias can actually be in the opposite direction. Motivated by a recent simulation study that suggested that decision trees can be biased towards the minority class, our paper aims to reconcile the conflict between that study and decades of other works. First, we critically evaluate past literature on this problem, finding that failing to consider the data generating process has led to incorrect conclusions about the bias in decision trees. We then prove that, under specific conditions related to the predictors, decision trees fit to purity and trained on a dataset with only one positive case are biased towards the minority class. Finally, we demonstrate that splits in a decision tree are also biased when there is more than one positive case. Our findings have implications on the use of popular tree-based models, such as random forests.
☆ Optimality and Adaptivity of Deep Neural Features for Instrumental Variable Regression
We provide a convergence analysis of deep feature instrumental variable (DFIV) regression (Xu et al., 2021), a nonparametric approach to IV regression using data-adaptive features learned by deep neural networks in two stages. We prove that the DFIV algorithm achieves the minimax optimal learning rate when the target structural function lies in a Besov space. This is shown under standard nonparametric IV assumptions, and an additional smoothness assumption on the regularity of the conditional distribution of the covariate given the instrument, which controls the difficulty of Stage 1. We further demonstrate that DFIV, as a data-adaptive algorithm, is superior to fixed-feature (kernel or sieve) IV methods in two ways. First, when the target function possesses low spatial homogeneity (i.e., it has both smooth and spiky/discontinuous regions), DFIV still achieves the optimal rate, while fixed-feature methods are shown to be strictly suboptimal. Second, comparing with kernel-based two-stage regression estimators, DFIV is provably more data efficient in the Stage 1 samples.
comment: 46 pages, 1 figure, 2 tables
☆ Online Continual Learning: A Systematic Literature Review of Approaches, Challenges, and Benchmarks
Online Continual Learning (OCL) is a critical area in machine learning, focusing on enabling models to adapt to evolving data streams in real-time while addressing challenges such as catastrophic forgetting and the stability-plasticity trade-off. This study conducts the first comprehensive Systematic Literature Review (SLR) on OCL, analyzing 81 approaches, extracting over 1,000 features (specific tasks addressed by these approaches), and identifying more than 500 components (sub-models within approaches, including algorithms and tools). We also review 83 datasets spanning applications like image classification, object detection, and multimodal vision-language tasks. Our findings highlight key challenges, including reducing computational overhead, developing domain-agnostic solutions, and improving scalability in resource-constrained environments. Furthermore, we identify promising directions for future research, such as leveraging self-supervised learning for multimodal and sequential data, designing adaptive memory mechanisms that integrate sparse retrieval and generative replay, and creating efficient frameworks for real-world applications with noisy or evolving task boundaries. By providing a rigorous and structured synthesis of the current state of OCL, this review offers a valuable resource for advancing this field and addressing its critical challenges and opportunities. The complete SLR methodology steps and extracted data are publicly available through the provided link: https://github.com/kiyan-rezaee/ Systematic-Literature-Review-on-Online-Continual-Learning
☆ Quantifying Itch and its Impact on Sleep Using Machine Learning and Radio Signals
Chronic itch affects 13% of the US population, is highly debilitating, and underlies many medical conditions. A major challenge in clinical care and new therapeutics development is the lack of an objective measure for quantifying itch, leading to reliance on subjective measures like patients' self-assessment of itch severity. In this paper, we show that a home radio device paired with artificial intelligence (AI) can concurrently capture scratching and evaluate its impact on sleep quality by analyzing radio signals bouncing in the environment. The device eliminates the need for wearable sensors or skin contact, enabling monitoring of chronic itch over extended periods at home without burdening patients or interfering with their skin condition. To validate the technology, we conducted an observational clinical study of chronic pruritus patients, monitored at home for one month using both the radio device and an infrared camera. Comparing the output of the device to ground truth data from the camera demonstrates its feasibility and accuracy (ROC AUC = 0.997, sensitivity = 0.825, specificity = 0.997). The results reveal a significant correlation between scratching and low sleep quality, manifested as a reduction in sleep efficiency (R = 0.6, p < 0.001) and an increase in sleep latency (R = 0.68, p < 0.001). Our study underscores the potential of passive, long-term, at-home monitoring of chronic scratching and its sleep implications, offering a valuable tool for both clinical care of chronic itch patients and pharmaceutical clinical trials.
☆ A Look into How Machine Learning is Reshaping Engineering Models: the Rise of Analysis Paralysis, Optimal yet Infeasible Solutions, and the Inevitable Rashomon Paradox
The widespread acceptance of empirically derived codal provisions and equations in civil engineering stands in stark contrast to the skepticism facing machine learning (ML) models, despite their shared statistical foundations. This paper examines this philosophical tension through the lens of structural engineering and explores how integrating ML challenges traditional engineering philosophies and professional identities. Recent efforts have documented how ML enhances predictive accuracy, optimizes designs, and analyzes complex behaviors. However, one might also raise concerns about the diminishing role of human intuition and the interpretability of algorithms. To showcase this rarely explored front, this paper presents how ML can be successfully integrated into various engineering problems by means of formulation via deduction, induction, and abduction. Then, this paper identifies three principal paradoxes that could arise when adopting ML: analysis paralysis (increased prediction accuracy leading to a reduced understanding of physical mechanisms), infeasible solutions (optimization resulting in unconventional designs that challenge engineering intuition), and the Rashomon effect (where contradictions in explainability methods and physics arise). This paper concludes by addressing these paradoxes and arguing the need to rethink epistemological shifts in engineering and engineering education and methodologies to harmonize traditional principles with ML.
☆ Towards Probabilistic Inference of Human Motor Intentions by Assistive Mobile Robots Controlled via a Brain-Computer Interface
Assistive mobile robots are a transformative technology that helps persons with disabilities regain the ability to move freely. Although autonomous wheelchairs significantly reduce user effort, they still require human input to allow users to maintain control and adapt to changing environments. Brain Computer Interface (BCI) stands out as a highly user-friendly option that does not require physical movement. Current BCI systems can understand whether users want to accelerate or decelerate, but they implement these changes in discrete speed steps rather than allowing for smooth, continuous velocity adjustments. This limitation prevents the systems from mimicking the natural, fluid speed changes seen in human self-paced motion. The authors aim to address this limitation by redesigning the perception-action cycle in a BCI controlled robotic system: improving how the robotic agent interprets the user's motion intentions (world state) and implementing these actions in a way that better reflects natural physical properties of motion, such as inertia and damping. The scope of this paper focuses on the perception aspect. We asked and answered a normative question "what computation should the robotic agent carry out to optimally perceive incomplete or noisy sensory observations?" Empirical EEG data were collected, and probabilistic representation that served as world state distributions were learned and evaluated in a Generative Adversarial Network framework. The ROS framework was established that connected with a Gazebo environment containing a digital twin of an indoor space and a virtual model of a robotic wheelchair. Signal processing and statistical analyses were implemented to identity the most discriminative features in the spatial-spectral-temporal dimensions, which are then used to construct the world model for the robotic agent to interpret user motion intentions as a Bayesian observer.
comment: 10 pages
☆ Advancing Personalized Learning Analysis via an Innovative Domain Knowledge Informed Attention-based Knowledge Tracing Method
Emerging Knowledge Tracing (KT) models, particularly deep learning and attention-based Knowledge Tracing, have shown great potential in realizing personalized learning analysis via prediction of students' future performance based on their past interactions. The existing methods mainly focus on immediate past interactions or individual concepts without accounting for dependencies between knowledge concept, referred as knowledge concept routes, that can be critical to advance the understanding the students' learning outcomes. To address this, in this paper, we propose an innovative attention-based method by effectively incorporating the domain knowledge of knowledge concept routes in the given curriculum. Additionally, we leverage XES3G5M dataset, a benchmark dataset with rich auxiliary information for knowledge concept routes, to evaluate and compare the performance of our proposed method to the seven State-of-the-art (SOTA) deep learning models.
☆ Session-Level Dynamic Ad Load Optimization using Offline Robust Reinforcement Learning KDD 2025
Session-level dynamic ad load optimization aims to personalize the density and types of delivered advertisements in real time during a user's online session by dynamically balancing user experience quality and ad monetization. Traditional causal learning-based approaches struggle with key technical challenges, especially in handling confounding bias and distribution shifts. In this paper, we develop an offline deep Q-network (DQN)-based framework that effectively mitigates confounding bias in dynamic systems and demonstrates more than 80% offline gains compared to the best causal learning-based production baseline. Moreover, to improve the framework's robustness against unanticipated distribution shifts, we further enhance our framework with a novel offline robust dueling DQN approach. This approach achieves more stable rewards on multiple OpenAI-Gym datasets as perturbations increase, and provides an additional 5% offline gains on real-world ad delivery data. Deployed across multiple production systems, our approach has achieved outsized topline gains. Post-launch online A/B tests have shown double-digit improvements in the engagement-ad score trade-off efficiency, significantly enhancing our platform's capability to serve both consumers and advertisers.
comment: Will appear in KDD 2025
☆ Enforcing Fundamental Relations via Adversarial Attacks on Input Parameter Correlations
Correlations between input parameters play a crucial role in many scientific classification tasks, since these are often related to fundamental laws of nature. For example, in high energy physics, one of the common deep learning use-cases is the classification of signal and background processes in particle collisions. In many such cases, the fundamental principles of the correlations between observables are often better understood than the actual distributions of the observables themselves. In this work, we present a new adversarial attack algorithm called Random Distribution Shuffle Attack (RDSA), emphasizing the correlations between observables in the network rather than individual feature characteristics. Correct application of the proposed novel attack can result in a significant improvement in classification performance - particularly in the context of data augmentation - when using the generated adversaries within adversarial training. Given that correlations between input features are also crucial in many other disciplines. We demonstrate the RDSA effectiveness on six classification tasks, including two particle collision challenges (using CERN Open Data), hand-written digit recognition (MNIST784), human activity recognition (HAR), weather forecasting (Rain in Australia), and ICU patient mortality (MIMIC-IV), demonstrating a general use case beyond fundamental physics for this new type of adversarial attack algorithms.
comment: 12 pages, 8 figures (Without appendix)
☆ Learned Discrepancy Reconstruction and Benchmark Dataset for Magnetic Particle Imaging
Magnetic Particle Imaging (MPI) is an emerging imaging modality based on the magnetic response of superparamagnetic iron oxide nanoparticles to achieve high-resolution and real-time imaging without harmful radiation. One key challenge in the MPI image reconstruction task arises from its underlying noise model, which does not fulfill the implicit Gaussian assumptions that are made when applying traditional reconstruction approaches. To address this challenge, we introduce the Learned Discrepancy Approach, a novel learning-based reconstruction method for inverse problems that includes a learned discrepancy function. It enhances traditional techniques by incorporating an invertible neural network to explicitly model problem-specific noise distributions. This approach does not rely on implicit Gaussian noise assumptions, making it especially suited to handle the sophisticated noise model in MPI and also applicable to other inverse problems. To further advance MPI reconstruction techniques, we introduce the MPI-MNIST dataset - a large collection of simulated MPI measurements derived from the MNIST dataset of handwritten digits. The dataset includes noise-perturbed measurements generated from state-of-the-art model-based system matrices and measurements of a preclinical MPI scanner device. This provides a realistic and flexible environment for algorithm testing. Validated against the MPI-MNIST dataset, our method demonstrates significant improvements in reconstruction quality in terms of structural similarity when compared to classical reconstruction techniques.
☆ Physics-Driven Learning for Inverse Problems in Quantum Chromodynamics
The integration of deep learning techniques and physics-driven designs is reforming the way we address inverse problems, in which accurate physical properties are extracted from complex data sets. This is particularly relevant for quantum chromodynamics (QCD), the theory of strong interactions, with its inherent limitations in observational data and demanding computational approaches. This perspective highlights advances and potential of physics-driven learning methods, focusing on predictions of physical quantities towards QCD physics, and drawing connections to machine learning(ML). It is shown that the fusion of ML and physics can lead to more efficient and reliable problem-solving strategies. Key ideas of ML, methodology of embedding physics priors, and generative models as inverse modelling of physical probability distributions are introduced. Specific applications cover first-principle lattice calculations, and QCD physics of hadrons, neutron stars, and heavy-ion collisions. These examples provide a structured and concise overview of how incorporating prior knowledge such as symmetry, continuity and equations into deep learning designs can address diverse inverse problems across different physical sciences.
comment: 14 pages, 5 figures, submitted version to Nat Rev Phys
☆ Analog Bayesian neural networks are insensitive to the shape of the weight distribution NeurIPS 2024
Recent work has demonstrated that Bayesian neural networks (BNN's) trained with mean field variational inference (MFVI) can be implemented in analog hardware, promising orders of magnitude energy savings compared to the standard digital implementations. However, while Gaussians are typically used as the variational distribution in MFVI, it is difficult to precisely control the shape of the noise distributions produced by sampling analog devices. This paper introduces a method for MFVI training using real device noise as the variational distribution. Furthermore, we demonstrate empirically that the predictive distributions from BNN's with the same weight means and variances converge to the same distribution, regardless of the shape of the variational distribution. This result suggests that analog device designers do not need to consider the shape of the device noise distribution when hardware-implementing BNNs performing MFVI.
comment: Presented at the NeurIPS 2024 Workshop on Machine Learning with New Compute Paradigms, https://openreview.net/forum?id=soS5qgU7Yb
☆ Prediction-Assisted Online Distributed Deep Learning Workload Scheduling in GPU Clusters
The recent explosive growth of deep learning (DL) models has necessitated a compelling need for efficient job scheduling for distributed deep learning training with mixed parallelisms (DDLwMP) in GPU clusters. This paper proposes an adaptive shortest-remaining-processing-time-first (A-SRPT) scheduling algorithm, a novel prediction-assisted online scheduling approach designed to mitigate the challenges associated with DL cluster scheduling. By modeling each job as a graph corresponding to heterogeneous Deep Neural Network (DNN) models and their associated distributed training configurations, A-SRPT strategically assigns jobs to the available GPUs, thereby minimizing inter-server communication overhead. Observing that most DDLwMP jobs recur, A-SRPT incorporates a random forest regression model to predict training iterations. Crucially, A-SRPT maps the complex scheduling problem into a single-machine instance, which is addressed optimally by a preemptive "shortest-remaining-processing-time-first" strategy. This optimized solution serves as a guide for actual job scheduling within the GPU clusters, leading to a theoretically provable competitive scheduling efficiency. We conduct extensive real-world testbed and simulation experiments to verify our proposed algorithms.
comment: INFOCOM 2025
☆ Soup to go: mitigating forgetting during continual learning with model averaging
In continual learning, where task data arrives in a sequence, fine-tuning on later tasks will often lead to performance degradation on earlier tasks. This is especially pronounced when these tasks come from diverse domains. In this setting, how can we mitigate catastrophic forgetting of earlier tasks and retain what the model has learned with minimal computational expenses? Inspired by other merging methods, and L2-regression, we propose Sequential Fine-tuning with Averaging (SFA), a method that merges currently training models with earlier checkpoints during the course of training. SOTA approaches typically maintain a data buffer of past tasks or impose a penalty at each gradient step. In contrast, our method achieves comparable results without the need to store past data, or multiple copies of parameters for each gradient step. Furthermore, our method outperforms common merging techniques such as Task Arithmetic, TIES Merging, and WiSE-FT, as well as other penalty methods like L2 and Elastic Weight Consolidation. In turn, our method offers insight into the benefits of merging partially-trained models during training across both image and language domains.
☆ Emergent weight morphologies in deep neural networks
Whether deep neural networks can exhibit emergent behaviour is not only relevant for understanding how deep learning works, it is also pivotal for estimating potential security risks of increasingly capable artificial intelligence systems. Here, we show that training deep neural networks gives rise to emergent weight morphologies independent of the training data. Specifically, in analogy to condensed matter physics, we derive a theory that predict that the homogeneous state of deep neural networks is unstable in a way that leads to the emergence of periodic channel structures. We verified these structures by performing numerical experiments on a variety of data sets. Our work demonstrates emergence in the training of deep neural networks, which impacts the achievable performance of deep neural networks.
☆ NSChat: A Chatbot System To Rule Them All
The rapid advancement of artificial intelligence has resulted in the advent of large language models (LLMs) with the capacity to produce text that closely resembles human communication. These models have been seamlessly integrated into diverse applications, enabling interactive and responsive communication across multiple platforms. The potential utility of chatbots transcends these traditional applications, particularly in research contexts, wherein they can offer valuable insights and facilitate the design of innovative experiments. In this study, we present NSChat, a web-based chatbot system designed to assist in neuroscience research. The system is meticulously designed to function as an experimental instrument rather than a conventional chatbot, necessitating users to input a username and experiment code upon access. This setup facilitates precise data cross-referencing, thereby augmenting the integrity and applicability of the data collected for research purposes. It can be easily expanded to accommodate new basic events as needed; and it allows researchers to integrate their own logging events without the necessity of implementing a separate logging mechanism. It is worth noting that our system was built to assist primarily neuroscience research but is not limited to it, it can easily be adapted to assist information retrieval research or interacting with chat bot agents in general.
☆ OmniJet-${α_{ C}}$: Learning point cloud calorimeter simulations using generative transformers
We show the first use of generative transformers for generating calorimeter showers as point clouds in a high-granularity calorimeter. Using the tokenizer and generative part of the OmniJet-${\alpha}$ model, we represent the hits in the detector as sequences of integers. This model allows variable-length sequences, which means that it supports realistic shower development and does not need to be conditioned on the number of hits. Since the tokenization represents the showers as point clouds, the model learns the geometry of the showers without being restricted to any particular voxel grid.
☆ Outlyingness Scores with Cluster Catch Digraphs
This paper introduces two novel, outlyingness scores (OSs) based on Cluster Catch Digraphs (CCDs): Outbound Outlyingness Score (OOS) and Inbound Outlyingness Score (IOS). These scores enhance the interpretability of outlier detection results. Both OSs employ graph-, density-, and distribution-based techniques, tailored to high-dimensional data with varying cluster shapes and intensities. OOS evaluates the outlyingness of a point relative to its nearest neighbors, while IOS assesses the total ``influence" a point receives from others within its cluster. Both OSs effectively identify global and local outliers, invariant to data collinearity. Moreover, IOS is robust to the masking problems. With extensive Monte Carlo simulations, we compare the performance of both OSs with CCD-based, traditional, and state-of-the-art outlier detection methods. Both OSs exhibit substantial overall improvements over the CCD-based methods in both artificial and real-world data sets, particularly with IOS, which delivers the best overall performance among all the methods, especially in high-dimensional settings. Keywords: Outlier detection, Outlyingness score, Graph-based clustering, Cluster catch digraphs, High-dimensional data.
comment: 29 pages, 7 figures, 16 tables
☆ Neural Architecture Codesign for Fast Physics Applications
We develop a pipeline to streamline neural architecture codesign for physics applications to reduce the need for ML expertise when designing models for novel tasks. Our method employs neural architecture search and network compression in a two-stage approach to discover hardware efficient models. This approach consists of a global search stage that explores a wide range of architectures while considering hardware constraints, followed by a local search stage that fine-tunes and compresses the most promising candidates. We exceed performance on various tasks and show further speedup through model compression techniques such as quantization-aware-training and neural network pruning. We synthesize the optimal models to high level synthesis code for FPGA deployment with the hls4ml library. Additionally, our hierarchical search space provides greater flexibility in optimization, which can easily extend to other tasks and domains. We demonstrate this with two case studies: Bragg peak finding in materials science and jet classification in high energy physics, achieving models with improved accuracy, smaller latencies, or reduced resource utilization relative to the baseline models.
comment: 21 pages, 6 figures
☆ The more polypersonal the better -- a short look on space geometry of fine-tuned layers
The interpretation of deep learning models is a rapidly growing field, with particular interest in language models. There are various approaches to this task, including training simpler models to replicate neural network predictions and analyzing the latent space of the model. The latter method allows us to not only identify patterns in the model's decision-making process, but also understand the features of its internal structure. In this paper, we analyze the changes in the internal representation of the BERT model when it is trained with additional grammatical modules and data containing new grammatical structures (polypersonality). We find that adding a single grammatical layer causes the model to separate the new and old grammatical systems within itself, improving the overall performance on perplexity metrics.
comment: Neuroinformatics 2024
☆ Shrink the longest: improving latent space isotropy with symplicial geometry
Although transformer-based models have been dominating the field of deep learning, various studies of their embedding space have shown that they suffer from "representation degeneration problem": embeddings tend to be distributed in a narrow cone, making the latent space highly anisotropic. Increasing the isotropy has shown to improve performance in downstream tasks both in static and contextual language models. However, most of approaches either add inference overhead or require substantial amount of data for model reparametrization. We propose a novel regularization technique based on simplicial geometry to improve the isotropy of latent representations. The core idea of our method is based on maximizing the persistent entropy of barcodes obtained using Vietoris-Rips filtration from contextual embeddings in the underlying latent space. We demonstrate that the method leads to an increase in downstream performance while significantly lowering the anisotropy during fine-tuning by exploiting existing geometric structures instead of reparametrization.
comment: AIST-2024
☆ Strategy Masking: A Method for Guardrails in Value-based Reinforcement Learning Agents
The use of reward functions to structure AI learning and decision making is core to the current reinforcement learning paradigm; however, without careful design of reward functions, agents can learn to solve problems in ways that may be considered ``undesirable" or ``unethical. Without thorough understanding of the incentives a reward function creates, it can be difficult to impose principled yet general control mechanisms over its behavior. In this paper, we study methods for constructing guardrails for AI agents that use reward functions to learn decision making. We introduce a novel approach, which we call strategy masking, to explicitly learn and then suppress undesirable AI agent behavior. We apply our method to study lying in AI agents and show that strategy masking can effectively modify agent behavior by suppressing, or actively penalizing, the reward dimension for lying such that agents act more honestly while not compromising their ability to perform effectively.
☆ Generalization of Urban Wind Environment Using Fourier Neural Operator Across Different Wind Directions and Cities
Simulation of urban wind environments is crucial for urban planning, pollution control, and renewable energy utilization. However, the computational requirements of high-fidelity computational fluid dynamics (CFD) methods make them impractical for real cities. To address these limitations, this study investigates the effectiveness of the Fourier Neural Operator (FNO) model in predicting flow fields under different wind directions and urban layouts. In this study, we investigate the effectiveness of the Fourier Neural Operator (FNO) model in predicting urban wind conditions under different wind directions and urban layouts. By training the model on velocity data from large eddy simulation data, we evaluate the performance of the model under different urban configurations and wind conditions. The results show that the FNO model can provide accurate predictions while significantly reducing the computational time by 99%. Our innovative approach of dividing the wind field into smaller spatial blocks for training improves the ability of the FNO model to capture wind frequency features effectively. The SDF data also provides important spatial building information, enhancing the model's ability to recognize physical boundaries and generate more realistic predictions. The proposed FNO approach enhances the AI model's generalizability for different wind directions and urban layouts.
☆ Generative Flow Networks: Theory and Applications to Structure Learning
Without any assumptions about data generation, multiple causal models may explain our observations equally well. To avoid selecting a single arbitrary model that could result in unsafe decisions if it does not match reality, it is therefore essential to maintain a notion of epistemic uncertainty about our possible candidates. This thesis studies the problem of structure learning from a Bayesian perspective, approximating the posterior distribution over the structure of a causal model, represented as a directed acyclic graph (DAG), given data. It introduces Generative Flow Networks (GFlowNets), a novel class of probabilistic models designed for modeling distributions over discrete and compositional objects such as graphs. They treat generation as a sequential decision making problem, constructing samples of a target distribution defined up to a normalization constant piece by piece. In the first part of this thesis, we present the mathematical foundations of GFlowNets, their connections to existing domains of machine learning and statistics such as variational inference and reinforcement learning, and their extensions beyond discrete problems. In the second part of this thesis, we show how GFlowNets can approximate the posterior distribution over DAG structures of causal Bayesian Networks, along with the parameters of its causal mechanisms, given observational and experimental data.
☆ FedSA: A Unified Representation Learning via Semantic Anchors for Prototype-based Federated Learning AAAI2025
Prototype-based federated learning has emerged as a promising approach that shares lightweight prototypes to transfer knowledge among clients with data heterogeneity in a model-agnostic manner. However, existing methods often collect prototypes directly from local models, which inevitably introduce inconsistencies into representation learning due to the biased data distributions and differing model architectures among clients. In this paper, we identify that both statistical and model heterogeneity create a vicious cycle of representation inconsistency, classifier divergence, and skewed prototype alignment, which negatively impacts the performance of clients. To break the vicious cycle, we propose a novel framework named Federated Learning via Semantic Anchors (FedSA) to decouple the generation of prototypes from local representation learning. We introduce a novel perspective that uses simple yet effective semantic anchors serving as prototypes to guide local models in learning consistent representations. By incorporating semantic anchors, we further propose anchor-based regularization with margin-enhanced contrastive learning and anchor-based classifier calibration to correct feature extractors and calibrate classifiers across clients, achieving intra-class compactness and inter-class separability of prototypes while ensuring consistent decision boundaries. We then update the semantic anchors with these consistent and discriminative prototypes, which iteratively encourage clients to collaboratively learn a unified data representation with robust generalization. Extensive experiments under both statistical and model heterogeneity settings show that FedSA significantly outperforms existing prototype-based FL methods on various classification tasks.
comment: Accepted by AAAI2025
☆ LSEBMCL: A Latent Space Energy-Based Model for Continual Learning
Continual learning has become essential in many practical applications such as online news summaries and product classification. The primary challenge is known as catastrophic forgetting, a phenomenon where a model inadvertently discards previously learned knowledge when it is trained on new tasks. Existing solutions involve storing exemplars from previous classes, regularizing parameters during the fine-tuning process, or assigning different model parameters to each task. The proposed solution LSEBMCL (Latent Space Energy-Based Model for Continual Learning) in this work is to use energy-based models (EBMs) to prevent catastrophic forgetting by sampling data points from previous tasks when training on new ones. The EBM is a machine learning model that associates an energy value with each input data point. The proposed method uses an EBM layer as an outer-generator in the continual learning framework for NLP tasks. The study demonstrates the efficacy of EBM in NLP tasks, achieving state-of-the-art results in all experiments.
comment: In the 7th International Conference on Artificial Intelligence in Information and Communication (ICAIIC 2025)
☆ Mathematical Modeling and Machine Learning for Predicting Shade-Seeking Behavior in Cows Under Heat Stress
In this paper we develop a mathematical model combined with machine learning techniques to predict shade-seeking behavior in cows exposed to heat stress. The approach integrates advanced mathematical features, such as time-averaged thermal indices and accumulated heat stress metrics, obtained by mathematical analysis of data from a farm in Titaguas (Valencia, Spain), collected during the summer of 2023. Two predictive models, Random Forests and Neural Networks, are compared for accuracy, robustness, and interpretability. The Random Forest model is highlighted for its balance between precision and explainability, achieving an RMSE of $14.97$. The methodology also employs $5-$fold cross-validation to ensure robustness under real-world conditions. This work not only advances the mathematical modeling of animal behavior but also provides useful insights for mitigating heat stress in livestock through data-driven tools.
comment: 22 pages, 10 figures
☆ FOCUS: Towards Universal Foreground Segmentation
Foreground segmentation is a fundamental task in computer vision, encompassing various subdivision tasks. Previous research has typically designed task-specific architectures for each task, leading to a lack of unification. Moreover, they primarily focus on recognizing foreground objects without effectively distinguishing them from the background. In this paper, we emphasize the importance of the background and its relationship with the foreground. We introduce FOCUS, the Foreground ObjeCts Universal Segmentation framework that can handle multiple foreground tasks. We develop a multi-scale semantic network using the edge information of objects to enhance image features. To achieve boundary-aware segmentation, we propose a novel distillation method, integrating the contrastive learning strategy to refine the prediction mask in multi-modal feature space. We conduct extensive experiments on a total of 13 datasets across 5 tasks, and the results demonstrate that FOCUS consistently outperforms the state-of-the-art task-specific models on most metrics.
☆ Monotonic Learning in the PAC Framework: A New Perspective
Monotone learning refers to learning processes in which expected performance consistently improves as more training data is introduced. Non-monotone behavior of machine learning has been the topic of a series of recent works, with various proposals that ensure monotonicity by applying transformations or wrappers on learning algorithms. In this work, from a different perspective, we tackle the topic of monotone learning within the framework of Probably Approximately Correct (PAC) learning theory. Following the mechanism that estimates sample complexity of a PAC-learnable problem, we derive a performance lower bound for that problem, and prove the monotonicity of that bound as the sample sizes increase. By calculating the lower bound distribution, we are able to prove that given a PAC-learnable problem with a hypothesis space that is either of finite size or of finite VC dimension, any learning algorithm based on Empirical Risk Minimization (ERM) is monotone if training samples are independent and identically distributed (i.i.d.). We further carry out an experiment on two concrete machine learning problems, one of which has a finite hypothesis set, and the other of finite VC dimension, and compared the experimental data for the empirical risk distributions with the estimated theoretical bound. The results of the comparison have confirmed the monotonicity of learning for the two PAC-learnable problems.
comment: 16 pages
♻ ☆ Probabilities-Informed Machine Learning
Machine learning (ML) has emerged as a powerful tool for tackling complex regression and classification tasks, yet its success often hinges on the quality of training data. This study introduces an ML paradigm inspired by domain knowledge of the structure of output function, akin to physics-informed ML, but rooted in probabilistic principles rather than physical laws. The proposed approach integrates the probabilistic structure of the target variable (such as its cumulative distribution function) into the training process. This probabilistic information is obtained from historical data or estimated using structural reliability methods during experimental design. By embedding domain-specific probabilistic insights into the learning process, the technique enhances model accuracy and mitigates risks of overfitting and underfitting. Applications in regression, image denoising, and classification demonstrate the approach's effectiveness in addressing real-world problems.
♻ ☆ Conditional Deep Canonical Time Warping
Temporal alignment of sequences is a fundamental challenge in many applications, such as computer vision and bioinformatics, where local time shifting needs to be accounted for. Misalignment can lead to poor model generalization, especially in high-dimensional sequences. Existing methods often struggle with optimization when dealing with high-dimensional sparse data, falling into poor alignments. Feature selection is frequently used to enhance model performance for sparse data. However, a fixed set of selected features would not generally work for dynamically changing sequences and would need to be modified based on the state of the sequence. Therefore, modifying the selected feature based on contextual input would result in better alignment. Our suggested method, Conditional Deep Canonical Temporal Time Warping (CDCTW), is designed for temporal alignment in sparse temporal data to address these challenges. CDCTW enhances alignment accuracy for high dimensional time-dependent views be performing dynamic time warping on data embedded in maximally correlated subspace which handles sparsity with novel feature selection method. We validate the effectiveness of CDCTW through extensive experiments on various datasets, demonstrating superior performance over previous techniques.
♻ ☆ Attention Mechanisms Don't Learn Additive Models: Rethinking Feature Importance for Transformers
We address the critical challenge of applying feature attribution methods to the transformer architecture, which dominates current applications in natural language processing and beyond. Traditional attribution methods to explainable AI (XAI) explicitly or implicitly rely on linear or additive surrogate models to quantify the impact of input features on a model's output. In this work, we formally prove an alarming incompatibility: transformers are structurally incapable of representing linear or additive surrogate models used for feature attribution, undermining the grounding of these conventional explanation methodologies. To address this discrepancy, we introduce the Softmax-Linked Additive Log Odds Model (SLALOM), a novel surrogate model specifically designed to align with the transformer framework. SLALOM demonstrates the capacity to deliver a range of insightful explanations with both synthetic and real-world datasets. We highlight SLALOM's unique efficiency-quality curve by showing that SLALOM can produce explanations with substantially higher fidelity than competing surrogate models or provide explanations of comparable quality at a fraction of their computational costs. We release code for SLALOM as an open-source project online at https://github.com/tleemann/slalom_explanations.
comment: TMLR Camera-Ready version
♻ ☆ Using Linearized Optimal Transport to Predict the Evolution of Stochastic Particle Systems
We develop an algorithm to approximate the time evolution of a probability distribution without explicitly learning an operator that governs the evolution. A particular application of interest is discrete measures $\mu_t^N$ that arise from systems of $N$ particles in $\mathbb R^d$. In many such situations, the individual particles move chaotically on short time scales, making it difficult to learn the dynamics of a governing operator, but the bulk distribution $\mu_t^N$ approximates an absolutely continuous measure $\mu_t$ that evolves ``smoothly.'' If $\mu_t$ is known on some time interval, then linearized optimal transport theory provides an Euler-like scheme for approximating the evolution of $\mu_t$ using its ``tangent vector field'' (represented as a time-dependent vector field on $\mathbb R^d$), which can be computed as a limit of optimal transport maps. We propose an analog of this Euler approximation to predict the evolution of the discrete measure $\mu_t^N$ (without knowing $\mu_t$). To approximate the analogous tangent vector field, we use a finite difference over a time step that sits between two time scales of the system -- long enough for a large-$N$ evolution ($\mu_t$) to emerge but short enough to satisfactorily approximate the derivative object used in the Euler scheme. The emergence of the limiting behavior ensures the optimal transport maps closely approximate the vector field describing the bulk distribution's smooth evolution instead of the individual particles' more chaotic movements. We demonstrate the efficacy of our approach with two illustrative examples, Gaussian diffusion and a cell chemotaxis model, and show that our method succeeds in predicting the bulk behavior over relatively large steps.
♻ ☆ Generalized Kernel Thinning
The kernel thinning (KT) algorithm of Dwivedi and Mackey (2021) compresses a probability distribution more effectively than independent sampling by targeting a reproducing kernel Hilbert space (RKHS) and leveraging a less smooth square-root kernel. Here we provide four improvements. First, we show that KT applied directly to the target RKHS yields tighter, dimension-free guarantees for any kernel, any distribution, and any fixed function in the RKHS. Second, we show that, for analytic kernels like Gaussian, inverse multiquadric, and sinc, target KT admits maximum mean discrepancy (MMD) guarantees comparable to or better than those of square-root KT without making explicit use of a square-root kernel. Third, we prove that KT with a fractional power kernel yields better-than-Monte-Carlo MMD guarantees for non-smooth kernels, like Laplace and Mat\'ern, that do not have square-roots. Fourth, we establish that KT applied to a sum of the target and power kernels (a procedure we call KT+) simultaneously inherits the improved MMD guarantees of power KT and the tighter individual function guarantees of target KT. In our experiments with target KT and KT+, we witness significant improvements in integration error even in $100$ dimensions and when compressing challenging differential equation posteriors.
comment: Corrected B-spline and Sinc rates in Table 3
♻ ☆ TradingAgents: Multi-Agents LLM Financial Trading Framework AAAI 2025
Significant progress has been made in automated problem-solving using societies of agents powered by large language models (LLMs). In finance, efforts have largely focused on single-agent systems handling specific tasks or multi-agent frameworks independently gathering data. However, multi-agent systems' potential to replicate real-world trading firms' collaborative dynamics remains underexplored. TradingAgents proposes a novel stock trading framework inspired by trading firms, featuring LLM-powered agents in specialized roles such as fundamental analysts, sentiment analysts, technical analysts, and traders with varied risk profiles. The framework includes Bull and Bear researcher agents assessing market conditions, a risk management team monitoring exposure, and traders synthesizing insights from debates and historical data to make informed decisions. By simulating a dynamic, collaborative trading environment, this framework aims to improve trading performance. Detailed architecture and extensive experiments reveal its superiority over baseline models, with notable improvements in cumulative returns, Sharpe ratio, and maximum drawdown, highlighting the potential of multi-agent LLM frameworks in financial trading. More details on TradingAgents are available at https://TradingAgents-AI.github.io.
comment: Multi-Agent AI in the Real World @ AAAI 2025
♻ ☆ PFML: Self-Supervised Learning of Time-Series Data Without Representation Collapse
Self-supervised learning (SSL) is a data-driven learning approach that utilizes the innate structure of the data to guide the learning process. In contrast to supervised learning, which depends on external labels, SSL utilizes the inherent characteristics of the data to produce its own supervisory signal. However, one frequent issue with SSL methods is representation collapse, where the model outputs a constant input-invariant feature representation. This issue hinders the potential application of SSL methods to new data modalities, as trying to avoid representation collapse wastes researchers' time and effort. This paper introduces a novel SSL algorithm for time-series data called Prediction of Functionals from Masked Latents (PFML). Instead of predicting masked input signals or their latent representations directly, PFML operates by predicting statistical functionals of the input signal corresponding to masked embeddings, given a sequence of unmasked embeddings. The algorithm is designed to avoid representation collapse, rendering it straightforwardly applicable to different time-series data domains, such as novel sensor modalities in clinical data. We demonstrate the effectiveness of PFML through complex, real-life classification tasks across three different data modalities: infant posture and movement classification from multi-sensor inertial measurement unit data, emotion recognition from speech data, and sleep stage classification from EEG data. The results show that PFML is superior to a conceptually similar SSL method and a contrastive learning-based SSL method. Additionally, PFML is on par with the current state-of-the-art SSL method, while also being conceptually simpler and without suffering from representation collapse.
♻ ☆ Robust Conformal Prediction Using Privileged Information
We develop a method to generate prediction sets with a guaranteed coverage rate that is robust to corruptions in the training data, such as missing or noisy variables. Our approach builds on conformal prediction, a powerful framework to construct prediction sets that are valid under the i.i.d assumption. Importantly, naively applying conformal prediction does not provide reliable predictions in this setting, due to the distribution shift induced by the corruptions. To account for the distribution shift, we assume access to privileged information (PI). The PI is formulated as additional features that explain the distribution shift, however, they are only available during training and absent at test time. We approach this problem by introducing a novel generalization of weighted conformal prediction and support our method with theoretical coverage guarantees. Empirical experiments on both real and synthetic datasets indicate that our approach achieves a valid coverage rate and constructs more informative predictions compared to existing methods, which are not supported by theoretical guarantees.
♻ ☆ Geometry Restoration and Dewarping of Camera-Captured Document Images
This research focuses on developing a method for restoring the topology of digital images of paper documents captured by a camera, using algorithms for detection, segmentation, geometry restoration, and dewarping. Our methodology employs deep learning (DL) for document outline detection, followed by computer vision (CV) to create a topological 2D grid using cubic polynomial interpolation and correct nonlinear distortions by remapping the image. Using classical CV methods makes the document topology restoration process more efficient and faster, as it requires significantly fewer computational resources and memory. We developed a new pipeline for automatic document dewarping and reconstruction, along with a framework and annotated dataset to demonstrate its efficiency. Our experiments confirm the promise of our methodology and its superiority over existing benchmarks (including mobile apps and popular DL solutions, such as RectiNet, DocGeoNet, and DocTr++) both visually and in terms of document readability via Optical Character Recognition (OCR) and geometry restoration metrics. This paves the way for creating high-quality digital copies of paper documents and enhancing the efficiency of OCR systems. Project page: https://github.com/HorizonParadox/DRCCBI
comment: 28 pages, 16 figures
♻ ☆ REFA: Reference Free Alignment for multi-preference optimization
We introduce REFA, a family of reference-free alignment methods that optimize over multiple user preferences while enforcing fine-grained length control. Our approach integrates deviation-based weighting to emphasize high-quality responses more strongly, length normalization to prevent trivial short-response solutions, and an EOS-probability regularizer to mitigate dataset-induced brevity biases. Theoretically, we show that under the Uncertainty Reduction with Sequence Length Assertion (URSLA), naive length normalization can still incentivize length-based shortcuts. By contrast, REFA corrects these subtle incentives, guiding models toward genuinely more informative and higher-quality outputs. Empirically, REFA sets a new state-of-the-art among reference-free alignment methods, producing richer responses aligned more closely with human preferences. Compared to a base supervised fine-tuned (SFT) mistral-7b model that achieves 8.4% length-controlled win rate (LC-WR) and 6.2% win rate (WR), our best REFA configuration attains 21.62% LC-WR and 19.87% WR on the AlpacaEval v2 benchmark. This represents a substantial improvement over both the strongest multi-preference baseline, InfoNCA (16.82% LC-WR, 10.44% WR), and the strongest reference-free baseline, SimPO (20.01% LC-WR, 17.65% WR)
♻ ☆ AgentForge: A Flexible Low-Code Platform for Reinforcement Learning Agent Design
Developing a reinforcement learning (RL) agent often involves identifying values for numerous parameters, covering the policy, reward function, environment, and agent-internal architecture. Since these parameters are interrelated in complex ways, optimizing them is a black-box problem that proves especially challenging for nonexperts. Although existing optimization-as-a-service platforms (e.g., Vizier and Optuna) can handle such problems, they are impractical for RL systems, since the need for manual user mapping of each parameter to distinct components makes the effort cumbersome. It also requires understanding of the optimization process, limiting the systems' application beyond the machine learning field and restricting access in areas such as cognitive science, which models human decision-making. To tackle these challenges, the paper presents AgentForge, a flexible low-code platform to optimize any parameter set across an RL system. Available at https://github.com/feferna/AgentForge, it allows an optimization problem to be defined in a few lines of code and handed to any of the interfaced optimizers. With AgentForge, the user can optimize the parameters either individually or jointly. The paper presents an evaluation of its performance for a challenging vision-based RL problem.
comment: This paper has been accepted at the 17th International Conference on Agents and Artificial Intelligence (ICAART 2025)
♻ ☆ A Contrastive Symmetric Forward-Forward Algorithm (SFFA) for Continual Learning Tasks
The so-called Forward-Forward Algorithm (FFA) has recently gained momentum as an alternative to the conventional back-propagation algorithm for neural network learning, yielding competitive performance across various modeling tasks. By replacing the backward pass of gradient back-propagation with two contrastive forward passes, the FFA avoids several shortcomings undergone by its predecessor (e.g., vanishing/exploding gradient) by enabling layer-wise training heuristics. In classification tasks, this contrastive method has been proven to effectively create a latent sparse representation of the input data, ultimately favoring discriminability. However, FFA exhibits an inherent asymmetric gradient behavior due to an imbalanced loss function between positive and negative data, adversely impacting on the model's generalization capabilities and leading to an accuracy degradation. To address this issue, this work proposes the Symmetric Forward-Forward Algorithm (SFFA), a novel modification of the original FFA which partitions each layer into positive and negative neurons. This allows the local fitness function to be defined as the ratio between the activation of positive neurons and the overall layer activity, resulting in a symmetric loss landscape during the training phase. To evaluate the enhanced convergence of our method, we conduct several experiments using multiple image classification benchmarks, comparing the accuracy of models trained with SFFA to those trained with its FFA counterpart. As a byproduct of this reformulation, we explore the advantages of using a layer-wise training algorithm for Continual Learning (CL) tasks. The specialization of neurons and the sparsity of their activations induced by layer-wise training algorithms enable efficient CL strategies that incorporate new knowledge (classes) into the neural network, while preventing catastrophic forgetting of previously...
comment: Accepted at 3rd Conference on Lifelong Learning Agents (CoLLAs), 2024
♻ ☆ Cross-Attention Graph Neural Networks for Inferring Gene Regulatory Networks with Skewed Degree Distribution
Inferencing Gene Regulatory Networks (GRNs) from gene expression data is a pivotal challenge in systems biology, and several innovative computational methods have been introduced. However, most of these studies have not considered the skewed degree distribution of genes. Specifically, some genes may regulate multiple target genes while some genes may be regulated by multiple regulator genes. Such a skewed degree distribution issue significantly complicates the application of directed graph embedding methods. To tackle this issue, we propose the Cross-Attention Complex Dual Graph Embedding Model (XATGRN). Our XATGRN employs a cross-attention mechanism to effectively capture intricate gene interactions from gene expression profiles. Additionally, it uses a Dual Complex Graph Embedding approach to manage the skewed degree distribution, thereby ensuring precise prediction of regulatory relationships and their directionality. Our model consistently outperforms existing state-of-the-art methods across various datasets, underscoring its efficacy in elucidating complex gene regulatory mechanisms. Our codes used in this paper are publicly available at: https://github.com/kikixiong/XATGRN.
comment: 11 pages, 6 figures,1 tabels
♻ ☆ Drift2Matrix: Kernel-Induced Self Representation for Concept Drift Adaptation in Co-evolving Time Series
In the realm of time series analysis, tackling the phenomenon of concept drift poses a significant challenge. Concept drift -- characterized by the evolving statistical properties of time series data, affects the reliability and accuracy of conventional analysis models. This is particularly evident in co-evolving scenarios where interactions among variables are crucial. This paper presents Drift2Matrix, a novel framework that leverages kernel-induced self-representation for adaptive responses to concept drift in time series. Drift2Matrix employs a kernel-based learning mechanism to generate a representation matrix, encapsulating the inherent dynamics of co-evolving time series. This matrix serves as a key tool for identification and adaptation to concept drift by observing its temporal variations. Furthermore, Drift2Matrix effectively identifies prevailing patterns and offers insights into emerging trends through pattern evolution analysis. Our empirical evaluation of Drift2Matrix across various datasets demonstrates its effectiveness in handling the complexities of concept drift. This approach introduces a novel perspective in the theoretical domain of co-evolving time series analysis, enhancing adaptability and accuracy in the face of dynamic data environments.
♻ ☆ Regret Analysis: a control perspective
Online learning and model reference adaptive control have many interesting intersections. One area where they differ however is in how the algorithms are analyzed and what objective or metric is used to discriminate "good" algorithms from "bad" algorithms. In adaptive control there are usually two objectives: 1) prove that all time varying parameters/states of the system are bounded, and 2) that the instantaneous error between the adaptively controlled system and a reference system converges to zero over time (or at least a compact set). For online learning the performance of algorithms is often characterized by the regret the algorithm incurs. Regret is defined as the cumulative loss (cost) over time from the online algorithm minus the cumulative loss (cost) of the single optimal fixed parameter choice in hindsight. Another significant difference between the two areas of research is with regard to the assumptions made in order to obtain said results. Adaptive control makes assumptions about the input-output properties of the control problem and derives solutions for a fixed error model or optimization task. In the online learning literature results are derived for classes of loss functions (i.e. convex) while a priori assuming that all time varying parameters are bounded, which for many optimization tasks is not unrealistic, but is a non starter in control applications. In this work we discuss these differences in detail through the regret based analysis of gradient descent for convex functions and the control based analysis of a streaming regression problem. We close with a discussion about the newly defined paradigm of online adaptive control and ask the following question "Are regret optimal control strategies deployable?"
comment: 10 pages no figures
♻ ☆ Evaluation of uncertainty estimations for Gaussian process regression based machine learning interatomic potentials
Uncertainty estimations for machine learning interatomic potentials (MLIPs) are crucial for quantifying model error and identifying informative training samples in active learning strategies. In this study, we evaluate uncertainty estimations of Gaussian process regression (GPR)-based MLIPs, including the predictive GPR standard deviation and ensemble-based uncertainties. We do this in terms of calibration and in terms of impact on model performance in an active learning scheme. We consider GPR models with Coulomb and Smooth Overlap of Atomic Positions (SOAP) representations as inputs to predict potential energy surfaces and excitation energies of molecules. Regarding calibration, we find that ensemble-based uncertainty estimations show already poor global calibration (e.g., averaged over the whole test set). In contrast, the GPR standard deviation shows good global calibration, but when grouping predictions by their uncertainty, we observe a systematical bias for predictions with high uncertainty. Although an increasing uncertainty correlates with an increasing bias, the bias is not captured quantitatively by the uncertainty. Therefore, the GPR standard deviation can be useful to identify predictions with a high bias and error but, without further knowledge, should not be interpreted as a quantitative measure for a potential error range. Selecting the samples with the highest GPR standard deviation from a fixed configuration space leads to a model that overemphasizes the borders of the configuration space represented in the fixed dataset. This may result in worse performance in more densely sampled areas but better generalization for extrapolation tasks.
♻ ☆ Time Transfer: On Optimal Learning Rate and Batch Size In The Infinite Data Limit
One of the main challenges in optimal scaling of large language models (LLMs) is the prohibitive cost of hyperparameter tuning, particularly learning rate $\eta$ and batch size $B$. While techniques like $\mu$P (Yang et al., 2022) provide scaling rules for optimal $\eta$ transfer in the infinite model size limit, the optimal scaling behavior in the infinite data size limit remains unknown. We fill in this gap by observing for the first time an intricate dependence of optimal $\eta$ scaling on the pretraining token budget $T$, $B$ and its relation to the critical batch size $B_\mathrm{crit}$, which we measure to evolve as $B_\mathrm{crit} \propto T$. Furthermore, we show that the optimal batch size is positively correlated with $B_\mathrm{crit}$: keeping it fixed becomes suboptimal over time even if learning rate is scaled optimally. Surprisingly, our results demonstrate that the observed optimal $\eta$ and $B$ dynamics are preserved with $\mu$P model scaling, challenging the conventional view of $B_\mathrm{crit}$ dependence solely on loss value. Complementing optimality, we examine the sensitivity of loss to changes in learning rate, where we find the sensitivity to decrease with increase of $T$ and to remain constant with $\mu$P model scaling. We hope our results make the first step towards a unified picture of the joint optimal data and model scaling.
♻ ☆ RA-PbRL: Provably Efficient Risk-Aware Preference-Based Reinforcement Learning
Reinforcement Learning from Human Feedback (RLHF) has recently surged in popularity, particularly for aligning large language models and other AI systems with human intentions. At its core, RLHF can be viewed as a specialized instance of Preference-based Reinforcement Learning (PbRL), where the preferences specifically originate from human judgments rather than arbitrary evaluators. Despite this connection, most existing approaches in both RLHF and PbRL primarily focus on optimizing a mean reward objective, neglecting scenarios that necessitate risk-awareness, such as AI safety, healthcare, and autonomous driving. These scenarios often operate under a one-episode-reward setting, which makes conventional risk-sensitive objectives inapplicable. To address this, we explore and prove the applicability of two risk-aware objectives to PbRL : nested and static quantile risk objectives. We also introduce Risk-AwarePbRL (RA-PbRL), an algorithm designed to optimize both nested and static objectives. Additionally, we provide a theoretical analysis of the regret upper bounds, demonstrating that they are sublinear with respect to the number of episodes, and present empirical results to support our findings. Our code is available in https://github.com/aguilarjose11/PbRLNeurips.
♻ ☆ Decentralized Federated Anomaly Detection in Smart Grids: A P2P Gossip Approach
The increasing security and privacy concerns in the Smart Grid sector have led to a significant demand for robust intrusion detection systems within critical smart grid infrastructure. To address the challenges posed by privacy preservation and decentralized power system zones with distinct data ownership, Federated Learning (FL) has emerged as a promising privacy-preserving solution which facilitates collaborative training of attack detection models without necessitating the sharing of raw data. However, FL presents several implementation limitations in the power system domain due to its heavy reliance on a centralized aggregator and the risks of privacy leakage during model update transmission. To overcome these technical bottlenecks, this paper introduces a novel decentralized federated anomaly detection scheme based on two main gossip protocols namely Random Walk and Epidemic. Our findings indicate that the Random Walk protocol exhibits superior performance compared to the Epidemic protocol, highlighting its efficacy in decentralized federated learning environments. Experimental validation of the proposed framework utilizing publicly available industrial control systems datasets demonstrates superior attack detection accuracy while safeguarding data confidentiality and mitigating the impact of communication latency and stragglers. Furthermore, our approach yields a notable 35% improvement in training time compared to conventional FL, underscoring the efficacy and robustness of our decentralized learning method.
♻ ☆ Boosting Graph Neural Network Training by Focusing on Non-Robust Samples from the Training Set
Graph Neural Networks (GNNs) are a highly effective neural network architecture for processing graph-structured data. Unlike traditional neural networks that rely solely on the features of the data as input, GNNs leverage both the graph structure, which represents the relationships between data points, and the feature matrix of the data to optimize their feature representation. This unique capability enables GNNs to achieve superior performance across various tasks. However, it also makes GNNs more susceptible to noise from both the graph structure and data features, which can significantly increase the training difficulty and degrade their performance. To address this issue, this paper proposes a novel method for selecting noise-sensitive training samples from the original training set to construct a smaller yet more effective training set for model training. These samples are then used to enhance the model's ability to handle noise-prone instances effectively. We have evaluated our approach on three of the most classical GNN models -- GCN, GAT, and GraphSAGE -- as well as three widely used benchmark datasets: Cora, Citeseer, and PubMed. Our experiments demonstrate that the proposed method can substantially boost the overall training of Graph Neural Networks compared to using randomly constructed training sets.
♻ ☆ Human Delegation Behavior in Human-AI Collaboration: The Effect of Contextual Information
The integration of artificial intelligence (AI) into human decision-making processes at the workplace presents both opportunities and challenges. One promising approach to leverage existing complementary capabilities is allowing humans to delegate individual instances of decision tasks to AI. However, enabling humans to delegate instances effectively requires them to assess several factors. One key factor is the analysis of both their own capabilities and those of the AI in the context of the given task. In this work, we conduct a behavioral study to explore the effects of providing contextual information to support this delegation decision. Specifically, we investigate how contextual information about the AI and the task domain influence humans' delegation decisions to an AI and their impact on the human-AI team performance. Our findings reveal that access to contextual information significantly improves human-AI team performance in delegation settings. Finally, we show that the delegation behavior changes with the different types of contextual information. Overall, this research advances the understanding of computer-supported, collaborative work and provides actionable insights for designing more effective collaborative systems.
♻ ☆ Filter-then-Generate: Large Language Models with Structure-Text Adapter for Knowledge Graph Completion COLING 2025
Large Language Models (LLMs) present massive inherent knowledge and superior semantic comprehension capability, which have revolutionized various tasks in natural language processing. Despite their success, a critical gap remains in enabling LLMs to perform knowledge graph completion (KGC). Empirical evidence suggests that LLMs consistently perform worse than conventional KGC approaches, even through sophisticated prompt design or tailored instruction-tuning. Fundamentally, applying LLMs on KGC introduces several critical challenges, including a vast set of entity candidates, hallucination issue of LLMs, and under-exploitation of the graph structure. To address these challenges, we propose a novel instruction-tuning-based method, namely FtG. Specifically, we present a \textit{filter-then-generate} paradigm and formulate the KGC task into a multiple-choice question format. In this way, we can harness the capability of LLMs while mitigating the issue casused by hallucinations. Moreover, we devise a flexible ego-graph serialization prompt and employ a structure-text adapter to couple structure and text information in a contextualized manner. Experimental results demonstrate that FtG achieves substantial performance gain compared to existing state-of-the-art methods. The instruction dataset and code are available at \url{https://github.com/LB0828/FtG}.
comment: COLING 2025 Main Conference
♻ ☆ DGNN-YOLO: Interpretable Dynamic Graph Neural Networks with YOLO11 for Detecting and Tracking Small Occluded Objects in Urban Traffic
The detection and tracking of small, occluded objects such as pedestrians, cyclists, and motorbikes pose significant challenges for traffic surveillance systems because of their erratic movement, frequent occlusion, and poor visibility in dynamic urban environments. Traditional methods like YOLO11, while proficient in spatial feature extraction for precise detection, often struggle with these small and dynamically moving objects, particularly in handling real-time data updates and resource efficiency. This paper introduces DGNN-YOLO, a novel framework that integrates dynamic graph neural networks (DGNNs) with YOLO11 to address these limitations. Unlike standard GNNs, DGNNs are chosen for their superior ability to dynamically update graph structures in real-time, which enables adaptive and robust tracking of objects in highly variable urban traffic scenarios. This framework constructs and regularly updates its graph representations, capturing objects as nodes and their interactions as edges, thus effectively responding to rapidly changing conditions. Additionally, DGNN-YOLO incorporates Grad-CAM, Grad-CAM++, and Eigen-CAM visualization techniques to enhance interpretability and foster trust, offering insights into the model's decision-making process. Extensive experiments validate the framework's performance, achieving a precision of 0.8382, recall of 0.6875, and mAP@0.5:0.95 of 0.6476, significantly outperforming existing methods. This study offers a scalable and interpretable solution for real-time traffic surveillance and significantly advances intelligent transportation systems' capabilities by addressing the critical challenge of detecting and tracking small, occluded objects.
♻ ☆ Spatiotemporally Coherent Probabilistic Generation of Weather from Climate
Local climate information is crucial for impact assessment and decision-making, yet coarse global climate simulations cannot capture small-scale phenomena. Current statistical downscaling methods infer these phenomena as temporally decoupled spatial patches. However, to preserve physical properties, estimating spatio-temporally coherent high-resolution weather dynamics for multiple variables across long time horizons is crucial. We present a novel generative approach that uses a score-based diffusion model trained on high-resolution reanalysis data to capture the statistical properties of local weather dynamics. After training, we condition on coarse climate model data to generate weather patterns consistent with the aggregate information. As this inference task is inherently uncertain, we leverage the probabilistic nature of diffusion models and sample multiple trajectories. We evaluate our approach with high-resolution reanalysis information before applying it to the climate model downscaling task. We then demonstrate that the model generates spatially and temporally coherent weather dynamics that align with global climate output.
comment: 15 pages, 6 figures, additional supplementary text and figures
♻ ☆ Stochastic Neural Network Symmetrisation in Markov Categories
We consider the problem of symmetrising a neural network along a group homomorphism: given a homomorphism $\varphi : H \to G$, we would like a procedure that converts $H$-equivariant neural networks to $G$-equivariant ones. We formulate this in terms of Markov categories, which allows us to consider neural networks whose outputs may be stochastic, but with measure-theoretic details abstracted away. We obtain a flexible and compositional framework for symmetrisation that relies on minimal assumptions about the structure of the group and the underlying neural network architecture. Our approach recovers existing canonicalisation and averaging techniques for symmetrising deterministic models, and extends to provide a novel methodology for symmetrising stochastic models also. Beyond this, our findings also demonstrate the utility of Markov categories for addressing complex problems in machine learning in a conceptually clear yet mathematically precise way.
♻ ☆ Interpreting Deep Neural Network-Based Receiver Under Varying Signal-To-Noise Ratios
We propose a novel method for interpreting neural networks, focusing on convolutional neural network-based receiver model. The method identifies which unit or units of the model contain most (or least) information about the channel parameter(s) of the interest, providing insights at both global and local levels -- with global explanations aggregating local ones. Experiments on link-level simulations demonstrate the method's effectiveness in identifying units that contribute most (and least) to signal-to-noise ratio processing. Although we focus on a radio receiver model, the method generalizes to other neural network architectures and applications, offering robust estimation even in high-dimensional settings.
comment: 7+1 pages, 8 figures, 1 equation
♻ ☆ COCOLA: Coherence-Oriented Contrastive Learning of Musical Audio Representations ICASSP-25
We present COCOLA (Coherence-Oriented Contrastive Learning for Audio), a contrastive learning method for musical audio representations that captures the harmonic and rhythmic coherence between samples. Our method operates at the level of the stems composing music tracks and can input features obtained via Harmonic-Percussive Separation (HPS). COCOLA allows the objective evaluation of generative models for music accompaniment generation, which are difficult to benchmark with established metrics. In this regard, we evaluate recent music accompaniment generation models, demonstrating the effectiveness of the proposed method. We release the model checkpoints trained on public datasets containing separate stems (MUSDB18-HQ, MoisesDB, Slakh2100, and CocoChorales).
comment: Demo page: https://github.com/gladia-research-group/cocola, Accepted at ICASSP-25
♻ ☆ Latent Reward: LLM-Empowered Credit Assignment in Episodic Reinforcement Learning
Reinforcement learning (RL) often encounters delayed and sparse feedback in real-world applications, even with only episodic rewards. Previous approaches have made some progress in reward redistribution for credit assignment but still face challenges, including training difficulties due to redundancy and ambiguous attributions stemming from overlooking the multifaceted nature of mission performance evaluation. Hopefully, Large Language Model (LLM) encompasses fruitful decision-making knowledge and provides a plausible tool for reward redistribution. Even so, deploying LLM in this case is non-trivial due to the misalignment between linguistic knowledge and the symbolic form requirement, together with inherent randomness and hallucinations in inference. To tackle these issues, we introduce LaRe, a novel LLM-empowered symbolic-based decision-making framework, to improve credit assignment. Key to LaRe is the concept of the Latent Reward, which works as a multi-dimensional performance evaluation, enabling more interpretable goal attainment from various perspectives and facilitating more effective reward redistribution. We examine that semantically generated code from LLM can bridge linguistic knowledge and symbolic latent rewards, as it is executable for symbolic objects. Meanwhile, we design latent reward self-verification to increase the stability and reliability of LLM inference. Theoretically, reward-irrelevant redundancy elimination in the latent reward benefits RL performance from more accurate reward estimation. Extensive experimental results witness that LaRe (i) achieves superior temporal credit assignment to SOTA methods, (ii) excels in allocating contributions among multiple agents, and (iii) outperforms policies trained with ground truth rewards for certain tasks.
♻ ☆ Convergence Analysis of Split Federated Learning on Heterogeneous Data NeurIPS 2024
Split federated learning (SFL) is a recent distributed approach for collaborative model training among multiple clients. In SFL, a global model is typically split into two parts, where clients train one part in a parallel federated manner, and a main server trains the other. Despite the recent research on SFL algorithm development, the convergence analysis of SFL is missing in the literature, and this paper aims to fill this gap. The analysis of SFL can be more challenging than that of federated learning (FL), due to the potential dual-paced updates at the clients and the main server. We provide convergence analysis of SFL for strongly convex and general convex objectives on heterogeneous data. The convergence rates are $O(1/T)$ and $O(1/\sqrt[3]{T})$, respectively, where $T$ denotes the total number of rounds for SFL training. We further extend the analysis to non-convex objectives and the scenario where some clients may be unavailable during training. Experimental experiments validate our theoretical results and show that SFL outperforms FL and split learning (SL) when data is highly heterogeneous across a large number of clients.
comment: Accepted by Conference on Neural Information Processing Systems (NeurIPS 2024)
♻ ☆ Dynamic Localisation of Spatial-Temporal Graph Neural Network KDD'25
Spatial-temporal data, fundamental to many intelligent applications, reveals dependencies indicating causal links between present measurements at specific locations and historical data at the same or other locations. Within this context, adaptive spatial-temporal graph neural networks (ASTGNNs) have emerged as valuable tools for modelling these dependencies, especially through a data-driven approach rather than pre-defined spatial graphs. While this approach offers higher accuracy, it presents increased computational demands. Addressing this challenge, this paper delves into the concept of localisation within ASTGNNs, introducing an innovative perspective that spatial dependencies should be dynamically evolving over time. We introduce \textit{DynAGS}, a localised ASTGNN framework aimed at maximising efficiency and accuracy in distributed deployment. This framework integrates dynamic localisation, time-evolving spatial graphs, and personalised localisation, all orchestrated around the Dynamic Graph Generator, a light-weighted central module leveraging cross attention. The central module can integrate historical information in a node-independent manner to enhance the feature representation of nodes at the current moment. This improved feature representation is then used to generate a dynamic sparse graph without the need for costly data exchanges, and it supports personalised localisation. Performance assessments across two core ASTGNN architectures and nine real-world datasets from various applications reveal that \textit{DynAGS} outshines current benchmarks, underscoring that the dynamic modelling of spatial dependencies can drastically improve model expressibility, flexibility, and system efficiency, especially in distributed settings.
comment: This paper was accepted by KDD'25
♻ ☆ Naturalistic Music Decoding from EEG Data via Latent Diffusion Models ICASSP-25
In this article, we explore the potential of using latent diffusion models, a family of powerful generative models, for the task of reconstructing naturalistic music from electroencephalogram (EEG) recordings. Unlike simpler music with limited timbres, such as MIDI-generated tunes or monophonic pieces, the focus here is on intricate music featuring a diverse array of instruments, voices, and effects, rich in harmonics and timbre. This study represents an initial foray into achieving general music reconstruction of high-quality using non-invasive EEG data, employing an end-to-end training approach directly on raw data without the need for manual pre-processing and channel selection. We train our models on the public NMED-T dataset and perform quantitative evaluation proposing neural embedding-based metrics. Our work contributes to the ongoing research in neural decoding and brain-computer interfaces, offering insights into the feasibility of using EEG data for complex auditory information reconstruction.
comment: Accepted at ICASSP-25
♻ ☆ Methodology for Interpretable Reinforcement Learning for Optimizing Mechanical Ventilation
Mechanical ventilation is a critical life support intervention that delivers controlled air and oxygen to a patient's lungs, assisting or replacing spontaneous breathing. While several data-driven approaches have been proposed to optimize ventilator control strategies, they often lack interpretability and alignment with domain knowledge, hindering clinical adoption. This paper presents a methodology for interpretable reinforcement learning (RL) aimed at improving mechanical ventilation control as part of connected health systems. Using a causal, nonparametric model-based off-policy evaluation, we assess RL policies for their ability to enhance patient-specific outcomes-specifically, increasing blood oxygen levels (SpO2), while avoiding aggressive ventilator settings that may cause ventilator-induced lung injuries and other complications. Through numerical experiments on real-world ICU data from the MIMIC-III database, we demonstrate that our interpretable decision tree policy achieves performance comparable to state-of-the-art deep RL methods while outperforming standard behavior cloning approaches. The results highlight the potential of interpretable, data-driven decision support systems to improve safety and efficiency in personalized ventilation strategies, paving the way for seamless integration into connected healthcare environments.
♻ ☆ Preference-Based Multi-Agent Reinforcement Learning: Data Coverage and Algorithmic Techniques
We initiate the study of Preference-Based Multi-Agent Reinforcement Learning (PbMARL), exploring both theoretical foundations and empirical validations. We define the task as identifying the Nash equilibrium from a preference-only offline dataset in general-sum games, a problem marked by the challenge of sparse feedback signals. Our theory establishes the upper complexity bounds for Nash Equilibrium in effective PbMARL, demonstrating that single-policy coverage is inadequate and highlighting the importance of unilateral dataset coverage. These theoretical insights are verified through comprehensive experiments. To enhance the practical performance, we further introduce two algorithmic techniques. (1) We propose a Mean Squared Error (MSE) regularization along the time axis to achieve a more uniform reward distribution and improve reward learning outcomes. (2) We propose an additional penalty based on the distribution of the dataset to incorporate pessimism, improving stability and effectiveness during training. Our findings underscore the multifaceted approach required for PbMARL, paving the way for effective preference-based multi-agent systems.
comment: 9 pages
♻ ☆ Representation Learning of Lab Values via Masked AutoEncoder
Accurate imputation of missing laboratory values in electronic health records (EHRs) is critical to enable robust clinical predictions and reduce biases in AI systems in healthcare. Existing methods, such as variational autoencoders (VAEs) and decision tree-based approaches such as XGBoost, struggle to model the complex temporal and contextual dependencies in EHR data, mainly in underrepresented groups. In this work, we propose Lab-MAE, a novel transformer-based masked autoencoder framework that leverages self-supervised learning for the imputation of continuous sequential lab values. Lab-MAE introduces a structured encoding scheme that jointly models laboratory test values and their corresponding timestamps, enabling explicit capturing temporal dependencies. Empirical evaluation on the MIMIC-IV dataset demonstrates that Lab-MAE significantly outperforms the state-of-the-art baselines such as XGBoost across multiple metrics, including root mean square error (RMSE), R-squared (R2), and Wasserstein distance (WD). Notably, Lab-MAE achieves equitable performance across demographic groups of patients, advancing fairness in clinical predictions. We further investigate the role of follow-up laboratory values as potential shortcut features, revealing Lab-MAE's robustness in scenarios where such data is unavailable. The findings suggest that our transformer-based architecture, adapted to the characteristics of the EHR data, offers a foundation model for more accurate and fair clinical imputation models. In addition, we measure and compare the carbon footprint of Lab-MAE with the baseline XGBoost model, highlighting its environmental requirements.
comment: 10 pages main text, 8 appendix
♻ ☆ Zeroth-Order Adaptive Neuron Alignment Based Pruning without Re-Training
Network pruning focuses on computational techniques that aim to reduce a given model's computational cost by removing a subset of its parameters while having minimal impact on performance. Throughout the last decade, the most widely used pruning paradigm has been pruning and re-training, which nowadays is inconvenient due to the vast amount of pre-trained models, which are in any case too expensive to re-train. In this paper, we exploit functional information from dense pre-trained models, i.e., their activations, to obtain sparse models that maximize the activations' alignment w.r.t. their corresponding dense models. Hence, we propose \textsc{NeuroAL}, a \emph{top-up} algorithm that can be used on top of any given pruning algorithm for LLMs, which modifies the block-wise and row-wise sparsity exploiting information from both the dense model and its sparse version to maximize the \emph{neuron alignment} among activations. Differently from existing methods, our approach adaptively selects the best hyperparameters for the block-wise and row-wise sparsity ratios w.r.t. the model and the desired sparsity, and requires \emph{no re-training}. We test our method over 276 cases combining four LLM families, three sparsity ratios, and ten language tasks (three language modeling and seven zero-shot datasets), showing how it consistently outperforms the latest state-of-the-art methods in terms of performance-runtime trade-off. The code is available at \href{https://github.com/eliacunegatti/NeuroAL}{https://github.com/eliacunegatti/NeuroAL}.
comment: Work in progress
♻ ☆ A General Framework for Clustering and Distribution Matching with Bandit Feedback
We develop a general framework for clustering and distribution matching problems with bandit feedback. We consider a $K$-armed bandit model where some subset of $K$ arms is partitioned into $M$ groups. Within each group, the random variable associated to each arm follows the same distribution on a finite alphabet. At each time step, the decision maker pulls an arm and observes its outcome from the random variable associated to that arm. Subsequent arm pulls depend on the history of arm pulls and their outcomes. The decision maker has no knowledge of the distributions of the arms or the underlying partitions. The task is to devise an online algorithm to learn the underlying partition of arms with the least number of arm pulls on average and with an error probability not exceeding a pre-determined value~$\delta$. Several existing problems fall under our general framework, including finding $M$ pairs of arms, odd arm identification, and $N$-ary clustering of $K$ arms belong to our general framework. We derive a non-asymptotic lower bound on the average number of arm pulls for any online algorithm with an error probability not exceeding $\delta$. Furthermore, we develop a computationally-efficient online algorithm based on the Track-and-Stop method and Frank--Wolfe algorithm, and show that the average number of arm pulls of our algorithm asymptotically matches that of the lower bound. Our refined analysis also uncovers a novel bound on the speed at which the average number of arm pulls of our algorithm converges to the fundamental limit as $\delta$ vanishes.
comment: 24 pages
♻ ☆ Bayesian Joint Additive Factor Models for Multiview Learning
It is increasingly common in a wide variety of applied settings to collect data of multiple different types on the same set of samples. Our particular focus in this article is on studying relationships between such multiview features and responses. A motivating application arises in the context of precision medicine where multi-omics data are collected to correlate with clinical outcomes. It is of interest to infer dependence within and across views while combining multimodal information to improve the prediction of outcomes. The signal-to-noise ratio can vary substantially across views, motivating more nuanced statistical tools beyond standard late and early fusion. This challenge comes with the need to preserve interpretability, select features, and obtain accurate uncertainty quantification. We propose a joint additive factor regression model (JAFAR) with a structured additive design, accounting for shared and view-specific components. We ensure identifiability via a novel dependent cumulative shrinkage process (D-CUSP) prior. We provide an efficient implementation via a partially collapsed Gibbs sampler and extend our approach to allow flexible feature and outcome distributions. Prediction of time-to-labor onset from immunome, metabolome, and proteome data illustrates performance gains against state-of-the-art competitors. Our open-source software (R package) is available at https://github.com/niccoloanceschi/jafar.
♻ ☆ Domain Adaptation-Enhanced Searchlight: Enabling classification of brain states from visual perception to mental imagery
In cognitive neuroscience and brain-computer interface research, accurately predicting imagined stimuli is crucial. This study investigates the effectiveness of Domain Adaptation (DA) in enhancing imagery prediction using primarily visual data from fMRI scans of 18 subjects. Initially, we train a baseline model on visual stimuli to predict imagined stimuli, utilizing data from 14 brain regions. We then develop several models to improve imagery prediction, comparing different DA methods. Our results demonstrate that DA significantly enhances imagery prediction in binary classification on our dataset, as well as in multiclass classification on a publicly available dataset. We then conduct a DA-enhanced searchlight analysis, followed by permutation-based statistical tests to identify brain regions where imagery decoding is consistently above chance across subjects. Our DA-enhanced searchlight predicts imagery contents in a highly distributed set of brain regions, including the visual cortex and the frontoparietal cortex, thereby outperforming standard cross-domain classification methods. The complete code and data for this paper have been made openly available for the use of the scientific community.
♻ ☆ Range, not Independence, Drives Modularity in Biological Inspired Representation
Why do biological and artificial neurons sometimes modularise, each encoding a single meaningful variable, and sometimes entangle their representation of many variables? In this work, we develop a theory of when biologically inspired networks -- those that are nonnegative and energy efficient -- modularise their representation of source variables (sources). We derive necessary and sufficient conditions on a sample of sources that determine whether the neurons in an optimal biologically-inspired linear autoencoder modularise. Our theory applies to any dataset, extending far beyond the case of statistical independence studied in previous work. Rather we show that sources modularise if their support is ``sufficiently spread''. From this theory, we extract and validate predictions in a variety of empirical studies on how data distribution affects modularisation in nonlinear feedforward and recurrent neural networks trained on supervised and unsupervised tasks. Furthermore, we apply these ideas to neuroscience data, showing that range independence can be used to understand the mixing or modularising of spatial and reward information in entorhinal recordings in seemingly conflicting experiments. Further, we use these results to suggest alternate origins of mixed-selectivity, beyond the predominant theory of flexible nonlinear classification. In sum, our theory prescribes precise conditions on when neural activities modularise, providing tools for inducing and elucidating modular representations in brains and machines.
comment: 40 pages, 16 figures. WD and KH contributed equally; LH and JHL contributed equally
♻ ☆ OneLLM: One Framework to Align All Modalities with Language CVPR 2024
Multimodal large language models (MLLMs) have gained significant attention due to their strong multimodal understanding capability. However, existing works rely heavily on modality-specific encoders, which usually differ in architecture and are limited to common modalities. In this paper, we present OneLLM, an MLLM that aligns eight modalities to language using a unified framework. We achieve this through a unified multimodal encoder and a progressive multimodal alignment pipeline. In detail, we first train an image projection module to connect a vision encoder with LLM. Then, we build a universal projection module (UPM) by mixing multiple image projection modules and dynamic routing. Finally, we progressively align more modalities to LLM with the UPM. To fully leverage the potential of OneLLM in following instructions, we also curated a comprehensive multimodal instruction dataset, including 2M items from image, audio, video, point cloud, depth/normal map, IMU and fMRI brain activity. OneLLM is evaluated on 25 diverse benchmarks, encompassing tasks such as multimodal captioning, question answering and reasoning, where it delivers excellent performance. Code, data, model and online demo are available at https://github.com/csuhan/OneLLM
comment: Accepted by CVPR 2024. Code: https://github.com/csuhan/OneLLM
♻ ☆ HiTZ at VarDial 2025 NorSID: Overcoming Data Scarcity with Language Transfer and Automatic Data Annotation
In this paper we present our submission for the NorSID Shared Task as part of the 2025 VarDial Workshop (Scherrer et al., 2025), consisting of three tasks: Intent Detection, Slot Filling and Dialect Identification, evaluated using data in different dialects of the Norwegian language. For Intent Detection and Slot Filling, we have fine-tuned a multitask model in a cross-lingual setting, to leverage the xSID dataset available in 17 languages. In the case of Dialect Identification, our final submission consists of a model fine-tuned on the provided development set, which has obtained the highest scores within our experiments. Our final results on the test set show that our models do not drop in performance compared to the development set, likely due to the domain-specificity of the dataset and the similar distribution of both subsets. Finally, we also report an in-depth analysis of the provided datasets and their artifacts, as well as other sets of experiments that have been carried out but did not yield the best results. Additionally, we present an analysis on the reasons why some methods have been more successful than others; mainly the impact of the combination of languages and domain-specificity of the training data on the results.
comment: Vardial 2025 NorSID Shared Task, fixed minor typos
♻ ☆ Histogram-Equalized Quantization for logic-gated Residual Neural Networks ISCA
Adjusting the quantization according to the data or to the model loss seems mandatory to enable a high accuracy in the context of quantized neural networks. This work presents Histogram-Equalized Quantization (HEQ), an adaptive framework for linear symmetric quantization. HEQ automatically adapts the quantization thresholds using a unique step size optimization. We empirically show that HEQ achieves state-of-the-art performances on CIFAR-10. Experiments on the STL-10 dataset even show that HEQ enables a proper training of our proposed logic-gated (OR, MUX) residual networks with a higher accuracy at a lower hardware complexity than previous work.
comment: Published at IEEE ISCAS 2022
♻ ☆ MedCoDi-M: A Multi-Prompt Foundation Model for Multimodal Medical Data Generation
Artificial Intelligence is revolutionizing medical practice, enhancing diagnostic accuracy and healthcare delivery. However, its adaptation in medical settings still faces significant challenges, related to data availability and privacy constraints. Synthetic data has emerged as a promising solution to mitigate these issues, addressing data scarcity while preserving privacy. Recently, Latent Diffusion Models have emerged as a powerful tool for generating high-quality synthetic data. Meanwhile, the integration of different modalities has gained interest, emphasizing the need of models capable of handle multimodal medical data. Existing approaches struggle to integrate complementary information and lack the ability to generate modalities simultaneously. To address this challenge, we present MedCoDi-M, a 6.77-billion-parameter model, designed for multimodal medical data generation, that, following Foundation Model paradigm, exploits contrastive learning and large quantity of data to build a shared latent space which capture the relationships between different data modalities. Further, we introduce the Multi-Prompt training technique, which significantly boosts MedCoDi-M's generation under different settings. We extensively validate MedCoDi-M: first we benchmark it against five competitors on the MIMIC-CXR dataset, a state-of-the-art dataset for Chest X-ray and radiological report generation. Secondly, we perform a Visual Turing Test with expert radiologists to assess the realism and clinical relevance of the generated data, ensuring alignment with real-world scenarios. Finally, we assess the utility of MedCoDi-M in addressing key challenges in the medical field, such as anonymization, data scarcity and imbalance learning. The results are promising, demonstrating the applicability of MedCoDi-M in medical contexts. Project page is at https://cosbidev.github.io/MedCoDi-M/.
♻ ☆ The Tabular Foundation Model TabPFN Outperforms Specialized Time Series Forecasting Models Based on Simple Features
Foundation models have become popular in forecasting due to their ability to make accurate predictions, even with minimal fine-tuning on specific datasets. In this paper, we demonstrate how the newly released regression variant of TabPFN, a general tabular foundation model, can be applied to time series forecasting. We propose a straightforward approach, TabPFN-TS, which pairs TabPFN with simple feature engineering to achieve strong forecasting performance. Despite its simplicity and with only 11M parameters, TabPFN-TS outperforms Chronos-Mini, a model of similar size, and matches or even slightly outperforms Chronos-Large, which has 65-fold more parameters. A key strength of our method lies in its reliance solely on artificial data during pre-training, avoiding the need for large training datasets and eliminating the risk of benchmark contamination.
♻ ☆ Trading Devil RL: Backdoor attack via Stock market, Bayesian Optimization and Reinforcement Learning
With the rapid development of generative artificial intelligence, particularly large language models, a number of sub-fields of deep learning have made significant progress and are now very useful in everyday applications. For example, well-known financial institutions simulate a wide range of scenarios for various models created by their research teams using reinforcement learning, both before production and after regular operations. In this work, we propose a backdoor attack that focuses solely on data poisoning. This particular backdoor attack is classified as an attack without prior consideration or trigger, and we name it FinanceLLMsBackRL. Our aim is to examine the potential effects of large language models that use reinforcement learning systems for text production or speech recognition, finance, physics, or the ecosystem of contemporary artificial intelligence models.
comment: End of data poisoning research!: Navier-stokes equations (3D; update); Reinforcement Learning (RL); HFT (High Frequency Trading); Limit Order Markets and backdoor attack detection
♻ ☆ A Fast Algorithm for the Real-Valued Combinatorial Pure Exploration of Multi-Armed Bandit
We study the real-valued combinatorial pure exploration problem in the stochastic multi-armed bandit (R-CPE-MAB). We study the case where the size of the action set is polynomial with respect to the number of arms. In such a case, the R-CPE-MAB can be seen as a special case of the so-called transductive linear bandits. We introduce an algorithm named the combinatorial gap-based exploration (CombGapE) algorithm, whose sample complexity upper bound matches the lower bound up to a problem-dependent constant factor. We numerically show that the CombGapE algorithm outperforms existing methods significantly in both synthetic and real-world datasets.
♻ ☆ Exploiting the geometry of heterogeneous networks: A case study of the Indian stock market
In this study, we model the Indian stock market as heterogenous scale free network, which is then embedded in a two dimensional hyperbolic space through a machine learning based technique called as coalescent embedding. This allows us to apply the hyperbolic kmeans algorithm on the Poincare disc and the clusters so obtained resemble the original network communities more closely than the clusters obtained via Euclidean kmeans on the basis of well-known measures normalised mutual information and adjusted mutual information. Through this, we are able to clearly distinguish between periods of market stability and volatility by applying non-parametric statistical tests with a significance level of 0.05 to geometric measures namely hyperbolic distance and hyperbolic shortest path distance. After that, we are able to spot significant market change early by leveraging the Bollinger Band analysis on the time series of modularity in the embedded networks of each window. Finally, the radial distance and the Equidistance Angular coordinates help in visualizing the embedded network in the Poincare disc and it is seen that specific market sectors cluster together.
comment: 39 pages, 11 figures
♻ ☆ A Two-Scale Complexity Measure for Deep Learning Models
We introduce a novel capacity measure 2sED for statistical models based on the effective dimension. The new quantity provably bounds the generalization error under mild assumptions on the model. Furthermore, simulations on standard data sets and popular model architectures show that 2sED correlates well with the training error. For Markovian models, we show how to efficiently approximate 2sED from below through a layerwise iterative approach, which allows us to tackle deep learning models with a large number of parameters. Simulation results suggest that the approximation is good for different prominent models and data sets.
♻ ☆ Few-shot Class-incremental Learning for Classification and Object Detection: A Survey
Few-shot Class-Incremental Learning (FSCIL) presents a unique challenge in Machine Learning (ML), as it necessitates the Incremental Learning (IL) of new classes from sparsely labeled training samples without forgetting previous knowledge. While this field has seen recent progress, it remains an active exploration area. This paper aims to provide a comprehensive and systematic review of FSCIL. In our in-depth examination, we delve into various facets of FSCIL, encompassing the problem definition, the discussion of the primary challenges of unreliable empirical risk minimization and the stability-plasticity dilemma, general schemes, and relevant problems of IL and Few-shot Learning (FSL). Besides, we offer an overview of benchmark datasets and evaluation metrics. Furthermore, we introduce the Few-shot Class-incremental Classification (FSCIC) methods from data-based, structure-based, and optimization-based approaches and the Few-shot Class-incremental Object Detection (FSCIOD) methods from anchor-free and anchor-based approaches. Beyond these, we present several promising research directions within FSCIL that merit further investigation.
♻ ☆ ITINERA: Integrating Spatial Optimization with Large Language Models for Open-domain Urban Itinerary Planning
Citywalk, a recently popular form of urban travel, requires genuine personalization and understanding of fine-grained requests compared to traditional itinerary planning. In this paper, we introduce the novel task of Open-domain Urban Itinerary Planning (OUIP), which generates personalized urban itineraries from user requests in natural language. We then present ITINERA, an OUIP system that integrates spatial optimization with large language models to provide customized urban itineraries based on user needs. This involves decomposing user requests, selecting candidate points of interest (POIs), ordering the POIs based on cluster-aware spatial optimization, and generating the itinerary. Experiments on real-world datasets and the performance of the deployed system demonstrate our system's capacity to deliver personalized and spatially coherent itineraries compared to current solutions. Source codes of ITINERA are available at https://github.com/YihongT/ITINERA.
♻ ☆ CDC: A Simple Framework for Complex Data Clustering
In today's data-driven digital era, the amount as well as complexity, such as multi-view, non-Euclidean, and multi-relational, of the collected data are growing exponentially or even faster. Clustering, which unsupervisely extracts valid knowledge from data, is extremely useful in practice. However, existing methods are independently developed to handle one particular challenge at the expense of the others. In this work, we propose a simple but effective framework for complex data clustering (CDC) that can efficiently process different types of data with linear complexity. We first utilize graph filtering to fuse geometry structure and attribute information. We then reduce the complexity with high-quality anchors that are adaptively learned via a novel similarity-preserving regularizer. We illustrate the cluster-ability of our proposed method theoretically and experimentally. In particular, we deploy CDC to graph data of size 111M.
comment: Accepted by TNNLS
♻ ☆ Integrating Multi-Modal Input Token Mixer Into Mamba-Based Decision Models: Decision MetaMamba
Sequence modeling with State Space models (SSMs) has demonstrated performance surpassing that of Transformers in various tasks, raising expectations for their potential to outperform the Decision Transformer and its enhanced variants in offline reinforcement learning (RL). However, decision models based on Mamba, a state-of-the-art SSM, failed to achieve superior performance compared to these enhanced Decision Transformers. We hypothesize that this limitation arises from information loss during the selective scanning phase. To address this, we propose the Decision MetaMamba (DMM), which augments Mamba with a token mixer in its input layer. This mixer explicitly accounts for the multimodal nature of offline RL inputs, comprising state, action, and return-to-go. The DMM demonstrates improved performance while significantly reducing parameter count compared to prior models. Notably, similar performance gains were achieved using a simple linear token mixer, emphasizing the importance of preserving information from proximate time steps rather than the specific design of the token mixer itself. This novel modification to Mamba's input layer represents a departure from conventional timestamp-based encoding approaches used in Transformers. By enhancing performance of Mamba in offline RL, characterized by memory efficiency and fast inference, this work opens new avenues for its broader application in future RL research.
comment: We have decided to withdraw this manuscript as we believe that the work requires significant improvements and further research to ensure its quality and impact. We are currently pursuing a more comprehensive approach to address the limitations of the current submission and plan to resubmit an improved version in the future
♻ ☆ Deep Learning-Based Automatic Multi-Level Airway Collapse Monitoring on Obstructive Sleep Apnea Patients
This study investigated the use of deep learning to identify multi-level upper airway collapses in obstructive sleep apnea (OSA) patients based on snoring sounds. We fi-ne-tuned ResNet-50 and Audio Spectrogram Transformer (AST) models using snoring recordings from 37 subjects undergoing drug-induced sleep endoscopy (DISE) between 2020 and 2021. Snoring sounds were labeled according to the VOTE (Velum, Orophar-ynx, Tongue Base, Epiglottis) classification, resulting in 259 V, 403 O, 77 T, 13 E, 1016 VO, 46 VT, 140 OT, 39 OE, 30 VOT, and 3150 non-snoring (N) 0.5-second clips. The models were trained for two multi-label classification tasks: identifying obstructions at V, O, T, and E levels, and identifying retropalatal (RP) and retroglossal (RG) obstruc-tions. Results showed AST slightly outperformed ResNet-50, demonstrating good abil-ity to identify V (F1-score: 0.71, MCC: 0.61, AUC: 0.89), O (F1-score: 0.80, MCC: 0.72, AUC: 0.94), and RP obstructions (F1-score: 0.86, MCC: 0.77, AUC: 0.97). However, both models struggled with T, E, and RG classifications due to limited data. Retrospective analysis of a full-night recording showed the potential to profile airway obstruction dynamics. We expect this information, combined with polysomnography and other clinical parameters, can aid clinical triage and treatment planning for OSA patients.
♻ ☆ Effective Rank and the Staircase Phenomenon: New Insights into Neural Network Training Dynamics
In recent years, deep learning, powered by neural networks, has achieved widespread success in solving high-dimensional problems, particularly those with low-dimensional feature structures. This success stems from their ability to identify and learn low dimensional features tailored to the problems. Understanding how neural networks extract such features during training dynamics remains a fundamental question in deep learning theory. In this work, we propose a novel perspective by interpreting the neurons in the last hidden layer of a neural network as basis functions that represent essential features. To explore the linear independence of these basis functions throughout the deep learning dynamics, we introduce the concept of 'effective rank'. Our extensive numerical experiments reveal a notable phenomenon: the effective rank increases progressively during the learning process, exhibiting a staircase-like pattern, while the loss function concurrently decreases as the effective rank rises. We refer to this observation as the 'staircase phenomenon'. Specifically, for deep neural networks, we rigorously prove the negative correlation between the loss function and effective rank, demonstrating that the lower bound of the loss function decreases with increasing effective rank. Therefore, to achieve a rapid descent of the loss function, it is critical to promote the swift growth of effective rank. Ultimately, we evaluate existing advanced learning methodologies and find that these approaches can quickly achieve a higher effective rank, thereby avoiding redundant staircase processes and accelerating the rapid decline of the loss function.
♻ ☆ Learning Disentangled Speech Representations
Disentangled representation learning in speech processing has lagged behind other domains, largely due to the lack of datasets with annotated generative factors for robust evaluation. To address this, we propose SynSpeech, a novel large-scale synthetic speech dataset specifically designed to enable research on disentangled speech representations. SynSpeech includes controlled variations in speaker identity, spoken text, and speaking style, with three dataset versions to support experimentation at different levels of complexity. In this study, we present a comprehensive framework to evaluate disentangled representation learning techniques, applying both linear probing and established supervised disentanglement metrics to assess the modularity, compactness, and informativeness of the representations learned by a state-of-the-art model. Using the RAVE model as a test case, we find that SynSpeech facilitates benchmarking across a range of factors, achieving promising disentanglement of simpler features like gender and speaking style, while highlighting challenges in isolating complex attributes like speaker identity. This benchmark dataset and evaluation framework fills a critical gap, supporting the development of more robust and interpretable speech representation learning methods.
♻ ☆ Mean-Field Analysis for Learning Subspace-Sparse Polynomials with Gaussian Input
In this work, we study the mean-field flow for learning subspace-sparse polynomials using stochastic gradient descent and two-layer neural networks, where the input distribution is standard Gaussian and the output only depends on the projection of the input onto a low-dimensional subspace. We establish a necessary condition for SGD-learnability, involving both the characteristics of the target function and the expressiveness of the activation function. In addition, we prove that the condition is almost sufficient, in the sense that a condition slightly stronger than the necessary condition can guarantee the exponential decay of the loss functional to zero.
♻ ☆ HAAQI-Net: A Non-intrusive Neural Music Audio Quality Assessment Model for Hearing Aids
This paper introduces HAAQI-Net, a non-intrusive deep learning-based music audio quality assessment model for hearing aid users. Unlike traditional methods like the Hearing Aid Audio Quality Index (HAAQI) that require intrusive reference signal comparisons, HAAQI-Net offers a more accessible and computationally efficient alternative. By utilizing a Bidirectional Long Short-Term Memory (BLSTM) architecture with attention mechanisms and features extracted from the pre-trained BEATs model, it can predict HAAQI scores directly from music audio clips and hearing loss patterns. Experimental results demonstrate HAAQI-Net's effectiveness, achieving a Linear Correlation Coefficient (LCC) of 0.9368 , a Spearman's Rank Correlation Coefficient (SRCC) of 0.9486 , and a Mean Squared Error (MSE) of 0.0064 and inference time significantly reduces from 62.52 to 2.54 seconds. To address computational overhead, a knowledge distillation strategy was applied, reducing parameters by 75.85% and inference time by 96.46%, while maintaining strong performance (LCC: 0.9071 , SRCC: 0.9307 , MSE: 0.0091 ). To expand its capabilities, HAAQI-Net was adapted to predict subjective human scores like the Mean Opinion Score (MOS) through fine-tuning. This adaptation significantly improved prediction accuracy, validated through statistical analysis. Furthermore, the robustness of HAAQI-Net was evaluated under varying Sound Pressure Level (SPL) conditions, revealing optimal performance at a reference SPL of 65 dB, with accuracy gradually decreasing as SPL deviated from this point. The advancements in subjective score prediction, SPL robustness, and computational efficiency position HAAQI-Net as a scalable solution for music audio quality assessment in hearing aid applications, contributing to efficient and accurate models in audio signal processing and hearing aid technology.
comment: Accepted by IEEE/ACM Transactions on Audio, Speech, and Language Processing (TASLP), 2025
♻ ☆ Bridging Adaptivity and Safety: Learning Agile Collision-Free Locomotion Across Varied Physics
Real-world legged locomotion systems often need to reconcile agility and safety for different scenarios. Moreover, the underlying dynamics are often unknown and time-variant (e.g., payload, friction). In this paper, we introduce BAS (Bridging Adaptivity and Safety), which builds upon the pipeline of prior work Agile But Safe (ABS)(He et al.) and is designed to provide adaptive safety even in dynamic environments with uncertainties. BAS involves an agile policy to avoid obstacles rapidly and a recovery policy to prevent collisions, a physical parameter estimator that is concurrently trained with agile policy, and a learned control-theoretic RA (reach-avoid) value network that governs the policy switch. Also, the agile policy and RA network are both conditioned on physical parameters to make them adaptive. To mitigate the distribution shift issue, we further introduce an on-policy fine-tuning phase for the estimator to enhance its robustness and accuracy. The simulation results show that BAS achieves 50% better safety than baselines in dynamic environments while maintaining a higher speed on average. In real-world experiments, BAS shows its capability in complex environments with unknown physics (e.g., slippery floors with unknown frictions, unknown payloads up to 8kg), while baselines lack adaptivity, leading to collisions or. degraded agility. As a result, BAS achieves a 19.8% increase in speed and gets a 2.36 times lower collision rate than ABS in the real world. Videos: https://adaptive-safe-locomotion.github.io.
comment: 11 Pages, 6 Figures
♻ ☆ Let's Ask GNN: Empowering Large Language Model for Graph In-Context Learning
Textual Attributed Graphs (TAGs) are crucial for modeling complex real-world systems, yet leveraging large language models (LLMs) for TAGs presents unique challenges due to the gap between sequential text processing and graph-structured data. We introduce AskGNN, a novel approach that bridges this gap by leveraging In-Context Learning (ICL) to integrate graph data and task-specific information into LLMs. AskGNN employs a Graph Neural Network (GNN)-powered structure-enhanced retriever to select labeled nodes across graphs, incorporating complex graph structures and their supervision signals. Our learning-to-retrieve algorithm optimizes the retriever to select example nodes that maximize LLM performance on graph. Experiments across three tasks and seven LLMs demonstrate AskGNN's superior effectiveness in graph task performance, opening new avenues for applying LLMs to graph-structured data without extensive fine-tuning.
♻ ☆ Nothing Stands Still: A Spatiotemporal Benchmark on 3D Point Cloud Registration Under Large Geometric and Temporal Change SP
Building 3D geometric maps of man-made spaces is a well-established and active field that is fundamental to computer vision and robotics. However, considering the evolving nature of built environments, it is essential to question the capabilities of current mapping efforts in handling temporal changes. In addition, spatiotemporal mapping holds significant potential for achieving sustainability and circularity goals. Existing mapping approaches focus on small changes, such as object relocation or self-driving car operation; in all cases where the main structure of the scene remains fixed. Consequently, these approaches fail to address more radical changes in the structure of the built environment, such as geometry and topology. To this end, we introduce the Nothing Stands Still (NSS) benchmark, which focuses on the spatiotemporal registration of 3D scenes undergoing large spatial and temporal change, ultimately creating one coherent spatiotemporal map. Specifically, the benchmark involves registering two or more partial 3D point clouds (fragments) from the same scene but captured from different spatiotemporal views. In addition to the standard pairwise registration, we assess the multi-way registration of multiple fragments that belong to any temporal stage. As part of NSS, we introduce a dataset of 3D point clouds recurrently captured in large-scale building indoor environments that are under construction or renovation. The NSS benchmark presents three scenarios of increasing difficulty, to quantify the generalization ability of point cloud registration methods over space (within one building and across buildings) and time. We conduct extensive evaluations of state-of-the-art methods on NSS. The results demonstrate the necessity for novel methods specifically designed to handle large spatiotemporal changes. The homepage of our benchmark is at http://nothing-stands-still.com.
comment: To appear in the ISPRS Journal of Photogrammetry and Remote Sensing. 29 pages, 26 figures. For the project page, see http://nothing-stands-still.com
♻ ☆ STITCH: Surface reconstrucTion using Implicit neural representations with Topology Constraints and persistent Homology
We present STITCH, a novel approach for neural implicit surface reconstruction of a sparse and irregularly spaced point cloud while enforcing topological constraints (such as having a single connected component). We develop a new differentiable framework based on persistent homology to formulate topological loss terms that enforce the prior of a single 2-manifold object. Our method demonstrates excellent performance in preserving the topology of complex 3D geometries, evident through both visual and empirical comparisons. We supplement this with a theoretical analysis, and provably show that optimizing the loss with stochastic (sub)gradient descent leads to convergence and enables reconstructing shapes with a single connected component. Our approach showcases the integration of differentiable topological data analysis tools for implicit surface reconstruction.
comment: 19 pages, 12 figures, 29 tables
♻ ☆ Multi-Task Model Merging via Adaptive Weight Disentanglement
Model merging has recently gained attention as an economical and scalable approach to incorporate task-specific weights from various tasks into a unified multi-task model. For example, in Task Arithmetic (TA), adding the fine-tuned weights of different tasks can enhance the model's performance on those tasks, while subtracting them leads to task forgetting. Although TA is highly effective, interference among task still hampers the performance of the merged model. Existing methods for handling conflicts between task generally rely on empirical selection, resulting in suboptimal performance. In this paper, we introduce an Adaptive Weight Disentanglement method. We begin by theoretically proving that task vectors employed in model merging should be orthogonal to minimize interference among tasks. Guided by this insight, we initialize redundant vectors such that, when subtracted from the original task vectors, the resulting vectors exhibit increased orthogonality. Additionally, we impose an norm constraint on the redundant vectors to preserve the performance of the task-specific models. Experimental results demonstrate the effectiveness of our proposed technique: it successfully extracts redundant vectors, and after their subtraction, the task vectors not only retain robust performance but also achieve superior fusion outcomes. Our code is available at \href{https://github.com/FarisXiong/AWD.git}{https://github.com/FarisXiong/AWD.git}.
♻ ☆ Long-range Brain Graph Transformer
Understanding communication and information processing among brain regions of interest (ROIs) is highly dependent on long-range connectivity, which plays a crucial role in facilitating diverse functional neural integration across the entire brain. However, previous studies generally focused on the short-range dependencies within brain networks while neglecting the long-range dependencies, limiting an integrated understanding of brain-wide communication. To address this limitation, we propose Adaptive Long-range aware TransformER (ALTER), a brain graph transformer to capture long-range dependencies between brain ROIs utilizing biased random walk. Specifically, we present a novel long-range aware strategy to explicitly capture long-range dependencies between brain ROIs. By guiding the walker towards the next hop with higher correlation value, our strategy simulates the real-world brain-wide communication. Furthermore, by employing the transformer framework, ALERT adaptively integrates both short- and long-range dependencies between brain ROIs, enabling an integrated understanding of multi-level communication across the entire brain. Extensive experiments on ABIDE and ADNI datasets demonstrate that ALTER consistently outperforms generalized state-of-the-art graph learning methods (including SAN, Graphormer, GraphTrans, and LRGNN) and other graph learning based brain network analysis methods (including FBNETGEN, BrainNetGNN, BrainGNN, and BrainNETTF) in neurological disease diagnosis. Cases of long-range dependencies are also presented to further illustrate the effectiveness of ALTER. The implementation is available at https://github.com/yushuowiki/ALTER.
♻ ☆ Linear Multidimensional Regression with Interactive Fixed-Effects
This paper studies a linear and additively separable regression model for multidimensional panel data of three or more dimensions with unobserved interactive fixed effects. The main estimator follows a double debias approach, and requires two preliminary steps to control unobserved heterogeneity. First, the model is embedded within the standard two-dimensional panel framework and restrictions are formed under which the factor structure methods in Bai (2009) lead to consistent estimation of model parameters, but at slow rates of convergence. The second step develops a weighted fixed-effects method that is robust to the multidimensional nature of the problem and achieves the parametric rate of consistency. This second step is combined with a double debias procedure for asymptotically normal slope estimates. The methods are implemented to estimate the demand elasticity for beer.
♻ ☆ Navigating the Designs of Privacy-Preserving Fine-tuning for Large Language Models
Instruction tuning has proven effective in enhancing Large Language Models' (LLMs) performance on downstream tasks. However, real-world fine-tuning faces inherent conflicts between model providers' intellectual property protection, clients' data privacy requirements, and tuning costs. While recent approaches like split learning and offsite tuning demonstrate promising architectures for privacy-preserving fine-tuning, there is a gap in systematically addressing the multidimensional trade-offs required for diverse real-world deployments. We propose several indicative evaluation metrics to guide design trade-offs for privacy-preserving fine-tuning and a series of example designs, collectively named GuardedTuning; they result from novel combinations of system architectures with adapted privacy-enhancement methods and emerging computation techniques. Each design represents distinct trade-offs across model utility, privacy guarantees, and costs. Experimental results demonstrate that these designs protect against data reconstruction attacks while maintaining competitive fine-tuning performance.
comment: 4 pages, 2 figures
♻ ☆ Stochastic Process Learning via Operator Flow Matching
Expanding on neural operators, we propose a novel framework for stochastic process learning across arbitrary domains. In particular, we develop operator flow matching (OFM) for learning stochastic process priors on function spaces. OFM provides the probability density of the values of any collection of points and enables mathematically tractable functional regression at new points with mean and density estimation. Our method outperforms state-of-the-art models in stochastic process learning, functional regression, and prior learning.
♻ ☆ More is not always better? Enhancing Many-Shot In-Context Learning with Differentiated and Reweighting Objectives
Large language models (LLMs) excel at few-shot in-context learning (ICL) without requiring parameter updates. However, as the number of ICL demonstrations increases from a few to many, performance tends to plateau and eventually decline. We identify two primary causes for this trend: the suboptimal negative log-likelihood (NLL) optimization objective and the incremental data noise. To address these issues, we introduce DrICL, a novel optimization method that enhances model performance through Differentiated Learning and advantage-based Reweighting objectives. Globally, DrICL utilizes differentiated learning to optimize the NLL objective, ensuring that many-shot performance surpasses zero-shot levels. Locally, it dynamically adjusts the weighting of many-shot demonstrations by leveraging cumulative advantages inspired by reinforcement learning, thereby improving generalization. This approach allows the model to handle varying numbers of shots effectively, mitigating the impact of noisy data. Recognizing the lack of multi-task datasets with diverse many-shot distributions, we develop the Many-Shot ICL Benchmark (ICL-50)-a large-scale benchmark of 50 tasks that cover shot numbers from 1 to 350 within sequences of up to 8,000 tokens-for fine-tuning purposes. ICL-50 facilitates the evaluation of many-shot ICL strategies across seven prominent NLP tasks and 50 distinct datasets. Experimental results demonstrate that LLMs enhanced with DrICL achieve significant improvements in many-shot setups across various tasks, including both in-domain and out-of-domain scenarios. We release the code and benchmark dataset hoping to facilitate further research in many-shot ICL.
comment: 13 pages, 8 figures, 11 tables
♻ ☆ ContextMRI: Enhancing Compressed Sensing MRI through Metadata Conditioning
Compressed sensing MRI seeks to accelerate MRI acquisition processes by sampling fewer k-space measurements and then reconstructing the missing data algorithmically. The success of these approaches often relies on strong priors or learned statistical models. While recent diffusion model-based priors have shown great potential, previous methods typically ignore clinically available metadata (e.g. patient demographics, imaging parameters, slice-specific information). In practice, metadata contains meaningful cues about the anatomy and acquisition protocol, suggesting it could further constrain the reconstruction problem. In this work, we propose ContextMRI, a text-conditioned diffusion model for MRI that integrates granular metadata into the reconstruction process. We train a pixel-space diffusion model directly on minimally processed, complex-valued MRI images. During inference, metadata is converted into a structured text prompt and fed to the model via CLIP text embeddings. By conditioning the prior on metadata, we unlock more accurate reconstructions and show consistent gains across multiple datasets, acceleration factors, and undersampling patterns. Our experiments demonstrate that increasing the fidelity of metadata, ranging from slice location and contrast to patient age, sex, and pathology, systematically boosts reconstruction performance. This work highlights the untapped potential of leveraging clinical context for inverse problems and opens a new direction for metadata-driven MRI reconstruction.
comment: 29 pages, 9 figures. Code is available at https://github.com/DoHunLee1/ContextMRI
♻ ☆ A New Transformation Approach for Uplift Modeling with Binary Outcome
Uplift modeling has been used effectively in fields such as marketing and customer retention, to target those customers who are more likely to respond due to the campaign or treatment. Essentially, it is a machine learning technique that predicts the gain from performing some action with respect to not taking it. A popular class of uplift models is the transformation approach that redefines the target variable with the original treatment indicator. These transformation approaches only need to train and predict the difference in outcomes directly. The main drawback of these approaches is that in general it does not use the information in the treatment indicator beyond the construction of the transformed outcome and usually is not efficient. In this paper, we design a novel transformed outcome for the case of the binary target variable and unlock the full value of the samples with zero outcome. From a practical perspective, our new approach is flexible and easy to use. Experimental results on synthetic and real-world datasets obviously show that our new approach outperforms the traditional one. At present, our new approach has already been applied to precision marketing in a China nation-wide financial holdings group.
♻ ☆ Constraints as Rewards: Reinforcement Learning for Robots without Reward Functions
Reinforcement learning has become an essential algorithm for generating complex robotic behaviors. However, to learn such behaviors, it is necessary to design a reward function that describes the task, which often consists of multiple objectives that needs to be balanced. This tuning process is known as reward engineering and typically involves extensive trial-and-error. In this paper, to avoid this trial-and-error process, we propose the concept of Constraints as Rewards (CaR). CaR formulates the task objective using multiple constraint functions instead of a reward function and solves a reinforcement learning problem with constraints using the Lagrangian-method. By adopting this approach, different objectives are automatically balanced, because Lagrange multipliers serves as the weights among the objectives. In addition, we will demonstrate that constraints, expressed as inequalities, provide an intuitive interpretation of the optimization target designed for the task. We apply the proposed method to the standing-up motion generation task of a six-wheeled-telescopic-legged robot and demonstrate that the proposed method successfully acquires the target behavior, even though it is challenging to learn with manually designed reward functions.
♻ ☆ Optimality of Message-Passing Architectures for Sparse Graphs NeurIPS 2023
We study the node classification problem on feature-decorated graphs in the sparse setting, i.e., when the expected degree of a node is $O(1)$ in the number of nodes, in the fixed-dimensional asymptotic regime, i.e., the dimension of the feature data is fixed while the number of nodes is large. Such graphs are typically known to be locally tree-like. We introduce a notion of Bayes optimality for node classification tasks, called asymptotic local Bayes optimality, and compute the optimal classifier according to this criterion for a fairly general statistical data model with arbitrary distributions of the node features and edge connectivity. The optimal classifier is implementable using a message-passing graph neural network architecture. We then compute the generalization error of this classifier and compare its performance against existing learning methods theoretically on a well-studied statistical model with naturally identifiable signal-to-noise ratios (SNRs) in the data. We find that the optimal message-passing architecture interpolates between a standard MLP in the regime of low graph signal and a typical convolution in the regime of high graph signal. Furthermore, we prove a corresponding non-asymptotic result.
comment: 27 pages, 2 figures, published at NeurIPS 2023
♻ ☆ Persistent Homology for Structural Characterization in Disordered Systems
We propose a unified framework based on persistent homology (PH) to characterize both local and global structures in disordered systems. It can simultaneously generate local and global descriptors using the same algorithm and data structure, and has shown to be highly effective and interpretable in predicting particle rearrangements and classifying global phases. We also demonstrated that using a single variable enables a linear SVM to achieve nearly perfect three-phase classification. Inspired by this discovery, we define a non-parametric metric, the Separation Index (SI), which not only achieves this classification without sacrificing significant performance but also establishes a connection between particle environments and the global phase structure. Our methods provide an effective framework for understanding and analyzing the properties of disordered materials, with broad potential applications in materials science and even wider studies of complex systems.
comment: 19 pages, 17 figures
♻ ☆ PalmBench: A Comprehensive Benchmark of Compressed Large Language Models on Mobile Platforms
Deploying large language models (LLMs) locally on mobile devices is advantageous in scenarios where transmitting data to remote cloud servers is either undesirable due to privacy concerns or impractical due to network connection. Recent advancements (MLC, 2023a; Gerganov, 2023) have facilitated the local deployment of LLMs. However, local deployment also presents challenges, particularly in balancing quality (generative performance), latency, and throughput within the hardware constraints of mobile devices. In this paper, we introduce our lightweight, all-in-one automated benchmarking framework that allows users to evaluate LLMs on mobile devices. We provide a comprehensive benchmark of various popular LLMs with different quantization configurations (both weights and activations) across multiple mobile platforms with varying hardware capabilities. Unlike traditional benchmarks that assess full-scale models on high-end GPU clusters, we focus on evaluating resource efficiency (memory and power consumption) and harmful output for compressed models on mobile devices. Our key observations include i) differences in energy efficiency and throughput across mobile platforms; ii) the impact of quantization on memory usage, GPU execution time, and power consumption; and iii) accuracy and performance degradation of quantized models compared to their non-quantized counterparts; and iv) the frequency of hallucinations and toxic content generated by compressed LLMs on mobile devices.
comment: 10 pages
♻ ☆ NV-Embed: Improved Techniques for Training LLMs as Generalist Embedding Models
Decoder-only large language model (LLM)-based embedding models are beginning to outperform BERT or T5-based embedding models in general-purpose text embedding tasks, including dense vector-based retrieval. In this work, we introduce the NV-Embed model, incorporating architectural designs, training procedures, and curated datasets to significantly enhance the performance of LLM as a versatile embedding model, while maintaining its simplicity and reproducibility. For model architecture, we propose a latent attention layer to obtain pooled embeddings, which consistently improves retrieval and downstream task accuracy compared to mean pooling or using the last token embedding from LLMs. To enhance representation learning, we remove the causal attention mask of LLMs during contrastive training. For training algorithm, we introduce a two-stage contrastive instruction-tuning method. It first applies contrastive training with instructions on retrieval datasets, utilizing in-batch negatives and curated hard negative examples. At stage-2, it blends various non-retrieval into instruction tuning, which not only enhances non-retrieval task accuracy but also improves retrieval performance. For training data, we utilize the hard-negative mining, synthetic data generation and existing public available datasets to boost the performance of embedding model. By combining these techniques, our NV-Embed-v1 and NV-Embed-v2 models obtained the No.1 position on the Massive Text Embedding Benchmark (MTEB) (as of May 24, 2024 and August 30, 2024, respectively) across 56 embedding tasks, demonstrating the sustained effectiveness of the proposed methods over time. Additionally, it achieved the highest scores in the Long Doc section and the second-highest scores in the QA section of the AIR Benchmark, which covers a range of out-of-domain information retrieval topics beyond those in MTEB.
comment: We open-source the model at: https://huggingface.co/nvidia/NV-Embed-v2
♻ ☆ Arcee's MergeKit: A Toolkit for Merging Large Language Models
The rapid expansion of the open-source language model landscape presents an opportunity to merge the competencies of these model checkpoints by combining their parameters. Advances in transfer learning, the process of fine-tuning pretrained models for specific tasks, has resulted in the development of vast amounts of task-specific models, typically specialized in individual tasks and unable to utilize each other's strengths. Model merging facilitates the creation of multitask models without the need for additional training, offering a promising avenue for enhancing model performance and versatility. By preserving the intrinsic capabilities of the original models, model merging addresses complex challenges in AI - including the difficulties of catastrophic forgetting and multitask learning. To support this expanding area of research, we introduce MergeKit, a comprehensive, open-source library designed to facilitate the application of model merging strategies. MergeKit offers an extensible framework to efficiently merge models on any hardware, providing utility to researchers and practitioners. To date, thousands of models have been merged by the open-source community, leading to the creation of some of the worlds most powerful open-source model checkpoints, as assessed by the Open LLM Leaderboard. The library is accessible at https://github.com/arcee-ai/MergeKit.
comment: 11 pages, 4 figures
♻ ☆ AI-generated Image Detection: Passive or Watermark?
While text-to-image models offer numerous benefits, they also pose significant societal risks. Detecting AI-generated images is crucial for mitigating these risks. Detection methods can be broadly categorized into passive and watermark-based approaches: passive detectors rely on artifacts present in AI-generated images, whereas watermark-based detectors proactively embed watermarks into such images. A key question is which type of detector performs better in terms of effectiveness, robustness, and efficiency. However, the current literature lacks a comprehensive understanding of this issue. In this work, we aim to bridge that gap by developing ImageDetectBench, the first comprehensive benchmark to compare the effectiveness, robustness, and efficiency of passive and watermark-based detectors. Our benchmark includes four datasets, each containing a mix of AI-generated and non-AI-generated images. We evaluate five passive detectors and four watermark-based detectors against eight types of common perturbations and three types of adversarial perturbations. Our benchmark results reveal several interesting findings. For instance, watermark-based detectors consistently outperform passive detectors, both in the presence and absence of perturbations. Based on these insights, we provide recommendations for detecting AI-generated images, e.g., when both types of detectors are applicable, watermark-based detectors should be the preferred choice. Our code and data are publicly available at https://github.com/moyangkuo/ImageDetectBench.git.
♻ ☆ Masked Image Modeling: A Survey
In this work, we survey recent studies on masked image modeling (MIM), an approach that emerged as a powerful self-supervised learning technique in computer vision. The MIM task involves masking some information, e.g.~pixels, patches, or even latent representations, and training a model, usually an autoencoder, to predicting the missing information by using the context available in the visible part of the input. We identify and formalize two categories of approaches on how to implement MIM as a pretext task, one based on reconstruction and one based on contrastive learning. Then, we construct a taxonomy and review the most prominent papers in recent years. We complement the manually constructed taxonomy with a dendrogram obtained by applying a hierarchical clustering algorithm. We further identify relevant clusters via manually inspecting the resulting dendrogram. Our review also includes datasets that are commonly used in MIM research. We aggregate the performance results of various masked image modeling methods on the most popular datasets, to facilitate the comparison of competing methods. Finally, we identify research gaps and propose several interesting directions of future work. We supplement our survey with the following public repository containing organized references: https://github.com/vladhondru25/MIM-Survey.
comment: Revised version
♻ ☆ Function-Space Optimality of Neural Architectures with Multivariate Nonlinearities
We investigate the function-space optimality (specifically, the Banach-space optimality) of a large class of shallow neural architectures with multivariate nonlinearities/activation functions. To that end, we construct a new family of Banach spaces defined via a regularization operator, the $k$-plane transform, and a sparsity-promoting norm. We prove a representer theorem that states that the solution sets to learning problems posed over these Banach spaces are completely characterized by neural architectures with multivariate nonlinearities. These optimal architectures have skip connections and are tightly connected to orthogonal weight normalization and multi-index models, both of which have received recent interest in the neural network community. Our framework is compatible with a number of classical nonlinearities including the rectified linear unit (ReLU) activation function, the norm activation function, and the radial basis functions found in the theory of thin-plate/polyharmonic splines. We also show that the underlying spaces are special instances of reproducing kernel Banach spaces and variation spaces. Our results shed light on the regularity of functions learned by neural networks trained on data, particularly with multivariate nonlinearities, and provide new theoretical motivation for several architectural choices found in practice.
♻ ☆ Real Time Multi Organ Classification on Computed Tomography Images
Organ segmentation is a fundamental task in medical imaging since it is useful for many clinical automation pipelines. However, some tasks do not require full segmentation. Instead, a classifier can identify the selected organ without segmenting the entire volume. In this study, we demonstrate a classifier based method to obtain organ labels in real time by using a large context size with a sparse data sampling strategy. Although our method operates as an independent classifier at query locations, it can generate full segmentations by querying grid locations at any resolution, offering faster performance than segmentation algorithms. We compared our method with existing segmentation techniques, demonstrating its superior runtime potential for practical applications in medical imaging.
comment: 11 pages, Organ Classification, Organ Segmentation
♻ ☆ Robust Point Matching with Distance Profiles
We show the outlier robustness and noise stability of practical matching procedures based on distance profiles. Although the idea of matching points based on invariants like distance profiles has a long history in the literature, there has been little understanding of the theoretical properties of such procedures, especially in the presence of outliers and noise. We provide a theoretical analysis showing that under certain probabilistic settings, the proposed matching procedure is successful with high probability even in the presence of outliers and noise. We demonstrate the performance of the proposed method using a real data example and provide simulation studies to complement the theoretical findings. Lastly, we extend the concept of distance profiles to the abstract setting and connect the proposed matching procedure to the Gromov-Wasserstein distance and its lower bound, with a new sample complexity result derived based on the properties of distance profiles. This paper contributes to the literature by providing theoretical underpinnings of the matching procedures based on invariants like distance profiles, which have been widely used in practice but have rarely been analyzed theoretically.
♻ ☆ Gaze-Informed Vision Transformers: Predicting Driving Decisions Under Uncertainty
Vision Transformers (ViT) have advanced computer vision, yet their efficacy in complex tasks like driving remains less explored. This study enhances ViT by integrating human eye gaze, captured via eye-tracking, to increase prediction accuracy in driving scenarios under uncertainty in both real-world and virtual reality scenarios. First, we establish the significance of human eye gaze in left-right driving decisions, as observed in both human subjects and a ViT model. By comparing the similarity between human fixation maps and ViT attention weights, we reveal the dynamics of overlap across individual heads and layers. This overlap demonstrates that fixation data can guide the model in distributing its attention weights more effectively. We introduce the fixation-attention intersection (FAX) loss, a novel loss function that significantly improves ViT performance under high uncertainty conditions. Our results show that ViT, when trained with FAX loss, aligns its attention with human gaze patterns. This gaze-informed approach has significant potential for driver behavior analysis, as well as broader applications in human-centered AI systems, extending ViT's use to complex visual environments.
comment: 25 pages, 9 figures, 3 tables
♻ ☆ SepsisCalc: Integrating Clinical Calculators into Early Sepsis Prediction via Dynamic Temporal Graph Construction
Sepsis is an organ dysfunction caused by a deregulated immune response to an infection. Early sepsis prediction and identification allow for timely intervention, leading to improved clinical outcomes. Clinical calculators (e.g., the six-organ dysfunction assessment of SOFA) play a vital role in sepsis identification within clinicians' workflow, providing evidence-based risk assessments essential for sepsis diagnosis. However, artificial intelligence (AI) sepsis prediction models typically generate a single sepsis risk score without incorporating clinical calculators for assessing organ dysfunctions, making the models less convincing and transparent to clinicians. To bridge the gap, we propose to mimic clinicians' workflow with a novel framework SepsisCalc to integrate clinical calculators into the predictive model, yielding a clinically transparent and precise model for utilization in clinical settings. Practically, clinical calculators usually combine information from multiple component variables in Electronic Health Records (EHR), and might not be applicable when the variables are (partially) missing. We mitigate this issue by representing EHRs as temporal graphs and integrating a learning module to dynamically add the accurately estimated calculator to the graphs. Experimental results on real-world datasets show that the proposed model outperforms state-of-the-art methods on sepsis prediction tasks. Moreover, we developed a system to identify organ dysfunctions and potential sepsis risks, providing a human-AI interaction tool for deployment, which can help clinicians understand the prediction outputs and prepare timely interventions for the corresponding dysfunctions, paving the way for actionable clinical decision-making support for early intervention.
♻ ☆ Randomized Approach to Matrix Completion: Applications in Collaborative Filtering and Image Inpainting
We present a novel method for matrix completion, specifically designed for matrices where one dimension significantly exceeds the other. Our Columns Selected Matrix Completion (CSMC) method combines Column Subset Selection and Low-Rank Matrix Completion to efficiently reconstruct incomplete datasets. In each step, CSMC solves a convex optimization problem. We introduce two algorithms to implement CSMC, each tailored to problems of different sizes. A formal analysis is provided, outlining the necessary assumptions and the probability of obtaining a correct solution. To assess the impact of matrix size, rank, and the ratio of missing entries on solution quality and computation time, we conducted experiments on synthetic data. The method was also applied to two real-world problems: recommendation systems and image inpainting. Our results show that CSMC provides solutions of the same quality as state-of-the-art matrix completion algorithms based on convex optimization, while achieving significant reductions in computational runtime.
♻ ☆ An Investigation of Conformal Isometry Hypothesis for Grid Cells
This paper investigates the conformal isometry hypothesis as a potential explanation for hexagonal periodic patterns in grid cell response maps. The hypothesis posits that grid cell activity forms a high-dimensional vector in neural space, encoding the agent's position in 2D physical space. As the agent moves, this vector rotates within a 2D manifold in the neural space, driven by a recurrent neural network. The conformal hypothesis suggests that this neural manifold is a conformally isometric embedding of physical space, where local displacements in neural space are proportional to those in physical space. In this paper, we conduct numerical experiments to show that this hypothesis leads to the hexagon periodic patterns of grid cells, agnostic to the choice of transformation models. Furthermore, we present a theoretical understanding that hexagon patterns emerge by minimizing our loss function because hexagon flat torus exhibits minimal deviation from local conformal isometry. In addition, we propose a conformal modulation of the agent's input velocity, enabling the recurrent neural network of grid cells to satisfy the conformal isometry hypothesis automatically.
comment: arXiv admin note: text overlap with arXiv:2310.19192
♻ ☆ Proactive Adversarial Defense: Harnessing Prompt Tuning in Vision-Language Models to Detect Unseen Backdoored Images
Backdoor attacks pose a critical threat by embedding hidden triggers into inputs, causing models to misclassify them into target labels. While extensive research has focused on mitigating these attacks in object recognition models through weight fine-tuning, much less attention has been given to detecting backdoored samples directly. Given the vast datasets used in training, manual inspection for backdoor triggers is impractical, and even state-of-the-art defense mechanisms fail to fully neutralize their impact. To address this gap, we introduce a groundbreaking method to detect unseen backdoored images during both training and inference. Leveraging the transformative success of prompt tuning in Vision Language Models (VLMs), our approach trains learnable text prompts to differentiate clean images from those with hidden backdoor triggers. Experiments demonstrate the exceptional efficacy of this method, achieving an impressive average accuracy of 86% across two renowned datasets for detecting unseen backdoor triggers, establishing a new standard in backdoor defense.
♻ ☆ Enhancing Architecture Frameworks by Including Modern Stakeholders and their Views/Viewpoints
Various architecture frameworks for software, systems, and enterprises have been proposed in the literature. They identified several stakeholders and defined modeling perspectives, architecture viewpoints, and views to frame and address stakeholder concerns. However, the stakeholders with data science and Machine Learning (ML) related concerns, such as data scientists and data engineers, are yet to be included in existing architecture frameworks. Only this way can we envision a holistic system architecture description of an ML-enabled system. Note that the ML component behavior and functionalities are special and should be distinguished from traditional software system behavior and functionalities. The main reason is that the actual functionality should be inferred from data instead of being specified at design time. Additionally, the structural models of ML components, such as ML model architectures, are typically specified using different notations and formalisms from what the Software Engineering (SE) community uses for software structural models. Yet, these two aspects, namely ML and non-ML, are becoming so intertwined that it necessitates an extension of software architecture frameworks and modeling practices toward supporting ML-enabled system architectures. In this paper, we address this gap through an empirical study using an online survey instrument. We surveyed 61 subject matter experts from over 25 organizations in 10 countries.
comment: ICICT 2025
Multimedia 2
♻ ☆ Rendering-Oriented 3D Point Cloud Attribute Compression using Sparse Tensor-based Transformer
The evolution of 3D visualization techniques has fundamentally transformed how we interact with digital content. At the forefront of this change is point cloud technology, offering an immersive experience that surpasses traditional 2D representations. However, the massive data size of point clouds presents significant challenges in data compression. Current methods for lossy point cloud attribute compression (PCAC) generally focus on reconstructing the original point clouds with minimal error. However, for point cloud visualization scenarios, the reconstructed point clouds with distortion still need to undergo a complex rendering process, which affects the final user-perceived quality. In this paper, we propose an end-to-end deep learning framework that seamlessly integrates PCAC with differentiable rendering, denoted as rendering-oriented PCAC (RO-PCAC), directly targeting the quality of rendered multiview images for viewing. In a differentiable manner, the impact of the rendering process on the reconstructed point clouds is taken into account. Moreover, we characterize point clouds as sparse tensors and propose a sparse tensor-based transformer, called SP-Trans. By aligning with the local density of the point cloud and utilizing an enhanced local attention mechanism, SP-Trans captures the intricate relationships within the point cloud, further improving feature analysis and synthesis within the framework. Extensive experiments demonstrate that the proposed RO-PCAC achieves state-of-the-art compression performance, compared to existing reconstruction-oriented methods, including traditional, learning-based, and hybrid methods.
♻ ☆ OneLLM: One Framework to Align All Modalities with Language CVPR 2024
Multimodal large language models (MLLMs) have gained significant attention due to their strong multimodal understanding capability. However, existing works rely heavily on modality-specific encoders, which usually differ in architecture and are limited to common modalities. In this paper, we present OneLLM, an MLLM that aligns eight modalities to language using a unified framework. We achieve this through a unified multimodal encoder and a progressive multimodal alignment pipeline. In detail, we first train an image projection module to connect a vision encoder with LLM. Then, we build a universal projection module (UPM) by mixing multiple image projection modules and dynamic routing. Finally, we progressively align more modalities to LLM with the UPM. To fully leverage the potential of OneLLM in following instructions, we also curated a comprehensive multimodal instruction dataset, including 2M items from image, audio, video, point cloud, depth/normal map, IMU and fMRI brain activity. OneLLM is evaluated on 25 diverse benchmarks, encompassing tasks such as multimodal captioning, question answering and reasoning, where it delivers excellent performance. Code, data, model and online demo are available at https://github.com/csuhan/OneLLM
comment: Accepted by CVPR 2024. Code: https://github.com/csuhan/OneLLM
Artificial Intelligence 140
☆ An Empirical Study of Autoregressive Pre-training from Videos
We empirically study autoregressive pre-training from videos. To perform our study, we construct a series of autoregressive video models, called Toto. We treat videos as sequences of visual tokens and train transformer models to autoregressively predict future tokens. Our models are pre-trained on a diverse dataset of videos and images comprising over 1 trillion visual tokens. We explore different architectural, training, and inference design choices. We evaluate the learned visual representations on a range of downstream tasks including image recognition, video classification, object tracking, and robotics. Our results demonstrate that, despite minimal inductive biases, autoregressive pre-training leads to competitive performance across all benchmarks. Finally, we find that scaling our video models results in similar scaling curves to those seen in language models, albeit with a different rate. More details at https://brjathu.github.io/toto/
☆ Consistent Flow Distillation for Text-to-3D Generation
Score Distillation Sampling (SDS) has made significant strides in distilling image-generative models for 3D generation. However, its maximum-likelihood-seeking behavior often leads to degraded visual quality and diversity, limiting its effectiveness in 3D applications. In this work, we propose Consistent Flow Distillation (CFD), which addresses these limitations. We begin by leveraging the gradient of the diffusion ODE or SDE sampling process to guide the 3D generation. From the gradient-based sampling perspective, we find that the consistency of 2D image flows across different viewpoints is important for high-quality 3D generation. To achieve this, we introduce multi-view consistent Gaussian noise on the 3D object, which can be rendered from various viewpoints to compute the flow gradient. Our experiments demonstrate that CFD, through consistent flows, significantly outperforms previous methods in text-to-3D generation.
comment: Project page: https://runjie-yan.github.io/cfd/
☆ A survey of textual cyber abuse detection using cutting-edge language models and large language models
The success of social media platforms has facilitated the emergence of various forms of online abuse within digital communities. This abuse manifests in multiple ways, including hate speech, cyberbullying, emotional abuse, grooming, and sexting. In this paper, we present a comprehensive analysis of the different forms of abuse prevalent in social media, with a particular focus on how emerging technologies, such as Language Models (LMs) and Large Language Models (LLMs), are reshaping both the detection and generation of abusive content within these networks. We delve into the mechanisms through which social media abuse is perpetuated, exploring the psychological and social impact. Additionally, we examine the dual role of advanced language models-highlighting their potential to enhance automated detection systems for abusive behavior while also acknowledging their capacity to generate harmful content. This paper aims to contribute to the ongoing discourse on online safety and ethics, offering insights into the evolving landscape of cyberabuse and the technological innovations that both mitigate and exacerbate it.
comment: 37 pages, under review in WIREs Data Mining and Knowledge Discovery
☆ Progressive Growing of Video Tokenizers for Highly Compressed Latent Spaces
Video tokenizers are essential for latent video diffusion models, converting raw video data into spatiotemporally compressed latent spaces for efficient training. However, extending state-of-the-art video tokenizers to achieve a temporal compression ratio beyond 4x without increasing channel capacity poses significant challenges. In this work, we propose an alternative approach to enhance temporal compression. We find that the reconstruction quality of temporally subsampled videos from a low-compression encoder surpasses that of high-compression encoders applied to original videos. This indicates that high-compression models can leverage representations from lower-compression models. Building on this insight, we develop a bootstrapped high-temporal-compression model that progressively trains high-compression blocks atop well-trained lower-compression models. Our method includes a cross-level feature-mixing module to retain information from the pretrained low-compression model and guide higher-compression blocks to capture the remaining details from the full video sequence. Evaluation of video benchmarks shows that our method significantly improves reconstruction quality while increasing temporal compression compared to direct extensions of existing video tokenizers. Furthermore, the resulting compact latent space effectively trains a video diffusion model for high-quality video generation with a reduced token budget.
comment: Project website: https://progressive-video-tokenizer.github.io/Pro-MAG/
☆ From Simple to Complex Skills: The Case of In-Hand Object Reorientation
Learning policies in simulation and transferring them to the real world has become a promising approach in dexterous manipulation. However, bridging the sim-to-real gap for each new task requires substantial human effort, such as careful reward engineering, hyperparameter tuning, and system identification. In this work, we present a system that leverages low-level skills to address these challenges for more complex tasks. Specifically, we introduce a hierarchical policy for in-hand object reorientation based on previously acquired rotation skills. This hierarchical policy learns to select which low-level skill to execute based on feedback from both the environment and the low-level skill policies themselves. Compared to learning from scratch, the hierarchical policy is more robust to out-of-distribution changes and transfers easily from simulation to real-world environments. Additionally, we propose a generalizable object pose estimator that uses proprioceptive information, low-level skill predictions, and control errors as inputs to estimate the object pose over time. We demonstrate that our system can reorient objects, including symmetrical and textureless ones, to a desired pose.
comment: website: https://dexhier.github.io
☆ Neuro-Symbolic AI in 2024: A Systematic Review
Background: The field of Artificial Intelligence has undergone cyclical periods of growth and decline, known as AI summers and winters. Currently, we are in the third AI summer, characterized by significant advancements and commercialization, particularly in the integration of Symbolic AI and Sub-Symbolic AI, leading to the emergence of Neuro-Symbolic AI. Methods: The review followed the PRISMA methodology, utilizing databases such as IEEE Explore, Google Scholar, arXiv, ACM, and SpringerLink. The inclusion criteria targeted peer-reviewed papers published between 2020 and 2024. Papers were screened for relevance to Neuro-Symbolic AI, with further inclusion based on the availability of associated codebases to ensure reproducibility. Results: From an initial pool of 1,428 papers, 167 met the inclusion criteria and were analyzed in detail. The majority of research efforts are concentrated in the areas of learning and inference (63%), logic and reasoning (35%), and knowledge representation (44%). Explainability and trustworthiness are less represented (28%), with Meta-Cognition being the least explored area (5%). The review identifies significant interdisciplinary opportunities, particularly in integrating explainability and trustworthiness with other research areas. Conclusion: Neuro-Symbolic AI research has seen rapid growth since 2020, with concentrated efforts in learning and inference. Significant gaps remain in explainability, trustworthiness, and Meta-Cognition. Addressing these gaps through interdisciplinary research will be crucial for advancing the field towards more intelligent, reliable, and context-aware AI systems.
comment: 19 pages
☆ A Novel Pathology Foundation Model by Mayo Clinic, Charité, and Aignostics
Recent advances in digital pathology have demonstrated the effectiveness of foundation models across diverse applications. In this report, we present a novel vision foundation model based on the RudolfV approach. Our model was trained on a dataset comprising 1.2 million histopathology whole slide images, collected from two medical institutions: Mayo Clinic and Charit\'e - Universt\"atsmedizin Berlin. Comprehensive evaluations show that our model achieves state-of-the-art performance across twenty-one public benchmark datasets, even though it is neither the largest model by parameter count nor by training dataset size.
☆ TimeRL: Efficient Deep Reinforcement Learning with Polyhedral Dependence Graphs
Modern deep learning (DL) workloads increasingly use complex deep reinforcement learning (DRL) algorithms that generate training data within the learning loop. This results in programs with several nested loops and dynamic data dependencies between tensors. While DL systems with eager execution support such dynamism, they lack the optimizations and smart scheduling of graph-based execution. Graph-based execution, however, cannot express dynamic tensor shapes, instead requiring the use of multiple static subgraphs. Either execution model for DRL thus leads to redundant computation, reduced parallelism, and less efficient memory management. We describe TimeRL, a system for executing dynamic DRL programs that combines the dynamism of eager execution with the whole-program optimizations and scheduling of graph-based execution. TimeRL achieves this by introducing the declarative programming model of recurrent tensors, which allows users to define dynamic dependencies as intuitive recurrence equations. TimeRL translates recurrent tensors into a polyhedral dependence graph (PDG) with dynamic dependencies as symbolic expressions. Through simple PDG transformations, TimeRL applies whole-program optimizations, such as automatic vectorization, incrementalization, and operator fusion. The PDG also allows for the computation of an efficient program-wide execution schedule, which decides on buffer deallocations, buffer donations, and GPU/CPU memory swapping. We show that TimeRL executes current DRL algorithms up to 47$\times$ faster than existing DRL systems, while using 16$\times$ less GPU peak memory.
comment: 17 pages, 11 figures, 5 bibliography pages
☆ On-line Policy Improvement using Monte-Carlo Search NeurIPS 1996
We present a Monte-Carlo simulation algorithm for real-time policy improvement of an adaptive controller. In the Monte-Carlo simulation, the long-term expected reward of each possible action is statistically measured, using the initial policy to make decisions in each step of the simulation. The action maximizing the measured expected reward is then taken, resulting in an improved policy. Our algorithm is easily parallelizable and has been implemented on the IBM SP1 and SP2 parallel-RISC supercomputers. We have obtained promising initial results in applying this algorithm to the domain of backgammon. Results are reported for a wide variety of initial policies, ranging from a random policy to TD-Gammon, an extremely strong multi-layer neural network. In each case, the Monte-Carlo algorithm gives a substantial reduction, by as much as a factor of 5 or more, in the error rate of the base players. The algorithm is also potentially useful in many other adaptive control applications in which it is possible to simulate the environment.
comment: Accompanied by oral presentation by Gregory Galperin at NeurIPS 1996 (then known as NIPS*96)
☆ TimeDP: Learning to Generate Multi-Domain Time Series with Domain Prompts AAAI 2025
Time series generation models are crucial for applications like data augmentation and privacy preservation. Most existing time series generation models are typically designed to generate data from one specified domain. While leveraging data from other domain for better generalization is proved to work in other application areas, this approach remains challenging for time series modeling due to the large divergence in patterns among different real world time series categories. In this paper, we propose a multi-domain time series diffusion model with domain prompts, named TimeDP. In TimeDP, we utilize a time series semantic prototype module which defines time series prototypes to represent time series basis, each prototype vector serving as "word" representing some elementary time series feature. A prototype assignment module is applied to extract the extract domain specific prototype weights, for learning domain prompts as generation condition. During sampling, we extract "domain prompt" with few-shot samples from the target domain and use the domain prompts as condition to generate time series samples. Experiments demonstrate that our method outperforms baselines to provide the state-of-the-art in-domain generation quality and strong unseen domain generation capability.
comment: AAAI 2025
☆ BRATI: Bidirectional Recurrent Attention for Time-Series Imputation
Missing data in time-series analysis poses significant challenges, affecting the reliability of downstream applications. Imputation, the process of estimating missing values, has emerged as a key solution. This paper introduces BRATI, a novel deep-learning model designed to address multivariate time-series imputation by combining Bidirectional Recurrent Networks and Attention mechanisms. BRATI processes temporal dependencies and feature correlations across long and short time horizons, utilizing two imputation blocks that operate in opposite temporal directions. Each block integrates recurrent layers and attention mechanisms to effectively resolve long-term dependencies. We evaluate BRATI on three real-world datasets under diverse missing-data scenarios: randomly missing values, fixed-length missing sequences, and variable-length missing sequences. Our findings demonstrate that BRATI consistently outperforms state-of-the-art models, delivering superior accuracy and robustness in imputing multivariate time-series data.
☆ Mechanistic understanding and validation of large AI models with SemanticLens
Unlike human-engineered systems such as aeroplanes, where each component's role and dependencies are well understood, the inner workings of AI models remain largely opaque, hindering verifiability and undermining trust. This paper introduces SemanticLens, a universal explanation method for neural networks that maps hidden knowledge encoded by components (e.g., individual neurons) into the semantically structured, multimodal space of a foundation model such as CLIP. In this space, unique operations become possible, including (i) textual search to identify neurons encoding specific concepts, (ii) systematic analysis and comparison of model representations, (iii) automated labelling of neurons and explanation of their functional roles, and (iv) audits to validate decision-making against requirements. Fully scalable and operating without human input, SemanticLens is shown to be effective for debugging and validation, summarizing model knowledge, aligning reasoning with expectations (e.g., adherence to the ABCDE-rule in melanoma classification), and detecting components tied to spurious correlations and their associated training data. By enabling component-level understanding and validation, the proposed approach helps bridge the "trust gap" between AI models and traditional engineered systems. We provide code for SemanticLens on https://github.com/jim-berend/semanticlens and a demo on https://semanticlens.hhi-research-insights.eu.
comment: 74 pages (18 pages manuscript, 7 pages references, 49 pages appendix)
☆ The global consensus on the risk management of autonomous driving
Every maneuver of a vehicle redistributes risks between road users. While human drivers do this intuitively, autonomous vehicles allow and require deliberative algorithmic risk management. But how should traffic risks be distributed among road users? In a global experimental study in eight countries with different cultural backgrounds and almost 11,000 participants, we compared risk distribution preferences. It turns out that risk preferences in road traffic are strikingly similar between the cultural zones. The vast majority of participants in all countries deviates from a guiding principle of minimizing accident probabilities in favor of weighing up the probability and severity of accidents. At the national level, the consideration of accident probability and severity hardly differs between countries. The social dilemma of autonomous vehicles detected in deterministic crash scenarios disappears in risk assessments of everyday traffic situations in all countries. In no country do cyclists receive a risk bonus that goes beyond their higher vulnerability. In sum, our results suggest that a global consensus on the risk ethics of autonomous driving is easier to establish than on the ethics of crashing.
☆ Large Physics Models: Towards a collaborative approach with Large Language Models and Foundation Models
This paper explores ideas and provides a potential roadmap for the development and evaluation of physics-specific large-scale AI models, which we call Large Physics Models (LPMs). These models, based on foundation models such as Large Language Models (LLMs) - trained on broad data - are tailored to address the demands of physics research. LPMs can function independently or as part of an integrated framework. This framework can incorporate specialized tools, including symbolic reasoning modules for mathematical manipulations, frameworks to analyse specific experimental and simulated data, and mechanisms for synthesizing theories and scientific literature. We begin by examining whether the physics community should actively develop and refine dedicated models, rather than relying solely on commercial LLMs. We then outline how LPMs can be realized through interdisciplinary collaboration among experts in physics, computer science, and philosophy of science. To integrate these models effectively, we identify three key pillars: Development, Evaluation, and Philosophical Reflection. Development focuses on constructing models capable of processing physics texts, mathematical formulations, and diverse physical data. Evaluation assesses accuracy and reliability by testing and benchmarking. Finally, Philosophical Reflection encompasses the analysis of broader implications of LLMs in physics, including their potential to generate new scientific understanding and what novel collaboration dynamics might arise in research. Inspired by the organizational structure of experimental collaborations in particle physics, we propose a similarly interdisciplinary and collaborative approach to building and refining Large Physics Models. This roadmap provides specific objectives, defines pathways to achieve them, and identifies challenges that must be addressed to realise physics-specific large scale AI models.
☆ Developing a Foundation of Vector Symbolic Architectures Using Category Theory
At the risk of overstating the case, connectionist approaches to machine learning, i.e. neural networks, are enjoying a small vogue right now. However, these methods require large volumes of data and produce models that are uninterpretable to humans. An alternative framework that is compatible with neural networks and gradient-based learning, but explicitly models compositionality, is Vector Symbolic Architectures (VSAs). VSAs are a family of algebras on high-dimensional vector representations. They arose in cognitive science from the need to unify neural processing and the kind of symbolic reasoning that humans perform. While machine learning methods have benefited from category theoretical analyses, VSAs have not yet received similar treatment. In this paper, we present a first attempt at applying category theory to VSAs. Specifically, we conduct a brief literature survey demonstrating the lacking intersection of these two topics, provide a list of desiderata for VSAs, and propose that VSAs may be understood as a (division) rig in a category enriched over a monoid in Met (the category of Lawvere metric spaces). This final contribution suggests that VSAs may be generalised beyond current implementations. It is our hope that grounding VSAs in category theory will lead to more rigorous connections with other research, both within and beyond, learning and cognition.
comment: 13 pages, no figures, 2 tables, one appendix
☆ Search-o1: Agentic Search-Enhanced Large Reasoning Models
Large reasoning models (LRMs) like OpenAI-o1 have demonstrated impressive long stepwise reasoning capabilities through large-scale reinforcement learning. However, their extended reasoning processes often suffer from knowledge insufficiency, leading to frequent uncertainties and potential errors. To address this limitation, we introduce \textbf{Search-o1}, a framework that enhances LRMs with an agentic retrieval-augmented generation (RAG) mechanism and a Reason-in-Documents module for refining retrieved documents. Search-o1 integrates an agentic search workflow into the reasoning process, enabling dynamic retrieval of external knowledge when LRMs encounter uncertain knowledge points. Additionally, due to the verbose nature of retrieved documents, we design a separate Reason-in-Documents module to deeply analyze the retrieved information before injecting it into the reasoning chain, minimizing noise and preserving coherent reasoning flow. Extensive experiments on complex reasoning tasks in science, mathematics, and coding, as well as six open-domain QA benchmarks, demonstrate the strong performance of Search-o1. This approach enhances the trustworthiness and applicability of LRMs in complex reasoning tasks, paving the way for more reliable and versatile intelligent systems. The code is available at \url{https://github.com/sunnynexus/Search-o1}.
☆ On Corrigibility and Alignment in Multi Agent Games
Corrigibility of autonomous agents is an under explored part of system design, with previous work focusing on single agent systems. It has been suggested that uncertainty over the human preferences acts to keep the agents corrigible, even in the face of human irrationality. We present a general framework for modelling corrigibility in a multi-agent setting as a 2 player game in which the agents always have a move in which they can ask the human for supervision. This is formulated as a Bayesian game for the purpose of introducing uncertainty over the human beliefs. We further analyse two specific cases. First, a two player corrigibility game, in which we want corrigibility displayed in both agents for both common payoff (monotone) games and harmonic games. Then we investigate an adversary setting, in which one agent is considered to be a `defending' agent and the other an `adversary'. A general result is provided for what belief over the games and human rationality the defending agent is required to have to induce corrigibility.
☆ Stream Aligner: Efficient Sentence-Level Alignment via Distribution Induction AAAI
The rapid advancement of large language models (LLMs) has led to significant improvements in their capabilities, but also to increased concerns about their alignment with human values and intentions. Current alignment strategies, including adaptive training and inference-time methods, have demonstrated potential in this area. However, these approaches still struggle to balance deployment complexity and capability across various tasks and difficulties. In this work, we introduce the Streaming Distribution Induce Aligner (Stream Aligner), a novel alignment paradigm that combines efficiency with enhanced performance in various tasks throughout the generation process. Stream Aligner achieves dynamic sentence-level correction by using a small model to learn the preferences of the suffix sentence, iteratively correcting the suffix sentence output by the upstream model, and then using the corrected sentence to replace the suffix sentence in subsequent generations. Compared to Aligner, our experiments demonstrate that Stream Aligner reduces reliance on the capabilities of additional models, enhances the reasoning abilities of LLMs, and decreases latency during user interaction. Specifically, Stream Aligner-2B model has achieved an improvement of 76.1% in helpfulness, 36.0% in harmlessness on the tested Llama2-70B-chat model, and Stream Aligner-8B has achieved an improvement of 3.5% on the math ability of the tested Llama3-70B-Instruct model.
comment: AAAI Alignment Track 2025 Poster
☆ The Bakers and Millers Game with Restricted Locations AAMAS 2025
We study strategic location choice by customers and sellers, termed the Bakers and Millers Game in the literature. In our generalized setting, each miller can freely choose any location for setting up a mill, while each baker is restricted in the choice of location for setting up a bakery. For optimal bargaining power, a baker would like to select a location with many millers to buy flour from and with little competition from other bakers. Likewise, a miller aims for a location with many bakers and few competing millers. Thus, both types of agents choose locations to optimize the ratio of agents of opposite type divided by agents of the same type at their chosen location. Originally raised in the context of Fractional Hedonic Games, the Bakers and Millers Game has applications that range from commerce to product design. We study the impact of location restrictions on the properties of the game. While pure Nash equilibria trivially exist in the setting without location restrictions, we show via a sophisticated, efficient algorithm that even the more challenging restricted setting admits equilibria. Moreover, the computed equilibrium approximates the optimal social welfare by a factor of at most $2\left(\frac{e}{e-1}\right)$. Furthermore, we give tight bounds on the price of anarchy/stability. On the conceptual side, the location choice feature adds a new layer to the standard setting of Hedonic Games, in the sense that agents that select the same location form a coalition. This allows to naturally restrict the possible coalitions that can be formed. With this, our model generalizes simple symmetric Fractional Hedonic Games on complete bipartite valuation graphs and also Hedonic Diversity Games with utilities single-peaked at 0. We believe that this generalization is also a very interesting direction for other types of Hedonic Games.
comment: To appear at the 24th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2025)
☆ AnCoGen: Analysis, Control and Generation of Speech with a Masked Autoencoder
This article introduces AnCoGen, a novel method that leverages a masked autoencoder to unify the analysis, control, and generation of speech signals within a single model. AnCoGen can analyze speech by estimating key attributes, such as speaker identity, pitch, content, loudness, signal-to-noise ratio, and clarity index. In addition, it can generate speech from these attributes and allow precise control of the synthesized speech by modifying them. Extensive experiments demonstrated the effectiveness of AnCoGen across speech analysis-resynthesis, pitch estimation, pitch modification, and speech enhancement.
comment: 5 pages, https://samsad35.github.io/site-ancogen
☆ Off-Policy Evaluation and Counterfactual Methods in Dynamic Auction Environments
Counterfactual estimators are critical for learning and refining policies using logged data, a process known as Off-Policy Evaluation (OPE). OPE allows researchers to assess new policies without costly experiments, speeding up the evaluation process. Online experimental methods, such as A/B tests, are effective but often slow, thus delaying the policy selection and optimization process. In this work, we explore the application of OPE methods in the context of resource allocation in dynamic auction environments. Given the competitive nature of environments where rapid decision-making is crucial for gaining a competitive edge, the ability to quickly and accurately assess algorithmic performance is essential. By utilizing counterfactual estimators as a preliminary step before conducting A/B tests, we aim to streamline the evaluation process, reduce the time and resources required for experimentation, and enhance confidence in the chosen policies. Our investigation focuses on the feasibility and effectiveness of using these estimators to predict the outcomes of potential resource allocation strategies, evaluate their performance, and facilitate more informed decision-making in policy selection. Motivated by the outcomes of our initial study, we envision an advanced analytics system designed to seamlessly and dynamically assess new resource allocation strategies and policies.
comment: 9 pages, 15 figures, IEEE format
☆ Towards Balanced Continual Multi-Modal Learning in Human Pose Estimation
3D human pose estimation (3D HPE) has emerged as a prominent research topic, particularly in the realm of RGB-based methods. However, RGB images are susceptible to limitations such as sensitivity to lighting conditions and potential user discomfort. Consequently, multi-modal sensing, which leverages non-intrusive sensors, is gaining increasing attention. Nevertheless, multi-modal 3D HPE still faces challenges, including modality imbalance and the imperative for continual learning. In this work, we introduce a novel balanced continual multi-modal learning method for 3D HPE, which harnesses the power of RGB, LiDAR, mmWave, and WiFi. Specifically, we propose a Shapley value-based contribution algorithm to quantify the contribution of each modality and identify modality imbalance. To address this imbalance, we employ a re-learning strategy. Furthermore, recognizing that raw data is prone to noise contamination, we develop a novel denoising continual learning approach. This approach incorporates a noise identification and separation module to mitigate the adverse effects of noise and collaborates with the balanced learning strategy to enhance optimization. Additionally, an adaptive EWC mechanism is employed to alleviate catastrophic forgetting. We conduct extensive experiments on the widely-adopted multi-modal dataset, MM-Fi, which demonstrate the superiority of our approach in boosting 3D pose estimation and mitigating catastrophic forgetting in complex scenarios. We will release our codes.
☆ Enhancing Plagiarism Detection in Marathi with a Weighted Ensemble of TF-IDF and BERT Embeddings for Low-Resource Language Processing COLING 2025
Plagiarism involves using another person's work or concepts without proper attribution, presenting them as original creations. With the growing amount of data communicated in regional languages such as Marathi -- one of India's regional languages -- it is crucial to design robust plagiarism detection systems tailored for low-resource languages. Language models like Bidirectional Encoder Representations from Transformers (BERT) have demonstrated exceptional capability in text representation and feature extraction, making them essential tools for semantic analysis and plagiarism detection. However, the application of BERT for low-resource languages remains under-explored, particularly in the context of plagiarism detection. This paper presents a method to enhance the accuracy of plagiarism detection for Marathi texts using BERT sentence embeddings in conjunction with Term Frequency-Inverse Document Frequency (TF-IDF) feature representation. This approach effectively captures statistical, semantic, and syntactic aspects of text features through a weighted voting ensemble of machine learning models.
comment: Accepted into LoResLM: The First Workshop on Language Models for Low-Resource Languages, colocated with COLING 2025 and set to be published into ACL Anthology
☆ Automating the Detection of Code Vulnerabilities by Analyzing GitHub Issues
In today's digital landscape, the importance of timely and accurate vulnerability detection has significantly increased. This paper presents a novel approach that leverages transformer-based models and machine learning techniques to automate the identification of software vulnerabilities by analyzing GitHub issues. We introduce a new dataset specifically designed for classifying GitHub issues relevant to vulnerability detection. We then examine various classification techniques to determine their effectiveness. The results demonstrate the potential of this approach for real-world application in early vulnerability detection, which could substantially reduce the window of exploitation for software vulnerabilities. This research makes a key contribution to the field by providing a scalable and computationally efficient framework for automated detection, enabling the prevention of compromised software usage before official notifications. This work has the potential to enhance the security of open-source software ecosystems.
☆ From Scientific Texts to Verifiable Code: Automating the Process with Transformers
Despite the vast body of research literature proposing algorithms with formal guarantees, the amount of verifiable code in today's systems remains minimal. This discrepancy stems from the inherent difficulty of verifying code, particularly due to the time-consuming nature and strict formalism of proof details that formal verification tools require. However, the emergence of transformers in Large Language Models presents a promising solution to this challenge. In this position paper, we believe that transformers have the potential to read research papers that propose algorithms with formal proofs and translate these proofs into verifiable code. We leverage transformers to first build a formal structure of the proof using the original text from the paper, and then to handle the tedious, low-level aspects of proofs that are often omitted by humans. We argue that this approach can significantly reduce the barrier to formal verification. The above idea of reading papers to write verifiable code opens new avenues for automating the verification of complex systems, enabling a future where formally verified algorithms from academic research can more seamlessly transition into real-world software systems, thereby improving code reliability and security.
☆ RAG-WM: An Efficient Black-Box Watermarking Approach for Retrieval-Augmented Generation of Large Language Models
In recent years, tremendous success has been witnessed in Retrieval-Augmented Generation (RAG), widely used to enhance Large Language Models (LLMs) in domain-specific, knowledge-intensive, and privacy-sensitive tasks. However, attackers may steal those valuable RAGs and deploy or commercialize them, making it essential to detect Intellectual Property (IP) infringement. Most existing ownership protection solutions, such as watermarks, are designed for relational databases and texts. They cannot be directly applied to RAGs because relational database watermarks require white-box access to detect IP infringement, which is unrealistic for the knowledge base in RAGs. Meanwhile, post-processing by the adversary's deployed LLMs typically destructs text watermark information. To address those problems, we propose a novel black-box "knowledge watermark" approach, named RAG-WM, to detect IP infringement of RAGs. RAG-WM uses a multi-LLM interaction framework, comprising a Watermark Generator, Shadow LLM & RAG, and Watermark Discriminator, to create watermark texts based on watermark entity-relationship tuples and inject them into the target RAG. We evaluate RAG-WM across three domain-specific and two privacy-sensitive tasks on four benchmark LLMs. Experimental results show that RAG-WM effectively detects the stolen RAGs in various deployed LLMs. Furthermore, RAG-WM is robust against paraphrasing, unrelated content removal, knowledge insertion, and knowledge expansion attacks. Lastly, RAG-WM can also evade watermark detection approaches, highlighting its promising application in detecting IP infringement of RAG systems.
☆ Deriving Coding-Specific Sub-Models from LLMs using Resource-Efficient Pruning
Large Language Models (LLMs) have demonstrated their exceptional performance in various complex code generation tasks. However, their broader adoption is limited by significant computational demands and high resource requirements, particularly memory and processing power. To mitigate such requirements, model pruning techniques are used to create more compact models with significantly fewer parameters. However, current approaches do not focus on the efficient extraction of programming-language-specific sub-models. In this work, we explore the idea of efficiently deriving coding-specific sub-models through unstructured pruning (i.e., Wanda). We investigate the impact of different domain-specific calibration datasets on pruning outcomes across three distinct domains and extend our analysis to extracting four language-specific sub-models: Python, Java, C++, and JavaScript. We are the first to efficiently extract programming-language-specific sub-models using appropriate calibration datasets while maintaining acceptable accuracy w.r.t. full models. We are also the first to provide analytical evidence that domain-specific tasks activate distinct regions within LLMs, supporting the creation of specialized sub-models through unstructured pruning. We believe that this work has significant potential to enhance LLM accessibility for coding by reducing computational requirements to enable local execution on consumer-grade hardware, and supporting faster inference times critical for real-time development feedback.
☆ Online Prompt and Solver Selection for Program Synthesis AAAI
Large Language Models (LLMs) demonstrate impressive capabilities in the domain of program synthesis. This level of performance is not, however, universal across all tasks, all LLMs and all prompting styles. There are many areas where one LLM dominates, one prompting style dominates, or where calling a symbolic solver is a better choice than an LLM. A key challenge for the user then, is to identify not only when an LLM is the right choice of solver, and the appropriate LLM to call for a given synthesis task, but also the right way to call it. A non-expert user who makes the wrong choice, incurs a cost both in terms of results (number of tasks solved, and the time it takes to solve them) and financial cost, if using a closed-source language model via a commercial API. We frame this choice as an online learning problem. We use a multi-armed bandit algorithm to select which symbolic solver, or LLM and prompt combination to deploy in order to maximize a given reward function (which may prioritize solving time, number of synthesis tasks solved, or financial cost of solving). We implement an instance of this approach, called CYANEA, and evaluate it on synthesis queries from the literature in ranking function synthesis, from the syntax-guided synthesis competition, and fresh, unseen queries generated from SMT problems. CYANEA solves 37.2\% more queries than the best single solver and achieves results within 4\% of the virtual best solver.
comment: Accepted at the 39th AAAI Conference on Artificial Intelligence (AAAI-25) Main Track
☆ Optimizing Estonian TV Subtitles with Semi-supervised Learning and LLMs
This paper presents an approach for generating high-quality, same-language subtitles for Estonian TV content. We fine-tune the Whisper model on human-generated Estonian subtitles and enhance it with iterative pseudo-labeling and large language model (LLM) based post-editing. Our experiments demonstrate notable subtitle quality improvement through pseudo-labeling with an unlabeled dataset. We find that applying LLM-based editing at test time enhances subtitle accuracy, while its use during training does not yield further gains. This approach holds promise for creating subtitle quality close to human standard and could be extended to real-time applications.
☆ A Novel Approach to Scalable and Automatic Topic-Controlled Question Generation in Education
The development of Automatic Question Generation (QG) models has the potential to significantly improve educational practices by reducing the teacher workload associated with creating educational content. This paper introduces a novel approach to educational question generation that controls the topical focus of questions. The proposed Topic-Controlled Question Generation (T-CQG) method enhances the relevance and effectiveness of the generated content for educational purposes. Our approach uses fine-tuning on a pre-trained T5-small model, employing specially created datasets tailored to educational needs. The research further explores the impacts of pre-training strategies, quantisation, and data augmentation on the model's performance. We specifically address the challenge of generating semantically aligned questions with paragraph-level contexts, thereby improving the topic specificity of the generated questions. In addition, we introduce and explore novel evaluation methods to assess the topical relatedness of the generated questions. Our results, validated through rigorous offline and human-backed evaluations, demonstrate that the proposed models effectively generate high-quality, topic-focused questions. These models have the potential to reduce teacher workload and support personalised tutoring systems by serving as bespoke question generators. With its relatively small number of parameters, the proposals not only advance the capabilities of question generation models for handling specific educational topics but also offer a scalable solution that reduces infrastructure costs. This scalability makes them feasible for widespread use in education without reliance on proprietary large language models like ChatGPT.
comment: To be published at ACM Conf. on Learning Analytics and Knowledge (LAK'25)
☆ GLaM-Sign: Greek Language Multimodal Lip Reading with Integrated Sign Language Accessibility
The Greek Language Multimodal Lip Reading with Integrated Sign Language Accessibility (GLaM-Sign) [1] is a groundbreaking resource in accessibility and multimodal AI, designed to support Deaf and Hard-of-Hearing (DHH) individuals. Developed from the FEELIT project [2], it integrates high-resolution audio, video, textual transcriptions, and Greek Sign Language translations for applications like real-time sign language translation and enhanced subtitle synchronization. While its primary focus is on promoting inclusivity in the Greek tourism sector, its adaptability extends to education, healthcare, and public services. Future advancements will enhance word-level precision and scalability to additional languages, supported by advanced AI methodologies and collaborations with diverse stakeholders. This dataset underscores the transformative potential of multimodal resources in bridging communication gaps, fostering innovation, and setting a benchmark for ethical AI and inclusive technologies.
comment: 9 pages, 4 figures
☆ Discovering Hidden Visual Concepts Beyond Linguistic Input in Infant Learning
Infants develop complex visual understanding rapidly, even preceding of the acquisition of linguistic inputs. As computer vision seeks to replicate the human vision system, understanding infant visual development may offer valuable insights. In this paper, we present an interdisciplinary study exploring this question: can a computational model that imitates the infant learning process develop broader visual concepts that extend beyond the vocabulary it has heard, similar to how infants naturally learn? To investigate this, we analyze a recently published model in Science by Vong et al.,which is trained on longitudinal, egocentric images of a single child paired with transcribed parental speech. We introduce a training-free framework that can discover visual concept neurons hidden in the model's internal representations. Our findings show that these neurons can classify objects outside its original vocabulary. Furthermore, we compare the visual representations in infant-like models with those in moder computer vision models, such as CLIP or ImageNet pre-trained model, highlighting key similarities and differences. Ultimately, our work bridges cognitive science and computer vision by analyzing the internal representations of a computational model trained on an infant's visual and linguistic inputs.
comment: 12 pages, 11 figures
☆ An Algorithmic Approach for Causal Health Equity: A Look at Race Differentials in Intensive Care Unit (ICU) Outcomes
The new era of large-scale data collection and analysis presents an opportunity for diagnosing and understanding the causes of health inequities. In this study, we describe a framework for systematically analyzing health disparities using causal inference. The framework is illustrated by investigating racial and ethnic disparities in intensive care unit (ICU) outcome between majority and minority groups in Australia (Indigenous vs. Non-Indigenous) and the United States (African-American vs. White). We demonstrate that commonly used statistical measures for quantifying inequity are insufficient, and focus on attributing the observed disparity to the causal mechanisms that generate it. We find that minority patients are younger at admission, have worse chronic health, are more likely to be admitted for urgent and non-elective reasons, and have higher illness severity. At the same time, however, we find a protective direct effect of belonging to a minority group, with minority patients showing improved survival compared to their majority counterparts, with all other variables kept equal. We demonstrate that this protective effect is related to the increased probability of being admitted to ICU, with minority patients having an increased risk of ICU admission. We also find that minority patients, while showing improved survival, are more likely to be readmitted to ICU. Thus, due to worse access to primary health care, minority patients are more likely to end up in ICU for preventable conditions, causing a reduction in the mortality rates and creating an effect that appears to be protective. Since the baseline risk of ICU admission may serve as proxy for lack of access to primary care, we developed the Indigenous Intensive Care Equity (IICE) Radar, a monitoring system for tracking the over-utilization of ICU resources by the Indigenous population of Australia across geographical areas.
☆ Bringing Order Amidst Chaos: On the Role of Artificial Intelligence in Secure Software Engineering
Context. Developing secure and reliable software remains a key challenge in software engineering (SE). The ever-evolving technological landscape offers both opportunities and threats, creating a dynamic space where chaos and order compete. Secure software engineering (SSE) must continuously address vulnerabilities that endanger software systems and carry broader socio-economic risks, such as compromising critical national infrastructure and causing significant financial losses. Researchers and practitioners have explored methodologies like Static Application Security Testing Tools (SASTTs) and artificial intelligence (AI) approaches, including machine learning (ML) and large language models (LLMs), to detect and mitigate these vulnerabilities. Each method has unique strengths and limitations. Aim. This thesis seeks to bring order to the chaos in SSE by addressing domain-specific differences that impact AI accuracy. Methodology. The research employs a mix of empirical strategies, such as evaluating effort-aware metrics, analyzing SASTTs, conducting method-level analysis, and leveraging evidence-based techniques like systematic dataset reviews. These approaches help characterize vulnerability prediction datasets. Results. Key findings include limitations in static analysis tools for identifying vulnerabilities, gaps in SASTT coverage of vulnerability types, weak relationships among vulnerability severity scores, improved defect prediction accuracy using just-in-time modeling, and threats posed by untouched methods. Conclusions. This thesis highlights the complexity of SSE and the importance of contextual knowledge in improving AI-driven vulnerability and defect prediction. The comprehensive analysis advances effective prediction models, benefiting both researchers and practitioners.
comment: PhD thesis
☆ Explainable AI based System for Supply Air Temperature Forecast
This paper explores the application of Explainable AI (XAI) techniques to improve the transparency and understanding of predictive models in control of automated supply air temperature (ASAT) of Air Handling Unit (AHU). The study focuses on forecasting of ASAT using a linear regression with Huber loss. However, having only a control curve without semantic and/or physical explanation is often not enough. The present study employs one of the XAI methods: Shapley values, which allows to reveal the reasoning and highlight the contribution of each feature to the final ASAT forecast. In comparison to other XAI methods, Shapley values have solid mathematical background, resulting in interpretation transparency. The study demonstrates the contrastive explanations--slices, for each control value of ASAT, which makes it possible to give the client objective justifications for curve changes.
comment: 5 pages, 7 figures, 1 table, conference paper
☆ Biomedical Relation Extraction via Adaptive Document-Relation Cross-Mapping and Concept Unique Identifier
Document-Level Biomedical Relation Extraction (Bio-RE) aims to identify relations between biomedical entities within extensive texts, serving as a crucial subfield of biomedical text mining. Existing Bio-RE methods struggle with cross-sentence inference, which is essential for capturing relations spanning multiple sentences. Moreover, previous methods often overlook the incompleteness of documents and lack the integration of external knowledge, limiting contextual richness. Besides, the scarcity of annotated data further hampers model training. Recent advancements in large language models (LLMs) have inspired us to explore all the above issues for document-level Bio-RE. Specifically, we propose a document-level Bio-RE framework via LLM Adaptive Document-Relation Cross-Mapping (ADRCM) Fine-Tuning and Concept Unique Identifier (CUI) Retrieval-Augmented Generation (RAG). First, we introduce the Iteration-of-REsummary (IoRs) prompt for solving the data scarcity issue. In this way, Bio-RE task-specific synthetic data can be generated by guiding ChatGPT to focus on entity relations and iteratively refining synthetic data. Next, we propose ADRCM fine-tuning, a novel fine-tuning recipe that establishes mappings across different documents and relations, enhancing the model's contextual understanding and cross-sentence inference capabilities. Finally, during the inference, a biomedical-specific RAG approach, named CUI RAG, is designed to leverage CUIs as indexes for entities, narrowing the retrieval scope and enriching the relevant document contexts. Experiments conducted on three Bio-RE datasets (GDA, CDR, and BioRED) demonstrate the state-of-the-art performance of our proposed method by comparing it with other related works.
comment: 13 pages, 6 figures
☆ A Systematic Literature Review on Deep Learning-based Depth Estimation in Computer Vision
Depth estimation (DE) provides spatial information about a scene and enables tasks such as 3D reconstruction, object detection, and scene understanding. Recently, there has been an increasing interest in using deep learning (DL)-based methods for DE. Traditional techniques rely on handcrafted features that often struggle to generalise to diverse scenes and require extensive manual tuning. However, DL models for DE can automatically extract relevant features from input data, adapt to various scene conditions, and generalise well to unseen environments. Numerous DL-based methods have been developed, making it necessary to survey and synthesize the state-of-the-art (SOTA). Previous reviews on DE have mainly focused on either monocular or stereo-based techniques, rather than comprehensively reviewing DE. Furthermore, to the best of our knowledge, there is no systematic literature review (SLR) that comprehensively focuses on DE. Therefore, this SLR study is being conducted. Initially, electronic databases were searched for relevant publications, resulting in 1284 publications. Using defined exclusion and quality criteria, 128 publications were shortlisted and further filtered to select 59 high-quality primary studies. These studies were analysed to extract data and answer defined research questions. Based on the results, DL methods were developed for mainly three different types of DE: monocular, stereo, and multi-view. 20 publicly available datasets were used to train, test, and evaluate DL models for DE, with KITTI, NYU Depth V2, and Make 3D being the most used datasets. 29 evaluation metrics were used to assess the performance of DE. 35 base models were reported in the primary studies, and the top five most-used base models were ResNet-50, ResNet-18, ResNet-101, U-Net, and VGG-16. Finally, the lack of ground truth data was among the most significant challenges reported by primary studies.
☆ Constrained Optimization of Charged Particle Tracking with Multi-Agent Reinforcement Learning
Reinforcement learning demonstrated immense success in modelling complex physics-driven systems, providing end-to-end trainable solutions by interacting with a simulated or real environment, maximizing a scalar reward signal. In this work, we propose, building upon previous work, a multi-agent reinforcement learning approach with assignment constraints for reconstructing particle tracks in pixelated particle detectors. Our approach optimizes collaboratively a parametrized policy, functioning as a heuristic to a multidimensional assignment problem, by jointly minimizing the total amount of particle scattering over the reconstructed tracks in a readout frame. To satisfy constraints, guaranteeing a unique assignment of particle hits, we propose a safety layer solving a linear assignment problem for every joint action. Further, to enforce cost margins, increasing the distance of the local policies predictions to the decision boundaries of the optimizer mappings, we recommend the use of an additional component in the blackbox gradient estimation, forcing the policy to solutions with lower total assignment costs. We empirically show on simulated data, generated for a particle detector developed for proton imaging, the effectiveness of our approach, compared to multiple single- and multi-agent baselines. We further demonstrate the effectiveness of constraints with cost margins for both optimization and generalization, introduced by wider regions with high reconstruction performance as well as reduced predictive instabilities. Our results form the basis for further developments in RL-based tracking, offering both enhanced performance with constrained policies and greater flexibility in optimizing tracking algorithms through the option for individual and team rewards.
☆ Advancing ALS Applications with Large-Scale Pre-training: Dataset Development and Downstream Assessment
The pre-training and fine-tuning paradigm has revolutionized satellite remote sensing applications. However, this approach remains largely underexplored for airborne laser scanning (ALS), an important technology for applications such as forest management and urban planning. In this study, we address this gap by constructing a large-scale ALS point cloud dataset and evaluating its impact on downstream applications. Our dataset comprises ALS point clouds collected across the contiguous United States, provided by the United States Geological Survey's 3D Elevation Program. To ensure efficient data collection while capturing diverse land cover and terrain types, we introduce a geospatial sampling method that selects point cloud tiles based on land cover maps and digital elevation models. As a baseline self-supervised learning model, we adopt BEV-MAE, a state-of-the-art masked autoencoder for 3D outdoor point clouds, and pre-train it on the constructed dataset. The pre-trained models are subsequently fine-tuned for downstream tasks, including tree species classification, terrain scene recognition, and point cloud semantic segmentation. Our results show that the pre-trained models significantly outperform their scratch counterparts across all downstream tasks, demonstrating the transferability of the representations learned from the proposed dataset. Furthermore, we observe that scaling the dataset using our geospatial sampling method consistently enhances performance, whereas pre-training on datasets constructed with random sampling fails to achieve similar improvements. These findings highlight the utility of the constructed dataset and the effectiveness of our sampling strategy in the pre-training and fine-tuning paradigm. The source code and pre-trained models will be made publicly available at \url{https://github.com/martianxiu/ALS_pretraining}.
☆ Multimodal-to-Text Prompt Engineering in Large Language Models Using Feature Embeddings for GNSS Interference Characterization
Large language models (LLMs) are advanced AI systems applied across various domains, including NLP, information retrieval, and recommendation systems. Despite their adaptability and efficiency, LLMs have not been extensively explored for signal processing tasks, particularly in the domain of global navigation satellite system (GNSS) interference monitoring. GNSS interference monitoring is essential to ensure the reliability of vehicle localization on roads, a critical requirement for numerous applications. However, GNSS-based positioning is vulnerable to interference from jamming devices, which can compromise its accuracy. The primary objective is to identify, classify, and mitigate these interferences. Interpreting GNSS snapshots and the associated interferences presents significant challenges due to the inherent complexity, including multipath effects, diverse interference types, varying sensor characteristics, and satellite constellations. In this paper, we extract features from a large GNSS dataset and employ LLaVA to retrieve relevant information from an extensive knowledge base. We employ prompt engineering to interpret the interferences and environmental factors, and utilize t-SNE to analyze the feature embeddings. Our findings demonstrate that the proposed method is capable of visual and logical reasoning within the GNSS context. Furthermore, our pipeline outperforms state-of-the-art machine learning models in interference classification tasks.
☆ Analyzing Memorization in Large Language Models through the Lens of Model Attribution
Large Language Models (LLMs) are prevalent in modern applications but often memorize training data, leading to privacy breaches and copyright issues. Existing research has mainly focused on posthoc analyses, such as extracting memorized content or developing memorization metrics, without exploring the underlying architectural factors that contribute to memorization. In this work, we investigate memorization from an architectural lens by analyzing how attention modules at different layers impact its memorization and generalization performance. Using attribution techniques, we systematically intervene in the LLM architecture by bypassing attention modules at specific blocks while keeping other components like layer normalization and MLP transformations intact. We provide theorems analyzing our intervention mechanism from a mathematical view, bounding the difference in layer outputs with and without our attributions. Our theoretical and empirical analyses reveal that attention modules in deeper transformer blocks are primarily responsible for memorization, whereas earlier blocks are crucial for the models generalization and reasoning capabilities. We validate our findings through comprehensive experiments on different LLM families (Pythia and GPTNeo) and five benchmark datasets. Our insights offer a practical approach to mitigate memorization in LLMs while preserving their performance, contributing to safer and more ethical deployment in real world applications.
☆ A Text-Based Knowledge-Embedded Soft Sensing Modeling Approach for General Industrial Process Tasks Based on Large Language Model
Data-driven soft sensors (DDSS) have become mainstream methods for predicting key performance indicators in process industries. However, DDSS development requires complex and costly customized designs tailored to various tasks during the modeling process. Moreover, DDSS are constrained to a single structured data modality, limiting their ability to incorporate additional contextual knowledge. Furthermore, DDSSs' limited representation learning leads to weak predictive performance with scarce data. To address these challenges, we propose a general framework named LLM-TKESS (large language model for text-based knowledge-embedded soft sensing), harnessing the powerful general problem-solving capabilities, cross-modal knowledge transfer abilities, and few-shot capabilities of LLM for enhanced soft sensing modeling. Specifically, an auxiliary variable series encoder (AVS Encoder) is proposed to unleash LLM's potential for capturing temporal relationships within series and spatial semantic relationships among auxiliary variables. Then, we propose a two-stage fine-tuning alignment strategy: in the first stage, employing parameter-efficient fine-tuning through autoregressive training adjusts LLM to rapidly accommodate process variable data, resulting in a soft sensing foundation model (SSFM). Subsequently, by training adapters, we adapt the SSFM to various downstream tasks without modifying its architecture. Then, we propose two text-based knowledge-embedded soft sensors, integrating new natural language modalities to overcome the limitations of pure structured data models. Furthermore, benefiting from LLM's pre-existing world knowledge, our model demonstrates outstanding predictive capabilities in small sample conditions. Using the thermal deformation of air preheater rotor as a case study, we validate through extensive experiments that LLM-TKESS exhibits outstanding performance.
☆ Commonsense Video Question Answering through Video-Grounded Entailment Tree Reasoning
This paper proposes the first video-grounded entailment tree reasoning method for commonsense video question answering (VQA). Despite the remarkable progress of large visual-language models (VLMs), there are growing concerns that they learn spurious correlations between videos and likely answers, reinforced by their black-box nature and remaining benchmarking biases. Our method explicitly grounds VQA tasks to video fragments in four steps: entailment tree construction, video-language entailment verification, tree reasoning, and dynamic tree expansion. A vital benefit of the method is its generalizability to current video and image-based VLMs across reasoning types. To support fair evaluation, we devise a de-biasing procedure based on large-language models that rewrites VQA benchmark answer sets to enforce model reasoning. Systematic experiments on existing and de-biased benchmarks highlight the impact of our method components across benchmarks, VLMs, and reasoning types.
☆ D3RM: A Discrete Denoising Diffusion Refinement Model for Piano Transcription ICASSP 2025
Diffusion models have been widely used in the generative domain due to their convincing performance in modeling complex data distributions. Moreover, they have shown competitive results on discriminative tasks, such as image segmentation. While diffusion models have also been explored for automatic music transcription, their performance has yet to reach a competitive level. In this paper, we focus on discrete diffusion model's refinement capabilities and present a novel architecture for piano transcription. Our model utilizes Neighborhood Attention layers as the denoising module, gradually predicting the target high-resolution piano roll, conditioned on the finetuned features of a pretrained acoustic model. To further enhance refinement, we devise a novel strategy which applies distinct transition states during training and inference stage of discrete diffusion models. Experiments on the MAESTRO dataset show that our approach outperforms previous diffusion-based piano transcription models and the baseline model in terms of F1 score. Our code is available in https://github.com/hanshounsu/d3rm.
comment: Accepted to ICASSP 2025
☆ LLaVA-Octopus: Unlocking Instruction-Driven Adaptive Projector Fusion for Video Understanding
In this paper, we introduce LLaVA-Octopus, a novel video multimodal large language model. LLaVA-Octopus adaptively weights features from different visual projectors based on user instructions, enabling us to leverage the complementary strengths of each projector. We observe that different visual projectors exhibit distinct characteristics when handling specific tasks. For instance, some projectors excel at capturing static details, while others are more effective at processing temporal information, and some are better suited for tasks requiring temporal coherence. By dynamically adjusting feature weights according to user instructions, LLaVA-Octopus dynamically selects and combines the most suitable features, significantly enhancing the model's performance in multimodal tasks. Experimental results demonstrate that LLaVA-Octopus achieves excellent performance across multiple benchmarks, especially in tasks such as multimodal understanding, visual question answering, and video understanding, highlighting its broad application potential.
☆ Improving Skeleton-based Action Recognition with Interactive Object Information
Human skeleton information is important in skeleton-based action recognition, which provides a simple and efficient way to describe human pose. However, existing skeleton-based methods focus more on the skeleton, ignoring the objects interacting with humans, resulting in poor performance in recognizing actions that involve object interactions. We propose a new action recognition framework introducing object nodes to supplement absent interactive object information. We also propose Spatial Temporal Variable Graph Convolutional Networks (ST-VGCN) to effectively model the Variable Graph (VG) containing object nodes. Specifically, in order to validate the role of interactive object information, by leveraging a simple self-training approach, we establish a new dataset, JXGC 24, and an extended dataset, NTU RGB+D+Object 60, including more than 2 million additional object nodes. At the same time, we designe the Variable Graph construction method to accommodate a variable number of nodes for graph structure. Additionally, we are the first to explore the overfitting issue introduced by incorporating additional object information, and we propose a VG-based data augmentation method to address this issue, called Random Node Attack. Finally, regarding the network structure, we introduce two fusion modules, CAF and WNPool, along with a novel Node Balance Loss, to enhance the comprehensive performance by effectively fusing and balancing skeleton and object node information. Our method surpasses the previous state-of-the-art on multiple skeleton-based action recognition benchmarks. The accuracy of our method on NTU RGB+D 60 cross-subject split is 96.7\%, and on cross-view split, it is 99.2\%.
☆ Simultaneous emulation and downscaling with physically-consistent deep learning-based regional ocean emulators
Building on top of the success in AI-based atmospheric emulation, we propose an AI-based ocean emulation and downscaling framework focusing on the high-resolution regional ocean over Gulf of Mexico. Regional ocean emulation presents unique challenges owing to the complex bathymetry and lateral boundary conditions as well as from fundamental biases in deep learning-based frameworks, such as instability and hallucinations. In this paper, we develop a deep learning-based framework to autoregressively integrate ocean-surface variables over the Gulf of Mexico at $8$ Km spatial resolution without unphysical drifts over decadal time scales and simulataneously downscale and bias-correct it to $4$ Km resolution using a physics-constrained generative model. The framework shows both short-term skills as well as accurate long-term statistics in terms of mean and variability.
☆ TAPFed: Threshold Secure Aggregation for Privacy-Preserving Federated Learning SC
Federated learning is a computing paradigm that enhances privacy by enabling multiple parties to collaboratively train a machine learning model without revealing personal data. However, current research indicates that traditional federated learning platforms are unable to ensure privacy due to privacy leaks caused by the interchange of gradients. To achieve privacy-preserving federated learning, integrating secure aggregation mechanisms is essential. Unfortunately, existing solutions are vulnerable to recently demonstrated inference attacks such as the disaggregation attack. This paper proposes TAPFed, an approach for achieving privacy-preserving federated learning in the context of multiple decentralized aggregators with malicious actors. TAPFed uses a proposed threshold functional encryption scheme and allows for a certain number of malicious aggregators while maintaining security and privacy. We provide formal security and privacy analyses of TAPFed and compare it to various baselines through experimental evaluation. Our results show that TAPFed offers equivalent performance in terms of model quality compared to state-of-the-art approaches while reducing transmission overhead by 29%-45% across different model training scenarios. Most importantly, TAPFed can defend against recently demonstrated inference attacks caused by curious aggregators, which the majority of existing approaches are susceptible to.
comment: The paper has been published in IEEE TDSC
☆ Enhancing Human-Like Responses in Large Language Models
This paper explores the advancements in making large language models (LLMs) more human-like. We focus on techniques that enhance natural language understanding, conversational coherence, and emotional intelligence in AI systems. The study evaluates various approaches, including fine-tuning with diverse datasets, incorporating psychological principles, and designing models that better mimic human reasoning patterns. Our findings demonstrate that these enhancements not only improve user interactions but also open new possibilities for AI applications across different domains. Future work will address the ethical implications and potential biases introduced by these human-like attributes.
☆ A General Retrieval-Augmented Generation Framework for Multimodal Case-Based Reasoning Applications
Case-based reasoning (CBR) is an experience-based approach to problem solving, where a repository of solved cases is adapted to solve new cases. Recent research shows that Large Language Models (LLMs) with Retrieval-Augmented Generation (RAG) can support the Retrieve and Reuse stages of the CBR pipeline by retrieving similar cases and using them as additional context to an LLM query. Most studies have focused on text-only applications, however, in many real-world problems the components of a case are multimodal. In this paper we present MCBR-RAG, a general RAG framework for multimodal CBR applications. The MCBR-RAG framework converts non-text case components into text-based representations, allowing it to: 1) learn application-specific latent representations that can be indexed for retrieval, and 2) enrich the query provided to the LLM by incorporating all case components for better context. We demonstrate MCBR-RAG's effectiveness through experiments conducted on a simplified Math-24 application and a more complex Backgammon application. Our empirical results show that MCBR-RAG improves generation quality compared to a baseline LLM with no contextual information provided.
comment: 15 pages, 7 figures
☆ Finding Needles in Emb(a)dding Haystacks: Legal Document Retrieval via Bagging and SVR Ensembles
We introduce a retrieval approach leveraging Support Vector Regression (SVR) ensembles, bootstrap aggregation (bagging), and embedding spaces on the German Dataset for Legal Information Retrieval (GerDaLIR). By conceptualizing the retrieval task in terms of multiple binary needle-in-a-haystack subtasks, we show improved recall over the baselines (0.849 > 0.803 | 0.829) using our voting ensemble, suggesting promising initial results, without training or fine-tuning any deep learning models. Our approach holds potential for further enhancement, particularly through refining the encoding models and optimizing hyperparameters.
☆ On Measuring Unnoticeability of Graph Adversarial Attacks: Observations, New Measure, and Applications KDD 2025
Adversarial attacks are allegedly unnoticeable. Prior studies have designed attack noticeability measures on graphs, primarily using statistical tests to compare the topology of original and (possibly) attacked graphs. However, we observe two critical limitations in the existing measures. First, because the measures rely on simple rules, attackers can readily enhance their attacks to bypass them, reducing their attack "noticeability" and, yet, maintaining their attack performance. Second, because the measures naively leverage global statistics, such as degree distributions, they may entirely overlook attacks until severe perturbations occur, letting the attacks be almost "totally unnoticeable." To address the limitations, we introduce HideNSeek, a learnable measure for graph attack noticeability. First, to mitigate the bypass problem, HideNSeek learns to distinguish the original and (potential) attack edges using a learnable edge scorer (LEO), which scores each edge on its likelihood of being an attack. Second, to mitigate the overlooking problem, HideNSeek conducts imbalance-aware aggregation of all the edge scores to obtain the final noticeability score. Using six real-world graphs, we empirically demonstrate that HideNSeek effectively alleviates the observed limitations, and LEO (i.e., our learnable edge scorer) outperforms eleven competitors in distinguishing attack edges under five different attack methods. For an additional application, we show that LEO boost the performance of robust GNNs by removing attack-like edges.
comment: KDD 2025
☆ UAV-VLA: Vision-Language-Action System for Large Scale Aerial Mission Generation
The UAV-VLA (Visual-Language-Action) system is a tool designed to facilitate communication with aerial robots. By integrating satellite imagery processing with the Visual Language Model (VLM) and the powerful capabilities of GPT, UAV-VLA enables users to generate general flight paths-and-action plans through simple text requests. This system leverages the rich contextual information provided by satellite images, allowing for enhanced decision-making and mission planning. The combination of visual analysis by VLM and natural language processing by GPT can provide the user with the path-and-action set, making aerial operations more efficient and accessible. The newly developed method showed the difference in the length of the created trajectory in 22% and the mean error in finding the objects of interest on a map in 34.22 m by Euclidean distance in the K-Nearest Neighbors (KNN) approach.
comment: HRI 2025
☆ Quantum-enhanced causal discovery for a small number of samples
The discovery of causal relationships from observed data has attracted significant interest from disciplines such as economics, social sciences, epidemiology, and biology. In practical applications, considerable knowledge of the underlying systems is often unavailable, and real data are often associated with nonlinear causal structures, which make the direct use of most conventional causality analysis methods difficult. This study proposes a novel quantum Peter-Clark (qPC) algorithm for causal discovery that does not assume any underlying model structures. Based on the independence conditional tests in a class of reproducing kernel Hilbert spaces characterized by quantum circuits, the proposed qPC algorithm can explore causal relationships from the observed data drawn from arbitrary distributions. We conducted systematic experiments on fundamental graph parts of causal structures, demonstrating that the qPC algorithm exhibits a significantly better performance, particularly with smaller sample sizes compared to its classical counterpart. Furthermore, we proposed a novel optimization approach based on Kernel Target Alignment (KTA) for determining hyperparameters of quantum kernels. This method effectively reduced the risk of false positives in causal discovery, enabling more reliable inference. Our theoretical and experimental results demonstrate that the proposed quantum algorithm can empower classical algorithms for robust and accurate inference in causal discovery, supporting them in regimes where classical algorithms typically fail. Additionally, the effectiveness of this method was validated using the Boston Housing dataset as a real-world application. These findings demonstrate the new potential of quantum circuit-based causal discovery methods in addressing practical challenges, particularly in small-sample scenarios where traditional approaches have shown limitations.
comment: 19 pages, 8 figures
☆ GiNet: Integrating Sequential and Context-Aware Learning for Battery Capacity Prediction
The surging demand for batteries requires advanced battery management systems, where battery capacity modelling is a key functionality. In this paper, we aim to achieve accurate battery capacity prediction by learning from historical measurements of battery dynamics. We propose GiNet, a gated recurrent units enhanced Informer network, for predicting battery's capacity. The novelty and competitiveness of GiNet lies in its capability of capturing sequential and contextual information from raw battery data and reflecting the battery's complex behaviors with both temporal dynamics and long-term dependencies. We conducted an experimental study based on a publicly available dataset to showcase GiNet's strength of gaining a holistic understanding of battery behavior and predicting battery capacity accurately. GiNet achieves 0.11 mean absolute error for predicting the battery capacity in a sequence of future time slots without knowing the historical battery capacity. It also outperforms the latest algorithms significantly with 27% error reduction on average compared to Informer. The promising results highlight the importance of customized and optimized integration of algorithm and battery knowledge and shed light on other industry applications as well.
comment: 6 pages
☆ IPDN: Image-enhanced Prompt Decoding Network for 3D Referring Expression Segmentation AAAI 2025
3D Referring Expression Segmentation (3D-RES) aims to segment point cloud scenes based on a given expression. However, existing 3D-RES approaches face two major challenges: feature ambiguity and intent ambiguity. Feature ambiguity arises from information loss or distortion during point cloud acquisition due to limitations such as lighting and viewpoint. Intent ambiguity refers to the model's equal treatment of all queries during the decoding process, lacking top-down task-specific guidance. In this paper, we introduce an Image enhanced Prompt Decoding Network (IPDN), which leverages multi-view images and task-driven information to enhance the model's reasoning capabilities. To address feature ambiguity, we propose the Multi-view Semantic Embedding (MSE) module, which injects multi-view 2D image information into the 3D scene and compensates for potential spatial information loss. To tackle intent ambiguity, we designed a Prompt-Aware Decoder (PAD) that guides the decoding process by deriving task-driven signals from the interaction between the expression and visual features. Comprehensive experiments demonstrate that IPDN outperforms the state-ofthe-art by 1.9 and 4.2 points in mIoU metrics on the 3D-RES and 3D-GRES tasks, respectively.
comment: AAAI 2025
☆ CuRLA: Curriculum Learning Based Deep Reinforcement Learning for Autonomous Driving
In autonomous driving, traditional Computer Vision (CV) agents often struggle in unfamiliar situations due to biases in the training data. Deep Reinforcement Learning (DRL) agents address this by learning from experience and maximizing rewards, which helps them adapt to dynamic environments. However, ensuring their generalization remains challenging, especially with static training environments. Additionally, DRL models lack transparency, making it difficult to guarantee safety in all scenarios, particularly those not seen during training. To tackle these issues, we propose a method that combines DRL with Curriculum Learning for autonomous driving. Our approach uses a Proximal Policy Optimization (PPO) agent and a Variational Autoencoder (VAE) to learn safe driving in the CARLA simulator. The agent is trained using two-fold curriculum learning, progressively increasing environment difficulty and incorporating a collision penalty in the reward function to promote safety. This method improves the agent's adaptability and reliability in complex environments, and understand the nuances of balancing multiple reward components from different feedback signals in a single scalar reward function. Keywords: Computer Vision, Deep Reinforcement Learning, Variational Autoencoder, Proximal Policy Optimization, Curriculum Learning, Autonomous Driving.
comment: To be published in the 17th International Conference on Agents and Artificial Intelligence (ICAART), Feb 2025
☆ SensorQA: A Question Answering Benchmark for Daily-Life Monitoring
With the rapid growth in sensor data, effectively interpreting and interfacing with these data in a human-understandable way has become crucial. While existing research primarily focuses on learning classification models, fewer studies have explored how end users can actively extract useful insights from sensor data, often hindered by the lack of a proper dataset. To address this gap, we introduce \Dataset, the first human-created question-answering (QA) dataset for long-term time-series sensor data for daily life monitoring. \Dataset is created by human workers and includes 5.6K diverse and practical queries that reflect genuine human interests, paired with accurate answers derived from sensor data. We further establish benchmarks for state-of-the-art AI models on this dataset and evaluate their performance on typical edge devices. Our results reveal a gap between current models and optimal QA performance and efficiency, highlighting the need for new contributions. The dataset and code are available at: \url{https://github.com/benjamin-reichman/SensorQA}.
☆ Battling the Non-stationarity in Time Series Forecasting via Test-time Adaptation AAAI 2025
Deep Neural Networks have spearheaded remarkable advancements in time series forecasting (TSF), one of the major tasks in time series modeling. Nonetheless, the non-stationarity of time series undermines the reliability of pre-trained source time series forecasters in mission-critical deployment settings. In this study, we introduce a pioneering test-time adaptation framework tailored for TSF (TSF-TTA). TAFAS, the proposed approach to TSF-TTA, flexibly adapts source forecasters to continuously shifting test distributions while preserving the core semantic information learned during pre-training. The novel utilization of partially-observed ground truth and gated calibration module enables proactive, robust, and model-agnostic adaptation of source forecasters. Experiments on diverse benchmark datasets and cutting-edge architectures demonstrate the efficacy and generality of TAFAS, especially in long-term forecasting scenarios that suffer from significant distribution shifts. The code is available at https://github.com/kimanki/TAFAS.
comment: Accepted at AAAI 2025
☆ Demystifying Domain-adaptive Post-training for Financial LLMs
Domain-adaptive post-training of large language models (LLMs) has emerged as a promising approach for specialized domains such as medicine and finance. However, significant challenges remain in identifying optimal adaptation criteria and training strategies across varying data and model configurations. To address these challenges, we introduce FINDAP, a systematic and fine-grained investigation into domain-adaptive post-training of LLMs for the finance domain. Our approach begins by identifying the core capabilities required for the target domain and designing a comprehensive evaluation suite aligned with these needs. We then analyze the effectiveness of key post-training stages, including continual pretraining, instruction tuning, and preference alignment. Building on these insights, we propose an effective training recipe centered on a novel preference data distillation method, which leverages process signals from a generative reward model. The resulting model, Llama-Fin, achieves state-of-the-art performance across a wide range of financial tasks. Our analysis also highlights how each post-training stage contributes to distinct capabilities, uncovering specific challenges and effective solutions, providing valuable insights for domain adaptation of LLMs. Project page: https://github.com/SalesforceAIResearch/FinDap
☆ Addressing Domain Shift via Imbalance-Aware Domain Adaptation in Embryo Development Assessment
Deep learning models in medical imaging face dual challenges: domain shift, where models perform poorly when deployed in settings different from their training environment, and class imbalance, where certain disease conditions are naturally underrepresented. We present Imbalance-Aware Domain Adaptation (IADA), a novel framework that simultaneously tackles both challenges through three key components: (1) adaptive feature learning with class-specific attention mechanisms, (2) balanced domain alignment with dynamic weighting, and (3) adaptive threshold optimization. Our theoretical analysis establishes convergence guarantees and complexity bounds. Through extensive experiments on embryo development assessment across four imaging modalities, IADA demonstrates significant improvements over existing methods, achieving up to 25.19\% higher accuracy while maintaining balanced performance across classes. In challenging scenarios with low-quality imaging systems, IADA shows robust generalization with AUC improvements of up to 12.56\%. These results demonstrate IADA's potential for developing reliable and equitable medical imaging systems for diverse clinical settings. The code is made public available at \url{https://github.com/yinghemedical/imbalance-aware_domain_adaptation}
comment: 15 pages
☆ Step-by-Step Mastery: Enhancing Soft Constraint Following Ability of Large Language Models
It is crucial for large language models (LLMs) to follow instructions that involve multiple constraints. However, soft constraints are semantically related and difficult to verify through automated methods. These constraints remain a significant challenge for LLMs. To enhance the ability of LLMs to follow soft constraints, we initially design a pipeline to obtain high-quality outputs automatically. Additionally, to fully utilize the acquired data, we introduce a training paradigm based on curriculum learning. We experimentally evaluate the effectiveness of our methods in improving LLMs' soft constraint following ability and analyze the factors driving the improvements. The datasets and code are publicly available at https://github.com/Rainier-rq/FollowSoftConstraints.
☆ Jailbreaking Multimodal Large Language Models via Shuffle Inconsistency
Multimodal Large Language Models (MLLMs) have achieved impressive performance and have been put into practical use in commercial applications, but they still have potential safety mechanism vulnerabilities. Jailbreak attacks are red teaming methods that aim to bypass safety mechanisms and discover MLLMs' potential risks. Existing MLLMs' jailbreak methods often bypass the model's safety mechanism through complex optimization methods or carefully designed image and text prompts. Despite achieving some progress, they have a low attack success rate on commercial closed-source MLLMs. Unlike previous research, we empirically find that there exists a Shuffle Inconsistency between MLLMs' comprehension ability and safety ability for the shuffled harmful instruction. That is, from the perspective of comprehension ability, MLLMs can understand the shuffled harmful text-image instructions well. However, they can be easily bypassed by the shuffled harmful instructions from the perspective of safety ability, leading to harmful responses. Then we innovatively propose a text-image jailbreak attack named SI-Attack. Specifically, to fully utilize the Shuffle Inconsistency and overcome the shuffle randomness, we apply a query-based black-box optimization method to select the most harmful shuffled inputs based on the feedback of the toxic judge model. A series of experiments show that SI-Attack can improve the attack's performance on three benchmarks. In particular, SI-Attack can obviously improve the attack success rate for commercial MLLMs such as GPT-4o or Claude-3.5-Sonnet.
☆ Image2CADSeq: Computer-Aided Design Sequence and Knowledge Inference from Product Images
Computer-aided design (CAD) tools empower designers to design and modify 3D models through a series of CAD operations, commonly referred to as a CAD sequence. In scenarios where digital CAD files are not accessible, reverse engineering (RE) has been used to reconstruct 3D CAD models. Recent advances have seen the rise of data-driven approaches for RE, with a primary focus on converting 3D data, such as point clouds, into 3D models in boundary representation (B-rep) format. However, obtaining 3D data poses significant challenges, and B-rep models do not reveal knowledge about the 3D modeling process of designs. To this end, our research introduces a novel data-driven approach with an Image2CADSeq neural network model. This model aims to reverse engineer CAD models by processing images as input and generating CAD sequences. These sequences can then be translated into B-rep models using a solid modeling kernel. Unlike B-rep models, CAD sequences offer enhanced flexibility to modify individual steps of model creation, providing a deeper understanding of the construction process of CAD models. To quantitatively and rigorously evaluate the predictive performance of the Image2CADSeq model, we have developed a multi-level evaluation framework for model assessment. The model was trained on a specially synthesized dataset, and various network architectures were explored to optimize the performance. The experimental and validation results show great potential for the model in generating CAD sequences from 2D image data.
comment: 20 pages, 10 figures, and 6 tables
☆ FLowHigh: Towards Efficient and High-Quality Audio Super-Resolution with Single-Step Flow Matching ICASSP 2025
Audio super-resolution is challenging owing to its ill-posed nature. Recently, the application of diffusion models in audio super-resolution has shown promising results in alleviating this challenge. However, diffusion-based models have limitations, primarily the necessity for numerous sampling steps, which causes significantly increased latency when synthesizing high-quality audio samples. In this paper, we propose FLowHigh, a novel approach that integrates flow matching, a highly efficient generative model, into audio super-resolution. We also explore probability paths specially tailored for audio super-resolution, which effectively capture high-resolution audio distributions, thereby enhancing reconstruction quality. The proposed method generates high-fidelity, high-resolution audio through a single-step sampling process across various input sampling rates. The experimental results on the VCTK benchmark dataset demonstrate that FLowHigh achieves state-of-the-art performance in audio super-resolution, as evaluated by log-spectral distance and ViSQOL while maintaining computational efficiency with only a single-step sampling process.
comment: Accepted by ICASSP 2025
☆ SUGAR: Leveraging Contextual Confidence for Smarter Retrieval ICASSP2025
Bearing in mind the limited parametric knowledge of Large Language Models (LLMs), retrieval-augmented generation (RAG) which supplies them with the relevant external knowledge has served as an approach to mitigate the issue of hallucinations to a certain extent. However, uniformly retrieving supporting context makes response generation source-inefficient, as triggering the retriever is not always necessary, or even inaccurate, when a model gets distracted by noisy retrieved content and produces an unhelpful answer. Motivated by these issues, we introduce Semantic Uncertainty Guided Adaptive Retrieval (SUGAR), where we leverage context-based entropy to actively decide whether to retrieve and to further determine between single-step and multi-step retrieval. Our empirical results show that selective retrieval guided by semantic uncertainty estimation improves the performance across diverse question answering tasks, as well as achieves a more efficient inference.
comment: ICASSP2025
☆ Quantifying Itch and its Impact on Sleep Using Machine Learning and Radio Signals
Chronic itch affects 13% of the US population, is highly debilitating, and underlies many medical conditions. A major challenge in clinical care and new therapeutics development is the lack of an objective measure for quantifying itch, leading to reliance on subjective measures like patients' self-assessment of itch severity. In this paper, we show that a home radio device paired with artificial intelligence (AI) can concurrently capture scratching and evaluate its impact on sleep quality by analyzing radio signals bouncing in the environment. The device eliminates the need for wearable sensors or skin contact, enabling monitoring of chronic itch over extended periods at home without burdening patients or interfering with their skin condition. To validate the technology, we conducted an observational clinical study of chronic pruritus patients, monitored at home for one month using both the radio device and an infrared camera. Comparing the output of the device to ground truth data from the camera demonstrates its feasibility and accuracy (ROC AUC = 0.997, sensitivity = 0.825, specificity = 0.997). The results reveal a significant correlation between scratching and low sleep quality, manifested as a reduction in sleep efficiency (R = 0.6, p < 0.001) and an increase in sleep latency (R = 0.68, p < 0.001). Our study underscores the potential of passive, long-term, at-home monitoring of chronic scratching and its sleep implications, offering a valuable tool for both clinical care of chronic itch patients and pharmaceutical clinical trials.
☆ Watermarking Graph Neural Networks via Explanations for Ownership Protection
Graph Neural Networks (GNNs) are the mainstream method to learn pervasive graph data and are widely deployed in industry, making their intellectual property valuable. However, protecting GNNs from unauthorized use remains a challenge. Watermarking, which embeds ownership information into a model, is a potential solution. However, existing watermarking methods have two key limitations: First, almost all of them focus on non-graph data, with watermarking GNNs for complex graph data largely unexplored. Second, the de facto backdoor-based watermarking methods pollute training data and induce ownership ambiguity through intentional misclassification. Our explanation-based watermarking inherits the strengths of backdoor-based methods (e.g., robust to watermark removal attacks), but avoids data pollution and eliminates intentional misclassification. In particular, our method learns to embed the watermark in GNN explanations such that this unique watermark is statistically distinct from other potential solutions, and ownership claims must show statistical significance to be verified. We theoretically prove that, even with full knowledge of our method, locating the watermark is an NP-hard problem. Empirically, our method manifests robustness to removal attacks like fine-tuning and pruning. By addressing these challenges, our approach marks a significant advancement in protecting GNN intellectual property.
☆ Advancing Personalized Learning Analysis via an Innovative Domain Knowledge Informed Attention-based Knowledge Tracing Method
Emerging Knowledge Tracing (KT) models, particularly deep learning and attention-based Knowledge Tracing, have shown great potential in realizing personalized learning analysis via prediction of students' future performance based on their past interactions. The existing methods mainly focus on immediate past interactions or individual concepts without accounting for dependencies between knowledge concept, referred as knowledge concept routes, that can be critical to advance the understanding the students' learning outcomes. To address this, in this paper, we propose an innovative attention-based method by effectively incorporating the domain knowledge of knowledge concept routes in the given curriculum. Additionally, we leverage XES3G5M dataset, a benchmark dataset with rich auxiliary information for knowledge concept routes, to evaluate and compare the performance of our proposed method to the seven State-of-the-art (SOTA) deep learning models.
☆ Approximate Supervised Object Distance Estimation on Unmanned Surface Vehicles
Unmanned surface vehicles (USVs) and boats are increasingly important in maritime operations, yet their deployment is limited due to costly sensors and complexity. LiDAR, radar, and depth cameras are either costly, yield sparse point clouds or are noisy, and require extensive calibration. Here, we introduce a novel approach for approximate distance estimation in USVs using supervised object detection. We collected a dataset comprising images with manually annotated bounding boxes and corresponding distance measurements. Leveraging this data, we propose a specialized branch of an object detection model, not only to detect objects but also to predict their distances from the USV. This method offers a cost-efficient and intuitive alternative to conventional distance measurement techniques, aligning more closely with human estimation capabilities. We demonstrate its application in a marine assistance system that alerts operators to nearby objects such as boats, buoys, or other waterborne hazards.
☆ Vision-Language Models for Autonomous Driving: CLIP-Based Dynamic Scene Understanding
Scene understanding is essential for enhancing driver safety, generating human-centric explanations for Automated Vehicle (AV) decisions, and leveraging Artificial Intelligence (AI) for retrospective driving video analysis. This study developed a dynamic scene retrieval system using Contrastive Language-Image Pretraining (CLIP) models, which can be optimized for real-time deployment on edge devices. The proposed system outperforms state-of-the-art in-context learning methods, including the zero-shot capabilities of GPT-4o, particularly in complex scenarios. By conducting frame-level analysis on the Honda Scenes Dataset, which contains a collection of about 80 hours of annotated driving videos capturing diverse real-world road and weather conditions, our study highlights the robustness of CLIP models in learning visual concepts from natural language supervision. Results also showed that fine-tuning the CLIP models, such as ViT-L/14 and ViT-B/32, significantly improved scene classification, achieving a top F1 score of 91.1%. These results demonstrate the ability of the system to deliver rapid and precise scene recognition, which can be used to meet the critical requirements of Advanced Driver Assistance Systems (ADAS). This study shows the potential of CLIP models to provide scalable and efficient frameworks for dynamic scene understanding and classification. Furthermore, this work lays the groundwork for advanced autonomous vehicle technologies by fostering a deeper understanding of driver behavior, road conditions, and safety-critical scenarios, marking a significant step toward smarter, safer, and more context-aware autonomous driving systems.
☆ Soup to go: mitigating forgetting during continual learning with model averaging
In continual learning, where task data arrives in a sequence, fine-tuning on later tasks will often lead to performance degradation on earlier tasks. This is especially pronounced when these tasks come from diverse domains. In this setting, how can we mitigate catastrophic forgetting of earlier tasks and retain what the model has learned with minimal computational expenses? Inspired by other merging methods, and L2-regression, we propose Sequential Fine-tuning with Averaging (SFA), a method that merges currently training models with earlier checkpoints during the course of training. SOTA approaches typically maintain a data buffer of past tasks or impose a penalty at each gradient step. In contrast, our method achieves comparable results without the need to store past data, or multiple copies of parameters for each gradient step. Furthermore, our method outperforms common merging techniques such as Task Arithmetic, TIES Merging, and WiSE-FT, as well as other penalty methods like L2 and Elastic Weight Consolidation. In turn, our method offers insight into the benefits of merging partially-trained models during training across both image and language domains.
☆ Improving Zero-Shot Object-Level Change Detection by Incorporating Visual Correspondence
Detecting object-level changes between two images across possibly different views is a core task in many applications that involve visual inspection or camera surveillance. Existing change-detection approaches suffer from three major limitations: (1) lack of evaluation on image pairs that contain no changes, leading to unreported false positive rates; (2) lack of correspondences (\ie, localizing the regions before and after a change); and (3) poor zero-shot generalization across different domains. To address these issues, we introduce a novel method that leverages change correspondences (a) during training to improve change detection accuracy, and (b) at test time, to minimize false positives. That is, we harness the supervision labels of where an object is added or removed to supervise change detectors, improving their accuracy over previous work by a large margin. Our work is also the first to predict correspondences between pairs of detected changes using estimated homography and the Hungarian algorithm. Our model demonstrates superior performance over existing methods, achieving state-of-the-art results in change detection and change correspondence accuracy across both in-distribution and zero-shot benchmarks.
☆ LLMQuoter: Enhancing RAG Capabilities Through Efficient Quote Extraction From Large Contexts
We introduce LLMQuoter, a lightweight, distillation-based model designed to enhance Retrieval Augmented Generation (RAG) by extracting the most relevant textual evidence for downstream reasoning tasks. Built on the LLaMA-3B architecture and fine-tuned with Low-Rank Adaptation (LoRA) on a 15,000-sample subset of HotpotQA, LLMQuoter adopts a "quote-first-then-answer" strategy, efficiently identifying key quotes before passing curated snippets to reasoning models. This workflow reduces cognitive overhead and outperforms full-context approaches like Retrieval-Augmented Fine-Tuning (RAFT), achieving over 20-point accuracy gains across both small and large language models. By leveraging knowledge distillation from a high-performing teacher model, LLMQuoter achieves competitive results in a resource-efficient fine-tuning setup. It democratizes advanced RAG capabilities, delivering significant performance improvements without requiring extensive model retraining. Our results highlight the potential of distilled quote-based reasoning to streamline complex workflows, offering a scalable and practical solution for researchers and practitioners alike.
☆ The dynamics of meaning through time: Assessment of Large Language Models
Understanding how large language models (LLMs) grasp the historical context of concepts and their semantic evolution is essential in advancing artificial intelligence and linguistic studies. This study aims to evaluate the capabilities of various LLMs in capturing temporal dynamics of meaning, specifically how they interpret terms across different time periods. We analyze a diverse set of terms from multiple domains, using tailored prompts and measuring responses through both objective metrics (e.g., perplexity and word count) and subjective human expert evaluations. Our comparative analysis includes prominent models like ChatGPT, GPT-4, Claude, Bard, Gemini, and Llama. Findings reveal marked differences in each model's handling of historical context and semantic shifts, highlighting both strengths and limitations in temporal semantic understanding. These insights offer a foundation for refining LLMs to better address the evolving nature of language, with implications for historical text analysis, AI design, and applications in digital humanities.
☆ OVO-Bench: How Far is Your Video-LLMs from Real-World Online Video Understanding?
Temporal Awareness, the ability to reason dynamically based on the timestamp when a question is raised, is the key distinction between offline and online video LLMs. Unlike offline models, which rely on complete videos for static, post hoc analysis, online models process video streams incrementally and dynamically adapt their responses based on the timestamp at which the question is posed. Despite its significance, temporal awareness has not been adequately evaluated in existing benchmarks. To fill this gap, we present OVO-Bench (Online-VideO-Benchmark), a novel video benchmark that emphasizes the importance of timestamps for advanced online video understanding capability benchmarking. OVO-Bench evaluates the ability of video LLMs to reason and respond to events occurring at specific timestamps under three distinct scenarios: (1) Backward tracing: trace back to past events to answer the question. (2) Real-time understanding: understand and respond to events as they unfold at the current timestamp. (3) Forward active responding: delay the response until sufficient future information becomes available to answer the question accurately. OVO-Bench comprises 12 tasks, featuring 644 unique videos and approximately human-curated 2,800 fine-grained meta-annotations with precise timestamps. We combine automated generation pipelines with human curation. With these high-quality samples, we further developed an evaluation pipeline to systematically query video LLMs along the video timeline. Evaluations of nine Video-LLMs reveal that, despite advancements on traditional benchmarks, current models struggle with online video understanding, showing a significant gap compared to human agents. We hope OVO-Bench will drive progress in video LLMs and inspire future research in online video reasoning. Our benchmark and code can be accessed at https://github.com/JoeLeelyf/OVO-Bench.
comment: 28 pages
☆ Strategy Masking: A Method for Guardrails in Value-based Reinforcement Learning Agents
The use of reward functions to structure AI learning and decision making is core to the current reinforcement learning paradigm; however, without careful design of reward functions, agents can learn to solve problems in ways that may be considered ``undesirable" or ``unethical. Without thorough understanding of the incentives a reward function creates, it can be difficult to impose principled yet general control mechanisms over its behavior. In this paper, we study methods for constructing guardrails for AI agents that use reward functions to learn decision making. We introduce a novel approach, which we call strategy masking, to explicitly learn and then suppress undesirable AI agent behavior. We apply our method to study lying in AI agents and show that strategy masking can effectively modify agent behavior by suppressing, or actively penalizing, the reward dimension for lying such that agents act more honestly while not compromising their ability to perform effectively.
☆ Spatial Information Integration in Small Language Models for Document Layout Generation and Classification
Document layout understanding is a field of study that analyzes the spatial arrangement of information in a document hoping to understand its structure and layout. Models such as LayoutLM (and its subsequent iterations) can understand semi-structured documents with SotA results; however, the lack of open semi-structured data is a limitation in itself. While semi-structured data is common in everyday life (balance sheets, purchase orders, receipts), there is a lack of public datasets for training machine learning models for this type of document. In this investigation we propose a method to generate new, synthetic, layout information that can help overcoming this data shortage. According to our results, the proposed method performs better than LayoutTransformer, another popular layout generation method. We also show that, in some scenarios, text classification can improve when supported by bounding box information.
comment: 8 pages. Symposium on Applied Computing 2025
☆ FedSA: A Unified Representation Learning via Semantic Anchors for Prototype-based Federated Learning AAAI2025
Prototype-based federated learning has emerged as a promising approach that shares lightweight prototypes to transfer knowledge among clients with data heterogeneity in a model-agnostic manner. However, existing methods often collect prototypes directly from local models, which inevitably introduce inconsistencies into representation learning due to the biased data distributions and differing model architectures among clients. In this paper, we identify that both statistical and model heterogeneity create a vicious cycle of representation inconsistency, classifier divergence, and skewed prototype alignment, which negatively impacts the performance of clients. To break the vicious cycle, we propose a novel framework named Federated Learning via Semantic Anchors (FedSA) to decouple the generation of prototypes from local representation learning. We introduce a novel perspective that uses simple yet effective semantic anchors serving as prototypes to guide local models in learning consistent representations. By incorporating semantic anchors, we further propose anchor-based regularization with margin-enhanced contrastive learning and anchor-based classifier calibration to correct feature extractors and calibrate classifiers across clients, achieving intra-class compactness and inter-class separability of prototypes while ensuring consistent decision boundaries. We then update the semantic anchors with these consistent and discriminative prototypes, which iteratively encourage clients to collaboratively learn a unified data representation with robust generalization. Extensive experiments under both statistical and model heterogeneity settings show that FedSA significantly outperforms existing prototype-based FL methods on various classification tasks.
comment: Accepted by AAAI2025
☆ LSEBMCL: A Latent Space Energy-Based Model for Continual Learning
Continual learning has become essential in many practical applications such as online news summaries and product classification. The primary challenge is known as catastrophic forgetting, a phenomenon where a model inadvertently discards previously learned knowledge when it is trained on new tasks. Existing solutions involve storing exemplars from previous classes, regularizing parameters during the fine-tuning process, or assigning different model parameters to each task. The proposed solution LSEBMCL (Latent Space Energy-Based Model for Continual Learning) in this work is to use energy-based models (EBMs) to prevent catastrophic forgetting by sampling data points from previous tasks when training on new ones. The EBM is a machine learning model that associates an energy value with each input data point. The proposed method uses an EBM layer as an outer-generator in the continual learning framework for NLP tasks. The study demonstrates the efficacy of EBM in NLP tasks, achieving state-of-the-art results in all experiments.
comment: In the 7th International Conference on Artificial Intelligence in Information and Communication (ICAIIC 2025)
☆ FOCUS: Towards Universal Foreground Segmentation
Foreground segmentation is a fundamental task in computer vision, encompassing various subdivision tasks. Previous research has typically designed task-specific architectures for each task, leading to a lack of unification. Moreover, they primarily focus on recognizing foreground objects without effectively distinguishing them from the background. In this paper, we emphasize the importance of the background and its relationship with the foreground. We introduce FOCUS, the Foreground ObjeCts Universal Segmentation framework that can handle multiple foreground tasks. We develop a multi-scale semantic network using the edge information of objects to enhance image features. To achieve boundary-aware segmentation, we propose a novel distillation method, integrating the contrastive learning strategy to refine the prediction mask in multi-modal feature space. We conduct extensive experiments on a total of 13 datasets across 5 tasks, and the results demonstrate that FOCUS consistently outperforms the state-of-the-art task-specific models on most metrics.
☆ LearningFlow: Automated Policy Learning Workflow for Urban Driving with Large Language Models
Recent advancements in reinforcement learning (RL) demonstrate the significant potential in autonomous driving. Despite this promise, challenges such as the manual design of reward functions and low sample efficiency in complex environments continue to impede the development of safe and effective driving policies. To tackle these issues, we introduce LearningFlow, an innovative automated policy learning workflow tailored to urban driving. This framework leverages the collaboration of multiple large language model (LLM) agents throughout the RL training process. LearningFlow includes a curriculum sequence generation process and a reward generation process, which work in tandem to guide the RL policy by generating tailored training curricula and reward functions. Particularly, each process is supported by an analysis agent that evaluates training progress and provides critical insights to the generation agent. Through the collaborative efforts of these LLM agents, LearningFlow automates policy learning across a series of complex driving tasks, and it significantly reduces the reliance on manual reward function design while enhancing sample efficiency. Comprehensive experiments are conducted in the high-fidelity CARLA simulator, along with comparisons with other existing methods, to demonstrate the efficacy of our proposed approach. The results demonstrate that LearningFlow excels in generating rewards and curricula. It also achieves superior performance and robust generalization across various driving tasks, as well as commendable adaptation to different RL algorithms.
☆ Interpretable deep learning illuminates multiple structures fluorescence imaging: a path toward trustworthy artificial intelligence in microscopy
Live-cell imaging of multiple subcellular structures is essential for understanding subcellular dynamics. However, the conventional multi-color sequential fluorescence microscopy suffers from significant imaging delays and limited number of subcellular structure separate labeling, resulting in substantial limitations for real-time live-cell research applications. Here, we present the Adaptive Explainable Multi-Structure Network (AEMS-Net), a deep-learning framework that enables simultaneous prediction of two subcellular structures from a single image. The model normalizes staining intensity and prioritizes critical image features by integrating attention mechanisms and brightness adaptation layers. Leveraging the Kolmogorov-Arnold representation theorem, our model decomposes learned features into interpretable univariate functions, enhancing the explainability of complex subcellular morphologies. We demonstrate that AEMS-Net allows real-time recording of interactions between mitochondria and microtubules, requiring only half the conventional sequential-channel imaging procedures. Notably, this approach achieves over 30% improvement in imaging quality compared to traditional deep learning methods, establishing a new paradigm for long-term, interpretable live-cell imaging that advances the ability to explore subcellular dynamics.
☆ Open Problems in Machine Unlearning for AI Safety
As AI systems become more capable, widely deployed, and increasingly autonomous in critical areas such as cybersecurity, biological research, and healthcare, ensuring their safety and alignment with human values is paramount. Machine unlearning -- the ability to selectively forget or suppress specific types of knowledge -- has shown promise for privacy and data removal tasks, which has been the primary focus of existing research. More recently, its potential application to AI safety has gained attention. In this paper, we identify key limitations that prevent unlearning from serving as a comprehensive solution for AI safety, particularly in managing dual-use knowledge in sensitive domains like cybersecurity and chemical, biological, radiological, and nuclear (CBRN) safety. In these contexts, information can be both beneficial and harmful, and models may combine seemingly harmless information for harmful purposes -- unlearning this information could strongly affect beneficial uses. We provide an overview of inherent constraints and open problems, including the broader side effects of unlearning dangerous knowledge, as well as previously unexplored tensions between unlearning and existing safety mechanisms. Finally, we investigate challenges related to evaluation, robustness, and the preservation of safety features during unlearning. By mapping these limitations and open challenges, we aim to guide future research toward realistic applications of unlearning within a broader AI safety framework, acknowledging its limitations and highlighting areas where alternative approaches may be required.
♻ ☆ AgroGPT: Efficient Agricultural Vision-Language Model with Expert Tuning WACV
Significant progress has been made in advancing large multimodal conversational models (LMMs), capitalizing on vast repositories of image-text data available online. Despite this progress, these models often encounter substantial domain gaps, hindering their ability to engage in complex conversations across new domains. Recent efforts have aimed to mitigate this issue, albeit relying on domain-specific image-text data to curate instruction-tuning data. However, many domains, such as agriculture, lack such vision-language data. In this work, we propose an approach to construct instruction-tuning data that harnesses vision-only data for the agriculture domain. We utilize diverse agricultural datasets spanning multiple domains, curate class-specific information, and employ large language models (LLMs) to construct an expert-tuning set, resulting in a 70k expert-tuning dataset called AgroInstruct. Subsequently, we expert-tuned and created AgroGPT, an efficient LMM that can hold complex agriculture-related conversations and provide useful insights. We also develop AgroEvals for evaluation and compare {AgroGPT's} performance with large open and closed-source models. {AgroGPT} excels at identifying fine-grained agricultural concepts, can act as an agriculture expert, and provides helpful information for multimodal agriculture questions. The code, datasets, and models are available at https://github.com/awaisrauf/agroGPT.
comment: Accepted at WACV, 2025
♻ ☆ Attention Mechanisms Don't Learn Additive Models: Rethinking Feature Importance for Transformers
We address the critical challenge of applying feature attribution methods to the transformer architecture, which dominates current applications in natural language processing and beyond. Traditional attribution methods to explainable AI (XAI) explicitly or implicitly rely on linear or additive surrogate models to quantify the impact of input features on a model's output. In this work, we formally prove an alarming incompatibility: transformers are structurally incapable of representing linear or additive surrogate models used for feature attribution, undermining the grounding of these conventional explanation methodologies. To address this discrepancy, we introduce the Softmax-Linked Additive Log Odds Model (SLALOM), a novel surrogate model specifically designed to align with the transformer framework. SLALOM demonstrates the capacity to deliver a range of insightful explanations with both synthetic and real-world datasets. We highlight SLALOM's unique efficiency-quality curve by showing that SLALOM can produce explanations with substantially higher fidelity than competing surrogate models or provide explanations of comparable quality at a fraction of their computational costs. We release code for SLALOM as an open-source project online at https://github.com/tleemann/slalom_explanations.
comment: TMLR Camera-Ready version
♻ ☆ Tailored-LLaMA: Optimizing Few-Shot Learning in Pruned LLaMA Models with Task-Specific Prompts
Large language models demonstrate impressive proficiency in language understanding and generation. Nonetheless, training these models from scratch, even the least complex billion-parameter variant demands significant computational resources rendering it economically impractical for many organizations. With large language models functioning as general-purpose task solvers, this paper investigates their task-specific fine-tuning. We employ task-specific datasets and prompts to fine-tune two pruned LLaMA models having 5 billion and 4 billion parameters. This process utilizes the pre-trained weights and focuses on a subset of weights using the LoRA method. One challenge in fine-tuning the LLaMA model is crafting a precise prompt tailored to the specific task. To address this, we propose a novel approach to fine-tune the LLaMA model under two primary constraints: task specificity and prompt effectiveness. Our approach, Tailored LLaMA initially employs structural pruning to reduce the model sizes from 7B to 5B and 4B parameters. Subsequently, it applies a carefully designed prompt specific to the task and utilizes the LoRA method to accelerate the fine-tuning process. Moreover, fine-tuning a model pruned by 50\% for less than one hour restores the mean accuracy of classification tasks to 95.68\% at a 20\% compression ratio and to 86.54\% at a 50\% compression ratio through few-shot learning with 50 shots. Our validation of Tailored LLaMA on these two pruned variants demonstrates that even when compressed to 50\%, the models maintain over 65\% of the baseline model accuracy in few-shot classification and generation tasks. These findings highlight the efficacy of our tailored approach in maintaining high performance with significantly reduced model sizes.
♻ ☆ TradingAgents: Multi-Agents LLM Financial Trading Framework AAAI 2025
Significant progress has been made in automated problem-solving using societies of agents powered by large language models (LLMs). In finance, efforts have largely focused on single-agent systems handling specific tasks or multi-agent frameworks independently gathering data. However, multi-agent systems' potential to replicate real-world trading firms' collaborative dynamics remains underexplored. TradingAgents proposes a novel stock trading framework inspired by trading firms, featuring LLM-powered agents in specialized roles such as fundamental analysts, sentiment analysts, technical analysts, and traders with varied risk profiles. The framework includes Bull and Bear researcher agents assessing market conditions, a risk management team monitoring exposure, and traders synthesizing insights from debates and historical data to make informed decisions. By simulating a dynamic, collaborative trading environment, this framework aims to improve trading performance. Detailed architecture and extensive experiments reveal its superiority over baseline models, with notable improvements in cumulative returns, Sharpe ratio, and maximum drawdown, highlighting the potential of multi-agent LLM frameworks in financial trading. More details on TradingAgents are available at https://TradingAgents-AI.github.io.
comment: Multi-Agent AI in the Real World @ AAAI 2025
♻ ☆ PFML: Self-Supervised Learning of Time-Series Data Without Representation Collapse
Self-supervised learning (SSL) is a data-driven learning approach that utilizes the innate structure of the data to guide the learning process. In contrast to supervised learning, which depends on external labels, SSL utilizes the inherent characteristics of the data to produce its own supervisory signal. However, one frequent issue with SSL methods is representation collapse, where the model outputs a constant input-invariant feature representation. This issue hinders the potential application of SSL methods to new data modalities, as trying to avoid representation collapse wastes researchers' time and effort. This paper introduces a novel SSL algorithm for time-series data called Prediction of Functionals from Masked Latents (PFML). Instead of predicting masked input signals or their latent representations directly, PFML operates by predicting statistical functionals of the input signal corresponding to masked embeddings, given a sequence of unmasked embeddings. The algorithm is designed to avoid representation collapse, rendering it straightforwardly applicable to different time-series data domains, such as novel sensor modalities in clinical data. We demonstrate the effectiveness of PFML through complex, real-life classification tasks across three different data modalities: infant posture and movement classification from multi-sensor inertial measurement unit data, emotion recognition from speech data, and sleep stage classification from EEG data. The results show that PFML is superior to a conceptually similar SSL method and a contrastive learning-based SSL method. Additionally, PFML is on par with the current state-of-the-art SSL method, while also being conceptually simpler and without suffering from representation collapse.
♻ ☆ Less is More: The Influence of Pruning on the Explainability of CNNs
Modern, state-of-the-art Convolutional Neural Networks (CNNs) in computer vision have millions of parameters. Thus, explaining the complex decisions of such networks to humans is challenging. A technical approach to reduce CNN complexity is network pruning, where less important parameters are deleted. The work presented in this paper investigates whether this technical complexity reduction also helps with perceived explainability. To do so, we conducted a pre-study and two human-grounded experiments, assessing the effects of different pruning ratios on CNN explainability. Overall, we evaluated four different compression rates (i.e., CPR 2, 4, 8, and 32) with 37 500 tasks on Mechanical Turk. Results indicate that lower compression rates have a positive influence on explainability, while higher compression rates show negative effects. Furthermore, we were able to identify sweet spots that increase both the perceived explainability and the model's performance.
♻ ☆ Geometry Restoration and Dewarping of Camera-Captured Document Images
This research focuses on developing a method for restoring the topology of digital images of paper documents captured by a camera, using algorithms for detection, segmentation, geometry restoration, and dewarping. Our methodology employs deep learning (DL) for document outline detection, followed by computer vision (CV) to create a topological 2D grid using cubic polynomial interpolation and correct nonlinear distortions by remapping the image. Using classical CV methods makes the document topology restoration process more efficient and faster, as it requires significantly fewer computational resources and memory. We developed a new pipeline for automatic document dewarping and reconstruction, along with a framework and annotated dataset to demonstrate its efficiency. Our experiments confirm the promise of our methodology and its superiority over existing benchmarks (including mobile apps and popular DL solutions, such as RectiNet, DocGeoNet, and DocTr++) both visually and in terms of document readability via Optical Character Recognition (OCR) and geometry restoration metrics. This paves the way for creating high-quality digital copies of paper documents and enhancing the efficiency of OCR systems. Project page: https://github.com/HorizonParadox/DRCCBI
comment: 28 pages, 16 figures
♻ ☆ REFA: Reference Free Alignment for multi-preference optimization
We introduce REFA, a family of reference-free alignment methods that optimize over multiple user preferences while enforcing fine-grained length control. Our approach integrates deviation-based weighting to emphasize high-quality responses more strongly, length normalization to prevent trivial short-response solutions, and an EOS-probability regularizer to mitigate dataset-induced brevity biases. Theoretically, we show that under the Uncertainty Reduction with Sequence Length Assertion (URSLA), naive length normalization can still incentivize length-based shortcuts. By contrast, REFA corrects these subtle incentives, guiding models toward genuinely more informative and higher-quality outputs. Empirically, REFA sets a new state-of-the-art among reference-free alignment methods, producing richer responses aligned more closely with human preferences. Compared to a base supervised fine-tuned (SFT) mistral-7b model that achieves 8.4% length-controlled win rate (LC-WR) and 6.2% win rate (WR), our best REFA configuration attains 21.62% LC-WR and 19.87% WR on the AlpacaEval v2 benchmark. This represents a substantial improvement over both the strongest multi-preference baseline, InfoNCA (16.82% LC-WR, 10.44% WR), and the strongest reference-free baseline, SimPO (20.01% LC-WR, 17.65% WR)
♻ ☆ Cross-Attention Graph Neural Networks for Inferring Gene Regulatory Networks with Skewed Degree Distribution
Inferencing Gene Regulatory Networks (GRNs) from gene expression data is a pivotal challenge in systems biology, and several innovative computational methods have been introduced. However, most of these studies have not considered the skewed degree distribution of genes. Specifically, some genes may regulate multiple target genes while some genes may be regulated by multiple regulator genes. Such a skewed degree distribution issue significantly complicates the application of directed graph embedding methods. To tackle this issue, we propose the Cross-Attention Complex Dual Graph Embedding Model (XATGRN). Our XATGRN employs a cross-attention mechanism to effectively capture intricate gene interactions from gene expression profiles. Additionally, it uses a Dual Complex Graph Embedding approach to manage the skewed degree distribution, thereby ensuring precise prediction of regulatory relationships and their directionality. Our model consistently outperforms existing state-of-the-art methods across various datasets, underscoring its efficacy in elucidating complex gene regulatory mechanisms. Our codes used in this paper are publicly available at: https://github.com/kikixiong/XATGRN.
comment: 11 pages, 6 figures,1 tabels
♻ ☆ Drift2Matrix: Kernel-Induced Self Representation for Concept Drift Adaptation in Co-evolving Time Series
In the realm of time series analysis, tackling the phenomenon of concept drift poses a significant challenge. Concept drift -- characterized by the evolving statistical properties of time series data, affects the reliability and accuracy of conventional analysis models. This is particularly evident in co-evolving scenarios where interactions among variables are crucial. This paper presents Drift2Matrix, a novel framework that leverages kernel-induced self-representation for adaptive responses to concept drift in time series. Drift2Matrix employs a kernel-based learning mechanism to generate a representation matrix, encapsulating the inherent dynamics of co-evolving time series. This matrix serves as a key tool for identification and adaptation to concept drift by observing its temporal variations. Furthermore, Drift2Matrix effectively identifies prevailing patterns and offers insights into emerging trends through pattern evolution analysis. Our empirical evaluation of Drift2Matrix across various datasets demonstrates its effectiveness in handling the complexities of concept drift. This approach introduces a novel perspective in the theoretical domain of co-evolving time series analysis, enhancing adaptability and accuracy in the face of dynamic data environments.
♻ ☆ Safeguarding System Prompts for LLMs
Large language models (LLMs) are increasingly utilized in applications where system prompts, which guide model outputs, play a crucial role. These prompts often contain business logic and sensitive information, making their protection essential. However, adversarial and even regular user queries can exploit LLM vulnerabilities to expose these hidden prompts. To address this issue, we propose PromptKeeper, a robust defense mechanism designed to safeguard system prompts. PromptKeeper tackles two core challenges: reliably detecting prompt leakage and mitigating side-channel vulnerabilities when leakage occurs. By framing detection as a hypothesis-testing problem, PromptKeeper effectively identifies both explicit and subtle leakage. Upon detection, it regenerates responses using a dummy prompt, ensuring that outputs remain indistinguishable from typical interactions when no leakage is present. PromptKeeper ensures robust protection against prompt extraction attacks via either adversarial or regular queries, while preserving conversational capability and runtime efficiency during benign user interactions.
comment: 15 pages, 5 figures, 2 tables
♻ ☆ On the role of Artificial Intelligence methods in modern force-controlled manufacturing robotic tasks
This position paper explores the integration of Artificial Intelligence (AI) into force-controlled robotic tasks within the scope of advanced manufacturing, a cornerstone of Industry 4.0. AI's role in enhancing robotic manipulators - key drivers in the Fourth Industrial Revolution - is rapidly leading to significant innovations in smart manufacturing. The objective of this article is to frame these innovations in practical force-controlled applications - e.g. deburring, polishing, and assembly tasks like peg-in-hole (PiH) - highlighting their necessity for maintaining high-quality production standards. By reporting on recent AI-based methodologies, this article contrasts them and identifies current challenges to be addressed in future research. The analysis concludes with a perspective on future research directions, emphasizing the need for common performance metrics to validate AI techniques, integration of various enhancements for performance optimization, and the importance of validating them in relevant scenarios. These future directions aim to provide consistency with already adopted approaches, so as to be compatible with manufacturing standards, increasing the relevance of AI-driven methods in both academic and industrial contexts.
comment: In Proceedings of the 21st International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, 392-399, 2024 , Porto, Portugal
♻ ☆ Time Transfer: On Optimal Learning Rate and Batch Size In The Infinite Data Limit
One of the main challenges in optimal scaling of large language models (LLMs) is the prohibitive cost of hyperparameter tuning, particularly learning rate $\eta$ and batch size $B$. While techniques like $\mu$P (Yang et al., 2022) provide scaling rules for optimal $\eta$ transfer in the infinite model size limit, the optimal scaling behavior in the infinite data size limit remains unknown. We fill in this gap by observing for the first time an intricate dependence of optimal $\eta$ scaling on the pretraining token budget $T$, $B$ and its relation to the critical batch size $B_\mathrm{crit}$, which we measure to evolve as $B_\mathrm{crit} \propto T$. Furthermore, we show that the optimal batch size is positively correlated with $B_\mathrm{crit}$: keeping it fixed becomes suboptimal over time even if learning rate is scaled optimally. Surprisingly, our results demonstrate that the observed optimal $\eta$ and $B$ dynamics are preserved with $\mu$P model scaling, challenging the conventional view of $B_\mathrm{crit}$ dependence solely on loss value. Complementing optimality, we examine the sensitivity of loss to changes in learning rate, where we find the sensitivity to decrease with increase of $T$ and to remain constant with $\mu$P model scaling. We hope our results make the first step towards a unified picture of the joint optimal data and model scaling.
♻ ☆ Multi-class Decoding of Attended Speaker Direction Using Electroencephalogram and Audio Spatial Spectrum
Decoding the directional focus of an attended speaker from listeners' electroencephalogram (EEG) signals is essential for developing brain-computer interfaces to improve the quality of life for individuals with hearing impairment. Previous works have concentrated on binary directional focus decoding, i.e., determining whether the attended speaker is on the left or right side of the listener. However, a more precise decoding of the exact direction of the attended speaker is necessary for effective speech processing. Additionally, audio spatial information has not been effectively leveraged, resulting in suboptimal decoding results. In this paper, it is found that on the recently presented dataset with 14-class directional focus, models relying exclusively on EEG inputs exhibit significantly lower accuracy when decoding the directional focus in both leave-one-subject-out and leave-one-trial-out scenarios. By integrating audio spatial spectra with EEG features, the decoding accuracy can be effectively improved. The CNN, LSM-CNN, and Deformer models are employed to decode the directional focus from listeners' EEG signals and audio spatial spectra. The proposed Sp-EEG-Deformer model achieves notable 14-class decoding accuracies of 55.35% and 57.19% in leave-one-subject-out and leave-one-trial-out scenarios with a decision window of 1 second, respectively. Experiment results indicate increased decoding accuracy as the number of alternative directions reduces. These findings suggest the efficacy of our proposed dual modal directional focus decoding strategy.
comment: Submitted to IEEE TNSRE
♻ ☆ Decentralized Federated Anomaly Detection in Smart Grids: A P2P Gossip Approach
The increasing security and privacy concerns in the Smart Grid sector have led to a significant demand for robust intrusion detection systems within critical smart grid infrastructure. To address the challenges posed by privacy preservation and decentralized power system zones with distinct data ownership, Federated Learning (FL) has emerged as a promising privacy-preserving solution which facilitates collaborative training of attack detection models without necessitating the sharing of raw data. However, FL presents several implementation limitations in the power system domain due to its heavy reliance on a centralized aggregator and the risks of privacy leakage during model update transmission. To overcome these technical bottlenecks, this paper introduces a novel decentralized federated anomaly detection scheme based on two main gossip protocols namely Random Walk and Epidemic. Our findings indicate that the Random Walk protocol exhibits superior performance compared to the Epidemic protocol, highlighting its efficacy in decentralized federated learning environments. Experimental validation of the proposed framework utilizing publicly available industrial control systems datasets demonstrates superior attack detection accuracy while safeguarding data confidentiality and mitigating the impact of communication latency and stragglers. Furthermore, our approach yields a notable 35% improvement in training time compared to conventional FL, underscoring the efficacy and robustness of our decentralized learning method.
♻ ☆ Filter-then-Generate: Large Language Models with Structure-Text Adapter for Knowledge Graph Completion COLING 2025
Large Language Models (LLMs) present massive inherent knowledge and superior semantic comprehension capability, which have revolutionized various tasks in natural language processing. Despite their success, a critical gap remains in enabling LLMs to perform knowledge graph completion (KGC). Empirical evidence suggests that LLMs consistently perform worse than conventional KGC approaches, even through sophisticated prompt design or tailored instruction-tuning. Fundamentally, applying LLMs on KGC introduces several critical challenges, including a vast set of entity candidates, hallucination issue of LLMs, and under-exploitation of the graph structure. To address these challenges, we propose a novel instruction-tuning-based method, namely FtG. Specifically, we present a \textit{filter-then-generate} paradigm and formulate the KGC task into a multiple-choice question format. In this way, we can harness the capability of LLMs while mitigating the issue casused by hallucinations. Moreover, we devise a flexible ego-graph serialization prompt and employ a structure-text adapter to couple structure and text information in a contextualized manner. Experimental results demonstrate that FtG achieves substantial performance gain compared to existing state-of-the-art methods. The instruction dataset and code are available at \url{https://github.com/LB0828/FtG}.
comment: COLING 2025 Main Conference
♻ ☆ Latent Reward: LLM-Empowered Credit Assignment in Episodic Reinforcement Learning
Reinforcement learning (RL) often encounters delayed and sparse feedback in real-world applications, even with only episodic rewards. Previous approaches have made some progress in reward redistribution for credit assignment but still face challenges, including training difficulties due to redundancy and ambiguous attributions stemming from overlooking the multifaceted nature of mission performance evaluation. Hopefully, Large Language Model (LLM) encompasses fruitful decision-making knowledge and provides a plausible tool for reward redistribution. Even so, deploying LLM in this case is non-trivial due to the misalignment between linguistic knowledge and the symbolic form requirement, together with inherent randomness and hallucinations in inference. To tackle these issues, we introduce LaRe, a novel LLM-empowered symbolic-based decision-making framework, to improve credit assignment. Key to LaRe is the concept of the Latent Reward, which works as a multi-dimensional performance evaluation, enabling more interpretable goal attainment from various perspectives and facilitating more effective reward redistribution. We examine that semantically generated code from LLM can bridge linguistic knowledge and symbolic latent rewards, as it is executable for symbolic objects. Meanwhile, we design latent reward self-verification to increase the stability and reliability of LLM inference. Theoretically, reward-irrelevant redundancy elimination in the latent reward benefits RL performance from more accurate reward estimation. Extensive experimental results witness that LaRe (i) achieves superior temporal credit assignment to SOTA methods, (ii) excels in allocating contributions among multiple agents, and (iii) outperforms policies trained with ground truth rewards for certain tasks.
♻ ☆ Preference-Based Multi-Agent Reinforcement Learning: Data Coverage and Algorithmic Techniques
We initiate the study of Preference-Based Multi-Agent Reinforcement Learning (PbMARL), exploring both theoretical foundations and empirical validations. We define the task as identifying the Nash equilibrium from a preference-only offline dataset in general-sum games, a problem marked by the challenge of sparse feedback signals. Our theory establishes the upper complexity bounds for Nash Equilibrium in effective PbMARL, demonstrating that single-policy coverage is inadequate and highlighting the importance of unilateral dataset coverage. These theoretical insights are verified through comprehensive experiments. To enhance the practical performance, we further introduce two algorithmic techniques. (1) We propose a Mean Squared Error (MSE) regularization along the time axis to achieve a more uniform reward distribution and improve reward learning outcomes. (2) We propose an additional penalty based on the distribution of the dataset to incorporate pessimism, improving stability and effectiveness during training. Our findings underscore the multifaceted approach required for PbMARL, paving the way for effective preference-based multi-agent systems.
comment: 9 pages
♻ ☆ Representation Learning of Lab Values via Masked AutoEncoder
Accurate imputation of missing laboratory values in electronic health records (EHRs) is critical to enable robust clinical predictions and reduce biases in AI systems in healthcare. Existing methods, such as variational autoencoders (VAEs) and decision tree-based approaches such as XGBoost, struggle to model the complex temporal and contextual dependencies in EHR data, mainly in underrepresented groups. In this work, we propose Lab-MAE, a novel transformer-based masked autoencoder framework that leverages self-supervised learning for the imputation of continuous sequential lab values. Lab-MAE introduces a structured encoding scheme that jointly models laboratory test values and their corresponding timestamps, enabling explicit capturing temporal dependencies. Empirical evaluation on the MIMIC-IV dataset demonstrates that Lab-MAE significantly outperforms the state-of-the-art baselines such as XGBoost across multiple metrics, including root mean square error (RMSE), R-squared (R2), and Wasserstein distance (WD). Notably, Lab-MAE achieves equitable performance across demographic groups of patients, advancing fairness in clinical predictions. We further investigate the role of follow-up laboratory values as potential shortcut features, revealing Lab-MAE's robustness in scenarios where such data is unavailable. The findings suggest that our transformer-based architecture, adapted to the characteristics of the EHR data, offers a foundation model for more accurate and fair clinical imputation models. In addition, we measure and compare the carbon footprint of Lab-MAE with the baseline XGBoost model, highlighting its environmental requirements.
comment: 10 pages main text, 8 appendix
♻ ☆ Zeroth-Order Adaptive Neuron Alignment Based Pruning without Re-Training
Network pruning focuses on computational techniques that aim to reduce a given model's computational cost by removing a subset of its parameters while having minimal impact on performance. Throughout the last decade, the most widely used pruning paradigm has been pruning and re-training, which nowadays is inconvenient due to the vast amount of pre-trained models, which are in any case too expensive to re-train. In this paper, we exploit functional information from dense pre-trained models, i.e., their activations, to obtain sparse models that maximize the activations' alignment w.r.t. their corresponding dense models. Hence, we propose \textsc{NeuroAL}, a \emph{top-up} algorithm that can be used on top of any given pruning algorithm for LLMs, which modifies the block-wise and row-wise sparsity exploiting information from both the dense model and its sparse version to maximize the \emph{neuron alignment} among activations. Differently from existing methods, our approach adaptively selects the best hyperparameters for the block-wise and row-wise sparsity ratios w.r.t. the model and the desired sparsity, and requires \emph{no re-training}. We test our method over 276 cases combining four LLM families, three sparsity ratios, and ten language tasks (three language modeling and seven zero-shot datasets), showing how it consistently outperforms the latest state-of-the-art methods in terms of performance-runtime trade-off. The code is available at \href{https://github.com/eliacunegatti/NeuroAL}{https://github.com/eliacunegatti/NeuroAL}.
comment: Work in progress
♻ ☆ Bayesian Joint Additive Factor Models for Multiview Learning
It is increasingly common in a wide variety of applied settings to collect data of multiple different types on the same set of samples. Our particular focus in this article is on studying relationships between such multiview features and responses. A motivating application arises in the context of precision medicine where multi-omics data are collected to correlate with clinical outcomes. It is of interest to infer dependence within and across views while combining multimodal information to improve the prediction of outcomes. The signal-to-noise ratio can vary substantially across views, motivating more nuanced statistical tools beyond standard late and early fusion. This challenge comes with the need to preserve interpretability, select features, and obtain accurate uncertainty quantification. We propose a joint additive factor regression model (JAFAR) with a structured additive design, accounting for shared and view-specific components. We ensure identifiability via a novel dependent cumulative shrinkage process (D-CUSP) prior. We provide an efficient implementation via a partially collapsed Gibbs sampler and extend our approach to allow flexible feature and outcome distributions. Prediction of time-to-labor onset from immunome, metabolome, and proteome data illustrates performance gains against state-of-the-art competitors. Our open-source software (R package) is available at https://github.com/niccoloanceschi/jafar.
♻ ☆ Range, not Independence, Drives Modularity in Biological Inspired Representation
Why do biological and artificial neurons sometimes modularise, each encoding a single meaningful variable, and sometimes entangle their representation of many variables? In this work, we develop a theory of when biologically inspired networks -- those that are nonnegative and energy efficient -- modularise their representation of source variables (sources). We derive necessary and sufficient conditions on a sample of sources that determine whether the neurons in an optimal biologically-inspired linear autoencoder modularise. Our theory applies to any dataset, extending far beyond the case of statistical independence studied in previous work. Rather we show that sources modularise if their support is ``sufficiently spread''. From this theory, we extract and validate predictions in a variety of empirical studies on how data distribution affects modularisation in nonlinear feedforward and recurrent neural networks trained on supervised and unsupervised tasks. Furthermore, we apply these ideas to neuroscience data, showing that range independence can be used to understand the mixing or modularising of spatial and reward information in entorhinal recordings in seemingly conflicting experiments. Further, we use these results to suggest alternate origins of mixed-selectivity, beyond the predominant theory of flexible nonlinear classification. In sum, our theory prescribes precise conditions on when neural activities modularise, providing tools for inducing and elucidating modular representations in brains and machines.
comment: 40 pages, 16 figures. WD and KH contributed equally; LH and JHL contributed equally
♻ ☆ OneLLM: One Framework to Align All Modalities with Language CVPR 2024
Multimodal large language models (MLLMs) have gained significant attention due to their strong multimodal understanding capability. However, existing works rely heavily on modality-specific encoders, which usually differ in architecture and are limited to common modalities. In this paper, we present OneLLM, an MLLM that aligns eight modalities to language using a unified framework. We achieve this through a unified multimodal encoder and a progressive multimodal alignment pipeline. In detail, we first train an image projection module to connect a vision encoder with LLM. Then, we build a universal projection module (UPM) by mixing multiple image projection modules and dynamic routing. Finally, we progressively align more modalities to LLM with the UPM. To fully leverage the potential of OneLLM in following instructions, we also curated a comprehensive multimodal instruction dataset, including 2M items from image, audio, video, point cloud, depth/normal map, IMU and fMRI brain activity. OneLLM is evaluated on 25 diverse benchmarks, encompassing tasks such as multimodal captioning, question answering and reasoning, where it delivers excellent performance. Code, data, model and online demo are available at https://github.com/csuhan/OneLLM
comment: Accepted by CVPR 2024. Code: https://github.com/csuhan/OneLLM
♻ ☆ HiTZ at VarDial 2025 NorSID: Overcoming Data Scarcity with Language Transfer and Automatic Data Annotation
In this paper we present our submission for the NorSID Shared Task as part of the 2025 VarDial Workshop (Scherrer et al., 2025), consisting of three tasks: Intent Detection, Slot Filling and Dialect Identification, evaluated using data in different dialects of the Norwegian language. For Intent Detection and Slot Filling, we have fine-tuned a multitask model in a cross-lingual setting, to leverage the xSID dataset available in 17 languages. In the case of Dialect Identification, our final submission consists of a model fine-tuned on the provided development set, which has obtained the highest scores within our experiments. Our final results on the test set show that our models do not drop in performance compared to the development set, likely due to the domain-specificity of the dataset and the similar distribution of both subsets. Finally, we also report an in-depth analysis of the provided datasets and their artifacts, as well as other sets of experiments that have been carried out but did not yield the best results. Additionally, we present an analysis on the reasons why some methods have been more successful than others; mainly the impact of the combination of languages and domain-specificity of the training data on the results.
comment: Vardial 2025 NorSID Shared Task, fixed minor typos
♻ ☆ Planning-Driven Programming: A Large Language Model Programming Workflow
The strong performance of large language models (LLMs) raises extensive discussion on their application to code generation. Recent research suggests continuous program refinements through visible tests to improve code generation accuracy in LLMs. However, these methods suffer from LLMs' inefficiency and limited reasoning capacity. In this work, we propose an LLM programming workflow (LPW) designed to improve both initial code generation and subsequent refinements within a structured two-phase workflow. Specifically, the solution generation phase formulates a solution plan, which is then verified through visible tests to specify the intended natural language solution. Subsequently, the code implementation phase drafts an initial code according to the solution plan and its verification. If the generated code fails the visible tests, the plan verification serves as the intended solution to consistently inform the refinement process for correcting bugs. Compared to state-of-the-art methods across various existing LLMs, LPW significantly improves the Pass@1 accuracy by up to 16.4% on well-established text-to-code generation benchmarks. LPW also sets new state-of-the-art Pass@1 accuracy, achieving 98.2% on HumanEval, 84.8% on MBPP, 59.3% on LiveCode, 62.6% on APPS, and 34.7% on CodeContest, using GPT-4o as the backbone.
♻ ☆ MedCoDi-M: A Multi-Prompt Foundation Model for Multimodal Medical Data Generation
Artificial Intelligence is revolutionizing medical practice, enhancing diagnostic accuracy and healthcare delivery. However, its adaptation in medical settings still faces significant challenges, related to data availability and privacy constraints. Synthetic data has emerged as a promising solution to mitigate these issues, addressing data scarcity while preserving privacy. Recently, Latent Diffusion Models have emerged as a powerful tool for generating high-quality synthetic data. Meanwhile, the integration of different modalities has gained interest, emphasizing the need of models capable of handle multimodal medical data. Existing approaches struggle to integrate complementary information and lack the ability to generate modalities simultaneously. To address this challenge, we present MedCoDi-M, a 6.77-billion-parameter model, designed for multimodal medical data generation, that, following Foundation Model paradigm, exploits contrastive learning and large quantity of data to build a shared latent space which capture the relationships between different data modalities. Further, we introduce the Multi-Prompt training technique, which significantly boosts MedCoDi-M's generation under different settings. We extensively validate MedCoDi-M: first we benchmark it against five competitors on the MIMIC-CXR dataset, a state-of-the-art dataset for Chest X-ray and radiological report generation. Secondly, we perform a Visual Turing Test with expert radiologists to assess the realism and clinical relevance of the generated data, ensuring alignment with real-world scenarios. Finally, we assess the utility of MedCoDi-M in addressing key challenges in the medical field, such as anonymization, data scarcity and imbalance learning. The results are promising, demonstrating the applicability of MedCoDi-M in medical contexts. Project page is at https://cosbidev.github.io/MedCoDi-M/.
♻ ☆ Few-shot Class-incremental Learning for Classification and Object Detection: A Survey
Few-shot Class-Incremental Learning (FSCIL) presents a unique challenge in Machine Learning (ML), as it necessitates the Incremental Learning (IL) of new classes from sparsely labeled training samples without forgetting previous knowledge. While this field has seen recent progress, it remains an active exploration area. This paper aims to provide a comprehensive and systematic review of FSCIL. In our in-depth examination, we delve into various facets of FSCIL, encompassing the problem definition, the discussion of the primary challenges of unreliable empirical risk minimization and the stability-plasticity dilemma, general schemes, and relevant problems of IL and Few-shot Learning (FSL). Besides, we offer an overview of benchmark datasets and evaluation metrics. Furthermore, we introduce the Few-shot Class-incremental Classification (FSCIC) methods from data-based, structure-based, and optimization-based approaches and the Few-shot Class-incremental Object Detection (FSCIOD) methods from anchor-free and anchor-based approaches. Beyond these, we present several promising research directions within FSCIL that merit further investigation.
♻ ☆ INFELM: In-depth Fairness Evaluation of Large Text-To-Image Models
The rapid development of large language models (LLMs) and large vision models (LVMs) have propelled the evolution of multi-modal AI systems, which have demonstrated the remarkable potential for industrial applications by emulating human-like cognition. However, they also pose significant ethical challenges, including amplifying harmful content and reinforcing societal biases. For instance, biases in some industrial image generation models highlighted the urgent need for robust fairness assessments. Most existing evaluation frameworks focus on the comprehensiveness of various aspects of the models, but they exhibit critical limitations, including insufficient attention to content generation alignment and social bias-sensitive domains. More importantly, their reliance on pixel-detection techniques is prone to inaccuracies. To address these issues, this paper presents INFELM, an in-depth fairness evaluation on widely-used text-to-image models. Our key contributions are: (1) an advanced skintone classifier incorporating facial topology and refined skin pixel representation to enhance classification precision by at least 16.04%, (2) a bias-sensitive content alignment measurement for understanding societal impacts, (3) a generalizable representation bias evaluation for diverse demographic groups, and (4) extensive experiments analyzing large-scale text-to-image model outputs across six social-bias-sensitive domains. We find that existing models in the study generally do not meet the empirical fairness criteria, and representation bias is generally more pronounced than alignment errors. INFELM establishes a robust benchmark for fairness assessment, supporting the development of multi-modal AI systems that align with ethical and human-centric principles.
comment: Di Jin and Xing Liu contributed equally to this work
♻ ☆ Driving Towards Inclusion: A Systematic Review of AI-powered Accessibility Enhancements for People with Disability in Autonomous Vehicles
This paper provides a comprehensive and, to our knowledge, the first review of inclusive human-computer interaction (HCI) within autonomous vehicles (AVs) and human-driven cars with partial autonomy, emphasizing accessibility and user-centered design principles. We explore the current technologies and HCI systems designed to enhance passenger experience, particularly for individuals with accessibility needs. Key technologies discussed include brain-computer interfaces, anthropomorphic interaction, virtual reality, augmented reality, mode adaptation, voice-activated interfaces, haptic feedback, etc. Each technology is evaluated for its role in creating an inclusive in-vehicle environment. Furthermore, we highlight recent interface designs by leading companies and review emerging concepts and prototypes under development or testing, which show significant potential to address diverse accessibility requirements. Safety considerations, ethical concerns, and adoption of AVs are other major issues that require thorough investigation. Building on these findings, we propose an end-to-end design framework that addresses accessibility requirements across diverse user demographics, including older adults and individuals with physical or cognitive impairments. This work provides actionable insights for designers, researchers, and policymakers aiming to create safer and more comfortable environments in autonomous and regular vehicles accessible to all users.
♻ ☆ ITINERA: Integrating Spatial Optimization with Large Language Models for Open-domain Urban Itinerary Planning
Citywalk, a recently popular form of urban travel, requires genuine personalization and understanding of fine-grained requests compared to traditional itinerary planning. In this paper, we introduce the novel task of Open-domain Urban Itinerary Planning (OUIP), which generates personalized urban itineraries from user requests in natural language. We then present ITINERA, an OUIP system that integrates spatial optimization with large language models to provide customized urban itineraries based on user needs. This involves decomposing user requests, selecting candidate points of interest (POIs), ordering the POIs based on cluster-aware spatial optimization, and generating the itinerary. Experiments on real-world datasets and the performance of the deployed system demonstrate our system's capacity to deliver personalized and spatially coherent itineraries compared to current solutions. Source codes of ITINERA are available at https://github.com/YihongT/ITINERA.
♻ ☆ Integrating Multi-Modal Input Token Mixer Into Mamba-Based Decision Models: Decision MetaMamba
Sequence modeling with State Space models (SSMs) has demonstrated performance surpassing that of Transformers in various tasks, raising expectations for their potential to outperform the Decision Transformer and its enhanced variants in offline reinforcement learning (RL). However, decision models based on Mamba, a state-of-the-art SSM, failed to achieve superior performance compared to these enhanced Decision Transformers. We hypothesize that this limitation arises from information loss during the selective scanning phase. To address this, we propose the Decision MetaMamba (DMM), which augments Mamba with a token mixer in its input layer. This mixer explicitly accounts for the multimodal nature of offline RL inputs, comprising state, action, and return-to-go. The DMM demonstrates improved performance while significantly reducing parameter count compared to prior models. Notably, similar performance gains were achieved using a simple linear token mixer, emphasizing the importance of preserving information from proximate time steps rather than the specific design of the token mixer itself. This novel modification to Mamba's input layer represents a departure from conventional timestamp-based encoding approaches used in Transformers. By enhancing performance of Mamba in offline RL, characterized by memory efficiency and fast inference, this work opens new avenues for its broader application in future RL research.
comment: We have decided to withdraw this manuscript as we believe that the work requires significant improvements and further research to ensure its quality and impact. We are currently pursuing a more comprehensive approach to address the limitations of the current submission and plan to resubmit an improved version in the future
♻ ☆ Deep Learning-Based Automatic Multi-Level Airway Collapse Monitoring on Obstructive Sleep Apnea Patients
This study investigated the use of deep learning to identify multi-level upper airway collapses in obstructive sleep apnea (OSA) patients based on snoring sounds. We fi-ne-tuned ResNet-50 and Audio Spectrogram Transformer (AST) models using snoring recordings from 37 subjects undergoing drug-induced sleep endoscopy (DISE) between 2020 and 2021. Snoring sounds were labeled according to the VOTE (Velum, Orophar-ynx, Tongue Base, Epiglottis) classification, resulting in 259 V, 403 O, 77 T, 13 E, 1016 VO, 46 VT, 140 OT, 39 OE, 30 VOT, and 3150 non-snoring (N) 0.5-second clips. The models were trained for two multi-label classification tasks: identifying obstructions at V, O, T, and E levels, and identifying retropalatal (RP) and retroglossal (RG) obstruc-tions. Results showed AST slightly outperformed ResNet-50, demonstrating good abil-ity to identify V (F1-score: 0.71, MCC: 0.61, AUC: 0.89), O (F1-score: 0.80, MCC: 0.72, AUC: 0.94), and RP obstructions (F1-score: 0.86, MCC: 0.77, AUC: 0.97). However, both models struggled with T, E, and RG classifications due to limited data. Retrospective analysis of a full-night recording showed the potential to profile airway obstruction dynamics. We expect this information, combined with polysomnography and other clinical parameters, can aid clinical triage and treatment planning for OSA patients.
♻ ☆ CoMAL: Collaborative Multi-Agent Large Language Models for Mixed-Autonomy Traffic SDM25
The integration of autonomous vehicles into urban traffic has great potential to improve efficiency by reducing congestion and optimizing traffic flow systematically. In this paper, we introduce CoMAL (Collaborative Multi-Agent LLMs), a framework designed to address the mixed-autonomy traffic problem by collaboration among autonomous vehicles to optimize traffic flow. CoMAL is built upon large language models, operating in an interactive traffic simulation environment. It utilizes a Perception Module to observe surrounding agents and a Memory Module to store strategies for each agent. The overall workflow includes a Collaboration Module that encourages autonomous vehicles to discuss the effective strategy and allocate roles, a reasoning engine to determine optimal behaviors based on assigned roles, and an Execution Module that controls vehicle actions using a hybrid approach combining rule-based models. Experimental results demonstrate that CoMAL achieves superior performance on the Flow benchmark. Additionally, we evaluate the impact of different language models and compare our framework with reinforcement learning approaches. It highlights the strong cooperative capability of LLM agents and presents a promising solution to the mixed-autonomy traffic challenge. The code is available at https://github.com/Hyan-Yao/CoMAL.
comment: 8 pages, 4 figures, accepted to SDM25
♻ ☆ Diffusion as Shader: 3D-aware Video Diffusion for Versatile Video Generation Control
Diffusion models have demonstrated impressive performance in generating high-quality videos from text prompts or images. However, precise control over the video generation process, such as camera manipulation or content editing, remains a significant challenge. Existing methods for controlled video generation are typically limited to a single control type, lacking the flexibility to handle diverse control demands. In this paper, we introduce Diffusion as Shader (DaS), a novel approach that supports multiple video control tasks within a unified architecture. Our key insight is that achieving versatile video control necessitates leveraging 3D control signals, as videos are fundamentally 2D renderings of dynamic 3D content. Unlike prior methods limited to 2D control signals, DaS leverages 3D tracking videos as control inputs, making the video diffusion process inherently 3D-aware. This innovation allows DaS to achieve a wide range of video controls by simply manipulating the 3D tracking videos. A further advantage of using 3D tracking videos is their ability to effectively link frames, significantly enhancing the temporal consistency of the generated videos. With just 3 days of fine-tuning on 8 H800 GPUs using less than 10k videos, DaS demonstrates strong control capabilities across diverse tasks, including mesh-to-video generation, camera control, motion transfer, and object manipulation.
comment: Project page: https://igl-hkust.github.io/das/ Codes: https://github.com/IGL-HKUST/DiffusionAsShader
♻ ☆ A Survey on LLM-as-a-Judge
Accurate and consistent evaluation is crucial for decision-making across numerous fields, yet it remains a challenging task due to inherent subjectivity, variability, and scale. Large Language Models (LLMs) have achieved remarkable success across diverse domains, leading to the emergence of "LLM-as-a-Judge," where LLMs are employed as evaluators for complex tasks. With their ability to process diverse data types and provide scalable, cost-effective, and consistent assessments, LLMs present a compelling alternative to traditional expert-driven evaluations. However, ensuring the reliability of LLM-as-a-Judge systems remains a significant challenge that requires careful design and standardization. This paper provides a comprehensive survey of LLM-as-a-Judge, addressing the core question: How can reliable LLM-as-a-Judge systems be built? We explore strategies to enhance reliability, including improving consistency, mitigating biases, and adapting to diverse assessment scenarios. Additionally, we propose methodologies for evaluating the reliability of LLM-as-a-Judge systems, supported by a novel benchmark designed for this purpose. To advance the development and real-world deployment of LLM-as-a-Judge systems, we also discussed practical applications, challenges, and future directions. This survey serves as a foundational reference for researchers and practitioners in this rapidly evolving field.
comment: Corrected typos & more discussion on reasoning models 33 pages, 9 figures. arXiv admin note: text overlap with arXiv:2310.05470 by other authors
♻ ☆ Magic-Boost: Boost 3D Generation with Multi-View Conditioned Diffusion
Benefiting from the rapid development of 2D diffusion models, 3D content generation has witnessed significant progress. One promising solution is to finetune the pre-trained 2D diffusion models to produce multi-view images and then reconstruct them into 3D assets via feed-forward sparse-view reconstruction models. However, limited by the 3D inconsistency in the generated multi-view images and the low reconstruction resolution of the feed-forward reconstruction models, the generated 3d assets are still limited to incorrect geometries and blurry textures. To address this problem, we present a multi-view based refine method, named Magic-Boost, to further refine the generation results. In detail, we first propose a novel multi-view conditioned diffusion model which extracts 3d prior from the synthesized multi-view images to synthesize high-fidelity novel view images and then introduce a novel iterative-update strategy to adopt it to provide precise guidance to refine the coarse generated results through a fast optimization process. Conditioned on the strong 3d priors extracted from the synthesized multi-view images, Magic-Boost is capable of providing precise optimization guidance that well aligns with the coarse generated 3D assets, enriching the local detail in both geometry and texture within a short time ($\sim15$min). Extensive experiments show Magic-Boost greatly enhances the coarse generated inputs, generates high-quality 3D assets with rich geometric and textural details. (Project Page: https://magic-research.github.io/magic-boost/)
♻ ☆ ViLBias: A Comprehensive Framework for Bias Detection through Linguistic and Visual Cues , presenting Annotation Strategies, Evaluation, and Key Challenges
The integration of Large Language Models (LLMs) and Vision-Language Models (VLMs) opens new avenues for addressing complex challenges in multimodal content analysis, particularly in biased news detection. This study introduces VLBias, a framework that leverages state-of-the-art LLMs and VLMs to detect linguistic and visual biases in news content. We present a multimodal dataset comprising textual content and corresponding images from diverse news sources. We propose a hybrid annotation framework that combines LLM-based annotations with human review to ensure high-quality labeling while reducing costs and enhancing scalability. Our evaluation compares the performance of state-of-the-art SLMs and LLMs for both modalities (text and images) and the results reveal that while SLMs are computationally efficient, LLMs demonstrate superior accuracy in identifying subtle framing and text-visual inconsistencies. Furthermore, empirical analysis shows that incorporating visual cues alongside textual data improves bias detection accuracy by 3 to 5%. This study provides a comprehensive exploration of LLMs, SLMs, and VLMs as tools for detecting multimodal biases in news content and highlights their respective strengths, limitations, and potential for future applications
comment: Under review
♻ ☆ More is not always better? Enhancing Many-Shot In-Context Learning with Differentiated and Reweighting Objectives
Large language models (LLMs) excel at few-shot in-context learning (ICL) without requiring parameter updates. However, as the number of ICL demonstrations increases from a few to many, performance tends to plateau and eventually decline. We identify two primary causes for this trend: the suboptimal negative log-likelihood (NLL) optimization objective and the incremental data noise. To address these issues, we introduce DrICL, a novel optimization method that enhances model performance through Differentiated Learning and advantage-based Reweighting objectives. Globally, DrICL utilizes differentiated learning to optimize the NLL objective, ensuring that many-shot performance surpasses zero-shot levels. Locally, it dynamically adjusts the weighting of many-shot demonstrations by leveraging cumulative advantages inspired by reinforcement learning, thereby improving generalization. This approach allows the model to handle varying numbers of shots effectively, mitigating the impact of noisy data. Recognizing the lack of multi-task datasets with diverse many-shot distributions, we develop the Many-Shot ICL Benchmark (ICL-50)-a large-scale benchmark of 50 tasks that cover shot numbers from 1 to 350 within sequences of up to 8,000 tokens-for fine-tuning purposes. ICL-50 facilitates the evaluation of many-shot ICL strategies across seven prominent NLP tasks and 50 distinct datasets. Experimental results demonstrate that LLMs enhanced with DrICL achieve significant improvements in many-shot setups across various tasks, including both in-domain and out-of-domain scenarios. We release the code and benchmark dataset hoping to facilitate further research in many-shot ICL.
comment: 13 pages, 8 figures, 11 tables
♻ ☆ Constraints as Rewards: Reinforcement Learning for Robots without Reward Functions
Reinforcement learning has become an essential algorithm for generating complex robotic behaviors. However, to learn such behaviors, it is necessary to design a reward function that describes the task, which often consists of multiple objectives that needs to be balanced. This tuning process is known as reward engineering and typically involves extensive trial-and-error. In this paper, to avoid this trial-and-error process, we propose the concept of Constraints as Rewards (CaR). CaR formulates the task objective using multiple constraint functions instead of a reward function and solves a reinforcement learning problem with constraints using the Lagrangian-method. By adopting this approach, different objectives are automatically balanced, because Lagrange multipliers serves as the weights among the objectives. In addition, we will demonstrate that constraints, expressed as inequalities, provide an intuitive interpretation of the optimization target designed for the task. We apply the proposed method to the standing-up motion generation task of a six-wheeled-telescopic-legged robot and demonstrate that the proposed method successfully acquires the target behavior, even though it is challenging to learn with manually designed reward functions.
♻ ☆ RAPGen: An Approach for Fixing Code Inefficiencies in Zero-Shot
Performance bugs are non-functional bugs that can even manifest in well-tested commercial products. Fixing these performance bugs is an important yet challenging problem. In this work, we address this challenge and present a new approach called Retrieval-Augmented Prompt Generation (RAPGen). Given a code snippet with a performance issue, RAPGen first retrieves a prompt instruction from a pre-constructed knowledge-base of previous performance bug fixes and then generates a prompt using the retrieved instruction. It then uses this prompt on a Large Language Model (such as Codex) in zero-shot to generate a fix. We compare our approach with the various prompt variations and state of the art methods in the task of performance bug fixing. Our evaluation shows that RAPGen can generate performance improvement suggestions equivalent or better than a developer in ~60% of the cases, getting ~42% of them verbatim, in an expert-verified dataset of past performance changes made by C# developers.
♻ ☆ PalmBench: A Comprehensive Benchmark of Compressed Large Language Models on Mobile Platforms
Deploying large language models (LLMs) locally on mobile devices is advantageous in scenarios where transmitting data to remote cloud servers is either undesirable due to privacy concerns or impractical due to network connection. Recent advancements (MLC, 2023a; Gerganov, 2023) have facilitated the local deployment of LLMs. However, local deployment also presents challenges, particularly in balancing quality (generative performance), latency, and throughput within the hardware constraints of mobile devices. In this paper, we introduce our lightweight, all-in-one automated benchmarking framework that allows users to evaluate LLMs on mobile devices. We provide a comprehensive benchmark of various popular LLMs with different quantization configurations (both weights and activations) across multiple mobile platforms with varying hardware capabilities. Unlike traditional benchmarks that assess full-scale models on high-end GPU clusters, we focus on evaluating resource efficiency (memory and power consumption) and harmful output for compressed models on mobile devices. Our key observations include i) differences in energy efficiency and throughput across mobile platforms; ii) the impact of quantization on memory usage, GPU execution time, and power consumption; and iii) accuracy and performance degradation of quantized models compared to their non-quantized counterparts; and iv) the frequency of hallucinations and toxic content generated by compressed LLMs on mobile devices.
comment: 10 pages
♻ ☆ Active Inference for Self-Organizing Multi-LLM Systems: A Bayesian Thermodynamic Approach to Adaptation
This paper introduces a novel approach to creating adaptive language agents by integrating active inference with large language models (LLMs). While LLMs demonstrate remarkable capabilities, their reliance on static prompts limits adaptation to new information and changing environments. We address this by implementing an active inference framework that acts as a cognitive layer above an LLM-based agent, dynamically adjusting prompts and search strategies through principled information-seeking behavior. Our framework models the environment using three state factors (prompt, search, and information states) with seven observation modalities capturing quality metrics. By framing the agent's learning through the free energy principle, we enable systematic exploration of prompt combinations and search strategies. Experimental results demonstrate the effectiveness of this approach, with the agent developing accurate models of environment dynamics evidenced by emergent structure in observation matrices. Action selection patterns reveal sophisticated exploration-exploitation behavior, transitioning from initial information-gathering to targeted prompt testing. The integration of thermodynamic principles with language model capabilities provides a principled framework for creating robust, adaptable agents, extending active inference beyond traditional low-dimensional control problems to high-dimensional, language-driven environments.
♻ ☆ Is Table Retrieval a Solved Problem? Exploring Join-Aware Multi-Table Retrieval ACL 2024
Retrieving relevant tables containing the necessary information to accurately answer a given question over tables is critical to open-domain question-answering (QA) systems. Previous methods assume the answer to such a question can be found either in a single table or multiple tables identified through question decomposition or rewriting. However, neither of these approaches is sufficient, as many questions require retrieving multiple tables and joining them through a join plan that cannot be discerned from the user query itself. If the join plan is not considered in the retrieval stage, the subsequent steps of reasoning and answering based on those retrieved tables are likely to be incorrect. To address this problem, we introduce a method that uncovers useful join relations for any query and database during table retrieval. We use a novel re-ranking method formulated as a mixed-integer program that considers not only table-query relevance but also table-table relevance that requires inferring join relationships. Our method outperforms the state-of-the-art approaches for table retrieval by up to 9.3% in F1 score and for end-to-end QA by up to 5.4% in accuracy.
comment: ACL 2024. Dataset and code are available at https://peterbaile.github.io/jar
♻ ☆ NV-Embed: Improved Techniques for Training LLMs as Generalist Embedding Models
Decoder-only large language model (LLM)-based embedding models are beginning to outperform BERT or T5-based embedding models in general-purpose text embedding tasks, including dense vector-based retrieval. In this work, we introduce the NV-Embed model, incorporating architectural designs, training procedures, and curated datasets to significantly enhance the performance of LLM as a versatile embedding model, while maintaining its simplicity and reproducibility. For model architecture, we propose a latent attention layer to obtain pooled embeddings, which consistently improves retrieval and downstream task accuracy compared to mean pooling or using the last token embedding from LLMs. To enhance representation learning, we remove the causal attention mask of LLMs during contrastive training. For training algorithm, we introduce a two-stage contrastive instruction-tuning method. It first applies contrastive training with instructions on retrieval datasets, utilizing in-batch negatives and curated hard negative examples. At stage-2, it blends various non-retrieval into instruction tuning, which not only enhances non-retrieval task accuracy but also improves retrieval performance. For training data, we utilize the hard-negative mining, synthetic data generation and existing public available datasets to boost the performance of embedding model. By combining these techniques, our NV-Embed-v1 and NV-Embed-v2 models obtained the No.1 position on the Massive Text Embedding Benchmark (MTEB) (as of May 24, 2024 and August 30, 2024, respectively) across 56 embedding tasks, demonstrating the sustained effectiveness of the proposed methods over time. Additionally, it achieved the highest scores in the Long Doc section and the second-highest scores in the QA section of the AIR Benchmark, which covers a range of out-of-domain information retrieval topics beyond those in MTEB.
comment: We open-source the model at: https://huggingface.co/nvidia/NV-Embed-v2
♻ ☆ Discriminative Class Tokens for Text-to-Image Diffusion Models ICCV 2023
Recent advances in text-to-image diffusion models have enabled the generation of diverse and high-quality images. While impressive, the images often fall short of depicting subtle details and are susceptible to errors due to ambiguity in the input text. One way of alleviating these issues is to train diffusion models on class-labeled datasets. This approach has two disadvantages: (i) supervised datasets are generally small compared to large-scale scraped text-image datasets on which text-to-image models are trained, affecting the quality and diversity of the generated images, or (ii) the input is a hard-coded label, as opposed to free-form text, limiting the control over the generated images. In this work, we propose a non-invasive fine-tuning technique that capitalizes on the expressive potential of free-form text while achieving high accuracy through discriminative signals from a pretrained classifier. This is done by iteratively modifying the embedding of an added input token of a text-to-image diffusion model, by steering generated images toward a given target class according to a classifier. Our method is fast compared to prior fine-tuning methods and does not require a collection of in-class images or retraining of a noise-tolerant classifier. We evaluate our method extensively, showing that the generated images are: (i) more accurate and of higher quality than standard diffusion models, (ii) can be used to augment training data in a low-resource setting, and (iii) reveal information about the data used to train the guiding classifier. The code is available at \url{https://github.com/idansc/discriminative_class_tokens}.
comment: ICCV 2023
♻ ☆ Arcee's MergeKit: A Toolkit for Merging Large Language Models
The rapid expansion of the open-source language model landscape presents an opportunity to merge the competencies of these model checkpoints by combining their parameters. Advances in transfer learning, the process of fine-tuning pretrained models for specific tasks, has resulted in the development of vast amounts of task-specific models, typically specialized in individual tasks and unable to utilize each other's strengths. Model merging facilitates the creation of multitask models without the need for additional training, offering a promising avenue for enhancing model performance and versatility. By preserving the intrinsic capabilities of the original models, model merging addresses complex challenges in AI - including the difficulties of catastrophic forgetting and multitask learning. To support this expanding area of research, we introduce MergeKit, a comprehensive, open-source library designed to facilitate the application of model merging strategies. MergeKit offers an extensible framework to efficiently merge models on any hardware, providing utility to researchers and practitioners. To date, thousands of models have been merged by the open-source community, leading to the creation of some of the worlds most powerful open-source model checkpoints, as assessed by the Open LLM Leaderboard. The library is accessible at https://github.com/arcee-ai/MergeKit.
comment: 11 pages, 4 figures
♻ ☆ Masked Image Modeling: A Survey
In this work, we survey recent studies on masked image modeling (MIM), an approach that emerged as a powerful self-supervised learning technique in computer vision. The MIM task involves masking some information, e.g.~pixels, patches, or even latent representations, and training a model, usually an autoencoder, to predicting the missing information by using the context available in the visible part of the input. We identify and formalize two categories of approaches on how to implement MIM as a pretext task, one based on reconstruction and one based on contrastive learning. Then, we construct a taxonomy and review the most prominent papers in recent years. We complement the manually constructed taxonomy with a dendrogram obtained by applying a hierarchical clustering algorithm. We further identify relevant clusters via manually inspecting the resulting dendrogram. Our review also includes datasets that are commonly used in MIM research. We aggregate the performance results of various masked image modeling methods on the most popular datasets, to facilitate the comparison of competing methods. Finally, we identify research gaps and propose several interesting directions of future work. We supplement our survey with the following public repository containing organized references: https://github.com/vladhondru25/MIM-Survey.
comment: Revised version
♻ ☆ Real Time Multi Organ Classification on Computed Tomography Images
Organ segmentation is a fundamental task in medical imaging since it is useful for many clinical automation pipelines. However, some tasks do not require full segmentation. Instead, a classifier can identify the selected organ without segmenting the entire volume. In this study, we demonstrate a classifier based method to obtain organ labels in real time by using a large context size with a sparse data sampling strategy. Although our method operates as an independent classifier at query locations, it can generate full segmentations by querying grid locations at any resolution, offering faster performance than segmentation algorithms. We compared our method with existing segmentation techniques, demonstrating its superior runtime potential for practical applications in medical imaging.
comment: 11 pages, Organ Classification, Organ Segmentation
♻ ☆ Separating Tongue from Thought: Activation Patching Reveals Language-Agnostic Concept Representations in Transformers ICML 2024
A central question in multilingual language modeling is whether large language models (LLMs) develop a universal concept representation, disentangled from specific languages. In this paper, we address this question by analyzing latent representations (latents) during a word translation task in transformer-based LLMs. We strategically extract latents from a source translation prompt and insert them into the forward pass on a target translation prompt. By doing so, we find that the output language is encoded in the latent at an earlier layer than the concept to be translated. Building on this insight, we conduct two key experiments. First, we demonstrate that we can change the concept without changing the language and vice versa through activation patching alone. Second, we show that patching with the mean over latents across different languages does not impair and instead improves the models' performance in translating the concept. Our results provide evidence for the existence of language-agnostic concept representations within the investigated models.
comment: 18 pages, 14 figures, previous version published under the title "How Do Llamas Process Multilingual Text? A Latent Exploration through Activation Patching" at the ICML 2024 mechanistic interpretability workshop at https://openreview.net/forum?id=0ku2hIm4BS
♻ ☆ Learning Transferable Features for Implicit Neural Representations
Implicit neural representations (INRs) have demonstrated success in a variety of applications, including inverse problems and neural rendering. An INR is typically trained to capture one signal of interest, resulting in learned neural features that are highly attuned to that signal. Assumed to be less generalizable, we explore the aspect of transferability of such learned neural features for fitting similar signals. We introduce a new INR training framework, STRAINER that learns transferrable features for fitting INRs to new signals from a given distribution, faster and with better reconstruction quality. Owing to the sequential layer-wise affine operations in an INR, we propose to learn transferable representations by sharing initial encoder layers across multiple INRs with independent decoder layers. At test time, the learned encoder representations are transferred as initialization for an otherwise randomly initialized INR. We find STRAINER to yield extremely powerful initialization for fitting images from the same domain and allow for $\approx +10dB$ gain in signal quality early on compared to an untrained INR itself. STRAINER also provides a simple way to encode data-driven priors in INRs. We evaluate STRAINER on multiple in-domain and out-of-domain signal fitting tasks and inverse problems and further provide detailed analysis and discussion on the transferability of STRAINER's features. Our demo can be accessed at https://kushalvyas.github.io/strainer.html .
comment: Project Website: https://kushalvyas.github.io/strainer.html
♻ ☆ Detecting Cognitive Impairment and Psychological Well-being among Older Adults Using Facial, Acoustic, Linguistic, and Cardiovascular Patterns Derived from Remote Conversations
The aging society urgently requires scalable methods to monitor cognitive decline and identify social and psychological factors indicative of dementia risk in older adults. Our machine learning (ML) models captured facial, acoustic, linguistic, and cardiovascular features from 39 individuals with normal cognition or Mild Cognitive Impairment derived from remote video conversations and classified cognitive status, social isolation, neuroticism, and psychological well-being. Our model could distinguish Clinical Dementia Rating Scale (CDR) of 0.5 (vs. 0) with 0.78 area under the receiver operating characteristic curve (AUC), social isolation with 0.75 AUC, neuroticism with 0.71 AUC, and negative affect scales with 0.79 AUC. Recent advances in machine learning offer new opportunities to remotely detect cognitive impairment and assess associated factors, such as neuroticism and psychological well-being. Our experiment showed that speech and language patterns were more useful for quantifying cognitive impairment, whereas facial expression and cardiovascular patterns using photoplethysmography (PPG) were more useful for quantifying personality and psychological well-being.
♻ ☆ Gaze-Informed Vision Transformers: Predicting Driving Decisions Under Uncertainty
Vision Transformers (ViT) have advanced computer vision, yet their efficacy in complex tasks like driving remains less explored. This study enhances ViT by integrating human eye gaze, captured via eye-tracking, to increase prediction accuracy in driving scenarios under uncertainty in both real-world and virtual reality scenarios. First, we establish the significance of human eye gaze in left-right driving decisions, as observed in both human subjects and a ViT model. By comparing the similarity between human fixation maps and ViT attention weights, we reveal the dynamics of overlap across individual heads and layers. This overlap demonstrates that fixation data can guide the model in distributing its attention weights more effectively. We introduce the fixation-attention intersection (FAX) loss, a novel loss function that significantly improves ViT performance under high uncertainty conditions. Our results show that ViT, when trained with FAX loss, aligns its attention with human gaze patterns. This gaze-informed approach has significant potential for driver behavior analysis, as well as broader applications in human-centered AI systems, extending ViT's use to complex visual environments.
comment: 25 pages, 9 figures, 3 tables
♻ ☆ SepsisCalc: Integrating Clinical Calculators into Early Sepsis Prediction via Dynamic Temporal Graph Construction
Sepsis is an organ dysfunction caused by a deregulated immune response to an infection. Early sepsis prediction and identification allow for timely intervention, leading to improved clinical outcomes. Clinical calculators (e.g., the six-organ dysfunction assessment of SOFA) play a vital role in sepsis identification within clinicians' workflow, providing evidence-based risk assessments essential for sepsis diagnosis. However, artificial intelligence (AI) sepsis prediction models typically generate a single sepsis risk score without incorporating clinical calculators for assessing organ dysfunctions, making the models less convincing and transparent to clinicians. To bridge the gap, we propose to mimic clinicians' workflow with a novel framework SepsisCalc to integrate clinical calculators into the predictive model, yielding a clinically transparent and precise model for utilization in clinical settings. Practically, clinical calculators usually combine information from multiple component variables in Electronic Health Records (EHR), and might not be applicable when the variables are (partially) missing. We mitigate this issue by representing EHRs as temporal graphs and integrating a learning module to dynamically add the accurately estimated calculator to the graphs. Experimental results on real-world datasets show that the proposed model outperforms state-of-the-art methods on sepsis prediction tasks. Moreover, we developed a system to identify organ dysfunctions and potential sepsis risks, providing a human-AI interaction tool for deployment, which can help clinicians understand the prediction outputs and prepare timely interventions for the corresponding dysfunctions, paving the way for actionable clinical decision-making support for early intervention.
♻ ☆ GUTS: Generalized Uncertainty-Aware Thompson Sampling for Multi-Agent Active Search ICRA
Robotic solutions for quick disaster response are essential to ensure minimal loss of life, especially when the search area is too dangerous or too vast for human rescuers. We model this problem as an asynchronous multi-agent active-search task where each robot aims to efficiently seek objects of interest (OOIs) in an unknown environment. This formulation addresses the requirement that search missions should focus on quick recovery of OOIs rather than full coverage of the search region. Previous approaches fail to accurately model sensing uncertainty, account for occlusions due to foliage or terrain, or consider the requirement for heterogeneous search teams and robustness to hardware and communication failures. We present the Generalized Uncertainty-aware Thompson Sampling (GUTS) algorithm, which addresses these issues and is suitable for deployment on heterogeneous multi-robot systems for active search in large unstructured environments. We show through simulation experiments that GUTS consistently outperforms existing methods such as parallelized Thompson Sampling and exhaustive search, recovering all OOIs in 80% of all runs. In contrast, existing approaches recover all OOIs in less than 40% of all runs. We conduct field tests using our multi-robot system in an unstructured environment with a search area of approximately 75,000 sq. m. Our system demonstrates robustness to various failure modes, achieving full recovery of OOIs (where feasible) in every field run, and significantly outperforming our baseline.
comment: 7 pages, 5 figures, 1 table, for associated video see: https://youtu.be/K0jkzdQ_j2E , published in International Conference on Robotics and Automation (ICRA) 2023. Outstanding Deployed Systems Paper Winner
♻ ☆ Proactive Adversarial Defense: Harnessing Prompt Tuning in Vision-Language Models to Detect Unseen Backdoored Images
Backdoor attacks pose a critical threat by embedding hidden triggers into inputs, causing models to misclassify them into target labels. While extensive research has focused on mitigating these attacks in object recognition models through weight fine-tuning, much less attention has been given to detecting backdoored samples directly. Given the vast datasets used in training, manual inspection for backdoor triggers is impractical, and even state-of-the-art defense mechanisms fail to fully neutralize their impact. To address this gap, we introduce a groundbreaking method to detect unseen backdoored images during both training and inference. Leveraging the transformative success of prompt tuning in Vision Language Models (VLMs), our approach trains learnable text prompts to differentiate clean images from those with hidden backdoor triggers. Experiments demonstrate the exceptional efficacy of this method, achieving an impressive average accuracy of 86% across two renowned datasets for detecting unseen backdoor triggers, establishing a new standard in backdoor defense.
♻ ☆ Explaining the Behavior of Black-Box Prediction Algorithms with Causal Learning
Causal approaches to post-hoc explainability for black-box prediction models (e.g., deep neural networks trained on image pixel data) have become increasingly popular. However, existing approaches have two important shortcomings: (i) the "explanatory units" are micro-level inputs into the relevant prediction model, e.g., image pixels, rather than interpretable macro-level features that are more useful for understanding how to possibly change the algorithm's behavior, and (ii) existing approaches assume there exists no unmeasured confounding between features and target model predictions, which fails to hold when the explanatory units are macro-level variables. Our focus is on the important setting where the analyst has no access to the inner workings of the target prediction algorithm, rather only the ability to query the output of the model in response to a particular input. To provide causal explanations in such a setting, we propose to learn causal graphical representations that allow for arbitrary unmeasured confounding among features. We demonstrate the resulting graph can differentiate between interpretable features that causally influence model predictions versus those that are merely associated with model predictions due to confounding. Our approach is motivated by a counterfactual theory of causal explanation wherein good explanations point to factors that are "difference-makers" in an interventionist sense.
Robotics 44
☆ Beyond Sight: Finetuning Generalist Robot Policies with Heterogeneous Sensors via Language Grounding
Interacting with the world is a multi-sensory experience: achieving effective general-purpose interaction requires making use of all available modalities -- including vision, touch, and audio -- to fill in gaps from partial observation. For example, when vision is occluded reaching into a bag, a robot should rely on its senses of touch and sound. However, state-of-the-art generalist robot policies are typically trained on large datasets to predict robot actions solely from visual and proprioceptive observations. In this work, we propose FuSe, a novel approach that enables finetuning visuomotor generalist policies on heterogeneous sensor modalities for which large datasets are not readily available by leveraging natural language as a common cross-modal grounding. We combine a multimodal contrastive loss with a sensory-grounded language generation loss to encode high-level semantics. In the context of robot manipulation, we show that FuSe enables performing challenging tasks that require reasoning jointly over modalities such as vision, touch, and sound in a zero-shot setting, such as multimodal prompting, compositional cross-modal prompting, and descriptions of objects it interacts with. We show that the same recipe is applicable to widely different generalist policies, including both diffusion-based generalist policies and large vision-language-action (VLA) models. Extensive experiments in the real world show that FuSeis able to increase success rates by over 20% compared to all considered baselines.
☆ "Can you be my mum?": Manipulating Social Robots in the Large Language Models Era
Recent advancements in robots powered by large language models have enhanced their conversational abilities, enabling interactions closely resembling human dialogue. However, these models introduce safety and security concerns in HRI, as they are vulnerable to manipulation that can bypass built-in safety measures. Imagining a social robot deployed in a home, this work aims to understand how everyday users try to exploit a language model to violate ethical principles, such as by prompting the robot to act like a life partner. We conducted a pilot study involving 21 university students who interacted with a Misty robot, attempting to circumvent its safety mechanisms across three scenarios based on specific HRI ethical principles: attachment, freedom, and empathy. Our results reveal that participants employed five techniques, including insulting and appealing to pity using emotional language. We hope this work can inform future research in designing strong safeguards to ensure ethical and secure human-robot interactions.
comment: 10 pages, 2 figures
☆ FrontierNet: Learning Visual Cues to Explore
Exploration of unknown environments is crucial for autonomous robots; it allows them to actively reason and decide on what new data to acquire for tasks such as mapping, object discovery, and environmental assessment. Existing methods, such as frontier-based methods, rely heavily on 3D map operations, which are limited by map quality and often overlook valuable context from visual cues. This work aims at leveraging 2D visual cues for efficient autonomous exploration, addressing the limitations of extracting goal poses from a 3D map. We propose a image-only frontier-based exploration system, with FrontierNet as a core component developed in this work. FrontierNet is a learning-based model that (i) detects frontiers, and (ii) predicts their information gain, from posed RGB images enhanced by monocular depth priors. Our approach provides an alternative to existing 3D-dependent exploration systems, achieving a 16% improvement in early-stage exploration efficiency, as validated through extensive simulations and real-world experiments.
☆ MobileH2R: Learning Generalizable Human to Mobile Robot Handover Exclusively from Scalable and Diverse Synthetic Data
This paper introduces MobileH2R, a framework for learning generalizable vision-based human-to-mobile-robot (H2MR) handover skills. Unlike traditional fixed-base handovers, this task requires a mobile robot to reliably receive objects in a large workspace enabled by its mobility. Our key insight is that generalizable handover skills can be developed in simulators using high-quality synthetic data, without the need for real-world demonstrations. To achieve this, we propose a scalable pipeline for generating diverse synthetic full-body human motion data, an automated method for creating safe and imitation-friendly demonstrations, and an efficient 4D imitation learning method for distilling large-scale demonstrations into closed-loop policies with base-arm coordination. Experimental evaluations in both simulators and the real world show significant improvements (at least +15% success rate) over baseline methods in all cases. Experiments also validate that large-scale and diverse synthetic data greatly enhances robot learning, highlighting our scalable framework.
☆ Understanding Expectations for a Robotic Guide Dog for Visually Impaired People
Robotic guide dogs hold significant potential to enhance the autonomy and mobility of blind or visually impaired (BVI) individuals by offering universal assistance over unstructured terrains at affordable costs. However, the design of robotic guide dogs remains underexplored, particularly in systematic aspects such as gait controllers, navigation behaviors, interaction methods, and verbal explanations. Our study addresses this gap by conducting user studies with 18 BVI participants, comprising 15 cane users and three guide dog users. Participants interacted with a quadrupedal robot and provided both quantitative and qualitative feedback. Our study revealed several design implications, such as a preference for a learning-based controller and a rigid handle, gradual turns with asymmetric speeds, semantic communication methods, and explainability. The study also highlighted the importance of customization to support users with diverse backgrounds and preferences, along with practical concerns such as battery life, maintenance, and weather issues. These findings offer valuable insights and design implications for future research and development of robotic guide dogs.
comment: 12 pages, 4 figures, Proceedings of the 2025 ACM/IEEE International Conference on Human-Robot Interaction (HRI'25)
☆ A 65 nm Bayesian Neural Network Accelerator with 360 fJ/Sample In-Word GRNG for AI Uncertainty Estimation
Uncertainty estimation is an indispensable capability for AI-enabled, safety-critical applications, e.g. autonomous vehicles or medical diagnosis. Bayesian neural networks (BNNs) use Bayesian statistics to provide both classification predictions and uncertainty estimation, but they suffer from high computational overhead associated with random number generation and repeated sample iterations. Furthermore, BNNs are not immediately amenable to acceleration through compute-in-memory architectures due to the frequent memory writes necessary after each RNG operation. To address these challenges, we present an ASIC that integrates 360 fJ/Sample Gaussian RNG directly into the SRAM memory words. This integration reduces RNG overhead and enables fully-parallel compute-in-memory operations for BNNs. The prototype chip achieves 5.12 GSa/s RNG throughput and 102 GOp/s neural network throughput while occupying 0.45 mm2, bringing AI uncertainty estimation to edge computation.
comment: 7 pages, 12 figures
☆ Cyber-Physical Steganography in Robotic Motion Control
Steganography, the art of information hiding, has continually evolved across visual, auditory and linguistic domains, adapting to the ceaseless interplay between steganographic concealment and steganalytic revelation. This study seeks to extend the horizons of what constitutes a viable steganographic medium by introducing a steganographic paradigm in robotic motion control. Based on the observation of the robot's inherent sensitivity to changes in its environment, we propose a methodology to encode messages as environmental stimuli influencing the motions of the robotic agent and to decode messages from the resulting motion trajectory. The constraints of maximal robot integrity and minimal motion deviation are established as fundamental principles underlying secrecy. As a proof of concept, we conduct experiments in simulated environments across various manipulation tasks, incorporating robotic embodiments equipped with generalist multimodal policies.
☆ SplineFormer: An Explainable Transformer-Based Approach for Autonomous Endovascular Navigation
Endovascular navigation is a crucial aspect of minimally invasive procedures, where precise control of curvilinear instruments like guidewires is critical for successful interventions. A key challenge in this task is accurately predicting the evolving shape of the guidewire as it navigates through the vasculature, which presents complex deformations due to interactions with the vessel walls. Traditional segmentation methods often fail to provide accurate real-time shape predictions, limiting their effectiveness in highly dynamic environments. To address this, we propose SplineFormer, a new transformer-based architecture, designed specifically to predict the continuous, smooth shape of the guidewire in an explainable way. By leveraging the transformer's ability, our network effectively captures the intricate bending and twisting of the guidewire, representing it as a spline for greater accuracy and smoothness. We integrate our SplineFormer into an end-to-end robot navigation system by leveraging the condensed information. The experimental results demonstrate that our SplineFormer is able to perform endovascular navigation autonomously and achieves a 50% success rate when cannulating the brachiocephalic artery on the real robot.
comment: 8 pages
☆ Safe Reinforcement Learning with Minimal Supervision ICML 2023
Reinforcement learning (RL) in the real world necessitates the development of procedures that enable agents to explore without causing harm to themselves or others. The most successful solutions to the problem of safe RL leverage offline data to learn a safe-set, enabling safe online exploration. However, this approach to safe-learning is often constrained by the demonstrations that are available for learning. In this paper we investigate the influence of the quantity and quality of data used to train the initial safe learning problem offline on the ability to learn safe-RL policies online. Specifically, we focus on tasks with spatially extended goal states where we have few or no demonstrations available. Classically this problem is addressed either by using hand-designed controllers to generate data or by collecting user-generated demonstrations. However, these methods are often expensive and do not scale to more complex tasks and environments. To address this limitation we propose an unsupervised RL-based offline data collection procedure, to learn complex and scalable policies without the need for hand-designed controllers or user demonstrations. Our research demonstrates the significance of providing sufficient demonstrations for agents to learn optimal safe-RL policies online, and as a result, we propose optimistic forgetting, a novel online safe-RL approach that is practical for scenarios with limited data. Further, our unsupervised data collection approach highlights the need to balance diversity and optimality for safe online exploration.
comment: Initially submitted to ICML 2023
☆ Research on environment perception and behavior prediction of intelligent UAV based on semantic communication
The convergence of drone delivery systems, virtual worlds, and blockchain has transformed logistics and supply chain management, providing a fast, and environmentally friendly alternative to traditional ground transportation methods;Provide users with a real-world experience, virtual service providers need to collect up-to-the-minute delivery information from edge devices. To address this challenge, 1) a reinforcement learning approach is introduced to enable drones with fast training capabilities and the ability to autonomously adapt to new virtual scenarios for effective resource allocation.2) A semantic communication framework for meta-universes is proposed, which utilizes the extraction of semantic information to reduce the communication cost and incentivize the transmission of information for meta-universe services.3) In order to ensure that user information security, a lightweight authentication and key agreement scheme is designed between the drone and the user by introducing blockchain technology. In our experiments, the drone adaptation performance is improved by about 35\%, and the local offloading rate can reach 90\% with the increase of the number of base stations. The semantic communication system proposed in this paper is compared with the Cross Entropy baseline model. Introducing blockchain technology the throughput of the transaction is maintained at a stable value with different number of drones.
☆ Hybrid Artificial Intelligence Strategies for Drone Navigation
Objective: This paper describes the development of hybrid artificial intelligence strategies for drone navigation. Methods: The navigation module combines a deep learning model with a rule-based engine depending on the agent state. The deep learning model has been trained using reinforcement learning. The rule-based engine uses expert knowledge to deal with specific situations. The navigation module incorporates several strategies to explain the drone decision based on its observation space, and different mechanisms for including human decisions in the navigation process. Finally, this paper proposes an evaluation methodology based on defining several scenarios and analyzing the performance of the different strategies according to metrics adapted to each scenario. Results: Two main navigation problems have been studied. For the first scenario (reaching known targets), it has been possible to obtain a 90% task completion rate, reducing significantly the number of collisions thanks to the rule-based engine. For the second scenario, it has been possible to reduce 20% of the time required to locate all the targets using the reinforcement learning model. Conclusions: Reinforcement learning is a very good strategy to learn policies for drone navigation, but in critical situations, it is necessary to complement it with a rule-based module to increase task success rate.
☆ A Survey on Path Planning Problem of Rolling Contacts: Approaches, Applications and Future Challenges
This paper explores an eclectic range of path-planning methodologies engineered for rolling surfaces. Our focus is on the kinematic intricacies of rolling contact systems, which are investigated through a motion planning lens. Beyond summarizing the approaches to single-contact rotational surfaces, we explore the challenging domain of spin-rolling multi-contact systems. Our work proposes solutions for the higher-dimensional problem of multiple rotating objects in contact. Venturing beyond kinematics, these methodologies find application across a spectrum of domains, including rolling robots, reconfigurable swarm robotics, micro/nano manipulation, and nonprehensile manipulations. Through meticulously examining established planning strategies, we unveil their practical implementations in various real-world scenarios, from intricate dexterous manipulation tasks to the nimble manoeuvring of rolling robots and even shape planning of multi-contact swarms of particles. This study introduces the persistent challenges and unexplored frontiers of robotics, intricately linked to both path planning and mechanism design. As we illuminate existing solutions, we also set the stage for future breakthroughs in this dynamic and rapidly evolving field by highlighting the critical importance of addressing rolling contact problems.
comment: 38 pages, 8 figures
☆ Dual-Force: Enhanced Offline Diversity Maximization under Imitation Constraints
While many algorithms for diversity maximization under imitation constraints are online in nature, many applications require offline algorithms without environment interactions. Tackling this problem in the offline setting, however, presents significant challenges that require non-trivial, multi-stage optimization processes with non-stationary rewards. In this work, we present a novel offline algorithm that enhances diversity using an objective based on Van der Waals (VdW) force and successor features, and eliminates the need to learn a previously used skill discriminator. Moreover, by conditioning the value function and policy on a pre-trained Functional Reward Encoding (FRE), our method allows for better handling of non-stationary rewards and provides zero-shot recall of all skills encountered during training, significantly expanding the set of skills learned in prior work. Consequently, our algorithm benefits from receiving a consistently strong diversity signal (VdW), and enjoys more stable and efficient training. We demonstrate the effectiveness of our method in generating diverse skills for two robotic tasks in simulation: locomotion of a quadruped and local navigation with obstacle traversal.
☆ Implementation Of Wildlife Observation System
By entering the habitats of wild animals, wildlife watchers can engage closely with them. There are some wild animals that are not always safe to approach. Therefore, we suggest this system for observing wildlife. Android phones can be used by users to see live events. Wildlife observers can thus get a close-up view of wild animals by employing this robotic vehicle. The commands are delivered to the system via a Wi-Fi module. As we developed the technology to enable our robot to deal with the challenges of maintaining continuous surveillance of a target, we found that our robot needed to be able to move silently and purposefully when monitoring a natural target without being noticed. After processing the data, the computer sends commands to the motors to turn on. The driver motors, which deliver the essential signal outputs to drive the vehicle movement, are now in charge of driving the motors.
☆ Cluster & Disperse: a general air conflict resolution heuristic using unsupervised learning
We provide a general and malleable heuristic for the air conflict resolution problem. This heuristic is based on a new neighborhood structure for searching the solution space of trajectories and flight-levels. Using unsupervised learning, the core idea of our heuristic is to cluster the conflict points and disperse them in various flight levels. Our first algorithm is called Cluster & Disperse and in each iteration it assigns the most problematic flights in each cluster to another flight-level. In effect, we shuffle them between the flight-levels until we achieve a well-balanced configuration. The Cluster & Disperse algorithm then uses any horizontal plane conflict resolution algorithm as a subroutine to solve these well-balanced instances. Nevertheless, we develop a novel algorithm for the horizontal plane based on a similar idea. That is we cluster and disperse the conflict points spatially in the same flight level using the gradient descent and a social force. We use a novel maneuver making flights travel on an arc instead of a straight path which is based on the aviation routine of the Radius to Fix legs. Our algorithms can handle a high density of flights within a reasonable computation time. We put their performance in context with some notable algorithms from the literature. Being a general framework, a particular strength of the Cluster & Disperse is its malleability in allowing various constraints regarding the aircraft or the environment to be integrated with ease. This is in contrast to the models for instance based on mixed integer programming.
☆ OpenIN: Open-Vocabulary Instance-Oriented Navigation in Dynamic Domestic Environments
In daily domestic settings, frequently used objects like cups often have unfixed positions and multiple instances within the same category, and their carriers frequently change as well. As a result, it becomes challenging for a robot to efficiently navigate to a specific instance. To tackle this challenge, the robot must capture and update scene changes and plans continuously. However, current object navigation approaches primarily focus on the semantic level and lack the ability to dynamically update scene representation. In contrast, this paper captures the relationships between frequently used objects and their static carriers. It constructs an open-vocabulary Carrier-Relationship Scene Graph (CRSG) and updates the carrying status during robot navigation to reflect the dynamic changes of the scene. Based on the CRSG, we further propose an instance navigation strategy that models the navigation process as a Markov Decision Process. At each step, decisions are informed by the Large Language Model's commonsense knowledge and visual-language feature similarity. We designed a series of long-sequence navigation tasks for frequently used everyday items in the Habitat simulator. The results demonstrate that by updating the CRSG, the robot can efficiently navigate to moved targets. Additionally, we deployed our algorithm on a real robot and validated its practical effectiveness. The project page can be found here: https://OpenIN-nav.github.io.
comment: arXiv admin note: substantial text overlap with arXiv:2409.18743
☆ Bridging Adaptivity and Safety: Learning Agile Collision-Free Locomotion Across Varied Physics
Real-world legged locomotion systems often need to reconcile agility and safety for different scenarios. Moreover, the underlying dynamics are often unknown and time-variant (e.g., payload, friction). In this paper, we introduce BAS (Bridging Adaptivity and Safety), which builds upon the pipeline of prior work Agile But Safe (ABS)(He et al.) and is designed to provide adaptive safety even in dynamic environments with uncertainties. BAS involves an agile policy to avoid obstacles rapidly and a recovery policy to prevent collisions, a physical parameter estimator that is concurrently trained with agile policy, and a learned control-theoretic RA (reach-avoid) value network that governs the policy switch. Also, the agile policy and RA network are both conditioned on physical parameters to make them adaptive. To mitigate the distribution shift issue, we further introduce an on-policy fine-tuning phase for the estimator to enhance its robustness and accuracy. The simulation results show that BAS achieves 50% better safety than baselines in dynamic environments while maintaining a higher speed on average. In real-world experiments, BAS shows its capability in complex environments with unknown physics (e.g., slippery floors with unknown frictions, unknown payloads up to 8kg), while baselines lack adaptivity, leading to collisions or. degraded agility. As a result, BAS achieves a 19.8% increase in speed and gets a 2.36 times lower collision rate than ABS in the real world. Videos: https://adaptive-safe-locomotion.github.io.
comment: 11 Pages, 6 Figures
☆ Robotic Programmer: Video Instructed Policy Code Generation for Robotic Manipulation
Zero-shot generalization across various robots, tasks and environments remains a significant challenge in robotic manipulation. Policy code generation methods use executable code to connect high-level task descriptions and low-level action sequences, leveraging the generalization capabilities of large language models and atomic skill libraries. In this work, we propose Robotic Programmer (RoboPro), a robotic foundation model, enabling the capability of perceiving visual information and following free-form instructions to perform robotic manipulation with policy code in a zero-shot manner. To address low efficiency and high cost in collecting runtime code data for robotic tasks, we devise Video2Code to synthesize executable code from extensive videos in-the-wild with off-the-shelf vision-language model and code-domain large language model. Extensive experiments show that RoboPro achieves the state-of-the-art zero-shot performance on robotic manipulation in both simulators and real-world environments. Specifically, the zero-shot success rate of RoboPro on RLBench surpasses the state-of-the-art model GPT-4o by 11.6%, which is even comparable to a strong supervised training baseline. Furthermore, RoboPro is robust to variations on API formats and skill sets.
☆ KN-LIO: Geometric Kinematics and Neural Field Coupled LiDAR-Inertial Odometry
Recent advancements in LiDAR-Inertial Odometry (LIO) have boosted a large amount of applications. However, traditional LIO systems tend to focus more on localization rather than mapping, with maps consisting mostly of sparse geometric elements, which is not ideal for downstream tasks. Recent emerging neural field technology has great potential in dense mapping, but pure LiDAR mapping is difficult to work on high-dynamic vehicles. To mitigate this challenge, we present a new solution that tightly couples geometric kinematics with neural fields to enhance simultaneous state estimation and dense mapping capabilities. We propose both semi-coupled and tightly coupled Kinematic-Neural LIO (KN-LIO) systems that leverage online SDF decoding and iterated error-state Kalman filtering to fuse laser and inertial data. Our KN-LIO minimizes information loss and improves accuracy in state estimation, while also accommodating asynchronous multi-LiDAR inputs. Evaluations on diverse high-dynamic datasets demonstrate that our KN-LIO achieves performance on par with or superior to existing state-of-the-art solutions in pose estimation and offers improved dense mapping accuracy over pure LiDAR-based methods. The relevant code and datasets will be made available at https://**.
☆ Constraints as Rewards: Reinforcement Learning for Robots without Reward Functions
Reinforcement learning has become an essential algorithm for generating complex robotic behaviors. However, to learn such behaviors, it is necessary to design a reward function that describes the task, which often consists of multiple objectives that needs to be balanced. This tuning process is known as reward engineering and typically involves extensive trial-and-error. In this paper, to avoid this trial-and-error process, we propose the concept of Constraints as Rewards (CaR). CaR formulates the task objective using multiple constraint functions instead of a reward function and solves a reinforcement learning problem with constraints using the Lagrangian-method. By adopting this approach, different objectives are automatically balanced, because Lagrange multipliers serves as the weights among the objectives. In addition, we will demonstrate that constraints, expressed as inequalities, provide an intuitive interpretation of the optimization target designed for the task. We apply the proposed method to the standing-up motion generation task of a six-wheeled-telescopic-legged robot and demonstrate that the proposed method successfully acquires the target behavior, even though it is challenging to learn with manually designed reward functions.
☆ STLCG++: A Masking Approach for Differentiable Signal Temporal Logic Specification
Signal Temporal Logic (STL) offers a concise yet expressive framework for specifying and reasoning about spatio-temporal behaviors of robotic systems. Attractively, STL admits the notion of robustness, the degree to which an input signal satisfies or violates an STL specification, thus providing a nuanced evaluation of system performance. Notably, the differentiability of STL robustness enables direct integration to robotics workflows that rely on gradient-based optimization, such as trajectory optimization and deep learning. However, existing approaches to evaluating and differentiating STL robustness rely on recurrent computations, which become inefficient with longer sequences, limiting their use in time-sensitive applications. In this paper, we present STLCG++, a masking-based approach that parallelizes STL robustness evaluation and backpropagation across timesteps, achieving more than 1000x faster computation time than the recurrent approach. We also introduce a smoothing technique for differentiability through time interval bounds, expanding STL's applicability in gradient-based optimization tasks over spatial and temporal variables. Finally, we demonstrate STLCG++'s benefits through three robotics use cases and provide open-source Python libraries in JAX and PyTorch for seamless integration into modern robotics workflows.
comment: To be submitted to robotics journal for review
☆ GNN-based Decentralized Perception in Multirobot Systems for Predicting Worker Actions
In industrial environments, predicting human actions is essential for ensuring safe and effective collaboration between humans and robots. This paper introduces a perception framework that enables mobile robots to understand and share information about human actions in a decentralized way. The framework first allows each robot to build a spatial graph representing its surroundings, which it then shares with other robots. This shared spatial data is combined with temporal information to track human behavior over time. A swarm-inspired decision-making process is used to ensure all robots agree on a unified interpretation of the human's actions. Results show that adding more robots and incorporating longer time sequences improve prediction accuracy. Additionally, the consensus mechanism increases system resilience, making the multi-robot setup more reliable in dynamic industrial settings.
comment: Submitted to RA-L
☆ Exploring the Use of Robots for Diary Studies
As interest in studying in-the-wild human-robot interaction grows, there is a need for methods to collect data over time and in naturalistic or potentially private environments. HRI researchers have increasingly used the diary method for these studies, asking study participants to self-administer a structured data collection instrument, i.e., a diary, over a period of time. Although the diary method offers a unique window into settings that researchers may not have access to, they also lack the interactivity and probing that interview-based methods offer. In this paper, we explore a novel data collection method in which a robot plays the role of an interactive diary. We developed the Diary Robot system and performed in-home deployments for a week to evaluate the feasibility and effectiveness of this approach. Using traditional text-based and audio-based diaries as benchmarks, we found that robots are able to effectively elicit the intended information. We reflect on our findings, and describe scenarios where the utilization of robots in diary studies as a data collection instrument may be especially applicable.
comment: Proceedings of the 29th ACM/IEEE International Conference on Human Robot Interaction (HRI 2025)
☆ Learning Robot Safety from Sparse Human Feedback using Conformal Prediction
Ensuring robot safety can be challenging; user-defined constraints can miss edge cases, policies can become unsafe even when trained from safe data, and safety can be subjective. Thus, we learn about robot safety by showing policy trajectories to a human who flags unsafe behavior. From this binary feedback, we use the statistical method of conformal prediction to identify a region of states, potentially in learned latent space, guaranteed to contain a user-specified fraction of future policy errors. Our method is sample-efficient, as it builds on nearest neighbor classification and avoids withholding data as is common with conformal prediction. By alerting if the robot reaches the suspected unsafe region, we obtain a warning system that mimics the human's safety preferences with guaranteed miss rate. From video labeling, our system can detect when a quadcopter visuomotor policy will fail to steer through a designated gate. We present an approach for policy improvement by avoiding the suspected unsafe region. With it we improve a model predictive controller's safety, as shown in experimental testing with 30 quadcopter flights across 6 navigation tasks. Code and videos are provided.
☆ Optimize the parameters of the PID Controller using Genetic Algorithm for Robot Manipulators
This paper presents the design a Proportional-Integral-Derivative (PID) controller with optimized parameters for a two-degree-of-freedom robotic arm. A genetic algorithm (GA) is proposed to optimize the controller parameters, addressing the challenges in determining PID controller parameters for highly nonlinear systems like robotic arms compared to traditional methods. The GA-optimized PID controller significantly improves control accuracy and performance over traditional control methods. Simulation results demonstrate that the robotic arm system operates with high precision and stability. Additionally, the shortened trajectory tracking response time enhances the feasibility of applying this control algorithm in realworld scenarios. This research not only confirms the suitability of PID-GA for robotic arms and similar systems but also opens new avenues for applying this algorithm to real physical systems.
☆ Improving Human-Robot Teaching by Quantifying and Reducing Mental Model Mismatch
The rapid development of artificial intelligence and robotics has had a significant impact on our lives, with intelligent systems increasingly performing tasks traditionally performed by humans. Efficient knowledge transfer requires matching the mental model of the human teacher with the capabilities of the robot learner. This paper introduces the Mental Model Mismatch (MMM) Score, a feedback mechanism designed to quantify and reduce mismatches by aligning human teaching behavior with robot learning behavior. Using Large Language Models (LLMs), we analyze teacher intentions in natural language to generate adaptive feedback. A study with 150 participants teaching a virtual robot to solve a puzzle game shows that intention-based feedback significantly outperforms traditional performance-based feedback or no feedback. The results suggest that intention-based feedback improves instructional outcomes, improves understanding of the robot's learning process and reduces misconceptions. This research addresses a critical gap in human-robot interaction (HRI) by providing a method to quantify and mitigate discrepancies between human mental models and robot capabilities, with the goal of improving robot learning and human teaching effectiveness.
comment: 11 Pages, 4 Figures
☆ Development of an Adaptive Sliding Mode Controller using Neural Networks for Trajectory Tracking of a Cylindrical Manipulator
Cylindrical manipulators are extensively used in industrial automation, especially in emerging technologies like 3D printing, which represents a significant future trend. However, controlling the trajectory of nonlinear models with system uncertainties remains a critical challenge, often leading to reduced accuracy and reliability. To address this, the study develops an Adaptive Sliding Mode Controller (ASMC) integrated with Neural Networks (NNs) to improve trajectory tracking for cylindrical manipulators. The ASMC leverages the robustness of sliding mode control and the adaptability of neural networks to handle uncertainties and dynamic variations effectively. Simulation results validate that the proposed ASMC-NN achieves high trajectory tracking accuracy, fast response time, and enhanced reliability, making it a promising solution for applications in 3D printing and beyond.
☆ Human Grasp Generation for Rigid and Deformable Objects with Decomposed VQ-VAE
Generating realistic human grasps is crucial yet challenging for object manipulation in computer graphics and robotics. Current methods often struggle to generate detailed and realistic grasps with full finger-object interaction, as they typically rely on encoding the entire hand and estimating both posture and position in a single step. Additionally, simulating object deformation during grasp generation is still difficult, as modeling such deformation requires capturing the comprehensive relationship among points of the object's surface. To address these limitations, we propose a novel improved Decomposed Vector-Quantized Variational Autoencoder (DVQ-VAE-2), which decomposes the hand into distinct parts and encodes them separately. This part-aware architecture allows for more precise management of hand-object interactions. Furthermore, we introduce a dual-stage decoding strategy that first predicts the grasp type under skeletal constraints and then identifies the optimal grasp position, enhancing both the realism and adaptability of the model to unseen interactions. Furthermore, we introduce a new Mesh UFormer as the backbone network to extract the hierarchical structural representations from the mesh and propose a new normal vector-guided position encoding to simulate the hand-object deformation. In experiments, our model achieves a relative improvement of approximately 14.1% in grasp quality compared to state-of-the-art methods across four widely used benchmarks. Our comparisons with other backbone networks show relative improvements of 2.23% in Hand-object Contact Distance and 5.86% in Quality Index on deformable and rigid object based datasets, respectively. Our source code and model are available at https://github.com/florasion/D-VQVAE.
☆ NextStop: An Improved Tracker For Panoptic LIDAR Segmentation Data
4D panoptic LiDAR segmentation is essential for scene understanding in autonomous driving and robotics ,combining semantic and instance segmentation with temporal consistency.Current methods, like 4D-PLS and 4D-STOP, use a tracking-by-detection methodology, employing deep learning networks to perform semantic and instance segmentation on each frame. To maintain temporal consistency, large-size instances detected in the current frame are compared and associated with instances within a temporal window that includes the current and preceding frames. However, their reliance on short-term instance detection, lack of motion estimation, and exclusion of small-sized instances lead to frequent identity switches and reduced tracking performance. We address these issues with the NextStop1 tracker, which integrates Kalman filter-based motion estimation, data association, and lifespan management, along with a tracklet state concept to improve prioritization. Evaluated using the LiDAR Segmentation and Tracking Quality (LSTQ) metric on the SemanticKITTI validation set, NextStop demonstrated enhanced tracking performance, particularly for small-sized objects like people and bicyclists, with fewer ID switches, earlier tracking initiation, and improved reliability in complex environments. The source code is available at https://github.com/AIROTAU/NextStopTracker
♻ ☆ SDPRLayers: Certifiable Backpropagation Through Polynomial Optimization Problems in Robotics
A recent set of techniques in the robotics community, known as certifiably correct methods, frames robotics problems as polynomial optimization problems (POPs) and applies convex, semidefinite programming (SDP) relaxations to either find or certify their global optima. In parallel, differentiable optimization allows optimization problems to be embedded into end-to-end learning frameworks and has received considerable attention in the robotics community. In this paper, we consider the ill effect of convergence to spurious local minima in the context of learning frameworks that use differentiable optimization. We present SDPRLayers, an approach that seeks to address this issue by combining convex relaxations with implicit differentiation techniques to provide certifiably correct solutions and gradients throughout the training process. We provide theoretical results that outline conditions for the correctness of these gradients and provide efficient means for their computation. Our approach is first applied to two simple-but-demonstrative simulated examples, which expose the potential pitfalls of reliance on local optimization in existing, state-of-the-art, differentiable optimization methods. We then apply our method in a real-world application: we train a deep neural network to detect image keypoints for robot localization in challenging lighting conditions. We provide our open-source, PyTorch implementation of SDPRLayers.
comment: Revised Version Submitted to T-RO
♻ ☆ Hierarchical Object-Oriented POMDP Planning for Object Rearrangement
We present an online planning framework for solving multi-object rearrangement problems in partially observable, multi-room environments. Current object rearrangement solutions, primarily based on Reinforcement Learning or hand-coded planning methods, often lack adaptability to diverse challenges. To address this limitation, we introduce a novel Hierarchical Object-Oriented Partially Observed Markov Decision Process (HOO-POMDP) planning approach. This approach comprises of (a) an object-oriented POMDP planner generating sub-goals, (b) a set of low-level policies for sub-goal achievement, and (c) an abstraction system converting the continuous low-level world into a representation suitable for abstract planning. We evaluate our system on varying numbers of objects, rooms, and problem types in AI2-THOR simulated environments with promising results.
comment: 17 pages, 2 Figures. Preprint. Updated acknowledgments
♻ ☆ LiLMaps: Learnable Implicit Language Maps
One of the current trends in robotics is to employ large language models (LLMs) to provide non-predefined command execution and natural human-robot interaction. It is useful to have an environment map together with its language representation, which can be further utilized by LLMs. Such a comprehensive scene representation enables numerous ways of interaction with the map for autonomously operating robots. In this work, we present an approach that enhances incremental implicit mapping through the integration of vision-language features. Specifically, we (i) propose a decoder optimization technique for implicit language maps which can be used when new objects appear on the scene, and (ii) address the problem of inconsistent vision-language predictions between different viewing positions. Our experiments demonstrate the effectiveness of LiLMaps and solid improvements in performance.
♻ ☆ Towards Revisiting Visual Place Recognition for Joining Submaps in Multimap SLAM
Visual SLAM is a key technology for many autonomous systems. However, tracking loss can lead to the creation of disjoint submaps in multimap SLAM systems like ORB-SLAM3. Because of that, these systems employ submap merging strategies. As we show, these strategies are not always successful. In this paper, we investigate the impact of using modern VPR approaches for submap merging in visual SLAM. We argue that classical evaluation metrics are not sufficient to estimate the impact of a modern VPR component on the overall system. We show that naively replacing the VPR component does not leverage its full potential without requiring substantial interference in the original system. Because of that, we present a post-processing pipeline along with a set of metrics that allow us to estimate the impact of modern VPR components. We evaluate our approach on the NCLT and Newer College datasets using ORB-SLAM3 with NetVLAD and HDC-DELF as VPR components. Additionally, we present a simple approach for combining VPR with temporal consistency for map merging. We show that the map merging performance of ORB-SLAM3 can be improved. Building on these results, researchers in VPR can assess the potential of their approaches for SLAM systems.
comment: Accepted at TAROS 2024. This is the submitted version
♻ ☆ The Harmonic Exponential Filter for Nonparametric Estimation on Motion Groups
Bayesian estimation is a vital tool in robotics as it allows systems to update the robot state belief using incomplete information from noisy sensors. To render the state estimation problem tractable, many systems assume that the motion and measurement noise, as well as the state distribution, are unimodal and Gaussian. However, there are numerous scenarios and systems that do not comply with these assumptions. Existing nonparametric filters that are used to model multimodal distributions have drawbacks that limit their ability to represent a diverse set of distributions. This paper introduces a novel approach to nonparametric Bayesian filtering on motion groups, designed to handle multimodal distributions using harmonic exponential distributions. This approach leverages two key insights of harmonic exponential distributions: a) the product of two distributions can be expressed as the element-wise addition of their log-likelihood Fourier coefficients, and b) the convolution of two distributions can be efficiently computed as the tensor product of their Fourier coefficients. These observations enable the development of an efficient and asymptotically exact solution to the Bayes filter up to the band limit of a Fourier transform. We demonstrate our filter's performance compared with established nonparametric filtering methods across simulated and real-world localization tasks.
comment: Accepted to the IEEE Robotics and Automation Letters (RA-L 2025) Code available at https://github.com/montrealrobotics/harmonic-filter. Webpage and additional videos at https://montrealrobotics.ca/hef/
♻ ☆ SenseRAG: Constructing Environmental Knowledge Bases with Proactive Querying for LLM-Based Autonomous Driving WACV
This study addresses the critical need for enhanced situational awareness in autonomous driving (AD) by leveraging the contextual reasoning capabilities of large language models (LLMs). Unlike traditional perception systems that rely on rigid, label-based annotations, it integrates real-time, multimodal sensor data into a unified, LLMs-readable knowledge base, enabling LLMs to dynamically understand and respond to complex driving environments. To overcome the inherent latency and modality limitations of LLMs, a proactive Retrieval-Augmented Generation (RAG) is designed for AD, combined with a chain-of-thought prompting mechanism, ensuring rapid and context-rich understanding. Experimental results using real-world Vehicle-to-everything (V2X) datasets demonstrate significant improvements in perception and prediction performance, highlighting the potential of this framework to enhance safety, adaptability, and decision-making in next-generation AD systems.
comment: This paper has been accepted for presentation at WACV Workshop LLMAD 2025
♻ ☆ Informed, Constrained, Aligned: A Field Analysis on Degeneracy-aware Point Cloud Registration in the Wild
The ICP registration algorithm has been a preferred method for LiDAR-based robot localization for nearly a decade. However, even in modern SLAM solutions, ICP can degrade and become unreliable in geometrically ill-conditioned environments. Current solutions primarily focus on utilizing additional sources of information, such as external odometry, to either replace the degenerate directions of the optimization solution or add additional constraints in a sensor-fusion setup afterward. In response, this work investigates and compares new and existing degeneracy mitigation methods for robust LiDAR-based localization and analyzes the efficacy of these approaches in degenerate environments for the first time in the literature at this scale. Specifically, this work investigates i) the effect of using active or passive degeneracy mitigation methods for the problem of ill-conditioned ICP in LiDAR degenerate environments, ii) the evaluation of TSVD, inequality constraints, and linear/non-linear Tikhonov regularization for the application of degenerate point cloud registration for the first time. Furthermore, a sensitivity analysis for least-squares minimization step of the ICP problem is carried out to better understand how each method affects the optimization and what to expect from each method. The results of the analysis are validated through multiple real-world robotic field and simulated experiments. The analysis demonstrates that active optimization degeneracy mitigation is necessary and advantageous in the absence of reliable external estimate assistance for LiDAR-SLAM, and soft-constrained methods can provide better results in complex ill-conditioned scenarios with heuristic fine-tuned parameters.
comment: Submitted to IEEE Transactions on Field Robotics
♻ ☆ Task Coordination and Trajectory Optimization for Multi-Aerial Systems via Signal Temporal Logic: A Wind Turbine Inspection Study IROS'24
This paper presents a method for task allocation and trajectory generation in cooperative inspection missions using a fleet of multirotor drones, with a focus on wind turbine inspection. The approach generates safe, feasible flight paths that adhere to time-sensitive constraints and vehicle limitations by formulating an optimization problem based on Signal Temporal Logic (STL) specifications. An event-triggered replanning mechanism addresses unexpected events and delays, while a generalized robustness scoring method incorporates user preferences and minimizes task conflicts. The approach is validated through simulations in MATLAB and Gazebo, as well as field experiments in a mock-up scenario.
comment: 2 pages, Accepted for discussion at the workshop session "Formal methods techniques in robotics systems: Design and control" at IROS'24 in Abu Dhabi, UAE
♻ ☆ Motion Manifold Flow Primitives for Task-Conditioned Trajectory Generation under Complex Task-Motion Dependencies
Effective movement primitives should be capable of encoding and generating a rich repertoire of trajectories -- typically collected from human demonstrations -- conditioned on task-defining parameters such as vision or language inputs. While recent methods based on the motion manifold hypothesis, which assumes that a set of trajectories lies on a lower-dimensional nonlinear subspace, address challenges such as limited dataset size and the high dimensionality of trajectory data, they often struggle to capture complex task-motion dependencies, i.e., when motion distributions shift drastically with task variations. To address this, we introduce Motion Manifold Flow Primitives (MMFP), a framework that decouples the training of the motion manifold from task-conditioned distributions. Specifically, we employ flow matching models, state-of-the-art conditional deep generative models, to learn task-conditioned distributions in the latent coordinate space of the learned motion manifold. Experiments are conducted on language-guided trajectory generation tasks, where many-to-many text-motion correspondences introduce complex task-motion dependencies, highlighting MMFP's superiority over existing methods.
comment: 8 pages, 11 figures
♻ ☆ Future Success Prediction in Open-Vocabulary Object Manipulation Tasks Based on End-Effector Trajectories
This study addresses a task designed to predict the future success or failure of open-vocabulary object manipulation. In this task, the model is required to make predictions based on natural language instructions, egocentric view images before manipulation, and the given end-effector trajectories. Conventional methods typically perform success prediction only after the manipulation is executed, limiting their efficiency in executing the entire task sequence. We propose a novel approach that enables the prediction of success or failure by aligning the given trajectories and images with natural language instructions. We introduce Trajectory Encoder to apply learnable weighting to the input trajectories, allowing the model to consider temporal dynamics and interactions between objects and the end effector, improving the model's ability to predict manipulation outcomes accurately. We constructed a dataset based on the RT-1 dataset, a large-scale benchmark for open-vocabulary object manipulation tasks, to evaluate our method. The experimental results show that our method achieved a higher prediction accuracy than baseline approaches.
comment: Accepted for presentation at LangRob @ CoRL 2024
♻ ☆ Safe MPC Alignment with Human Directional Feedback
In safety-critical robot planning or control, manually specifying safety constraints or learning them from demonstrations can be challenging. In this article, we propose a certifiable alignment method for a robot to learn a safety constraint in its model predictive control (MPC) policy with human online directional feedback. To our knowledge, it is the first method to learn safety constraints from human feedback. The proposed method is based on an empirical observation: human directional feedback, when available, tends to guide the robot toward safer regions. The method only requires the direction of human feedback to update the learning hypothesis space. It is certifiable, providing an upper bound on the total number of human feedback in the case of successful learning, or declaring the hypothesis misspecification, i.e., the true implicit safety constraint cannot be found within the specified hypothesis space. We evaluated the proposed method using numerical examples and user studies in two simulation games. Additionally, we implemented and tested the proposed method on a real-world Franka robot arm performing mobile water-pouring tasks. The results demonstrate the efficacy and efficiency of our method, showing that it enables a robot to successfully learn safety constraints with a small handful (tens) of human directional corrections.
comment: 16 pages, submission to T-RO
♻ ☆ Enhancing Vision-Language Models with Scene Graphs for Traffic Accident Understanding
Recognizing a traffic accident is an essential part of any autonomous driving or road monitoring system. An accident can appear in a wide variety of forms, and understanding what type of accident is taking place may be useful to prevent it from recurring. This work focuses on classifying traffic scenes into specific accident types. We approach the problem by representing a traffic scene as a graph, where objects such as cars can be represented as nodes, and relative distances and directions between them as edges. This representation of a traffic scene is referred to as a scene graph, and can be used as input for an accident classifier. Better results are obtained with a classifier that fuses the scene graph input with visual and textual representations. This work introduces a multi-stage, multimodal pipeline that pre-processes videos of traffic accidents, encodes them as scene graphs, and aligns this representation with vision and language modalities before executing the classification task. When trained on 4 classes, our method achieves a balanced accuracy score of 57.77% on an (unbalanced) subset of the popular Detection of Traffic Anomaly (DoTA) benchmark, representing an increase of close to 5 percentage points from the case where scene graph information is not taken into account.
comment: Won the 'Best Paper Runner-up Award' at the 2024 IEEE International Automated Vehicle Validation Conference (IAVVC 2024). Also accepted at the 1st Workshop on Semantic Reasoning and Goal Understanding in Robotics, at the Robotics Science and Systems Conference (RSS SemRob 2024)
♻ ☆ TCAFF: Temporal Consistency for Robot Frame Alignment
In the field of collaborative robotics, the ability to communicate spatial information like planned trajectories and shared environment information is crucial. When no global position information is available (e.g., indoor or GPS-denied environments), agents must align their coordinate frames before shared spatial information can be properly expressed and interpreted. Coordinate frame alignment is particularly difficult when robots have no initial alignment and are affected by odometry drift. To this end, we develop a novel multiple hypothesis algorithm, called TCAFF, for aligning the coordinate frames of neighboring robots. TCAFF considers potential alignments from associating sparse open-set object maps and leverages temporal consistency to determine an initial alignment and correct for drift, all without any initial knowledge of neighboring robot poses. We demonstrate TCAFF being used for frame alignment in a collaborative object tracking application on a team of four robots tracking six pedestrians and show that TCAFF enables robots to achieve a tracking accuracy similar to that of a system with ground truth localization. The code and hardware dataset are available at https://github.com/mit-acl/tcaff.
comment: 7 pages, 6 figures
♻ ☆ Coverage Path Planning in Precision Agriculture: Algorithms, Applications, and Key Benefits
Coverage path planning (CPP) is the task of computing an optimal path within a region to completely scan or survey an area of interest using one or multiple mobile robots. Robots equipped with sensors and cameras can collect vast amounts of data on crop health, soil conditions, and weather patterns. Advanced analytics can then be applied to this data to make informed decisions, improving overall farm management. In this paper, we will demonstrate one approach to find the optimal coverage path of an agricultural field using a single robot, and one using multiple robots. For the single robot, we used a wavefront coverage algorithm that generates a sequence of locations that the robot needs to follow. For the multi-robot approach, the proposed approach consists of two steps: dividing the agricultural field into convex polygonal areas to optimally distribute them among the robots, and generating an optimal coverage path to ensure minimum coverage time for each of the polygonal areas.
comment: The co-authors have asked to withdraw this paper, since it contains incomplete and incorrect informations
♻ ☆ Formal Modeling and Verification of Publisher-Subscriber Paradigm in ROS 2
The Robot Operating System (ROS) is one of the most popular middleware for developing robot applications, but it is subject to major shortcomings when applied to real-time robotic systems in safety-critical environments. For this reason, ROS 2 was released in 2017 for implementing real-time capabilities in distributed robotic systems while supporting the most prominent aspects of the original ROS. There is still not much work done to provide formal guarantees and correctness of a ROS program. In this paper, we propose a framework to address this challenging problem of guaranteeing the correct behaviour of robotic systems. We propose a formal modelling of a ROS 2 program, and also describe the program using a network of timed automata. We then prove that the sets of executions of a ROS program in the model and in the network of timed automata are the same. Thus to analyze a publisher-subscriber scenario of ROS 2 program, our algorithm first converts the program into the model, and then into the network of timed automata. The applicability and validity of our approach are verified by conducting several experiments on a simplified system and an actual robotic system, and the results and limitations are discussed.
comment: The co-authors have asked to withdraw this paper, since it contains incomplete and incorrect informations
Systems and Control 31
☆ Large-scale Grid Optimization: The Workhorse of Future Grid Computations
Purpose: The computation methods for modeling, controlling and optimizing the transforming grid are evolving rapidly. We review and systemize knowledge for a special class of computation methods that solve large-scale power grid optimization problems. Summary: Large-scale grid optimizations are pertinent for, amongst other things, hedging against risk due to resource stochasticity, evaluating aggregated DERs' impact on grid operation and design, and improving the overall efficiency of grid operation in terms of cost, reliability, and carbon footprint. We attribute the continual growth in scale and complexity of grid optimizations to a large influx of new spatial and temporal features in both transmission (T) and distribution (D) networks. Therefore, to systemize knowledge in the field, we discuss the recent advancements in T and D systems from the viewpoint of mechanistic physics-based and emerging data-driven methods. Findings: We find that while mechanistic physics-based methods are leading the science in solving large-scale grid optimizations, data-driven techniques, especially physics-constrained ones, are emerging as an alternative to solve otherwise intractable problems. We also find observable gaps in the field and ascertain these gaps from the paper's literature review and by collecting and synthesizing feedback from industry experts.
☆ Regret Analysis: a control perspective
Online learning and model reference adaptive control have many interesting intersections. One area where they differ however is in how the algorithms are analyzed and what objective or metric is used to discriminate "good" algorithms from "bad" algorithms. In adaptive control there are usually two objectives: 1) prove that all time varying parameters/states of the system are bounded, and 2) that the instantaneous error between the adaptively controlled system and a reference system converges to zero over time (or at least a compact set). For online learning the performance of algorithms is often characterized by the regret the algorithm incurs. Regret is defined as the cumulative loss (cost) over time from the online algorithm minus the cumulative loss (cost) of the single optimal fixed parameter choice in hindsight. Another significant difference between the two areas of research is with regard to the assumptions made in order to obtain said results. Adaptive control makes assumptions about the input-output properties of the control problem and derives solutions for a fixed error model or optimization task. In the online learning literature results are derived for classes of loss functions (i.e. convex) while a priori assuming that all time varying parameters are bounded, which for many optimization tasks is not unrealistic, but is a non starter in control applications. In this work we discuss these differences in detail through the regret based analysis of gradient descent for convex functions and the control based analysis of a streaming regression problem. We close with a discussion about the newly defined paradigm of online adaptive control and ask the following question "Are regret optimal control strategies deployable?"
comment: 10 pages no figures
☆ Recursive Least Squares with Fading Regularization for Finite-Time Convergence without Persistent Excitation
This paper extends recursive least squares (RLS) to include time-varying regularization. This extension provides flexibility for updating the least squares regularization term in real time. Existing results with constant regularization imply that the parameter-estimation error dynamics of RLS are globally attractive to zero if and only the regressor is weakly persistently exciting. This work shows that, by extending classical RLS to include a time-varying (fading) regularization term that converges to zero, the parameter-estimation error dynamics are globally attractive to zero without weakly persistent excitation. Moreover, if the fading regularization term converges to zero in finite time, then the parameter estimation error also converges to zero in finite time. Finally, we propose rank-1 fading regularization (R1FR) RLS, a time-varying regularization algorithm with fading regularization that converges to zero, and which runs in the same computational complexity as classical RLS. Numerical examples are presented to validate theoretical guarantees and to show how R1FR-RLS can protect against over-regularization.
comment: Submitted to the 2025 American Control Conference
☆ New Linear Model of a Composite Energy Storage System with Realizable Dispatch Guarantees
To optimize battery dispatch, a model is required that can predict the state of charge (SOC) trajectory and ensure dispatch is admissible (i.e., does not lead to unexpected SOC saturation). But battery dispatch optimization is inherently challenging since batteries cannot simultaneously charge and discharge, which begets a non-convex complementarity constraint. In this paper, we consider a composition of energy storage elements that can charge or discharge independently and provide a sufficient linear energy storage model of the composite battery. This permits convex optimization of the composite battery SOC trajectory while ensuring admissibility of the resulting (aggregated) power schedule and disaggregation to the individual energy storage elements.
☆ Safe Reinforcement Learning with Minimal Supervision ICML 2023
Reinforcement learning (RL) in the real world necessitates the development of procedures that enable agents to explore without causing harm to themselves or others. The most successful solutions to the problem of safe RL leverage offline data to learn a safe-set, enabling safe online exploration. However, this approach to safe-learning is often constrained by the demonstrations that are available for learning. In this paper we investigate the influence of the quantity and quality of data used to train the initial safe learning problem offline on the ability to learn safe-RL policies online. Specifically, we focus on tasks with spatially extended goal states where we have few or no demonstrations available. Classically this problem is addressed either by using hand-designed controllers to generate data or by collecting user-generated demonstrations. However, these methods are often expensive and do not scale to more complex tasks and environments. To address this limitation we propose an unsupervised RL-based offline data collection procedure, to learn complex and scalable policies without the need for hand-designed controllers or user demonstrations. Our research demonstrates the significance of providing sufficient demonstrations for agents to learn optimal safe-RL policies online, and as a result, we propose optimistic forgetting, a novel online safe-RL approach that is practical for scenarios with limited data. Further, our unsupervised data collection approach highlights the need to balance diversity and optimality for safe online exploration.
comment: Initially submitted to ICML 2023
☆ Integrating LLMs with ITS: Recent Advances, Potentials, Challenges, and Future Directions
Intelligent Transportation Systems (ITS) are crucial for the development and operation of smart cities, addressing key challenges in efficiency, productivity, and environmental sustainability. This paper comprehensively reviews the transformative potential of Large Language Models (LLMs) in optimizing ITS. Initially, we provide an extensive overview of ITS, highlighting its components, operational principles, and overall effectiveness. We then delve into the theoretical background of various LLM techniques, such as GPT, T5, CTRL, and BERT, elucidating their relevance to ITS applications. Following this, we examine the wide-ranging applications of LLMs within ITS, including traffic flow prediction, vehicle detection and classification, autonomous driving, traffic sign recognition, and pedestrian detection. Our analysis reveals how these advanced models can significantly enhance traffic management and safety. Finally, we explore the challenges and limitations LLMs face in ITS, such as data availability, computational constraints, and ethical considerations. We also present several future research directions and potential innovations to address these challenges. This paper aims to guide researchers and practitioners through the complexities and opportunities of integrating LLMs in ITS, offering a roadmap to create more efficient, sustainable, and responsive next-generation transportation systems.
comment: Accepted for publication in IEEE Transactions on Intelligent Transportation Systems
☆ A new methodology for the optimization of bolt tightening sequences for ring type joints
Achieving uniform bolt load distribution is critical to obtain leak-free service in pressure vessel gasketed joints used in offshore pipelines. This is a difficult task due to bolt load variations during the assembly process. In this sense, the Elastic Interaction Coefficients Method has been developed in previous works to define tightening sequences that provide the target load at the end of the sequence in one or two passes. The method is very costly because a complete sequence must be simulated and the load of every bolt must be measured after each tightening operation. The present work validates this method for Ring Type Joints and further develops a numerically and experimentally validated new methodology that provides highly satisfactory results with a significantly lower cost.
☆ Adaptive Numerical Differentiation for Extremum Seeking with Sensor Noise
Extremum-seeking control (ESC) is widely used to optimize performance when the system dynamics are uncertain. However, sensitivity to sensor noise is an important issue in ESC implementation due to the use of high-pass filters or gradient estimators. To reduce the sensitivity of ESC to noise, this paper investigates the use of adaptive input and state estimation (AISE) for numerical differentiation. In particular, this paper develops extremum-seeking control with adaptive input and state estimation (ESC/AISE), where the high-pass filter of ESC is replaced by AISE to improve performance under sensor noise. The effectiveness of ESC/AISE is illustrated via numerical examples.
comment: 8 pages, 13 figures. Submitted to ACC 2025
☆ Frenet-Serret-Based Trajectory Prediction
Trajectory prediction is a crucial element of guidance, navigation, and control systems. This paper presents two novel trajectory-prediction methods based on real-time position measurements and adaptive input and state estimation (AISE). The first method, called AISE/va, uses position measurements to estimate the target velocity and acceleration. The second method, called AISE/FS, models the target trajectory as a 3D curve using the Frenet-Serret formulas, which require estimates of velocity, acceleration, and jerk. To estimate velocity, acceleration, and jerk in real time, AISE computes first, second, and third derivatives of the position measurements. AISE does not rely on assumptions about the target maneuver, measurement noise, or disturbances. For trajectory prediction, both methods use measurements of the target position and estimates of its derivatives to extrapolate from the current position. The performance of AISE/va and AISE/FS is compared numerically with the $\alpha$-$\beta$-$\gamma$ filter, which shows that AISE/FS provides more accurate trajectory prediction than AISE/va and traditional methods, especially for complex target maneuvers.
comment: 8 pages, 6 figures. Submitted to ACC 2025
☆ Target Tracking Using the Invariant Extended Kalman Filter with Numerical Differentiation for Estimating Curvature and Torsion
The goal of target tracking is to estimate target position, velocity, and acceleration in real time using position data. This paper introduces a novel target-tracking technique that uses adaptive input and state estimation (AISE) for real-time numerical differentiation to estimate velocity, acceleration, and jerk from position data. These estimates are used to model the target motion within the Frenet-Serret (FS) frame. By representing the model in SE(3), the position and velocity are estimated using the invariant extended Kalman filter (IEKF). The proposed method, called FS-IEKF-AISE, is illustrated by numerical examples and compared to prior techniques.
comment: 7 pages, 8 figures, submitted to ACC 2025
☆ Beam Domain Channel Estimation for Spatial Non-Stationary Massive MIMO Systems
In massive multiple-input multiple-output (MIMO) systems, the channel estimation scheme is subject to the spatial non-stationarity and inevitably power leakage in the beam domain. In this paper, a beam domain channel estimation scheme is investigated for spatial non-stationary (SNS) massive MIMO systems considering power leakage. %a novel beam domain channel estimation scheme is proposed for spatial non-stationary (SNS) massive MIMO systems. Specifically, a realistic massive MIMO beam domain channel model (BDCM) is introduced to capture the spatial non-stationarity considering power leakage by introducing the illustration of visibility region (VR). Then, a beam domain structure-based sparsity adaptive matching pursuit (BDS-SAMP) scheme is proposed based on the cross-block sparse structure and power ratio threshold of beam domain channel. Finally, the simulation results validate the accuracy of proposed BDS-SAMP scheme with low pilot overhead and reasonable complexity by comparing with conventional schemes.
☆ A Novel Non-Stationary Channel Emulator for 6G MIMO Wireless Channels
The performance evaluation of sixth generation (6G) communication systems is anticipated to be a controlled and repeatable process in the lab, which brings up the demand for wireless channel emulators. However, channel emulation for 6G space-time-frequency (STF) non-stationary channels is missing currently. In this paper, a non-stationary multiple-input multiple-output (MIMO) geometry-based stochastic model (GBSM) that accurately characterizes the channel STF properties is introduced firstly. Then, a subspace-based method is proposed for reconstructing the channel fading obtained from the GBSM and a channel emulator architecture with frequency domain processing is presented for 6G MIMO systems. Moreover, the spatial time-varying channel transfer functions (CTFs) of the channel simulation and the channel emulation are compared and analyzed. The Doppler power spectral density (PSD) and delay PSD are further derived and compared between the channel model simulation and subspace-based emulation. The results demonstrate that the proposed channel emulator is capable of reproducing the non-stationary channel characteristics.
☆ A Quasi-deterministic Channel Model for Underwater Acoustic Communication Systems
In this paper, a quasi-deterministic (Q-D) model for non-stationary underwater acoustic (UWA) channels is proposed. This model combines the BELLHOP deterministic model and geometry-based stochastic model (GBSM), which provides higher accuracy and flexibility. Different propagation components in shallow water are classified as D-rays, R-rays and F-rays in the proposed model, where D-rays are modeled by BELLHOP while both R-rays and F-rays are modeled by GBSM. Some important channel statistical properties, including time-frequency correlation function (TF-CF), Doppler power spectrum density (PSD), average Doppler shift, and RMS Doppler spread are derived and simulated. Finally, simulation results illustrate the correctness of the proposed model.
☆ Privacy-Preserving Distributed Online Mirror Descent for Nonconvex Optimization
We investigate the distributed online nonconvex optimization problem with differential privacy over time-varying networks. Each node minimizes the sum of several nonconvex functions while preserving the node's differential privacy. We propose a privacy-preserving distributed online mirror descent algorithm for nonconvex optimization, which uses the mirror descent to update decision variables and the Laplace differential privacy mechanism to protect privacy. Unlike the existing works, the proposed algorithm allows the cost functions to be nonconvex, which is more applicable. Based upon these, we prove that if the communication network is $B$-strongly connected and the constraint set is compact, then by choosing the step size properly, the algorithm guarantees $\epsilon$-differential privacy at each time. Furthermore, we prove that if the local cost functions are $\beta$-smooth, then the regret over time horizon $T$ grows sublinearly while preserving differential privacy, with an upper bound $O(\sqrt{T})$. Finally, the effectiveness of the algorithm is demonstrated through numerical simulations.
☆ DRL-Based Medium-Term Planning of Renewable-Integrated Self-Scheduling Cascaded Hydropower to Guide Wholesale Market Participation
For self-scheduling cascaded hydropower (S-CHP) facilities, medium-term planning is a critical step that coordinates water availability over the medium-term horizon, providing water usage guidance for their short-term operations in wholesale market participation. Typically, medium-term planning strategies (e.g., reservoir storage targets at the end of each short-term period) are determined by either optimization methods or rules of thumb. However, with the integration of variable renewable energy sources (VRESs), optimization-based methods suffer from deviations between the anticipated and actual reservoir storage, while rules of thumb could be financially conservative, thereby compromising short-term operating profitability in wholesale market participation. This paper presents a deep reinforcement learning (DRL)-based framework to derive medium-term planning policies for VRES-integrated S-CHPs (VS-CHPs), which can leverage contextual information underneath individual short-term periods and train planning policies by their induced short-term operating profits in wholesale market participation. The proposed DRL-based framework offers two practical merits. First, its planning strategies consider both seasonal requirements of reservoir storage and needs for short-term operating profits. Second, it adopts a multi-parametric programming-based strategy to accelerate the expensive training process associated with multi-step short-term operations. Finally, the DRL-based framework is evaluated on a real-world VS-CHP, demonstrating its advantages over current practice.
☆ A Deep Learning-Based Method for Power System Resilience Evaluation
Power systems are critical infrastructure in modern society, and power outages can cause significant disruptions to communities and individuals' daily lives. The resilience of a power system measures its ability to maintain power supply during highly disruptive events such as hurricanes, earthquakes, and thunderstorms. Traditional methods for quantifying power system resilience include statistics-based and simulation-based approaches. Statistics-based methods offer a retrospective analysis of system performance without requiring a physical model, while simulation-based methods necessitate detailed physical system information and often simplify real-world scenarios. This paper introduces a deep learning-based method for evaluating power system resilience using historical power outage data. The method leverages the generalization capabilities of deep learning models and incorporates socio-economic and demographic factors as weighting terms to highlight the impacts on vulnerable demographic groups. The effectiveness of the proposed method is demonstrated through two case studies: one with real historical outage data and the other with simulated outage records. This approach provides valuable insights into measuring power system resilience against hazardous weather events without requiring a physical model of the target systems. The evaluation results can further guide the planning of distributed energy resources for resilience enhancement.
comment: Submitted to IEEE Transactions on Power Systems
☆ Democratic Resilience and Sociotechnical Shocks
We focus on the potential fragility of democratic elections given modern information-communication technologies (ICT) in the Web 2.0 era. Our work provides an explanation for the cascading attrition of public officials recently in the United States and offers potential policy interventions from a dynamic system's perspective. We propose that micro-level heterogeneity across individuals within crucial institutions leads to vulnerabilities of election support systems at the macro scale. Our analysis provides comparative statistics to measure the fragility of systems against targeted harassment, disinformation campaigns, and other adversarial manipulations that are now cheaper to scale and deploy. Our analysis also informs policy interventions that seek to retain public officials and increase voter turnout. We show how limited resources (for example, salary incentives to public officials and targeted interventions to increase voter turnout) can be allocated at the population level to improve these outcomes and maximally enhance democratic resilience. On the one hand, structural and individual heterogeneity cause systemic fragility that adversarial actors can exploit, but also provide opportunities for effective interventions that offer significant global improvements from limited and localized actions.
comment: Computational and Mathematical Organization Theory, forthcoming
☆ A Novel Observer Design for LuGre Friction Estimation and Control
Dynamic components of the friction may directly impact the stability and performance of the motion control systems. The LuGre model is a prevalent friction model utilized to express this dynamic behavior. Since the LuGre model is very comprehensive, friction compensation based on it might be challenging. Inspired by this, we develop a novel observer to estimate and compensate for LuGre friction. Furthermore, we present a Lyapunov stability analysis to show that observer dynamics are asymptotically stable under certain conditions. Compared to its counterparts, the proposed observer constitutes a simple and standalone scheme that can be utilized with arbitrary control inputs in a straightforward way. As a primary difference, the presented observer estimates velocity and uses the velocity error to estimate friction in addition to control input. The extensive simulations revealed that the introduced observer enhances position and velocity tracking performance in the presence of friction.
☆ Traffic Simulations: Multi-City Calibration of Metropolitan Highway Networks SC
This paper proposes an approach to perform travel demand calibration for high-resolution stochastic traffic simulators. It employs abundant travel times at the path-level, departing from the standard practice of resorting to scarce segment-level sensor counts. The proposed approach is shown to tackle high-dimensional instances in a sample-efficient way. For the first time, case studies on 6 metropolitan highway networks are carried out, considering a total of 54 calibration scenarios. This is the first work to show the ability of a calibration algorithm to systematically scale across networks. Compared to the state-of-the-art simultaneous perturbation stochastic approximation (SPSA) algorithm, the proposed approach enhances fit to field data by an average 43.5% with a maximum improvement of 80.0%, and does so within fewer simulation calls.
comment: Published on the 27th IEEE International Conference on Intelligent Transportation Systems (ITSC) (2024)
☆ Optimize the parameters of the PID Controller using Genetic Algorithm for Robot Manipulators
This paper presents the design a Proportional-Integral-Derivative (PID) controller with optimized parameters for a two-degree-of-freedom robotic arm. A genetic algorithm (GA) is proposed to optimize the controller parameters, addressing the challenges in determining PID controller parameters for highly nonlinear systems like robotic arms compared to traditional methods. The GA-optimized PID controller significantly improves control accuracy and performance over traditional control methods. Simulation results demonstrate that the robotic arm system operates with high precision and stability. Additionally, the shortened trajectory tracking response time enhances the feasibility of applying this control algorithm in realworld scenarios. This research not only confirms the suitability of PID-GA for robotic arms and similar systems but also opens new avenues for applying this algorithm to real physical systems.
☆ Development of an Adaptive Sliding Mode Controller using Neural Networks for Trajectory Tracking of a Cylindrical Manipulator
Cylindrical manipulators are extensively used in industrial automation, especially in emerging technologies like 3D printing, which represents a significant future trend. However, controlling the trajectory of nonlinear models with system uncertainties remains a critical challenge, often leading to reduced accuracy and reliability. To address this, the study develops an Adaptive Sliding Mode Controller (ASMC) integrated with Neural Networks (NNs) to improve trajectory tracking for cylindrical manipulators. The ASMC leverages the robustness of sliding mode control and the adaptability of neural networks to handle uncertainties and dynamic variations effectively. Simulation results validate that the proposed ASMC-NN achieves high trajectory tracking accuracy, fast response time, and enhanced reliability, making it a promising solution for applications in 3D printing and beyond.
☆ Towards resilient cities: A hybrid simulation framework for risk mitigation through data driven decision making
Providing a comprehensive view of the city operation and offering useful metrics for decision making is a well known challenge for urban risk analysis systems. Existing systems are, in many cases, generalizations of previous domain specific tools and or methodologies that may not cover all urban interdependencies and makes it difficult to have homogeneous indicators. In order to overcome this limitation while seeking for effective support to decision makers, this article introduces a novel hybrid simulation framework for risk mitigation. The framework is built on a proposed city concept that considers urban space as a Complex Adaptive System composed by interconnected Critical Infrastructures. In this concept, a Social System, which models daily patterns and social interactions of the citizens in the Urban Landscape, drives the CIs demand to configure the full city picture. The frameworks hybrid design integrates agent based and network based modeling by breaking down city agents into system dependent subagents, to enable both inter and intra system interaction simulation, respectively. A layered structure of indicators at different aggregation levels is also developed, to ensure that decisions are not only data driven but also explainable. Therefore, the proposed simulation framework can serve as a DSS tool that allows the quantitative analysis of the impact of threats at different levels. First, system level metrics can be used to get a broad view on the city resilience. Then, agent level metrics back those figures and provide better explainability. On implementation, the proposed framework enables component reusability (for eased coding), simulation federation (enabling the integration of existing system oriented simulators), discrete simulation in accelerated time (for rapid scenario simulation) and decision oriented visualization (for informed outputs).
comment: 24 pages
☆ Ultrafast pulsed laser evaluation of Single Event Transients in opto-couplers
We build a 1064 nm fiber laser system-based testing facility for emulating SETs in different electronics components and ICs. Using these facilities, we tested the 4N35 optocoupler to observe SETs for the first time.
comment: Accepted in CLEO 2023, San Jose, USA and CLEO 2024, North Carolina, USA for in poster presentation. However due to lack of funds, we could not travel
♻ ☆ Gaming on Coincident Peak Shaving: Equilibrium and Strategic Behavior
Coincident peak demand charges are imposed by power system operators or electric utilities when the overall system demand, aggregated across multiple consumers, reaches its peak. These charges incentivize consumers to reduce their demand during peak periods, a practice known as coincident peak shaving. In this paper, we analyze the coincident peak shaving problem through the lens of game theory, developing a theoretical model to examine the impact of strategic consumer behavior on system efficiency. We demonstrate that the game structure exhibits varying characteristics - concave, quasiconcave/discontinuous, or non-concave/discontinuous - depending on the extent of consumers demand-shifting capabilities. For a two-agent, two-period setting, we derive closed-form Nash equilibrium solutions under each condition and generalize our findings to cases with multiple agents. We prove the stability of the equilibrium points and present an algorithm for computing equilibrium outcomes across all game scenarios. We also show that the peak-shaving effectiveness of the game model matches that of the centralized peak-shaving model but with increased levels of anarchy. In the cases of quasiconcave and non-concave game conditions, we analytically demonstrate in the two-agent setting that anarchy increases with consumers' flexibility and inequity, as measured by their marginal shifting costs, and we also analyze the influence of the number of agents on anarchy. Finally, we provide numerical simulations to validate our theoretical results.
♻ ☆ Entropy-regularized Diffusion Policy with Q-Ensembles for Offline Reinforcement Learning
This paper presents advanced techniques of training diffusion policies for offline reinforcement learning (RL). At the core is a mean-reverting stochastic differential equation (SDE) that transfers a complex action distribution into a standard Gaussian and then samples actions conditioned on the environment state with a corresponding reverse-time SDE, like a typical diffusion policy. We show that such an SDE has a solution that we can use to calculate the log probability of the policy, yielding an entropy regularizer that improves the exploration of offline datasets. To mitigate the impact of inaccurate value functions from out-of-distribution data points, we further propose to learn the lower confidence bound of Q-ensembles for more robust policy improvement. By combining the entropy-regularized diffusion policy with Q-ensembles in offline RL, our method achieves state-of-the-art performance on most tasks in D4RL benchmarks. Code is available at https://github.com/ruoqizzz/Entropy-Regularized-Diffusion-Policy-with-QEnsemble.
♻ ☆ A capacity renting framework for shared energy storage considering peer-to-peer energy trading of prosumers with privacy protection
Shared energy storage systems (ESS) present a promising solution to the temporal imbalance between energy generation from renewable distributed generators (DGs) and the power demands of prosumers. However, as DG penetration rates rise, spatial energy imbalances become increasingly significant, necessitating the integration of peer-to-peer (P2P) energy trading within the shared ESS framework. Two key challenges emerge in this context: the absence of effective mechanisms and the greater difficulty for privacy protection due to increased data communication. This research proposes a capacity renting framework for shared ESS considering P2P energy trading of prosumers. In the proposed framework, prosumers can participate in P2P energy trading and rent capacities from shared ESS. A generalized Nash game is formulated to model the trading process and the competitive interactions among prosumers, and the variational equilibrium of the game is proved to be equivalent to the optimal solution of a quadratic programming (QP) problem. To address the privacy protection concern, the problem is solved using the alternating direction method of multipliers (ADMM) with the Paillier cryptosystem. Finally, numerical simulations demonstrate the impact of P2P energy trading on the shared ESS framework and validate the effectiveness of the proposed privacy-preserving algorithm.
♻ ☆ Generative manufacturing systems using diffusion models and ChatGPT
In this study, we introduce Generative Manufacturing Systems (GMS) as a novel approach to effectively manage and coordinate autonomous manufacturing assets, thereby enhancing their responsiveness and flexibility to address a wide array of production objectives and human preferences. Deviating from traditional explicit modeling, GMS employs generative AI, including diffusion models and ChatGPT, for implicit learning from envisioned futures, marking a shift from a model-optimum to a training-sampling decision-making. Through the integration of generative AI, GMS enables complex decision-making through interactive dialogue with humans, allowing manufacturing assets to generate multiple high-quality global decisions that can be iteratively refined based on human feedback. Empirical findings showcase GMS's substantial improvement in system resilience and responsiveness to uncertainties, with decision times reduced from seconds to milliseconds. The study underscores the inherent creativity and diversity in the generated solutions, facilitating human-centric decision-making through seamless and continuous human-machine interactions.
comment: We are withdrawing this preprint to incorporate significant new results and expand the scope of the paper. We plan to resubmit a substantially revised version in the near future
♻ ☆ Configuration and EMT Simulation of the 240-bus MiniWECC System Integrating Offshore Wind Farms (OWFs)
As offshore wind farms (OWFs) become increasingly prevalent in Northern California and Southern Oregon, they introduce faster dynamics into the Western Electricity Coordinating Council (WECC) system, reshaping its dynamic behavior. Accordingly, electromagnetic transient (EMT) simulation is essential to assess high frequency dynamics of the WECC system with integrated OWFs. Against this background, this paper presents the integration of detailed dynamic models of OWFs into a 240-bus miniWECC system in PSCAD software. The sequential initialization technique is employed to facilitate the smooth initiation of a large-scale system in an EMT simulation. The performance of the configured model is assessed under wind speed variations and grounded faults, demonstrating the effectiveness of the miniWECC system with OWFs. This system serves as a valuable basic use case for validating the fast dynamic performance of future WECC systems with high penetration of wind energy.
comment: 5 pages
♻ ☆ A Carryover Storage Valuation Framework for Medium-Term Cascaded Hydropower Planning: A Portland General Electric System Study
Medium-term planning of cascaded hydropower (CHP) determines appropriate carryover storage levels in reservoirs to optimize the usage of available water resources. This optimization seeks to maximize the hydropower generated in the current period (i.e., immediate benefit) plus the potential hydropower generation in the future period (i.e., future value). Thus, in the medium-term CHP planning, properly quantifying the future value deposited in carryover storage is essential to achieve a balanced trade-off between immediate benefit and future value. To this end, this paper presents a framework to quantify the future value of carryover storage, which consists of three major steps: i) constructing a model to calculate the maximum possible hydropower generation that a given level of carryover storage can deliver in the future period; ii) extracting the implicit locational marginal water value (LMWV) of carryover storage for each reservoir by applying a partition-then-extract algorithm to the constructed model; and iii) developing a set of analytical rules based on the extracted LMWV to effectively calculate the future value. These rules can be seamlessly integrated into medium-term CHP planning models as tractable mixed-integer linear constraints to quantify the future value properly, and can be easily visualized to offer valuable insights for CHP operators. Finally, numerical results on a CHP system of Portland General Electric demonstrate the effectiveness of the presented framework in determining proper carryover storage values to facilitate medium-term CHP planning.
♻ ☆ Equity Impacts of Public Transit Network Redesign with Shared Autonomous Mobility Services
This study examines the equity impacts of integrating shared autonomous mobility services (SAMS) into transit system redesign. Using the Greater Chicago area as a case study, we compare two optimization objectives in multimodal transit network redesign: minimizing total generalized costs (equity-agnostic) versus prioritizing service in low-income areas (equity-focused). We evaluate the achieved accessibility of clustered zones with redesigned transit networks under two objectives, compared to driving and the existing transit network. The transit access gaps across zones and between transit and driving are found to be generally reduced with the introduction of SAMS, but less so with the subsequent improved infrastructure under budget. Differential improvement in equity is seen across suburbs and areas of the city, reflecting the disparity in current transit access and improvement potential. In particular, SAMS bridges the transit access gaps in suburban and city areas currently underserved by transit. The City of Chicago, which is also disproportionately home to vulnerable populations, offers an avenue to improve vertical equity. These findings demonstrate that SAMS can enhance both horizontal and vertical equity in transit systems, particularly when equity is explicitly incorporated into the design objective.
comment: Restructuring the paper for more precise research direction
♻ ☆ Decentralized Singular Value Decomposition for Large-scale Distributed Sensor Networks
This article studies the problem of decentralized Singular Value Decomposition (d-SVD), which is fundamental in various signal processing applications. Two scenarios are considered depending on the availability of the data matrix under consideration. In the first scenario, the matrix of interest is row-wisely available in each local node in the network. In the second scenario, the matrix of interest implicitly forms an outer product from two different series of measurements. By combining the lightweight local rational function approximation approach with parallel averaging consensus algorithms, two d-SVD algorithms are proposed to cope with the two aforementioned scenarios. We evaluate the proposed algorithms using two application examples: decentralized sensor localization via low-rank matrix completion and decentralized passive radar detection. Moreover, a novel and non-trivial truncation technique, which employs a representative vector that is orthonormal to the principal signal subspace, is proposed to further reduce the communication cost associated with the d-SVD algorithms. Simulation results show that the proposed d-SVD algorithms converge to the centralized solution with reduced communication cost compared to those facilitated with the state-of-the-art decentralized power method.
Optimization and Control 42
☆ Semilinear Dynamic Programming: Analysis, Algorithms, and Certainty Equivalence Properties
We consider a broad class of dynamic programming (DP) problems that involve a partially linear structure and some positivity properties in their system equation and cost function. We address deterministic and stochastic problems, possibly with Markov jump parameters. We focus primarily on infinite horizon problems and prove that under our assumptions, the optimal cost function is linear, and that an optimal policy can be computed efficiently with standard DP algorithms. Moreover, we show that forms of certainty equivalence hold for our stochastic problems, in analogy with the classical linear quadratic optimal control problems.
☆ Quadratic-form Optimal Transport
We introduce the framework of quadratic-form optimal transport (QOT), whose transport cost has the form $\iint c\,\mathrm{d}\pi \otimes\mathrm{d}\pi$ for some coupling $\pi$ between two marginals. Interesting examples of quadratic-form transport cost and their optimization include the variance of a bivariate function, covariance, Kendall's tau, the Gromov--Wasserstein distance, quadratic assignment problems, and quadratic regularization of classic optimal transport. QOT leads to substantially different mathematical structures compared to classic transport problems and many technical challenges. We illustrate the fundamental properties of QOT, provide several cases where explicit solutions are obtained, and give general lower bounds of the optimal transport costs. For a wide class of cost functions, including the rectangular cost functions, the QOT problem is solved by a new coupling called the diamond transport, whose copula is supported on a diamond in the unit square.
comment: 43 pages, 5 figures
☆ Characterizations of Variational Convexity and Tilt Stability via Quadratic Bundles
In this paper, we establish characterizations of variational $s$-convexity and tilt stability for prox-regular functions in the absence of subdifferential continuity via quadratic bundles, a kind of primal-dual generalized second-order derivatives recently introduced by Rockafellar. Deriving such characterizations in the effective pointbased form requires a certain revision of quadratic bundles investigated below. Our device is based on the notion of generalized twice differentiability and its novel characterization via classical twice differentiability of the associated Moreau envelopes combined with various limiting procedures for functions and sets.
☆ Infinite Horizon Fully Coupled Nonlinear Forward-Backward Stochastic Difference Equations and their Application to LQ Optimal Control Problems
This paper focuses on the study of infinite horizon fully coupled nonlinear forward-backward stochastic difference equations (FBS$\bigtriangleup$Es). Firstly, we establish a pair of priori estimates for the solutions to forward stochastic difference equations (FS$\bigtriangleup$Es) and backward stochastic difference equations (BS$\bigtriangleup$Es) respectively. Then, to achieve broader applicability, we utilize a set of domination-monotonicity conditions which are more lenient than general ones. Using these conditions, we apply continuation methods to prove the unique solvability of infinite horizon fully coupled FBS$\bigtriangleup$Es and derive a set of solution estimates. Furthermore, our results have considerable implications for a variety of related linear quadratic (LQ) problems, especially when the stochastic Hamiltonian system is consistent with FBS$\bigtriangleup$Es satisfying these introduced domination-monotonicity conditions. Thus, by solving the associated stochastic Hamiltonian system, we can derive an explicit expression for the unique optimal control.
comment: arXiv admin note: text overlap with arXiv:2410.01749
☆ Accelerated Extragradient-Type Methods -- Part 2: Generalization and Sublinear Convergence Rates under Co-Hypomonotonicity
Following the first part of our project, this paper comprehensively studies two types of extragradient-based methods: anchored extragradient and Nesterov's accelerated extragradient for solving [non]linear inclusions (and, in particular, equations), primarily under the Lipschitz continuity and the co-hypomonotonicity assumptions. We unify and generalize a class of anchored extragradient methods for monotone inclusions to a wider range of schemes encompassing existing algorithms as special cases. We establish $\mathcal{O}(1/k)$ last-iterate convergence rates on the residual norm of the underlying mapping for this general framework and then specialize it to obtain convergence guarantees for specific instances, where $k$ denotes the iteration counter. We extend our approach to a class of anchored Tseng's forward-backward-forward splitting methods to obtain a broader class of algorithms for solving co-hypomonotone inclusions. Again, we analyze $\mathcal{O}(1/k)$ last-iterate convergence rates for this general scheme and specialize it to obtain convergence results for existing and new variants. We generalize and unify Nesterov's accelerated extra-gradient method to a new class of algorithms that covers existing schemes as special instances while generating new variants. For these schemes, we can prove $\mathcal{O}(1/k)$ last-iterate convergence rates for the residual norm under co-hypomonotonicity, covering a class of nonmonotone problems. We propose another novel class of Nesterov's accelerated extragradient methods to solve inclusions. Interestingly, these algorithms achieve both $\mathcal{O}(1/k)$ and $o(1/k)$ last-iterate convergence rates, and also the convergence of iterate sequences under co-hypomonotonicity and Lipschitz continuity. Finally, we provide a set of numerical experiments encompassing different scenarios to validate our algorithms and theoretical guarantees.
comment: 75 pages, 7 figures, and 1 table
☆ Regret Analysis: a control perspective
Online learning and model reference adaptive control have many interesting intersections. One area where they differ however is in how the algorithms are analyzed and what objective or metric is used to discriminate "good" algorithms from "bad" algorithms. In adaptive control there are usually two objectives: 1) prove that all time varying parameters/states of the system are bounded, and 2) that the instantaneous error between the adaptively controlled system and a reference system converges to zero over time (or at least a compact set). For online learning the performance of algorithms is often characterized by the regret the algorithm incurs. Regret is defined as the cumulative loss (cost) over time from the online algorithm minus the cumulative loss (cost) of the single optimal fixed parameter choice in hindsight. Another significant difference between the two areas of research is with regard to the assumptions made in order to obtain said results. Adaptive control makes assumptions about the input-output properties of the control problem and derives solutions for a fixed error model or optimization task. In the online learning literature results are derived for classes of loss functions (i.e. convex) while a priori assuming that all time varying parameters are bounded, which for many optimization tasks is not unrealistic, but is a non starter in control applications. In this work we discuss these differences in detail through the regret based analysis of gradient descent for convex functions and the control based analysis of a streaming regression problem. We close with a discussion about the newly defined paradigm of online adaptive control and ask the following question "Are regret optimal control strategies deployable?"
comment: 10 pages no figures
☆ On Branch-and-Price for Project Scheduling
Integer programs for resource-constrained project scheduling problems are notoriously hard to solve due to their weak linear relaxations. Several papers have proposed reformulating project scheduling problems via Dantzig-Wolfe decomposition to strengthen their linear relaxation and decompose large problem instances. The reformulation gives rise to a master problem that has a large number of variables. Therefore, the master problem is solved by a column generation procedure embedded in a branching framework, also known as branch-and-price. While branch-and-price has been successfully applied to many problem classes, it turns out to be ineffective for most project scheduling problems. This paper identifies drivers of the ineffectiveness by analyzing the structure of the reformulated problem and the strength of different branching schemes. Our analysis shows that the reformulated problem has an unfavorable structure for column generation: It is highly degenerate, slowing down the convergence of column generation, and for many project scheduling problems, it yields the same or only slightly stronger linear relaxations as classical formulations at the expense of large increases in runtime. Our computational experiments complement our theoretical findings.
☆ Optimal Control of the Navier-Stokes equations via Pressure Boundary Conditions
In this work we study an optimal control problem subject to the instationary Navier-Stokes equations, where the control enters via an inhomogeneous Neumann/Do-Nothing boundary condition. Despite the Navier-Stokes equations with these boundary conditions not being well-posed for large times and/or data, we obtain wellposedness of the optimal control problem by choosing a proper tracking type term. In order to discuss the regularity of the optimal control, state and adjoint state, we present new results on $L^2(I;H^2(\Omega))$ regularity of solutions to a Stokes problem with mixed inhomogeneous boundary conditions.
☆ Scalable Derivative-Free Optimization Algorithms with Low-Dimensional Subspace Techniques
We re-introduce a derivative-free subspace optimization framework originating from Chapter 5 of the Ph.D. thesis [Z. Zhang, On Derivative-Free Optimization Methods, Ph.D. thesis, Chinese Academy of Sciences, Beijing, 2012] of the author under the supervision of Ya-xiang Yuan. At each iteration, the framework defines a (low-dimensional) subspace based on an approximate gradient, and then solves a subproblem in this subspace to generate a new iterate. We sketch the global convergence and worst-case complexity analysis of the framework, elaborate on its implementation, and present some numerical results on solving problems with dimensions as high as 10^4 using only inaccurate function values.
☆ A fast iterative thresholding and support-and-scale shrinking algorithm (fits3) for non-lipschitz group sparse optimization (i): the case of least-squares fidelity
We consider to design a new efficient and easy-to-implement algorithm to solve a general group sparse optimization model with a class of non-convex non-Lipschitz regularizations, named as fast iterative thresholding and support-and-scale shrinking algorithm (FITS3). In this paper we focus on the case of a least-squares fidelity. FITS3 is designed from a lower bound theory of such models and by integrating thresholding operation, linearization and extrapolation techniques. The FITS3 has two advantages. Firstly, it is quite efficient and especially suitable for large-scale problems, because it adopts support-and-scale shrinking and does not need to solve any linear or nonlinear system. For two important special cases, the FITS3 contains only simple calculations like matrix-vector multiplication and soft thresholding. Secondly, the FITS3 algorithm has a sequence convergence guarantee under proper assumptions. The numerical experiments and comparisons to recent existing non-Lipschitz group recovery algorithms demonstrate that, the proposed FITS3 achieves similar recovery accuracies, but costs only around a half of the CPU time by the second fastest compared algorithm for median or large-scale problems.
☆ Revisiting LocalSGD and SCAFFOLD: Improved Rates and Missing Analysis
LocalSGD and SCAFFOLD are widely used methods in distributed stochastic optimization, with numerous applications in machine learning, large-scale data processing, and federated learning. However, rigorously establishing their theoretical advantages over simpler methods, such as minibatch SGD (MbSGD), has proven challenging, as existing analyses often rely on strong assumptions, unrealistic premises, or overly restrictive scenarios. In this work, we revisit the convergence properties of LocalSGD and SCAFFOLD under a variety of existing or weaker conditions, including gradient similarity, Hessian similarity, weak convexity, and Lipschitz continuity of the Hessian. Our analysis shows that (i) LocalSGD achieves faster convergence compared to MbSGD for weakly convex functions without requiring stronger gradient similarity assumptions; (ii) LocalSGD benefits significantly from higher-order similarity and smoothness; and (iii) SCAFFOLD demonstrates faster convergence than MbSGD for a broader class of non-quadratic functions. These theoretical insights provide a clearer understanding of the conditions under which LocalSGD and SCAFFOLD outperform MbSGD.
☆ State-dependent preconditioning for the inner-loop in Variational Data Assimilation using Machine Learning
Data Assimilation is the process in which we improve the representation of the state of a physical system by combining information coming from a numerical model, real-world observations, and some prior modelling. It is widely used to model and to improve forecast systems in Earth science fields such as meteorology, oceanography and environmental sciences. One key aspect of Data assimilation is the analysis step, where the output of the numerical model is adjusted in order to account for the observational data. In Variational Data Assimilation and under Gaussian assumptions, the analysis step comes down to solving a high-dimensional non-linear least-square problem. In practice, this minimization involves successive inversions of large, and possibly ill-conditioned matrices constructed using linearizations of the forward model. In order to improve the convergence rate of these methods, and thus reduce the computational burden, preconditioning techniques are often used to get better-conditioned matrices, but require either the sparsity pattern of the matrix to inverse, or some spectral information. We propose to use Deep Neural Networks in order to construct a preconditioner. This surrogate is trained using some properties of the singular value decomposition, and is based on a dataset which can be constructed online to reduce the storage requirements.
☆ An algorithm for a constrained P-spline
Regression splines are largely used to investigate and predict data behavior, attracting the interest of mathematicians for their beautiful numerical properties, and of statisticians for their versatility with respect to the applications. Several penalized spline regression models are available in the literature, and the most commonly used ones in real-world applications are P-splines, which enjoy the advantages of penalized models while being easy to generalize across different functional spaces and higher degree order, because of their discrete penalty term. To face the different requirements imposed by the nature of the problem or the physical meaning of the expected values, the P-spline definition is often modified by additional hypotheses, often translated into constraints on the solution or its derivatives. In this framework, our work is motivated by the aim of getting approximation models that fall within pre-established thresholds. Specifically, starting from a set of observed data, we consider a P-spline constrained between some prefixed bounds. In our paper, we just consider 0 as lower bound, although our approach applies to more general cases. We propose to get nonnegativity by imposing lower bounds on selected sample points. The spline can be computed through a sequence of linearly constrained problems. We suggest a strategy to dynamically select the sample points, to avoid extremely dense sampling, and therefore try to reduce as much as possible the computational burden. We show through some computational experiments the reliability of our approach and the accuracy of the results compared to some state-of-the-art models.
☆ A truncated ε-subdifferential method for global DC optimization
We consider the difference of convex (DC) optimization problem subject to box-constraints. Utilizing {\epsilon}-subdifferentials of DC components of the objective, we develop a new method for finding global solutions to this problem. The method combines a local search approach with a special procedure for escaping non-global solutions by identifying improved initial points for a local search. The method terminates when the solution cannot be improved further. The escaping procedure is designed using subsets of the {\epsilon}-subdifferentials of DC components. We compute the deviation between these subsets and determine {\epsilon}-subgradients providing this deviation. Using these specific {\epsilon}-subgradients, we formulate a subproblem with a convex objective function. The solution to this subproblem serves as a starting point for a local search. We study the convergence of the conceptual version of the proposed method and discuss its implementation. A large number of academic test problems demonstrate that the method requires reasonable computational effort to find higher quality solutions than other local DC optimization methods. Additionally, we apply the new method to find global solutions to DC optimization problems and compare its performance with two benchmark global optimization solvers.
comment: 35 pages, 9 figures
☆ Integrated Offline and Online Learning to Solve a Large Class of Scheduling Problems
In this paper, we develop a unified machine learning (ML) approach to predict high-quality solutions for single-machine scheduling problems with a non-decreasing min-sum objective function with or without release times. Our ML approach is novel in three major aspects. First, our approach is developed for the entire class of the aforementioned problems. To achieve this, we exploit the fact that the entire class of the problems considered can be formulated as a time-indexed formulation in a unified manner. We develop a deep neural network (DNN) which uses the cost parameters in the time-indexed formulation as the inputs to effectively predict a continuous solution to this formulation, based on which a feasible discrete solution is easily constructed. The second novel aspect of our approach lies in how the DNN model is trained. In view of the NP-hard nature of the problems, labels (i.e., optimal solutions) are hard to generate for training. To overcome this difficulty, we generate and utilize a set of special instances, for which optimal solutions can be found with little computational effort, to train the ML model offline. The third novel idea we employ in our approach is that we develop an online single-instance learning approach to fine tune the parameters in the DNN for a given online instance, with the goal of generating an improved solution for the given instance. To this end, we develop a feasibility surrogate that approximates the objective value of a given instance as a continuous function of the outputs of the DNN, which then enables us to derive gradients and update the learnable parameters in the DNN. Numerical results show that our approach can efficiently generate high-quality solutions for a variety of single-machine scheduling min-sum problems with up to 1000 jobs.
☆ A black-box optimization method with polynomial-based kernels and quadratic-optimization annealing
We introduce kernel-QA, a black-box optimization (BBO) method that constructs surrogate models analytically using low-order polynomial kernels within a quadratic unconstrained binary optimization (QUBO) framework, enabling efficient utilization of Ising machines. The method has been evaluated on artificial landscapes, ranging from uni-modal to multi-modal, with input dimensions extending to 80 for real variables and 640 for binary variables. The results demonstrate that kernel-QA is particularly effective for optimizing black-box functions characterized by local minima and high-dimensional inputs, showcasing its potential as a robust and scalable BBO approach.
comment: 32 pages, 11 figures, and 1 table
☆ Multi-step Inertial Accelerated Doubly Stochastic Gradient Methods for Block Term Tensor Decomposition
In this paper, we explore a specific optimization problem that combines a differentiable nonconvex function with a nondifferentiable function for multi-block variables, which is particularly relevant to tackle the multilinear rank-($L_r$,$L_r$,1) block-term tensor decomposition model with a regularization term. While existing algorithms often suffer from high per-iteration complexity and slow convergence, this paper employs a unified multi-step inertial accelerated doubly stochastic gradient descent method tailored for structured rank-$\left(L_r, L_r, 1\right)$ tensor decomposition, referred to as Midas-LL1. We also introduce an extended multi-step variance-reduced stochastic estimator framework. Our analysis under this new framework demonstrates the subsequential and sequential convergence of the proposed algorithm under certain conditions and illustrates the sublinear convergence rate of the subsequence, showing that the Midas-LL1 algorithm requires at most $\mathcal{O}(\varepsilon^{-2})$ iterations in expectation to reach an $\varepsilon$-stationary point. The proposed algorithm is evaluated on several datasets, and the results indicate that Midas-LL1 outperforms existing state-of-the-art algorithms in terms of both computational speed and solution quality.
☆ Learning Robot Safety from Sparse Human Feedback using Conformal Prediction
Ensuring robot safety can be challenging; user-defined constraints can miss edge cases, policies can become unsafe even when trained from safe data, and safety can be subjective. Thus, we learn about robot safety by showing policy trajectories to a human who flags unsafe behavior. From this binary feedback, we use the statistical method of conformal prediction to identify a region of states, potentially in learned latent space, guaranteed to contain a user-specified fraction of future policy errors. Our method is sample-efficient, as it builds on nearest neighbor classification and avoids withholding data as is common with conformal prediction. By alerting if the robot reaches the suspected unsafe region, we obtain a warning system that mimics the human's safety preferences with guaranteed miss rate. From video labeling, our system can detect when a quadcopter visuomotor policy will fail to steer through a designated gate. We present an approach for policy improvement by avoiding the suspected unsafe region. With it we improve a model predictive controller's safety, as shown in experimental testing with 30 quadcopter flights across 6 navigation tasks. Code and videos are provided.
☆ Extended formulations for the multilinear polytope of acyclic hypergraphs
This article provides an overview of our joint work on binary polynomial optimization over the past decade. We define the multilinear polytope as the convex hull of the feasible region of a linearized binary polynomial optimization problem. By representing the multilinear polytope with hypergraphs, we investigate the connections between hypergraph acyclicity and the complexity of the facial structure of the multilinear polytope. We characterize the acyclic hypergraphs for which a polynomial-size extended formulation for the multilinear polytope can be constructed in polynomial time.
comment: arXiv admin note: text overlap with arXiv:2212.11239
☆ Inexact Catching-Up Algorithm for Moreau's Sweeping Processes
In this paper, we develop an inexact version of the catching-up algorithm for sweeping processes. We define a new notion of approximate projection, which is compatible with any numerical method for approximating exact projections, as this new notion is not restricted to remain strictly within the set. We provide several properties of the new approximate projections, which enable us to prove the convergence of the inexact catching-up algorithm in three general frameworks: prox-regular moving sets, subsmooth moving sets, and merely closed sets. Additionally, we apply our numerical results to address complementarity dynamical systems, particularly electrical circuits with ideal diodes. In this context, we implement the inexact catching-up algorithm using a primal-dual optimization method, which typically does not necessarily guarantee a feasible point. Our results are illustrated through an electrical circuit with ideal diodes. Our results recover classical existence results in the literature and provide new insights into the numerical simulation of sweeping processes.
comment: arXiv admin note: substantial text overlap with arXiv:2308.08093
☆ Optimize the parameters of the PID Controller using Genetic Algorithm for Robot Manipulators
This paper presents the design a Proportional-Integral-Derivative (PID) controller with optimized parameters for a two-degree-of-freedom robotic arm. A genetic algorithm (GA) is proposed to optimize the controller parameters, addressing the challenges in determining PID controller parameters for highly nonlinear systems like robotic arms compared to traditional methods. The GA-optimized PID controller significantly improves control accuracy and performance over traditional control methods. Simulation results demonstrate that the robotic arm system operates with high precision and stability. Additionally, the shortened trajectory tracking response time enhances the feasibility of applying this control algorithm in realworld scenarios. This research not only confirms the suitability of PID-GA for robotic arms and similar systems but also opens new avenues for applying this algorithm to real physical systems.
☆ Under the hood of a carbon footprint calculator
We explain the mathematical theory of the Input-Output method for carbon footprints computations.
☆ A Survey on Algorithmic Developments in Optimal Transport Problem with Applications
Optimal Transport (OT) has established itself as a robust framework for quantifying differences between distributions, with applications that span fields such as machine learning, data science, and computer vision. This paper offers a detailed examination of the OT problem, beginning with its theoretical foundations, including the classical formulations of Monge and Kantorovich and their extensions to modern computational techniques. It explores cutting-edge algorithms, including Sinkhorn iterations, primal-dual strategies, and reduction-based approaches, emphasizing their efficiency and scalability in addressing high-dimensional problems. The paper also highlights emerging trends, such as integrating OT into machine learning frameworks, the development of novel problem variants, and ongoing theoretical advancements. Applications of OT are presented across a range of domains, with particular attention to its innovative application in time series data analysis via Optimal Transport Warping (OTW), a robust alternative to methods like Dynamic Time Warping. Despite the significant progress made, challenges related to scalability, robustness, and ethical considerations remain, necessitating further research. The paper underscores OT's potential to bridge theoretical depth and practical utility, fostering impactful advancements across diverse disciplines.
☆ The Convergence of Dynamic Routing between Capsules
Capsule networks(CapsNet) are recently proposed neural network models with new processing layers, specifically for entity representation and discovery of images. It is well known that CapsNet have some advantages over traditional neural networks, especially in generalization capability. At the same time, some studies report negative experimental results. The causes of this contradiction have not been thoroughly analyzed. The preliminary experimental results show that the behavior of routing algorithms does not always produce good results as expected, and in most cases, different routing algorithms do not change the classification results, but simply polarize the link strength, especially when they continue to repeat without stopping. To realize the true potential of the CapsNet, deep mathematical analysis of the routing algorithms is crucial. In this paper, we will give the objective function that is minimized by the dynamic routing algorithm, which is a concave function. The dynamic routing algorithm can be regarded as nonlinear gradient method to solving an optimization algorithm under linear constraints, and its convergence can be strictly proved mathematically. Furthermore, the mathematically rigorous proof of the convergence is given for this class of iterative routing procedures. We analyze the relation between the objective function and the constraints solved by the dynamic routing algorithm in detail, and perform the corresponding routing experiment to analyze the effect of our convergence proof.
♻ ☆ A Unified Algorithmic Framework for Dynamic Assortment Optimization under MNL Choice
We consider assortment and inventory planning problems with dynamic stockout-based substitution effects, and without replenishment, in two different settings: (1) Customers can see all available products when they arrive, a typical scenario in physical stores. (2) The seller can choose to offer a subset of available products to each customer, which is more common on online platforms. Both settings are known to be computationally challenging, and the current approximation algorithms for the two settings are quite different. We develop a unified algorithm framework under the MNL choice model for both settings. Our algorithms improve on the state-of-the-art algorithms in terms of approximation guarantee and runtime, and the ability to manage uncertainty in the total number of customers and handle more complex constraints. In the process, we establish various novel properties of dynamic assortment planning (for the MNL choice model) that may be useful more broadly.
♻ ☆ A three-stage method for reconstructing multiple coefficients in coupled photoacoustic and diffuse optical imaging
This paper studies inverse problems in quantitative photoacoustic tomography with additional optical current data supplemented from diffuse optical tomography. We propose a three-stage image reconstruction method for the simultaneous recovery of the absorption, diffusion, and Gr\"uneisen coefficients. We demonstrate, through numerical simulations, that: (i) when the Gr\"uneisen coefficient is known, the addition of the optical measurements allows a more accurate reconstruction of the scattering and absorption coefficients; and (ii) when the Gr\"uneisen coefficient is not known, the addition of optical current measurements allows us to reconstruct uniquely the Gr\"uneisen, the scattering and absorption coefficients. Numerical simulations based on synthetic data are presented to demonstrate the effectiveness of the proposed idea.
♻ ☆ Boosting Column Generation with Graph Neural Networks for Joint Rider Trip Planning and Crew Shift Scheduling
Optimizing service schedules is pivotal to the reliable, efficient, and inclusive on-demand mobility. This pressing challenge is further exacerbated by the increasing needs of an aging population, the oversubscription of existing services, and the lack of effective solution methods. This study addresses the intricacies of service scheduling, by jointly optimizing rider trip planning and crew scheduling for a complex dynamic mobility service. The resulting optimization problems are extremely challenging computationally for state-of-the-art methods. To address this fundamental gap, this paper introduces the Joint Rider Trip Planning and Crew Shift Scheduling Problem (JRTPCSSP) and a novel solution method, called Attention and Gated GNN-Informed Column Generation (AGGNNI-CG), that hybridizes column generation and machine learning to obtain near-optimal solutions to the JRTPCSSP with real-life constraints of the application. The key idea of the machine-learning component is to dramatically reduce the number of paths to explore in the pricing problem, accelerating the most time-consuming component of the column generation. The machine learning component is a graph neural network with an attention mechanism and a gated architecture, which is particularly suited to cater for the different input sizes coming from daily operations. AGGNNI-CG has been applied to a challenging, real-world dataset from the Paratransit system of Chatham County in Georgia. It produces substantial improvements compared to the baseline column generation approach, which typically cannot produce high-quality feasible solutions in reasonable time on large-scale complex instances. AGGNNI-CG also produces significant improvements in service quality compared to the existing system.
♻ ☆ Euclidean distance discriminants and Morse attractors
Our study concerns the Euclidean distance function in case of complex plane curves. We decompose the ED discriminant into 3 parts which are responsible for the 3 types of behavior of the Morse points, and we find the structure of each one. In particular we shed light on the ``atypical discriminant'' which is due to the loss of Morse points at infinity. We find formulas for the number of Morse singularities which abut to the corresponding 3 types of attractors when moving the centre of the distance function toward a point of the discriminant.
comment: several improvements in Section 3
♻ ☆ Central limit theorems for vector-valued composite functionals with smoothing and applications
This paper focuses on vector-valued composite functionals, which may be nonlinear in probability. Our primary goal is to establish central limit theorems for these functionals when mixed estimators are employed. Our study is relevant to the evaluation and comparison of risk in decision-making contexts and extends to functionals that arise in machine learning methods. A generalized family of composite risk functionals is presented, which encompasses most of the known coherent risk measures including systemic measures of risk. The paper makes two main contributions. First, we analyze vector-valued functionals, providing a framework for evaluating high-dimensional risks. This framework facilitates the comparison of multiple risk measures, as well as the estimation and asymptotic analysis of systemic risk and its optimal value in decision-making problems. Second, we derive novel central limit theorems for optimized composite functionals when mixed types of estimators: empirical and smoothed estimators are used. We provide verifiable sufficient conditions for the central limit formulae and show their applicability to several popular measures of risk.
♻ ☆ Rethinking the Capacity of Graph Neural Networks for Branching Strategy
Graph neural networks (GNNs) have been widely used to predict properties and heuristics of mixed-integer linear programs (MILPs) and hence accelerate MILP solvers. This paper investigates the capacity of GNNs to represent strong branching (SB), the most effective yet computationally expensive heuristic employed in the branch-and-bound algorithm. In the literature, message-passing GNN (MP-GNN), as the simplest GNN structure, is frequently used as a fast approximation of SB and we find that not all MILPs's SB can be represented with MP-GNN. We precisely define a class of "MP-tractable" MILPs for which MP-GNNs can accurately approximate SB scores. Particularly, we establish a universal approximation theorem: for any data distribution over the MP-tractable class, there always exists an MP-GNN that can approximate the SB score with arbitrarily high accuracy and arbitrarily high probability, which lays a theoretical foundation of the existing works on imitating SB with MP-GNN. For MILPs without the MP-tractability, unfortunately, a similar result is impossible, which can be illustrated by two MILP instances with different SB scores that cannot be distinguished by any MP-GNN, regardless of the number of parameters. Recognizing this, we explore another GNN structure called the second-order folklore GNN (2-FGNN) that overcomes this limitation, and the aforementioned universal approximation theorem can be extended to the entire MILP space using 2-FGNN, regardless of the MP-tractability. A small-scale numerical experiment is conducted to directly validate our theoretical findings.
♻ ☆ Hardness of circuit and monotone diameters of polytopes
The Circuit diameter of polytopes was introduced by Borgwardt, Finhold and Hemmecke as a fundamental tool for the study of circuit augmentation schemes for linear programming and for estimating combinatorial diameters. Determining the complexity of computing the circuit diameter of polytopes was posed as an open problem by Sanit\`a as well as by Kafer, and was recently reiterated by Borgwardt, Grewe, Kafer, Lee and Sanit\`a. In this paper, we solve this problem by showing that computing the circuit diameter of a polytope given in halfspace-description is strongly NP-hard. To prove this result, we show that computing the combinatorial diameter of the perfect matching polytope of a bipartite graph is NP-hard. This complements a result by Sanit\`a (FOCS 2018) on the NP-hardness of computing the diameter of fractional matching polytopes and implies the new result that computing the diameter of a $\{0,1\}$-polytope is strongly NP-hard, which may be of independent interest. In our second main result, we give a precise graph-theoretic description of the monotone diameter of perfect matching polytopes and use this description to prove that computing the monotone (circuit) diameter of a given input polytope is strongly NP-hard as well.
comment: 21 pages, 9 figures. Restructured paper
♻ ☆ Hydrogen Network Expansion Planning considering the Chicken-and-egg Dilemma and Market Uncertainty
Green hydrogen is thought to be a game changer for reaching sustainability targets. However, the transition to a green hydrogen economy faces a critical challenge known as the `chicken-and-egg dilemma', wherein establishing a hydrogen supply network relies on demand, while demand only grows with reliable supply. In addition, as the hydrogen market is in the early stage, predicting demand distributions is challenging due to lack of data availability. This paper addresses these complex issues through a risk-averse framework with the introduction of a distributionally robust hydrogen network expansion planning problem under decision-dependent demand ambiguity. The problem optimizes location and production capacity decisions of the suppliers considering the moments of the stochastic hydrogen demand as a function of these investment decisions. To obtain tractable representations of this problem, we derive two different reformulations that consider continuous and discrete hydrogen demand support sets under different forms of decision dependencies. To efficiently solve the reformulations, we develop a tailored algorithm based on the column-and-constraint generation approach, and enhance the computational performance through solving the master problems to a relative optimality gap, decomposing the subproblems, and integrating pre-generated columns and constraints. To validate the effectiveness of our approach, we investigate a real case study leveraging data from the "Hydrogen Energy Applications in Valley Environments for Northern Netherlands (HEAVENN)" project. The results reveal that considering the chicken-and-egg dilemma under uncertain hydrogen market conditions leads to earlier and more diverse investments, providing critical insights for policymakers based on the degree of decision dependency.
♻ ☆ State-of-the-art Methods for Pseudo-Boolean Solving with SCIP
The Pseudo-Boolean problem deals with linear or polynomial constraints with integer coefficients over Boolean variables. The objective lies in optimizing a linear objective function, or finding a feasible solution, or finding a solution that satisfies as many constraints as possible. In the 2024 Pseudo-Boolean competition, solvers incorporating the SCIP framework won five out of six categories it was competing in. From a total of 1,207 instances, SCIP successfully solved 759, while its parallel version FiberSCIP solved 776. Based on the results from the competition, we further enhanced SCIP's Pseudo-Boolean capabilities. This article discusses the results and presents the winning algorithmic ideas.
♻ ☆ Scalable Second-Order Optimization Algorithms for Minimizing Low-rank Functions NeurIPS 2024
We present a random-subspace variant of cubic regularization algorithm that chooses the size of the subspace adaptively, based on the rank of the projected second derivative matrix. Iteratively, our variant only requires access to (small-dimensional) projections of first- and second-order problem derivatives and calculates a reduced step inexpensively. The ensuing method maintains the optimal global rate of convergence of (full-dimensional) cubic regularization, while showing improved scalability both theoretically and numerically, particularly when applied to low-rank functions. When applied to the latter, our algorithm naturally adapts the subspace size to the true rank of the function, without knowing it a priori.
comment: Accepted at NeurIPS 2024 Workshop OPT2024: Optimization for Machine Learning; fixed typo on page 5
♻ ☆ Output-Positive Adaptive Control of Hyperbolic PDE-ODE Cascades
In this paper, we propose a new adaptive Control Barrier Function (aCBF) method to design the output-positive adaptive control law for a hyperbolic PDE-ODE cascade with parametric uncertainties. This method employs the recent adaptive control approach with batch least-squares identification (BaLSI, pronounced "ballsy") that completes perfect parameter identification in finite time and offers a previously unforeseen advantage in safe control design with aCBF, which we elucidate in this paper. Since the true challenge is exhibited for CBF of a high relative degree, we undertake a control design in this paper for a class of systems that possess a particularly extreme relative degree: $2\times2$ hyperbolic PDEs sandwiched by a strict-feedback nonlinear ODE and a linear ODE, where the unknown coefficients are associated with the PDE in-domain coupling terms and with the input signal of the distal ODE. The designed output-positive adaptive controller guarantees the positivity of the output signal that is the furthermost state from the control input as well as the exponential regulation of the overall plant state to zero. The effectiveness of the proposed method is illustrated by numerical simulation.
♻ ☆ Off-the-grid regularisation for Poisson inverse problems
Off-the-grid regularisation has been extensively employed over the last decade in the context of ill-posed inverse problems formulated in the continuous setting of the space of Radon measures $\mathcal{M}(\mathcal{X})$. These approaches enjoy convexity and counteract the discretisation biases as well the numerical instabilities typical of their discrete counterparts. In the framework of sparse reconstruction of discrete point measures (sum of weighted Diracs), a Total Variation regularisation norm in $\mathcal{M}(\mathcal{X})$ is typically combined with an $L^2$ data term modelling additive Gaussian noise. To asses the framework of off-the-grid regularisation in the presence of signal-dependent Poisson noise, we consider in this work a variational model coupling the Total Variation regularisation with a Kullback-Leibler data term under a non-negativity constraint. Analytically, we study the optimality conditions of the composite functional and analyse its dual problem. Then, we consider an homotopy strategy to select an optimal regularisation parameter and use it within a Sliding Frank-Wolfe algorithm. Several numerical experiments on both 1D/2D simulated and real 3D fluorescent microscopy data are reported.
♻ ☆ Ensemble Control for Stochastic Systems with Asymmetric Laplace Noises
This paper presents an adaptive ensemble control for stochastic systems subject to asymmetric noises and outliers. Asymmetric noises skew system observations, and outliers with large amplitude deteriorate the observations even further. Such disturbances induce poor system estimation and degraded stochastic system control. In this work, we model the asymmetric noises and outliers by mixed asymmetric Laplace distributions (ALDs), and propose an optimal control for stochastic systems with mixed ALD noises. Particularly, we segregate the system disturbed by mixed ALD noises into subsystems, each of which is subject to a specific ALD noise. For each subsystem, we design an iterative quantile filter (IQF) to estimate the system parameters using system observations. With the estimated parameters by IQF, we derive the certainty equivalence (CE) control law for each subsystem. Then we use the Bayesian approach to ensemble the subsystem CE controllers, with each of the controllers weighted by their posterior probability. We finalize our control law as the weighted sum of the control signals by the sub-system CE controllers. To demonstrate our approach, we conduct numerical simulations and Monte Carlo analyses. The results show improved tracking performance by our approach for skew noises and its robustness to outliers, compared with single ALD based and RLS-based control policy.
♻ ☆ Conjugate-Gradient-like Based Adaptive Moment Estimation Optimization Algorithm for Deep Learning
Training deep neural networks is a challenging task. In order to speed up training and enhance the performance of deep neural networks, we rectify the vanilla conjugate gradient as conjugate-gradient-like and incorporate it into the generic Adam, and thus propose a new optimization algorithm named CG-like-Adam for deep learning. Specifically, both the first-order and the second-order moment estimation of generic Adam are replaced by the conjugate-gradient-like. Convergence analysis handles the cases where the exponential moving average coefficient of the first-order moment estimation is constant and the first-order moment estimation is unbiased. Numerical experiments show the superiority of the proposed algorithm based on the CIFAR10/100 dataset.
comment: 32 pages, 13 figures
♻ ☆ Optimal Stabilization of Periodic Orbits
In this contribution, the optimal stabilization problem of periodic orbits is studied via invariant manifold theory and symplectic geometry. The stable manifold theory for the optimal point stabilization case is generalized to the case of periodic orbit stabilization, where a normally hyperbolic invariant manifold (NHIM) plays the role of a hyperbolic equilibrium. A sufficient condition for the existence of an NHIM of an associated Hamiltonian system is derived in terms of a periodic Riccati differential equation. It is shown that the problem of optimal orbit stabilization has a solution if a linearized periodic system satisfies stabilizability and detectability. A moving orthogonal coordinate system is employed along the periodic orbit which is a natural framework for orbital stabilization and linearization argument. Examples illustrated include an optimal control problem for a spring-mass oscillator system, which should be stabilized at a certain energy level, and an orbit transfer problem for a satellite, which constitutes a typical control problem of orbital mechanics.
comment: Submitted for a journal on November 29 2024
♻ ☆ Learning Neural Contracting Dynamics: Extended Linearization and Global Guarantees NeurIPS 2024
Global stability and robustness guarantees in learned dynamical systems are essential to ensure well-behavedness of the systems in the face of uncertainty. We present Extended Linearized Contracting Dynamics (ELCD), the first neural network-based dynamical system with global contractivity guarantees in arbitrary metrics. The key feature of ELCD is a parametrization of the extended linearization of the nonlinear vector field. In its most basic form, ELCD is guaranteed to be (i) globally exponentially stable, (ii) equilibrium contracting, and (iii) globally contracting with respect to some metric. To allow for contraction with respect to more general metrics in the data space, we train diffeomorphisms between the data space and a latent space and enforce contractivity in the latent space, which ensures global contractivity in the data space. We demonstrate the performance of ELCD on the high dimensional LASA, multi-link pendulum, and Rosenbrock datasets.
comment: 9 pages, 3 figures. NeurIPS 2024
♻ ☆ Non-asymptotic Global Convergence Analysis of BFGS with the Armijo-Wolfe Line Search
In this paper, we present the first explicit and non-asymptotic global convergence rates of the BFGS method when implemented with an inexact line search scheme satisfying the Armijo-Wolfe conditions. We show that BFGS achieves a global linear convergence rate of $(1 - \frac{1}{\kappa})^t$ for $\mu$-strongly convex functions with $L$-Lipschitz gradients, where $\kappa = \frac{L}{\mu}$ represents the condition number. Additionally, if the objective function's Hessian is Lipschitz, BFGS with the Armijo-Wolfe line search achieves a linear convergence rate that depends solely on the line search parameters, independent of the condition number. We also establish a global superlinear convergence rate of $\mathcal{O}((\frac{1}{t})^t)$. These global bounds are all valid for any starting point $x_0$ and any symmetric positive definite initial Hessian approximation matrix $B_0$, though the choice of $B_0$ impacts the number of iterations needed to achieve these rates. By synthesizing these results, we outline the first global complexity characterization of BFGS with the Armijo-Wolfe line search. Additionally, we clearly define a mechanism for selecting the step size to satisfy the Armijo-Wolfe conditions and characterize its overall complexity.
♻ ☆ Equity Impacts of Public Transit Network Redesign with Shared Autonomous Mobility Services
This study examines the equity impacts of integrating shared autonomous mobility services (SAMS) into transit system redesign. Using the Greater Chicago area as a case study, we compare two optimization objectives in multimodal transit network redesign: minimizing total generalized costs (equity-agnostic) versus prioritizing service in low-income areas (equity-focused). We evaluate the achieved accessibility of clustered zones with redesigned transit networks under two objectives, compared to driving and the existing transit network. The transit access gaps across zones and between transit and driving are found to be generally reduced with the introduction of SAMS, but less so with the subsequent improved infrastructure under budget. Differential improvement in equity is seen across suburbs and areas of the city, reflecting the disparity in current transit access and improvement potential. In particular, SAMS bridges the transit access gaps in suburban and city areas currently underserved by transit. The City of Chicago, which is also disproportionately home to vulnerable populations, offers an avenue to improve vertical equity. These findings demonstrate that SAMS can enhance both horizontal and vertical equity in transit systems, particularly when equity is explicitly incorporated into the design objective.
comment: Restructuring the paper for more precise research direction
Computer Vision and Pattern Recognition 128
☆ Planarian Neural Networks: Evolutionary Patterns from Basic Bilateria Shaping Modern Artificial Neural Network Architectures
This study examined the viability of enhancing the prediction accuracy of artificial neural networks (ANNs) in image classification tasks by developing ANNs with evolution patterns similar to those of biological neural networks. ResNet is a widely used family of neural networks with both deep and wide variants; therefore, it was selected as the base model for our investigation. The aim of this study is to improve the image classification performance of ANNs via a novel approach inspired by the biological nervous system architecture of planarians, which comprises a brain and two nerve cords. We believe that the unique neural architecture of planarians offers valuable insights into the performance enhancement of ANNs. The proposed planarian neural architecture-based neural network was evaluated on the CIFAR-10 and CIFAR-100 datasets. Our results indicate that the proposed method exhibits higher prediction accuracy than the baseline neural network models in image classification tasks. These findings demonstrate the significant potential of biologically inspired neural network architectures in improving the performance of ANNs in a wide range of applications.
comment: 11 pages, 9 figures
☆ EditAR: Unified Conditional Generation with Autoregressive Models
Recent progress in controllable image generation and editing is largely driven by diffusion-based methods. Although diffusion models perform exceptionally well in specific tasks with tailored designs, establishing a unified model is still challenging. In contrast, autoregressive models inherently feature a unified tokenized representation, which simplifies the creation of a single foundational model for various tasks. In this work, we propose EditAR, a single unified autoregressive framework for a variety of conditional image generation tasks, e.g., image editing, depth-to-image, edge-to-image, segmentation-to-image. The model takes both images and instructions as inputs, and predicts the edited images tokens in a vanilla next-token paradigm. To enhance the text-to-image alignment, we further propose to distill the knowledge from foundation models into the autoregressive modeling process. We evaluate its effectiveness across diverse tasks on established benchmarks, showing competitive performance to various state-of-the-art task-specific methods. Project page: https://jitengmu.github.io/EditAR/
comment: Project page: https://jitengmu.github.io/EditAR/
☆ ConceptMaster: Multi-Concept Video Customization on Diffusion Transformer Models Without Test-Time Tuning
Text-to-video generation has made remarkable advancements through diffusion models. However, Multi-Concept Video Customization (MCVC) remains a significant challenge. We identify two key challenges in this task: 1) the identity decoupling problem, where directly adopting existing customization methods inevitably mix attributes when handling multiple concepts simultaneously, and 2) the scarcity of high-quality video-entity pairs, which is crucial for training such a model that represents and decouples various concepts well. To address these challenges, we introduce ConceptMaster, an innovative framework that effectively tackles the critical issues of identity decoupling while maintaining concept fidelity in customized videos. Specifically, we introduce a novel strategy of learning decoupled multi-concept embeddings that are injected into the diffusion models in a standalone manner, which effectively guarantees the quality of customized videos with multiple identities, even for highly similar visual concepts. To further overcome the scarcity of high-quality MCVC data, we carefully establish a data construction pipeline, which enables systematic collection of precise multi-concept video-entity data across diverse concepts. A comprehensive benchmark is designed to validate the effectiveness of our model from three critical dimensions: concept fidelity, identity decoupling ability, and video generation quality across six different concept composition scenarios. Extensive experiments demonstrate that our ConceptMaster significantly outperforms previous approaches for this task, paving the way for generating personalized and semantically accurate videos across multiple concepts.
comment: Project Page: https://yuzhou914.github.io/ConceptMaster/
☆ Grokking at the Edge of Numerical Stability
Grokking, the sudden generalization that occurs after prolonged overfitting, is a surprising phenomenon challenging our understanding of deep learning. Although significant progress has been made in understanding grokking, the reasons behind the delayed generalization and its dependence on regularization remain unclear. In this work, we argue that without regularization, grokking tasks push models to the edge of numerical stability, introducing floating point errors in the Softmax function, which we refer to as Softmax Collapse (SC). We demonstrate that SC prevents grokking and that mitigating SC enables grokking without regularization. Investigating the root cause of SC, we find that beyond the point of overfitting, the gradients strongly align with what we call the na\"ive loss minimization (NLM) direction. This component of the gradient does not alter the model's predictions but decreases the loss by scaling the logits, typically by scaling the weights along their current direction. We show that this scaling of the logits explains the delay in generalization characteristic of grokking and eventually leads to SC, halting further learning. To validate our hypotheses, we introduce two key contributions that address the challenges in grokking tasks: StableMax, a new activation function that prevents SC and enables grokking without regularization, and $\perp$Grad, a training algorithm that promotes quick generalization in grokking tasks by preventing NLM altogether. These contributions provide new insights into grokking, elucidating its delayed generalization, reliance on regularization, and the effectiveness of existing grokking-inducing methods. Code for this paper is available at https://github.com/LucasPrietoAl/grokking-at-the-edge-of-numerical-stability.
☆ Test-Time Optimization for Domain Adaptive Open Vocabulary Segmentation
We present Seg-TTO, a novel framework for zero-shot, open-vocabulary semantic segmentation (OVSS), designed to excel in specialized domain tasks. While current open vocabulary approaches show impressive performance on standard segmentation benchmarks under zero-shot settings, they fall short of supervised counterparts on highly domain-specific datasets. We focus on segmentation-specific test-time optimization to address this gap. Segmentation requires an understanding of multiple concepts within a single image while retaining the locality and spatial structure of representations. We propose a novel self-supervised objective adhering to these requirements and use it to align the model parameters with input images at test time. In the textual modality, we learn multiple embeddings for each category to capture diverse concepts within an image, while in the visual modality, we calculate pixel-level losses followed by embedding aggregation operations specific to preserving spatial structure. Our resulting framework termed Seg-TTO is a plug-in-play module. We integrate Seg-TTO with three state-of-the-art OVSS approaches and evaluate across 22 challenging OVSS tasks covering a range of specialized domains. Our Seg-TTO demonstrates clear performance improvements across these establishing new state-of-the-art. Code: https://github.com/UlinduP/SegTTO.
☆ Re-ranking the Context for Multimodal Retrieval Augmented Generation
Retrieval-augmented generation (RAG) enhances large language models (LLMs) by incorporating external knowledge to generate a response within a context with improved accuracy and reduced hallucinations. However, multi-modal RAG systems face unique challenges: (i) the retrieval process may select irrelevant entries to user query (e.g., images, documents), and (ii) vision-language models or multi-modal language models like GPT-4o may hallucinate when processing these entries to generate RAG output. In this paper, we aim to address the first challenge, i.e, improving the selection of relevant context from the knowledge-base in retrieval phase of the multi-modal RAG. Specifically, we leverage the relevancy score (RS) measure designed in our previous work for evaluating the RAG performance to select more relevant entries in retrieval process. The retrieval based on embeddings, say CLIP-based embedding, and cosine similarity usually perform poorly particularly for multi-modal data. We show that by using a more advanced relevancy measure, one can enhance the retrieval process by selecting more relevant pieces from the knowledge-base and eliminate the irrelevant pieces from the context by adaptively selecting up-to-$k$ entries instead of fixed number of entries. Our evaluation using COCO dataset demonstrates significant enhancement in selecting relevant context and accuracy of the generated response.
☆ SPAR3D: Stable Point-Aware Reconstruction of 3D Objects from Single Images
We study the problem of single-image 3D object reconstruction. Recent works have diverged into two directions: regression-based modeling and generative modeling. Regression methods efficiently infer visible surfaces, but struggle with occluded regions. Generative methods handle uncertain regions better by modeling distributions, but are computationally expensive and the generation is often misaligned with visible surfaces. In this paper, we present SPAR3D, a novel two-stage approach aiming to take the best of both directions. The first stage of SPAR3D generates sparse 3D point clouds using a lightweight point diffusion model, which has a fast sampling speed. The second stage uses both the sampled point cloud and the input image to create highly detailed meshes. Our two-stage design enables probabilistic modeling of the ill-posed single-image 3D task while maintaining high computational efficiency and great output fidelity. Using point clouds as an intermediate representation further allows for interactive user edits. Evaluated on diverse datasets, SPAR3D demonstrates superior performance over previous state-of-the-art methods, at an inference speed of 0.7 seconds. Project page with code and model: https://spar3d.github.io
☆ RadGPT: Constructing 3D Image-Text Tumor Datasets
With over 85 million CT scans performed annually in the United States, creating tumor-related reports is a challenging and time-consuming task for radiologists. To address this need, we present RadGPT, an Anatomy-Aware Vision-Language AI Agent for generating detailed reports from CT scans. RadGPT first segments tumors, including benign cysts and malignant tumors, and their surrounding anatomical structures, then transforms this information into both structured reports and narrative reports. These reports provide tumor size, shape, location, attenuation, volume, and interactions with surrounding blood vessels and organs. Extensive evaluation on unseen hospitals shows that RadGPT can produce accurate reports, with high sensitivity/specificity for small tumor (<2 cm) detection: 80/73% for liver tumors, 92/78% for kidney tumors, and 77/77% for pancreatic tumors. For large tumors, sensitivity ranges from 89% to 97%. The results significantly surpass the state-of-the-art in abdominal CT report generation. RadGPT generated reports for 17 public datasets. Through radiologist review and refinement, we have ensured the reports' accuracy, and created the first publicly available image-text 3D medical dataset, comprising over 1.8 million text tokens and 2.7 million images from 9,262 CT scans, including 2,947 tumor scans/reports of 8,562 tumor instances. Our reports can: (1) localize tumors in eight liver sub-segments and three pancreatic sub-segments annotated per-voxel; (2) determine pancreatic tumor stage (T1-T4) in 260 reports; and (3) present individual analyses of multiple tumors--rare in human-made reports. Importantly, 948 of the reports are for early-stage tumors.
☆ Enhancing Financial VQA in Vision Language Models using Intermediate Structured Representations
Chart interpretation is crucial for visual data analysis, but accurately extracting information from charts poses significant challenges for automated models. This study investigates the fine-tuning of DEPLOT, a modality conversion module that translates the image of a plot or chart to a linearized table, on a custom dataset of 50,000 bar charts. The dataset comprises simple, stacked, and grouped bar charts, targeting the unique structural features of these visualizations. The finetuned DEPLOT model is evaluated against its base version using a test set of 1,000 images and two metrics: Relative Mapping Similarity (RMS), which measures categorical mapping accuracy, and Relative Number Set Similarity (RNSS), which evaluates numerical interpretation accuracy. To further explore the reasoning capabilities of large language models (LLMs), we curate an additional set of 100 bar chart images paired with question answer sets. Our findings demonstrate that providing a structured intermediate table alongside the image significantly enhances LLM reasoning performance compared to direct image queries.
☆ DRIVINGVQA: Analyzing Visual Chain-of-Thought Reasoning of Vision Language Models in Real-World Scenarios with Driving Theory Tests
Large vision-language models (LVLMs) augment language models with visual understanding, enabling multimodal reasoning. However, due to the modality gap between textual and visual data, they often face significant challenges, such as over-reliance on text priors, hallucinations, and limited capacity for complex visual reasoning. Existing benchmarks to evaluate visual reasoning in LVLMs often rely on schematic or synthetic images and on imprecise machine-generated explanations. To bridge the modality gap, we present DrivingVQA, a new benchmark derived from driving theory tests to evaluate visual chain-of-thought reasoning in complex real-world scenarios. It offers 3,931 expert-crafted multiple-choice problems and interleaved explanations grounded with entities relevant to the reasoning process. We leverage this dataset to perform an extensive study of LVLMs' ability to reason about complex visual scenarios. Our experiments reveal that open-source and proprietary LVLMs struggle with visual chain-of-thought reasoning under zero-shot settings. We investigate training strategies that leverage relevant entities to improve visual reasoning. Notably, we observe a performance boost of up to 7\% when reasoning over image tokens of cropped regions tied to these entities.
☆ Are They the Same? Exploring Visual Correspondence Shortcomings of Multimodal LLMs
Recent advancements in multimodal models have shown a strong ability in visual perception, reasoning abilities, and vision-language understanding. However, studies on visual matching ability are missing, where finding the visual correspondence of objects is essential in vision research. Our research reveals that the matching capabilities in recent multimodal LLMs (MLLMs) still exhibit systematic shortcomings, even with current strong MLLMs models, GPT-4o. In particular, we construct a Multimodal Visual Matching (MMVM) benchmark to fairly benchmark over 30 different MLLMs. The MMVM benchmark is built from 15 open-source datasets and Internet videos with manual annotation. We categorize the data samples of MMVM benchmark into eight aspects based on the required cues and capabilities to more comprehensively evaluate and analyze current MLLMs. In addition, we have designed an automatic annotation pipeline to generate the MMVM SFT dataset, including 220K visual matching data with reasoning annotation. Finally, we present CoLVA, a novel contrastive MLLM with two novel technical designs: fine-grained vision expert with object-level contrastive learning and instruction augmentation strategy. CoLVA achieves 51.06\% overall accuracy (OA) on the MMVM benchmark, surpassing GPT-4o and baseline by 8.41\% and 23.58\% OA, respectively. The results show the effectiveness of our MMVM SFT dataset and our novel technical designs. Code, benchmark, dataset, and models are available at https://github.com/zhouyiks/CoLVA.
comment: project page: https://zhouyiks.github.io/projects/CoLVA/
☆ Enhancing Virtual Try-On with Synthetic Pairs and Error-Aware Noise Scheduling
Given an isolated garment image in a canonical product view and a separate image of a person, the virtual try-on task aims to generate a new image of the person wearing the target garment. Prior virtual try-on works face two major challenges in achieving this goal: a) the paired (human, garment) training data has limited availability; b) generating textures on the human that perfectly match that of the prompted garment is difficult, often resulting in distorted text and faded textures. Our work explores ways to tackle these issues through both synthetic data as well as model refinement. We introduce a garment extraction model that generates (human, synthetic garment) pairs from a single image of a clothed individual. The synthetic pairs can then be used to augment the training of virtual try-on. We also propose an Error-Aware Refinement-based Schr\"odinger Bridge (EARSB) that surgically targets localized generation errors for correcting the output of a base virtual try-on model. To identify likely errors, we propose a weakly-supervised error classifier that localizes regions for refinement, subsequently augmenting the Schr\"odinger Bridge's noise schedule with its confidence heatmap. Experiments on VITON-HD and DressCode-Upper demonstrate that our synthetic data augmentation enhances the performance of prior work, while EARSB improves the overall image quality. In user studies, our model is preferred by the users in an average of 59% of cases.
☆ HyFusion: Enhanced Reception Field Transformer for Hyperspectral Image Fusion
Hyperspectral image (HSI) fusion addresses the challenge of reconstructing High-Resolution HSIs (HR-HSIs) from High-Resolution Multispectral images (HR-MSIs) and Low-Resolution HSIs (LR-HSIs), a critical task given the high costs and hardware limitations associated with acquiring high-quality HSIs. While existing methods leverage spatial and spectral relationships, they often suffer from limited receptive fields and insufficient feature utilization, leading to suboptimal performance. Furthermore, the scarcity of high-quality HSI data highlights the importance of efficient data utilization to maximize reconstruction quality. To address these issues, we propose HyFusion, a novel framework designed to enhance the receptive field and enable effective feature map reusing, thereby maximizing data utilization. First, HR-MSI and LR-HSI inputs are concatenated to form a quasi-fused draft, preserving complementary spatial and spectral details. Next, the Enhanced Reception Field Block (ERFB) is introduced, combining shifting-window attention and dense connections to expand the receptive field, effectively capturing long-range dependencies and reusing features to reduce information loss, thereby boosting data efficiency. Finally, the Dual-Coupled Network (DCN) dynamically extracts high-frequency spectral and spatial features from LR-HSI and HR-MSI, ensuring efficient cross-domain fusion. Extensive experiments demonstrate that HyFusion achieves state-of-the-art performance in HR-MSI/LR-HSI fusion, significantly improving reconstruction quality while maintaining a compact model size and computational efficiency. By integrating enhanced receptive fields and feature map reusing, HyFusion provides a practical and effective solution for HSI fusion in resource-constrained scenarios, setting a new benchmark in hyperspectral imaging. Our code will be publicly available.
comment: Submitted to IGARSS 2025
☆ FlairGPT: Repurposing LLMs for Interior Designs
Interior design involves the careful selection and arrangement of objects to create an aesthetically pleasing, functional, and harmonized space that aligns with the client's design brief. This task is particularly challenging, as a successful design must not only incorporate all the necessary objects in a cohesive style, but also ensure they are arranged in a way that maximizes accessibility, while adhering to a variety of affordability and usage considerations. Data-driven solutions have been proposed, but these are typically room- or domain-specific and lack explainability in their design design considerations used in producing the final layout. In this paper, we investigate if large language models (LLMs) can be directly utilized for interior design. While we find that LLMs are not yet capable of generating complete layouts, they can be effectively leveraged in a structured manner, inspired by the workflow of interior designers. By systematically probing LLMs, we can reliably generate a list of objects along with relevant constraints that guide their placement. We translate this information into a design layout graph, which is then solved using an off-the-shelf constrained optimization setup to generate the final layouts. We benchmark our algorithm in various design configurations against existing LLM-based methods and human designs, and evaluate the results using a variety of quantitative and qualitative metrics along with user studies. In summary, we demonstrate that LLMs, when used in a structured manner, can effectively generate diverse high-quality layouts, making them a viable solution for creating large-scale virtual scenes. Project webpage at https://flairgpt.github.io/
comment: Accepted at EUROGRAPHICS 2025
☆ Discrete Wavelet Transform-Based Capsule Network for Hyperspectral Image Classification
Hyperspectral image (HSI) classification is a crucial technique for remote sensing to build large-scale earth monitoring systems. HSI contains much more information than traditional visual images for identifying the categories of land covers. One recent feasible solution for HSI is to leverage CapsNets for capturing spectral-spatial information. However, these methods require high computational requirements due to the full connection architecture between stacked capsule layers. To solve this problem, a DWT-CapsNet is proposed to identify partial but important connections in CapsNet for a effective and efficient HSI classification. Specifically, we integrate a tailored attention mechanism into a Discrete Wavelet Transform (DWT)-based downsampling layer, alleviating the information loss problem of conventional downsampling operation in feature extractors. Moreover, we propose a novel multi-scale routing algorithm that prunes a large proportion of connections in CapsNet. A capsule pyramid fusion mechanism is designed to aggregate the spectral-spatial relationships in multiple levels of granularity, and then a self-attention mechanism is further conducted in a partially and locally connected architecture to emphasize the meaningful relationships. As shown in the experimental results, our method achieves state-of-the-art accuracy while keeping lower computational demand regarding running time, flops, and the number of parameters, rendering it an appealing choice for practical implementation in HSI classification.
comment: 28 Pages; 9 Figure
☆ Disentangled Clothed Avatar Generation with Layered Representation
Clothed avatar generation has wide applications in virtual and augmented reality, filmmaking, and more. Previous methods have achieved success in generating diverse digital avatars, however, generating avatars with disentangled components (\eg, body, hair, and clothes) has long been a challenge. In this paper, we propose LayerAvatar, the first feed-forward diffusion-based method for generating component-disentangled clothed avatars. To achieve this, we first propose a layered UV feature plane representation, where components are distributed in different layers of the Gaussian-based UV feature plane with corresponding semantic labels. This representation supports high-resolution and real-time rendering, as well as expressive animation including controllable gestures and facial expressions. Based on the well-designed representation, we train a single-stage diffusion model and introduce constrain terms to address the severe occlusion problem of the innermost human body layer. Extensive experiments demonstrate the impressive performances of our method in generating disentangled clothed avatars, and we further explore its applications in component transfer. The project page is available at: https://olivia23333.github.io/LayerAvatar/
comment: project page: https://olivia23333.github.io/LayerAvatar/
☆ FatesGS: Fast and Accurate Sparse-View Surface Reconstruction using Gaussian Splatting with Depth-Feature Consistency AAAI 2025
Recently, Gaussian Splatting has sparked a new trend in the field of computer vision. Apart from novel view synthesis, it has also been extended to the area of multi-view reconstruction. The latest methods facilitate complete, detailed surface reconstruction while ensuring fast training speed. However, these methods still require dense input views, and their output quality significantly degrades with sparse views. We observed that the Gaussian primitives tend to overfit the few training views, leading to noisy floaters and incomplete reconstruction surfaces. In this paper, we present an innovative sparse-view reconstruction framework that leverages intra-view depth and multi-view feature consistency to achieve remarkably accurate surface reconstruction. Specifically, we utilize monocular depth ranking information to supervise the consistency of depth distribution within patches and employ a smoothness loss to enhance the continuity of the distribution. To achieve finer surface reconstruction, we optimize the absolute position of depth through multi-view projection features. Extensive experiments on DTU and BlendedMVS demonstrate that our method outperforms state-of-the-art methods with a speedup of 60x to 200x, achieving swift and fine-grained mesh reconstruction without the need for costly pre-training.
comment: Accepted by AAAI 2025. Project page: https://alvin528.github.io/FatesGS/
☆ Comprehensive Examination of Unrolled Networks for Linear Inverse Problems
Unrolled networks have become prevalent in various computer vision and imaging tasks. Although they have demonstrated remarkable efficacy in solving specific computer vision and computational imaging tasks, their adaptation to other applications presents considerable challenges. This is primarily due to the multitude of design decisions that practitioners working on new applications must navigate, each potentially affecting the network's overall performance. These decisions include selecting the optimization algorithm, defining the loss function, and determining the number of convolutional layers, among others. Compounding the issue, evaluating each design choice requires time-consuming simulations to train, fine-tune the neural network, and optimize for its performance. As a result, the process of exploring multiple options and identifying the optimal configuration becomes time-consuming and computationally demanding. The main objectives of this paper are (1) to unify some ideas and methodologies used in unrolled networks to reduce the number of design choices a user has to make, and (2) to report a comprehensive ablation study to discuss the impact of each of the choices involved in designing unrolled networks and present practical recommendations based on our findings. We anticipate that this study will help scientists and engineers design unrolled networks for their applications and diagnose problems within their networks efficiently.
comment: 27 pages, 10 figures. Project Page: https://github.com/YuxiChen25/Memory-Net-Inverse
☆ Enhancing Low-Cost Video Editing with Lightweight Adaptors and Temporal-Aware Inversion
Recent advancements in text-to-image (T2I) generation using diffusion models have enabled cost-effective video-editing applications by leveraging pre-trained models, eliminating the need for resource-intensive training. However, the frame-independence of T2I generation often results in poor temporal consistency. Existing methods address this issue through temporal layer fine-tuning or inference-based temporal propagation, but these approaches suffer from high training costs or limited temporal coherence. To address these challenges, we propose a General and Efficient Adapter (GE-Adapter) that integrates temporal-spatial and semantic consistency with Baliteral DDIM inversion. This framework introduces three key components: (1) Frame-based Temporal Consistency Blocks (FTC Blocks) to capture frame-specific features and enforce smooth inter-frame transitions via temporally-aware loss functions; (2) Channel-dependent Spatial Consistency Blocks (SCD Blocks) employing bilateral filters to enhance spatial coherence by reducing noise and artifacts; and (3) Token-based Semantic Consistency Module (TSC Module) to maintain semantic alignment using shared prompt tokens and frame-specific tokens. Our method significantly improves perceptual quality, text-image alignment, and temporal coherence, as demonstrated on the MSR-VTT dataset. Additionally, it achieves enhanced fidelity and frame-to-frame coherence, offering a practical solution for T2V editing.
☆ FrontierNet: Learning Visual Cues to Explore
Exploration of unknown environments is crucial for autonomous robots; it allows them to actively reason and decide on what new data to acquire for tasks such as mapping, object discovery, and environmental assessment. Existing methods, such as frontier-based methods, rely heavily on 3D map operations, which are limited by map quality and often overlook valuable context from visual cues. This work aims at leveraging 2D visual cues for efficient autonomous exploration, addressing the limitations of extracting goal poses from a 3D map. We propose a image-only frontier-based exploration system, with FrontierNet as a core component developed in this work. FrontierNet is a learning-based model that (i) detects frontiers, and (ii) predicts their information gain, from posed RGB images enhanced by monocular depth priors. Our approach provides an alternative to existing 3D-dependent exploration systems, achieving a 16% improvement in early-stage exploration efficiency, as validated through extensive simulations and real-world experiments.
☆ Identity-Preserving Video Dubbing Using Motion Warping
Video dubbing aims to synthesize realistic, lip-synced videos from a reference video and a driving audio signal. Although existing methods can accurately generate mouth shapes driven by audio, they often fail to preserve identity-specific features, largely because they do not effectively capture the nuanced interplay between audio cues and the visual attributes of reference identity . As a result, the generated outputs frequently lack fidelity in reproducing the unique textural and structural details of the reference identity. To address these limitations, we propose IPTalker, a novel and robust framework for video dubbing that achieves seamless alignment between driving audio and reference identity while ensuring both lip-sync accuracy and high-fidelity identity preservation. At the core of IPTalker is a transformer-based alignment mechanism designed to dynamically capture and model the correspondence between audio features and reference images, thereby enabling precise, identity-aware audio-visual integration. Building on this alignment, a motion warping strategy further refines the results by spatially deforming reference images to match the target audio-driven configuration. A dedicated refinement process then mitigates occlusion artifacts and enhances the preservation of fine-grained textures, such as mouth details and skin features. Extensive qualitative and quantitative evaluations demonstrate that IPTalker consistently outperforms existing approaches in terms of realism, lip synchronization, and identity retention, establishing a new state of the art for high-quality, identity-consistent video dubbing.
comment: Under Review
☆ Boosting Salient Object Detection with Knowledge Distillated from Large Foundation Models
Salient Object Detection (SOD) aims to identify and segment prominent regions within a scene. Traditional models rely on manually annotated pseudo labels with precise pixel-level accuracy, which is time-consuming. We developed a low-cost, high-precision annotation method by leveraging large foundation models to address the challenges. Specifically, we use a weakly supervised approach to guide large models in generating pseudo-labels through textual prompts. Since large models do not effectively focus on the salient regions of images, we manually annotate a subset of text to fine-tune the model. Based on this approach, which enables precise and rapid generation of pseudo-labels, we introduce a new dataset, BDS-TR. Compared to the previous DUTS-TR dataset, BDS-TR is more prominent in scale and encompasses a wider variety of categories and scenes. This expansion will enhance our model's applicability across a broader range of scenarios and provide a more comprehensive foundational dataset for future SOD research. Additionally, we present an edge decoder based on dynamic upsampling, which focuses on object edges while gradually recovering image feature resolution. Comprehensive experiments on five benchmark datasets demonstrate that our method significantly outperforms state-of-the-art approaches and also surpasses several existing fully-supervised SOD methods. The code and results will be made available.
☆ Unified Coding for Both Human Perception and Generalized Machine Analytics with CLIP Supervision AAAI 2025
The image compression model has long struggled with adaptability and generalization, as the decoded bitstream typically serves only human or machine needs and fails to preserve information for unseen visual tasks. Therefore, this paper innovatively introduces supervision obtained from multimodal pre-training models and incorporates adaptive multi-objective optimization tailored to support both human visual perception and machine vision simultaneously with a single bitstream, denoted as Unified and Generalized Image Coding for Machine (UG-ICM). Specifically, to get rid of the reliance between compression models with downstream task supervision, we introduce Contrastive Language-Image Pre-training (CLIP) models into the training constraint for improved generalization. Global-to-instance-wise CLIP supervision is applied to help obtain hierarchical semantics that make models more generalizable for the tasks relying on the information of different granularity. Furthermore, for supporting both human and machine visions with only a unifying bitstream, we incorporate a conditional decoding strategy that takes as conditions human or machine preferences, enabling the bitstream to be decoded into different versions for corresponding preferences. As such, our proposed UG-ICM is fully trained in a self-supervised manner, i.e., without awareness of any specific downstream models and tasks. The extensive experiments have shown that the proposed UG-ICM is capable of achieving remarkable improvements in various unseen machine analytics tasks, while simultaneously providing perceptually satisfying images.
comment: 9 pages, 10 figures, publised to AAAI 2025
☆ Supervision-free Vision-Language Alignment
Vision-language models (VLMs) have demonstrated remarkable potential in integrating visual and linguistic information, but their performance is often constrained by the need for extensive, high-quality image-text training data. Curation of these image-text pairs is both time-consuming and computationally expensive. To address this challenge, we introduce SVP (Supervision-free Visual Projection), a novel framework that enhances vision-language alignment without relying on curated data or preference annotation. SVP leverages self-captioning and a pre-trained grounding model as a feedback mechanism to elicit latent information in VLMs. We evaluate our approach across six key areas: captioning, referring, visual question answering, multitasking, hallucination control, and object recall. Results demonstrate significant improvements, including a 14% average improvement in captioning tasks, up to 12% increase in object recall, and substantial reduction in hallucination rates. Notably, a small VLM using SVP achieves hallucination reductions comparable to a model five times larger, while a VLM with initially poor referring capabilities more than doubles its performance, approaching parity with a model twice its size.
comment: Preprint
☆ Learnable Scaled Gradient Descent for Guaranteed Robust Tensor PCA
Robust tensor principal component analysis (RTPCA) aims to separate the low-rank and sparse components from multi-dimensional data, making it an essential technique in the signal processing and computer vision fields. Recently emerging tensor singular value decomposition (t-SVD) has gained considerable attention for its ability to better capture the low-rank structure of tensors compared to traditional matrix SVD. However, existing methods often rely on the computationally expensive tensor nuclear norm (TNN), which limits their scalability for real-world tensors. To address this issue, we explore an efficient scaled gradient descent (SGD) approach within the t-SVD framework for the first time, and propose the RTPCA-SGD method. Theoretically, we rigorously establish the recovery guarantees of RTPCA-SGD under mild assumptions, demonstrating that with appropriate parameter selection, it achieves linear convergence to the true low-rank tensor at a constant rate, independent of the condition number. To enhance its practical applicability, we further propose a learnable self-supervised deep unfolding model, which enables effective parameter learning. Numerical experiments on both synthetic and real-world datasets demonstrate the superior performance of the proposed methods while maintaining competitive computational efficiency, especially consuming less time than RTPCA-TNN.
☆ OpenOmni: Large Language Models Pivot Zero-shot Omnimodal Alignment across Language with Real-time Self-Aware Emotional Speech Synthesis
Recent advancements in omnimodal learning have been achieved in understanding and generation across images, text, and speech, though mainly within proprietary models. Limited omnimodal datasets and the inherent challenges associated with real-time emotional speech generation have hindered open-source progress. To address these issues, we propose openomni, a two-stage training method combining omnimodal alignment and speech generation to develop a state-of-the-art omnimodal large language model. In the alignment phase, a pre-trained speech model is further trained on text-image tasks to generalize from vision to speech in a (near) zero-shot manner, outperforming models trained on tri-modal datasets. In the speech generation phase, a lightweight decoder facilitates real-time emotional speech through training on speech tasks and preference learning. Experiments demonstrate that openomni consistently improves across omnimodal, vision-language, and speech-language evaluations, enabling natural, emotion-rich dialogues and real-time emotional speech generation.
☆ Combining YOLO and Visual Rhythm for Vehicle Counting
Video-based vehicle detection and counting play a critical role in managing transport infrastructure. Traditional image-based counting methods usually involve two main steps: initial detection and subsequent tracking, which are applied to all video frames, leading to a significant increase in computational complexity. To address this issue, this work presents an alternative and more efficient method for vehicle detection and counting. The proposed approach eliminates the need for a tracking step and focuses solely on detecting vehicles in key video frames, thereby increasing its efficiency. To achieve this, we developed a system that combines YOLO, for vehicle detection, with Visual Rhythm, a way to create time-spatial images that allows us to focus on frames that contain useful information. Additionally, this method can be used for counting in any application involving unidirectional moving targets to be detected and identified. Experimental analysis using real videos shows that the proposed method achieves mean counting accuracy around 99.15% over a set of videos, with a processing speed three times faster than tracking based approaches.
comment: Accepted for presentation at the Conference on Graphics, Patterns and Images (SIBGRAPI) 2023
☆ Towards Fair Class-wise Robustness: Class Optimal Distribution Adversarial Training
Adversarial training has proven to be a highly effective method for improving the robustness of deep neural networks against adversarial attacks. Nonetheless, it has been observed to exhibit a limitation in terms of robust fairness, characterized by a significant disparity in robustness across different classes. Recent efforts to mitigate this problem have turned to class-wise reweighted methods. However, these methods suffer from a lack of rigorous theoretical analysis and are limited in their exploration of the weight space, as they mainly rely on existing heuristic algorithms or intuition to compute weights. In addition, these methods fail to guarantee the consistency of the optimization direction due to the decoupled optimization of weights and the model parameters. They potentially lead to suboptimal weight assignments and consequently, a suboptimal model. To address these problems, this paper proposes a novel min-max training framework, Class Optimal Distribution Adversarial Training (CODAT), which employs distributionally robust optimization to fully explore the class-wise weight space, thus enabling the identification of the optimal weight with theoretical guarantees. Furthermore, we derive a closed-form optimal solution to the internal maximization and then get a deterministic equivalent objective function, which provides a theoretical basis for the joint optimization of weights and model parameters. Meanwhile, we propose a fairness elasticity coefficient for the evaluation of the algorithm with regard to both robustness and robust fairness. Experimental results on various datasets show that the proposed method can effectively improve the robust fairness of the model and outperform the state-of-the-art approaches.
☆ SplineFormer: An Explainable Transformer-Based Approach for Autonomous Endovascular Navigation
Endovascular navigation is a crucial aspect of minimally invasive procedures, where precise control of curvilinear instruments like guidewires is critical for successful interventions. A key challenge in this task is accurately predicting the evolving shape of the guidewire as it navigates through the vasculature, which presents complex deformations due to interactions with the vessel walls. Traditional segmentation methods often fail to provide accurate real-time shape predictions, limiting their effectiveness in highly dynamic environments. To address this, we propose SplineFormer, a new transformer-based architecture, designed specifically to predict the continuous, smooth shape of the guidewire in an explainable way. By leveraging the transformer's ability, our network effectively captures the intricate bending and twisting of the guidewire, representing it as a spline for greater accuracy and smoothness. We integrate our SplineFormer into an end-to-end robot navigation system by leveraging the condensed information. The experimental results demonstrate that our SplineFormer is able to perform endovascular navigation autonomously and achieves a 50% success rate when cannulating the brachiocephalic artery on the real robot.
comment: 8 pages
☆ Improving Image Captioning by Mimicking Human Reformulation Feedback at Inference-time
Incorporating automatically predicted human feedback into the process of training generative models has attracted substantial recent interest, while feedback at inference time has received less attention. The typical feedback at training time, i.e., preferences of choice given two samples, does not naturally transfer to the inference phase. We introduce a novel type of feedback -- caption reformulations -- and train models to mimic reformulation feedback based on human annotations. Our method does not require training the image captioning model itself, thereby demanding substantially less computational effort. We experiment with two types of reformulation feedback: first, we collect a dataset of human reformulations that correct errors in the generated captions. We find that incorporating reformulation models trained on this data into the inference phase of existing image captioning models results in improved captions, especially when the original captions are of low quality. We apply our method to non-English image captioning, a domain where robust models are less prevalent, and gain substantial improvement. Second, we apply reformulations to style transfer. Quantitative evaluations reveal state-of-the-art performance on German image captioning and English style transfer, while human validation with a detailed comparative framework exposes the specific axes of improvement.
☆ The Role of Machine Learning in Congenital Heart Disease Diagnosis: Datasets, Algorithms, and Insights
Congenital heart disease is among the most common fetal abnormalities and birth defects. Despite identifying numerous risk factors influencing its onset, a comprehensive understanding of its genesis and management across diverse populations remains limited. Recent advancements in machine learning have demonstrated the potential for leveraging patient data to enable early congenital heart disease detection. Over the past seven years, researchers have proposed various data-driven and algorithmic solutions to address this challenge. This paper presents a systematic review of congential heart disease recognition using machine learning, conducting a meta-analysis of 432 references from leading journals published between 2018 and 2024. A detailed investigation of 74 scholarly works highlights key factors, including databases, algorithms, applications, and solutions. Additionally, the survey outlines reported datasets used by machine learning experts for congenital heart disease recognition. Using a systematic literature review methodology, this study identifies critical challenges and opportunities in applying machine learning to congenital heart disease.
☆ MB-TaylorFormer V2: Improved Multi-branch Linear Transformer Expanded by Taylor Formula for Image Restoration
Recently, Transformer networks have demonstrated outstanding performance in the field of image restoration due to the global receptive field and adaptability to input. However, the quadratic computational complexity of Softmax-attention poses a significant limitation on its extensive application in image restoration tasks, particularly for high-resolution images. To tackle this challenge, we propose a novel variant of the Transformer. This variant leverages the Taylor expansion to approximate the Softmax-attention and utilizes the concept of norm-preserving mapping to approximate the remainder of the first-order Taylor expansion, resulting in a linear computational complexity. Moreover, we introduce a multi-branch architecture featuring multi-scale patch embedding into the proposed Transformer, which has four distinct advantages: 1) various sizes of the receptive field; 2) multi-level semantic information; 3) flexible shapes of the receptive field; 4) accelerated training and inference speed. Hence, the proposed model, named the second version of Taylor formula expansion-based Transformer (for short MB-TaylorFormer V2) has the capability to concurrently process coarse-to-fine features, capture long-distance pixel interactions with limited computational cost, and improve the approximation of the Taylor expansion remainder. Experimental results across diverse image restoration benchmarks demonstrate that MB-TaylorFormer V2 achieves state-of-the-art performance in multiple image restoration tasks, such as image dehazing, deraining, desnowing, motion deblurring, and denoising, with very little computational overhead. The source code is available at https://github.com/FVL2020/MB-TaylorFormerV2.
☆ Rethinking High-speed Image Reconstruction Framework with Spike Camera AAAI2025
Spike cameras, as innovative neuromorphic devices, generate continuous spike streams to capture high-speed scenes with lower bandwidth and higher dynamic range than traditional RGB cameras. However, reconstructing high-quality images from the spike input under low-light conditions remains challenging. Conventional learning-based methods often rely on the synthetic dataset as the supervision for training. Still, these approaches falter when dealing with noisy spikes fired under the low-light environment, leading to further performance degradation in the real-world dataset. This phenomenon is primarily due to inadequate noise modelling and the domain gap between synthetic and real datasets, resulting in recovered images with unclear textures, excessive noise, and diminished brightness. To address these challenges, we introduce a novel spike-to-image reconstruction framework SpikeCLIP that goes beyond traditional training paradigms. Leveraging the CLIP model's powerful capability to align text and images, we incorporate the textual description of the captured scene and unpaired high-quality datasets as the supervision. Our experiments on real-world low-light datasets U-CALTECH and U-CIFAR demonstrate that SpikeCLIP significantly enhances texture details and the luminance balance of recovered images. Furthermore, the reconstructed images are well-aligned with the broader visual features needed for downstream tasks, ensuring more robust and versatile performance in challenging environments.
comment: Accepted by AAAI2025
☆ A Histologic Dataset of Normal and Atypical Mitotic Figures on Human Breast Cancer (AMi-Br)
Assessment of the density of mitotic figures (MFs) in histologic tumor sections is an important prognostic marker for many tumor types, including breast cancer. Recently, it has been reported in multiple works that the quantity of MFs with an atypical morphology (atypical MFs, AMFs) might be an independent prognostic criterion for breast cancer. AMFs are an indicator of mutations in the genes regulating the cell cycle and can lead to aberrant chromosome constitution (aneuploidy) of the tumor cells. To facilitate further research on this topic using pattern recognition, we present the first ever publicly available dataset of atypical and normal MFs (AMi-Br). For this, we utilized two of the most popular MF datasets (MIDOG 2021 and TUPAC) and subclassified all MFs using a three expert majority vote. Our final dataset consists of 3,720 MFs, split into 832 AMFs (22.4%) and 2,888 normal MFs (77.6%) across all 223 tumor cases in the combined set. We provide baseline classification experiments to investigate the consistency of the dataset, using a Monte Carlo cross-validation and different strategies to combat class imbalance. We found an averaged balanced accuracy of up to 0.806 when using a patch-level data set split, and up to 0.713 when using a patient-level split.
☆ Rapid Automated Mapping of Clouds on Titan With Instance Segmentation
Despite widespread adoption of deep learning models to address a variety of computer vision tasks, planetary science has yet to see extensive utilization of such tools to address its unique problems. On Titan, the largest moon of Saturn, tracking seasonal trends and weather patterns of clouds provides crucial insights into one of the most complex climates in the Solar System, yet much of the available image data are still analyzed in a conventional way. In this work, we apply a Mask R-CNN trained via transfer learning to perform instance segmentation of clouds in Titan images acquired by the Cassini spacecraft - a previously unexplored approach to a big data problem in planetary science. We demonstrate that an automated technique can provide quantitative measures for clouds, such as areas and centroids, that may otherwise be prohibitively time-intensive to produce by human mapping. Furthermore, despite Titan specific challenges, our approach yields accuracy comparable to contemporary cloud identification studies on Earth and other worlds. We compare the efficiencies of human-driven versus algorithmic approaches, showing that transfer learning provides speed-ups that may open new horizons for data investigation for Titan. Moreover, we suggest that such approaches have broad potential for application to similar problems in planetary science where they are currently under-utilized. Future planned missions to the planets and remote sensing initiatives for the Earth promise to provide a deluge of image data in the coming years that will benefit strongly from leveraging machine learning approaches to perform the analysis.
☆ A novel Facial Recognition technique with Focusing on Masked Faces
Recognizing the same faces with and without masks is important for ensuring consistent identification in security, access control, and public safety. This capability is crucial in scenarios like law enforcement, healthcare, and surveillance, where accurate recognition must be maintained despite facial occlusion. This research focuses on the challenge of recognizing the same faces with and without masks by employing cosine similarity as the primary technique. With the increased use of masks, traditional facial recognition systems face significant accuracy issues, making it crucial to develop methods that can reliably identify individuals in masked conditions. For that reason, this study proposed Masked-Unmasked Face Matching Model (MUFM). This model employs transfer learning using the Visual Geometry Group (VGG16) model to extract significant facial features, which are subsequently classified utilizing the K-Nearest Neighbors (K-NN) algorithm. The cosine similarity metric is employed to compare masked and unmasked faces of the same individuals. This approach represents a novel contribution, as the task of recognizing the same individual with and without a mask using cosine similarity has not been previously addressed. By integrating these advanced methodologies, the research demonstrates effective identification of individuals despite the presence of masks, addressing a significant limitation in traditional systems. Using data is another essential part of this work, by collecting and preparing an image dataset from three different sources especially some of those data are real provided a comprehensive power of this research. The image dataset used were already collected in three different datasets of masked and unmasked for the same faces.
☆ RSAR: Restricted State Angle Resolver and Rotated SAR Benchmark
Rotated object detection has made significant progress in the optical remote sensing. However, advancements in the Synthetic Aperture Radar (SAR) field are laggard behind, primarily due to the absence of a large-scale dataset. Annotating such a dataset is inefficient and costly. A promising solution is to employ a weakly supervised model (e.g., trained with available horizontal boxes only) to generate pseudo-rotated boxes for reference before manual calibration. Unfortunately, the existing weakly supervised models exhibit limited accuracy in predicting the object's angle. Previous works attempt to enhance angle prediction by using angle resolvers that decouple angles into cosine and sine encodings. In this work, we first reevaluate these resolvers from a unified perspective of dimension mapping and expose that they share the same shortcomings: these methods overlook the unit cycle constraint inherent in these encodings, easily leading to prediction biases. To address this issue, we propose the Unit Cycle Resolver, which incorporates a unit circle constraint loss to improve angle prediction accuracy. Our approach can effectively improve the performance of existing state-of-the-art weakly supervised methods and even surpasses fully supervised models on existing optical benchmarks (i.e., DOTA-v1.0 dataset). With the aid of UCR, we further annotate and introduce RSAR, the largest multi-class rotated SAR object detection dataset to date. Extensive experiments on both RSAR and optical datasets demonstrate that our UCR enhances angle prediction accuracy. Our dataset and code can be found at: https://github.com/zhasion/RSAR.
☆ iFADIT: Invertible Face Anonymization via Disentangled Identity Transform
Face anonymization aims to conceal the visual identity of a face to safeguard the individual's privacy. Traditional methods like blurring and pixelation can largely remove identifying features, but these techniques significantly degrade image quality and are vulnerable to deep reconstruction attacks. Generative models have emerged as a promising solution for anonymizing faces while preserving a natural appearance.However, many still face limitations in visual quality and often overlook the potential to recover the original face from the anonymized version, which can be valuable in specific contexts such as image forensics. This paper proposes a novel framework named iFADIT, an acronym for Invertible Face Anonymization via Disentangled Identity Transform.The framework features a disentanglement architecture coupled with a secure flow-based model: the former decouples identity information from non-identifying attributes, while the latter transforms the decoupled identity into an anonymized version in an invertible manner controlled by a secret key. The anonymized face can then be reconstructed based on a pre-trained StyleGAN that ensures high image quality and realistic facial details. Recovery of the original face (aka de-anonymization) is possible upon the availability of the matching secret, by inverting the anonymization process based on the same set of model parameters. Furthermore, a dedicated secret-key mechanism along with a dual-phase training strategy is devised to ensure the desired properties of face anonymization. Qualitative and quantitative experiments demonstrate the superiority of the proposed approach in anonymity, reversibility, security, diversity, and interpretability over competing methods.
☆ On Computational Limits and Provably Efficient Criteria of Visual Autoregressive Models: A Fine-Grained Complexity Analysis
Recently, Visual Autoregressive ($\mathsf{VAR}$) Models introduced a groundbreaking advancement in the field of image generation, offering a scalable approach through a coarse-to-fine "next-scale prediction" paradigm. However, the state-of-the-art algorithm of $\mathsf{VAR}$ models in [Tian, Jiang, Yuan, Peng and Wang, NeurIPS 2024] takes $O(n^4)$ time, which is computationally inefficient. In this work, we analyze the computational limits and efficiency criteria of $\mathsf{VAR}$ Models through a fine-grained complexity lens. Our key contribution is identifying the conditions under which $\mathsf{VAR}$ computations can achieve sub-quadratic time complexity. Specifically, we establish a critical threshold for the norm of input matrices used in $\mathsf{VAR}$ attention mechanisms. Above this threshold, assuming the Strong Exponential Time Hypothesis ($\mathsf{SETH}$) from fine-grained complexity theory, a sub-quartic time algorithm for $\mathsf{VAR}$ models is impossible. To substantiate our theoretical findings, we present efficient constructions leveraging low-rank approximations that align with the derived criteria. This work initiates the study of the computational efficiency of the $\mathsf{VAR}$ model from a theoretical perspective. Our technique will shed light on advancing scalable and efficient image generation in $\mathsf{VAR}$ frameworks.
☆ Exploring Unbiased Deepfake Detection via Token-Level Shuffling and Mixing
The generalization problem is broadly recognized as a critical challenge in detecting deepfakes. Most previous work believes that the generalization gap is caused by the differences among various forgery methods. However, our investigation reveals that the generalization issue can still occur when forgery-irrelevant factors shift. In this work, we identify two biases that detectors may also be prone to overfitting: position bias and content bias, as depicted in Fig. 1. For the position bias, we observe that detectors are prone to lazily depending on the specific positions within an image (e.g., central regions even no forgery). As for content bias, we argue that detectors may potentially and mistakenly utilize forgery-unrelated information for detection (e.g., background, and hair). To intervene these biases, we propose two branches for shuffling and mixing with tokens in the latent space of transformers. For the shuffling branch, we rearrange the tokens and corresponding position embedding for each image while maintaining the local correlation. For the mixing branch, we randomly select and mix the tokens in the latent space between two images with the same label within the mini-batch to recombine the content information. During the learning process, we align the outputs of detectors from different branches in both feature space and logit space. Contrastive losses for features and divergence losses for logits are applied to obtain unbiased feature representation and classifiers. We demonstrate and verify the effectiveness of our method through extensive experiments on widely used evaluation datasets.
☆ Instructive3D: Editing Large Reconstruction Models with Text Instructions WACV 2025
Transformer based methods have enabled users to create, modify, and comprehend text and image data. Recently proposed Large Reconstruction Models (LRMs) further extend this by providing the ability to generate high-quality 3D models with the help of a single object image. These models, however, lack the ability to manipulate or edit the finer details, such as adding standard design patterns or changing the color and reflectance of the generated objects, thus lacking fine-grained control that may be very helpful in domains such as augmented reality, animation and gaming. Naively training LRMs for this purpose would require generating precisely edited images and 3D object pairs, which is computationally expensive. In this paper, we propose Instructive3D, a novel LRM based model that integrates generation and fine-grained editing, through user text prompts, of 3D objects into a single model. We accomplish this by adding an adapter that performs a diffusion process conditioned on a text prompt specifying edits in the triplane latent space representation of 3D object models. Our method does not require the generation of edited 3D objects. Additionally, Instructive3D allows us to perform geometrically consistent modifications, as the edits done through user-defined text prompts are applied to the triplane latent representation thus enhancing the versatility and precision of 3D objects generated. We compare the objects generated by Instructive3D and a baseline that first generates the 3D object meshes using a standard LRM model and then edits these 3D objects using text prompts when images are provided from the Objaverse LVIS dataset. We find that Instructive3D produces qualitatively superior 3D objects with the properties specified by the edit prompts.
comment: Accepted at WACV 2025. First two authors contributed equally
☆ FGU3R: Fine-Grained Fusion via Unified 3D Representation for Multimodal 3D Object Detection ICASSP 2025
Multimodal 3D object detection has garnered considerable interest in autonomous driving. However, multimodal detectors suffer from dimension mismatches that derive from fusing 3D points with 2D pixels coarsely, which leads to sub-optimal fusion performance. In this paper, we propose a multimodal framework FGU3R to tackle the issue mentioned above via unified 3D representation and fine-grained fusion, which consists of two important components. First, we propose an efficient feature extractor for raw and pseudo points, termed Pseudo-Raw Convolution (PRConv), which modulates multimodal features synchronously and aggregates the features from different types of points on key points based on multimodal interaction. Second, a Cross-Attention Adaptive Fusion (CAAF) is designed to fuse homogeneous 3D RoI (Region of Interest) features adaptively via a cross-attention variant in a fine-grained manner. Together they make fine-grained fusion on unified 3D representation. The experiments conducted on the KITTI and nuScenes show the effectiveness of our proposed method.
comment: Accepted by ICASSP 2025
☆ A Unified Framework for Foreground and Anonymization Area Segmentation in CT and MRI Data
This study presents an open-source toolkit to address critical challenges in preprocessing data for self-supervised learning (SSL) for 3D medical imaging, focusing on data privacy and computational efficiency. The toolkit comprises two main components: a segmentation network that delineates foreground regions to optimize data sampling and thus reduce training time, and a segmentation network that identifies anonymized regions, preventing erroneous supervision in reconstruction-based SSL methods. Experimental results demonstrate high robustness, with mean Dice scores exceeding 98.5 across all anonymization methods and surpassing 99.5 for foreground segmentation tasks, highlighting the efficacy of the toolkit in supporting SSL applications in 3D medical imaging for both CT and MRI images. The weights and code is available at https://github.com/MIC-DKFZ/Foreground-and-Anonymization-Area-Segmentation.
comment: 6 pages
☆ DeFusion: An Effective Decoupling Fusion Network for Multi-Modal Pregnancy Prediction
Temporal embryo images and parental fertility table indicators are both valuable for pregnancy prediction in \textbf{in vitro fertilization embryo transfer} (IVF-ET). However, current machine learning models cannot make full use of the complementary information between the two modalities to improve pregnancy prediction performance. In this paper, we propose a Decoupling Fusion Network called DeFusion to effectively integrate the multi-modal information for IVF-ET pregnancy prediction. Specifically, we propose a decoupling fusion module that decouples the information from the different modalities into related and unrelated information, thereby achieving a more delicate fusion. And we fuse temporal embryo images with a spatial-temporal position encoding, and extract fertility table indicator information with a table transformer. To evaluate the effectiveness of our model, we use a new dataset including 4046 cases collected from Southern Medical University. The experiments show that our model outperforms state-of-the-art methods. Meanwhile, the performance on the eye disease prediction dataset reflects the model's good generalization. Our code and dataset are available at https://github.com/Ou-Young-1999/DFNet.
☆ Online Gaussian Test-Time Adaptation of Vision-Language Models
Online test-time adaptation (OTTA) of vision-language models (VLMs) has recently garnered increased attention to take advantage of data observed along a stream to improve future predictions. Unfortunately, existing methods rely on dataset-specific hyperparameters, significantly limiting their adaptability to unseen tasks. In response, we propose Online Gaussian Adaptation (OGA), a novel method that models the likelihoods of visual features using Gaussian distributions and incorporates zero-shot priors into an interpretable Maximum A Posteriori (MAP) estimation framework with fixed hyper-parameters across all datasets. We demonstrate that OGA outperforms state-of-the-art methods on most datasets and runs. Additionally, we show that combining OTTA with popular few-shot techniques (a practical yet overlooked setting in prior research) is highly beneficial. Furthermore, our experimental study reveals that common OTTA evaluation protocols, which average performance over at most three runs per dataset, are inadequate due to the substantial variability observed across runs for all OTTA methods. Therefore, we advocate for more rigorous evaluation practices, including increasing the number of runs and considering additional quantitative metrics, such as our proposed Expected Tail Accuracy (ETA), calculated as the average accuracy in the worst 10% of runs. We hope these contributions will encourage more rigorous and diverse evaluation practices in the OTTA community. Code is available at https://github.com/cfuchs2023/OGA .
☆ Building a Mind Palace: Structuring Environment-Grounded Semantic Graphs for Effective Long Video Analysis with LLMs
Long-form video understanding with Large Vision Language Models is challenged by the need to analyze temporally dispersed yet spatially concentrated key moments within limited context windows. In this work, we introduce VideoMindPalace, a new framework inspired by the "Mind Palace", which organizes critical video moments into a topologically structured semantic graph. VideoMindPalace organizes key information through (i) hand-object tracking and interaction, (ii) clustered activity zones representing specific areas of recurring activities, and (iii) environment layout mapping, allowing natural language parsing by LLMs to provide grounded insights on spatio-temporal and 3D context. In addition, we propose the Video MindPalace Benchmark (VMB), to assess human-like reasoning, including spatial localization, temporal reasoning, and layout-aware sequential understanding. Evaluated on VMB and established video QA datasets, including EgoSchema, NExT-QA, IntentQA, and the Active Memories Benchmark, VideoMindPalace demonstrates notable gains in spatio-temporal coherence and human-aligned reasoning, advancing long-form video analysis capabilities in VLMs.
☆ An Efficient Adaptive Compression Method for Human Perception and Machine Vision Tasks
While most existing neural image compression (NIC) and neural video compression (NVC) methodologies have achieved remarkable success, their optimization is primarily focused on human visual perception. However, with the rapid development of artificial intelligence, many images and videos will be used for various machine vision tasks. Consequently, such existing compression methodologies cannot achieve competitive performance in machine vision. In this work, we introduce an efficient adaptive compression (EAC) method tailored for both human perception and multiple machine vision tasks. Our method involves two key modules: 1), an adaptive compression mechanism, that adaptively selects several subsets from latent features to balance the optimizations for multiple machine vision tasks (e.g., segmentation, and detection) and human vision. 2), a task-specific adapter, that uses the parameter-efficient delta-tuning strategy to stimulate the comprehensive downstream analytical networks for specific machine vision tasks. By using the above two modules, we can optimize the bit-rate costs and improve machine vision performance. In general, our proposed EAC can seamlessly integrate with existing NIC (i.e., Ball\'e2018, and Cheng2020) and NVC (i.e., DVC, and FVC) methods. Extensive evaluation on various benchmark datasets (i.e., VOC2007, ILSVRC2012, VOC2012, COCO, UCF101, and DAVIS) shows that our method enhances performance for multiple machine vision tasks while maintaining the quality of human vision.
☆ Edit as You See: Image-guided Video Editing via Masked Motion Modeling
Recent advancements in diffusion models have significantly facilitated text-guided video editing. However, there is a relative scarcity of research on image-guided video editing, a method that empowers users to edit videos by merely indicating a target object in the initial frame and providing an RGB image as reference, without relying on the text prompts. In this paper, we propose a novel Image-guided Video Editing Diffusion model, termed IVEDiff for the image-guided video editing. IVEDiff is built on top of image editing models, and is equipped with learnable motion modules to maintain the temporal consistency of edited video. Inspired by self-supervised learning concepts, we introduce a masked motion modeling fine-tuning strategy that empowers the motion module's capabilities for capturing inter-frame motion dynamics, while preserving the capabilities for intra-frame semantic correlations modeling of the base image editing model. Moreover, an optical-flow-guided motion reference network is proposed to ensure the accurate propagation of information between edited video frames, alleviating the misleading effects of invalid information. We also construct a benchmark to facilitate further research. The comprehensive experiments demonstrate that our method is able to generate temporally smooth edited videos while robustly dealing with various editing objects with high quality.
☆ Eve: Efficient Multimodal Vision Language Models with Elastic Visual Experts
Multimodal vision language models (VLMs) have made significant progress with the support of continuously increasing model sizes and data volumes. Running VLMs on edge devices has become a challenge for their widespread application. There are several efficient VLM efforts, but they often sacrifice linguistic capabilities to enhance multimodal abilities, or require extensive training. To address this quandary,we introduce the innovative framework of Efficient Vision Language Models with Elastic Visual Experts (Eve). By strategically incorporating adaptable visual expertise at multiple stages of training, Eve strikes a balance between preserving linguistic abilities and augmenting multimodal capabilities. This balanced approach results in a versatile model with only 1.8B parameters that delivers significant improvements in both multimodal and linguistic tasks. Notably, in configurations below 3B parameters, Eve distinctly outperforms in language benchmarks and achieves state-of-the-art results 68.87% in VLM Benchmarks. Additionally, its multimodal accuracy outstrips that of the larger 7B LLaVA-1.5 model.
☆ DGQ: Distribution-Aware Group Quantization for Text-to-Image Diffusion Models
Despite the widespread use of text-to-image diffusion models across various tasks, their computational and memory demands limit practical applications. To mitigate this issue, quantization of diffusion models has been explored. It reduces memory usage and computational costs by compressing weights and activations into lower-bit formats. However, existing methods often struggle to preserve both image quality and text-image alignment, particularly in lower-bit($<$ 8bits) quantization. In this paper, we analyze the challenges associated with quantizing text-to-image diffusion models from a distributional perspective. Our analysis reveals that activation outliers play a crucial role in determining image quality. Additionally, we identify distinctive patterns in cross-attention scores, which significantly affects text-image alignment. To address these challenges, we propose Distribution-aware Group Quantization (DGQ), a method that identifies and adaptively handles pixel-wise and channel-wise outliers to preserve image quality. Furthermore, DGQ applies prompt-specific logarithmic quantization scales to maintain text-image alignment. Our method demonstrates remarkable performance on datasets such as MS-COCO and PartiPrompts. We are the first to successfully achieve low-bit quantization of text-to-image diffusion models without requiring additional fine-tuning of weight quantization parameters.
comment: Project page: https://ugonfor.kr/DGQ
☆ H-MBA: Hierarchical MamBa Adaptation for Multi-Modal Video Understanding in Autonomous Driving
With the prevalence of Multimodal Large Language Models(MLLMs), autonomous driving has encountered new opportunities and challenges. In particular, multi-modal video understanding is critical to interactively analyze what will happen in the procedure of autonomous driving. However, videos in such a dynamical scene that often contains complex spatial-temporal movements, which restricts the generalization capacity of the existing MLLMs in this field. To bridge the gap, we propose a novel Hierarchical Mamba Adaptation (H-MBA) framework to fit the complicated motion changes in autonomous driving videos. Specifically, our H-MBA consists of two distinct modules, including Context Mamba (C-Mamba) and Query Mamba (Q-Mamba). First, C-Mamba contains various types of structure state space models, which can effectively capture multi-granularity video context for different temporal resolutions. Second, Q-Mamba flexibly transforms the current frame as the learnable query, and attentively selects multi-granularity video context into query. Consequently, it can adaptively integrate all the video contexts of multi-scale temporal resolutions to enhance video understanding. Via a plug-and-play paradigm in MLLMs, our H-MBA shows the remarkable performance on multi-modal video tasks in autonomous driving, e.g., for risk object detection, it outperforms the previous SOTA method with 5.5% mIoU improvement.
comment: 7 pages, 4 figures
☆ TADFormer : Task-Adaptive Dynamic Transformer for Efficient Multi-Task Learning
Transfer learning paradigm has driven substantial advancements in various vision tasks. However, as state-of-the-art models continue to grow, classical full fine-tuning often becomes computationally impractical, particularly in multi-task learning (MTL) setup where training complexity increases proportional to the number of tasks. Consequently, recent studies have explored Parameter-Efficient Fine-Tuning (PEFT) for MTL architectures. Despite some progress, these approaches still exhibit limitations in capturing fine-grained, task-specific features that are crucial to MTL. In this paper, we introduce Task-Adaptive Dynamic transFormer, termed TADFormer, a novel PEFT framework that performs task-aware feature adaptation in the fine-grained manner by dynamically considering task-specific input contexts. TADFormer proposes the parameter-efficient prompting for task adaptation and the Dynamic Task Filter (DTF) to capture task information conditioned on input contexts. Experiments on the PASCAL-Context benchmark demonstrate that the proposed method achieves higher accuracy in dense scene understanding tasks, while reducing the number of trainable parameters by up to 8.4 times when compared to full fine-tuning of MTL models. TADFormer also demonstrates superior parameter efficiency and accuracy compared to recent PEFT methods.
☆ ContextMRI: Enhancing Compressed Sensing MRI through Metadata Conditioning
Compressed sensing MRI seeks to accelerate MRI acquisition processes by sampling fewer k-space measurements and then reconstructing the missing data algorithmically. The success of these approaches often relies on strong priors or learned statistical models. While recent diffusion model-based priors have shown great potential, previous methods typically ignore clinically available metadata (e.g. patient demographics, imaging parameters, slice-specific information). In practice, metadata contains meaningful cues about the anatomy and acquisition protocol, suggesting it could further constrain the reconstruction problem. In this work, we propose ContextMRI, a text-conditioned diffusion model for MRI that integrates granular metadata into the reconstruction process. We train a pixel-space diffusion model directly on minimally processed, complex-valued MRI images. During inference, metadata is converted into a structured text prompt and fed to the model via CLIP text embeddings. By conditioning the prior on metadata, we unlock more accurate reconstructions and show consistent gains across multiple datasets, acceleration factors, and undersampling patterns. Our experiments demonstrate that increasing the fidelity of metadata, ranging from slice location and contrast to patient age, sex, and pathology, systematically boosts reconstruction performance. This work highlights the untapped potential of leveraging clinical context for inverse problems and opens a new direction for metadata-driven MRI reconstruction.
comment: 29 pages, 9 figures
☆ Enhancing Scene Classification in Cloudy Image Scenarios: A Collaborative Transfer Method with Information Regulation Mechanism using Optical Cloud-Covered and SAR Remote Sensing Images
In remote sensing scene classification, leveraging the transfer methods with well-trained optical models is an efficient way to overcome label scarcity. However, cloud contamination leads to optical information loss and significant impacts on feature distribution, challenging the reliability and stability of transferred target models. Common solutions include cloud removal for optical data or directly using Synthetic aperture radar (SAR) data in the target domain. However, cloud removal requires substantial auxiliary data for support and pre-training, while directly using SAR disregards the unobstructed portions of optical data. This study presents a scene classification transfer method that synergistically combines multi-modality data, which aims to transfer the source domain model trained on cloudfree optical data to the target domain that includes both cloudy optical and SAR data at low cost. Specifically, the framework incorporates two parts: (1) the collaborative transfer strategy, based on knowledge distillation, enables the efficient prior knowledge transfer across heterogeneous data; (2) the information regulation mechanism (IRM) is proposed to address the modality imbalance issue during transfer. It employs auxiliary models to measure the contribution discrepancy of each modality, and automatically balances the information utilization of modalities during the target model learning process at the sample-level. The transfer experiments were conducted on simulated and real cloud datasets, demonstrating the superior performance of the proposed method compared to other solutions in cloud-covered scenarios. We also verified the importance and limitations of IRM, and further discussed and visualized the modality imbalance problem during the model transfer. Codes are available at https://github.com/wangyuze-csu/ESCCS
☆ Open set label noise learning with robust sample selection and margin-guided module
In recent years, the remarkable success of deep neural networks (DNNs) in computer vision is largely due to large-scale, high-quality labeled datasets. Training directly on real-world datasets with label noise may result in overfitting. The traditional method is limited to deal with closed set label noise, where noisy training data has true class labels within the known label space. However, there are some real-world datasets containing open set label noise, which means that some samples belong to an unknown class outside the known label space. To address the open set label noise problem, we introduce a method based on Robust Sample Selection and Margin-Guided Module (RSS-MGM). Firstly, unlike the prior clean sample selection approach, which only select a limited number of clean samples, a robust sample selection module combines small loss selection or high-confidence sample selection to obtain more clean samples. Secondly, to efficiently distinguish open set label noise and closed set ones, margin functions are designed to filter open-set data and closed set data. Thirdly, different processing methods are selected for different types of samples in order to fully utilize the data's prior information and optimize the whole model. Furthermore, extensive experimental results with noisy labeled data from benchmark datasets and real-world datasets, such as CIFAR-100N-C, CIFAR80N-O, WebFG-469, and Food101N, indicate that our approach outperforms many state-of-the-art label noise learning methods. Especially, it can more accurately divide open set label noise samples and closed set ones.
☆ Robotic Programmer: Video Instructed Policy Code Generation for Robotic Manipulation
Zero-shot generalization across various robots, tasks and environments remains a significant challenge in robotic manipulation. Policy code generation methods use executable code to connect high-level task descriptions and low-level action sequences, leveraging the generalization capabilities of large language models and atomic skill libraries. In this work, we propose Robotic Programmer (RoboPro), a robotic foundation model, enabling the capability of perceiving visual information and following free-form instructions to perform robotic manipulation with policy code in a zero-shot manner. To address low efficiency and high cost in collecting runtime code data for robotic tasks, we devise Video2Code to synthesize executable code from extensive videos in-the-wild with off-the-shelf vision-language model and code-domain large language model. Extensive experiments show that RoboPro achieves the state-of-the-art zero-shot performance on robotic manipulation in both simulators and real-world environments. Specifically, the zero-shot success rate of RoboPro on RLBench surpasses the state-of-the-art model GPT-4o by 11.6%, which is even comparable to a strong supervised training baseline. Furthermore, RoboPro is robust to variations on API formats and skill sets.
☆ Continual Self-supervised Learning Considering Medical Domain Knowledge in Chest CT Images ICASSP 2025
We propose a novel continual self-supervised learning method (CSSL) considering medical domain knowledge in chest CT images. Our approach addresses the challenge of sequential learning by effectively capturing the relationship between previously learned knowledge and new information at different stages. By incorporating an enhanced DER into CSSL and maintaining both diversity and representativeness within the rehearsal buffer of DER, the risk of data interference during pretraining is reduced, enabling the model to learn more richer and robust feature representations. In addition, we incorporate a mixup strategy and feature distillation to further enhance the model's ability to learn meaningful representations. We validate our method using chest CT images obtained under two different imaging conditions, demonstrating superior performance compared to state-of-the-art methods.
comment: Accepted by ICASSP 2025
☆ UPAQ: A Framework for Real-Time and Energy-Efficient 3D Object Detection in Autonomous Vehicles
To enhance perception in autonomous vehicles (AVs), recent efforts are concentrating on 3D object detectors, which deliver more comprehensive predictions than traditional 2D object detectors, at the cost of increased memory footprint and computational resource usage. We present a novel framework called UPAQ, which leverages semi-structured pattern pruning and quantization to improve the efficiency of LiDAR point-cloud and camera-based 3D object detectors on resource-constrained embedded AV platforms. Experimental results on the Jetson Orin Nano embedded platform indicate that UPAQ achieves up to 5.62x and 5.13x model compression rates, up to 1.97x and 1.86x boost in inference speed, and up to 2.07x and 1.87x reduction in energy consumption compared to state-of-the-art model compression frameworks, on the Pointpillar and SMOKE models respectively.
☆ Recognition-Oriented Low-Light Image Enhancement based on Global and Pixelwise Optimization
In this paper, we propose a novel low-light image enhancement method aimed at improving the performance of recognition models. Despite recent advances in deep learning, the recognition of images under low-light conditions remains a challenge. Although existing low-light image enhancement methods have been developed to improve image visibility for human vision, they do not specifically focus on enhancing recognition model performance. Our proposed low-light image enhancement method consists of two key modules: the Global Enhance Module, which adjusts the overall brightness and color balance of the input image, and the Pixelwise Adjustment Module, which refines image features at the pixel level. These modules are trained to enhance input images to improve downstream recognition model performance effectively. Notably, the proposed method can be applied as a frontend filter to improve low-light recognition performance without requiring retraining of downstream recognition models. Experimental results demonstrate that our method improves the performance of pretrained recognition models under low-light conditions and its effectiveness.
comment: accepted to VISAPP2025
☆ GRAPHITE: Graph-Based Interpretable Tissue Examination for Enhanced Explainability in Breast Cancer Histopathology
Explainable AI (XAI) in medical histopathology is essential for enhancing the interpretability and clinical trustworthiness of deep learning models in cancer diagnosis. However, the black-box nature of these models often limits their clinical adoption. We introduce GRAPHITE (Graph-based Interpretable Tissue Examination), a post-hoc explainable framework designed for breast cancer tissue microarray (TMA) analysis. GRAPHITE employs a multiscale approach, extracting patches at various magnification levels, constructing an hierarchical graph, and utilising graph attention networks (GAT) with scalewise attention (SAN) to capture scale-dependent features. We trained the model on 140 tumour TMA cores and four benign whole slide images from which 140 benign samples were created, and tested it on 53 pathologist-annotated TMA samples. GRAPHITE outperformed traditional XAI methods, achieving a mean average precision (mAP) of 0.56, an area under the receiver operating characteristic curve (AUROC) of 0.94, and a threshold robustness (ThR) of 0.70, indicating that the model maintains high performance across a wide range of thresholds. In clinical utility, GRAPHITE achieved the highest area under the decision curve (AUDC) of 4.17e+5, indicating reliable decision support across thresholds. These results highlight GRAPHITE's potential as a clinically valuable tool in computational pathology, providing interpretable visualisations that align with the pathologists' diagnostic reasoning and support precision medicine.
comment: 24 Pages, 9 Figures, 1 Tables
☆ LipGen: Viseme-Guided Lip Video Generation for Enhancing Visual Speech Recognition ICASSP 2025
Visual speech recognition (VSR), commonly known as lip reading, has garnered significant attention due to its wide-ranging practical applications. The advent of deep learning techniques and advancements in hardware capabilities have significantly enhanced the performance of lip reading models. Despite these advancements, existing datasets predominantly feature stable video recordings with limited variability in lip movements. This limitation results in models that are highly sensitive to variations encountered in real-world scenarios. To address this issue, we propose a novel framework, LipGen, which aims to improve model robustness by leveraging speech-driven synthetic visual data, thereby mitigating the constraints of current datasets. Additionally, we introduce an auxiliary task that incorporates viseme classification alongside attention mechanisms. This approach facilitates the efficient integration of temporal information, directing the model's focus toward the relevant segments of speech, thereby enhancing discriminative capabilities. Our method demonstrates superior performance compared to the current state-of-the-art on the lip reading in the wild (LRW) dataset and exhibits even more pronounced advantages under challenging conditions.
comment: This paper has been accepted for presentation at ICASSP 2025
☆ Generative Dataset Distillation Based on Self-knowledge Distillation ICASSP 2025
Dataset distillation is an effective technique for reducing the cost and complexity of model training while maintaining performance by compressing large datasets into smaller, more efficient versions. In this paper, we present a novel generative dataset distillation method that can improve the accuracy of aligning prediction logits. Our approach integrates self-knowledge distillation to achieve more precise distribution matching between the synthetic and original data, thereby capturing the overall structure and relationships within the data. To further improve the accuracy of alignment, we introduce a standardization step on the logits before performing distribution matching, ensuring consistency in the range of logits. Through extensive experiments, we demonstrate that our method outperforms existing state-of-the-art methods, resulting in superior distillation performance.
comment: Accepted by ICASSP 2025
☆ Topological Classification of points in $Z^2$ by using Topological Numbers for $2$D discrete binary images
In this paper, we propose a topological classification of points for 2D discrete binary images. This classification is based on the values of the calculus of topological numbers. Six classes of points are proposed: isolated point, interior point, simple point, curve point, point of intersection of 3 curves, point of intersection of 4 curves. The number of configurations of each class is also given.
comment: arXiv admin note: substantial text overlap with arXiv:2410.21588
☆ Back Home: A Machine Learning Approach to Seashell Classification and Ecosystem Restoration
In Costa Rica, an average of 5 tons of seashells are extracted from ecosystems annually. Confiscated seashells, cannot be returned to their ecosystems due to the lack of origin recognition. To address this issue, we developed a convolutional neural network (CNN) specifically for seashell identification. We built a dataset from scratch, consisting of approximately 19000 images from the Pacific and Caribbean coasts. Using this dataset, the model achieved a classification accuracy exceeding 85%. The model has been integrated into a user-friendly application, which has classified over 36,000 seashells to date, delivering real-time results within 3 seconds per image. To further enhance the system's accuracy, an anomaly detection mechanism was incorporated to filter out irrelevant or anomalous inputs, ensuring only valid seashell images are processed.
☆ LayerMix: Enhanced Data Augmentation through Fractal Integration for Robust Deep Learning
Deep learning models have demonstrated remarkable performance across various computer vision tasks, yet their vulnerability to distribution shifts remains a critical challenge. Despite sophisticated neural network architectures, existing models often struggle to maintain consistent performance when confronted with Out-of-Distribution (OOD) samples, including natural corruptions, adversarial perturbations, and anomalous patterns. We introduce LayerMix, an innovative data augmentation approach that systematically enhances model robustness through structured fractal-based image synthesis. By meticulously integrating structural complexity into training datasets, our method generates semantically consistent synthetic samples that significantly improve neural network generalization capabilities. Unlike traditional augmentation techniques that rely on random transformations, LayerMix employs a structured mixing pipeline that preserves original image semantics while introducing controlled variability. Extensive experiments across multiple benchmark datasets, including CIFAR-10, CIFAR-100, ImageNet-200, and ImageNet-1K demonstrate LayerMixs superior performance in classification accuracy and substantially enhances critical Machine Learning (ML) safety metrics, including resilience to natural image corruptions, robustness against adversarial attacks, improved model calibration and enhanced prediction consistency. LayerMix represents a significant advancement toward developing more reliable and adaptable artificial intelligence systems by addressing the fundamental challenges of deep learning generalization. The code is available at https://github.com/ahmadmughees/layermix.
☆ EDMB: Edge Detector with Mamba
Transformer-based models have made significant progress in edge detection, but their high computational cost is prohibitive. Recently, vision Mamba have shown excellent ability in efficiently capturing long-range dependencies. Drawing inspiration from this, we propose a novel edge detector with Mamba, termed EDMB, to efficiently generate high-quality multi-granularity edges. In EDMB, Mamba is combined with a global-local architecture, therefore it can focus on both global information and fine-grained cues. The fine-grained cues play a crucial role in edge detection, but are usually ignored by ordinary Mamba. We design a novel decoder to construct learnable Gaussian distributions by fusing global features and fine-grained features. And the multi-grained edges are generated by sampling from the distributions. In order to make multi-granularity edges applicable to single-label data, we introduce Evidence Lower Bound loss to supervise the learning of the distributions. On the multi-label dataset BSDS500, our proposed EDMB achieves competitive single-granularity ODS 0.837 and multi-granularity ODS 0.851 without multi-scale test or extra PASCAL-VOC data. Remarkably, EDMB can be extended to single-label datasets such as NYUDv2 and BIPED. The source code is available at https://github.com/Li-yachuan/EDMB.
☆ Towards Generalizable Trajectory Prediction Using Dual-Level Representation Learning And Adaptive Prompting
Existing vehicle trajectory prediction models struggle with generalizability, prediction uncertainties, and handling complex interactions. It is often due to limitations like complex architectures customized for a specific dataset and inefficient multimodal handling. We propose Perceiver with Register queries (PerReg+), a novel trajectory prediction framework that introduces: (1) Dual-Level Representation Learning via Self-Distillation (SD) and Masked Reconstruction (MR), capturing global context and fine-grained details. Additionally, our approach of reconstructing segmentlevel trajectories and lane segments from masked inputs with query drop, enables effective use of contextual information and improves generalization; (2) Enhanced Multimodality using register-based queries and pretraining, eliminating the need for clustering and suppression; and (3) Adaptive Prompt Tuning during fine-tuning, freezing the main architecture and optimizing a small number of prompts for efficient adaptation. PerReg+ sets a new state-of-the-art performance on nuScenes [1], Argoverse 2 [2], and Waymo Open Motion Dataset (WOMD) [3]. Remarkable, our pretrained model reduces the error by 6.8% on smaller datasets, and multi-dataset training enhances generalization. In cross-domain tests, PerReg+ reduces B-FDE by 11.8% compared to its non-pretrained variant.
☆ A Steerable Deep Network for Model-Free Diffusion MRI Registration
Nonrigid registration is vital to medical image analysis but remains challenging for diffusion MRI (dMRI) due to its high-dimensional, orientation-dependent nature. While classical methods are accurate, they are computationally demanding, and deep neural networks, though efficient, have been underexplored for nonrigid dMRI registration compared to structural imaging. We present a novel, deep learning framework for model-free, nonrigid registration of raw diffusion MRI data that does not require explicit reorientation. Unlike previous methods relying on derived representations such as diffusion tensors or fiber orientation distribution functions, in our approach, we formulate the registration as an equivariant diffeomorphism of position-and-orientation space. Central to our method is an $\mathsf{SE}(3)$-equivariant UNet that generates velocity fields while preserving the geometric properties of a raw dMRI's domain. We introduce a new loss function based on the maximum mean discrepancy in Fourier space, implicitly matching ensemble average propagators across images. Experimental results on Human Connectome Project dMRI data demonstrate competitive performance compared to state-of-the-art approaches, with the added advantage of bypassing the overhead for estimating derived representations. This work establishes a foundation for data-driven, geometry-aware dMRI registration directly in the acquisition space.
☆ Leveraging Registers in Vision Transformers for Robust Adaptation ICASSP 2025
Vision Transformers (ViTs) have shown success across a variety of tasks due to their ability to capture global image representations. Recent studies have identified the existence of high-norm tokens in ViTs, which can interfere with unsupervised object discovery. To address this, the use of "registers" which are additional tokens that isolate high norm patch tokens while capturing global image-level information has been proposed. While registers have been studied extensively for object discovery, their generalization properties particularly in out-of-distribution (OOD) scenarios, remains underexplored. In this paper, we examine the utility of register token embeddings in providing additional features for improving generalization and anomaly rejection. To that end, we propose a simple method that combines the special CLS token embedding commonly employed in ViTs with the average-pooled register embeddings to create feature representations which are subsequently used for training a downstream classifier. We find that this enhances OOD generalization and anomaly rejection, while maintaining in-distribution (ID) performance. Extensive experiments across multiple ViT backbones trained with and without registers reveal consistent improvements of 2-4\% in top-1 OOD accuracy and a 2-3\% reduction in false positive rates for anomaly detection. Importantly, these gains are achieved without additional computational overhead.
comment: Accepted at ICASSP 2025
☆ GaussianVideo: Efficient Video Representation via Hierarchical Gaussian Splatting
Efficient neural representations for dynamic video scenes are critical for applications ranging from video compression to interactive simulations. Yet, existing methods often face challenges related to high memory usage, lengthy training times, and temporal consistency. To address these issues, we introduce a novel neural video representation that combines 3D Gaussian splatting with continuous camera motion modeling. By leveraging Neural ODEs, our approach learns smooth camera trajectories while maintaining an explicit 3D scene representation through Gaussians. Additionally, we introduce a spatiotemporal hierarchical learning strategy, progressively refining spatial and temporal features to enhance reconstruction quality and accelerate convergence. This memory-efficient approach achieves high-quality rendering at impressive speeds. Experimental results show that our hierarchical learning, combined with robust camera motion modeling, captures complex dynamic scenes with strong temporal consistency, achieving state-of-the-art performance across diverse video datasets in both high- and low-motion scenarios.
comment: 10 pages, 10 figures
☆ TREAD: Token Routing for Efficient Architecture-agnostic Diffusion Training
Diffusion models have emerged as the mainstream approach for visual generation. However, these models usually suffer from sample inefficiency and high training costs. This issue is particularly pronounced in the standard diffusion transformer architecture due to its quadratic complexity relative to input length. Recent works have addressed this by reducing the number of tokens processed in the model, often through masking. In contrast, this work aims to improve the training efficiency of the diffusion backbone by using predefined routes that store this information until it is reintroduced to deeper layers of the model, rather than discarding these tokens entirely. Further, we combine multiple routes and introduce an adapted auxiliary loss that accounts for all applied routes. Our method is not limited to the common transformer-based model - it can also be applied to state-space models. Unlike most current approaches, TREAD achieves this without architectural modifications. Finally, we show that our method reduces the computational cost and simultaneously boosts model performance on the standard benchmark ImageNet-1K 256 x 256 in class-conditional synthesis. Both of these benefits multiply to a convergence speedup of 9.55x at 400K training iterations compared to DiT and 25.39x compared to the best benchmark performance of DiT at 7M training iterations.
☆ Video Summarisation with Incident and Context Information using Generative AI
The proliferation of video content production has led to vast amounts of data, posing substantial challenges in terms of analysis efficiency and resource utilization. Addressing this issue calls for the development of robust video analysis tools. This paper proposes a novel approach leveraging Generative Artificial Intelligence (GenAI) to facilitate streamlined video analysis. Our tool aims to deliver tailored textual summaries of user-defined queries, offering a focused insight amidst extensive video datasets. Unlike conventional frameworks that offer generic summaries or limited action recognition, our method harnesses the power of GenAI to distil relevant information, enhancing analysis precision and efficiency. Employing YOLO-V8 for object detection and Gemini for comprehensive video and text analysis, our solution achieves heightened contextual accuracy. By combining YOLO with Gemini, our approach furnishes textual summaries extracted from extensive CCTV footage, enabling users to swiftly navigate and verify pertinent events without the need for exhaustive manual review. The quantitative evaluation revealed a similarity of 72.8%, while the qualitative assessment rated an accuracy of 85%, demonstrating the capability of the proposed method.
☆ Efficient License Plate Recognition in Videos Using Visual Rhythm and Accumulative Line Analysis
Video-based Automatic License Plate Recognition (ALPR) involves extracting vehicle license plate text information from video captures. Traditional systems typically rely heavily on high-end computing resources and utilize multiple frames to recognize license plates, leading to increased computational overhead. In this paper, we propose two methods capable of efficiently extracting exactly one frame per vehicle and recognizing its license plate characters from this single image, thus significantly reducing computational demands. The first method uses Visual Rhythm (VR) to generate time-spatial images from videos, while the second employs Accumulative Line Analysis (ALA), a novel algorithm based on single-line video processing for real-time operation. Both methods leverage YOLO for license plate detection within the frame and a Convolutional Neural Network (CNN) for Optical Character Recognition (OCR) to extract textual information. Experiments on real videos demonstrate that the proposed methods achieve results comparable to traditional frame-by-frame approaches, with processing speeds three times faster.
comment: Accepted for presentation at the Conference on Graphics, Patterns and Images (SIBGRAPI) 2024
☆ EndoDINO: A Foundation Model for GI Endoscopy
In this work, we present EndoDINO, a foundation model for GI endoscopy tasks that achieves strong generalizability by pre-training on a well-curated image dataset sampled from the largest known GI endoscopy video dataset in the literature. Specifically, we pre-trained ViT models with 1B, 307M, and 86M parameters using datasets ranging from 100K to 10M curated images. Using EndoDINO as a frozen feature encoder, we achieved state-of-the-art performance in anatomical landmark classification, polyp segmentation, and Mayo endoscopic scoring (MES) for ulcerative colitis with only simple decoder heads.
♻ ☆ Click2Mask: Local Editing with Dynamic Mask Generation AAAI 2025
Recent advancements in generative models have revolutionized image generation and editing, making these tasks accessible to non-experts. This paper focuses on local image editing, particularly the task of adding new content to a loosely specified area. Existing methods often require a precise mask or a detailed description of the location, which can be cumbersome and prone to errors. We propose Click2Mask, a novel approach that simplifies the local editing process by requiring only a single point of reference (in addition to the content description). A mask is dynamically grown around this point during a Blended Latent Diffusion (BLD) process, guided by a masked CLIP-based semantic loss. Click2Mask surpasses the limitations of segmentation-based and fine-tuning dependent methods, offering a more user-friendly and contextually accurate solution. Our experiments demonstrate that Click2Mask not only minimizes user effort but also enables competitive or superior local image manipulations compared to SoTA methods, according to both human judgement and automatic metrics. Key contributions include the simplification of user input, the ability to freely add objects unconstrained by existing segments, and the integration potential of our dynamic mask approach within other editing methods.
comment: Accepted to AAAI 2025. Project page is available at https://omeregev.github.io/click2mask/
♻ ☆ GLoG-CSUnet: Enhancing Vision Transformers with Adaptable Radiomic Features for Medical Image Segmentation
Vision Transformers (ViTs) have shown promise in medical image semantic segmentation (MISS) by capturing long-range correlations. However, ViTs often struggle to model local spatial information effectively, which is essential for accurately segmenting fine anatomical details, particularly when applied to small datasets without extensive pre-training. We introduce Gabor and Laplacian of Gaussian Convolutional Swin Network (GLoG-CSUnet), a novel architecture enhancing Transformer-based models by incorporating learnable radiomic features. This approach integrates dynamically adaptive Gabor and Laplacian of Gaussian (LoG) filters to capture texture, edge, and boundary information, enhancing the feature representation processed by the Transformer model. Our method uniquely combines the long-range dependency modeling of Transformers with the texture analysis capabilities of Gabor and LoG features. Evaluated on the Synapse multi-organ and ACDC cardiac segmentation datasets, GLoG-CSUnet demonstrates significant improvements over state-of-the-art models, achieving a 1.14% increase in Dice score for Synapse and 0.99% for ACDC, with minimal computational overhead (only 15 and 30 additional parameters, respectively). GLoG-CSUnet's flexible design allows integration with various base models, offering a promising approach for incorporating radiomics-inspired feature extraction in Transformer architectures for medical image analysis. The code implementation is available on GitHub at: https://github.com/HAAIL/GLoG-CSUnet.
♻ ☆ MADation: Face Morphing Attack Detection with Foundation Models WACV 2025
Despite the considerable performance improvements of face recognition algorithms in recent years, the same scientific advances responsible for this progress can also be used to create efficient ways to attack them, posing a threat to their secure deployment. Morphing attack detection (MAD) systems aim to detect a specific type of threat, morphing attacks, at an early stage, preventing them from being considered for verification in critical processes. Foundation models (FM) learn from extensive amounts of unlabeled data, achieving remarkable zero-shot generalization to unseen domains. Although this generalization capacity might be weak when dealing with domain-specific downstream tasks such as MAD, FMs can easily adapt to these settings while retaining the built-in knowledge acquired during pre-training. In this work, we recognize the potential of FMs to perform well in the MAD task when properly adapted to its specificities. To this end, we adapt FM CLIP architectures with LoRA weights while simultaneously training a classification header. The proposed framework, MADation surpasses our alternative FM and transformer-based frameworks and constitutes the first adaption of FMs to the MAD task. MADation presents competitive results with current MAD solutions in the literature and even surpasses them in several evaluation scenarios. To encourage reproducibility and facilitate further research in MAD, we publicly release the implementation of MADation at https: //github.com/gurayozgur/MADation
comment: Accepted at WACV 2025 workshops
♻ ☆ Forget Vectors at Play: Universal Input Perturbations Driving Machine Unlearning in Image Classification
Machine unlearning (MU), which seeks to erase the influence of specific unwanted data from already-trained models, is becoming increasingly vital in model editing, particularly to comply with evolving data regulations like the ``right to be forgotten''. Conventional approaches are predominantly model-based, typically requiring retraining or fine-tuning the model's weights to meet unlearning requirements. In this work, we approach the MU problem from a novel input perturbation-based perspective, where the model weights remain intact throughout the unlearning process. We demonstrate the existence of a proactive input-based unlearning strategy, referred to forget vector, which can be generated as an input-agnostic data perturbation and remains as effective as model-based approximate unlearning approaches. We also explore forget vector arithmetic, whereby multiple class-specific forget vectors are combined through simple operations (e.g., linear combinations) to generate new forget vectors for unseen unlearning tasks, such as forgetting arbitrary subsets across classes. Extensive experiments validate the effectiveness and adaptability of the forget vector, showcasing its competitive performance relative to state-of-the-art model-based methods. Codes are available at https://github.com/Changchangsun/Forget-Vector.
♻ ☆ LeGrad: An Explainability Method for Vision Transformers via Feature Formation Sensitivity
Vision Transformers (ViTs), with their ability to model long-range dependencies through self-attention mechanisms, have become a standard architecture in computer vision. However, the interpretability of these models remains a challenge. To address this, we propose LeGrad, an explainability method specifically designed for ViTs. LeGrad computes the gradient with respect to the attention maps of ViT layers, considering the gradient itself as the explainability signal. We aggregate the signal over all layers, combining the activations of the last as well as intermediate tokens to produce the merged explainability map. This makes LeGrad a conceptually simple and an easy-to-implement tool for enhancing the transparency of ViTs. We evaluate LeGrad in challenging segmentation, perturbation, and open-vocabulary settings, showcasing its versatility compared to other SotA explainability methods demonstrating its superior spatial fidelity and robustness to perturbations. A demo and the code is available at https://github.com/WalBouss/LeGrad.
comment: Code available at https://github.com/WalBouss/LeGrad
♻ ☆ Towards Revisiting Visual Place Recognition for Joining Submaps in Multimap SLAM
Visual SLAM is a key technology for many autonomous systems. However, tracking loss can lead to the creation of disjoint submaps in multimap SLAM systems like ORB-SLAM3. Because of that, these systems employ submap merging strategies. As we show, these strategies are not always successful. In this paper, we investigate the impact of using modern VPR approaches for submap merging in visual SLAM. We argue that classical evaluation metrics are not sufficient to estimate the impact of a modern VPR component on the overall system. We show that naively replacing the VPR component does not leverage its full potential without requiring substantial interference in the original system. Because of that, we present a post-processing pipeline along with a set of metrics that allow us to estimate the impact of modern VPR components. We evaluate our approach on the NCLT and Newer College datasets using ORB-SLAM3 with NetVLAD and HDC-DELF as VPR components. Additionally, we present a simple approach for combining VPR with temporal consistency for map merging. We show that the map merging performance of ORB-SLAM3 can be improved. Building on these results, researchers in VPR can assess the potential of their approaches for SLAM systems.
comment: Accepted at TAROS 2024. This is the submitted version
♻ ☆ PointDreamer: Zero-shot 3D Textured Mesh Reconstruction from Colored Point Cloud
Reconstructing textured meshes from colored point clouds is an important but challenging task. Most existing methods yield blurry-looking textures or rely on 3D training data that are hard to acquire. Regarding this, we propose PointDreamer, a novel framework for textured mesh reconstruction from colored point cloud via diffusion-based 2D inpainting. Specifically, we first reconstruct an untextured mesh. Next, we project the input point cloud into 2D space to generate sparse multi-view images, and then inpaint empty pixels utilizing a pre-trained 2D diffusion model. After that, we unproject the colors of the inpainted dense images onto the untextured mesh, thus obtaining the final textured mesh. This project-inpaint-unproject pipeline bridges the gap between 3D point clouds and 2D diffusion models for the first time. Thanks to the powerful 2D diffusion model pre-trained on extensive 2D data, PointDreamer reconstructs clear, high-quality textures with high robustness to sparse or noisy input. Also, it's zero-shot requiring no extra training. In addition, we design Non-Border-First unprojection strategy to address the border-area inconsistency issue, which is less explored but commonly-occurred in methods that generate 3D textures from multiview images. Extensive qualitative and quantitative experiments on various synthetic and real-scanned datasets show the SoTA performance of PointDreamer, by significantly outperforming baseline methods with 30% improvement in LPIPS score (from 0.118 to 0.068). Code at: https://github.com/YuQiao0303/PointDreamer.
♻ ☆ Motion-Zero: Zero-Shot Moving Object Control Framework for Diffusion-Based Video Generation
Recent large-scale pre-trained diffusion models have demonstrated a powerful generative ability to produce high-quality videos from detailed text descriptions. However, exerting control over the motion of objects in videos generated by any video diffusion model is a challenging problem. In this paper, we propose a novel zero-shot moving object trajectory control framework, Motion-Zero, to enable a bounding-box-trajectories-controlled text-to-video diffusion model. To this end, an initial noise prior module is designed to provide a position-based prior to improve the stability of the appearance of the moving object and the accuracy of position. In addition, based on the attention map of the U-net, spatial constraints are directly applied to the denoising process of diffusion models, which further ensures the positional and spatial consistency of moving objects during the inference. Furthermore, temporal consistency is guaranteed with a proposed shift temporal attention mechanism. Our method can be flexibly applied to various state-of-the-art video diffusion models without any training process. Extensive experiments demonstrate our proposed method can control the motion trajectories of objects and generate high-quality videos. Our project page is https://vpx-ecnu.github.io/MotionZero-website/
comment: Preprint
♻ ☆ Rad4XCNN: a new agnostic method for post-hoc global explanation of CNN-derived features by means of radiomics
In recent years, machine learning-based clinical decision support systems (CDSS) have played a key role in the analysis of several medical conditions. Despite their promising capabilities, the lack of transparency in AI models poses significant challenges, particularly in medical contexts where reliability is a mandatory aspect. However, it appears that explainability is inversely proportional to accuracy. For this reason, achieving transparency without compromising predictive accuracy remains a key challenge. This paper presents a novel method, namely Rad4XCNN, to enhance the predictive power of CNN-derived features with the inherent interpretability of radiomic features. Rad4XCNN diverges from conventional methods based on saliency maps, by associating intelligible meaning to CNN-derived features by means of Radiomics, offering new perspectives on explanation methods beyond visualization maps. Using a breast cancer classification task as a case study, we evaluated Rad4XCNN on ultrasound imaging datasets, including an online dataset and two in-house datasets for internal and external validation. Some key results are: i) CNN-derived features guarantee more robust accuracy when compared against ViT-derived and radiomic features; ii) conventional visualization map methods for explanation present several pitfalls; iii) Rad4XCNN does not sacrifice model accuracy for their explainability; iv) Rad4XCNN provides a global explanation enabling the physician to extract global insights and findings. Our method can mitigate some concerns related to the explainability-accuracy trade-off. This study highlighted the importance of proposing new methods for model explanation without affecting their accuracy.
♻ ☆ VideoRefer Suite: Advancing Spatial-Temporal Object Understanding with Video LLM
Video Large Language Models (Video LLMs) have recently exhibited remarkable capabilities in general video understanding. However, they mainly focus on holistic comprehension and struggle with capturing fine-grained spatial and temporal details. Besides, the lack of high-quality object-level video instruction data and a comprehensive benchmark further hinders their advancements. To tackle these challenges, we introduce the VideoRefer Suite to empower Video LLM for finer-level spatial-temporal video understanding, i.e., enabling perception and reasoning on any objects throughout the video. Specially, we thoroughly develop VideoRefer Suite across three essential aspects: dataset, model, and benchmark. Firstly, we introduce a multi-agent data engine to meticulously curate a large-scale, high-quality object-level video instruction dataset, termed VideoRefer-700K. Next, we present the VideoRefer model, which equips a versatile spatial-temporal object encoder to capture precise regional and sequential representations. Finally, we meticulously create a VideoRefer-Bench to comprehensively assess the spatial-temporal understanding capability of a Video LLM, evaluating it across various aspects. Extensive experiments and analyses demonstrate that our VideoRefer model not only achieves promising performance on video referring benchmarks but also facilitates general video understanding capabilities.
comment: 17 pages, 14 figures, technical report
♻ ☆ Embedding Similarity Guided License Plate Super Resolution
Super-resolution (SR) techniques play a pivotal role in enhancing the quality of low-resolution images, particularly for applications such as security and surveillance, where accurate license plate recognition is crucial. This study proposes a novel framework that combines pixel-based loss with embedding similarity learning to address the unique challenges of license plate super-resolution (LPSR). The introduced pixel and embedding consistency loss (PECL) integrates a Siamese network and applies contrastive loss to force embedding similarities to improve perceptual and structural fidelity. By effectively balancing pixel-wise accuracy with embedding-level consistency, the framework achieves superior alignment of fine-grained features between high-resolution (HR) and super-resolved (SR) license plates. Extensive experiments on the CCPD dataset validate the efficacy of the proposed framework, demonstrating consistent improvements over state-of-the-art methods in terms of PSNR_RGB, PSNR_Y and optical character recognition (OCR) accuracy. These results highlight the potential of embedding similarity learning to advance both perceptual quality and task-specific performance in extreme super-resolution scenarios.
comment: Submitted to Neurocomputing
♻ ☆ NeuralDiffuser: Neuroscience-inspired Diffusion Guidance for fMRI Visual Reconstruction
Reconstructing visual stimuli from functional Magnetic Resonance Imaging fMRI enables fine-grained retrieval of brain activity. However, the accurate reconstruction of diverse details, including structure, background, texture, color, and more, remains challenging. The stable diffusion models inevitably result in the variability of reconstructed images, even under identical conditions. To address this challenge, we first uncover the neuroscientific perspective of diffusion methods, which primarily involve top-down creation using pre-trained knowledge from extensive image datasets, but tend to lack detail-driven bottom-up perception, leading to a loss of faithful details. In this paper, we propose NeuralDiffuser, which incorporates primary visual feature guidance to provide detailed cues in the form of gradients. This extension of the bottom-up process for diffusion models achieves both semantic coherence and detail fidelity when reconstructing visual stimuli. Furthermore, we have developed a novel guidance strategy for reconstruction tasks that ensures the consistency of repeated outputs with original images rather than with various outputs. Extensive experimental results on the Natural Senses Dataset (NSD) qualitatively and quantitatively demonstrate the advancement of NeuralDiffuser by comparing it against baseline and state-of-the-art methods horizontally, as well as conducting longitudinal ablation studies.
♻ ☆ Tutorial on Diffusion Models for Imaging and Vision
The astonishing growth of generative tools in recent years has empowered many exciting applications in text-to-image generation and text-to-video generation. The underlying principle behind these generative tools is the concept of diffusion, a particular sampling mechanism that has overcome some shortcomings that were deemed difficult in the previous approaches. The goal of this tutorial is to discuss the essential ideas underlying the diffusion models. The target audience of this tutorial includes undergraduate and graduate students who are interested in doing research on diffusion models or applying these models to solve other problems.
♻ ☆ TSCM: A Teacher-Student Model for Vision Place Recognition Using Cross-Metric Knowledge Distillation ICRA 2024
Visual place recognition (VPR) plays a pivotal role in autonomous exploration and navigation of mobile robots within complex outdoor environments. While cost-effective and easily deployed, camera sensors are sensitive to lighting and weather changes, and even slight image alterations can greatly affect VPR efficiency and precision. Existing methods overcome this by exploiting powerful yet large networks, leading to significant consumption of computational resources. In this paper, we propose a high-performance teacher and lightweight student distillation framework called TSCM. It exploits our devised cross-metric knowledge distillation to narrow the performance gap between the teacher and student models, maintaining superior performance while enabling minimal computational load during deployment. We conduct comprehensive evaluations on large-scale datasets, namely Pittsburgh30k and Pittsburgh250k. Experimental results demonstrate the superiority of our method over baseline models in terms of recognition accuracy and model parameter efficiency. Moreover, our ablation studies show that the proposed knowledge distillation technique surpasses other counterparts. The code of our method has been released at https://github.com/nubot-nudt/TSCM.
comment: Accepted to ICRA 2024
♻ ☆ ReCLIP++: Learn to Rectify the Bias of CLIP for Unsupervised Semantic Segmentation CVPR 24
Recent works utilize CLIP to perform the challenging unsupervised semantic segmentation task where only images without annotations are available. However, we observe that when adopting CLIP to such a pixel-level understanding task, unexpected bias (including class-preference bias and space-preference bias) occurs. Previous works don't explicitly model the bias, which largely constrains the segmentation performance. In this paper, we propose to explicitly model and rectify the bias existing in CLIP to facilitate the unsupervised semantic segmentation task. Specifically, we design a learnable "Reference" prompt to encode class-preference bias and a projection of the positional embedding in the vision transformer to encode space-preference bias respectively. To avoid interference, two kinds of biases are firstly independently encoded into different features, i.e., the Reference feature and the positional feature. Via a matrix multiplication between the Reference feature and the positional feature, a bias logit map is generated to explicitly represent two kinds of biases. Then we rectify the logits of CLIP via a simple element-wise subtraction. To make the rectified results smoother and more contextual, we design a mask decoder which takes the feature of CLIP and the rectified logits as input and outputs a rectified segmentation mask with the help of Gumbel-Softmax operation. A contrastive loss based on the masked visual features and the text features of different classes is imposed, which makes the bias modeling and rectification process meaningful and effective. Extensive experiments on various benchmarks including PASCAL VOC, PASCAL Context, ADE20K, Cityscapes, and COCO Stuff demonstrate that our method performs favorably against previous state-of-the-arts. The implementation is available at: https://github.com/dogehhh/ReCLIP.
comment: Extended version of our CVPR 24 paper
♻ ☆ Energy-based Hopfield Boosting for Out-of-Distribution Detection NeurIPS 2024
Out-of-distribution (OOD) detection is critical when deploying machine learning models in the real world. Outlier exposure methods, which incorporate auxiliary outlier data in the training process, can drastically improve OOD detection performance compared to approaches without advanced training strategies. We introduce Hopfield Boosting, a boosting approach, which leverages modern Hopfield energy (MHE) to sharpen the decision boundary between the in-distribution and OOD data. Hopfield Boosting encourages the model to concentrate on hard-to-distinguish auxiliary outlier examples that lie close to the decision boundary between in-distribution and auxiliary outlier data. Our method achieves a new state-of-the-art in OOD detection with outlier exposure, improving the FPR95 metric from 2.28 to 0.92 on CIFAR-10 and from 11.76 to 7.94 on CIFAR-100.
comment: NeurIPS 2024
♻ ☆ From Pixels to Titles: Video Game Identification by Screenshots using Convolutional Neural Networks
This paper investigates video game identification through single screenshots, utilizing ten convolutional neural network (CNN) architectures (VGG16, ResNet50, ResNet152, MobileNet, DenseNet169, DenseNet201, EfficientNetB0, EfficientNetB2, EfficientNetB3, and EfficientNetV2S) and three transformers architectures (ViT-B16, ViT-L32, and SwinT) across 22 home console systems, spanning from Atari 2600 to PlayStation 5, totalling 8,796 games and 170,881 screenshots. Except for VGG16, all CNNs outperformed the transformers in this task. Using ImageNet pre-trained weights as initial weights, EfficientNetV2S achieves the highest average accuracy (77.44%) and the highest accuracy in 16 of the 22 systems. DenseNet201 is the best in four systems and EfficientNetB3 is the best in the remaining two systems. Employing alternative initial weights fine-tuned in an arcade screenshots dataset boosts accuracy for EfficientNet architectures, with the EfficientNetV2S reaching a peak accuracy of 77.63% and demonstrating reduced convergence epochs from 26.9 to 24.5 on average. Overall, the combination of optimal architecture and weights attains 78.79% accuracy, primarily led by EfficientNetV2S in 15 systems. These findings underscore the efficacy of CNNs in video game identification through screenshots.
♻ ☆ Efficient Video-Based ALPR System Using YOLO and Visual Rhythm CVPR 2024
Automatic License Plate Recognition (ALPR) involves extracting vehicle license plate information from image or a video capture. These systems have gained popularity due to the wide availability of low-cost surveillance cameras and advances in Deep Learning. Typically, video-based ALPR systems rely on multiple frames to detect the vehicle and recognize the license plates. Therefore, we propose a system capable of extracting exactly one frame per vehicle and recognizing its license plate characters from this singular image using an Optical Character Recognition (OCR) model. Early experiments show that this methodology is viable.
comment: Accepted to CVPR 2024
♻ ☆ Balanced 3DGS: Gaussian-wise Parallelism Rendering with Fine-Grained Tiling
3D Gaussian Splatting (3DGS) is increasingly attracting attention in both academia and industry owing to its superior visual quality and rendering speed. However, training a 3DGS model remains a time-intensive task, especially in load imbalance scenarios where workload diversity among pixels and Gaussian spheres causes poor renderCUDA kernel performance. We introduce Balanced 3DGS, a Gaussian-wise parallelism rendering with fine-grained tiling approach in 3DGS training process, perfectly solving load-imbalance issues. First, we innovatively introduce the inter-block dynamic workload distribution technique to map workloads to Streaming Multiprocessor(SM) resources within a single GPU dynamically, which constitutes the foundation of load balancing. Second, we are the first to propose the Gaussian-wise parallel rendering technique to significantly reduce workload divergence inside a warp, which serves as a critical component in addressing load imbalance. Based on the above two methods, we further creatively put forward the fine-grained combined load balancing technique to uniformly distribute workload across all SMs, which boosts the forward renderCUDA kernel performance by up to 7.52x. Besides, we present a self-adaptive render kernel selection strategy during the 3DGS training process based on different load-balance situations, which effectively improves training efficiency.
♻ ☆ ViG-Bias: Visually Grounded Bias Discovery and Mitigation ECCV 2024
The proliferation of machine learning models in critical decision making processes has underscored the need for bias discovery and mitigation strategies. Identifying the reasons behind a biased system is not straightforward, since in many occasions they are associated with hidden spurious correlations which are not easy to spot. Standard approaches rely on bias audits performed by analyzing model performance in pre-defined subgroups of data samples, usually characterized by common attributes like gender or ethnicity when it comes to people, or other specific attributes defining semantically coherent groups of images. However, it is not always possible to know a-priori the specific attributes defining the failure modes of visual recognition systems. Recent approaches propose to discover these groups by leveraging large vision language models, which enable the extraction of cross-modal embeddings and the generation of textual descriptions to characterize the subgroups where a certain model is underperforming. In this work, we argue that incorporating visual explanations (e.g. heatmaps generated via GradCAM or other approaches) can boost the performance of such bias discovery and mitigation frameworks. To this end, we introduce Visually Grounded Bias Discovery and Mitigation (ViG-Bias), a simple yet effective technique which can be integrated to a variety of existing frameworks to improve both, discovery and mitigation performance. Our comprehensive evaluation shows that incorporating visual explanations enhances existing techniques like DOMINO, FACTS and Bias-to-Text, across several challenging datasets, including CelebA, Waterbirds, and NICO++.
comment: ECCV 2024
♻ ☆ Stylebreeder: Exploring and Democratizing Artistic Styles through Text-to-Image Models NeurIPS 2024
Text-to-image models are becoming increasingly popular, revolutionizing the landscape of digital art creation by enabling highly detailed and creative visual content generation. These models have been widely employed across various domains, particularly in art generation, where they facilitate a broad spectrum of creative expression and democratize access to artistic creation. In this paper, we introduce \texttt{STYLEBREEDER}, a comprehensive dataset of 6.8M images and 1.8M prompts generated by 95K users on Artbreeder, a platform that has emerged as a significant hub for creative exploration with over 13M users. We introduce a series of tasks with this dataset aimed at identifying diverse artistic styles, generating personalized content, and recommending styles based on user interests. By documenting unique, user-generated styles that transcend conventional categories like 'cyberpunk' or 'Picasso,' we explore the potential for unique, crowd-sourced styles that could provide deep insights into the collective creative psyche of users worldwide. We also evaluate different personalization methods to enhance artistic expression and introduce a style atlas, making these models available in LoRA format for public use. Our research demonstrates the potential of text-to-image diffusion models to uncover and promote unique artistic expressions, further democratizing AI in art and fostering a more diverse and inclusive artistic community. The dataset, code and models are available at https://stylebreeder.github.io under a Public Domain (CC0) license.
comment: Accepted at NeurIPS 2024 D&B Track, Project page: https://stylebreeder.github.io HuggingFace DB Page: https://huggingface.co/datasets/stylebreeder/stylebreeder
♻ ☆ LogicAD: Explainable Anomaly Detection via VLM-based Text Feature Extraction
Logical image understanding involves interpreting and reasoning about the relationships and consistency within an image's visual content. This capability is essential in applications such as industrial inspection, where logical anomaly detection is critical for maintaining high-quality standards and minimizing costly recalls. Previous research in anomaly detection (AD) has relied on prior knowledge for designing algorithms, which often requires extensive manual annotations, significant computing power, and large amounts of data for training. Autoregressive, multimodal Vision Language Models (AVLMs) offer a promising alternative due to their exceptional performance in visual reasoning across various domains. Despite this, their application to logical AD remains unexplored. In this work, we investigate using AVLMs for logical AD and demonstrate that they are well-suited to the task. Combining AVLMs with format embedding and a logic reasoner, we achieve SOTA performance on public benchmarks, MVTec LOCO AD, with an AUROC of 86.0% and F1-max of 83.7%, along with explanations of anomalies. This significantly outperforms the existing SOTA method by a large margin.
comment: Accepted for publication at aaai25, project page: https://jasonjin34.github.io/logicad.github.io/
♻ ☆ Bridging Simplicity and Sophistication using GLinear: A Novel Architecture for Enhanced Time Series Prediction
Time Series Forecasting (TSF) is an important application across many fields. There is a debate about whether Transformers, despite being good at understanding long sequences, struggle with preserving temporal relationships in time series data. Recent research suggests that simpler linear models might outperform or at least provide competitive performance compared to complex Transformer-based models for TSF tasks. In this paper, we propose a novel data-efficient architecture, GLinear, for multivariate TSF that exploits periodic patterns to provide better accuracy. It also provides better prediction accuracy by using a smaller amount of historical data compared to other state-of-the-art linear predictors. Four different datasets (ETTh1, Electricity, Traffic, and Weather) are used to evaluate the performance of the proposed predictor. A performance comparison with state-of-the-art linear architectures (such as NLinear, DLinear, and RLinear) and transformer-based time series predictor (Autoformer) shows that the GLinear, despite being parametrically efficient, significantly outperforms the existing architectures in most cases of multivariate TSF. We hope that the proposed GLinear opens new fronts of research and development of simpler and more sophisticated architectures for data and computationally efficient time-series analysis.
comment: Submitted to IEEE Transactions on Emerging Topics in Computational Intelligence
♻ ☆ Evaluating Image Caption via Cycle-consistent Text-to-Image Generation
Evaluating image captions typically relies on reference captions, which are costly to obtain and exhibit significant diversity and subjectivity. While reference-free evaluation metrics have been proposed, most focus on cross-modal evaluation between captions and images. Recent research has revealed that the modality gap generally exists in the representation of contrastive learning-based multi-modal systems, undermining the reliability of cross-modality metrics like CLIPScore. In this paper, we propose CAMScore, a cyclic reference-free automatic evaluation metric for image captioning models. To circumvent the aforementioned modality gap, CAMScore utilizes a text-to-image model to generate images from captions and subsequently evaluates these generated images against the original images. Furthermore, to provide fine-grained information for a more comprehensive evaluation, we design a three-level evaluation framework for CAMScore that encompasses pixel-level, semantic-level, and objective-level perspectives. Extensive experiment results across multiple benchmark datasets show that CAMScore achieves a superior correlation with human judgments compared to existing reference-based and reference-free metrics, demonstrating the effectiveness of the framework.
♻ ☆ Cobra: Extending Mamba to Multi-Modal Large Language Model for Efficient Inference AAAI
In recent years, the application of multimodal large language models (MLLM) in various fields has achieved remarkable success. However, as the foundation model for many downstream tasks, current MLLMs are composed of the well-known Transformer network, which has a less efficient quadratic computation complexity. To improve the efficiency of such basic models, we propose Cobra, a linear computational complexity MLLM. Specifically, Cobra integrates the efficient Mamba language model into the visual modality. Moreover, we explore and study various modal fusion schemes to create an effective multi-modal Mamba. Extensive experiments demonstrate that (1) Cobra achieves extremely competitive performance with current computationally efficient state-of-the-art methods, e.g., LLaVA-Phi, TinyLLaVA, and MobileVLM v2, and has faster speed due to Cobra's linear sequential modeling. (2) Interestingly, the results of closed-set challenging prediction benchmarks show that Cobra performs well in overcoming visual illusions and spatial relationship judgments. (3) Notably, Cobra even achieves comparable performance to LLaVA with about 43% of the number of parameters. We will make all codes of Cobra open-source and hope that the proposed method can facilitate future research on complexity problems in MLLM. Our project page is available at: https://sites.google.com/view/cobravlm.
comment: Accepted to the Thirty-Ninth AAAI Conference on Artificial Intelligence (AAAI-25)
♻ ☆ One missing piece in Vision and Language: A Survey on Comics Understanding
Vision-language models have recently evolved into versatile systems capable of high performance across a range of tasks, such as document understanding, visual question answering, and grounding, often in zero-shot settings. Comics Understanding, a complex and multifaceted field, stands to greatly benefit from these advances. Comics, as a medium, combine rich visual and textual narratives, challenging AI models with tasks that span image classification, object detection, instance segmentation, and deeper narrative comprehension through sequential panels. However, the unique structure of comics -- characterized by creative variations in style, reading order, and non-linear storytelling -- presents a set of challenges distinct from those in other visual-language domains. In this survey, we present a comprehensive review of Comics Understanding from both dataset and task perspectives. Our contributions are fivefold: (1) We analyze the structure of the comics medium, detailing its distinctive compositional elements; (2) We survey the widely used datasets and tasks in comics research, emphasizing their role in advancing the field; (3) We introduce the Layer of Comics Understanding (LoCU) framework, a novel taxonomy that redefines vision-language tasks within comics and lays the foundation for future work; (4) We provide a detailed review and categorization of existing methods following the LoCU framework; (5) Finally, we highlight current research challenges and propose directions for future exploration, particularly in the context of vision-language models applied to comics. This survey is the first to propose a task-oriented framework for comics intelligence and aims to guide future research by addressing critical gaps in data availability and task definition. A project associated with this survey is available at https://github.com/emanuelevivoli/awesome-comics-understanding.
comment: under review. project website: https://github.com/emanuelevivoli/awesome-comics-understanding
♻ ☆ TinySAM: Pushing the Envelope for Efficient Segment Anything Model AAAI 2025
Recently segment anything model (SAM) has shown powerful segmentation capability and has drawn great attention in computer vision fields. Massive following works have developed various applications based on the pre-trained SAM and achieved impressive performance on downstream vision tasks. However, SAM consists of heavy architectures and requires massive computational capacity, which hinders the further application of SAM on computation constrained edge devices. To this end, in this paper we propose a framework to obtain a tiny segment anything model (TinySAM) while maintaining the strong zero-shot performance. We first propose a full-stage knowledge distillation method with hard prompt sampling and hard mask weighting strategy to distill a lightweight student model. We also adapt the post-training quantization to the prompt-based segmentation task and further reduce the computational cost. Moreover, a hierarchical segmenting everything strategy is proposed to accelerate the everything inference by $2\times$ with almost no performance degradation. With all these proposed methods, our TinySAM leads to orders of magnitude computational reduction and pushes the envelope for efficient segment anything task. Extensive experiments on various zero-shot transfer tasks demonstrate the significantly advantageous performance of our TinySAM against counterpart methods. Codes are available at https://github.com/xinghaochen/TinySAM and https://gitee.com/mindspore/models/tree/master/research/cv/TinySAM.
comment: AAAI 2025
♻ ☆ FreeZe: Training-free zero-shot 6D pose estimation with geometric and vision foundation models ECCV 2024
Estimating the 6D pose of objects unseen during training is highly desirable yet challenging. Zero-shot object 6D pose estimation methods address this challenge by leveraging additional task-specific supervision provided by large-scale, photo-realistic synthetic datasets. However, their performance heavily depends on the quality and diversity of rendered data and they require extensive training. In this work, we show how to tackle the same task but without training on specific data. We propose FreeZe, a novel solution that harnesses the capabilities of pre-trained geometric and vision foundation models. FreeZe leverages 3D geometric descriptors learned from unrelated 3D point clouds and 2D visual features learned from web-scale 2D images to generate discriminative 3D point-level descriptors. We then estimate the 6D pose of unseen objects by 3D registration based on RANSAC. We also introduce a novel algorithm to solve ambiguous cases due to geometrically symmetric objects that is based on visual features. We comprehensively evaluate FreeZe across the seven core datasets of the BOP Benchmark, which include over a hundred 3D objects and 20,000 images captured in various scenarios. FreeZe consistently outperforms all state-of-the-art approaches, including competitors extensively trained on synthetic 6D pose estimation data. Code will be publicly available at https://andreacaraffa.github.io/freeze.
comment: Accepted to ECCV 2024. Project page: https://andreacaraffa.github.io/freeze
♻ ☆ DEFormer: DCT-driven Enhancement Transformer for Low-light Image and Dark Vision ICASSP
Low-light image enhancement restores the colors and details of a single image and improves high-level visual tasks. However, restoring the lost details in the dark area is still a challenge relying only on the RGB domain. In this paper, we delve into frequency as a new clue into the model and propose a DCT-driven enhancement transformer (DEFormer) framework. First, we propose a learnable frequency branch (LFB) for frequency enhancement contains DCT processing and curvature-based frequency enhancement (CFE) to represent frequency features. Additionally, we propose a cross domain fusion (CDF) to reduce the differences between the RGB domain and the frequency domain. Our DEFormer has achieved superior results on the LOL and MIT-Adobe FiveK datasets, improving the dark detection performance.
comment: Accepted by ICASSP
♻ ☆ MSCoTDet: Language-driven Multi-modal Fusion for Improved Multispectral Pedestrian Detection
Multispectral pedestrian detection is attractive for around-the-clock applications due to the complementary information between RGB and thermal modalities. However, current models often fail to detect pedestrians in certain cases (e.g., thermal-obscured pedestrians), particularly due to the modality bias learned from statistically biased datasets. In this paper, we investigate how to mitigate modality bias in multispectral pedestrian detection using Large Language Models (LLMs). Accordingly, we design a Multispectral Chain-of-Thought (MSCoT) prompting strategy, which prompts the LLM to perform multispectral pedestrian detection. Moreover, we propose a novel Multispectral Chain-of-Thought Detection (MSCoTDet) framework that integrates MSCoT prompting into multispectral pedestrian detection. To this end, we design a Language-driven Multi-modal Fusion (LMF) strategy that enables fusing the outputs of MSCoT prompting with the detection results of vision-based multispectral pedestrian detection models. Extensive experiments validate that MSCoTDet effectively mitigates modality biases and improves multispectral pedestrian detection.
comment: IEEE Transactions on Circuits and Systems for Video Technology (TCSVT)
♻ ☆ 3D Part Segmentation via Geometric Aggregation of 2D Visual Features WACV 2025
Supervised 3D part segmentation models are tailored for a fixed set of objects and parts, limiting their transferability to open-set, real-world scenarios. Recent works have explored vision-language models (VLMs) as a promising alternative, using multi-view rendering and textual prompting to identify object parts. However, naively applying VLMs in this context introduces several drawbacks, such as the need for meticulous prompt engineering, and fails to leverage the 3D geometric structure of objects. To address these limitations, we propose COPS, a COmprehensive model for Parts Segmentation that blends the semantics extracted from visual concepts and 3D geometry to effectively identify object parts. COPS renders a point cloud from multiple viewpoints, extracts 2D features, projects them back to 3D, and uses a novel geometric-aware feature aggregation procedure to ensure spatial and semantic consistency. Finally, it clusters points into parts and labels them. We demonstrate that COPS is efficient, scalable, and achieves zero-shot state-of-the-art performance across five datasets, covering synthetic and real-world data, texture-less and coloured objects, as well as rigid and non-rigid shapes. The code is available at https://3d-cops.github.io.
comment: Published in WACV 2025. Project page: https://3d-cops.github.io/
♻ ☆ Adapting Image-to-Video Diffusion Models for Large-Motion Frame Interpolation
With the development of video generation models has advanced significantly in recent years, we adopt large-scale image-to-video diffusion models for video frame interpolation. We present a conditional encoder designed to adapt an image-to-video model for large-motion frame interpolation. To enhance performance, we integrate a dual-branch feature extractor and propose a cross-frame attention mechanism that effectively captures both spatial and temporal information, enabling accurate interpolations of intermediate frames. Our approach demonstrates superior performance on the Fr\'echet Video Distance (FVD) metric when evaluated against other state-of-the-art approaches, particularly in handling large motion scenarios, highlighting advancements in generative-based methodologies.
♻ ☆ Graph Cut-guided Maximal Coding Rate Reduction for Learning Image Embedding and Clustering ACCV2024
In the era of pre-trained models, image clustering task is usually addressed by two relevant stages: a) to produce features from pre-trained vision models; and b) to find clusters from the pre-trained features. However, these two stages are often considered separately or learned by different paradigms, leading to suboptimal clustering performance. In this paper, we propose a unified framework, termed graph Cut-guided Maximal Coding Rate Reduction (CgMCR$^2$), for jointly learning the structured embeddings and the clustering. To be specific, we attempt to integrate an efficient clustering module into the principled framework for learning structured representation, in which the clustering module is used to provide partition information to guide the cluster-wise compression and the learned embeddings is aligned to desired geometric structures in turn to help for yielding more accurate partitions. We conduct extensive experiments on both standard and out-of-domain image datasets and experimental results validate the effectiveness of our approach.
comment: 24 pages, 9 figures, accepted in ACCV2024
♻ ☆ Empowering LLMs to Understand and Generate Complex Vector Graphics
The unprecedented advancements in Large Language Models (LLMs) have profoundly impacted natural language processing but have yet to fully embrace the realm of scalable vector graphics (SVG) generation. While LLMs encode partial knowledge of SVG data from web pages during training, recent findings suggest that semantically ambiguous and tokenized representations within LLMs may result in hallucinations in vector primitive predictions. Additionally, LLM training typically lacks modeling and understanding of the rendering sequence of vector paths, which can lead to occlusion between output vector primitives. In this paper, we present LLM4SVG, an initial yet substantial step toward bridging this gap by enabling LLMs to better understand and generate vector graphics. LLM4SVG facilitates a deeper understanding of SVG components through learnable semantic tokens, which precisely encode these tokens and their corresponding properties to generate semantically aligned SVG outputs. Using a series of learnable semantic tokens, a structured dataset for instruction following is developed to support comprehension and generation across two primary tasks. Our method introduces a modular architecture to existing large language models, integrating semantic tags, vector instruction encoders, fine-tuned commands, and powerful LLMs to tightly combine geometric, appearance, and language information. To overcome the scarcity of SVG-text instruction data, we developed an automated data generation pipeline that collected a massive dataset of more than 250k SVG data and 580k SVG-text instructions, which facilitated the adoption of the two-stage training strategy popular in LLM development. By exploring various training strategies, we developed LLM4SVG, which significantly moves beyond optimized rendering-based approaches and language-model-based baselines to achieve remarkable results in human evaluation tasks.
comment: Project Page: https://ximinng.github.io/LLM4SVGProject/
♻ ☆ Strip R-CNN: Large Strip Convolution for Remote Sensing Object Detection
While witnessed with rapid development, remote sensing object detection remains challenging for detecting high aspect ratio objects. This paper shows that large strip convolutions are good feature representation learners for remote sensing object detection and can detect objects of various aspect ratios well. Based on large strip convolutions, we build a new network architecture called Strip R-CNN, which is simple, efficient, and powerful. Unlike recent remote sensing object detectors that leverage large-kernel convolutions with square shapes, our Strip R-CNN takes advantage of sequential orthogonal large strip convolutions to capture spatial information. In addition, we enhance the localization capability of remote-sensing object detectors by decoupling the detection heads and equipping the localization head with strip convolutions to better localize the target objects. Extensive experiments on several benchmarks, e.g., DOTA, FAIR1M, HRSC2016, and DIOR, show that our Strip R-CNN can largely improve previous works. Notably, our 30M model achieves 82.75% mAP on DOTA-v1.0, setting a new state-of-the-art record.Code is available at https://github.com/YXB-NKU/Strip-R-CNN.
♻ ☆ Conjugate-Gradient-like Based Adaptive Moment Estimation Optimization Algorithm for Deep Learning
Training deep neural networks is a challenging task. In order to speed up training and enhance the performance of deep neural networks, we rectify the vanilla conjugate gradient as conjugate-gradient-like and incorporate it into the generic Adam, and thus propose a new optimization algorithm named CG-like-Adam for deep learning. Specifically, both the first-order and the second-order moment estimation of generic Adam are replaced by the conjugate-gradient-like. Convergence analysis handles the cases where the exponential moving average coefficient of the first-order moment estimation is constant and the first-order moment estimation is unbiased. Numerical experiments show the superiority of the proposed algorithm based on the CIFAR10/100 dataset.
comment: 32 pages, 13 figures
♻ ☆ Future Success Prediction in Open-Vocabulary Object Manipulation Tasks Based on End-Effector Trajectories
This study addresses a task designed to predict the future success or failure of open-vocabulary object manipulation. In this task, the model is required to make predictions based on natural language instructions, egocentric view images before manipulation, and the given end-effector trajectories. Conventional methods typically perform success prediction only after the manipulation is executed, limiting their efficiency in executing the entire task sequence. We propose a novel approach that enables the prediction of success or failure by aligning the given trajectories and images with natural language instructions. We introduce Trajectory Encoder to apply learnable weighting to the input trajectories, allowing the model to consider temporal dynamics and interactions between objects and the end effector, improving the model's ability to predict manipulation outcomes accurately. We constructed a dataset based on the RT-1 dataset, a large-scale benchmark for open-vocabulary object manipulation tasks, to evaluate our method. The experimental results show that our method achieved a higher prediction accuracy than baseline approaches.
comment: Accepted for presentation at LangRob @ CoRL 2024
♻ ☆ AutoFuse: Automatic Fusion Networks for Deformable Medical Image Registration
Deformable image registration aims to find a dense non-linear spatial correspondence between a pair of images, which is a crucial step for many medical tasks such as tumor growth monitoring and population analysis. Recently, Deep Neural Networks (DNNs) have been widely recognized for their ability to perform fast end-to-end registration. However, DNN-based registration needs to explore the spatial information of each image and fuse this information to characterize spatial correspondence. This raises an essential question: what is the optimal fusion strategy to characterize spatial correspondence? Existing fusion strategies (e.g., early fusion, late fusion) were empirically designed to fuse information by manually defined prior knowledge, which inevitably constrains the registration performance within the limits of empirical designs. In this study, we depart from existing empirically-designed fusion strategies and develop a data-driven fusion strategy for deformable image registration. To achieve this, we propose an Automatic Fusion network (AutoFuse) that provides flexibility to fuse information at many potential locations within the network. A Fusion Gate (FG) module is also proposed to control how to fuse information at each potential network location based on training data. Our AutoFuse can automatically optimize its fusion strategy during training and can be generalizable to both unsupervised registration (without any labels) and semi-supervised registration (with weak labels provided for partial training data). Extensive experiments on two well-benchmarked medical registration tasks (inter- and intra-patient registration) with eight public datasets show that our AutoFuse outperforms state-of-the-art unsupervised and semi-supervised registration methods.
comment: Published at Pattern Recognition
♻ ☆ Explainable Severity ranking via pairwise n-hidden comparison: a case study of glaucoma
Primary open-angle glaucoma (POAG) is a chronic and progressive optic nerve condition that results in an acquired loss of optic nerve fibers and potential blindness. The gradual onset of glaucoma results in patients progressively losing their vision without being consciously aware of the changes. To diagnose POAG and determine its severity, patients must undergo a comprehensive dilated eye examination. In this work, we build a framework to rank, compare, and interpret the severity of glaucoma using fundus images. We introduce a siamese-based severity ranking using pairwise n-hidden comparisons. We additionally have a novel approach to explaining why a specific image is deemed more severe than others. Our findings indicate that the proposed severity ranking model surpasses traditional ones in terms of diagnostic accuracy and delivers improved saliency explanations.
comment: 4 pages
♻ ☆ FILP-3D: Enhancing 3D Few-shot Class-incremental Learning with Pre-trained Vision-Language Models
Few-shot class-incremental learning (FSCIL) aims to mitigate the catastrophic forgetting issue when a model is incrementally trained on limited data. However, many of these works lack effective exploration of prior knowledge, rendering them unable to effectively address the domain gap issue in the context of 3D FSCIL, thereby leading to catastrophic forgetting. The Contrastive Vision-Language Pre-Training (CLIP) model serves as a highly suitable backbone for addressing the challenges of 3D FSCIL due to its abundant shape-related prior knowledge. Unfortunately, its direct application to 3D FSCIL still faces the incompatibility between 3D data representation and the 2D features, primarily manifested as feature space misalignment and significant noise. To address the above challenges, we introduce the FILP-3D framework with two novel components: the Redundant Feature Eliminator (RFE) for feature space misalignment and the Spatial Noise Compensator (SNC) for significant noise. RFE aligns the feature spaces of input point clouds and their embeddings by performing a unique dimensionality reduction on the feature space of pre-trained models (PTMs), effectively eliminating redundant information without compromising semantic integrity. On the other hand, SNC is a graph-based 3D model designed to capture robust geometric information within point clouds, thereby augmenting the knowledge lost due to projection, particularly when processing real-world scanned data. Moreover, traditional accuracy metrics are proven to be biased due to the imbalance in existing 3D datasets. Therefore we propose 3D FSCIL benchmark FSCIL3D-XL and novel evaluation metrics that offer a more nuanced assessment of a 3D FSCIL model. Experimental results on both established and our proposed benchmarks demonstrate that our approach significantly outperforms existing state-of-the-art methods.
♻ ☆ Deep Unfolding Network with Spatial Alignment for multi-modal MRI reconstruction
Multi-modal Magnetic Resonance Imaging (MRI) offers complementary diagnostic information, but some modalities are limited by the long scanning time. To accelerate the whole acquisition process, MRI reconstruction of one modality from highly undersampled k-space data with another fully-sampled reference modality is an efficient solution. However, the misalignment between modalities, which is common in clinic practice, can negatively affect reconstruction quality. Existing deep learning-based methods that account for inter-modality misalignment perform better, but still share two main common limitations: (1) The spatial alignment task is not adaptively integrated with the reconstruction process, resulting in insufficient complementarity between the two tasks; (2) the entire framework has weak interpretability. In this paper, we construct a novel Deep Unfolding Network with Spatial Alignment, termed DUN-SA, to appropriately embed the spatial alignment task into the reconstruction process. Concretely, we derive a novel joint alignment-reconstruction model with a specially designed cross-modal spatial alignment term. By relaxing the model into cross-modal spatial alignment and multi-modal reconstruction tasks, we propose an effective algorithm to solve this model alternatively. Then, we unfold the iterative steps of the proposed algorithm and design corresponding network modules to build DUN-SA with interpretability. Through end-to-end training, we effectively compensate for spatial misalignment using only reconstruction loss, and utilize the progressively aligned reference modality to provide inter-modality prior to improve the reconstruction of the target modality. Comprehensive experiments on three real datasets demonstrate that our method exhibits superior reconstruction performance compared to state-of-the-art methods.
♻ ☆ SAG-ViT: A Scale-Aware, High-Fidelity Patching Approach with Graph Attention for Vision Transformers
Vision Transformers (ViTs) have redefined image classification by leveraging self-attention to capture complex patterns and long-range dependencies between image patches. However, a key challenge for ViTs is efficiently incorporating multi-scale feature representations, which is inherent in convolutional neural networks (CNNs) through their hierarchical structure. Graph transformers have made strides in addressing this by leveraging graph-based modeling, but they often lose or insufficiently represent spatial hierarchies, especially since redundant or less relevant areas dilute the image's contextual representation. To bridge this gap, we propose SAG-ViT, a Scale-Aware Graph Attention ViT that integrates multi-scale feature capabilities of CNNs, representational power of ViTs, graph-attended patching to enable richer contextual representation. Using EfficientNetV2 as a backbone, the model extracts multi-scale feature maps, dividing them into patches to preserve richer semantic information compared to directly patching the input images. The patches are structured into a graph using spatial and feature similarities, where a Graph Attention Network (GAT) refines the node embeddings. This refined graph representation is then processed by a Transformer encoder, capturing long-range dependencies and complex interactions. We evaluate SAG-ViT on benchmark datasets across various domains, validating its effectiveness in advancing image classification tasks. Our code and weights are available at https://github.com/shravan-18/SAG-ViT.
comment: 14 pages, 8 figures, 9 tables
♻ ☆ Motion Dreamer: Realizing Physically Coherent Video Generation through Scene-Aware Motion Reasoning
Recent numerous video generation models, also known as world models, have demonstrated the ability to generate plausible real-world videos. However, many studies have shown that these models often produce motion results lacking logical or physical coherence. In this paper, we revisit video generation models and find that single-stage approaches struggle to produce high-quality results while maintaining coherent motion reasoning. To address this issue, we propose \textbf{Motion Dreamer}, a two-stage video generation framework. In Stage I, the model generates an intermediate motion representation-such as a segmentation map or depth map-based on the input image and motion conditions, focusing solely on the motion itself. In Stage II, the model uses this intermediate motion representation as a condition to generate a high-detail video. By decoupling motion reasoning from high-fidelity video synthesis, our approach allows for more accurate and physically plausible motion generation. We validate the effectiveness of our approach on the Physion dataset and in autonomous driving scenarios. For example, given a single push, our model can synthesize the sequential toppling of a set of dominoes. Similarly, by varying the movements of ego-cars, our model can produce different effects on other vehicles. Our work opens new avenues in creating models that can reason about physical interactions in a more coherent and realistic manner. Our webpage is available: https://envision-research.github.io/MotionDreamer/.
♻ ☆ Detailed Object Description with Controllable Dimensions
Object description plays an important role for visually impaired individuals to understand and compare the differences between objects. Recent multimodal large language models(MLLMs) exhibit powerful perceptual abilities and demonstrate impressive potential for generating object-centric descriptions. However, the descriptions generated by such models may still usually contain a lot of content that is not relevant to the user intent or miss some important object dimension details. Under special scenarios, users may only need the details of certain dimensions of an object. In this paper, we propose a training-free object description refinement pipeline, Dimension Tailor, designed to enhance user-specified details in object descriptions. This pipeline includes three steps: dimension extracting, erasing, and supplementing, which decompose the description into user-specified dimensions. Dimension Tailor can not only improve the quality of object details but also offer flexibility in including or excluding specific dimensions based on user preferences. We conducted extensive experiments to demonstrate the effectiveness of Dimension Tailor on controllable object descriptions. Notably, the proposed pipeline can consistently improve the performance of the recent MLLMs. The code is currently accessible at https://github.com/xin-ran-w/ControllableObjectDescription.
comment: 11 pages, 8 figures
♻ ☆ ISR-DPO: Aligning Large Multimodal Models for Videos by Iterative Self-Retrospective DPO AAAI 2025
Iterative self-improvement, a concept extending beyond personal growth, has found powerful applications in machine learning, particularly in transforming weak models into strong ones. While recent advances in natural language processing have shown its efficacy through iterative preference optimization, applying this approach to Video Large Multi-modal Models (VLMMs) remains challenging due to modality misalignment. VLMMs struggle with this misalignment during iterative preference modeling, as the self-judge model often prioritizes linguistic knowledge over visual information. Additionally, iterative preference optimization can lead to visually hallucinated verbose responses due to length bias within the self-rewarding cycle. To address these issues, we propose Iterative Self-Retrospective Direct Preference Optimization (ISR-DPO), a method that uses self-retrospection to enhance preference modeling. This approach enhances the self-judge's focus on informative video regions, resulting in more visually grounded preferences. In extensive empirical evaluations across diverse video question answering benchmarks, the ISR-DPO significantly outperforms the state of the art. We are committed to open-sourcing our code, models, and datasets to encourage further investigation.
comment: AAAI 2025
♻ ☆ How to Bridge the Gap between Modalities: Survey on Multimodal Large Language Model
We explore Multimodal Large Language Models (MLLMs), which integrate LLMs like GPT-4 to handle multimodal data, including text, images, audio, and more. MLLMs demonstrate capabilities such as generating image captions and answering image-based questions, bridging the gap towards real-world human-computer interactions and hinting at a potential pathway to artificial general intelligence. However, MLLMs still face challenges in addressing the semantic gap in multimodal data, which may lead to erroneous outputs, posing potential risks to society. Selecting the appropriate modality alignment method is crucial, as improper methods might require more parameters without significant performance improvements. This paper aims to explore modality alignment methods for LLMs and their current capabilities. Implementing effective modality alignment can help LLMs address environmental issues and enhance accessibility. The study surveys existing modality alignment methods for MLLMs, categorizing them into four groups: (1) Multimodal Converter, which transforms data into a format that LLMs can understand; (2) Multimodal Perceiver, which improves how LLMs percieve different types of data; (3) Tool Learning, which leverages external tools to convert data into a common format, usually text; and (4) Data-Driven Method, which teaches LLMs to understand specific data types within datasets.
comment: Accepted by TKDE
♻ ☆ Label-Efficient Data Augmentation with Video Diffusion Models for Guidewire Segmentation in Cardiac Fluoroscopy AAAI 2025
The accurate segmentation of guidewires in interventional cardiac fluoroscopy videos is crucial for computer-aided navigation tasks. Although deep learning methods have demonstrated high accuracy and robustness in wire segmentation, they require substantial annotated datasets for generalizability, underscoring the need for extensive labeled data to enhance model performance. To address this challenge, we propose the Segmentation-guided Frame-consistency Video Diffusion Model (SF-VD) to generate large collections of labeled fluoroscopy videos, augmenting the training data for wire segmentation networks. SF-VD leverages videos with limited annotations by independently modeling scene distribution and motion distribution. It first samples the scene distribution by generating 2D fluoroscopy images with wires positioned according to a specified input mask, and then samples the motion distribution by progressively generating subsequent frames, ensuring frame-to-frame coherence through a frame-consistency strategy. A segmentation-guided mechanism further refines the process by adjusting wire contrast, ensuring a diverse range of visibility in the synthesized image. Evaluation on a fluoroscopy dataset confirms the superior quality of the generated videos and shows significant improvements in guidewire segmentation.
comment: AAAI 2025
♻ ☆ Improving Low-Light Image Recognition Performance Based on Image-adaptive Learnable Module
In recent years, significant progress has been made in image recognition technology based on deep neural networks. However, improving recognition performance under low-light conditions remains a significant challenge. This study addresses the enhancement of recognition model performance in low-light conditions. We propose an image-adaptive learnable module which apply appropriate image processing on input images and a hyperparameter predictor to forecast optimal parameters used in the module. Our proposed approach allows for the enhancement of recognition performance under low-light conditions by easily integrating as a front-end filter without the need to retrain existing recognition models designed for low-light conditions. Through experiments, our proposed method demonstrates its contribution to enhancing image recognition performance under low-light conditions.
comment: accepted to VISAPP2024
♻ ☆ YOLOv5-Based Object Detection for Emergency Response in Aerial Imagery
This paper presents a robust approach for object detection in aerial imagery using the YOLOv5 model. We focus on identifying critical objects such as ambulances, car crashes, police vehicles, tow trucks, fire engines, overturned cars, and vehicles on fire. By leveraging a custom dataset, we outline the complete pipeline from data collection and annotation to model training and evaluation. Our results demonstrate that YOLOv5 effectively balances speed and accuracy, making it suitable for real-time emergency response applications. This work addresses key challenges in aerial imagery, including small object detection and complex backgrounds, and provides insights for future research in automated emergency response systems.
comment: 6 pages, 8 figures, submitted for open-access publication on arXiv
♻ ☆ AnoFPDM: Anomaly Segmentation with Forward Process of Diffusion Models for Brain MRI
Weakly-supervised diffusion models (DMs) in anomaly segmentation, leveraging image-level labels, have attracted significant attention for their superior performance compared to unsupervised methods. It eliminates the need for pixel-level labels in training, offering a more cost-effective alternative to supervised methods. However, existing methods are not fully weakly-supervised because they heavily rely on costly pixel-level labels for hyperparameter tuning in inference. To tackle this challenge, we introduce Anomaly Segmentation with Forward Process of Diffusion Models (AnoFPDM), a fully weakly-supervised framework that operates without the need of pixel-level labels. Leveraging the unguided forward process as a reference for the guided forward process, we select hyperparameters such as the noise scale, the threshold for segmentation and the guidance strength. We aggregate anomaly maps from guided forward process, enhancing the signal strength of anomalous regions. Remarkably, our proposed method outperforms recent state-of-the-art weakly-supervised approaches, even without utilizing pixel-level labels.
comment: v4: added appendices and fixed some typos
♻ ☆ Enhancing Vision-Language Models with Scene Graphs for Traffic Accident Understanding
Recognizing a traffic accident is an essential part of any autonomous driving or road monitoring system. An accident can appear in a wide variety of forms, and understanding what type of accident is taking place may be useful to prevent it from recurring. This work focuses on classifying traffic scenes into specific accident types. We approach the problem by representing a traffic scene as a graph, where objects such as cars can be represented as nodes, and relative distances and directions between them as edges. This representation of a traffic scene is referred to as a scene graph, and can be used as input for an accident classifier. Better results are obtained with a classifier that fuses the scene graph input with visual and textual representations. This work introduces a multi-stage, multimodal pipeline that pre-processes videos of traffic accidents, encodes them as scene graphs, and aligns this representation with vision and language modalities before executing the classification task. When trained on 4 classes, our method achieves a balanced accuracy score of 57.77% on an (unbalanced) subset of the popular Detection of Traffic Anomaly (DoTA) benchmark, representing an increase of close to 5 percentage points from the case where scene graph information is not taken into account.
comment: Won the 'Best Paper Runner-up Award' at the 2024 IEEE International Automated Vehicle Validation Conference (IAVVC 2024). Also accepted at the 1st Workshop on Semantic Reasoning and Goal Understanding in Robotics, at the Robotics Science and Systems Conference (RSS SemRob 2024)
♻ ☆ GLOV: Guided Large Language Models as Implicit Optimizers for Vision Language Models
In this work, we propose a novel method (GLOV) enabling Large Language Models (LLMs) to act as implicit Optimizers for Vision-Langugage Models (VLMs) to enhance downstream vision tasks. Our GLOV meta-prompts an LLM with the downstream task description, querying it for suitable VLM prompts (e.g., for zero-shot classification with CLIP). These prompts are ranked according to a purity measure obtained through a fitness function. In each respective optimization step, the ranked prompts are fed as in-context examples (with their accuracies) to equip the LLM with the knowledge of the type of text prompts preferred by the downstream VLM. Furthermore, we also explicitly steer the LLM generation process in each optimization step by specifically adding an offset difference vector of the embeddings from the positive and negative solutions found by the LLM, in previous optimization steps, to the intermediate layer of the network for the next generation step. This offset vector steers the LLM generation toward the type of language preferred by the downstream VLM, resulting in enhanced performance on the downstream vision tasks. We comprehensively evaluate our GLOV on 16 diverse datasets using two families of VLMs, i.e., dual-encoder (e.g., CLIP) and encoder-decoder (e.g., LLaVa) models -- showing that the discovered solutions can enhance the recognition performance by up to 15.0% and 57.5% (3.8% and 21.6% on average) for these models.
comment: Code: https://github.com/jmiemirza/GLOV
♻ ☆ BiomedCLIP: a multimodal biomedical foundation model pretrained from fifteen million scientific image-text pairs
Biomedical data is inherently multimodal, comprising physical measurements and natural language narratives. A generalist biomedical AI model needs to simultaneously process different modalities of data, including text and images. Therefore, training an effective generalist biomedical model requires high-quality multimodal data, such as parallel image-text pairs. Here, we present PMC-15M, a novel dataset that is two orders of magnitude larger than existing biomedical multimodal datasets such as MIMIC-CXR, and spans a diverse range of biomedical image types. PMC-15M contains 15 million biomedical image-text pairs collected from 4.4 million scientific articles. Based on PMC-15M, we have pretrained BiomedCLIP, a multimodal foundation model, with domain-specific adaptations tailored to biomedical vision-language processing. We conducted extensive experiments and ablation studies on standard biomedical imaging tasks from retrieval to classification to visual question-answering (VQA). BiomedCLIP achieved new state-of-the-art results in a wide range of standard datasets, substantially outperforming prior approaches. Intriguingly, by large-scale pretraining on diverse biomedical image types, BiomedCLIP even outperforms state-of-the-art radiology-specific models such as BioViL in radiology-specific tasks such as RSNA pneumonia detection. In summary, BiomedCLIP is a fully open-access foundation model that achieves state-of-the-art performance on various biomedical tasks, paving the way for transformative multimodal biomedical discovery and applications. We release our models at https://aka.ms/biomedclip to facilitate future research in multimodal biomedical AI.
comment: The models are released at https://aka.ms/biomedclip
♻ ☆ Multispectral Pedestrian Detection with Sparsely Annotated Label AAAI 2025
Although existing Sparsely Annotated Object Detection (SAOD) approches have made progress in handling sparsely annotated environments in multispectral domain, where only some pedestrians are annotated, they still have the following limitations: (i) they lack considerations for improving the quality of pseudo-labels for missing annotations, and (ii) they rely on fixed ground truth annotations, which leads to learning only a limited range of pedestrian visual appearances in the multispectral domain. To address these issues, we propose a novel framework called Sparsely Annotated Multispectral Pedestrian Detection (SAMPD). For limitation (i), we introduce Multispectral Pedestrian-aware Adaptive Weight (MPAW) and Positive Pseudo-label Enhancement (PPE) module. Utilizing multispectral knowledge, these modules ensure the generation of high-quality pseudo-labels and enable effective learning by increasing weights for high-quality pseudo-labels based on modality characteristics. To address limitation (ii), we propose an Adaptive Pedestrian Retrieval Augmentation (APRA) module, which adaptively incorporates pedestrian patches from ground-truth and dynamically integrates high-quality pseudo-labels with the ground-truth, facilitating a more diverse learning pool of pedestrians. Extensive experimental results demonstrate that our SAMPD significantly enhances performance in sparsely annotated environments within the multispectral domain.
comment: Accepted at AAAI 2025
Information Retrieval 17
☆ Re-ranking the Context for Multimodal Retrieval Augmented Generation
Retrieval-augmented generation (RAG) enhances large language models (LLMs) by incorporating external knowledge to generate a response within a context with improved accuracy and reduced hallucinations. However, multi-modal RAG systems face unique challenges: (i) the retrieval process may select irrelevant entries to user query (e.g., images, documents), and (ii) vision-language models or multi-modal language models like GPT-4o may hallucinate when processing these entries to generate RAG output. In this paper, we aim to address the first challenge, i.e, improving the selection of relevant context from the knowledge-base in retrieval phase of the multi-modal RAG. Specifically, we leverage the relevancy score (RS) measure designed in our previous work for evaluating the RAG performance to select more relevant entries in retrieval process. The retrieval based on embeddings, say CLIP-based embedding, and cosine similarity usually perform poorly particularly for multi-modal data. We show that by using a more advanced relevancy measure, one can enhance the retrieval process by selecting more relevant pieces from the knowledge-base and eliminate the irrelevant pieces from the context by adaptively selecting up-to-$k$ entries instead of fixed number of entries. Our evaluation using COCO dataset demonstrates significant enhancement in selecting relevant context and accuracy of the generated response.
☆ Multi-task retriever fine-tuning for domain-specific and efficient RAG NAACL 2025
Retrieval-Augmented Generation (RAG) has become ubiquitous when deploying Large Language Models (LLMs), as it can address typical limitations such as generating hallucinated or outdated information. However, when building real-world RAG applications, practical issues arise. First, the retrieved information is generally domain-specific. Since it is computationally expensive to fine-tune LLMs, it is more feasible to fine-tune the retriever to improve the quality of the data included in the LLM input. Second, as more applications are deployed in the same real-world system, one cannot afford to deploy separate retrievers. Moreover, these RAG applications normally retrieve different kinds of data. Our solution is to instruction fine-tune a small retriever encoder on a variety of domain-specific tasks to allow us to deploy one encoder that can serve many use cases, thereby achieving low-cost, scalability, and speed. We show how this encoder generalizes to out-of-domain settings as well as to an unseen retrieval task on real-world enterprise use cases.
comment: 9 pages, 2 figures. Submitted to NAACL 2025 Industry Track
☆ Knowledge Retrieval Based on Generative AI
This study develops a question-answering system based on Retrieval-Augmented Generation (RAG) using Chinese Wikipedia and Lawbank as retrieval sources. Using TTQA and TMMLU+ as evaluation datasets, the system employs BGE-M3 for dense vector retrieval to obtain highly relevant search results and BGE-reranker to reorder these results based on query relevance. The most pertinent retrieval outcomes serve as reference knowledge for a Large Language Model (LLM), enhancing its ability to answer questions and establishing a knowledge retrieval system grounded in generative AI. The system's effectiveness is assessed through a two-stage evaluation: automatic and assisted performance evaluations. The automatic evaluation calculates accuracy by comparing the model's auto-generated labels with ground truth answers, measuring performance under standardized conditions without human intervention. The assisted performance evaluation involves 20 finance-related multiple-choice questions answered by 20 participants without financial backgrounds. Initially, participants answer independently. Later, they receive system-generated reference information to assist in answering, examining whether the system improves accuracy when assistance is provided. The main contributions of this research are: (1) Enhanced LLM Capability: By integrating BGE-M3 and BGE-reranker, the system retrieves and reorders highly relevant results, reduces hallucinations, and dynamically accesses authorized or public knowledge sources. (2) Improved Data Privacy: A customized RAG architecture enables local operation of the LLM, eliminating the need to send private data to external servers. This approach enhances data security, reduces reliance on commercial services, lowers operational costs, and mitigates privacy risks.
comment: 8 pages, 13 figures, 1 table
☆ Evaluating Interval-based Tokenization for Pitch Representation in Symbolic Music Analysis AAAI 2025
Symbolic music analysis tasks are often performed by models originally developed for Natural Language Processing, such as Transformers. Such models require the input data to be represented as sequences, which is achieved through a process of tokenization. Tokenization strategies for symbolic music often rely on absolute MIDI values to represent pitch information. However, music research largely promotes the benefit of higher-level representations such as melodic contour and harmonic relations for which pitch intervals turn out to be more expressive than absolute pitches. In this work, we introduce a general framework for building interval-based tokenizations. By evaluating these tokenizations on three music analysis tasks, we show that such interval-based tokenizations improve model performances and facilitate their explainability.
comment: Accepted at Artificial Intelligence for Music Workshop at AAAI 2025 (https://ai4musicians.org/2025aaai.html)
☆ A Closer Look on Gender Stereotypes in Movie Recommender Systems and Their Implications with Privacy
The movie recommender system typically leverages user feedback to provide personalized recommendations that align with user preferences and increase business revenue. This study investigates the impact of gender stereotypes on such systems through a specific attack scenario. In this scenario, an attacker determines users' gender, a private attribute, by exploiting gender stereotypes about movie preferences and analyzing users' feedback data, which is either publicly available or observed within the system. The study consists of two phases. In the first phase, a user study involving 630 participants identified gender stereotypes associated with movie genres, which often influence viewing choices. In the second phase, four inference algorithms were applied to detect gender stereotypes by combining the findings from the first phase with users' feedback data. Results showed that these algorithms performed more effectively than relying solely on feedback data for gender inference. Additionally, we quantified the extent of gender stereotypes to evaluate their broader impact on digital computational science. The latter part of the study utilized two major movie recommender datasets: MovieLens 1M and Yahoo!Movie. Detailed experimental information is available on our GitHub repository: https://github.com/fr-iit/GSMRS
comment: 19 pages, 2 figures
☆ User Simulation in the Era of Generative AI: User Modeling, Synthetic Data Generation, and System Evaluation
User simulation is an emerging interdisciplinary topic with multiple critical applications in the era of Generative AI. It involves creating an intelligent agent that mimics the actions of a human user interacting with an AI system, enabling researchers to model and analyze user behaviour, generate synthetic data for training, and evaluate interactive AI systems in a controlled and reproducible manner. User simulation has profound implications for diverse fields and plays a vital role in the pursuit of Artificial General Intelligence. This paper provides an overview of user simulation, highlighting its key applications, connections to various disciplines, and outlining future research directions to advance this increasingly important technology.
☆ An innovative data collection method to eliminate the preprocessing phase in web usage mining
The underlying data source for web usage mining (WUM) is commonly thought to be server logs. However, access log files ensure quite limited data about the clients. Identifying sessions from this messy data takes a considerable effort, and operations performed for this purpose do not always yield excellent results. Also, this data cannot be used for web analytics efficiently. This study proposes an innovative method for user tracking, session management, and collecting web usage data. The method is mainly based on a new approach for using collected data for web analytics extraction as the data source in web usage mining. An application-based API has been developed with a different strategy from conventional client-side methods to obtain and process log data. The log data has been successfully gathered by integrating the technique into an enterprise web application. The results reveal that the homogeneous structured data collected and stored with this method is more convenient to browse, filter, and process than web server logs. This data stored on a relational database can be used effortlessly as a reliable data source for high-performance web usage mining activity, real-time web analytics, or a functional recommendation system.
comment: 15 pages, 8 figures
☆ Reproducing HotFlip for Corpus Poisoning Attacks in Dense Retrieval ECIR 2025
HotFlip is a topical gradient-based word substitution method for attacking language models. Recently, this method has been further applied to attack retrieval systems by generating malicious passages that are injected into a corpus, i.e., corpus poisoning. However, HotFlip is known to be computationally inefficient, with the majority of time being spent on gradient accumulation for each query-passage pair during the adversarial token generation phase, making it impossible to generate an adequate number of adversarial passages in a reasonable amount of time. Moreover, the attack method itself assumes access to a set of user queries, a strong assumption that does not correspond to how real-world adversarial attacks are usually performed. In this paper, we first significantly boost the efficiency of HotFlip, reducing the adversarial generation process from 4 hours per document to only 15 minutes, using the same hardware. We further contribute experiments and analysis on two additional tasks: (1) transfer-based black-box attacks, and (2) query-agnostic attacks. Whenever possible, we provide comparisons between the original method and our improved version. Our experiments demonstrate that HotFlip can effectively attack a variety of dense retrievers, with an observed trend that its attack performance diminishes against more advanced and recent methods. Interestingly, we observe that while HotFlip performs poorly in a black-box setting, indicating limited capacity for generalization, in query-agnostic scenarios its performance is correlated to the volume of injected adversarial passages.
comment: This paper has been accepted for oral presentation in the reproducibility track at ECIR 2025
☆ Efficient and Responsible Adaptation of Large Language Models for Robust and Equitable Top-k Recommendations
Conventional recommendation systems (RSs) are typically optimized to enhance performance metrics uniformly across all training samples, inadvertently overlooking the needs of diverse user populations. The performance disparity among various populations can harm the model's robustness to sub-populations due to the varying user properties. While large language models (LLMs) show promise in enhancing RS performance, their practical applicability is hindered by high costs, inference latency, and degraded performance on long user queries. To address these challenges, we propose a hybrid task allocation framework designed to promote social good by equitably serving all user groups. By adopting a two-phase approach, we promote a strategic assignment of tasks for efficient and responsible adaptation of LLMs. Our strategy works by first identifying the weak and inactive users that receive a suboptimal ranking performance by RSs. Next, we use an in-context learning approach for such users, wherein each user interaction history is contextualized as a distinct ranking task. We evaluate our hybrid framework by incorporating eight different recommendation algorithms and three different LLMs -- both open and close-sourced. Our results on three real-world datasets show a significant reduction in weak users and improved robustness to subpopulations without disproportionately escalating costs.
comment: arXiv admin note: text overlap with arXiv:2405.00824
☆ Search engines in polarized media environment: Auditing political information curation on Google and Bing prior to 2024 US elections
Search engines play an important role in the context of modern elections. By curating information in response to user queries, search engines influence how individuals are informed about election-related developments and perceive the media environment in which elections take place. It has particular implications for (perceived) polarization, especially if search engines' curation results in a skewed treatment of information sources based on their political leaning. Until now, however, it is unclear whether such a partisan gap emerges through information curation on search engines and what user- and system-side factors affect it. To address this shortcoming, we audit the two largest Western search engines, Google and Bing, prior to the 2024 US presidential elections and examine how these search engines' organic search results and additional interface elements represent election-related information depending on the queries' slant, user location, and time when the search was conducted. Our findings indicate that both search engines tend to prioritize left-leaning media sources, with the exact scope of search results' ideological slant varying between Democrat- and Republican-focused queries. We also observe limited effects of location- and time-based factors on organic search results, whereas results for additional interface elements were more volatile over time and specific US states. Together, our observations highlight that search engines' information curation actively mirrors the partisan divides present in the US media environments and has the potential to contribute to (perceived) polarization within these environments.
comment: 38 pages
☆ S2 Chunking: A Hybrid Framework for Document Segmentation Through Integrated Spatial and Semantic Analysis
Document chunking is a critical task in natural language processing (NLP) that involves dividing a document into meaningful segments. Traditional methods often rely solely on semantic analysis, ignoring the spatial layout of elements, which is crucial for understanding relationships in complex documents. This paper introduces a novel hybrid approach that combines layout structure, semantic analysis, and spatial relationships to enhance the cohesion and accuracy of document chunks. By leveraging bounding box information (bbox) and text embeddings, our method constructs a weighted graph representation of document elements, which is then clustered using spectral clustering. Experimental results demonstrate that this approach outperforms traditional methods, particularly in documents with diverse layouts such as reports, articles, and multi-column designs. The proposed method also ensures that no chunk exceeds a specified token length, making it suitable for use cases where token limits are critical (e.g., language models with input size limitations)
☆ Making Software FAIR: A machine-assisted workflow for the research software lifecycle
A key issue hindering discoverability, attribution and reusability of open research software is that its existence often remains hidden within the manuscript of research papers. For these resources to become first-class bibliographic records, they first need to be identified and subsequently registered with persistent identifiers (PIDs) to be made FAIR (Findable, Accessible, Interoperable and Reusable). To this day, much open research software fails to meet FAIR principles and software resources are mostly not explicitly linked from the manuscripts that introduced them or used them. SoFAIR is a 2-year international project (2024-2025) which proposes a solution to the above problem realised over the content available through the global network of open repositories. SoFAIR will extend the capabilities of widely used open scholarly infrastructures (CORE, Software Heritage, HAL) and tools (GROBID) operated by the consortium partners, delivering and deploying an effective solution for the management of the research software lifecycle, including: 1) ML-assisted identification of research software assets from within the manuscripts of scholarly papers, 2) validation of the identified assets by authors, 3) registration of software assets with PIDs and their archival.
comment: 5 pages
♻ ☆ RDRec: Rationale Distillation for LLM-based Recommendation ACL 2024
Large language model (LLM)-based recommender models that bridge users and items through textual prompts for effective semantic reasoning have gained considerable attention. However, few methods consider the underlying rationales behind interactions, such as user preferences and item attributes, limiting the reasoning capability of LLMs for recommendations. This paper proposes a rationale distillation recommender (RDRec), a compact model designed to learn rationales generated by a larger language model (LM). By leveraging rationales from reviews related to users and items, RDRec remarkably specifies their profiles for recommendations. Experiments show that RDRec achieves state-of-the-art (SOTA) performance in both top-N and sequential recommendations. Our source code is released at https://github.com/WangXFng/RDRec.
comment: 10 pages. Accepted to ACL 2024 Main as a short paper
♻ ☆ Network-Based Video Recommendation Using Viewing Patterns and Modularity Analysis: An Integrated Framework
The proliferation of video-on-demand (VOD) services has led to a paradox of choice, overwhelming users with vast content libraries and revealing limitations in current recommender systems. This research introduces a novel approach by combining implicit user data, such as viewing percentages, with social network analysis to enhance personalization in VOD platforms. The methodology constructs user-item interaction graphs based on viewing patterns and applies centrality measures (degree, closeness, and betweenness) to identify important videos. Modularity-based clustering groups related content, enabling personalized recommendations. The system was evaluated on a documentary-focused VOD platform with 328 users over four months. Results showed significant improvements: a 63% increase in click-through rate (CTR), a 24% increase in view completion rate, and a 17% improvement in user satisfaction. The approach outperformed traditional methods like Naive Bayes and SVM. Future research should explore advanced techniques, such as matrix factorization models, graph neural networks, and hybrid approaches combining content-based and collaborative filtering. Additionally, incorporating temporal models and addressing scalability challenges for large-scale platforms are essential next steps. This study contributes to the state of the art by introducing modularity-based clustering and ego-centric ranking methods to enhance personalization in video recommendations. The findings suggest that integrating network-based features and implicit feedback can significantly improve user engagement, offering a cost-effective solution for VOD platforms to enhance recommendation quality.
♻ ☆ Retrieval-Augmented Generation with Graphs (GraphRAG)
Retrieval-augmented generation (RAG) is a powerful technique that enhances downstream task execution by retrieving additional information, such as knowledge, skills, and tools from external sources. Graph, by its intrinsic "nodes connected by edges" nature, encodes massive heterogeneous and relational information, making it a golden resource for RAG in tremendous real-world applications. As a result, we have recently witnessed increasing attention on equipping RAG with Graph, i.e., GraphRAG. However, unlike conventional RAG, where the retriever, generator, and external data sources can be uniformly designed in the neural-embedding space, the uniqueness of graph-structured data, such as diverse-formatted and domain-specific relational knowledge, poses unique and significant challenges when designing GraphRAG for different domains. Given the broad applicability, the associated design challenges, and the recent surge in GraphRAG, a systematic and up-to-date survey of its key concepts and techniques is urgently desired. Following this motivation, we present a comprehensive and up-to-date survey on GraphRAG. Our survey first proposes a holistic GraphRAG framework by defining its key components, including query processor, retriever, organizer, generator, and data source. Furthermore, recognizing that graphs in different domains exhibit distinct relational patterns and require dedicated designs, we review GraphRAG techniques uniquely tailored to each domain. Finally, we discuss research challenges and brainstorm directions to inspire cross-disciplinary opportunities. Our survey repository is publicly maintained at https://github.com/Graph-RAG/GraphRAG/.
♻ ☆ InterFormer: Towards Effective Heterogeneous Interaction Learning for Click-Through Rate Prediction
Click-through rate (CTR) prediction, which predicts the probability of a user clicking an ad, is a fundamental task in recommender systems. The emergence of heterogeneous information, such as user profile and behavior sequences, depicts user interests from different aspects. A mutually beneficial integration of heterogeneous information is the cornerstone towards the success of CTR prediction. However, most of the existing methods suffer from two fundamental limitations, including (1) insufficient inter-mode interaction due to the unidirectional information flow between modes, and (2) aggressive information aggregation caused by early summarization, resulting in excessive information loss. To address the above limitations, we propose a novel module named InterFormer to learn heterogeneous information interaction in an interleaving style. To achieve better interaction learning, InterFormer enables bidirectional information flow for mutually beneficial learning across different modes. To avoid aggressive information aggregation, we retain complete information in each data mode and use a separate bridging arch for effective information selection and summarization. Our proposed InterFormer achieves state-of-the-art performance on three public datasets and a large-scale industrial dataset.
comment: 10 pages, 6 figures
♻ ☆ Hierarchical Structured Neural Network: Efficient Retrieval Scaling for Large Scale Recommendation
Retrieval, the initial stage of a recommendation system, is tasked with down-selecting items from a pool of tens of millions of candidates to a few thousands. Embedding Based Retrieval (EBR) has been a typical choice for this problem, addressing the computational demands of deep neural networks across vast item corpora. EBR utilizes Two Tower or Siamese Networks to learn representations for users and items, and employ Approximate Nearest Neighbor (ANN) search to efficiently retrieve relevant items. Despite its popularity in industry, EBR faces limitations. The Two Tower architecture, relying on a single dot product interaction, struggles to capture complex data distributions due to limited capability in learning expressive interactions between users and items. Additionally, ANN index building and representation learning for user and item are often separate, leading to inconsistencies exacerbated by representation (e.g. continuous online training) and item drift (e.g. items expired and new items added). In this paper, we introduce the Hierarchical Structured Neural Network (HSNN), an efficient deep neural network model to learn intricate user and item interactions beyond the commonly used dot product in retrieval tasks, achieving sublinear computational costs relative to corpus size. A Modular Neural Network (MoNN) is designed to maintain high expressiveness for interaction learning while ensuring efficiency. A mixture of MoNNs operate on a hierarchical item index to achieve extensive computation sharing, enabling it to scale up to large corpus size. MoNN and the hierarchical index are jointly learnt to continuously adapt to distribution shifts in both user interests and item distributions. HSNN achieves substantial improvement in offline evaluation compared to prevailing methods.
comment: Resubmit
Machine Learning 148
☆ Planarian Neural Networks: Evolutionary Patterns from Basic Bilateria Shaping Modern Artificial Neural Network Architectures
This study examined the viability of enhancing the prediction accuracy of artificial neural networks (ANNs) in image classification tasks by developing ANNs with evolution patterns similar to those of biological neural networks. ResNet is a widely used family of neural networks with both deep and wide variants; therefore, it was selected as the base model for our investigation. The aim of this study is to improve the image classification performance of ANNs via a novel approach inspired by the biological nervous system architecture of planarians, which comprises a brain and two nerve cords. We believe that the unique neural architecture of planarians offers valuable insights into the performance enhancement of ANNs. The proposed planarian neural architecture-based neural network was evaluated on the CIFAR-10 and CIFAR-100 datasets. Our results indicate that the proposed method exhibits higher prediction accuracy than the baseline neural network models in image classification tasks. These findings demonstrate the significant potential of biologically inspired neural network architectures in improving the performance of ANNs in a wide range of applications.
comment: 11 pages, 9 figures
☆ Grokking at the Edge of Numerical Stability
Grokking, the sudden generalization that occurs after prolonged overfitting, is a surprising phenomenon challenging our understanding of deep learning. Although significant progress has been made in understanding grokking, the reasons behind the delayed generalization and its dependence on regularization remain unclear. In this work, we argue that without regularization, grokking tasks push models to the edge of numerical stability, introducing floating point errors in the Softmax function, which we refer to as Softmax Collapse (SC). We demonstrate that SC prevents grokking and that mitigating SC enables grokking without regularization. Investigating the root cause of SC, we find that beyond the point of overfitting, the gradients strongly align with what we call the na\"ive loss minimization (NLM) direction. This component of the gradient does not alter the model's predictions but decreases the loss by scaling the logits, typically by scaling the weights along their current direction. We show that this scaling of the logits explains the delay in generalization characteristic of grokking and eventually leads to SC, halting further learning. To validate our hypotheses, we introduce two key contributions that address the challenges in grokking tasks: StableMax, a new activation function that prevents SC and enables grokking without regularization, and $\perp$Grad, a training algorithm that promotes quick generalization in grokking tasks by preventing NLM altogether. These contributions provide new insights into grokking, elucidating its delayed generalization, reliance on regularization, and the effectiveness of existing grokking-inducing methods. Code for this paper is available at https://github.com/LucasPrietoAl/grokking-at-the-edge-of-numerical-stability.
☆ Re-ranking the Context for Multimodal Retrieval Augmented Generation
Retrieval-augmented generation (RAG) enhances large language models (LLMs) by incorporating external knowledge to generate a response within a context with improved accuracy and reduced hallucinations. However, multi-modal RAG systems face unique challenges: (i) the retrieval process may select irrelevant entries to user query (e.g., images, documents), and (ii) vision-language models or multi-modal language models like GPT-4o may hallucinate when processing these entries to generate RAG output. In this paper, we aim to address the first challenge, i.e, improving the selection of relevant context from the knowledge-base in retrieval phase of the multi-modal RAG. Specifically, we leverage the relevancy score (RS) measure designed in our previous work for evaluating the RAG performance to select more relevant entries in retrieval process. The retrieval based on embeddings, say CLIP-based embedding, and cosine similarity usually perform poorly particularly for multi-modal data. We show that by using a more advanced relevancy measure, one can enhance the retrieval process by selecting more relevant pieces from the knowledge-base and eliminate the irrelevant pieces from the context by adaptively selecting up-to-$k$ entries instead of fixed number of entries. Our evaluation using COCO dataset demonstrates significant enhancement in selecting relevant context and accuracy of the generated response.
☆ Comparative Analysis of Quantum and Classical Support Vector Classifiers for Software Bug Prediction: An Exploratory Study
Purpose: Quantum computing promises to transform problem-solving across various domains with rapid and practical solutions. Within Software Evolution and Maintenance, Quantum Machine Learning (QML) remains mostly an underexplored domain, particularly in addressing challenges such as detecting buggy software commits from code repositories. Methods: In this study, we investigate the practical application of Quantum Support Vector Classifiers (QSVC) for detecting buggy software commits across 14 open-source software projects with diverse dataset sizes encompassing 30,924 data instances. We compare the QML algorithm PQSVC (Pegasos QSVC) and QSVC against the classical Support Vector Classifier (SVC). Our technique addresses large datasets in QSVC algorithms by dividing them into smaller subsets. We propose and evaluate an aggregation method to combine predictions from these models to detect the entire test dataset. We also introduce an incremental testing methodology to overcome the difficulties of quantum feature mapping during the testing approach. Results: The study shows the effectiveness of QSVC and PQSVC in detecting buggy software commits. The aggregation technique successfully combines predictions from smaller data subsets, enhancing the overall detection accuracy for the entire test dataset. The incremental testing methodology effectively manages the challenges associated with quantum feature mapping during the testing process. Conclusion: We contribute to the advancement of QML algorithms in defect prediction, unveiling the potential for further research in this domain. The specific scenario of the Short-Term Activity Frame (STAF) highlights the early detection of buggy software commits during the initial developmental phases of software systems, particularly when dataset sizes remain insufficient to train machine learning models.
comment: Accepted for publication in the Springer Journal: Quantum Machine Intelligence (https://link.springer.com/journal/42484)
☆ URSA: Understanding and Verifying Chain-of-thought Reasoning in Multimodal Mathematics
Chain-of-thought (CoT) reasoning has been widely applied in the mathematical reasoning of Large Language Models (LLMs). Recently, the introduction of derivative process supervision on CoT trajectories has sparked discussions on enhancing scaling capabilities during test time, thereby boosting the potential of these models. However, in multimodal mathematical reasoning, the scarcity of high-quality CoT training data has hindered existing models from achieving high-precision CoT reasoning and has limited the realization of reasoning potential during test time. In this work, we propose a three-module synthesis strategy that integrates CoT distillation, trajectory-format rewriting, and format unification. It results in a high-quality CoT reasoning instruction fine-tuning dataset in multimodal mathematics, MMathCoT-1M. We comprehensively validate the state-of-the-art (SOTA) performance of the trained URSA-7B model on multiple multimodal mathematical benchmarks. For test-time scaling, we introduce a data synthesis strategy that automatically generates process annotation datasets, known as DualMath-1.1M, focusing on both interpretation and logic. By further training URSA-7B on DualMath-1.1M, we transition from CoT reasoning capabilities to robust supervision abilities. The trained URSA-RM-7B acts as a verifier, effectively enhancing the performance of URSA-7B at test time. URSA-RM-7B also demonstrates excellent out-of-distribution (OOD) verifying capabilities, showcasing its generalization. Model weights, training data and code will be open-sourced.
comment: 27 pages, 10 tables, 17 figures. The training data has been released. The code and model are currently undergoing internal review. They will be made available soon. Project url: https://ursa-math.github.io
☆ Toward Sufficient Statistical Power in Algorithmic Bias Assessment: A Test for ABROCA
Algorithmic bias is a pressing concern in educational data mining (EDM), as it risks amplifying inequities in learning outcomes. The Area Between ROC Curves (ABROCA) metric is frequently used to measure discrepancies in model performance across demographic groups to quantify overall model fairness. However, its skewed distribution--especially when class or group imbalances exist--makes significance testing challenging. This study investigates ABROCA's distributional properties and contributes robust methods for its significance testing. Specifically, we address (1) whether ABROCA follows any known distribution, (2) how to reliably test for algorithmic bias using ABROCA, and (3) the statistical power achievable with ABROCA-based bias assessments under typical EDM sample specifications. Simulation results confirm that ABROCA does not match standard distributions, including those suited to accommodate skewness. We propose nonparametric randomization tests for ABROCA and demonstrate that reliably detecting bias with ABROCA requires large sample sizes or substantial effect sizes, particularly in imbalanced settings. Findings suggest that ABROCA-based bias evaluation based on sample sizes common in EDM tends to be underpowered, undermining the reliability of conclusions about model fairness. By offering open-source code to simulate power and statistically test ABROCA, this paper aims to foster more reliable statistical testing in EDM research. It supports broader efforts toward replicability and equity in educational modeling.
☆ Enhancing Financial VQA in Vision Language Models using Intermediate Structured Representations
Chart interpretation is crucial for visual data analysis, but accurately extracting information from charts poses significant challenges for automated models. This study investigates the fine-tuning of DEPLOT, a modality conversion module that translates the image of a plot or chart to a linearized table, on a custom dataset of 50,000 bar charts. The dataset comprises simple, stacked, and grouped bar charts, targeting the unique structural features of these visualizations. The finetuned DEPLOT model is evaluated against its base version using a test set of 1,000 images and two metrics: Relative Mapping Similarity (RMS), which measures categorical mapping accuracy, and Relative Number Set Similarity (RNSS), which evaluates numerical interpretation accuracy. To further explore the reasoning capabilities of large language models (LLMs), we curate an additional set of 100 bar chart images paired with question answer sets. Our findings demonstrate that providing a structured intermediate table alongside the image significantly enhances LLM reasoning performance compared to direct image queries.
☆ Natural Variational Annealing for Multimodal Optimization
We introduce a new multimodal optimization approach called Natural Variational Annealing (NVA) that combines the strengths of three foundational concepts to simultaneously search for multiple global and local modes of black-box nonconvex objectives. First, it implements a simultaneous search by using variational posteriors, such as, mixtures of Gaussians. Second, it applies annealing to gradually trade off exploration for exploitation. Finally, it learns the variational search distribution using natural-gradient learning where updates resemble well-known and easy-to-implement algorithms. The three concepts come together in NVA giving rise to new algorithms and also allowing us to incorporate "fitness shaping", a core concept from evolutionary algorithms. We assess the quality of search on simulations and compare them to methods using gradient descent and evolution strategies. We also provide an application to a real-world inverse problem in planetary science.
☆ Multi-task retriever fine-tuning for domain-specific and efficient RAG NAACL 2025
Retrieval-Augmented Generation (RAG) has become ubiquitous when deploying Large Language Models (LLMs), as it can address typical limitations such as generating hallucinated or outdated information. However, when building real-world RAG applications, practical issues arise. First, the retrieved information is generally domain-specific. Since it is computationally expensive to fine-tune LLMs, it is more feasible to fine-tune the retriever to improve the quality of the data included in the LLM input. Second, as more applications are deployed in the same real-world system, one cannot afford to deploy separate retrievers. Moreover, these RAG applications normally retrieve different kinds of data. Our solution is to instruction fine-tune a small retriever encoder on a variety of domain-specific tasks to allow us to deploy one encoder that can serve many use cases, thereby achieving low-cost, scalability, and speed. We show how this encoder generalizes to out-of-domain settings as well as to an unseen retrieval task on real-world enterprise use cases.
comment: 9 pages, 2 figures. Submitted to NAACL 2025 Industry Track
☆ A Statistical Theory of Contrastive Pre-training and Multimodal Generative AI
Multi-modal generative AI systems, such as those combining vision and language, rely on contrastive pre-training to learn representations across different modalities. While their practical benefits are widely acknowledged, a rigorous theoretical understanding of the contrastive pre-training framework remains limited. This paper develops a theoretical framework to explain the success of contrastive pre-training in downstream tasks, such as zero-shot classification, conditional diffusion models, and vision-language models. We introduce the concept of approximate sufficient statistics, a generalization of the classical sufficient statistics, and show that near-minimizers of the contrastive pre-training loss are approximately sufficient, making them adaptable to diverse downstream tasks. We further propose the Joint Generative Hierarchical Model for the joint distribution of images and text, showing that transformers can efficiently approximate relevant functions within this model via belief propagation. Building on this framework, we derive sample complexity guarantees for multi-modal learning based on contrastive pre-trained representations. Numerical simulations validate these theoretical findings, demonstrating the strong generalization performance of contrastively pre-trained transformers in various multi-modal tasks.
comment: 108 pages
☆ Reach Measurement, Optimization and Frequency Capping In Targeted Online Advertising Under k-Anonymity
The growth in the use of online advertising to foster brand awareness over recent years is largely attributable to the ubiquity of social media. One pivotal technology contributing to the success of online brand advertising is frequency capping, a mechanism that enables marketers to control the number of times an ad is shown to a specific user. However, the very foundation of this technology is being scrutinized as the industry gravitates towards advertising solutions that prioritize user privacy. This paper delves into the issue of reach measurement and optimization within the context of $k$-anonymity, a privacy-preserving model gaining traction across major online advertising platforms. We outline how to report reach within this new privacy landscape and demonstrate how probabilistic discounting, a probabilistic adaptation of traditional frequency capping, can be employed to optimize campaign performance. Experiments are performed to assess the trade-off between user privacy and the efficacy of online brand advertising. Notably, we discern a significant dip in performance as long as privacy is introduced, yet this comes with a limited additional cost for advertising platforms to offer their users more privacy.
☆ Geophysical inverse problems with measurement-guided diffusion models
Solving inverse problems with the reverse process of a diffusion model represents an appealing avenue to produce highly realistic, yet diverse solutions from incomplete and possibly noisy measurements, ultimately enabling uncertainty quantification at scale. However, because of the intractable nature of the score function of the likelihood term (i.e., $\nabla_{\mathbf{x}_t} p(\mathbf{y} | \mathbf{x}_t)$), various samplers have been proposed in the literature that use different (more or less accurate) approximations of such a gradient to guide the diffusion process towards solutions that match the observations. In this work, I consider two sampling algorithms recently proposed under the name of Diffusion Posterior Sampling (DPS) and Pseudo-inverse Guided Diffusion Model (PGDM), respectively. In DSP, the guidance term used at each step of the reverse diffusion process is obtained by applying the adjoint of the modeling operator to the residual obtained from a one-step denoising estimate of the solution. On the other hand, PGDM utilizes a pseudo-inverse operator that originates from the fact that the one-step denoised solution is not assumed to be deterministic, rather modeled as a Gaussian distribution. Through an extensive set of numerical examples on two geophysical inverse problems (namely, seismic interpolation and seismic inversion), I show that two key aspects for the success of any measurement-guided diffusion process are: i) our ability to re-parametrize the inverse problem such that the sought after model is bounded between -1 and 1 (a pre-requisite for any diffusion model); ii) the choice of the training dataset used to learn the implicit prior that guides the reverse diffusion process. Numerical examples on synthetic and field datasets reveal that PGDM outperforms DPS in both scenarios at limited additional cost.
☆ Leveraging Log Probabilities in Language Models to Forecast Future Events
In the constantly changing field of data-driven decision making, accurately predicting future events is crucial for strategic planning in various sectors. The emergence of Large Language Models (LLMs) marks a significant advancement in this area, offering advanced tools that utilise extensive text data for prediction. In this industry paper, we introduce a novel method for AI-driven foresight using LLMs. Building on top of previous research, we employ data on current trends and their trajectories for generating forecasts on 15 different topics. Subsequently, we estimate their probabilities via a multi-step approach based on log probabilities. We show we achieve a Brier score of 0.186, meaning a +26% improvement over random chance and a +19% improvement over widely-available AI systems.
comment: 5 pages, 4 figures
☆ Multilinear Tensor Low-Rank Approximation for Policy-Gradient Methods in Reinforcement Learning
Reinforcement learning (RL) aims to estimate the action to take given a (time-varying) state, with the goal of maximizing a cumulative reward function. Predominantly, there are two families of algorithms to solve RL problems: value-based and policy-based methods, with the latter designed to learn a probabilistic parametric policy from states to actions. Most contemporary approaches implement this policy using a neural network (NN). However, NNs usually face issues related to convergence, architectural suitability, hyper-parameter selection, and underutilization of the redundancies of the state-action representations (e.g. locally similar states). This paper postulates multi-linear mappings to efficiently estimate the parameters of the RL policy. More precisely, we leverage the PARAFAC decomposition to design tensor low-rank policies. The key idea involves collecting the policy parameters into a tensor and leveraging tensor-completion techniques to enforce low rank. We establish theoretical guarantees of the proposed methods for various policy classes and validate their efficacy through numerical experiments. Specifically, we demonstrate that tensor low-rank policy models reduce computational and sample complexities in comparison to NN models while achieving similar rewards.
☆ RieszBoost: Gradient Boosting for Riesz Regression
Answering causal questions often involves estimating linear functionals of conditional expectations, such as the average treatment effect or the effect of a longitudinal modified treatment policy. By the Riesz representation theorem, these functionals can be expressed as the expected product of the conditional expectation of the outcome and the Riesz representer, a key component in doubly robust estimation methods. Traditionally, the Riesz representer is estimated indirectly by deriving its explicit analytical form, estimating its components, and substituting these estimates into the known form (e.g., the inverse propensity score). However, deriving or estimating the analytical form can be challenging, and substitution methods are often sensitive to practical positivity violations, leading to higher variance and wider confidence intervals. In this paper, we propose a novel gradient boosting algorithm to directly estimate the Riesz representer without requiring its explicit analytical form. This method is particularly suited for tabular data, offering a flexible, nonparametric, and computationally efficient alternative to existing methods for Riesz regression. Through simulation studies, we demonstrate that our algorithm performs on par with or better than indirect estimation techniques across a range of functionals, providing a user-friendly and robust solution for estimating causal quantities.
☆ Deep Transfer $Q$-Learning for Offline Non-Stationary Reinforcement Learning
In dynamic decision-making scenarios across business and healthcare, leveraging sample trajectories from diverse populations can significantly enhance reinforcement learning (RL) performance for specific target populations, especially when sample sizes are limited. While existing transfer learning methods primarily focus on linear regression settings, they lack direct applicability to reinforcement learning algorithms. This paper pioneers the study of transfer learning for dynamic decision scenarios modeled by non-stationary finite-horizon Markov decision processes, utilizing neural networks as powerful function approximators and backward inductive learning. We demonstrate that naive sample pooling strategies, effective in regression settings, fail in Markov decision processes.To address this challenge, we introduce a novel ``re-weighted targeting procedure'' to construct ``transferable RL samples'' and propose ``transfer deep $Q^*$-learning'', enabling neural network approximation with theoretical guarantees. We assume that the reward functions are transferable and deal with both situations in which the transition densities are transferable or nontransferable. Our analytical techniques for transfer learning in neural network approximation and transition density transfers have broader implications, extending to supervised transfer learning with neural networks and domain shift scenarios. Empirical experiments on both synthetic and real datasets corroborate the advantages of our method, showcasing its potential for improving decision-making through strategically constructing transferable RL samples in non-stationary reinforcement learning contexts.
☆ Intelligent experiments through real-time AI: Fast Data Processing and Autonomous Detector Control for sPHENIX and future EIC detectors
This R\&D project, initiated by the DOE Nuclear Physics AI-Machine Learning initiative in 2022, leverages AI to address data processing challenges in high-energy nuclear experiments (RHIC, LHC, and future EIC). Our focus is on developing a demonstrator for real-time processing of high-rate data streams from sPHENIX experiment tracking detectors. The limitations of a 15 kHz maximum trigger rate imposed by the calorimeters can be negated by intelligent use of streaming technology in the tracking system. The approach efficiently identifies low momentum rare heavy flavor events in high-rate p+p collisions (3MHz), using Graph Neural Network (GNN) and High Level Synthesis for Machine Learning (hls4ml). Success at sPHENIX promises immediate benefits, minimizing resources and accelerating the heavy-flavor measurements. The approach is transferable to other fields. For the EIC, we develop a DIS-electron tagger using Artificial Intelligence - Machine Learning (AI-ML) algorithms for real-time identification, showcasing the transformative potential of AI and FPGA technologies in high-energy nuclear and particle experiments real-time data processing pipelines.
comment: proceedings for 42nd International Conference on High Energy Physics (ICHEP2024), 18-24 July 2024, Prague, Czech Republic
☆ Quantum Hybrid Support Vector Machines for Stress Detection in Older Adults
Stress can increase the possibility of cognitive impairment and decrease the quality of life in older adults. Smart healthcare can deploy quantum machine learning to enable preventive and diagnostic support. This work introduces a unique technique to address stress detection as an anomaly detection problem that uses quantum hybrid support vector machines. With the help of a wearable smartwatch, we mapped baseline sensor reading as normal data and stressed sensor reading as anomaly data using cortisol concentration as the ground truth. We have used quantum computing techniques to explore the complex feature spaces with kernel-based preprocessing. We illustrate the usefulness of our method by doing experimental validation on 40 older adults with the help of the TSST protocol. Our findings highlight that using a limited number of features, quantum machine learning provides improved accuracy compared to classical methods. We also observed that the recall value using quantum machine learning is higher compared to the classical method. The higher recall value illustrates the potential of quantum machine learning in healthcare, as missing anomalies could result in delayed diagnostics or treatment.
☆ Intelligent Gradient Boosting Algorithms for Estimating Strength of Modified Subgrade Soil
The performance of pavement under loading depends on the strength of the subgrade. However, experimental estimation of properties of pavement strengths such as California bearing ratio (CBR), unconfined compressive strength (UCS) and resistance value (R) are often tedious, time-consuming and costly, thereby inspiring a growing interest in machine learning based tools which are simple, cheap and fast alternatives. Thus, the potential application of two boosting techniques; categorical boosting (CatBoost) and extreme gradient boosting (XGBoost) and support vector regression (SVR), is similarly explored in this study for estimation of properties of subgrade soil modified with hydrated lime activated rice husk ash (HARSH). Using 121 experimental data samples of varying proportions of HARSH, plastic limit, liquid limit, plasticity index, clay activity, optimum moisture content, and maximum dry density as input for CBR, UCS and R estimation, four evaluation metrics namely coefficient of determination (R2), root mean squared error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) are used to evaluate the models' performance. The results indicate that XGBoost outperformed CatBoost and SVR in estimating these properties, yielding R2 of 0.9994, 0.9995 and 0.9999 in estimating the CBR, UCS and R respectively. Also, SVR outperformed CatBoost in estimating the CBR and R with R2 of 0.9997 respectively. On the other hand, CatBoost outperformed SVR in estimating the UCS with R2 of 0.9994. Feature sensitivity analysis shows that the three machine learning techniques are unanimous that increasing HARSH proportion lead to values of the estimated properties respectively. A comparison with previous results also shows superiority of XGBoost in estimating subgrade properties.
comment: 17 pages
☆ Decentralised Resource Sharing in TinyML: Wireless Bilayer Gossip Parallel SGD for Collaborative Learning
With the growing computational capabilities of microcontroller units (MCUs), edge devices can now support machine learning models. However, deploying decentralised federated learning (DFL) on such devices presents key challenges, including intermittent connectivity, limited communication range, and dynamic network topologies. This paper proposes a novel framework, bilayer Gossip Decentralised Parallel Stochastic Gradient Descent (GD PSGD), designed to address these issues in resource-constrained environments. The framework incorporates a hierarchical communication structure using Distributed Kmeans (DKmeans) clustering for geographic grouping and a gossip protocol for efficient model aggregation across two layers: intra-cluster and inter-cluster. We evaluate the framework's performance against the Centralised Federated Learning (CFL) baseline using the MCUNet model on the CIFAR-10 dataset under IID and Non-IID conditions. Results demonstrate that the proposed method achieves comparable accuracy to CFL on IID datasets, requiring only 1.8 additional rounds for convergence. On Non-IID datasets, the accuracy loss remains under 8\% for moderate data imbalance. These findings highlight the framework's potential to support scalable and privacy-preserving learning on edge devices with minimal performance trade-offs.
☆ Probabilistic Skip Connections for Deterministic Uncertainty Quantification in Deep Neural Networks
Deterministic uncertainty quantification (UQ) in deep learning aims to estimate uncertainty with a single pass through a network by leveraging outputs from the network's feature extractor. Existing methods require that the feature extractor be both sensitive and smooth, ensuring meaningful input changes produce meaningful changes in feature vectors. Smoothness enables generalization, while sensitivity prevents feature collapse, where distinct inputs are mapped to identical feature vectors. To meet these requirements, current deterministic methods often retrain networks with spectral normalization. Instead of modifying training, we propose using measures of neural collapse to identify an existing intermediate layer that is both sensitive and smooth. We then fit a probabilistic model to the feature vector of this intermediate layer, which we call a probabilistic skip connection (PSC). Through empirical analysis, we explore the impact of spectral normalization on neural collapse and demonstrate that PSCs can effectively disentangle aleatoric and epistemic uncertainty. Additionally, we show that PSCs achieve uncertainty quantification and out-of-distribution (OOD) detection performance that matches or exceeds existing single-pass methods requiring training modifications. By retrofitting existing models, PSCs enable high-quality UQ and OOD capabilities without retraining.
comment: 15 pages, 9 figures
☆ Fast, Fine-Grained Equivalence Checking for Neural Decompilers
Neural decompilers are machine learning models that reconstruct the source code from an executable program. Critical to the lifecycle of any machine learning model is an evaluation of its effectiveness. However, existing techniques for evaluating neural decompilation models have substantial weaknesses, especially when it comes to showing the correctness of the neural decompiler's predictions. To address this, we introduce codealign, a novel instruction-level code equivalence technique designed for neural decompilers. We provide a formal definition of a relation between equivalent instructions, which we term an equivalence alignment. We show how codealign generates equivalence alignments, then evaluate codealign by comparing it with symbolic execution. Finally, we show how the information codealign provides-which parts of the functions are equivalent and how well the variable names match-is substantially more detailed than existing state-of-the-art evaluation metrics, which report unitless numbers measuring similarity.
☆ A Steerable Deep Network for Model-Free Diffusion MRI Registration
Nonrigid registration is vital to medical image analysis but remains challenging for diffusion MRI (dMRI) due to its high-dimensional, orientation-dependent nature. While classical methods are accurate, they are computationally demanding, and deep neural networks, though efficient, have been underexplored for nonrigid dMRI registration compared to structural imaging. We present a novel, deep learning framework for model-free, nonrigid registration of raw diffusion MRI data that does not require explicit reorientation. Unlike previous methods relying on derived representations such as diffusion tensors or fiber orientation distribution functions, in our approach, we formulate the registration as an equivariant diffeomorphism of position-and-orientation space. Central to our method is an $\mathsf{SE}(3)$-equivariant UNet that generates velocity fields while preserving the geometric properties of a raw dMRI's domain. We introduce a new loss function based on the maximum mean discrepancy in Fourier space, implicitly matching ensemble average propagators across images. Experimental results on Human Connectome Project dMRI data demonstrate competitive performance compared to state-of-the-art approaches, with the added advantage of bypassing the overhead for estimating derived representations. This work establishes a foundation for data-driven, geometry-aware dMRI registration directly in the acquisition space.
☆ Leveraging Registers in Vision Transformers for Robust Adaptation ICASSP 2025
Vision Transformers (ViTs) have shown success across a variety of tasks due to their ability to capture global image representations. Recent studies have identified the existence of high-norm tokens in ViTs, which can interfere with unsupervised object discovery. To address this, the use of "registers" which are additional tokens that isolate high norm patch tokens while capturing global image-level information has been proposed. While registers have been studied extensively for object discovery, their generalization properties particularly in out-of-distribution (OOD) scenarios, remains underexplored. In this paper, we examine the utility of register token embeddings in providing additional features for improving generalization and anomaly rejection. To that end, we propose a simple method that combines the special CLS token embedding commonly employed in ViTs with the average-pooled register embeddings to create feature representations which are subsequently used for training a downstream classifier. We find that this enhances OOD generalization and anomaly rejection, while maintaining in-distribution (ID) performance. Extensive experiments across multiple ViT backbones trained with and without registers reveal consistent improvements of 2-4\% in top-1 OOD accuracy and a 2-3\% reduction in false positive rates for anomaly detection. Importantly, these gains are achieved without additional computational overhead.
comment: Accepted at ICASSP 2025
☆ Efficient and Responsible Adaptation of Large Language Models for Robust and Equitable Top-k Recommendations
Conventional recommendation systems (RSs) are typically optimized to enhance performance metrics uniformly across all training samples, inadvertently overlooking the needs of diverse user populations. The performance disparity among various populations can harm the model's robustness to sub-populations due to the varying user properties. While large language models (LLMs) show promise in enhancing RS performance, their practical applicability is hindered by high costs, inference latency, and degraded performance on long user queries. To address these challenges, we propose a hybrid task allocation framework designed to promote social good by equitably serving all user groups. By adopting a two-phase approach, we promote a strategic assignment of tasks for efficient and responsible adaptation of LLMs. Our strategy works by first identifying the weak and inactive users that receive a suboptimal ranking performance by RSs. Next, we use an in-context learning approach for such users, wherein each user interaction history is contextualized as a distinct ranking task. We evaluate our hybrid framework by incorporating eight different recommendation algorithms and three different LLMs -- both open and close-sourced. Our results on three real-world datasets show a significant reduction in weak users and improved robustness to subpopulations without disproportionately escalating costs.
comment: arXiv admin note: text overlap with arXiv:2405.00824
☆ DAREK -- Distance Aware Error for Kolmogorov Networks ICASSP25
In this paper, we provide distance-aware error bounds for Kolmogorov Arnold Networks (KANs). We call our new error bounds estimator DAREK -- Distance Aware Error for Kolmogorov networks. Z. Liu et al. provide error bounds, which may be loose, lack distance-awareness, and are defined only up to an unknown constant of proportionality. We review the error bounds for Newton's polynomial, which is then generalized to an arbitrary spline, under Lipschitz continuity assumptions. We then extend these bounds to nested compositions of splines, arriving at error bounds for KANs. We evaluate our method by estimating an object's shape from sparse laser scan points. We use KAN to fit a smooth function to the scans and provide error bounds for the fit. We find that our method is faster than Monte Carlo approaches, and that our error bounds enclose the true obstacle shape reliably.
comment: Accepted at ICASSP25, 5 pages + 2 pages supplementary material, 3 figures
☆ A Semantic Partitioning Method for Large-Scale Training of Knowledge Graph Embeddings WWW '23
In recent years, knowledge graph embeddings have achieved great success. Many methods have been proposed and achieved state-of-the-art results in various tasks. However, most of the current methods present one or more of the following problems: (i) They only consider fact triplets, while ignoring the ontology information of knowledge graphs. (ii) The obtained embeddings do not contain much semantic information. Therefore, using these embeddings for semantic tasks is problematic. (iii) They do not enable large-scale training. In this paper, we propose a new algorithm that incorporates the ontology of knowledge graphs and partitions the knowledge graph based on classes to include more semantic information for parallel training of large-scale knowledge graph embeddings. Our preliminary results show that our algorithm performs well on several popular benchmarks.
comment: Accepted at WWW '23 Companion: Companion Proceedings of the ACM Web Conference 2023
☆ Resilient Peer-to-peer Learning based on Adaptive Aggregation
Collaborative learning in peer-to-peer networks offers the benefits of distributed learning while mitigating the risks associated with single points of failure inherent in centralized servers. However, adversarial workers pose potential threats by attempting to inject malicious information into the network. Thus, ensuring the resilience of peer-to-peer learning emerges as a pivotal research objective. The challenge is exacerbated in the presence of non-convex loss functions and non-iid data distributions. This paper introduces a resilient aggregation technique tailored for such scenarios, aimed at fostering similarity among peers' learning processes. The aggregation weights are determined through an optimization procedure, and use the loss function computed using the neighbor's models and individual private data, thereby addressing concerns regarding data privacy in distributed machine learning. Theoretical analysis demonstrates convergence of parameters with non-convex loss functions and non-iid data distributions. Empirical evaluations across three distinct machine learning tasks support the claims. The empirical findings, which encompass a range of diverse attack models, also demonstrate improved accuracy when compared to existing methodologies.
comment: 11 pages
☆ Comprehensive Examination of Unrolled Networks for Linear Inverse Problems
Unrolled networks have become prevalent in various computer vision and imaging tasks. Although they have demonstrated remarkable efficacy in solving specific computer vision and computational imaging tasks, their adaptation to other applications presents considerable challenges. This is primarily due to the multitude of design decisions that practitioners working on new applications must navigate, each potentially affecting the network's overall performance. These decisions include selecting the optimization algorithm, defining the loss function, and determining the number of convolutional layers, among others. Compounding the issue, evaluating each design choice requires time-consuming simulations to train, fine-tune the neural network, and optimize for its performance. As a result, the process of exploring multiple options and identifying the optimal configuration becomes time-consuming and computationally demanding. The main objectives of this paper are (1) to unify some ideas and methodologies used in unrolled networks to reduce the number of design choices a user has to make, and (2) to report a comprehensive ablation study to discuss the impact of each of the choices involved in designing unrolled networks and present practical recommendations based on our findings. We anticipate that this study will help scientists and engineers design unrolled networks for their applications and diagnose problems within their networks efficiently.
comment: 27 pages, 10 figures. Project Page: https://github.com/YuxiChen25/Memory-Net-Inverse
☆ Efficient License Plate Recognition in Videos Using Visual Rhythm and Accumulative Line Analysis
Video-based Automatic License Plate Recognition (ALPR) involves extracting vehicle license plate text information from video captures. Traditional systems typically rely heavily on high-end computing resources and utilize multiple frames to recognize license plates, leading to increased computational overhead. In this paper, we propose two methods capable of efficiently extracting exactly one frame per vehicle and recognizing its license plate characters from this single image, thus significantly reducing computational demands. The first method uses Visual Rhythm (VR) to generate time-spatial images from videos, while the second employs Accumulative Line Analysis (ALA), a novel algorithm based on single-line video processing for real-time operation. Both methods leverage YOLO for license plate detection within the frame and a Convolutional Neural Network (CNN) for Optical Character Recognition (OCR) to extract textual information. Experiments on real videos demonstrate that the proposed methods achieve results comparable to traditional frame-by-frame approaches, with processing speeds three times faster.
comment: Accepted for presentation at the Conference on Graphics, Patterns and Images (SIBGRAPI) 2024
☆ Federated-Continual Dynamic Segmentation of Histopathology guided by Barlow Continuity
Federated- and Continual Learning have been established as approaches to enable privacy-aware learning on continuously changing data, as required for deploying AI systems in histopathology images. However, data shifts can occur in a dynamic world, spatially between institutions and temporally, due to changing data over time. This leads to two issues: Client Drift, where the central model degrades from aggregating data from clients trained on shifted data, and Catastrophic Forgetting, from temporal shifts such as changes in patient populations. Both tend to degrade the model's performance of previously seen data or spatially distributed training. Despite both problems arising from the same underlying problem of data shifts, existing research addresses them only individually. In this work, we introduce a method that can jointly alleviate Client Drift and Catastrophic Forgetting by using our proposed Dynamic Barlow Continuity that evaluates client updates on a public reference dataset and uses this to guide the training process to a spatially and temporally shift-invariant model. We evaluate our approach on the histopathology datasets BCSS and Semicol and prove our method to be highly effective by jointly improving the dice score as much as from 15.8% to 71.6% in Client Drift and from 42.5% to 62.8% in Catastrophic Forgetting. This enables Dynamic Learning by establishing spatio-temporal shift-invariance.
☆ A 65 nm Bayesian Neural Network Accelerator with 360 fJ/Sample In-Word GRNG for AI Uncertainty Estimation
Uncertainty estimation is an indispensable capability for AI-enabled, safety-critical applications, e.g. autonomous vehicles or medical diagnosis. Bayesian neural networks (BNNs) use Bayesian statistics to provide both classification predictions and uncertainty estimation, but they suffer from high computational overhead associated with random number generation and repeated sample iterations. Furthermore, BNNs are not immediately amenable to acceleration through compute-in-memory architectures due to the frequent memory writes necessary after each RNG operation. To address these challenges, we present an ASIC that integrates 360 fJ/Sample Gaussian RNG directly into the SRAM memory words. This integration reduces RNG overhead and enables fully-parallel compute-in-memory operations for BNNs. The prototype chip achieves 5.12 GSa/s RNG throughput and 102 GOp/s neural network throughput while occupying 0.45 mm2, bringing AI uncertainty estimation to edge computation.
comment: 7 pages, 12 figures
☆ Large-Scale Spectral Graph Neural Networks via Laplacian Sparsification: Technical Report
Graph Neural Networks (GNNs) play a pivotal role in graph-based tasks for their proficiency in representation learning. Among the various GNN methods, spectral GNNs employing polynomial filters have shown promising performance on tasks involving both homophilous and heterophilous graph structures. However, The scalability of spectral GNNs on large graphs is limited because they learn the polynomial coefficients through multiple forward propagation executions during forward propagation. Existing works have attempted to scale up spectral GNNs by eliminating the linear layers on the input node features, a change that can disrupt end-to-end training, potentially impact performance, and become impractical with high-dimensional input features. To address the above challenges, we propose "Spectral Graph Neural Networks with Laplacian Sparsification (SGNN-LS)", a novel graph spectral sparsification method to approximate the propagation patterns of spectral GNNs. We prove that our proposed method generates Laplacian sparsifiers that can approximate both fixed and learnable polynomial filters with theoretical guarantees. Our method allows the application of linear layers on the input node features, enabling end-to-end training as well as the handling of raw text features. We conduct an extensive experimental analysis on datasets spanning various graph scales and properties to demonstrate the superior efficiency and effectiveness of our method. The results show that our method yields superior results in comparison with the corresponding approximated base models, especially on dataset Ogbn-papers100M(111M nodes, 1.6B edges) and MAG-scholar-C (2.8M features).
☆ Supervision-free Vision-Language Alignment
Vision-language models (VLMs) have demonstrated remarkable potential in integrating visual and linguistic information, but their performance is often constrained by the need for extensive, high-quality image-text training data. Curation of these image-text pairs is both time-consuming and computationally expensive. To address this challenge, we introduce SVP (Supervision-free Visual Projection), a novel framework that enhances vision-language alignment without relying on curated data or preference annotation. SVP leverages self-captioning and a pre-trained grounding model as a feedback mechanism to elicit latent information in VLMs. We evaluate our approach across six key areas: captioning, referring, visual question answering, multitasking, hallucination control, and object recall. Results demonstrate significant improvements, including a 14% average improvement in captioning tasks, up to 12% increase in object recall, and substantial reduction in hallucination rates. Notably, a small VLM using SVP achieves hallucination reductions comparable to a model five times larger, while a VLM with initially poor referring capabilities more than doubles its performance, approaching parity with a model twice its size.
comment: Preprint
☆ Medical artificial intelligence toolbox (MAIT): an explainable machine learning framework for binary classification, survival modelling, and regression analyses
While machine learning offers diverse techniques suitable for exploring various medical research questions, a cohesive synergistic framework can facilitate the integration and understanding of new approaches within unified model development and interpretation. We therefore introduce the Medical Artificial Intelligence Toolbox (MAIT), an explainable, open-source Python pipeline for developing and evaluating binary classification, regression, and survival models on tabular datasets. MAIT addresses key challenges (e.g., high dimensionality, class imbalance, mixed variable types, and missingness) while promoting transparency in reporting (TRIPOD+AI compliant). Offering automated configurations for beginners and customizable source code for experts, MAIT streamlines two primary use cases: Discovery (feature importance via unified scoring, e.g., SHapley Additive exPlanations - SHAP) and Prediction (model development and deployment with optimized solutions). Moreover, MAIT proposes new techniques including fine-tuning of probability threshold in binary classification, translation of cumulative hazard curves to binary classification, enhanced visualizations for model interpretation for mixed data types, and handling censoring through semi-supervised learning, to adapt to a wide set of data constraints and study designs. We provide detailed tutorials on GitHub, using four open-access data sets, to demonstrate how MAIT can be used to improve implementation and interpretation of ML models in medical research.
comment: 14 pages, 2 figures, 1 table
☆ HypeRL: Parameter-Informed Reinforcement Learning for Parametric PDEs
In this work, we devise a new, general-purpose reinforcement learning strategy for the optimal control of parametric partial differential equations (PDEs). Such problems frequently arise in applied sciences and engineering and entail a significant complexity when control and/or state variables are distributed in high-dimensional space or depend on varying parameters. Traditional numerical methods, relying on either iterative minimization algorithms or dynamic programming, while reliable, often become computationally infeasible. Indeed, in either way, the optimal control problem must be solved for each instance of the parameters, and this is out of reach when dealing with high-dimensional time-dependent and parametric PDEs. In this paper, we propose HypeRL, a deep reinforcement learning (DRL) framework to overcome the limitations shown by traditional methods. HypeRL aims at approximating the optimal control policy directly. Specifically, we employ an actor-critic DRL approach to learn an optimal feedback control strategy that can generalize across the range of variation of the parameters. To effectively learn such optimal control laws, encoding the parameter information into the DRL policy and value function neural networks (NNs) is essential. To do so, HypeRL uses two additional NNs, often called hypernetworks, to learn the weights and biases of the value function and the policy NNs. We validate the proposed approach on two PDE-constrained optimal control benchmarks, namely a 1D Kuramoto-Sivashinsky equation and a 2D Navier-Stokes equations, by showing that the knowledge of the PDE parameters and how this information is encoded, i.e., via a hypernetwork, is an essential ingredient for learning parameter-dependent control policies that can generalize effectively to unseen scenarios and for improving the sample efficiency of such policies.
☆ Combining YOLO and Visual Rhythm for Vehicle Counting
Video-based vehicle detection and counting play a critical role in managing transport infrastructure. Traditional image-based counting methods usually involve two main steps: initial detection and subsequent tracking, which are applied to all video frames, leading to a significant increase in computational complexity. To address this issue, this work presents an alternative and more efficient method for vehicle detection and counting. The proposed approach eliminates the need for a tracking step and focuses solely on detecting vehicles in key video frames, thereby increasing its efficiency. To achieve this, we developed a system that combines YOLO, for vehicle detection, with Visual Rhythm, a way to create time-spatial images that allows us to focus on frames that contain useful information. Additionally, this method can be used for counting in any application involving unidirectional moving targets to be detected and identified. Experimental analysis using real videos shows that the proposed method achieves mean counting accuracy around 99.15% over a set of videos, with a processing speed three times faster than tracking based approaches.
comment: Accepted for presentation at the Conference on Graphics, Patterns and Images (SIBGRAPI) 2023
☆ A Plug-and-Play Bregman ADMM Module for Inferring Event Branches in Temporal Point Processes AAAI 2025
An event sequence generated by a temporal point process is often associated with a hidden and structured event branching process that captures the triggering relations between its historical and current events. In this study, we design a new plug-and-play module based on the Bregman ADMM (BADMM) algorithm, which infers event branches associated with event sequences in the maximum likelihood estimation framework of temporal point processes (TPPs). Specifically, we formulate the inference of event branches as an optimization problem for the event transition matrix under sparse and low-rank constraints, which is embedded in existing TPP models or their learning paradigms. We can implement this optimization problem based on subspace clustering and sparse group-lasso, respectively, and solve it using the Bregman ADMM algorithm, whose unrolling leads to the proposed BADMM module. When learning a classic TPP (e.g., Hawkes process) by the expectation-maximization algorithm, the BADMM module helps derive structured responsibility matrices in the E-step. Similarly, the BADMM module helps derive low-rank and sparse attention maps for the neural TPPs with self-attention layers. The structured responsibility matrices and attention maps, which work as learned event transition matrices, indicate event branches, e.g., inferring isolated events and those key events triggering many subsequent events. Experiments on both synthetic and real-world data show that plugging our BADMM module into existing TPP models and learning paradigms can improve model performance and provide us with interpretable structured event branches. The code is available at \url{https://github.com/qingmeiwangdaily/BADMM_TPP}.
comment: Accepted at AAAI 2025
☆ Towards a Problem-Oriented Domain Adaptation Framework for Machine Learning
Domain adaptation is a sub-field of machine learning that involves transferring knowledge from a source domain to perform the same task in the target domain. It is a typical challenge in machine learning that arises, e.g., when data is obtained from various sources or when using a data basis that changes over time. Recent advances in the field offer promising methods, but it is still challenging for researchers and practitioners to determine if domain adaptation is suitable for a given problem -- and, subsequently, to select the appropriate approach. This article employs design science research to develop a problem-oriented framework for domain adaptation, which is matured in three evaluation episodes. We describe a framework that distinguishes between five domain adaptation scenarios, provides recommendations for addressing each scenario, and offers guidelines for determining if a problem falls into one of these scenarios. During the multiple evaluation episodes, the framework is tested on artificial and real-world datasets and an experimental study involving 100 participants. The evaluation demonstrates that the framework has the explanatory power to capture any domain adaptation problem effectively. In summary, we provide clear guidance for researchers and practitioners who want to employ domain adaptation but lack in-depth knowledge of the possibilities.
☆ Towards Fair Class-wise Robustness: Class Optimal Distribution Adversarial Training
Adversarial training has proven to be a highly effective method for improving the robustness of deep neural networks against adversarial attacks. Nonetheless, it has been observed to exhibit a limitation in terms of robust fairness, characterized by a significant disparity in robustness across different classes. Recent efforts to mitigate this problem have turned to class-wise reweighted methods. However, these methods suffer from a lack of rigorous theoretical analysis and are limited in their exploration of the weight space, as they mainly rely on existing heuristic algorithms or intuition to compute weights. In addition, these methods fail to guarantee the consistency of the optimization direction due to the decoupled optimization of weights and the model parameters. They potentially lead to suboptimal weight assignments and consequently, a suboptimal model. To address these problems, this paper proposes a novel min-max training framework, Class Optimal Distribution Adversarial Training (CODAT), which employs distributionally robust optimization to fully explore the class-wise weight space, thus enabling the identification of the optimal weight with theoretical guarantees. Furthermore, we derive a closed-form optimal solution to the internal maximization and then get a deterministic equivalent objective function, which provides a theoretical basis for the joint optimization of weights and model parameters. Meanwhile, we propose a fairness elasticity coefficient for the evaluation of the algorithm with regard to both robustness and robust fairness. Experimental results on various datasets show that the proposed method can effectively improve the robust fairness of the model and outperform the state-of-the-art approaches.
☆ Integrating remote sensing data assimilation, deep learning and large language model for interactive wheat breeding yield prediction
Yield is one of the core goals of crop breeding. By predicting the potential yield of different breeding materials, breeders can screen these materials at various growth stages to select the best performing. Based on unmanned aerial vehicle remote sensing technology, high-throughput crop phenotyping data in breeding areas is collected to provide data support for the breeding decisions of breeders. However, the accuracy of current yield predictions still requires improvement, and the usability and user-friendliness of yield forecasting tools remain suboptimal. To address these challenges, this study introduces a hybrid method and tool for crop yield prediction, designed to allow breeders to interactively and accurately predict wheat yield by chatting with a large language model (LLM). First, the newly designed data assimilation algorithm is used to assimilate the leaf area index into the WOFOST model. Then, selected outputs from the assimilation process, along with remote sensing inversion results, are used to drive the time-series temporal fusion transformer model for wheat yield prediction. Finally, based on this hybrid method and leveraging an LLM with retrieval augmented generation technology, we developed an interactive yield prediction Web tool that is user-friendly and supports sustainable data updates. This tool integrates multi-source data to assist breeding decision-making. This study aims to accelerate the identification of high-yield materials in the breeding process, enhance breeding efficiency, and enable more scientific and smart breeding decisions.
☆ Safe Reinforcement Learning with Minimal Supervision ICML 2023
Reinforcement learning (RL) in the real world necessitates the development of procedures that enable agents to explore without causing harm to themselves or others. The most successful solutions to the problem of safe RL leverage offline data to learn a safe-set, enabling safe online exploration. However, this approach to safe-learning is often constrained by the demonstrations that are available for learning. In this paper we investigate the influence of the quantity and quality of data used to train the initial safe learning problem offline on the ability to learn safe-RL policies online. Specifically, we focus on tasks with spatially extended goal states where we have few or no demonstrations available. Classically this problem is addressed either by using hand-designed controllers to generate data or by collecting user-generated demonstrations. However, these methods are often expensive and do not scale to more complex tasks and environments. To address this limitation we propose an unsupervised RL-based offline data collection procedure, to learn complex and scalable policies without the need for hand-designed controllers or user demonstrations. Our research demonstrates the significance of providing sufficient demonstrations for agents to learn optimal safe-RL policies online, and as a result, we propose optimistic forgetting, a novel online safe-RL approach that is practical for scenarios with limited data. Further, our unsupervised data collection approach highlights the need to balance diversity and optimality for safe online exploration.
comment: Initially submitted to ICML 2023
☆ Regularising NARX models with multi-task learning
A Nonlinear Auto-Regressive with eXogenous inputs (NARX) model can be used to describe time-varying processes; where the output depends on both previous outputs and current/previous external input variables. One limitation of NARX models is their propensity to overfit and result in poor generalisation for future predictions. The proposed method to help to overcome the issue of overfitting is a NARX model which predicts outputs at both the current time and several lead times into the future. This is a form of multi-task learner (MTL); whereby the lead time outputs will regularise the current time output. This work shows that for high noise level, MTL can be used to regularise NARX with a lower Normalised Mean Square Error (NMSE) compared to the NMSE of the independent learner counterpart.
☆ Gradient Purification: Defense Against Poisoning Attack in Decentralized Federated Learning
Decentralized federated learning (DFL) is inherently vulnerable to poisoning attacks, as malicious clients can transmit manipulated model gradients to neighboring clients. Existing defense methods either reject suspicious gradients per iteration or restart DFL aggregation after detecting all malicious clients. They overlook the potential accuracy benefit from the discarded malicious gradients. In this paper, we propose a novel gradient purification defense, named GPD, that integrates seamlessly with existing DFL aggregation to defend against poisoning attacks. It aims to mitigate the harm in model gradients while retaining the benefit in model weights for enhancing accuracy. For each benign client in GPD, a recording variable is designed to track the historically aggregated gradients from one of its neighbors. It allows benign clients to precisely detect malicious neighbors and swiftly mitigate aggregated malicious gradients via historical consistency checks. Upon mitigation, GPD optimizes model weights via aggregating gradients solely from benign clients. This retains the previously beneficial portions from malicious clients and exploits the contributions from benign clients, thereby significantly enhancing the model accuracy. We analyze the convergence of GPD, as well as its ability to harvest high accuracy. Extensive experiments over three datasets demonstrate that, GPD is capable of mitigating poisoning attacks under both iid and non-iid data distributions. It significantly outperforms state-of-the-art defenses in terms of accuracy against various poisoning attacks.
☆ Revisiting LocalSGD and SCAFFOLD: Improved Rates and Missing Analysis
LocalSGD and SCAFFOLD are widely used methods in distributed stochastic optimization, with numerous applications in machine learning, large-scale data processing, and federated learning. However, rigorously establishing their theoretical advantages over simpler methods, such as minibatch SGD (MbSGD), has proven challenging, as existing analyses often rely on strong assumptions, unrealistic premises, or overly restrictive scenarios. In this work, we revisit the convergence properties of LocalSGD and SCAFFOLD under a variety of existing or weaker conditions, including gradient similarity, Hessian similarity, weak convexity, and Lipschitz continuity of the Hessian. Our analysis shows that (i) LocalSGD achieves faster convergence compared to MbSGD for weakly convex functions without requiring stronger gradient similarity assumptions; (ii) LocalSGD benefits significantly from higher-order similarity and smoothness; and (iii) SCAFFOLD demonstrates faster convergence than MbSGD for a broader class of non-quadratic functions. These theoretical insights provide a clearer understanding of the conditions under which LocalSGD and SCAFFOLD outperform MbSGD.
☆ Motif Discovery Framework for Psychiatric EEG Data Classification
In current medical practice, patients undergoing depression treatment must wait four to six weeks before a clinician can assess medication response due to the delayed noticeable effects of antidepressants. Identification of a treatment response at any earlier stage is of great importance, since it can reduce the emotional and economic burden connected with the treatment. We approach the prediction of a patient response to a treatment as a classification problem, by utilizing the dynamic properties of EEG recordings on the 7th day of the treatment. We present a novel framework that applies motif discovery to extract meaningful features from EEG data distinguishing between depression treatment responders and non-responders. We applied our framework also to classification tasks in other psychiatric EEG datasets, namely to patients with symptoms of schizophrenia, pediatric patients with intractable seizures, and Alzheimer disease and dementia. We achieved high classification precision in all data sets. The results demonstrate that the dynamic properties of the EEGs may support clinicians in decision making both in diagnosis and in the prediction depression treatment response as early as on the 7th day of the treatment. To our best knowledge, our work is the first one using motifs in the depression diagnostics in general.
☆ Federated Fine-Tuning of LLMs: Framework Comparison and Research Directions
Federated learning (FL) provides a privacy-preserving solution for fine-tuning pre-trained large language models (LLMs) using distributed private datasets, enabling task-specific adaptation while preserving data privacy. However, fine-tuning the extensive parameters in LLMs is particularly challenging in resource-constrained federated scenarios due to the significant communication and computational costs. To gain a deeper understanding of how these challenges can be addressed, this article conducts a comparative analysis three advanced federated LLM (FedLLM) frameworks that integrate knowledge distillation (KD) and split learning (SL) to mitigate these issues: 1) FedLLMs, where clients upload model parameters or gradients to enable straightforward and effective fine-tuning; 2) KD-FedLLMs, which leverage KD for efficient knowledge sharing via logits; and 3) Split-FedLLMs, which split the LLMs into two parts, with one part executed on the client and the other one on the server, to balance the computational load. Each framework is evaluated based on key performance metrics, including model accuracy, communication overhead, and client-side computational load, offering insights into their effectiveness for various federated fine-tuning scenarios. Through this analysis, we identify framework-specific optimization opportunities to enhance the efficiency of FedLLMs and discuss broader research directions, highlighting open opportunities to better adapt FedLLMs for real-world applications. A use case is presented to demonstrate the performance comparison of these three frameworks under varying configurations and settings.
☆ Dual-Force: Enhanced Offline Diversity Maximization under Imitation Constraints
While many algorithms for diversity maximization under imitation constraints are online in nature, many applications require offline algorithms without environment interactions. Tackling this problem in the offline setting, however, presents significant challenges that require non-trivial, multi-stage optimization processes with non-stationary rewards. In this work, we present a novel offline algorithm that enhances diversity using an objective based on Van der Waals (VdW) force and successor features, and eliminates the need to learn a previously used skill discriminator. Moreover, by conditioning the value function and policy on a pre-trained Functional Reward Encoding (FRE), our method allows for better handling of non-stationary rewards and provides zero-shot recall of all skills encountered during training, significantly expanding the set of skills learned in prior work. Consequently, our algorithm benefits from receiving a consistently strong diversity signal (VdW), and enjoys more stable and efficient training. We demonstrate the effectiveness of our method in generating diverse skills for two robotic tasks in simulation: locomotion of a quadruped and local navigation with obstacle traversal.
☆ Risk-averse policies for natural gas futures trading using distributional reinforcement learning
Financial markets have experienced significant instabilities in recent years, creating unique challenges for trading and increasing interest in risk-averse strategies. Distributional Reinforcement Learning (RL) algorithms, which model the full distribution of returns rather than just expected values, offer a promising approach to managing market uncertainty. This paper investigates this potential by studying the effectiveness of three distributional RL algorithms for natural gas futures trading and exploring their capacity to develop risk-averse policies. Specifically, we analyze the performance and behavior of Categorical Deep Q-Network (C51), Quantile Regression Deep Q-Network (QR-DQN), and Implicit Quantile Network (IQN). To the best of our knowledge, these algorithms have never been applied in a trading context. These policies are compared against five Machine Learning (ML) baselines, using a detailed dataset provided by Predictive Layer SA, a company supplying ML-based strategies for energy trading. The main contributions of this study are as follows. (1) We demonstrate that distributional RL algorithms significantly outperform classical RL methods, with C51 achieving performance improvement of more than 32\%. (2) We show that training C51 and IQN to maximize CVaR produces risk-sensitive policies with adjustable risk aversion. Specifically, our ablation studies reveal that lower CVaR confidence levels increase risk aversion, while higher levels decrease it, offering flexible risk management options. In contrast, QR-DQN shows less predictable behavior. These findings emphasize the potential of distributional RL for developing adaptable, risk-averse trading strategies in volatile markets.
☆ Machine Learning and statistical classification of CRISPR-Cas12a diagnostic assays
CRISPR-based diagnostics have gained increasing attention as biosensing tools able to address limitations in contemporary molecular diagnostic tests. To maximise the performance of CRISPR-based assays, much effort has focused on optimizing the chemistry and biology of the biosensing reaction. However, less attention has been paid to improving the techniques used to analyse CRISPR-based diagnostic data. To date, diagnostic decisions typically involve various forms of slope-based classification. Such methods are superior to traditional methods based on assessing absolute signals, but still have limitations. Herein, we establish performance benchmarks (total accuracy, sensitivity, and specificity) using common slope-based methods. We compare the performance of these benchmark methods with three different quadratic empirical distribution function statistical tests, finding significant improvements in diagnostic speed and accuracy when applied to a clinical data set. Two of the three statistical techniques, the Kolmogorov-Smirnov and Anderson-Darling tests, report the lowest time-to-result and highest total test accuracy. Furthermore, we developed a long short-term memory recurrent neural network to classify CRISPR-biosensing data, achieving 100% specificity on our model data set. Finally, we provide guidelines on choosing the classification method and classification method parameters that best suit a diagnostic assays needs.
comment: 25 pages, 5 figures, research paper. Nathan Khosla and Jake M. Lesinski contributed equally. Electronic supporting information is included as an appendix
☆ User Simulation in the Era of Generative AI: User Modeling, Synthetic Data Generation, and System Evaluation
User simulation is an emerging interdisciplinary topic with multiple critical applications in the era of Generative AI. It involves creating an intelligent agent that mimics the actions of a human user interacting with an AI system, enabling researchers to model and analyze user behaviour, generate synthetic data for training, and evaluate interactive AI systems in a controlled and reproducible manner. User simulation has profound implications for diverse fields and plays a vital role in the pursuit of Artificial General Intelligence. This paper provides an overview of user simulation, highlighting its key applications, connections to various disciplines, and outlining future research directions to advance this increasingly important technology.
☆ Lossless Privacy-Preserving Aggregation for Decentralized Federated Learning
Privacy concerns arise as sensitive data proliferate. Despite decentralized federated learning (DFL) aggregating gradients from neighbors to avoid direct data transmission, it still poses indirect data leaks from the transmitted gradients. Existing privacy-preserving methods for DFL add noise to gradients. They either diminish the model predictive accuracy or suffer from ineffective gradient protection. In this paper, we propose a novel lossless privacy-preserving aggregation rule named LPPA to enhance gradient protection as much as possible but without loss of DFL model predictive accuracy. LPPA subtly injects the noise difference between the sent and received noise into transmitted gradients for gradient protection. The noise difference incorporates neighbors' randomness for each client, effectively safeguarding against data leaks. LPPA employs the noise flow conservation theory to ensure that the noise impact can be globally eliminated. The global sum of all noise differences remains zero, ensuring that accurate gradient aggregation is unaffected and the model accuracy remains intact. We theoretically prove that the privacy-preserving capacity of LPPA is \sqrt{2} times greater than that of noise addition, while maintaining comparable model accuracy to the standard DFL aggregation without noise injection. Experimental results verify the theoretical findings and show that LPPA achieves a 13% mean improvement in accuracy over noise addition. We also demonstrate the effectiveness of LPPA in protecting raw data and guaranteeing lossless model accuracy.
☆ Rising Rested MAB with Linear Drift
We consider non-stationary multi-arm bandit (MAB) where the expected reward of each action follows a linear function of the number of times we executed the action. Our main result is a tight regret bound of $\tilde{\Theta}(T^{4/5}K^{3/5})$, by providing both upper and lower bounds. We extend our results to derive instance dependent regret bounds, which depend on the unknown parametrization of the linear drift of the rewards.
☆ Tracking UWB Devices Through Radio Frequency Fingerprinting Is Possible
Ultra-wideband (UWB) is a state-of-the-art technology designed for applications requiring centimeter-level localization. Its widespread adoption by smartphone manufacturer naturally raises security and privacy concerns. Successfully implementing Radio Frequency Fingerprinting (RFF) to UWB could enable physical layer security, but might also allow undesired tracking of the devices. The scope of this paper is to explore the feasibility of applying RFF to UWB and investigates how well this technique generalizes across different environments. We collected a realistic dataset using off-the-shelf UWB devices with controlled variation in device positioning. Moreover, we developed an improved deep learning pipeline to extract the hardware signature from the signal data. In stable conditions, the extracted RFF achieves over 99% accuracy. While the accuracy decreases in more changing environments, we still obtain up to 76% accuracy in untrained locations.
comment: conference ICNC'25, 7 pages, 7 figures
☆ The unbearable lightness of Restricted Boltzmann Machines: Theoretical Insights and Biological Applications
Restricted Boltzmann Machines are simple yet powerful neural networks. They can be used for learning structure in data, and are used as a building block of more complex neural architectures. At the same time, their simplicity makes them easy to use, amenable to theoretical analysis, yielding interpretable models in applications. Here, we focus on reviewing the role that the activation functions, describing the input-output relationship of single neurons in RBM, play in the functionality of these models. We discuss recent theoretical results on the benefits and limitations of different activation functions. We also review applications to biological data analysis, namely neural data analysis, where RBM units are mostly taken to have sigmoid activation functions and binary units, to protein data analysis and immunology where non-binary units and non-sigmoid activation functions have recently been shown to yield important insights into the data. Finally, we discuss open problems addressing which can shed light on broader issues in neural network research.
comment: 7 pages, 3 figures. To be published in EPL as di Sarra et al 2025 EPL. Accepted manuscript available online at https://doi.org/10.1209/0295-5075/ada636
☆ On Computational Limits and Provably Efficient Criteria of Visual Autoregressive Models: A Fine-Grained Complexity Analysis
Recently, Visual Autoregressive ($\mathsf{VAR}$) Models introduced a groundbreaking advancement in the field of image generation, offering a scalable approach through a coarse-to-fine "next-scale prediction" paradigm. However, the state-of-the-art algorithm of $\mathsf{VAR}$ models in [Tian, Jiang, Yuan, Peng and Wang, NeurIPS 2024] takes $O(n^4)$ time, which is computationally inefficient. In this work, we analyze the computational limits and efficiency criteria of $\mathsf{VAR}$ Models through a fine-grained complexity lens. Our key contribution is identifying the conditions under which $\mathsf{VAR}$ computations can achieve sub-quadratic time complexity. Specifically, we establish a critical threshold for the norm of input matrices used in $\mathsf{VAR}$ attention mechanisms. Above this threshold, assuming the Strong Exponential Time Hypothesis ($\mathsf{SETH}$) from fine-grained complexity theory, a sub-quartic time algorithm for $\mathsf{VAR}$ models is impossible. To substantiate our theoretical findings, we present efficient constructions leveraging low-rank approximations that align with the derived criteria. This work initiates the study of the computational efficiency of the $\mathsf{VAR}$ model from a theoretical perspective. Our technique will shed light on advancing scalable and efficient image generation in $\mathsf{VAR}$ frameworks.
☆ Decoding EEG Speech Perception with Transformers and VAE-based Data Augmentation
Decoding speech from non-invasive brain signals, such as electroencephalography (EEG), has the potential to advance brain-computer interfaces (BCIs), with applications in silent communication and assistive technologies for individuals with speech impairments. However, EEG-based speech decoding faces major challenges, such as noisy data, limited datasets, and poor performance on complex tasks like speech perception. This study attempts to address these challenges by employing variational autoencoders (VAEs) for EEG data augmentation to improve data quality and applying a state-of-the-art (SOTA) sequence-to-sequence deep learning architecture, originally successful in electromyography (EMG) tasks, to EEG-based speech decoding. Additionally, we adapt this architecture for word classification tasks. Using the Brennan dataset, which contains EEG recordings of subjects listening to narrated speech, we preprocess the data and evaluate both classification and sequence-to-sequence models for EEG-to-words/sentences tasks. Our experiments show that VAEs have the potential to reconstruct artificial EEG data for augmentation. Meanwhile, our sequence-to-sequence model achieves more promising performance in generating sentences compared to our classification model, though both remain challenging tasks. These findings lay the groundwork for future research on EEG speech perception decoding, with possible extensions to speech production tasks such as silent or imagined speech.
comment: 19 pages, 15 figures, 2 tables
☆ DeFusion: An Effective Decoupling Fusion Network for Multi-Modal Pregnancy Prediction
Temporal embryo images and parental fertility table indicators are both valuable for pregnancy prediction in \textbf{in vitro fertilization embryo transfer} (IVF-ET). However, current machine learning models cannot make full use of the complementary information between the two modalities to improve pregnancy prediction performance. In this paper, we propose a Decoupling Fusion Network called DeFusion to effectively integrate the multi-modal information for IVF-ET pregnancy prediction. Specifically, we propose a decoupling fusion module that decouples the information from the different modalities into related and unrelated information, thereby achieving a more delicate fusion. And we fuse temporal embryo images with a spatial-temporal position encoding, and extract fertility table indicator information with a table transformer. To evaluate the effectiveness of our model, we use a new dataset including 4046 cases collected from Southern Medical University. The experiments show that our model outperforms state-of-the-art methods. Meanwhile, the performance on the eye disease prediction dataset reflects the model's good generalization. Our code and dataset are available at https://github.com/Ou-Young-1999/DFNet.
☆ DCIts -- Deep Convolutional Interpreter for time series
We introduce an interpretable deep learning model for multivariate time series forecasting that prioritizes both predictive performance and interpretability - key requirements for understanding complex physical phenomena. Our model not only matches but often surpasses existing interpretability methods, achieving this without compromising accuracy. Through extensive experiments, we demonstrate its ability to identify the most relevant time series and lags that contribute to forecasting future values, providing intuitive and transparent explanations for its predictions. To minimize the need for manual supervision, the model is designed so one can robustly determine the optimal window size that captures all necessary interactions within the smallest possible time frame. Additionally, it effectively identifies the optimal model order, balancing complexity when incorporating higher-order terms. These advancements hold significant implications for modeling and understanding dynamic systems, making the model a valuable tool for applied and computational physicists.
comment: 37 pages, 15 figures
☆ AutoDFL: A Scalable and Automated Reputation-Aware Decentralized Federated Learning
Blockchained federated learning (BFL) combines the concepts of federated learning and blockchain technology to enhance privacy, security, and transparency in collaborative machine learning models. However, implementing BFL frameworks poses challenges in terms of scalability and cost-effectiveness. Reputation-aware BFL poses even more challenges, as blockchain validators are tasked with processing federated learning transactions along with the transactions that evaluate FL tasks and aggregate reputations. This leads to faster blockchain congestion and performance degradation. To improve BFL efficiency while increasing scalability and reducing on-chain reputation management costs, this paper proposes AutoDFL, a scalable and automated reputation-aware decentralized federated learning framework. AutoDFL leverages zk-Rollups as a Layer-2 scaling solution to boost the performance while maintaining the same level of security as the underlying Layer-1 blockchain. Moreover, AutoDFL introduces an automated and fair reputation model designed to incentivize federated learning actors. We develop a proof of concept for our framework for an accurate evaluation. Tested with various custom workloads, AutoDFL reaches an average throughput of over 3000 TPS with a gas reduction of up to 20X.
comment: Paper accepted at NOMS'2025 (pages 9, figures 5)
☆ VerifBFL: Leveraging zk-SNARKs for A Verifiable Blockchained Federated Learning
Blockchain-based Federated Learning (FL) is an emerging decentralized machine learning paradigm that enables model training without relying on a central server. Although some BFL frameworks are considered privacy-preserving, they are still vulnerable to various attacks, including inference and model poisoning. Additionally, most of these solutions employ strong trust assumptions among all participating entities or introduce incentive mechanisms to encourage collaboration, making them susceptible to multiple security flaws. This work presents VerifBFL, a trustless, privacy-preserving, and verifiable federated learning framework that integrates blockchain technology and cryptographic protocols. By employing zero-knowledge Succinct Non-Interactive Argument of Knowledge (zk-SNARKs) and incrementally verifiable computation (IVC), VerifBFL ensures the verifiability of both local training and aggregation processes. The proofs of training and aggregation are verified on-chain, guaranteeing the integrity and auditability of each participant's contributions. To protect training data from inference attacks, VerifBFL leverages differential privacy. Finally, to demonstrate the efficiency of the proposed protocols, we built a proof of concept using emerging tools. The results show that generating proofs for local training and aggregation in VerifBFL takes less than 81s and 2s, respectively, while verifying them on-chain takes less than 0.6s.
comment: Paper accepted at NOMS'25 (9 pages, 6 Figures)
☆ RoRA: Efficient Fine-Tuning of LLM with Reliability Optimization for Rank Adaptation ICASSP 2025
Fine-tuning helps large language models (LLM) recover degraded information and enhance task performance.Although Low-Rank Adaptation (LoRA) is widely used and effective for fine-tuning, we have observed that its scaling factor can limit or even reduce performance as the rank size increases. To address this issue, we propose RoRA (Rank-adaptive Reliability Optimization), a simple yet effective method for optimizing LoRA's scaling factor. By replacing $\alpha/r$ with $\alpha/\sqrt{r}$, RoRA ensures improved performance as rank size increases. Moreover, RoRA enhances low-rank adaptation in fine-tuning uncompressed models and excels in the more challenging task of accuracy recovery when fine-tuning pruned models. Extensive experiments demonstrate the effectiveness of RoRA in fine-tuning both uncompressed and pruned models. RoRA surpasses the state-of-the-art (SOTA) in average accuracy and robustness on LLaMA-7B/13B, LLaMA2-7B, and LLaMA3-8B, specifically outperforming LoRA and DoRA by 6.5% and 2.9% on LLaMA-7B, respectively. In pruned model fine-tuning, RoRA shows significant advantages; for SHEARED-LLAMA-1.3, a LLaMA-7B with 81.4% pruning, RoRA achieves 5.7% higher average accuracy than LoRA and 3.9% higher than DoRA.
comment: ICASSP 2025
☆ FSC-loss: A Frequency-domain Structure Consistency Learning Approach for Signal Data Recovery and Reconstruction
A core challenge for signal data recovery is to model the distribution of signal matrix (SM) data based on measured low-quality data in biomedical engineering of magnetic particle imaging (MPI). For acquiring the high-resolution (high-quality) SM, the number of meticulous measurements at numerous positions in the field-of-view proves time-consuming (measurement of a 37x37x37 SM takes about 32 hours). To improve reconstructed signal quality and shorten SM measurement time, existing methods explore to generating high-resolution SM based on time-saving measured low-resolution SM (a 9x9x9 SM just takes about 0.5 hours). However, previous methods show poor performance for high-frequency signal recovery in SM. To achieve a high-resolution SM recovery and shorten its acquisition time, we propose a frequency-domain structure consistency loss function and data component embedding strategy to model global and local structural information of SM. We adopt a transformer-based network to evaluate this function and the strategy. We evaluate our methods and state-of-the-art (SOTA) methods on the two simulation datasets and four public measured SMs in Open MPI Data. The results show that our method outperforms the SOTA methods in high-frequency structural signal recovery. Additionally, our method can recover a high-resolution SM with clear high-frequency structure based on a down-sampling factor of 16 less than 15 seconds, which accelerates the acquisition time over 60 times faster than the measurement-based HR SM with the minimum error (nRMSE=0.041). Moreover, our method is applied in our three in-house MPI systems, and boost their performance for signal reconstruction.
comment: 11 pages,7 figures
☆ Physics-Informed Super-Resolution Diffusion for 6D Phase Space Diagnostics
Adaptive physics-informed super-resolution diffusion is developed for non-invasive virtual diagnostics of the 6D phase space density of charged particle beams. An adaptive variational autoencoder (VAE) embeds initial beam condition images and scalar measurements to a low-dimensional latent space from which a 326 pixel 6D tensor representation of the beam's 6D phase space density is generated. Projecting from a 6D tensor generates physically consistent 2D projections. Physics-guided super-resolution diffusion transforms low-resolution images of the 6D density to high resolution 256x256 pixel images. Un-supervised adaptive latent space tuning enables tracking of time-varying beams without knowledge of time-varying initial conditions. The method is demonstrated with experimental data and multi-particle simulations at the HiRES UED. The general approach is applicable to a wide range of complex dynamic systems evolving in high-dimensional phase space. The method is shown to be robust to distribution shift without re-training.
☆ DGQ: Distribution-Aware Group Quantization for Text-to-Image Diffusion Models
Despite the widespread use of text-to-image diffusion models across various tasks, their computational and memory demands limit practical applications. To mitigate this issue, quantization of diffusion models has been explored. It reduces memory usage and computational costs by compressing weights and activations into lower-bit formats. However, existing methods often struggle to preserve both image quality and text-image alignment, particularly in lower-bit($<$ 8bits) quantization. In this paper, we analyze the challenges associated with quantizing text-to-image diffusion models from a distributional perspective. Our analysis reveals that activation outliers play a crucial role in determining image quality. Additionally, we identify distinctive patterns in cross-attention scores, which significantly affects text-image alignment. To address these challenges, we propose Distribution-aware Group Quantization (DGQ), a method that identifies and adaptively handles pixel-wise and channel-wise outliers to preserve image quality. Furthermore, DGQ applies prompt-specific logarithmic quantization scales to maintain text-image alignment. Our method demonstrates remarkable performance on datasets such as MS-COCO and PartiPrompts. We are the first to successfully achieve low-bit quantization of text-to-image diffusion models without requiring additional fine-tuning of weight quantization parameters.
comment: Project page: https://ugonfor.kr/DGQ
☆ Handling Incomplete Heterogeneous Data using a Data-Dependent Kernel
Handling incomplete data in real-world applications is a critical challenge due to two key limitations of existing methods: (i) they are primarily designed for numeric data and struggle with categorical or heterogeneous/mixed datasets; (ii) they assume that data is missing completely at random, which is often not the case in practice -- in reality, data is missing in patterns, leading to biased results if these patterns are not accounted for. To address these two limitations, this paper presents a novel approach to handling missing values using the Probability Mass Similarity Kernel (PMK), a data-dependent kernel, which does not make any assumptions about data types and missing mechanisms. It eliminates the need for prior knowledge or extensive pre-processing steps and instead leverages the distribution of observed data. Our method unifies the representation of diverse data types by capturing more meaningful pairwise similarities and enhancing downstream performance. We evaluated our approach across over 10 datasets with numerical-only, categorical-only, and mixed features under different missing mechanisms and rates. Across both classification and clustering tasks, our approach consistently outperformed existing techniques, demonstrating its robustness and effectiveness in managing incomplete heterogeneous data.
☆ Circuit Complexity Bounds for Visual Autoregressive Model
Understanding the expressive ability of a specific model is essential for grasping its capacity limitations. Recently, several studies have established circuit complexity bounds for Transformer architecture. Besides, the Visual AutoRegressive (VAR) model has risen to be a prominent method in the field of image generation, outperforming previous techniques, such as Diffusion Transformers, in generating high-quality images. We investigate the circuit complexity of the VAR model and establish a bound in this study. Our primary result demonstrates that the VAR model is equivalent to a simulation by a uniform $\mathsf{TC}^0$ threshold circuit with hidden dimension $d \leq O(n)$ and $\mathrm{poly}(n)$ precision. This is the first study to rigorously highlight the limitations in the expressive power of VAR models despite their impressive performance. We believe our findings will offer valuable insights into the inherent constraints of these models and guide the development of more efficient and expressive architectures in the future.
☆ MAD-UV: The 1st INTERSPEECH Mice Autism Detection via Ultrasound Vocalization Challenge
The Mice Autism Detection via Ultrasound Vocalization (MAD-UV) Challenge introduces the first INTERSPEECH challenge focused on detecting autism spectrum disorder (ASD) in mice through their vocalizations. Participants are tasked with developing models to automatically classify mice as either wild-type or ASD models based on recordings with a high sampling rate. Our baseline system employs a simple CNN-based classification using three different spectrogram features. Results demonstrate the feasibility of automated ASD detection, with the considered audible-range features achieving the best performance (UAR of 0.600 for segment-level and 0.625 for subject-level classification). This challenge bridges speech technology and biomedical research, offering opportunities to advance our understanding of ASD models through machine learning approaches. The findings suggest promising directions for vocalization analysis and highlight the potential value of audible and ultrasound vocalizations in ASD detection.
comment: 5 pages, 1 figure and 2 tables. For MAD-UV Challenge 2025
☆ An Analysis of Model Robustness across Concurrent Distribution Shifts
Machine learning models, meticulously optimized for source data, often fail to predict target data when faced with distribution shifts (DSs). Previous benchmarking studies, though extensive, have mainly focused on simple DSs. Recognizing that DSs often occur in more complex forms in real-world scenarios, we broadened our study to include multiple concurrent shifts, such as unseen domain shifts combined with spurious correlations. We evaluated 26 algorithms that range from simple heuristic augmentations to zero-shot inference using foundation models, across 168 source-target pairs from eight datasets. Our analysis of over 100K models reveals that (i) concurrent DSs typically worsen performance compared to a single shift, with certain exceptions, (ii) if a model improves generalization for one distribution shift, it tends to be effective for others, and (iii) heuristic data augmentations achieve the best overall performance on both synthetic and real-world datasets.
comment: Accepted to TMLR
☆ ElasticZO: A Memory-Efficient On-Device Learning with Combined Zeroth- and First-Order Optimization
Zeroth-order (ZO) optimization is being recognized as a simple yet powerful alternative to standard backpropagation (BP)-based training. Notably, ZO optimization allows for training with only forward passes and (almost) the same memory as inference, making it well-suited for edge devices with limited computing and memory resources. In this paper, we propose ZO-based on-device learning (ODL) methods for full-precision and 8-bit quantized deep neural networks (DNNs), namely ElasticZO and ElasticZO-INT8. ElasticZO lies in the middle between pure ZO- and pure BP-based approaches, and is based on the idea to employ BP for the last few layers and ZO for the remaining layers. ElasticZO-INT8 achieves integer arithmetic-only ZO-based training for the first time, by incorporating a novel method for computing quantized ZO gradients from integer cross-entropy loss values. Experimental results on the classification datasets show that ElasticZO effectively addresses the slow convergence of vanilla ZO and shrinks the accuracy gap to BP-based training. Compared to vanilla ZO, ElasticZO achieves 5.2-9.5% higher accuracy with only 0.072-1.7% memory overhead, and can handle fine-tuning tasks as well as full training. ElasticZO-INT8 further reduces the memory usage and training time by 1.46-1.60x and 1.38-1.42x without compromising the accuracy. These results demonstrate a better tradeoff between accuracy and training cost compared to pure ZO- and BP-based approaches, and also highlight the potential of ZO optimization in on-device learning.
☆ Mapping the Edge of Chaos: Fractal-Like Boundaries in The Trainability of Decoder-Only Transformer Models
In the realm of fractal geometry, intricate structures emerge from simple iterative processes that partition parameter spaces into regions of stability and instability. Likewise, training large language models involves iteratively applying update functions, such as Adam, where even slight hyperparameter adjustments can shift the training process from convergence to divergence. Recent evidence from miniature neural networks suggests that the boundary separating these outcomes displays fractal characteristics [1]. Building on these insights, this study extends them to medium-sized, decoder-only transformer architectures by employing a more consistent convergence measure and examining the learning rate hyperparameter landscape for attention and fully connected layers. The results show that the trainability frontier is not a simple threshold; rather, it forms a self-similar yet seemingly random structure at multiple scales, with statistically consistent and repeating patterns. Within this landscape, a region of stable convergence is surrounded by a complex chaotic border, illustrating the sensitive nature of the underlying training dynamics.
comment: 15 pages
☆ Cluster & Disperse: a general air conflict resolution heuristic using unsupervised learning
We provide a general and malleable heuristic for the air conflict resolution problem. This heuristic is based on a new neighborhood structure for searching the solution space of trajectories and flight-levels. Using unsupervised learning, the core idea of our heuristic is to cluster the conflict points and disperse them in various flight levels. Our first algorithm is called Cluster & Disperse and in each iteration it assigns the most problematic flights in each cluster to another flight-level. In effect, we shuffle them between the flight-levels until we achieve a well-balanced configuration. The Cluster & Disperse algorithm then uses any horizontal plane conflict resolution algorithm as a subroutine to solve these well-balanced instances. Nevertheless, we develop a novel algorithm for the horizontal plane based on a similar idea. That is we cluster and disperse the conflict points spatially in the same flight level using the gradient descent and a social force. We use a novel maneuver making flights travel on an arc instead of a straight path which is based on the aviation routine of the Radius to Fix legs. Our algorithms can handle a high density of flights within a reasonable computation time. We put their performance in context with some notable algorithms from the literature. Being a general framework, a particular strength of the Cluster & Disperse is its malleability in allowing various constraints regarding the aircraft or the environment to be integrated with ease. This is in contrast to the models for instance based on mixed integer programming.
☆ On weight and variance uncertainty in neural networks for regression tasks
We consider the problem of weight uncertainty proposed by [Blundell et al. (2015). Weight uncertainty in neural network. In International conference on machine learning, 1613-1622, PMLR.] in neural networks {(NNs)} specialized for regression tasks. {We further} investigate the effect of variance uncertainty in {their model}. We show that including the variance uncertainty can improve the prediction performance of the Bayesian {NN}. Variance uncertainty enhances the generalization of the model {by} considering the posterior distribution over the variance parameter. { We examine the generalization ability of the proposed model using a function approximation} example and {further illustrate it with} the riboflavin genetic data set. {We explore fully connected dense networks and dropout NNs with} Gaussian and spike-and-slab priors, respectively, for the network weights.
comment: Submitted to journal
♻ ☆ Click2Mask: Local Editing with Dynamic Mask Generation AAAI 2025
Recent advancements in generative models have revolutionized image generation and editing, making these tasks accessible to non-experts. This paper focuses on local image editing, particularly the task of adding new content to a loosely specified area. Existing methods often require a precise mask or a detailed description of the location, which can be cumbersome and prone to errors. We propose Click2Mask, a novel approach that simplifies the local editing process by requiring only a single point of reference (in addition to the content description). A mask is dynamically grown around this point during a Blended Latent Diffusion (BLD) process, guided by a masked CLIP-based semantic loss. Click2Mask surpasses the limitations of segmentation-based and fine-tuning dependent methods, offering a more user-friendly and contextually accurate solution. Our experiments demonstrate that Click2Mask not only minimizes user effort but also enables competitive or superior local image manipulations compared to SoTA methods, according to both human judgement and automatic metrics. Key contributions include the simplification of user input, the ability to freely add objects unconstrained by existing segments, and the integration potential of our dynamic mask approach within other editing methods.
comment: Accepted to AAAI 2025. Project page is available at https://omeregev.github.io/click2mask/
♻ ☆ $O(k)$-Equivariant Dimensionality Reduction on Stiefel Manifolds
Many real-world datasets live on high-dimensional Stiefel and Grassmannian manifolds, $V_k(\mathbb{R}^N)$ and $Gr(k, \mathbb{R}^N)$ respectively, and benefit from projection onto lower-dimensional Stiefel and Grassmannian manifolds. In this work, we propose an algorithm called \textit{Principal Stiefel Coordinates (PSC)} to reduce data dimensionality from $ V_k(\mathbb{R}^N)$ to $V_k(\mathbb{R}^n)$ in an \textit{$O(k)$-equivariant} manner ($k \leq n \ll N$). We begin by observing that each element $\alpha \in V_n(\mathbb{R}^N)$ defines an isometric embedding of $V_k(\mathbb{R}^n)$ into $V_k(\mathbb{R}^N)$. Next, we describe two ways of finding a suitable embedding map $\alpha$: one via an extension of principal component analysis ($\alpha_{PCA}$), and one that further minimizes data fit error using gradient descent ($\alpha_{GD}$). Then, we define a continuous and $O(k)$-equivariant map $\pi_\alpha$ that acts as a "closest point operator" to project the data onto the image of $V_k(\mathbb{R}^n)$ in $V_k(\mathbb{R}^N)$ under the embedding determined by $\alpha$, while minimizing distortion. Because this dimensionality reduction is $O(k)$-equivariant, these results extend to Grassmannian manifolds as well. Lastly, we show that $\pi_{\alpha_{PCA}}$ globally minimizes projection error in a noiseless setting, while $\pi_{\alpha_{GD}}$ achieves a meaningfully different and improved outcome when the data does not lie exactly on the image of a linearly embedded lower-dimensional Stiefel manifold as above. Multiple numerical experiments using synthetic and real-world data are performed.
comment: 26 pages, 8 figures, comments welcome!
♻ ☆ GLoG-CSUnet: Enhancing Vision Transformers with Adaptable Radiomic Features for Medical Image Segmentation
Vision Transformers (ViTs) have shown promise in medical image semantic segmentation (MISS) by capturing long-range correlations. However, ViTs often struggle to model local spatial information effectively, which is essential for accurately segmenting fine anatomical details, particularly when applied to small datasets without extensive pre-training. We introduce Gabor and Laplacian of Gaussian Convolutional Swin Network (GLoG-CSUnet), a novel architecture enhancing Transformer-based models by incorporating learnable radiomic features. This approach integrates dynamically adaptive Gabor and Laplacian of Gaussian (LoG) filters to capture texture, edge, and boundary information, enhancing the feature representation processed by the Transformer model. Our method uniquely combines the long-range dependency modeling of Transformers with the texture analysis capabilities of Gabor and LoG features. Evaluated on the Synapse multi-organ and ACDC cardiac segmentation datasets, GLoG-CSUnet demonstrates significant improvements over state-of-the-art models, achieving a 1.14% increase in Dice score for Synapse and 0.99% for ACDC, with minimal computational overhead (only 15 and 30 additional parameters, respectively). GLoG-CSUnet's flexible design allows integration with various base models, offering a promising approach for incorporating radiomics-inspired feature extraction in Transformer architectures for medical image analysis. The code implementation is available on GitHub at: https://github.com/HAAIL/GLoG-CSUnet.
♻ ☆ GABAR: Graph Attention-Based Action Ranking for Relational Policy Learning
We propose a novel approach to learn relational policies for classical planning based on learning to rank actions. We introduce a new graph representation that explicitly captures action information and propose a Graph Neural Network architecture augmented with Gated Recurrent Units (GRUs) to learn action rankings. Our model is trained on small problem instances and generalizes to significantly larger instances where traditional planning becomes computationally expensive. Experimental results across standard planning benchmarks demonstrate that our action-ranking approach achieves generalization to significantly larger problems than those used in training.
comment: 6 Pages, 1 figure. Updated acknowledgments
♻ ☆ Hierarchical Object-Oriented POMDP Planning for Object Rearrangement
We present an online planning framework for solving multi-object rearrangement problems in partially observable, multi-room environments. Current object rearrangement solutions, primarily based on Reinforcement Learning or hand-coded planning methods, often lack adaptability to diverse challenges. To address this limitation, we introduce a novel Hierarchical Object-Oriented Partially Observed Markov Decision Process (HOO-POMDP) planning approach. This approach comprises of (a) an object-oriented POMDP planner generating sub-goals, (b) a set of low-level policies for sub-goal achievement, and (c) an abstraction system converting the continuous low-level world into a representation suitable for abstract planning. We evaluate our system on varying numbers of objects, rooms, and problem types in AI2-THOR simulated environments with promising results.
comment: 17 pages, 2 Figures. Preprint. Updated acknowledgments
♻ ☆ Correlated Privacy Mechanisms for Differentially Private Distributed Mean Estimation
Differentially private distributed mean estimation (DP-DME) is a fundamental building block in privacy-preserving federated learning, where a central server estimates the mean of $d$-dimensional vectors held by $n$ users while ensuring $(\epsilon,\delta)$-DP. Local differential privacy (LDP) and distributed DP with secure aggregation (SA) are the most common notions of DP used in DP-DME settings with an untrusted server. LDP provides strong resilience to dropouts, colluding users, and adversarial attacks, but suffers from poor utility. In contrast, SA-based DP-DME achieves an $O(n)$ utility gain over LDP in DME, but requires increased communication and computation overheads and complex multi-round protocols to handle dropouts and attacks. In this work, we present a generalized framework for DP-DME, that captures LDP and SA-based mechanisms as extreme cases. Our framework provides a foundation for developing and analyzing a variety of DP-DME protocols that leverage correlated privacy mechanisms across users. To this end, we propose CorDP-DME, a novel DP-DME mechanism based on the correlated Gaussian mechanism, that spans the gap between DME with LDP and distributed DP. We prove that CorDP-DME offers a favorable balance between utility and resilience to dropout and collusion. We provide an information-theoretic analysis of CorDP-DME, and derive theoretical guarantees for utility under any given privacy parameters and dropout/colluding user thresholds. Our results demonstrate that (anti) correlated Gaussian DP mechanisms can significantly improve utility in mean estimation tasks compared to LDP -- even in adversarial settings -- while maintaining better resilience to dropouts and attacks compared to distributed DP.
♻ ☆ Representation Shattering in Transformers: A Synthetic Study with Knowledge Editing
Knowledge Editing (KE) algorithms alter models' weights to perform targeted updates to incorrect, outdated, or otherwise unwanted factual associations. To better identify the possibilities and limitations of these approaches, recent work has shown that applying KE can adversely affect models' factual recall accuracy and diminish their general reasoning abilities. While these studies give broad insights into the potential harms of KE algorithms, e.g., via performance evaluations on benchmarks, we argue little is understood as to why such destructive failures occur. Is it possible KE methods distort representations of concepts beyond the targeted fact, hence hampering abilities at broad? If so, what is the extent of this distortion? Motivated by such questions, we define a novel synthetic task wherein a Transformer is trained from scratch to internalize a "structured" knowledge graph. The structure enforces relationships between entities of the graph, such that editing a factual association has "trickling effects" on other entities in the graph (e.g., altering X's parent is Y to Z affects who X's siblings' parent is). Through evaluations of edited models and analysis of extracted representations, we show that KE inadvertently affects representations of entities beyond the targeted one, distorting relevant structures that allow a model to infer unseen knowledge about an entity. We call this phenomenon representation shattering and demonstrate that it results in degradation of factual recall and reasoning performance more broadly. To corroborate our findings in a more naturalistic setup, we perform preliminary experiments with pre-trained Llama and Mamba models, reproducing the representation shattering effect therein as well. Overall, our work yields a precise mechanistic hypothesis to explain why KE has adverse effects on model abilities.
comment: Under review
♻ ☆ Diffusion Map Autoencoder
In this work, we explore various modifications to diffusion maps (DMAP), including their incorporation into a layered sequential neural network model trained with gradient descent. The result is a sequential neural network that inherits the interpretability of diffusion maps.
♻ ☆ Fast and Interpretable Mortality Risk Scores for Critical Care Patients
Prediction of mortality in intensive care unit (ICU) patients typically relies on black box models (that are unacceptable for use in hospitals) or hand-tuned interpretable models (that might lead to the loss in performance). We aim to bridge the gap between these two categories by building on modern interpretable ML techniques to design interpretable mortality risk scores that are as accurate as black boxes. We developed a new algorithm, GroupFasterRisk, which has several important benefits: it uses both hard and soft direct sparsity regularization, it incorporates group sparsity to allow more cohesive models, it allows for monotonicity constraint to include domain knowledge, and it produces many equally-good models, which allows domain experts to choose among them. For evaluation, we leveraged the largest existing public ICU monitoring datasets (MIMIC III and eICU). Models produced by GroupFasterRisk outperformed OASIS and SAPS II scores and performed similarly to APACHE IV/IVa while using at most a third of the parameters. For patients with sepsis/septicemia, acute myocardial infarction, heart failure, and acute kidney failure, GroupFasterRisk models outperformed OASIS and SOFA. Finally, different mortality prediction ML approaches performed better based on variables selected by GroupFasterRisk as compared to OASIS variables. GroupFasterRisk's models performed better than risk scores currently used in hospitals, and on par with black box ML models, while being orders of magnitude sparser. Because GroupFasterRisk produces a variety of risk scores, it allows design flexibility - the key enabler of practical model creation. GroupFasterRisk is a fast, accessible, and flexible procedure that allows learning a diverse set of sparse risk scores for mortality prediction.
comment: This article has been accepted for publication in the Journal of the American Medical Informatics Association, published by Oxford University Press
♻ ☆ Forget Vectors at Play: Universal Input Perturbations Driving Machine Unlearning in Image Classification
Machine unlearning (MU), which seeks to erase the influence of specific unwanted data from already-trained models, is becoming increasingly vital in model editing, particularly to comply with evolving data regulations like the ``right to be forgotten''. Conventional approaches are predominantly model-based, typically requiring retraining or fine-tuning the model's weights to meet unlearning requirements. In this work, we approach the MU problem from a novel input perturbation-based perspective, where the model weights remain intact throughout the unlearning process. We demonstrate the existence of a proactive input-based unlearning strategy, referred to forget vector, which can be generated as an input-agnostic data perturbation and remains as effective as model-based approximate unlearning approaches. We also explore forget vector arithmetic, whereby multiple class-specific forget vectors are combined through simple operations (e.g., linear combinations) to generate new forget vectors for unseen unlearning tasks, such as forgetting arbitrary subsets across classes. Extensive experiments validate the effectiveness and adaptability of the forget vector, showcasing its competitive performance relative to state-of-the-art model-based methods. Codes are available at https://github.com/Changchangsun/Forget-Vector.
♻ ☆ Generative manufacturing systems using diffusion models and ChatGPT
In this study, we introduce Generative Manufacturing Systems (GMS) as a novel approach to effectively manage and coordinate autonomous manufacturing assets, thereby enhancing their responsiveness and flexibility to address a wide array of production objectives and human preferences. Deviating from traditional explicit modeling, GMS employs generative AI, including diffusion models and ChatGPT, for implicit learning from envisioned futures, marking a shift from a model-optimum to a training-sampling decision-making. Through the integration of generative AI, GMS enables complex decision-making through interactive dialogue with humans, allowing manufacturing assets to generate multiple high-quality global decisions that can be iteratively refined based on human feedback. Empirical findings showcase GMS's substantial improvement in system resilience and responsiveness to uncertainties, with decision times reduced from seconds to milliseconds. The study underscores the inherent creativity and diversity in the generated solutions, facilitating human-centric decision-making through seamless and continuous human-machine interactions.
comment: We are withdrawing this preprint to incorporate significant new results and expand the scope of the paper. We plan to resubmit a substantially revised version in the near future
♻ ☆ Mask-Weighted Spatial Likelihood Coding for Speaker-Independent Joint Localization and Mask Estimation
Due to their robustness and flexibility, neural-driven beamformers are a popular choice for speech separation in challenging environments with a varying amount of simultaneous speakers alongside noise and reverberation. Time-frequency masks and relative directions of the speakers regarding a fixed spatial grid can be used to estimate the beamformer's parameters. To some degree, speaker-independence is achieved by ensuring a greater amount of spatial partitions than speech sources. In this work, we analyze how to encode both mask and positioning into such a grid to enable joint estimation of both quantities. We propose mask-weighted spatial likelihood coding and show that it achieves considerable performance in both tasks compared to baseline encodings optimized for either localization or mask estimation. In the same setup, we demonstrate superiority for joint estimation of both quantities. Conclusively, we propose a universal approach which can replace an upstream sound source localization system solely by adapting the training framework, making it highly relevant in performance-critical scenarios.
comment: \copyright 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
♻ ☆ Entropy-Guided Attention for Private LLMs AAAI
The pervasiveness of proprietary language models has raised critical privacy concerns, necessitating advancements in private inference (PI), where computations are performed directly on encrypted data without revealing users' sensitive information. While PI offers a promising solution, its practical deployment is hindered by substantial communication and latency overheads, primarily stemming from nonlinear operations. To address this, we introduce an information-theoretic framework to characterize the role of nonlinearities in decoder-only language models, laying a principled foundation for optimizing transformer-architectures tailored to the demands of PI. By leveraging Shannon's entropy as a quantitative measure, we uncover the previously unexplored dual significance of nonlinearities: beyond ensuring training stability, they are crucial for maintaining attention head diversity. Specifically, we find that their removal triggers two critical failure modes: {\em entropy collapse} in deeper layers that destabilizes training, and {\em entropic overload} in earlier layers that leads to under-utilization of Multi-Head Attention's (MHA) representational capacity. We propose an entropy-guided attention mechanism paired with a novel entropy regularization technique to mitigate entropic overload. Additionally, we explore PI-friendly alternatives to layer normalization for preventing entropy collapse and stabilizing the training of LLMs with reduced-nonlinearities. Our study bridges the gap between information theory and architectural design, establishing entropy dynamics as a principled guide for developing efficient PI architectures. The code and implementation are available at https://github.com/Nandan91/entropy-guided-attention-llm
comment: Accepted to the 6th AAAI Workshop on Privacy-Preserving Artificial Intelligence (PPAI), 2025. arXiv admin note: substantial text overlap with arXiv:2410.13060
♻ ☆ Most Influential Subset Selection: Challenges, Promises, and Beyond NeurIPS 2024
How can we attribute the behaviors of machine learning models to their training data? While the classic influence function sheds light on the impact of individual samples, it often fails to capture the more complex and pronounced collective influence of a set of samples. To tackle this challenge, we study the Most Influential Subset Selection (MISS) problem, which aims to identify a subset of training samples with the greatest collective influence. We conduct a comprehensive analysis of the prevailing approaches in MISS, elucidating their strengths and weaknesses. Our findings reveal that influence-based greedy heuristics, a dominant class of algorithms in MISS, can provably fail even in linear regression. We delineate the failure modes, including the errors of influence function and the non-additive structure of the collective influence. Conversely, we demonstrate that an adaptive version of these heuristics which applies them iteratively, can effectively capture the interactions among samples and thus partially address the issues. Experiments on real-world datasets corroborate these theoretical findings and further demonstrate that the merit of adaptivity can extend to more complex scenarios such as classification tasks and non-linear neural networks. We conclude our analysis by emphasizing the inherent trade-off between performance and computational efficiency, questioning the use of additive metrics such as the Linear Datamodeling Score, and offering a range of discussions.
comment: Accepted at the 38th Conference on Neural Information Processing Systems (NeurIPS 2024) Edit: Added discussion on a concurrent work
♻ ☆ Forecasting Symmetric Random Walks: A Fusion Approach
Forecasting random walks is notoriously challenging, with na\"ive prediction serving as a difficult-to-surpass baseline. To investigate the potential of using movement predictions to improve point forecasts in this context, this study focuses on symmetric random walks, in which the target variable's future value is reformulated as a combination of its future movement and current value. The proposed forecasting method, termed the fusion of movement and na\"ive predictions (FMNP), is grounded in this reformulation. The simulation results show that FMNP achieves statistically significant improvements over na\"ive prediction, even when the movement prediction accuracy is only slightly above 0.50. In practice, movement predictions can be derived from the comovement between an exogenous variable and the target variable and then linearly combined with the na\"ive prediction to generate the final forecast. FMNP effectiveness was evaluated on four U.S. financial time series -- the close prices of Boeing (BA), Brent crude oil (OIL), Halliburton (HAL), and Schlumberger (SLB) -- using the open price of the Financial Times Stock Exchange (FTSE) index as the exogenous variable. In all the cases, FMNP outperformed the na\"ive prediction, demonstrating its efficacy in forecasting symmetric random walks and its potential applicability to other forecasting tasks.
♻ ☆ GSVD-NMF: Recovering Missing Features in Non-negative Matrix Factorization
Non-negative matrix factorization (NMF) is an important tool in signal processing and widely used to separate mixed sources into their components. Algorithms for NMF require that the user choose the number of components in advance, and if the results are unsatisfying one typically needs to start again with a different number of components. To make NMF more interactive and incremental, here we introduce GSVD-NMF, a method that proposes new components based on the generalized singular value decomposition (GSVD) to address discrepancies between the initial under-complete NMF results and the SVD of the original matrix. Simulation and experimental results demonstrate that GSVD-NMF often effectively recovers multiple missing components in under-complete NMF, with the recovered NMF solutions frequently reaching better local optima. The results further show that GSVD-NMF is compatible with various NMF algorithms and that directly augmenting components is more efficient than rerunning NMF from scratch with additional components. By deliberately starting from under-complete NMF, GSVD-NMF has the potential to be a recommended approach for a range of general NMF applications.
♻ ☆ Differentially Private Online Federated Learning with Correlated Noise
We introduce a novel differentially private algorithm for online federated learning that employs temporally correlated noise to enhance utility while ensuring privacy of continuously released models. To address challenges posed by DP noise and local updates with streaming non-iid data, we develop a perturbed iterate analysis to control the impact of the DP noise on the utility. Moreover, we demonstrate how the drift errors from local updates can be effectively managed under a quasi-strong convexity condition. Subject to an $(\epsilon, \delta)$-DP budget, we establish a dynamic regret bound over the entire time horizon, quantifying the impact of key parameters and the intensity of changes in dynamic environments. Numerical experiments confirm the efficacy of the proposed algorithm.
comment: 11 pages
♻ ☆ Locally Differentially Private Online Federated Learning With Correlated Noise
We introduce a locally differentially private (LDP) algorithm for online federated learning that employs temporally correlated noise to improve utility while preserving privacy. To address challenges posed by the correlated noise and local updates with streaming non-IID data, we develop a perturbed iterate analysis that controls the impact of the noise on the utility. Moreover, we demonstrate how the drift errors from local updates can be effectively managed for several classes of nonconvex loss functions. Subject to an $(\epsilon,\delta)$-LDP budget, we establish a dynamic regret bound that quantifies the impact of key parameters and the intensity of changes in the dynamic environment on the learning performance. Numerical experiments confirm the efficacy of the proposed algorithm.
comment: arXiv admin note: text overlap with arXiv:2403.16542
♻ ☆ Analyzing Country-Level Vaccination Rates and Determinants of Practical Capacity to Administer COVID-19 Vaccines
The COVID-19 vaccine development, manufacturing, transportation, and administration proved an extreme logistics operation of global magnitude. Global vaccination levels, however, remain a key concern in preventing the emergence of new strains and minimizing the impact of the pandemic's disruption of daily life. In this paper, country-level vaccination rates are analyzed through a queuing framework to extract service rates that represent the practical capacity of a country to administer vaccines. These rates are further characterized through regression and interpretable machine learning methods with country-level demographic, governmental, and socio-economic variates. Model results show that participation in multi-governmental collaborations such as COVAX may improve the ability to vaccinate. Similarly, improved transportation and accessibility variates such as roads per area for low-income countries and rail lines per area for high-income countries can improve rates. It was also found that for low-income countries specifically, improvements in basic and health infrastructure (as measured through spending on healthcare, number of doctors and hospital beds per 100k, population percent with access to electricity, life expectancy, and vehicles per 1000 people) resulted in higher vaccination rates. Of the high-income countries, those with larger 65-plus populations struggled to vaccinate at high rates, indicating potential accessibility issues for the elderly. This study finds that improving basic and health infrastructure, focusing on accessibility in the last mile, particularly for the elderly, and fostering global partnerships can improve logistical operations of such a scale. Such structural impediments and inequities in global health care must be addressed in preparation for future global public health crises.
comment: Under consideration for more thorough analysis
♻ ☆ The Mamba in the Llama: Distilling and Accelerating Hybrid Models NeurIPS 2024
Linear RNN architectures, like Mamba, can be competitive with Transformer models in language modeling while having advantageous deployment characteristics. Given the focus on training large-scale Transformer models, we consider the challenge of converting these pretrained models for deployment. We demonstrate that it is feasible to distill large Transformers into linear RNNs by reusing the linear projection weights from attention layers with academic GPU resources. The resulting hybrid model, which incorporates a quarter of the attention layers, achieves performance comparable to the original Transformer in chat benchmarks and outperforms open-source hybrid Mamba models trained from scratch with trillions of tokens in both chat benchmarks and general benchmarks. Moreover, we introduce a hardware-aware speculative decoding algorithm that accelerates the inference speed of Mamba and hybrid models. Overall we show how, with limited computation resources, we can remove many of the original attention layers and generate from the resulting model more efficiently. Our top-performing model, distilled from Llama3-8B-Instruct, achieves a 29.61 length-controlled win rate on AlpacaEval 2 against GPT-4 and 7.35 on MT-Bench, surpassing the best 8B scale instruction-tuned linear RNN model. We also find that the distilled model has natural length extrapolation, showing almost perfect accuracy in the needle-in-a-haystack test at 20x the distillation length. Code and pre-trained checkpoints are open-sourced at https://github.com/jxiw/MambaInLlama and https://github.com/itsdaniele/speculative_mamba.
comment: NeurIPS 2024. v3 updates: fix format errors
♻ ☆ Deliberative Alignment: Reasoning Enables Safer Language Models
As large-scale language models increasingly impact safety-critical domains, ensuring their reliable adherence to well-defined principles remains a fundamental challenge. We introduce Deliberative Alignment, a new paradigm that directly teaches the model safety specifications and trains it to explicitly recall and accurately reason over the specifications before answering. We used this approach to align OpenAI's o-series models, and achieved highly precise adherence to OpenAI's safety policies, without requiring human-written chain-of-thoughts or answers. Deliberative Alignment pushes the Pareto frontier by simultaneously increasing robustness to jailbreaks while decreasing overrefusal rates, and also improves out-of-distribution generalization. We demonstrate that reasoning over explicitly specified policies enables more scalable, trustworthy, and interpretable alignment.
comment: 24 pages
♻ ☆ MADGEN: Mass-Spec attends to De Novo Molecular generation
The annotation (assigning structural chemical identities) of MS/MS spectra remains a significant challenge due to the enormous molecular diversity in biological samples and the limited scope of reference databases. Currently, the vast majority of spectral measurements remain in the "dark chemical space" without structural annotations. To improve annotation, we propose MADGEN (Mass-spec Attends to De Novo Molecular GENeration), a scaffold-based method for de novo molecular structure generation guided by mass spectrometry data. MADGEN operates in two stages: scaffold retrieval and spectra-conditioned molecular generation starting with the scaffold. In the first stage, given an MS/MS spectrum, we formulate scaffold retrieval as a ranking problem and employ contrastive learning to align mass spectra with candidate molecular scaffolds. In the second stage, starting from the retrieved scaffold, we employ the MS/MS spectrum to guide an attention-based generative model to generate the final molecule. Our approach constrains the molecular generation search space, reducing its complexity and improving generation accuracy. We evaluate MADGEN on three datasets (NIST23, CANOPUS, and MassSpecGym) and evaluate MADGEN's performance with a predictive scaffold retriever and with an oracle retriever. We demonstrate the effectiveness of using attention to integrate spectral information throughout the generation process to achieve strong results with the oracle retriever.
comment: preprint
♻ ☆ Generative AI Policies under the Microscope: How CS Conferences Are Navigating the New Frontier in Scholarly Writing
This paper explores the current state of generative AI policies of computer science conferences and offers guidelines for policy adoption.
♻ ☆ Literature Meets Data: A Synergistic Approach to Hypothesis Generation
AI holds promise for transforming scientific processes, including hypothesis generation. Prior work on hypothesis generation can be broadly categorized into theory-driven and data-driven approaches. While both have proven effective in generating novel and plausible hypotheses, it remains an open question whether they can complement each other. To address this, we develop the first method that combines literature-based insights with data to perform LLM-powered hypothesis generation. We apply our method on five different datasets and demonstrate that integrating literature and data outperforms other baselines (8.97\% over few-shot, 15.75\% over literature-based alone, and 3.37\% over data-driven alone). Additionally, we conduct the first human evaluation to assess the utility of LLM-generated hypotheses in assisting human decision-making on two challenging tasks: deception detection and AI generated content detection. Our results show that human accuracy improves significantly by 7.44\% and 14.19\% on these tasks, respectively. These findings suggest that integrating literature-based and data-driven approaches provides a comprehensive and nuanced framework for hypothesis generation and could open new avenues for scientific inquiry.
comment: 37 pages, 9 figures, code link: https://github.com/ChicagoHAI/hypothesis-generation
♻ ☆ Manifolds, Random Matrices and Spectral Gaps: The geometric phases of generative diffusion
In this paper, we investigate the latent geometry of generative diffusion models under the manifold hypothesis. For this purpose, we analyze the spectrum of eigenvalues (and singular values) of the Jacobian of the score function, whose discontinuities (gaps) reveal the presence and dimensionality of distinct sub-manifolds. Using a statistical physics approach, we derive the spectral distributions and formulas for the spectral gaps under several distributional assumptions, and we compare these theoretical predictions with the spectra estimated from trained networks. Our analysis reveals the existence of three distinct qualitative phases during the generative process: a trivial phase; a manifold coverage phase where the diffusion process fits the distribution internal to the manifold; a consolidation phase where the score becomes orthogonal to the manifold and all particles are projected on the support of the data. This `division of labor' between different timescales provides an elegant explanation of why generative diffusion models are not affected by the manifold overfitting phenomenon that plagues likelihood-based models, since the internal distribution and the manifold geometry are produced at different time points during generation.
♻ ☆ LiLMaps: Learnable Implicit Language Maps
One of the current trends in robotics is to employ large language models (LLMs) to provide non-predefined command execution and natural human-robot interaction. It is useful to have an environment map together with its language representation, which can be further utilized by LLMs. Such a comprehensive scene representation enables numerous ways of interaction with the map for autonomously operating robots. In this work, we present an approach that enhances incremental implicit mapping through the integration of vision-language features. Specifically, we (i) propose a decoder optimization technique for implicit language maps which can be used when new objects appear on the scene, and (ii) address the problem of inconsistent vision-language predictions between different viewing positions. Our experiments demonstrate the effectiveness of LiLMaps and solid improvements in performance.
♻ ☆ The Indoor-Training Effect: unexpected gains from distribution shifts in the transition function
Is it better to perform tennis training in a pristine indoor environment or a noisy outdoor one? To model this problem, here we investigate whether shifts in the transition probabilities between the training and testing environments in reinforcement learning problems can lead to better performance under certain conditions. We generate new Markov Decision Processes (MDPs) starting from a given MDP, by adding quantifiable, parametric noise into the transition function. We refer to this process as Noise Injection and the resulting environments as {\delta}-environments. This process allows us to create variations of the same environment with quantitative control over noise serving as a metric of distance between environments. Conventional wisdom suggests that training and testing on the same MDP should yield the best results. In stark contrast, we observe that agents can perform better when trained on the noise-free environment and tested on the noisy {\delta}-environments, compared to training and testing on the same {\delta}-environments. We confirm that this finding extends beyond noise variations: it is possible to showcase the same phenomenon in ATARI game variations including varying Ghost behaviour in PacMan, and Paddle behaviour in Pong. We demonstrate this intriguing behaviour across 60 different variations of ATARI games, including PacMan, Pong, and Breakout. We refer to this phenomenon as the Indoor-Training Effect. Code to reproduce our experiments and to implement Noise Injection can be found at https://bit.ly/3X6CTYk.
♻ ☆ Boosting Column Generation with Graph Neural Networks for Joint Rider Trip Planning and Crew Shift Scheduling
Optimizing service schedules is pivotal to the reliable, efficient, and inclusive on-demand mobility. This pressing challenge is further exacerbated by the increasing needs of an aging population, the oversubscription of existing services, and the lack of effective solution methods. This study addresses the intricacies of service scheduling, by jointly optimizing rider trip planning and crew scheduling for a complex dynamic mobility service. The resulting optimization problems are extremely challenging computationally for state-of-the-art methods. To address this fundamental gap, this paper introduces the Joint Rider Trip Planning and Crew Shift Scheduling Problem (JRTPCSSP) and a novel solution method, called Attention and Gated GNN-Informed Column Generation (AGGNNI-CG), that hybridizes column generation and machine learning to obtain near-optimal solutions to the JRTPCSSP with real-life constraints of the application. The key idea of the machine-learning component is to dramatically reduce the number of paths to explore in the pricing problem, accelerating the most time-consuming component of the column generation. The machine learning component is a graph neural network with an attention mechanism and a gated architecture, which is particularly suited to cater for the different input sizes coming from daily operations. AGGNNI-CG has been applied to a challenging, real-world dataset from the Paratransit system of Chatham County in Georgia. It produces substantial improvements compared to the baseline column generation approach, which typically cannot produce high-quality feasible solutions in reasonable time on large-scale complex instances. AGGNNI-CG also produces significant improvements in service quality compared to the existing system.
♻ ☆ Asymptotic Inference for Multi-Stage Stationary Treatment Policy with Variable Selection
Dynamic treatment regimes or policies are a sequence of decision functions over multiple stages that are tailored to individual features. One important class of treatment policies in practice, namely multi-stage stationary treatment policies, prescribes treatment assignment probabilities using the same decision function across stages, where the decision is based on the same set of features consisting of time-evolving variables (e.g., routinely collected disease biomarkers). Although there has been extensive literature on constructing valid inference for the value function associated with dynamic treatment policies, little work has focused on the policies themselves, especially in the presence of high-dimensional feature variables. We aim to fill the gap in this work. Specifically, we first estimate the multi-stage stationary treatment policy using an augmented inverse probability weighted estimator for the value function to increase asymptotic efficiency, and further apply a penalty to select important feature variables. We then construct one-step improvements of the policy parameter estimators for valid inference. Theoretically, we show that the improved estimators are asymptotically normal, even if nuisance parameters are estimated at a slow convergence rate and the dimension of the feature variables increases with the sample size. Our numerical studies demonstrate that the proposed method estimates a sparse policy with a near-optimal value function and conducts valid inference for the policy parameters.
♻ ☆ Mixture-of-Experts Graph Transformers for Interpretable Particle Collision Detection
The Large Hadron Collider at CERN produces immense volumes of complex data from high-energy particle collisions, demanding sophisticated analytical techniques for effective interpretation. Neural Networks, including Graph Neural Networks, have shown promise in tasks such as event classification and object identification by representing collisions as graphs. However, while Graph Neural Networks excel in predictive accuracy, their "black box" nature often limits their interpretability, making it difficult to trust their decision-making processes. In this paper, we propose a novel approach that combines a Graph Transformer model with Mixture-of-Expert layers to achieve high predictive performance while embedding interpretability into the architecture. By leveraging attention maps and expert specialization, the model offers insights into its internal decision-making, linking predictions to physics-informed features. We evaluate the model on simulated events from the ATLAS experiment, focusing on distinguishing rare Supersymmetric signal events from Standard Model background. Our results highlight that the model achieves competitive classification accuracy while providing interpretable outputs that align with known physics, demonstrating its potential as a robust and transparent tool for high-energy physics data analysis. This approach underscores the importance of explainability in machine learning methods applied to high energy physics, offering a path toward greater trust in AI-driven discoveries.
♻ ☆ Offline Reinforcement Learning for Learning to Dispatch for Job Shop Scheduling
The Job Shop Scheduling Problem (JSSP) is a complex combinatorial optimization problem. While online Reinforcement Learning (RL) has shown promise by quickly finding acceptable solutions for JSSP, it faces key limitations: it requires extensive training interactions from scratch leading to sample inefficiency, cannot leverage existing high-quality solutions, and often yields suboptimal results compared to traditional methods like Constraint Programming (CP). We introduce Offline Reinforcement Learning for Learning to Dispatch (Offline-LD), which addresses these limitations by learning from previously generated solutions. Our approach is motivated by scenarios where historical scheduling data and expert solutions are available, although our current evaluation focuses on benchmark problems. Offline-LD adapts two CQL-based Q-learning methods (mQRDQN and discrete mSAC) for maskable action spaces, introduces a novel entropy bonus modification for discrete SAC, and exploits reward normalization through preprocessing. Our experiments demonstrate that Offline-LD outperforms online RL on both generated and benchmark instances. Notably, by introducing noise into the expert dataset, we achieve similar or better results than those obtained from the expert dataset, suggesting that a more diverse training set is preferable because it contains counterfactual information.
comment: Code available at https://github.com/jesserem/Offline-LD
♻ ☆ Rethinking the Capacity of Graph Neural Networks for Branching Strategy
Graph neural networks (GNNs) have been widely used to predict properties and heuristics of mixed-integer linear programs (MILPs) and hence accelerate MILP solvers. This paper investigates the capacity of GNNs to represent strong branching (SB), the most effective yet computationally expensive heuristic employed in the branch-and-bound algorithm. In the literature, message-passing GNN (MP-GNN), as the simplest GNN structure, is frequently used as a fast approximation of SB and we find that not all MILPs's SB can be represented with MP-GNN. We precisely define a class of "MP-tractable" MILPs for which MP-GNNs can accurately approximate SB scores. Particularly, we establish a universal approximation theorem: for any data distribution over the MP-tractable class, there always exists an MP-GNN that can approximate the SB score with arbitrarily high accuracy and arbitrarily high probability, which lays a theoretical foundation of the existing works on imitating SB with MP-GNN. For MILPs without the MP-tractability, unfortunately, a similar result is impossible, which can be illustrated by two MILP instances with different SB scores that cannot be distinguished by any MP-GNN, regardless of the number of parameters. Recognizing this, we explore another GNN structure called the second-order folklore GNN (2-FGNN) that overcomes this limitation, and the aforementioned universal approximation theorem can be extended to the entire MILP space using 2-FGNN, regardless of the MP-tractability. A small-scale numerical experiment is conducted to directly validate our theoretical findings.
♻ ☆ Towards Realistic Evaluation of Commit Message Generation by Matching Online and Offline Settings ICSE'2025
When a Commit Message Generation (CMG) system is integrated into the IDEs and other products at JetBrains, we perform online evaluation based on user acceptance of the generated messages. However, performing online experiments with every change to a CMG system is troublesome, as each iteration affects users and requires time to collect enough statistics. On the other hand, offline evaluation, a prevalent approach in the research literature, facilitates fast experiments but employs automatic metrics that are not guaranteed to represent the preferences of real users. In this work, we describe a novel way we employed to deal with this problem at JetBrains, by leveraging an online metric - the number of edits users introduce before committing the generated messages to the VCS - to select metrics for offline experiments. To support this new type of evaluation, we develop a novel markup collection tool mimicking the real workflow with a CMG system, collect a dataset with 57 pairs consisting of commit messages generated by GPT-4 and their counterparts edited by human experts, and design and verify a way to synthetically extend such a dataset. Then, we use the final dataset of 656 pairs to study how the widely used similarity metrics correlate with the online metric reflecting the real users' experience. Our results indicate that edit distance exhibits the highest correlation with the online metric, whereas commonly used similarity metrics such as BLEU and METEOR demonstrate low correlation. This contradicts the previous studies on similarity metrics for CMG, suggesting that user interactions with a CMG system in real-world settings differ significantly from the responses by human labelers within controlled environments. We release all the code and the dataset to support future research in the field: https://jb.gg/cmg-evaluation.
comment: 10 pages, 5 figures (Published at ICSE'2025)
♻ ☆ Deep Multi-Objective Reinforcement Learning for Utility-Based Infrastructural Maintenance Optimization
In this paper, we introduce Multi-Objective Deep Centralized Multi-Agent Actor-Critic (MO- DCMAC), a multi-objective reinforcement learning (MORL) method for infrastructural maintenance optimization, an area traditionally dominated by single-objective reinforcement learning (RL) approaches. Previous single-objective RL methods combine multiple objectives, such as probability of collapse and cost, into a singular reward signal through reward-shaping. In contrast, MO-DCMAC can optimize a policy for multiple objectives directly, even when the utility function is non-linear. We evaluated MO-DCMAC using two utility functions, which use probability of collapse and cost as input. The first utility function is the Threshold utility, in which MO-DCMAC should minimize cost so that the probability of collapse is never above the threshold. The second is based on the Failure Mode, Effects, and Criticality Analysis (FMECA) methodology used by asset managers to asses maintenance plans. We evaluated MO-DCMAC, with both utility functions, in multiple maintenance environments, including ones based on a case study of the historical quay walls of Amsterdam. The performance of MO-DCMAC was compared against multiple rule-based policies based on heuristics currently used for constructing maintenance plans. Our results demonstrate that MO-DCMAC outperforms traditional rule-based policies across various environments and utility functions.
comment: Accepted in the Neural Computing and Applications: Topical Collection on Multi-Objective Decision Making 2023 (MODeM 2023)
♻ ☆ SWEPO: Simultaneous Weighted Preference Optimization for Group Contrastive Alignment
We introduce Simultaneous Weighted Preference Optimization (SWEPO), a novel extension of Direct Preference Optimization (DPO) designed to accommodate multiple dynamically chosen positive and negative responses for each query. SWEPO employs a weighted group contrastive loss, assigning weights to responses based on their deviation from the mean reward score. This approach effectively prioritizes responses that are significantly better or worse than the average, enhancing optimization. Our theoretical analysis demonstrates that simultaneously considering multiple preferences reduces alignment bias, resulting in more robust alignment. Additionally, we provide insights into the training dynamics of our loss function and a related function, InfoNCA. Empirical validation on the UltraFeedback dataset establishes SWEPO as state-of-the-art, with superior performance in downstream evaluations using the AlpacaEval dataset.
♻ ☆ Evaluating Time Series Foundation Models on Noisy Periodic Time Series
While recent advancements in foundation models have significantly impacted machine learning, rigorous tests on the performance of time series foundation models (TSFMs) remain largely underexplored. This paper presents an empirical study evaluating the zero-shot, long-horizon forecasting abilities of several leading TSFMs over two synthetic datasets constituting noisy periodic time series. We assess model efficacy across different noise levels, underlying frequencies, and sampling rates. As benchmarks for comparison, we choose two statistical techniques: a Fourier transform (FFT)-based approach and a linear autoregressive (AR) model. Our findings demonstrate that while for time series with bounded periods and higher sampling rates, TSFMs can match or outperform the statistical approaches, their forecasting abilities deteriorate with longer periods, higher noise levels, lower sampling rates and more complex shapes of the time series.
♻ ☆ Rad4XCNN: a new agnostic method for post-hoc global explanation of CNN-derived features by means of radiomics
In recent years, machine learning-based clinical decision support systems (CDSS) have played a key role in the analysis of several medical conditions. Despite their promising capabilities, the lack of transparency in AI models poses significant challenges, particularly in medical contexts where reliability is a mandatory aspect. However, it appears that explainability is inversely proportional to accuracy. For this reason, achieving transparency without compromising predictive accuracy remains a key challenge. This paper presents a novel method, namely Rad4XCNN, to enhance the predictive power of CNN-derived features with the inherent interpretability of radiomic features. Rad4XCNN diverges from conventional methods based on saliency maps, by associating intelligible meaning to CNN-derived features by means of Radiomics, offering new perspectives on explanation methods beyond visualization maps. Using a breast cancer classification task as a case study, we evaluated Rad4XCNN on ultrasound imaging datasets, including an online dataset and two in-house datasets for internal and external validation. Some key results are: i) CNN-derived features guarantee more robust accuracy when compared against ViT-derived and radiomic features; ii) conventional visualization map methods for explanation present several pitfalls; iii) Rad4XCNN does not sacrifice model accuracy for their explainability; iv) Rad4XCNN provides a global explanation enabling the physician to extract global insights and findings. Our method can mitigate some concerns related to the explainability-accuracy trade-off. This study highlighted the importance of proposing new methods for model explanation without affecting their accuracy.
♻ ☆ VideoRefer Suite: Advancing Spatial-Temporal Object Understanding with Video LLM
Video Large Language Models (Video LLMs) have recently exhibited remarkable capabilities in general video understanding. However, they mainly focus on holistic comprehension and struggle with capturing fine-grained spatial and temporal details. Besides, the lack of high-quality object-level video instruction data and a comprehensive benchmark further hinders their advancements. To tackle these challenges, we introduce the VideoRefer Suite to empower Video LLM for finer-level spatial-temporal video understanding, i.e., enabling perception and reasoning on any objects throughout the video. Specially, we thoroughly develop VideoRefer Suite across three essential aspects: dataset, model, and benchmark. Firstly, we introduce a multi-agent data engine to meticulously curate a large-scale, high-quality object-level video instruction dataset, termed VideoRefer-700K. Next, we present the VideoRefer model, which equips a versatile spatial-temporal object encoder to capture precise regional and sequential representations. Finally, we meticulously create a VideoRefer-Bench to comprehensively assess the spatial-temporal understanding capability of a Video LLM, evaluating it across various aspects. Extensive experiments and analyses demonstrate that our VideoRefer model not only achieves promising performance on video referring benchmarks but also facilitates general video understanding capabilities.
comment: 17 pages, 14 figures, technical report
♻ ☆ The Race to Efficiency: A New Perspective on AI Scaling Laws
As large-scale AI models expand, training becomes costlier and sustaining progress grows harder. Classical scaling laws (e.g., Kaplan et al. (2020), Hoffmann et al. (2022)) predict training loss from a static compute budget yet neglect time and efficiency, prompting the question: how can we balance ballooning GPU fleets with rapidly improving hardware and algorithms? We introduce the relative-loss equation, a time- and efficiency-aware framework that extends classical AI scaling laws. Our model shows that, without ongoing efficiency gains, advanced performance could demand millennia of training or unrealistically large GPU fleets. However, near-exponential progress remains achievable if the "efficiency-doubling rate" parallels Moore's Law. By formalizing this race to efficiency, we offer a quantitative roadmap for balancing front-loaded GPU investments with incremental improvements across the AI stack. Empirical trends suggest that sustained efficiency gains can push AI scaling well into the coming decade, providing a new perspective on the diminishing returns inherent in classical scaling.
comment: 21 pages, 3 figures. 2 tables, second draft
♻ ☆ Tutorial on Diffusion Models for Imaging and Vision
The astonishing growth of generative tools in recent years has empowered many exciting applications in text-to-image generation and text-to-video generation. The underlying principle behind these generative tools is the concept of diffusion, a particular sampling mechanism that has overcome some shortcomings that were deemed difficult in the previous approaches. The goal of this tutorial is to discuss the essential ideas underlying the diffusion models. The target audience of this tutorial includes undergraduate and graduate students who are interested in doing research on diffusion models or applying these models to solve other problems.
♻ ☆ Learning from Ambiguous Data with Hard Labels ICASSP 2025
Real-world data often contains intrinsic ambiguity that the common single-hard-label annotation paradigm ignores. Standard training using ambiguous data with these hard labels may produce overly confident models and thus leading to poor generalization. In this paper, we propose a novel framework called Quantized Label Learning (QLL) to alleviate this issue. First, we formulate QLL as learning from (very) ambiguous data with hard labels: ideally, each ambiguous instance should be associated with a ground-truth soft-label distribution describing its corresponding probabilistic weight in each class, however, this is usually not accessible; in practice, we can only observe a quantized label, i.e., a hard label sampled (quantized) from the corresponding ground-truth soft-label distribution, of each instance, which can be seen as a biased approximation of the ground-truth soft-label. Second, we propose a Class-wise Positive-Unlabeled (CPU) risk estimator that allows us to train accurate classifiers from only ambiguous data with quantized labels. Third, to simulate ambiguous datasets with quantized labels in the real world, we design a mixing-based ambiguous data generation procedure for empirical evaluation. Experiments demonstrate that our CPU method can significantly improve model generalization performance and outperform the baselines.
comment: 9 pages, 4 figures, accepted by ICASSP 2025
♻ ☆ Scaling-laws for Large Time-series Models
Scaling laws for large language models (LLMs) have provided useful guidance in training ever larger models for predictable performance gains. Time series forecasting shares a similar sequential structure to language, and is amenable to large-scale transformer architectures. Here we show that foundational decoder-only time series transformer models exhibit analogous scaling-behavior to LLMs, with architectural details (aspect ratio and number of heads) having a minimal effect over broad ranges. We assemble a large corpus of heterogenous time series data on which to train, and establish for the first time power-law scaling with parameter count, dataset size, and training compute, spanning five orders of magnitude.
comment: 4 main pages (16 total), 4 figures; Accepted for oral presentation in Time Series in the Age of Large Models (TSALM) Workshop at Neurips 2024
♻ ☆ Energy-based Hopfield Boosting for Out-of-Distribution Detection NeurIPS 2024
Out-of-distribution (OOD) detection is critical when deploying machine learning models in the real world. Outlier exposure methods, which incorporate auxiliary outlier data in the training process, can drastically improve OOD detection performance compared to approaches without advanced training strategies. We introduce Hopfield Boosting, a boosting approach, which leverages modern Hopfield energy (MHE) to sharpen the decision boundary between the in-distribution and OOD data. Hopfield Boosting encourages the model to concentrate on hard-to-distinguish auxiliary outlier examples that lie close to the decision boundary between in-distribution and auxiliary outlier data. Our method achieves a new state-of-the-art in OOD detection with outlier exposure, improving the FPR95 metric from 2.28 to 0.92 on CIFAR-10 and from 11.76 to 7.94 on CIFAR-100.
comment: NeurIPS 2024
♻ ☆ Efficient Video-Based ALPR System Using YOLO and Visual Rhythm CVPR 2024
Automatic License Plate Recognition (ALPR) involves extracting vehicle license plate information from image or a video capture. These systems have gained popularity due to the wide availability of low-cost surveillance cameras and advances in Deep Learning. Typically, video-based ALPR systems rely on multiple frames to detect the vehicle and recognize the license plates. Therefore, we propose a system capable of extracting exactly one frame per vehicle and recognizing its license plate characters from this singular image using an Optical Character Recognition (OCR) model. Early experiments show that this methodology is viable.
comment: Accepted to CVPR 2024
♻ ☆ AutoSTF: Decoupled Neural Architecture Search for Cost-Effective Automated Spatio-Temporal Forecasting KDD 2025
Spatio-temporal forecasting is a critical component of various smart city applications, such as transportation optimization, energy management, and socio-economic analysis. Recently, several automated spatio-temporal forecasting methods have been proposed to automatically search the optimal neural network architecture for capturing complex spatio-temporal dependencies. However, the existing automated approaches suffer from expensive neural architecture search overhead, which hinders their practical use and the further exploration of diverse spatio-temporal operators in a finer granularity. In this paper, we propose AutoSTF, a decoupled automatic neural architecture search framework for cost-effective automated spatio-temporal forecasting. From the efficiency perspective, we first decouple the mixed search space into temporal space and spatial space and respectively devise representation compression and parameter-sharing schemes to mitigate the parameter explosion. The decoupled spatio-temporal search not only expedites the model optimization process but also leaves new room for more effective spatio-temporal dependency modeling. From the effectiveness perspective, we propose a multi-patch transfer module to jointly capture multi-granularity temporal dependencies and extend the spatial search space to enable finer-grained layer-wise spatial dependency search. Extensive experiments on eight datasets demonstrate the superiority of AutoSTF in terms of both accuracy and efficiency. Specifically, our proposed method achieves up to 13.48x speed-up compared to state-of-the-art automatic spatio-temporal forecasting methods while maintaining the best forecasting accuracy.
comment: Accepted by KDD 2025 Research Track
♻ ☆ Edge-Wise Graph-Instructed Neural Networks
The problem of multi-task regression over graph nodes has been recently approached through Graph-Instructed Neural Network (GINN), which is a promising architecture belonging to the subset of message-passing graph neural networks. In this work, we discuss the limitations of the Graph-Instructed (GI) layer, and we formalize a novel edge-wise GI (EWGI) layer. We discuss the advantages of the EWGI layer and we provide numerical evidence that EWGINNs perform better than GINNs over some graph-structured input data, like the ones inferred from the Barabasi-Albert graph, and improve the training regularization on graphs with chaotic connectivity, like the ones inferred from the Erdos-Renyi graph.
♻ ☆ Analyzing Consumer IoT Traffic from Security and Privacy Perspectives: a Comprehensive Survey
The Consumer Internet of Things (CIoT), a notable segment within the IoT domain, involves the integration of IoT technology into consumer electronics and devices, such as smart homes and smart wearables. Compared to traditional IoT fields, CIoT differs notably in target users, product types, and design approaches. While offering convenience to users, it also raises new security and privacy concerns. Network traffic analysis, a widely used technique in the security community, has been extensively applied to investigate these concerns about CIoT. Compared to network traffic analysis in other fields such as mobile apps and websites, CIoT presents unique characteristics, introducing new challenges and research opportunities. Researchers have made significant contributions in this area. To aid researchers in understanding the application of traffic analysis tools for studying CIoT security and privacy risks, this survey reviews 303 publications on traffic analysis within the CIoT security and privacy domain from January 2018 to June 2024, focusing on three research questions. Our work: 1) outlines the CIoT traffic analysis process and highlights its differences from general network traffic analysis. 2) summarizes and classifies existing research into four categories according to its application objectives: device fingerprinting, user activity inference, malicious traffic detection, and measurement. 3) explores emerging challenges and potential future research directions based on each step of the CIoT traffic analysis process. This will provide new insights to the community and guide the industry towards safer product designs.
♻ ☆ Parallelized Midpoint Randomization for Langevin Monte Carlo
We study the problem of sampling from a target probability density function in frameworks where parallel evaluations of the log-density gradient are feasible. Focusing on smooth and strongly log-concave densities, we revisit the parallelized randomized midpoint method and investigate its properties using recently developed techniques for analyzing its sequential version. Through these techniques, we derive upper bounds on the Wasserstein distance between sampling and target densities. These bounds quantify the substantial runtime improvements achieved through parallel processing.
comment: arXiv admin note: substantial text overlap with arXiv:2306.08494
♻ ☆ Multi-Fidelity Bayesian Optimization With Across-Task Transferable Max-Value Entropy Search
In many applications, ranging from logistics to engineering, a designer is faced with a sequence of optimization tasks for which the objectives are in the form of black-box functions that are costly to evaluate. Furthermore, higher-fidelity evaluations of the optimization objectives often entail a larger cost. Existing multi-fidelity black-box optimization strategies select candidate solutions and fidelity levels with the goal of maximizing the information about the optimal value or the optimal solution for the current task. Assuming that successive optimization tasks are related, this paper introduces a novel information-theoretic acquisition function that balances the need to acquire information about the current task with the goal of collecting information transferable to future tasks. The proposed method transfers across tasks distributions over parameters of a Gaussian process surrogate model by implementing particle-based variational Bayesian updates. Theoretical insights based on the analysis of the expected regret substantiate the benefits of acquiring transferable knowledge across tasks. Furthermore, experimental results across synthetic and real-world examples reveal that the proposed acquisition strategy that caters to future tasks can significantly improve the optimization efficiency as soon as a sufficient number of tasks is processed.
comment: 17 pages, 10 figures, published in IEEE Transactions on Signal Processing
♻ ☆ Rethinking Byzantine Robustness in Federated Recommendation from Sparse Aggregation Perspective AAAI 2025
To preserve user privacy in recommender systems, federated recommendation (FR) based on federated learning (FL) emerges, keeping the personal data on the local client and updating a model collaboratively. Unlike FL, FR has a unique sparse aggregation mechanism, where the embedding of each item is updated by only partial clients, instead of full clients in a dense aggregation of general FL. Recently, as an essential principle of FL, model security has received increasing attention, especially for Byzantine attacks, where malicious clients can send arbitrary updates. The problem of exploring the Byzantine robustness of FR is particularly critical since in the domains applying FR, e.g., e-commerce, malicious clients can be injected easily by registering new accounts. However, existing Byzantine works neglect the unique sparse aggregation of FR, making them unsuitable for our problem. Thus, we make the first effort to investigate Byzantine attacks on FR from the perspective of sparse aggregation, which is non-trivial: it is not clear how to define Byzantine robustness under sparse aggregations and design Byzantine attacks under limited knowledge/capability. In this paper, we reformulate the Byzantine robustness under sparse aggregation by defining the aggregation for a single item as the smallest execution unit. Then we propose a family of effective attack strategies, named Spattack, which exploit the vulnerability in sparse aggregation and are categorized along the adversary's knowledge and capability. Extensive experimental results demonstrate that Spattack can effectively prevent convergence and even break down defenses under a few malicious clients, raising alarms for securing FR systems.
comment: accepted by AAAI 2025
♻ ☆ Bridging Simplicity and Sophistication using GLinear: A Novel Architecture for Enhanced Time Series Prediction
Time Series Forecasting (TSF) is an important application across many fields. There is a debate about whether Transformers, despite being good at understanding long sequences, struggle with preserving temporal relationships in time series data. Recent research suggests that simpler linear models might outperform or at least provide competitive performance compared to complex Transformer-based models for TSF tasks. In this paper, we propose a novel data-efficient architecture, GLinear, for multivariate TSF that exploits periodic patterns to provide better accuracy. It also provides better prediction accuracy by using a smaller amount of historical data compared to other state-of-the-art linear predictors. Four different datasets (ETTh1, Electricity, Traffic, and Weather) are used to evaluate the performance of the proposed predictor. A performance comparison with state-of-the-art linear architectures (such as NLinear, DLinear, and RLinear) and transformer-based time series predictor (Autoformer) shows that the GLinear, despite being parametrically efficient, significantly outperforms the existing architectures in most cases of multivariate TSF. We hope that the proposed GLinear opens new fronts of research and development of simpler and more sophisticated architectures for data and computationally efficient time-series analysis.
comment: Submitted to IEEE Transactions on Emerging Topics in Computational Intelligence
♻ ☆ From Dense to Sparse: Event Response for Enhanced Residential Load Forecasting
Residential load forecasting (RLF) is crucial for resource scheduling in power systems. Most existing methods utilize all given load records (dense data) to indiscriminately extract the dependencies between historical and future time series. However, there exist important regular patterns residing in the event-related associations among different appliances (sparse knowledge), which have yet been ignored. In this paper, we propose an Event-Response Knowledge Guided approach (ERKG) for RLF by incorporating the estimation of electricity usage events for different appliances, mining event-related sparse knowledge from the load series. With ERKG, the event-response estimation enables portraying the electricity consumption behaviors of residents, revealing regular variations in appliance operational states. To be specific, ERKG consists of knowledge extraction and guidance: i) a forecasting model is designed for the electricity usage events by estimating appliance operational states, aiming to extract the event-related sparse knowledge; ii) a novel knowledge-guided mechanism is established by fusing such state estimates of the appliance events into the RLF model, which can give particular focuses on the patterns of users' electricity consumption behaviors. Notably, ERKG can flexibly serve as a plug-in module to boost the capability of existing forecasting models by leveraging event response. In numerical experiments, extensive comparisons and ablation studies have verified the effectiveness of our ERKG, e.g., over 8% MAE can be reduced on the tested state-of-the-art forecasting models.
comment: 12 pages and 6 figures. Accepted for publication by IEEE Transactions on Instrumentation and Measurement
♻ ☆ Full Line Code Completion: Bringing AI to Desktop ICSE'25
In recent years, several industrial solutions for the problem of multi-token code completion appeared, each making a great advance in the area but mostly focusing on cloud-based runtime and avoiding working on the end user's device. In this work, we describe our approach for building a multi-token code completion feature for the JetBrains' IntelliJ Platform, which we call Full Line Code Completion. The feature suggests only syntactically correct code and works fully locally, i.e., data querying and the generation of suggestions happens on the end user's machine. We share important time and memory-consumption restrictions, as well as design principles that a code completion engine should satisfy. Working entirely on the end user's device, our code completion engine enriches user experience while being not only fast and compact but also secure. We share a number of useful techniques to meet the stated development constraints and also describe offline and online evaluation pipelines that allowed us to make better decisions. Our online evaluation shows that the usage of the tool leads to 1.3 times more Python code in the IDE being produced by code completion. The described solution was initially started with a help of researchers and was then bundled into all JetBrains IDEs where it is now used by millions of users. Thus, we believe that this work is useful for bridging academia and industry, providing researchers with the knowledge of what happens when complex research-based solutions are integrated into real products.
comment: Published at ICSE'25. 12 pages, 4 figures
♻ ☆ Hardness of Learning Fixed Parities with Neural Networks
Learning parity functions is a canonical problem in learning theory, which although computationally tractable, is not amenable to standard learning algorithms such as gradient-based methods. This hardness is usually explained via statistical query lower bounds [Kearns, 1998]. However, these bounds only imply that for any given algorithm, there is some worst-case parity function that will be hard to learn. Thus, they do not explain why fixed parities - say, the full parity function over all coordinates - are difficult to learn in practice, at least with standard predictors and gradient-based methods [Abbe and Boix-Adsera, 2022]. In this paper, we address this open problem, by showing that for any fixed parity of some minimal size, using it as a target function to train one-hidden-layer ReLU networks with perturbed gradient descent will fail to produce anything meaningful. To establish this, we prove a new result about the decay of the Fourier coefficients of linear threshold (or weighted majority) functions, which may be of independent interest.
comment: An updated version was uploaded in order to fix a typo at theorem 2 statement
♻ ☆ ENCODE: Encoding NetFlows for Network Anomaly Detection
NetFlow data is a popular network log format used by many network analysts and researchers. The advantages of using NetFlow over deep packet inspection are that it is easier to collect and process, and it is less privacy intrusive. Many works have used machine learning to detect network attacks using NetFlow data. The first step for these machine learning pipelines is to pre-process the data before it is given to the machine learning algorithm. Many approaches exist to pre-process NetFlow data; however, these simply apply existing methods to the data, not considering the specific properties of network data. We argue that for data originating from software systems, such as NetFlow or software logs, similarities in frequency and contexts of feature values are more important than similarities in the value itself. In this work, we propose an encoding algorithm that directly takes the frequency and the context of the feature values into account when the data is being processed. Different types of network behaviours can be clustered using this encoding, thus aiding the process of detecting anomalies within the network. We train several machine learning models for anomaly detection using the data that has been encoded with our encoding algorithm. We evaluate the effectiveness of our encoding on a new dataset that we created for network attacks on Kubernetes clusters and two well-known public NetFlow datasets. We empirically demonstrate that the machine learning models benefit from using our encoding for anomaly detection.
comment: 11 pages, 17 figures
♻ ☆ Multilevel Picard approximations and deep neural networks with ReLU, leaky ReLU, and softplus activation overcome the curse of dimensionality when approximating semilinear parabolic partial differential equations in $L^p$-sense
We prove that multilevel Picard approximations and deep neural networks with ReLU, leaky ReLU, and softplus activation are capable of approximating solutions of semilinear Kolmogorov PDEs in $L^\mathfrak{p}$-sense, $\mathfrak{p}\in [2,\infty)$, in the case of gradient-independent, Lipschitz-continuous nonlinearities, while the computational effort of the multilevel Picard approximations and the required number of parameters in the neural networks grow at most polynomially in both dimension $d\in \mathbb{N}$ and reciprocal of the prescribed accuracy $\epsilon$.
♻ ☆ Stochastic normalizing flows for Effective String Theory
Effective String Theory (EST) is a powerful tool used to study confinement in pure gauge theories by modeling the confining flux tube connecting a static quark-anti-quark pair as a thin vibrating string. Recently, flow-based samplers have been applied as an efficient numerical method to study EST regularized on the lattice, opening the route to study observables previously inaccessible to standard analytical methods. Flow-based samplers are a class of algorithms based on Normalizing Flows (NFs), deep generative models recently proposed as a promising alternative to traditional Markov Chain Monte Carlo methods in lattice field theory calculations. By combining NF layers with out-of-equilibrium stochastic updates, we obtain Stochastic Normalizing Flows (SNFs), a scalable class of machine learning algorithms that can be explained in terms of stochastic thermodynamics. In this contribution, we outline EST and SNFs, and report some numerical results for the shape of the flux tube.
comment: 1+ 10 pages, 2 figures, contribution for the 41st International Symposium on Lattice Field Theory (Lattice 2024), 28 July - 3 August 2024, Liverpool, UK; v2: 1+ 10 pages, 2 figures, reference added
♻ ☆ Reorganizing attention-space geometry with expressive attention
Attention regulates information transfer between tokens. For this, query and key vectors are compared, typically in terms of a scalar product, $\mathbf{Q}^T\mathbf{K}$, together with a subsequent softmax normalization. In geometric terms, the standard dot-product attention (DPA) leads to large/small attention weights for parallel/antiparallel queries and keys. Here we study expressive attention (EA), which is based on $(\mathbf{Q}^T\mathbf{K})^2$, the squared dot product. In this case, attention is enhanced when query and key are either parallel or antiparallel, and suppressed for orthogonal configurations. EA can be introduced into any attention-based code without additional compute costs or memory requirements. For a series of autoregressive prediction tasks, we find that expressive attention performs at least as well as vanilla DPA. Increasing task complexity, EA is observed to outperform DPA with increasing margins, which also holds for multi-task settings. For a given model size, EA manages to achieve 100% performance for a range of complexity levels not accessible to DPA. Our results show that it is possible to reorganize the geometry of the matching condition in the space of attention heads without loss of performance.
♻ ☆ Toxicity Detection towards Adaptability to Changing Perturbations
Toxicity detection is crucial for maintaining the peace of the society. While existing methods perform well on normal toxic contents or those generated by specific perturbation methods, they are vulnerable to evolving perturbation patterns. However, in real-world scenarios, malicious users tend to create new perturbation patterns for fooling the detectors. For example, some users may circumvent the detector of large language models (LLMs) by adding `I am a scientist' at the beginning of the prompt. In this paper, we introduce a novel problem, i.e., continual learning jailbreak perturbation patterns, into the toxicity detection field. To tackle this problem, we first construct a new dataset generated by 9 types of perturbation patterns, 7 of them are summarized from prior work and 2 of them are developed by us. We then systematically validate the vulnerability of current methods on this new perturbation pattern-aware dataset via both the zero-shot and fine tuned cross-pattern detection. Upon this, we present the domain incremental learning paradigm and the corresponding benchmark to ensure the detector's robustness to dynamically emerging types of perturbed toxic text. Our code and dataset are provided in the appendix and will be publicly available at GitHub, by which we wish to offer new research opportunities for the security-relevant communities.
♻ ☆ Entropy-regularized Diffusion Policy with Q-Ensembles for Offline Reinforcement Learning
This paper presents advanced techniques of training diffusion policies for offline reinforcement learning (RL). At the core is a mean-reverting stochastic differential equation (SDE) that transfers a complex action distribution into a standard Gaussian and then samples actions conditioned on the environment state with a corresponding reverse-time SDE, like a typical diffusion policy. We show that such an SDE has a solution that we can use to calculate the log probability of the policy, yielding an entropy regularizer that improves the exploration of offline datasets. To mitigate the impact of inaccurate value functions from out-of-distribution data points, we further propose to learn the lower confidence bound of Q-ensembles for more robust policy improvement. By combining the entropy-regularized diffusion policy with Q-ensembles in offline RL, our method achieves state-of-the-art performance on most tasks in D4RL benchmarks. Code is available at https://github.com/ruoqizzz/Entropy-Regularized-Diffusion-Policy-with-QEnsemble.
♻ ☆ Rethinking Adversarial Attacks in Reinforcement Learning from Policy Distribution Perspective
Deep Reinforcement Learning (DRL) suffers from uncertainties and inaccuracies in the observation signal in realworld applications. Adversarial attack is an effective method for evaluating the robustness of DRL agents. However, existing attack methods targeting individual sampled actions have limited impacts on the overall policy distribution, particularly in continuous action spaces. To address these limitations, we propose the Distribution-Aware Projected Gradient Descent attack (DAPGD). DAPGD uses distribution similarity as the gradient perturbation input to attack the policy network, which leverages the entire policy distribution rather than relying on individual samples. We utilize the Bhattacharyya distance in DAPGD to measure policy similarity, enabling sensitive detection of subtle but critical differences between probability distributions. Our experiment results demonstrate that DAPGD achieves SOTA results compared to the baselines in three robot navigation tasks, achieving an average 22.03% higher reward drop compared to the best baseline.
comment: 10 pages, 2 figures, 2 tables
♻ ☆ Can We Enhance the Quality of Mobile Crowdsensing Data Without Ground Truth?
Mobile crowdsensing (MCS) has emerged as a prominent trend across various domains. However, ensuring the quality of the sensing data submitted by mobile users (MUs) remains a complex and challenging problem. To address this challenge, an advanced method is needed to detect low-quality sensing data and identify malicious MUs that may disrupt the normal operations of an MCS system. Therefore, this article proposes a prediction- and reputation-based truth discovery (PRBTD) framework, which can separate low-quality data from high-quality data in sensing tasks. First, we apply a correlation-focused spatio-temporal Transformer network that learns from the historical sensing data and predicts the ground truth of the data submitted by MUs. However, due to the noise in historical data for training and the bursty values within sensing data, the prediction results can be inaccurate. To address this issue, we use the implications among the sensing data, which are learned from the prediction results but are stable and less affected by inaccurate predictions, to evaluate the quality of the data. Finally, we design a reputation-based truth discovery (TD) module for identifying low-quality data with their implications. Given the sensing data submitted by MUs, PRBTD can eliminate the data with heavy noise and identify malicious MUs with high accuracy. Extensive experimental results demonstrate that the PRBTD method outperforms existing methods in terms of identification accuracy and data quality enhancement.
♻ ☆ MultiMax: Sparse and Multi-Modal Attention Learning ICML 2024
SoftMax is a ubiquitous ingredient of modern machine learning algorithms. It maps an input vector onto a probability simplex and reweights the input by concentrating the probability mass at large entries. Yet, as a smooth approximation to the Argmax function, a significant amount of probability mass is distributed to other, residual entries, leading to poor interpretability and noise. Although sparsity can be achieved by a family of SoftMax variants, they often require an alternative loss function and do not preserve multi-modality. We show that this trade-off between multi-modality and sparsity limits the expressivity of SoftMax as well as its variants. We provide a solution to this tension between objectives by proposing a piece-wise differentiable function, termed MultiMax, which adaptively modulates the output distribution according to input entry range. Through comprehensive analysis and evaluation, we show that MultiMax successfully produces a distribution that supresses irrelevant entries while preserving multimodality, with benefits in image classification, language modeling and machine translation. The code is available at https://github.com/ZhouYuxuanYX/MultiMax.
comment: Accepted at ICML 2024
♻ ☆ Learning Stochastic Nonlinear Dynamics with Embedded Latent Transfer Operators
We consider an operator-based latent Markov representation of a stochastic nonlinear dynamical system, where the stochastic evolution of the latent state embedded in a reproducing kernel Hilbert space is described with the corresponding transfer operator, and develop a spectral method to learn this representation based on the theory of stochastic realization. The embedding may be learned simultaneously using reproducing kernels, for example, constructed with feed-forward neural networks. We also address the generalization of sequential state-estimation (Kalman filtering) in stochastic nonlinear systems, and of operator-based eigen-mode decomposition of dynamics, for the representation. Several examples with synthetic and real-world data are shown to illustrate the empirical characteristics of our methods, and to investigate the performance of our model in sequential state-estimation and mode decomposition.
♻ ☆ Decoupled Prioritized Resampling for Offline RL
Offline reinforcement learning (RL) is challenged by the distributional shift problem. To address this problem, existing works mainly focus on designing sophisticated policy constraints between the learned policy and the behavior policy. However, these constraints are applied equally to well-performing and inferior actions through uniform sampling, which might negatively affect the learned policy. To alleviate this issue, we propose Offline Prioritized Experience Replay (OPER), featuring a class of priority functions designed to prioritize highly-rewarding transitions, making them more frequently visited during training. Through theoretical analysis, we show that this class of priority functions induce an improved behavior policy, and when constrained to this improved policy, a policy-constrained offline RL algorithm is likely to yield a better solution. We develop two practical strategies to obtain priority weights by estimating advantages based on a fitted value network (OPER-A) or utilizing trajectory returns (OPER-R) for quick computation. OPER is a plug-and-play component for offline RL algorithms. As case studies, we evaluate OPER on five different algorithms, including BC, TD3+BC, Onestep RL, CQL, and IQL. Extensive experiments demonstrate that both OPER-A and OPER-R significantly improve the performance for all baseline methods. Codes and priority weights are availiable at https://github.com/sail-sg/OPER.
comment: published on IEEE TNNLS
♻ ☆ BudgetMLAgent: A Cost-Effective LLM Multi-Agent system for Automating Machine Learning Tasks
Large Language Models (LLMs) excel in diverse applications including generation of code snippets, but often struggle with generating code for complex Machine Learning (ML) tasks. Although existing LLM single-agent based systems give varying performance depending on the task complexity, they purely rely on larger and expensive models such as GPT-4. Our investigation reveals that no-cost and low-cost models such as Gemini-Pro, Mixtral and CodeLlama perform far worse than GPT-4 in a single-agent setting. With the motivation of developing a cost-efficient LLM based solution for solving ML tasks, we propose an LLM Multi-Agent based system which leverages combination of experts using profiling, efficient retrieval of past observations, LLM cascades, and ask-the-expert calls. Through empirical analysis on ML engineering tasks in the MLAgentBench benchmark, we demonstrate the effectiveness of our system, using no-cost models, namely Gemini as the base LLM, paired with GPT-4 in cascade and expert to serve occasional ask-the-expert calls for planning. With 94.2\% reduction in the cost (from \$0.931 per run cost averaged over all tasks for GPT-4 single agent system to \$0.054), our system is able to yield better average success rate of 32.95\% as compared to GPT-4 single-agent system yielding 22.72\% success rate averaged over all the tasks of MLAgentBench.
comment: Presented at AIMLSystems '24
♻ ☆ Generalizing Teacher Networks for Effective Knowledge Distillation Across Student Architectures BMVC 24
Knowledge distillation (KD) is a model compression method that entails training a compact student model to emulate the performance of a more complex teacher model. However, the architectural capacity gap between the two models limits the effectiveness of knowledge transfer. Addressing this issue, previous works focused on customizing teacher-student pairs to improve compatibility, a computationally expensive process that needs to be repeated every time either model changes. Hence, these methods are impractical when a teacher model has to be compressed into different student models for deployment on multiple hardware devices with distinct resource constraints. In this work, we propose Generic Teacher Network (GTN), a one-off KD-aware training to create a generic teacher capable of effectively transferring knowledge to any student model sampled from a given finite pool of architectures. To this end, we represent the student pool as a weight-sharing supernet and condition our generic teacher to align with the capacities of various student architectures sampled from this supernet. Experimental evaluation shows that our method both improves overall KD effectiveness and amortizes the minimal additional training cost of the generic teacher across students in the pool.
comment: British Machine Vision Conference (BMVC 24)
♻ ☆ Dynamics of Meta-learning Representation in the Teacher-student Scenario
Gradient-based meta-learning algorithms have gained popularity for their ability to train models on new tasks using limited data. Empirical observations indicate that such algorithms are able to learn a shared representation across tasks, which is regarded as a key factor in their success. However, the in-depth theoretical understanding of the learning dynamics and the origin of the shared representation remains underdeveloped. In this work, we investigate the meta-learning dynamics of nonlinear two-layer neural networks trained on streaming tasks in the teacher-student scenario. Through the lens of statistical physics analysis, we characterize the macroscopic behavior of the meta-training processes, the formation of the shared representation, and the generalization ability of the model on new tasks. The analysis also points to the importance of the choice of certain hyperparameters of the learning algorithms.
♻ ☆ Conjugate-Gradient-like Based Adaptive Moment Estimation Optimization Algorithm for Deep Learning
Training deep neural networks is a challenging task. In order to speed up training and enhance the performance of deep neural networks, we rectify the vanilla conjugate gradient as conjugate-gradient-like and incorporate it into the generic Adam, and thus propose a new optimization algorithm named CG-like-Adam for deep learning. Specifically, both the first-order and the second-order moment estimation of generic Adam are replaced by the conjugate-gradient-like. Convergence analysis handles the cases where the exponential moving average coefficient of the first-order moment estimation is constant and the first-order moment estimation is unbiased. Numerical experiments show the superiority of the proposed algorithm based on the CIFAR10/100 dataset.
comment: 32 pages, 13 figures
♻ ☆ Topology-enhanced machine learning model (Top-ML) for anticancer peptide prediction
Recently, therapeutic peptides have demonstrated great promise for cancer treatment. To explore powerful anticancer peptides, artificial intelligence (AI)-based approaches have been developed to systematically screen potential candidates. However, the lack of efficient featurization of peptides has become a bottleneck for these machine-learning models. In this paper, we propose a topology-enhanced machine learning model (Top-ML) for anticancer peptides prediction. Our Top-ML employs peptide topological features derived from its sequence "connection" information characterized by vector and spectral descriptors. Our Top-ML model, employing an Extra-Trees classifier, has been validated on the AntiCP 2.0 and mACPpred 2.0 benchmark datasets, achieving state-of-the-art performance or results comparable to existing deep learning models, while providing greater interpretability. Our results highlight the potential of leveraging novel topology-based featurization to accelerate the identification of anticancer peptides.
♻ ☆ Why Does Dropping Edges Usually Outperform Adding Edges in Graph Contrastive Learning? AAAI 2025
Graph contrastive learning (GCL) has been widely used as an effective self-supervised learning method for graph representation learning. However, how to apply adequate and stable graph augmentation to generating proper views for contrastive learning remains an essential problem. Dropping edges is a primary augmentation in GCL while adding edges is not a common method due to its unstable performance. To our best knowledge, there is no theoretical analysis to study why dropping edges usually outperforms adding edges. To answer this question, we introduce a new metric, namely Error Passing Rate (EPR), to quantify how a graph fits the network. Inspired by the theoretical conclusions and the idea of positive-incentive noise, we propose a novel GCL algorithm, Error-PAssing-based Graph Contrastive Learning (EPAGCL), which uses both edge adding and edge dropping as its augmentations. To be specific, we generate views by adding and dropping edges based on the weights derived from EPR. Extensive experiments on various real-world datasets are conducted to validate the correctness of our theoretical analysis and the effectiveness of our proposed algorithm. Our code is available at: https://github.com/hyzhang98/EPAGCL.
comment: Accepted by AAAI 2025
♻ ☆ Ferrari: Federated Feature Unlearning via Optimizing Feature Sensitivity NeurIPS 2024
The advent of Federated Learning (FL) highlights the practical necessity for the right to be forgotten for all clients, allowing them to request data deletion from the machine learning models service provider. This necessity has spurred a growing demand for Federated Unlearning (FU). Feature unlearning has gained considerable attention due to its applications in unlearning sensitive, backdoor, and biased features. Existing methods employ the influence function to achieve feature unlearning, which is impractical for FL as it necessitates the participation of other clients, if not all, in the unlearning process. Furthermore, current research lacks an evaluation of the effectiveness of feature unlearning. To address these limitations, we define feature sensitivity in evaluating feature unlearning according to Lipschitz continuity. This metric characterizes the model outputs rate of change or sensitivity to perturbations in the input feature. We then propose an effective federated feature unlearning framework called Ferrari, which minimizes feature sensitivity. Extensive experimental results and theoretical analysis demonstrate the effectiveness of Ferrari across various feature unlearning scenarios, including sensitive, backdoor, and biased features. The code is publicly available at https://github.com/OngWinKent/Federated-Feature-Unlearning
comment: TLDR: The need for a "right to be forgotten" in Federated Learning has led to the development of the Ferrari framework, which efficiently unlearns sensitive features using a Lipschitz continuity-based metric, proven effective in extensive testing. Accepted at NeurIPS 2024
♻ ☆ Retrieval-Augmented Generation with Graphs (GraphRAG)
Retrieval-augmented generation (RAG) is a powerful technique that enhances downstream task execution by retrieving additional information, such as knowledge, skills, and tools from external sources. Graph, by its intrinsic "nodes connected by edges" nature, encodes massive heterogeneous and relational information, making it a golden resource for RAG in tremendous real-world applications. As a result, we have recently witnessed increasing attention on equipping RAG with Graph, i.e., GraphRAG. However, unlike conventional RAG, where the retriever, generator, and external data sources can be uniformly designed in the neural-embedding space, the uniqueness of graph-structured data, such as diverse-formatted and domain-specific relational knowledge, poses unique and significant challenges when designing GraphRAG for different domains. Given the broad applicability, the associated design challenges, and the recent surge in GraphRAG, a systematic and up-to-date survey of its key concepts and techniques is urgently desired. Following this motivation, we present a comprehensive and up-to-date survey on GraphRAG. Our survey first proposes a holistic GraphRAG framework by defining its key components, including query processor, retriever, organizer, generator, and data source. Furthermore, recognizing that graphs in different domains exhibit distinct relational patterns and require dedicated designs, we review GraphRAG techniques uniquely tailored to each domain. Finally, we discuss research challenges and brainstorm directions to inspire cross-disciplinary opportunities. Our survey repository is publicly maintained at https://github.com/Graph-RAG/GraphRAG/.
♻ ☆ Temporally-Consistent Koopman Autoencoders for Forecasting Dynamical Systems
Absence of sufficiently high-quality data often poses a key challenge in data-driven modeling of high-dimensional spatio-temporal dynamical systems. Koopman Autoencoders (KAEs) harness the expressivity of deep neural networks (DNNs), the dimension reduction capabilities of autoencoders, and the spectral properties of the Koopman operator to learn a reduced-order feature space with simpler, linear dynamics. However, the effectiveness of KAEs is hindered by limited and noisy training datasets, leading to poor generalizability. To address this, we introduce the Temporally-Consistent Koopman Autoencoder (tcKAE), designed to generate accurate long-term predictions even with limited and noisy training data. This is achieved through a consistency regularization term that enforces prediction coherence across different time steps, thus enhancing the robustness and generalizability of tcKAE over existing models. We provide analytical justification for this approach based on Koopman spectral theory and empirically demonstrate tcKAE's superior performance over state-of-the-art KAE models across a variety of test cases, including simple pendulum oscillations, kinetic plasma, and fluid flow data.
♻ ☆ A Soft Sensor Method with Uncertainty-Awareness and Self-Explanation Based on Large Language Models Enhanced by Domain Knowledge Retrieval
Data-driven soft sensors are crucial in predicting key performance indicators in industrial systems. However, current methods predominantly rely on the supervised learning paradigms of parameter updating, which inherently faces challenges such as high development costs, poor robustness, training instability, and lack of interpretability. Recently, large language models (LLMs) have demonstrated significant potential across various domains, notably through In-Context Learning (ICL), which enables high-performance task execution with minimal input-label demonstrations and no prior training. This paper aims to replace supervised learning with the emerging ICL paradigm for soft sensor modeling to address existing challenges and explore new avenues for advancement. To achieve this, we propose a novel framework called the Few-shot Uncertainty-aware and self-Explaining Soft Sensor (LLM-FUESS), which includes the Zero-shot Auxiliary Variable Selector (LLM-ZAVS) and the Uncertainty-aware Few-shot Soft Sensor (LLM-UFSS). The LLM-ZAVS retrieves from the Industrial Knowledge Vector Storage to enhance LLMs' domain-specific knowledge, enabling zero-shot auxiliary variable selection. In the LLM-UFSS, we utilize text-based context demonstrations of structured data to prompt LLMs to execute ICL for predicting and propose a context sample retrieval augmentation strategy to improve performance. Additionally, we explored LLMs' AIGC and probabilistic characteristics to propose self-explanation and uncertainty quantification methods for constructing a trustworthy soft sensor. Extensive experiments demonstrate that our method achieved state-of-the-art predictive performance, strong robustness, and flexibility, effectively mitigates training instability found in traditional methods. To the best of our knowledge, this is the first work to establish soft sensor utilizing LLMs.
Multimedia 6
☆ Unified Coding for Both Human Perception and Generalized Machine Analytics with CLIP Supervision AAAI 2025
The image compression model has long struggled with adaptability and generalization, as the decoded bitstream typically serves only human or machine needs and fails to preserve information for unseen visual tasks. Therefore, this paper innovatively introduces supervision obtained from multimodal pre-training models and incorporates adaptive multi-objective optimization tailored to support both human visual perception and machine vision simultaneously with a single bitstream, denoted as Unified and Generalized Image Coding for Machine (UG-ICM). Specifically, to get rid of the reliance between compression models with downstream task supervision, we introduce Contrastive Language-Image Pre-training (CLIP) models into the training constraint for improved generalization. Global-to-instance-wise CLIP supervision is applied to help obtain hierarchical semantics that make models more generalizable for the tasks relying on the information of different granularity. Furthermore, for supporting both human and machine visions with only a unifying bitstream, we incorporate a conditional decoding strategy that takes as conditions human or machine preferences, enabling the bitstream to be decoded into different versions for corresponding preferences. As such, our proposed UG-ICM is fully trained in a self-supervised manner, i.e., without awareness of any specific downstream models and tasks. The extensive experiments have shown that the proposed UG-ICM is capable of achieving remarkable improvements in various unseen machine analytics tasks, while simultaneously providing perceptually satisfying images.
comment: 9 pages, 10 figures, publised to AAAI 2025
☆ Multichannel Steganography: A Provably Secure Hybrid Steganographic Model for Secure Communication
This study introduces a novel steganographic model that synthesizes Steganography by Cover Modification (CMO) and Steganography by Cover Synthesis (CSY), enhancing both security and undetectability by generating cover messages or parameters while retaining the original cover's form, thus minimizing detection risks and overcoming the limitations of single-method techniques. Building upon this model, a refined Steganographic Communication Protocol is proposed, enhancing resilience against sophisticated threats such as Multichannel Replay Attacks and Multichannel Man-in-the-Middle Attacks, fortifying the protocol against potential tampering and improving upon prior works. To evaluate the security of the proposed protocol, a novel adversarial model is developed simulating a probabilistic polynomial time (PPT) adversary capable of intercepting communications across multiple channels. This model assesses the adversary's ability to compromise the protocol, providing a comprehensive security analysis. Finally, this study explores the practicality and adaptability of the model to both constrained environments like SMS banking and resource-rich settings such as blockchain transactions, demonstrating their potential to enhance financial services and security. These contributions present a robust and adaptable framework for secure steganographic communication, offering practical solutions for secure communications across diverse environments.
comment: 18 pages, 8 figures, 3 algorithms, This version is a preprint uploaded to arXiv
☆ LipGen: Viseme-Guided Lip Video Generation for Enhancing Visual Speech Recognition ICASSP 2025
Visual speech recognition (VSR), commonly known as lip reading, has garnered significant attention due to its wide-ranging practical applications. The advent of deep learning techniques and advancements in hardware capabilities have significantly enhanced the performance of lip reading models. Despite these advancements, existing datasets predominantly feature stable video recordings with limited variability in lip movements. This limitation results in models that are highly sensitive to variations encountered in real-world scenarios. To address this issue, we propose a novel framework, LipGen, which aims to improve model robustness by leveraging speech-driven synthetic visual data, thereby mitigating the constraints of current datasets. Additionally, we introduce an auxiliary task that incorporates viseme classification alongside attention mechanisms. This approach facilitates the efficient integration of temporal information, directing the model's focus toward the relevant segments of speech, thereby enhancing discriminative capabilities. Our method demonstrates superior performance compared to the current state-of-the-art on the lip reading in the wild (LRW) dataset and exhibits even more pronounced advantages under challenging conditions.
comment: This paper has been accepted for presentation at ICASSP 2025
☆ Video Summarisation with Incident and Context Information using Generative AI
The proliferation of video content production has led to vast amounts of data, posing substantial challenges in terms of analysis efficiency and resource utilization. Addressing this issue calls for the development of robust video analysis tools. This paper proposes a novel approach leveraging Generative Artificial Intelligence (GenAI) to facilitate streamlined video analysis. Our tool aims to deliver tailored textual summaries of user-defined queries, offering a focused insight amidst extensive video datasets. Unlike conventional frameworks that offer generic summaries or limited action recognition, our method harnesses the power of GenAI to distil relevant information, enhancing analysis precision and efficiency. Employing YOLO-V8 for object detection and Gemini for comprehensive video and text analysis, our solution achieves heightened contextual accuracy. By combining YOLO with Gemini, our approach furnishes textual summaries extracted from extensive CCTV footage, enabling users to swiftly navigate and verify pertinent events without the need for exhaustive manual review. The quantitative evaluation revealed a similarity of 72.8%, while the qualitative assessment rated an accuracy of 85%, demonstrating the capability of the proposed method.
♻ ☆ How to Bridge the Gap between Modalities: Survey on Multimodal Large Language Model
We explore Multimodal Large Language Models (MLLMs), which integrate LLMs like GPT-4 to handle multimodal data, including text, images, audio, and more. MLLMs demonstrate capabilities such as generating image captions and answering image-based questions, bridging the gap towards real-world human-computer interactions and hinting at a potential pathway to artificial general intelligence. However, MLLMs still face challenges in addressing the semantic gap in multimodal data, which may lead to erroneous outputs, posing potential risks to society. Selecting the appropriate modality alignment method is crucial, as improper methods might require more parameters without significant performance improvements. This paper aims to explore modality alignment methods for LLMs and their current capabilities. Implementing effective modality alignment can help LLMs address environmental issues and enhance accessibility. The study surveys existing modality alignment methods for MLLMs, categorizing them into four groups: (1) Multimodal Converter, which transforms data into a format that LLMs can understand; (2) Multimodal Perceiver, which improves how LLMs percieve different types of data; (3) Tool Learning, which leverages external tools to convert data into a common format, usually text; and (4) Data-Driven Method, which teaches LLMs to understand specific data types within datasets.
comment: Accepted by TKDE
♻ ☆ 3DMambaIPF: A State Space Model for Iterative Point Cloud Filtering via Differentiable Rendering AAAI-25
Noise is an inevitable aspect of point cloud acquisition, necessitating filtering as a fundamental task within the realm of 3D vision. Existing learning-based filtering methods have shown promising capabilities on small-scale synthetic or real-world datasets. Nonetheless, the effectiveness of these methods is constrained when dealing with a substantial quantity of point clouds. This limitation primarily stems from their limited denoising capabilities for large-scale point clouds and their inclination to generate noisy outliers after denoising. The recent introduction of State Space Models (SSMs) for long sequence modeling in Natural Language Processing (NLP) presents a promising solution for handling large-scale data. Encouraged by iterative point cloud filtering methods, we introduce 3DMambaIPF, firstly incorporating Mamba (Selective SSM) architecture to sequentially handle extensive point clouds from large scenes, capitalizing on its strengths in selective input processing and long sequence modeling capabilities. Additionally, we integrate a robust and fast differentiable rendering loss to constrain the noisy points around the surface. In contrast to previous methodologies, this differentiable rendering loss enhances the visual realism of denoised geometric structures and aligns point cloud boundaries more closely with those observed in real-world objects. Extensive evaluation on datasets comprising small-scale synthetic and real-world models (typically with up to 50K points) demonstrate that our method achieves state-of-the-art results. Moreover, we showcase the superior scalability and efficiency of our method on large-scale models with about 500K points, where the majority of the existing learning-based denoising methods are unable to handle.
comment: Accepted at AAAI-25
Artificial Intelligence 134
☆ Planarian Neural Networks: Evolutionary Patterns from Basic Bilateria Shaping Modern Artificial Neural Network Architectures
This study examined the viability of enhancing the prediction accuracy of artificial neural networks (ANNs) in image classification tasks by developing ANNs with evolution patterns similar to those of biological neural networks. ResNet is a widely used family of neural networks with both deep and wide variants; therefore, it was selected as the base model for our investigation. The aim of this study is to improve the image classification performance of ANNs via a novel approach inspired by the biological nervous system architecture of planarians, which comprises a brain and two nerve cords. We believe that the unique neural architecture of planarians offers valuable insights into the performance enhancement of ANNs. The proposed planarian neural architecture-based neural network was evaluated on the CIFAR-10 and CIFAR-100 datasets. Our results indicate that the proposed method exhibits higher prediction accuracy than the baseline neural network models in image classification tasks. These findings demonstrate the significant potential of biologically inspired neural network architectures in improving the performance of ANNs in a wide range of applications.
comment: 11 pages, 9 figures
☆ Grokking at the Edge of Numerical Stability
Grokking, the sudden generalization that occurs after prolonged overfitting, is a surprising phenomenon challenging our understanding of deep learning. Although significant progress has been made in understanding grokking, the reasons behind the delayed generalization and its dependence on regularization remain unclear. In this work, we argue that without regularization, grokking tasks push models to the edge of numerical stability, introducing floating point errors in the Softmax function, which we refer to as Softmax Collapse (SC). We demonstrate that SC prevents grokking and that mitigating SC enables grokking without regularization. Investigating the root cause of SC, we find that beyond the point of overfitting, the gradients strongly align with what we call the na\"ive loss minimization (NLM) direction. This component of the gradient does not alter the model's predictions but decreases the loss by scaling the logits, typically by scaling the weights along their current direction. We show that this scaling of the logits explains the delay in generalization characteristic of grokking and eventually leads to SC, halting further learning. To validate our hypotheses, we introduce two key contributions that address the challenges in grokking tasks: StableMax, a new activation function that prevents SC and enables grokking without regularization, and $\perp$Grad, a training algorithm that promotes quick generalization in grokking tasks by preventing NLM altogether. These contributions provide new insights into grokking, elucidating its delayed generalization, reliance on regularization, and the effectiveness of existing grokking-inducing methods. Code for this paper is available at https://github.com/LucasPrietoAl/grokking-at-the-edge-of-numerical-stability.
☆ EpiCoder: Encompassing Diversity and Complexity in Code Generation
Effective instruction tuning is indispensable for optimizing code LLMs, aligning model behavior with user expectations and enhancing model performance in real-world applications. However, most existing methods focus on code snippets, which are limited to specific functionalities and rigid structures, restricting the complexity and diversity of the synthesized data. To address these limitations, we introduce a novel feature tree-based synthesis framework inspired by Abstract Syntax Trees (AST). Unlike AST, which captures syntactic structure of code, our framework models semantic relationships between code elements, enabling the generation of more nuanced and diverse data. The feature tree is constructed from raw data and refined iteratively to increase the quantity and diversity of the extracted features. This process enables the identification of more complex patterns and relationships within the code. By sampling subtrees with controlled depth and breadth, our framework allows precise adjustments to the complexity of the generated code, supporting a wide range of tasks from simple function-level operations to intricate multi-file scenarios. We fine-tuned widely-used base models to create the EpiCoder series, achieving state-of-the-art performance at both the function and file levels across multiple benchmarks. Notably, empirical evidence indicates that our approach shows significant potential in synthesizing highly complex repository-level code data. Further analysis elucidates the merits of this approach by rigorously assessing data complexity and diversity through software engineering principles and LLM-as-a-judge method.
comment: 40 pages, 11 figures
☆ Beyond Sight: Finetuning Generalist Robot Policies with Heterogeneous Sensors via Language Grounding
Interacting with the world is a multi-sensory experience: achieving effective general-purpose interaction requires making use of all available modalities -- including vision, touch, and audio -- to fill in gaps from partial observation. For example, when vision is occluded reaching into a bag, a robot should rely on its senses of touch and sound. However, state-of-the-art generalist robot policies are typically trained on large datasets to predict robot actions solely from visual and proprioceptive observations. In this work, we propose FuSe, a novel approach that enables finetuning visuomotor generalist policies on heterogeneous sensor modalities for which large datasets are not readily available by leveraging natural language as a common cross-modal grounding. We combine a multimodal contrastive loss with a sensory-grounded language generation loss to encode high-level semantics. In the context of robot manipulation, we show that FuSe enables performing challenging tasks that require reasoning jointly over modalities such as vision, touch, and sound in a zero-shot setting, such as multimodal prompting, compositional cross-modal prompting, and descriptions of objects it interacts with. We show that the same recipe is applicable to widely different generalist policies, including both diffusion-based generalist policies and large vision-language-action (VLA) models. Extensive experiments in the real world show that FuSeis able to increase success rates by over 20% compared to all considered baselines.
☆ URSA: Understanding and Verifying Chain-of-thought Reasoning in Multimodal Mathematics
Chain-of-thought (CoT) reasoning has been widely applied in the mathematical reasoning of Large Language Models (LLMs). Recently, the introduction of derivative process supervision on CoT trajectories has sparked discussions on enhancing scaling capabilities during test time, thereby boosting the potential of these models. However, in multimodal mathematical reasoning, the scarcity of high-quality CoT training data has hindered existing models from achieving high-precision CoT reasoning and has limited the realization of reasoning potential during test time. In this work, we propose a three-module synthesis strategy that integrates CoT distillation, trajectory-format rewriting, and format unification. It results in a high-quality CoT reasoning instruction fine-tuning dataset in multimodal mathematics, MMathCoT-1M. We comprehensively validate the state-of-the-art (SOTA) performance of the trained URSA-7B model on multiple multimodal mathematical benchmarks. For test-time scaling, we introduce a data synthesis strategy that automatically generates process annotation datasets, known as DualMath-1.1M, focusing on both interpretation and logic. By further training URSA-7B on DualMath-1.1M, we transition from CoT reasoning capabilities to robust supervision abilities. The trained URSA-RM-7B acts as a verifier, effectively enhancing the performance of URSA-7B at test time. URSA-RM-7B also demonstrates excellent out-of-distribution (OOD) verifying capabilities, showcasing its generalization. Model weights, training data and code will be open-sourced.
comment: 27 pages, 10 tables, 17 figures. The training data has been released. The code and model are currently undergoing internal review. They will be made available soon. Project url: https://ursa-math.github.io
☆ Towards System 2 Reasoning in LLMs: Learning How to Think With Meta Chain-of-Though
We propose a novel framework, Meta Chain-of-Thought (Meta-CoT), which extends traditional Chain-of-Thought (CoT) by explicitly modeling the underlying reasoning required to arrive at a particular CoT. We present empirical evidence from state-of-the-art models exhibiting behaviors consistent with in-context search, and explore methods for producing Meta-CoT via process supervision, synthetic data generation, and search algorithms. Finally, we outline a concrete pipeline for training a model to produce Meta-CoTs, incorporating instruction tuning with linearized search traces and reinforcement learning post-training. Finally, we discuss open research questions, including scaling laws, verifier roles, and the potential for discovering novel reasoning algorithms. This work provides a theoretical and practical roadmap to enable Meta-CoT in LLMs, paving the way for more powerful and human-like reasoning in artificial intelligence.
☆ Enhancing Financial VQA in Vision Language Models using Intermediate Structured Representations
Chart interpretation is crucial for visual data analysis, but accurately extracting information from charts poses significant challenges for automated models. This study investigates the fine-tuning of DEPLOT, a modality conversion module that translates the image of a plot or chart to a linearized table, on a custom dataset of 50,000 bar charts. The dataset comprises simple, stacked, and grouped bar charts, targeting the unique structural features of these visualizations. The finetuned DEPLOT model is evaluated against its base version using a test set of 1,000 images and two metrics: Relative Mapping Similarity (RMS), which measures categorical mapping accuracy, and Relative Number Set Similarity (RNSS), which evaluates numerical interpretation accuracy. To further explore the reasoning capabilities of large language models (LLMs), we curate an additional set of 100 bar chart images paired with question answer sets. Our findings demonstrate that providing a structured intermediate table alongside the image significantly enhances LLM reasoning performance compared to direct image queries.
☆ DRIVINGVQA: Analyzing Visual Chain-of-Thought Reasoning of Vision Language Models in Real-World Scenarios with Driving Theory Tests
Large vision-language models (LVLMs) augment language models with visual understanding, enabling multimodal reasoning. However, due to the modality gap between textual and visual data, they often face significant challenges, such as over-reliance on text priors, hallucinations, and limited capacity for complex visual reasoning. Existing benchmarks to evaluate visual reasoning in LVLMs often rely on schematic or synthetic images and on imprecise machine-generated explanations. To bridge the modality gap, we present DrivingVQA, a new benchmark derived from driving theory tests to evaluate visual chain-of-thought reasoning in complex real-world scenarios. It offers 3,931 expert-crafted multiple-choice problems and interleaved explanations grounded with entities relevant to the reasoning process. We leverage this dataset to perform an extensive study of LVLMs' ability to reason about complex visual scenarios. Our experiments reveal that open-source and proprietary LVLMs struggle with visual chain-of-thought reasoning under zero-shot settings. We investigate training strategies that leverage relevant entities to improve visual reasoning. Notably, we observe a performance boost of up to 7\% when reasoning over image tokens of cropped regions tied to these entities.
☆ Assessing Language Comprehension in Large Language Models Using Construction Grammar
Large Language Models, despite their significant capabilities, are known to fail in surprising and unpredictable ways. Evaluating their true `understanding' of language is particularly challenging due to the extensive web-scale data they are trained on. Therefore, we construct an evaluation to systematically assess natural language understanding (NLU) in LLMs by leveraging Construction Grammar (CxG), which provides insights into the meaning captured by linguistic elements known as constructions (Cxns). CxG is well-suited for this purpose because provides a theoretical basis to construct targeted evaluation sets. These datasets are carefully constructed to include examples which are unlikely to appear in pre-training data, yet intuitive and easy for humans to understand, enabling a more targeted and reliable assessment. Our experiments focus on downstream natural language inference and reasoning tasks by comparing LLMs' understanding of the underlying meanings communicated through 8 unique Cxns with that of humans. The results show that while LLMs demonstrate some knowledge of constructional information, even the latest models including GPT-o1 struggle with abstract meanings conveyed by these Cxns, as demonstrated in cases where test sentences are dissimilar to their pre-training data. We argue that such cases provide a more accurate test of true language understanding, highlighting key limitations in LLMs' semantic capabilities. We make our novel dataset and associated experimental data including prompts and model responses publicly available.
☆ Knowledge Retrieval Based on Generative AI
This study develops a question-answering system based on Retrieval-Augmented Generation (RAG) using Chinese Wikipedia and Lawbank as retrieval sources. Using TTQA and TMMLU+ as evaluation datasets, the system employs BGE-M3 for dense vector retrieval to obtain highly relevant search results and BGE-reranker to reorder these results based on query relevance. The most pertinent retrieval outcomes serve as reference knowledge for a Large Language Model (LLM), enhancing its ability to answer questions and establishing a knowledge retrieval system grounded in generative AI. The system's effectiveness is assessed through a two-stage evaluation: automatic and assisted performance evaluations. The automatic evaluation calculates accuracy by comparing the model's auto-generated labels with ground truth answers, measuring performance under standardized conditions without human intervention. The assisted performance evaluation involves 20 finance-related multiple-choice questions answered by 20 participants without financial backgrounds. Initially, participants answer independently. Later, they receive system-generated reference information to assist in answering, examining whether the system improves accuracy when assistance is provided. The main contributions of this research are: (1) Enhanced LLM Capability: By integrating BGE-M3 and BGE-reranker, the system retrieves and reorders highly relevant results, reduces hallucinations, and dynamically accesses authorized or public knowledge sources. (2) Improved Data Privacy: A customized RAG architecture enables local operation of the LLM, eliminating the need to send private data to external servers. This approach enhances data security, reduces reliance on commercial services, lowers operational costs, and mitigates privacy risks.
comment: 8 pages, 13 figures, 1 table
☆ MedCoDi-M: A Multi-Prompt Foundation Model for Multimodal Medical Data Generation
Artificial Intelligence is revolutionizing medical practice, enhancing diagnostic accuracy and healthcare delivery. However, its adaptation in medical settings still faces significant challenges, related to data availability and privacy constraints. Synthetic data has emerged as a promising solution to mitigate these issues, addressing data scarcity while preserving privacy. Recently, Latent Diffusion Models have emerged as a powerful tool for generating high-quality synthetic data. Meanwhile, the integration of different modalities has gained interest, emphasizing the need of models capable of handle multimodal medical data.Existing approaches struggle to integrate complementary information and lack the ability to generate modalities simultaneously. To address this challenge, we present MedCoDi-M, a 6.77-billion-parameter model, designed for multimodal medical data generation, that, following Foundation Model paradigm, exploits contrastive learning and large quantity of data to build a shared latent space which capture the relationships between different data modalities. Further, we introduce the Multi-Prompt training technique, which significantly boosts MedCoDi-M's generation under different settings. We extensively validate MedCoDi-M: first we benchmark it against five competitors on the MIMIC-CXR dataset, a state-of-the-art dataset for Chest X-ray and radiological report generation. Secondly, we perform a Visual Turing Test with expert radiologists to assess the realism and clinical relevance of the generated data, ensuring alignment with real-world scenarios. Finally, we assess the utility of MedCoDi-M in addressing key challenges in the medical field, such as anonymization, data scarcity and imbalance learning. The results are promising, demonstrating the applicability of MedCoDi-M in medical contexts. Project page is at https://cosbidev.github.io/MedCoDi-M/.
☆ Federated-Continual Dynamic Segmentation of Histopathology guided by Barlow Continuity
Federated- and Continual Learning have been established as approaches to enable privacy-aware learning on continuously changing data, as required for deploying AI systems in histopathology images. However, data shifts can occur in a dynamic world, spatially between institutions and temporally, due to changing data over time. This leads to two issues: Client Drift, where the central model degrades from aggregating data from clients trained on shifted data, and Catastrophic Forgetting, from temporal shifts such as changes in patient populations. Both tend to degrade the model's performance of previously seen data or spatially distributed training. Despite both problems arising from the same underlying problem of data shifts, existing research addresses them only individually. In this work, we introduce a method that can jointly alleviate Client Drift and Catastrophic Forgetting by using our proposed Dynamic Barlow Continuity that evaluates client updates on a public reference dataset and uses this to guide the training process to a spatially and temporally shift-invariant model. We evaluate our approach on the histopathology datasets BCSS and Semicol and prove our method to be highly effective by jointly improving the dice score as much as from 15.8% to 71.6% in Client Drift and from 42.5% to 62.8% in Catastrophic Forgetting. This enables Dynamic Learning by establishing spatio-temporal shift-invariance.
☆ A 65 nm Bayesian Neural Network Accelerator with 360 fJ/Sample In-Word GRNG for AI Uncertainty Estimation
Uncertainty estimation is an indispensable capability for AI-enabled, safety-critical applications, e.g. autonomous vehicles or medical diagnosis. Bayesian neural networks (BNNs) use Bayesian statistics to provide both classification predictions and uncertainty estimation, but they suffer from high computational overhead associated with random number generation and repeated sample iterations. Furthermore, BNNs are not immediately amenable to acceleration through compute-in-memory architectures due to the frequent memory writes necessary after each RNG operation. To address these challenges, we present an ASIC that integrates 360 fJ/Sample Gaussian RNG directly into the SRAM memory words. This integration reduces RNG overhead and enables fully-parallel compute-in-memory operations for BNNs. The prototype chip achieves 5.12 GSa/s RNG throughput and 102 GOp/s neural network throughput while occupying 0.45 mm2, bringing AI uncertainty estimation to edge computation.
comment: 7 pages, 12 figures
☆ InfiGUIAgent: A Multimodal Generalist GUI Agent with Native Reasoning and Reflection
Graphical User Interface (GUI) Agents, powered by multimodal large language models (MLLMs), have shown great potential for task automation on computing devices such as computers and mobile phones. However, existing agents face challenges in multi-step reasoning and reliance on textual annotations, limiting their effectiveness. We introduce \textit{InfiGUIAgent}, an MLLM-based GUI Agent trained with a two-stage supervised fine-tuning pipeline. Stage 1 enhances fundamental skills such as GUI understanding and grounding, while Stage 2 integrates hierarchical reasoning and expectation-reflection reasoning skills using synthesized data to enable native reasoning abilities of the agents. \textit{InfiGUIAgent} achieves competitive performance on several GUI benchmarks, highlighting the impact of native reasoning skills in enhancing GUI interaction for automation tasks. Resources are available at \url{https://github.com/Reallm-Labs/InfiGUIAgent}.
comment: 14 pages, 7 figures, work in progress
☆ Supervision-free Vision-Language Alignment
Vision-language models (VLMs) have demonstrated remarkable potential in integrating visual and linguistic information, but their performance is often constrained by the need for extensive, high-quality image-text training data. Curation of these image-text pairs is both time-consuming and computationally expensive. To address this challenge, we introduce SVP (Supervision-free Visual Projection), a novel framework that enhances vision-language alignment without relying on curated data or preference annotation. SVP leverages self-captioning and a pre-trained grounding model as a feedback mechanism to elicit latent information in VLMs. We evaluate our approach across six key areas: captioning, referring, visual question answering, multitasking, hallucination control, and object recall. Results demonstrate significant improvements, including a 14% average improvement in captioning tasks, up to 12% increase in object recall, and substantial reduction in hallucination rates. Notably, a small VLM using SVP achieves hallucination reductions comparable to a model five times larger, while a VLM with initially poor referring capabilities more than doubles its performance, approaching parity with a model twice its size.
comment: Preprint
☆ Cyber-Physical Steganography in Robotic Motion Control
Steganography, the art of information hiding, has continually evolved across visual, auditory and linguistic domains, adapting to the ceaseless interplay between steganographic concealment and steganalytic revelation. This study seeks to extend the horizons of what constitutes a viable steganographic medium by introducing a steganographic paradigm in robotic motion control. Based on the observation of the robot's inherent sensitivity to changes in its environment, we propose a methodology to encode messages as environmental stimuli influencing the motions of the robotic agent and to decode messages from the resulting motion trajectory. The constraints of maximal robot integrity and minimal motion deviation are established as fundamental principles underlying secrecy. As a proof of concept, we conduct experiments in simulated environments across various manipulation tasks, incorporating robotic embodiments equipped with generalist multimodal policies.
☆ Towards a Problem-Oriented Domain Adaptation Framework for Machine Learning
Domain adaptation is a sub-field of machine learning that involves transferring knowledge from a source domain to perform the same task in the target domain. It is a typical challenge in machine learning that arises, e.g., when data is obtained from various sources or when using a data basis that changes over time. Recent advances in the field offer promising methods, but it is still challenging for researchers and practitioners to determine if domain adaptation is suitable for a given problem -- and, subsequently, to select the appropriate approach. This article employs design science research to develop a problem-oriented framework for domain adaptation, which is matured in three evaluation episodes. We describe a framework that distinguishes between five domain adaptation scenarios, provides recommendations for addressing each scenario, and offers guidelines for determining if a problem falls into one of these scenarios. During the multiple evaluation episodes, the framework is tested on artificial and real-world datasets and an experimental study involving 100 participants. The evaluation demonstrates that the framework has the explanatory power to capture any domain adaptation problem effectively. In summary, we provide clear guidance for researchers and practitioners who want to employ domain adaptation but lack in-depth knowledge of the possibilities.
☆ CGP-Tuning: Structure-Aware Soft Prompt Tuning for Code Vulnerability Detection
Large language models (LLMs) have been proposed as powerful tools for detecting software vulnerabilities, where task-specific fine-tuning is typically employed to provide vulnerability-specific knowledge to the LLMs for this purpose. However, traditional full-parameter fine-tuning is inefficient for modern, complex LLMs, which contain billions of parameters. Soft prompt tuning has been suggested as a more efficient alternative for fine-tuning LLMs in general cases. However, pure soft prompt tuning treats source code as plain text, losing structural information inherent in source code. Meanwhile, graph-enhanced soft prompt tuning methods, which aim to address this issue, are unable to preserve the rich semantic information within code graphs, as they are primarily designed for general graph-related tasks and focus more on adjacency information. They also fail to ensure computational efficiency while accounting for graph-text interactions. This paper, therefore, introduces a new code graph-enhanced, structure-aware soft prompt tuning method for vulnerability detection, referred to as CGP-Tuning. It employs innovative type-aware embeddings to capture the rich semantic information within code graphs, along with a novel and efficient cross-modal alignment module that achieves linear computational cost while incorporating graph-text interactions. The proposed CGP-Tuning is evaluated on the latest DiverseVul dataset and the most recent open-source code LLMs, CodeLlama and CodeGemma. Experimental results demonstrate that CGP-Tuning outperforms the best state-of-the-art method by an average of 3.5 percentage points in accuracy, without compromising its vulnerability detection capabilities for long source code.
comment: 14 pages, 5 figures
☆ The Role of Machine Learning in Congenital Heart Disease Diagnosis: Datasets, Algorithms, and Insights
Congenital heart disease is among the most common fetal abnormalities and birth defects. Despite identifying numerous risk factors influencing its onset, a comprehensive understanding of its genesis and management across diverse populations remains limited. Recent advancements in machine learning have demonstrated the potential for leveraging patient data to enable early congenital heart disease detection. Over the past seven years, researchers have proposed various data-driven and algorithmic solutions to address this challenge. This paper presents a systematic review of congential heart disease recognition using machine learning, conducting a meta-analysis of 432 references from leading journals published between 2018 and 2024. A detailed investigation of 74 scholarly works highlights key factors, including databases, algorithms, applications, and solutions. Additionally, the survey outlines reported datasets used by machine learning experts for congenital heart disease recognition. Using a systematic literature review methodology, this study identifies critical challenges and opportunities in applying machine learning to congenital heart disease.
☆ Integrating remote sensing data assimilation, deep learning and large language model for interactive wheat breeding yield prediction
Yield is one of the core goals of crop breeding. By predicting the potential yield of different breeding materials, breeders can screen these materials at various growth stages to select the best performing. Based on unmanned aerial vehicle remote sensing technology, high-throughput crop phenotyping data in breeding areas is collected to provide data support for the breeding decisions of breeders. However, the accuracy of current yield predictions still requires improvement, and the usability and user-friendliness of yield forecasting tools remain suboptimal. To address these challenges, this study introduces a hybrid method and tool for crop yield prediction, designed to allow breeders to interactively and accurately predict wheat yield by chatting with a large language model (LLM). First, the newly designed data assimilation algorithm is used to assimilate the leaf area index into the WOFOST model. Then, selected outputs from the assimilation process, along with remote sensing inversion results, are used to drive the time-series temporal fusion transformer model for wheat yield prediction. Finally, based on this hybrid method and leveraging an LLM with retrieval augmented generation technology, we developed an interactive yield prediction Web tool that is user-friendly and supports sustainable data updates. This tool integrates multi-source data to assist breeding decision-making. This study aims to accelerate the identification of high-yield materials in the breeding process, enhance breeding efficiency, and enable more scientific and smart breeding decisions.
☆ Research on environment perception and behavior prediction of intelligent UAV based on semantic communication
The convergence of drone delivery systems, virtual worlds, and blockchain has transformed logistics and supply chain management, providing a fast, and environmentally friendly alternative to traditional ground transportation methods;Provide users with a real-world experience, virtual service providers need to collect up-to-the-minute delivery information from edge devices. To address this challenge, 1) a reinforcement learning approach is introduced to enable drones with fast training capabilities and the ability to autonomously adapt to new virtual scenarios for effective resource allocation.2) A semantic communication framework for meta-universes is proposed, which utilizes the extraction of semantic information to reduce the communication cost and incentivize the transmission of information for meta-universe services.3) In order to ensure that user information security, a lightweight authentication and key agreement scheme is designed between the drone and the user by introducing blockchain technology. In our experiments, the drone adaptation performance is improved by about 35\%, and the local offloading rate can reach 90\% with the increase of the number of base stations. The semantic communication system proposed in this paper is compared with the Cross Entropy baseline model. Introducing blockchain technology the throughput of the transaction is maintained at a stable value with different number of drones.
☆ Hybrid Artificial Intelligence Strategies for Drone Navigation
Objective: This paper describes the development of hybrid artificial intelligence strategies for drone navigation. Methods: The navigation module combines a deep learning model with a rule-based engine depending on the agent state. The deep learning model has been trained using reinforcement learning. The rule-based engine uses expert knowledge to deal with specific situations. The navigation module incorporates several strategies to explain the drone decision based on its observation space, and different mechanisms for including human decisions in the navigation process. Finally, this paper proposes an evaluation methodology based on defining several scenarios and analyzing the performance of the different strategies according to metrics adapted to each scenario. Results: Two main navigation problems have been studied. For the first scenario (reaching known targets), it has been possible to obtain a 90% task completion rate, reducing significantly the number of collisions thanks to the rule-based engine. For the second scenario, it has been possible to reduce 20% of the time required to locate all the targets using the reinforcement learning model. Conclusions: Reinforcement learning is a very good strategy to learn policies for drone navigation, but in critical situations, it is necessary to complement it with a rule-based module to increase task success rate.
☆ A novel Facial Recognition technique with Focusing on Masked Faces
Recognizing the same faces with and without masks is important for ensuring consistent identification in security, access control, and public safety. This capability is crucial in scenarios like law enforcement, healthcare, and surveillance, where accurate recognition must be maintained despite facial occlusion. This research focuses on the challenge of recognizing the same faces with and without masks by employing cosine similarity as the primary technique. With the increased use of masks, traditional facial recognition systems face significant accuracy issues, making it crucial to develop methods that can reliably identify individuals in masked conditions. For that reason, this study proposed Masked-Unmasked Face Matching Model (MUFM). This model employs transfer learning using the Visual Geometry Group (VGG16) model to extract significant facial features, which are subsequently classified utilizing the K-Nearest Neighbors (K-NN) algorithm. The cosine similarity metric is employed to compare masked and unmasked faces of the same individuals. This approach represents a novel contribution, as the task of recognizing the same individual with and without a mask using cosine similarity has not been previously addressed. By integrating these advanced methodologies, the research demonstrates effective identification of individuals despite the presence of masks, addressing a significant limitation in traditional systems. Using data is another essential part of this work, by collecting and preparing an image dataset from three different sources especially some of those data are real provided a comprehensive power of this research. The image dataset used were already collected in three different datasets of masked and unmasked for the same faces.
☆ Effect of Information Technology on Job Creation to Support Economic: Case Studies of Graduates in Universities (2023-2024) of the KRG of Iraq
The aim of this study is to assess the impact of information technology (IT) on university graduates in terms of employment development, which will aid in economic issues. This study uses a descriptive research methodology and a quantitative approach to understand variables. The focus of this study is to ascertain how graduates of Kurdistan regional universities might use IT to secure employment and significantly contribute to the nation's economic revival. The sample size was established by the use of judgmental sampling procedure and consisted of 314 people. The researcher prepared the questionnaire to collect data, and then SPSS statistical software, version 22, and Excel 2010 were used to modify, compile, and tabulate the results. The study's outcome showed that information technology is incredibly inventive, has a promising future, and makes life much easier for everyone. It also proved that a deep academic understanding of information technology and its constituent parts helps graduates of Kurdistan Regional University find suitable careers. More importantly, though, anyone looking for work or a means of support will find great benefit from possessing credentials and understanding of IT. The study's final finding was that information technology has actively advanced the country's economy. Not only is IT helping to boost youth employment, but it is also turning into a worthwhile investment for economic growth.
☆ Integrating LLMs with ITS: Recent Advances, Potentials, Challenges, and Future Directions
Intelligent Transportation Systems (ITS) are crucial for the development and operation of smart cities, addressing key challenges in efficiency, productivity, and environmental sustainability. This paper comprehensively reviews the transformative potential of Large Language Models (LLMs) in optimizing ITS. Initially, we provide an extensive overview of ITS, highlighting its components, operational principles, and overall effectiveness. We then delve into the theoretical background of various LLM techniques, such as GPT, T5, CTRL, and BERT, elucidating their relevance to ITS applications. Following this, we examine the wide-ranging applications of LLMs within ITS, including traffic flow prediction, vehicle detection and classification, autonomous driving, traffic sign recognition, and pedestrian detection. Our analysis reveals how these advanced models can significantly enhance traffic management and safety. Finally, we explore the challenges and limitations LLMs face in ITS, such as data availability, computational constraints, and ethical considerations. We also present several future research directions and potential innovations to address these challenges. This paper aims to guide researchers and practitioners through the complexities and opportunities of integrating LLMs in ITS, offering a roadmap to create more efficient, sustainable, and responsive next-generation transportation systems.
comment: Accepted for publication in IEEE Transactions on Intelligent Transportation Systems
☆ Federated Fine-Tuning of LLMs: Framework Comparison and Research Directions
Federated learning (FL) provides a privacy-preserving solution for fine-tuning pre-trained large language models (LLMs) using distributed private datasets, enabling task-specific adaptation while preserving data privacy. However, fine-tuning the extensive parameters in LLMs is particularly challenging in resource-constrained federated scenarios due to the significant communication and computational costs. To gain a deeper understanding of how these challenges can be addressed, this article conducts a comparative analysis three advanced federated LLM (FedLLM) frameworks that integrate knowledge distillation (KD) and split learning (SL) to mitigate these issues: 1) FedLLMs, where clients upload model parameters or gradients to enable straightforward and effective fine-tuning; 2) KD-FedLLMs, which leverage KD for efficient knowledge sharing via logits; and 3) Split-FedLLMs, which split the LLMs into two parts, with one part executed on the client and the other one on the server, to balance the computational load. Each framework is evaluated based on key performance metrics, including model accuracy, communication overhead, and client-side computational load, offering insights into their effectiveness for various federated fine-tuning scenarios. Through this analysis, we identify framework-specific optimization opportunities to enhance the efficiency of FedLLMs and discuss broader research directions, highlighting open opportunities to better adapt FedLLMs for real-world applications. A use case is presented to demonstrate the performance comparison of these three frameworks under varying configurations and settings.
☆ A Digital Shadow for Modeling, Studying and Preventing Urban Crime
Crime is one of the greatest threats to urban security. Around 80 percent of the world's population lives in countries with high levels of criminality. Most of the crimes committed in the cities take place in their urban environments. This paper presents the development and validation of a digital shadow platform for modeling and simulating urban crime. This digital shadow has been constructed using data-driven agent-based modeling and simulation techniques, which are suitable for capturing dynamic interactions among individuals and with their environment. Our approach transforms and integrates well-known criminological theories and the expert knowledge of law enforcement agencies (LEA), policy makers, and other stakeholders under a theoretical model, which is in turn combined with real crime, spatial (cartographic) and socio-economic data into an urban model characterizing the daily behavior of citizens. The digital shadow has also been instantiated for the city of Malaga, for which we had over 300,000 complaints available. This instance has been calibrated with those complaints and other geographic and socio-economic information of the city. To the best of our knowledge, our digital shadow is the first for large urban areas that has been calibrated with a large dataset of real crime reports and with an accurate representation of the urban environment. The performance indicators of the model after being calibrated, in terms of the metrics widely used in predictive policing, suggest that our simulated crime generation matches the general pattern of crime in the city according to historical data. Our digital shadow platform could be an interesting tool for modeling and predicting criminal behavior in an urban environment on a daily basis and, thus, a useful tool for policy makers, criminologists, sociologists, LEAs, etc. to study and prevent urban crime.
☆ Dual-Force: Enhanced Offline Diversity Maximization under Imitation Constraints
While many algorithms for diversity maximization under imitation constraints are online in nature, many applications require offline algorithms without environment interactions. Tackling this problem in the offline setting, however, presents significant challenges that require non-trivial, multi-stage optimization processes with non-stationary rewards. In this work, we present a novel offline algorithm that enhances diversity using an objective based on Van der Waals (VdW) force and successor features, and eliminates the need to learn a previously used skill discriminator. Moreover, by conditioning the value function and policy on a pre-trained Functional Reward Encoding (FRE), our method allows for better handling of non-stationary rewards and provides zero-shot recall of all skills encountered during training, significantly expanding the set of skills learned in prior work. Consequently, our algorithm benefits from receiving a consistently strong diversity signal (VdW), and enjoys more stable and efficient training. We demonstrate the effectiveness of our method in generating diverse skills for two robotic tasks in simulation: locomotion of a quadruped and local navigation with obstacle traversal.
☆ NSA: Neuro-symbolic ARC Challenge
The Abstraction and Reasoning Corpus (ARC) evaluates general reasoning capabilities that are difficult for both machine learning models and combinatorial search methods. We propose a neuro-symbolic approach that combines a transformer for proposal generation with combinatorial search using a domain-specific language. The transformer narrows the search space by proposing promising search directions, which allows the combinatorial search to find the actual solution in short time. We pre-train the trainsformer with synthetically generated data. During test-time we generate additional task-specific training tasks and fine-tune our model. Our results surpass comparable state of the art on the ARC evaluation set by 27% and compare favourably on the ARC train set. We make our code and dataset publicly available at https://github.com/Batorskq/NSA.
☆ User Simulation in the Era of Generative AI: User Modeling, Synthetic Data Generation, and System Evaluation
User simulation is an emerging interdisciplinary topic with multiple critical applications in the era of Generative AI. It involves creating an intelligent agent that mimics the actions of a human user interacting with an AI system, enabling researchers to model and analyze user behaviour, generate synthetic data for training, and evaluate interactive AI systems in a controlled and reproducible manner. User simulation has profound implications for diverse fields and plays a vital role in the pursuit of Artificial General Intelligence. This paper provides an overview of user simulation, highlighting its key applications, connections to various disciplines, and outlining future research directions to advance this increasingly important technology.
☆ On Computational Limits and Provably Efficient Criteria of Visual Autoregressive Models: A Fine-Grained Complexity Analysis
Recently, Visual Autoregressive ($\mathsf{VAR}$) Models introduced a groundbreaking advancement in the field of image generation, offering a scalable approach through a coarse-to-fine "next-scale prediction" paradigm. However, the state-of-the-art algorithm of $\mathsf{VAR}$ models in [Tian, Jiang, Yuan, Peng and Wang, NeurIPS 2024] takes $O(n^4)$ time, which is computationally inefficient. In this work, we analyze the computational limits and efficiency criteria of $\mathsf{VAR}$ Models through a fine-grained complexity lens. Our key contribution is identifying the conditions under which $\mathsf{VAR}$ computations can achieve sub-quadratic time complexity. Specifically, we establish a critical threshold for the norm of input matrices used in $\mathsf{VAR}$ attention mechanisms. Above this threshold, assuming the Strong Exponential Time Hypothesis ($\mathsf{SETH}$) from fine-grained complexity theory, a sub-quartic time algorithm for $\mathsf{VAR}$ models is impossible. To substantiate our theoretical findings, we present efficient constructions leveraging low-rank approximations that align with the derived criteria. This work initiates the study of the computational efficiency of the $\mathsf{VAR}$ model from a theoretical perspective. Our technique will shed light on advancing scalable and efficient image generation in $\mathsf{VAR}$ frameworks.
☆ DispFormer: Pretrained Transformer for Flexible Dispersion Curve Inversion from Global Synthesis to Regional Applications
Surface wave dispersion curve inversion is essential for estimating subsurface Shear-wave velocity ($v_s$), yet traditional methods often struggle to balance computational efficiency with inversion accuracy. While deep learning approaches show promise, previous studies typically require large amounts of labeled data and struggle with real-world datasets that have varying period ranges, missing data, and low signal-to-noise ratios. This study proposes DispFormer, a transformer-based neural network for inverting the $v_s$ profile from Rayleigh-wave phase and group dispersion curves. DispFormer processes dispersion data at each period independently, thereby allowing it to handle data of varying lengths without requiring network modifications or alignment between training and testing data. The performance is demonstrated by pre-training it on a global synthetic dataset and testing it on two regional synthetic datasets using zero-shot and few-shot strategies. Results indicate that zero-shot DispFormer, even without any labeled data, produces inversion profiles that match well with the ground truth, providing a deployable initial model generator to assist traditional methods. When labeled data is available, few-shot DispFormer outperforms traditional methods with only a small number of labels. Furthermore, real-world tests indicate that DispFormer effectively handles varying length data, and yields lower data residuals than reference models. These findings demonstrate that DispFormer provides a robust foundation model for dispersion curve inversion and is a promising approach for broader applications.
comment: 11 pages, 11 figures, related codes and data are available at https://github.com/liufeng2317/DispFormer
☆ TimelineKGQA: A Comprehensive Question-Answer Pair Generator for Temporal Knowledge Graphs
Question answering over temporal knowledge graphs (TKGs) is crucial for understanding evolving facts and relationships, yet its development is hindered by limited datasets and difficulties in generating custom QA pairs. We propose a novel categorization framework based on timeline-context relationships, along with \textbf{TimelineKGQA}, a universal temporal QA generator applicable to any TKGs. The code is available at: \url{https://github.com/PascalSun/TimelineKGQA} as an open source Python package.
☆ RoRA: Efficient Fine-Tuning of LLM with Reliability Optimization for Rank Adaptation ICASSP 2025
Fine-tuning helps large language models (LLM) recover degraded information and enhance task performance.Although Low-Rank Adaptation (LoRA) is widely used and effective for fine-tuning, we have observed that its scaling factor can limit or even reduce performance as the rank size increases. To address this issue, we propose RoRA (Rank-adaptive Reliability Optimization), a simple yet effective method for optimizing LoRA's scaling factor. By replacing $\alpha/r$ with $\alpha/\sqrt{r}$, RoRA ensures improved performance as rank size increases. Moreover, RoRA enhances low-rank adaptation in fine-tuning uncompressed models and excels in the more challenging task of accuracy recovery when fine-tuning pruned models. Extensive experiments demonstrate the effectiveness of RoRA in fine-tuning both uncompressed and pruned models. RoRA surpasses the state-of-the-art (SOTA) in average accuracy and robustness on LLaMA-7B/13B, LLaMA2-7B, and LLaMA3-8B, specifically outperforming LoRA and DoRA by 6.5% and 2.9% on LLaMA-7B, respectively. In pruned model fine-tuning, RoRA shows significant advantages; for SHEARED-LLAMA-1.3, a LLaMA-7B with 81.4% pruning, RoRA achieves 5.7% higher average accuracy than LoRA and 3.9% higher than DoRA.
comment: ICASSP 2025
☆ H-MBA: Hierarchical MamBa Adaptation for Multi-Modal Video Understanding in Autonomous Driving
With the prevalence of Multimodal Large Language Models(MLLMs), autonomous driving has encountered new opportunities and challenges. In particular, multi-modal video understanding is critical to interactively analyze what will happen in the procedure of autonomous driving. However, videos in such a dynamical scene that often contains complex spatial-temporal movements, which restricts the generalization capacity of the existing MLLMs in this field. To bridge the gap, we propose a novel Hierarchical Mamba Adaptation (H-MBA) framework to fit the complicated motion changes in autonomous driving videos. Specifically, our H-MBA consists of two distinct modules, including Context Mamba (C-Mamba) and Query Mamba (Q-Mamba). First, C-Mamba contains various types of structure state space models, which can effectively capture multi-granularity video context for different temporal resolutions. Second, Q-Mamba flexibly transforms the current frame as the learnable query, and attentively selects multi-granularity video context into query. Consequently, it can adaptively integrate all the video contexts of multi-scale temporal resolutions to enhance video understanding. Via a plug-and-play paradigm in MLLMs, our H-MBA shows the remarkable performance on multi-modal video tasks in autonomous driving, e.g., for risk object detection, it outperforms the previous SOTA method with 5.5% mIoU improvement.
comment: 7 pages, 4 figures
☆ Circuit Complexity Bounds for Visual Autoregressive Model
Understanding the expressive ability of a specific model is essential for grasping its capacity limitations. Recently, several studies have established circuit complexity bounds for Transformer architecture. Besides, the Visual AutoRegressive (VAR) model has risen to be a prominent method in the field of image generation, outperforming previous techniques, such as Diffusion Transformers, in generating high-quality images. We investigate the circuit complexity of the VAR model and establish a bound in this study. Our primary result demonstrates that the VAR model is equivalent to a simulation by a uniform $\mathsf{TC}^0$ threshold circuit with hidden dimension $d \leq O(n)$ and $\mathrm{poly}(n)$ precision. This is the first study to rigorously highlight the limitations in the expressive power of VAR models despite their impressive performance. We believe our findings will offer valuable insights into the inherent constraints of these models and guide the development of more efficient and expressive architectures in the future.
☆ MAD-UV: The 1st INTERSPEECH Mice Autism Detection via Ultrasound Vocalization Challenge
The Mice Autism Detection via Ultrasound Vocalization (MAD-UV) Challenge introduces the first INTERSPEECH challenge focused on detecting autism spectrum disorder (ASD) in mice through their vocalizations. Participants are tasked with developing models to automatically classify mice as either wild-type or ASD models based on recordings with a high sampling rate. Our baseline system employs a simple CNN-based classification using three different spectrogram features. Results demonstrate the feasibility of automated ASD detection, with the considered audible-range features achieving the best performance (UAR of 0.600 for segment-level and 0.625 for subject-level classification). This challenge bridges speech technology and biomedical research, offering opportunities to advance our understanding of ASD models through machine learning approaches. The findings suggest promising directions for vocalization analysis and highlight the potential value of audible and ultrasound vocalizations in ASD detection.
comment: 5 pages, 1 figure and 2 tables. For MAD-UV Challenge 2025
☆ Mapping the Edge of Chaos: Fractal-Like Boundaries in The Trainability of Decoder-Only Transformer Models
In the realm of fractal geometry, intricate structures emerge from simple iterative processes that partition parameter spaces into regions of stability and instability. Likewise, training large language models involves iteratively applying update functions, such as Adam, where even slight hyperparameter adjustments can shift the training process from convergence to divergence. Recent evidence from miniature neural networks suggests that the boundary separating these outcomes displays fractal characteristics [1]. Building on these insights, this study extends them to medium-sized, decoder-only transformer architectures by employing a more consistent convergence measure and examining the learning rate hyperparameter landscape for attention and fully connected layers. The results show that the trainability frontier is not a simple threshold; rather, it forms a self-similar yet seemingly random structure at multiple scales, with statistically consistent and repeating patterns. Within this landscape, a region of stable convergence is surrounded by a complex chaotic border, illustrating the sensitive nature of the underlying training dynamics.
comment: 15 pages
☆ Enhancing Scene Classification in Cloudy Image Scenarios: A Collaborative Transfer Method with Information Regulation Mechanism using Optical Cloud-Covered and SAR Remote Sensing Images
In remote sensing scene classification, leveraging the transfer methods with well-trained optical models is an efficient way to overcome label scarcity. However, cloud contamination leads to optical information loss and significant impacts on feature distribution, challenging the reliability and stability of transferred target models. Common solutions include cloud removal for optical data or directly using Synthetic aperture radar (SAR) data in the target domain. However, cloud removal requires substantial auxiliary data for support and pre-training, while directly using SAR disregards the unobstructed portions of optical data. This study presents a scene classification transfer method that synergistically combines multi-modality data, which aims to transfer the source domain model trained on cloudfree optical data to the target domain that includes both cloudy optical and SAR data at low cost. Specifically, the framework incorporates two parts: (1) the collaborative transfer strategy, based on knowledge distillation, enables the efficient prior knowledge transfer across heterogeneous data; (2) the information regulation mechanism (IRM) is proposed to address the modality imbalance issue during transfer. It employs auxiliary models to measure the contribution discrepancy of each modality, and automatically balances the information utilization of modalities during the target model learning process at the sample-level. The transfer experiments were conducted on simulated and real cloud datasets, demonstrating the superior performance of the proposed method compared to other solutions in cloud-covered scenarios. We also verified the importance and limitations of IRM, and further discussed and visualized the modality imbalance problem during the model transfer. Codes are available at https://github.com/wangyuze-csu/ESCCS
☆ Scaling Large Language Model Training on Frontier with Low-Bandwidth Partitioning
Scaling up Large Language Model(LLM) training involves fitting a tremendous amount of training parameters across a limited number of workers. However, methods like ZeRO-3 that drastically reduce GPU memory pressure often incur heavy communication to ensure global synchronization and consistency. Established efforts such as ZeRO++ use secondary partitions to avoid inter-node communications, given that intra-node GPU-GPU transfer generally has more bandwidth and lower latency than inter-node connections. However, as more capable infrastructure like Frontier, equipped with AMD GPUs, emerged with impressive computing capability, there is a need for investigations on the hardware topology and to develop targeted strategies to improve training efficiency. In this work, we propose a collection of communication and optimization strategies for ZeRO++ to reduce communication costs and improve memory utilization. In this paper, we propose a 3-level hierarchical partitioning specifically for the current Top-1 supercomputing cluster, Frontier, which aims at leveraging various bandwidths across layers of communications (GCD-GCD, GPU-GPU, and inter-node) to reduce communication overhead. For a 20B GPT model, we observe a 1.71x increase in TFLOPS per GPU when compared with ZeRO++ up to 384 GCDs and a scaling efficiency of 0.94 for up to 384 GCDs. To the best of our knowledge, our work is also the first effort to efficiently optimize LLM workloads on Frontier AMD GPUs.
☆ KN-LIO: Geometric Kinematics and Neural Field Coupled LiDAR-Inertial Odometry
Recent advancements in LiDAR-Inertial Odometry (LIO) have boosted a large amount of applications. However, traditional LIO systems tend to focus more on localization rather than mapping, with maps consisting mostly of sparse geometric elements, which is not ideal for downstream tasks. Recent emerging neural field technology has great potential in dense mapping, but pure LiDAR mapping is difficult to work on high-dynamic vehicles. To mitigate this challenge, we present a new solution that tightly couples geometric kinematics with neural fields to enhance simultaneous state estimation and dense mapping capabilities. We propose both semi-coupled and tightly coupled Kinematic-Neural LIO (KN-LIO) systems that leverage online SDF decoding and iterated error-state Kalman filtering to fuse laser and inertial data. Our KN-LIO minimizes information loss and improves accuracy in state estimation, while also accommodating asynchronous multi-LiDAR inputs. Evaluations on diverse high-dynamic datasets demonstrate that our KN-LIO achieves performance on par with or superior to existing state-of-the-art solutions in pose estimation and offers improved dense mapping accuracy over pure LiDAR-based methods. The relevant code and datasets will be made available at https://**.
☆ Integrated Offline and Online Learning to Solve a Large Class of Scheduling Problems
In this paper, we develop a unified machine learning (ML) approach to predict high-quality solutions for single-machine scheduling problems with a non-decreasing min-sum objective function with or without release times. Our ML approach is novel in three major aspects. First, our approach is developed for the entire class of the aforementioned problems. To achieve this, we exploit the fact that the entire class of the problems considered can be formulated as a time-indexed formulation in a unified manner. We develop a deep neural network (DNN) which uses the cost parameters in the time-indexed formulation as the inputs to effectively predict a continuous solution to this formulation, based on which a feasible discrete solution is easily constructed. The second novel aspect of our approach lies in how the DNN model is trained. In view of the NP-hard nature of the problems, labels (i.e., optimal solutions) are hard to generate for training. To overcome this difficulty, we generate and utilize a set of special instances, for which optimal solutions can be found with little computational effort, to train the ML model offline. The third novel idea we employ in our approach is that we develop an online single-instance learning approach to fine tune the parameters in the DNN for a given online instance, with the goal of generating an improved solution for the given instance. To this end, we develop a feasibility surrogate that approximates the objective value of a given instance as a continuous function of the outputs of the DNN, which then enables us to derive gradients and update the learnable parameters in the DNN. Numerical results show that our approach can efficiently generate high-quality solutions for a variety of single-machine scheduling min-sum problems with up to 1000 jobs.
☆ Constraints as Rewards: Reinforcement Learning for Robots without Reward Functions
Reinforcement learning has become an essential algorithm for generating complex robotic behaviors. However, to learn such behaviors, it is necessary to design a reward function that describes the task, which often consists of multiple objectives that needs to be balanced. This tuning process is known as reward engineering and typically involves extensive trial-and-error. In this paper, to avoid this trial-and-error process, we propose the concept of Constraints as Rewards (CaR). CaR formulates the task objective using multiple constraint functions instead of a reward function and solves a reinforcement learning problem with constraints using the Lagrangian-method. By adopting this approach, different objectives are automatically balanced, because Lagrange multipliers serves as the weights among the objectives. In addition, we will demonstrate that constraints, expressed as inequalities, provide an intuitive interpretation of the optimization target designed for the task. We apply the proposed method to the standing-up motion generation task of a six-wheeled-telescopic-legged robot and demonstrate that the proposed method successfully acquires the target behavior, even though it is challenging to learn with manually designed reward functions.
☆ Agent Laboratory: Using LLM Agents as Research Assistants
Historically, scientific discovery has been a lengthy and costly process, demanding substantial time and resources from initial conception to final results. To accelerate scientific discovery, reduce research costs, and improve research quality, we introduce Agent Laboratory, an autonomous LLM-based framework capable of completing the entire research process. This framework accepts a human-provided research idea and progresses through three stages--literature review, experimentation, and report writing to produce comprehensive research outputs, including a code repository and a research report, while enabling users to provide feedback and guidance at each stage. We deploy Agent Laboratory with various state-of-the-art LLMs and invite multiple researchers to assess its quality by participating in a survey, providing human feedback to guide the research process, and then evaluate the final paper. We found that: (1) Agent Laboratory driven by o1-preview generates the best research outcomes; (2) The generated machine learning code is able to achieve state-of-the-art performance compared to existing methods; (3) Human involvement, providing feedback at each stage, significantly improves the overall quality of research; (4) Agent Laboratory significantly reduces research expenses, achieving an 84% decrease compared to previous autonomous research methods. We hope Agent Laboratory enables researchers to allocate more effort toward creative ideation rather than low-level coding and writing, ultimately accelerating scientific discovery.
☆ Continual Self-supervised Learning Considering Medical Domain Knowledge in Chest CT Images ICASSP 2025
We propose a novel continual self-supervised learning method (CSSL) considering medical domain knowledge in chest CT images. Our approach addresses the challenge of sequential learning by effectively capturing the relationship between previously learned knowledge and new information at different stages. By incorporating an enhanced DER into CSSL and maintaining both diversity and representativeness within the rehearsal buffer of DER, the risk of data interference during pretraining is reduced, enabling the model to learn more richer and robust feature representations. In addition, we incorporate a mixup strategy and feature distillation to further enhance the model's ability to learn meaningful representations. We validate our method using chest CT images obtained under two different imaging conditions, demonstrating superior performance compared to state-of-the-art methods.
comment: Accepted by ICASSP 2025
☆ UPAQ: A Framework for Real-Time and Energy-Efficient 3D Object Detection in Autonomous Vehicles
To enhance perception in autonomous vehicles (AVs), recent efforts are concentrating on 3D object detectors, which deliver more comprehensive predictions than traditional 2D object detectors, at the cost of increased memory footprint and computational resource usage. We present a novel framework called UPAQ, which leverages semi-structured pattern pruning and quantization to improve the efficiency of LiDAR point-cloud and camera-based 3D object detectors on resource-constrained embedded AV platforms. Experimental results on the Jetson Orin Nano embedded platform indicate that UPAQ achieves up to 5.62x and 5.13x model compression rates, up to 1.97x and 1.86x boost in inference speed, and up to 2.07x and 1.87x reduction in energy consumption compared to state-of-the-art model compression frameworks, on the Pointpillar and SMOKE models respectively.
☆ CURing Large Models: Compression via CUR Decomposition
Large deep learning models have achieved remarkable success but are resource-intensive, posing challenges in computational cost and memory usage. We introduce CURing, a novel model compression method based on CUR matrix decomposition, which approximates weight matrices as the product of selected columns (C) and rows (R), and a small linking matrix (U). We apply this decomposition to weights chosen based on the combined influence of their magnitudes and activations. By identifying and retaining informative rows and columns, CURing significantly reduces model size with minimal performance loss. It preserves the original network's input/output structures, retains important features such as non-negativity, and the compressed model's activation patterns align with the original, thereby enhancing interpretability.
☆ Generative Dataset Distillation Based on Self-knowledge Distillation ICASSP 2025
Dataset distillation is an effective technique for reducing the cost and complexity of model training while maintaining performance by compressing large datasets into smaller, more efficient versions. In this paper, we present a novel generative dataset distillation method that can improve the accuracy of aligning prediction logits. Our approach integrates self-knowledge distillation to achieve more precise distribution matching between the synthetic and original data, thereby capturing the overall structure and relationships within the data. To further improve the accuracy of alignment, we introduce a standardization step on the logits before performing distribution matching, ensuring consistency in the range of logits. Through extensive experiments, we demonstrate that our method outperforms existing state-of-the-art methods, resulting in superior distillation performance.
comment: Accepted by ICASSP 2025
☆ GNN-based Decentralized Perception in Multirobot Systems for Predicting Worker Actions
In industrial environments, predicting human actions is essential for ensuring safe and effective collaboration between humans and robots. This paper introduces a perception framework that enables mobile robots to understand and share information about human actions in a decentralized way. The framework first allows each robot to build a spatial graph representing its surroundings, which it then shares with other robots. This shared spatial data is combined with temporal information to track human behavior over time. A swarm-inspired decision-making process is used to ensure all robots agree on a unified interpretation of the human's actions. Results show that adding more robots and incorporating longer time sequences improve prediction accuracy. Additionally, the consensus mechanism increases system resilience, making the multi-robot setup more reliable in dynamic industrial settings.
comment: Submitted to RA-L
☆ Reach Measurement, Optimization and Frequency Capping In Targeted Online Advertising Under k-Anonymity
The growth in the use of online advertising to foster brand awareness over recent years is largely attributable to the ubiquity of social media. One pivotal technology contributing to the success of online brand advertising is frequency capping, a mechanism that enables marketers to control the number of times an ad is shown to a specific user. However, the very foundation of this technology is being scrutinized as the industry gravitates towards advertising solutions that prioritize user privacy. This paper delves into the issue of reach measurement and optimization within the context of $k$-anonymity, a privacy-preserving model gaining traction across major online advertising platforms. We outline how to report reach within this new privacy landscape and demonstrate how probabilistic discounting, a probabilistic adaptation of traditional frequency capping, can be employed to optimize campaign performance. Experiments are performed to assess the trade-off between user privacy and the efficacy of online brand advertising. Notably, we discern a significant dip in performance as long as privacy is introduced, yet this comes with a limited additional cost for advertising platforms to offer their users more privacy.
☆ Real-Time Textless Dialogue Generation
Recent advancements in large language models (LLMs) have led to significant progress in text-based dialogue systems. These systems can now generate high-quality responses that are accurate and coherent across a wide range of topics and tasks. However, spoken dialogue systems still lag behind in terms of naturalness. They tend to produce robotic interactions, with issues such as slow response times, overly generic or cautious replies, and a lack of natural rhythm and fluid turn-taking. This shortcoming is largely due to the over-reliance on the traditional cascaded design, which involve separate, sequential components, as well as the use of text as an intermediate representation. This paper propose a real-time, textless spoken dialogue generation model (RTTL-DG) that aims to overcome these challenges. Our system enables fluid turn-taking and generates responses with minimal delay by processing streaming spoken conversation directly. Additionally, our model incorporates backchannels, filters, laughter, and other paralinguistic signals, which are often absent in cascaded dialogue systems, to create more natural and human-like interactions. The implementations and generated samples are available in our repository: https://github.com/mailong25/rts2s-dg
☆ Back Home: A Machine Learning Approach to Seashell Classification and Ecosystem Restoration
In Costa Rica, an average of 5 tons of seashells are extracted from ecosystems annually. Confiscated seashells, cannot be returned to their ecosystems due to the lack of origin recognition. To address this issue, we developed a convolutional neural network (CNN) specifically for seashell identification. We built a dataset from scratch, consisting of approximately 19000 images from the Pacific and Caribbean coasts. Using this dataset, the model achieved a classification accuracy exceeding 85%. The model has been integrated into a user-friendly application, which has classified over 36,000 seashells to date, delivering real-time results within 3 seconds per image. To further enhance the system's accuracy, an anomaly detection mechanism was incorporated to filter out irrelevant or anomalous inputs, ensuring only valid seashell images are processed.
☆ Exploring Large Language Models for Semantic Analysis and Categorization of Android Malware
Malware analysis is a complex process of examining and evaluating malicious software's functionality, origin, and potential impact. This arduous process typically involves dissecting the software to understand its components, infection vector, propagation mechanism, and payload. Over the years, deep reverse engineering of malware has become increasingly tedious, mainly due to modern malicious codebases' fast evolution and sophistication. Essentially, analysts are tasked with identifying the elusive needle in the haystack within the complexities of zero-day malware, all while under tight time constraints. Thus, in this paper, we explore leveraging Large Language Models (LLMs) for semantic malware analysis to expedite the analysis of known and novel samples. Built on GPT-4o-mini model, \msp is designed to augment malware analysis for Android through a hierarchical-tiered summarization chain and strategic prompt engineering. Additionally, \msp performs malware categorization, distinguishing potential malware from benign applications, thereby saving time during the malware reverse engineering process. Despite not being fine-tuned for Android malware analysis, we demonstrate that through optimized and advanced prompt engineering \msp can achieve up to 77% classification accuracy while providing highly robust summaries at functional, class, and package levels. In addition, leveraging the backward tracing of the summaries from package to function levels allowed us to pinpoint the precise code snippets responsible for malicious behavior.
☆ Enhancing Listened Speech Decoding from EEG via Parallel Phoneme Sequence Prediction ICASSP 2025
Brain-computer interfaces (BCI) offer numerous human-centered application possibilities, particularly affecting people with neurological disorders. Text or speech decoding from brain activities is a relevant domain that could augment the quality of life for people with impaired speech perception. We propose a novel approach to enhance listened speech decoding from electroencephalography (EEG) signals by utilizing an auxiliary phoneme predictor that simultaneously decodes textual phoneme sequences. The proposed model architecture consists of three main parts: EEG module, speech module, and phoneme predictor. The EEG module learns to properly represent EEG signals into EEG embeddings. The speech module generates speech waveforms from the EEG embeddings. The phoneme predictor outputs the decoded phoneme sequences in text modality. Our proposed approach allows users to obtain decoded listened speech from EEG signals in both modalities (speech waveforms and textual phoneme sequences) simultaneously, eliminating the need for a concatenated sequential pipeline for each modality. The proposed approach also outperforms previous methods in both modalities. The source code and speech samples are publicly available.
comment: ICASSP 2025
☆ Do Code LLMs Understand Design Patterns? ICSE 2025
Code Large Language Models (LLMs) demonstrate great versatility in adapting to various downstream tasks, including code generation and completion, as well as bug detection and fixing. However, Code LLMs often fail to capture existing coding standards, leading to the generation of code that conflicts with the required design patterns for a given project. As a result, developers must post-process to adapt the generated code to the project's design norms. In this work, we empirically investigate the biases of Code LLMs in software development. Through carefully designed experiments, we assess the models' understanding of design patterns across recognition, comprehension, and generation. Our findings reveal that biases in Code LLMs significantly affect the reliability of downstream tasks.
comment: accpeted by llm4code workshop in ICSE 2025
☆ ActPC-Geom: Towards Scalable Online Neural-Symbolic Learning via Accelerating Active Predictive Coding with Information Geometry & Diverse Cognitive Mechanisms
This paper introduces ActPC-Geom, an approach to accelerate Active Predictive Coding (ActPC) in neural networks by integrating information geometry, specifically using Wasserstein-metric-based methods for measure-dependent gradient flows. We propose replacing KL-divergence in ActPC's predictive error assessment with the Wasserstein metric, suggesting this may enhance network robustness. To make this computationally feasible, we present strategies including: (1) neural approximators for inverse measure-dependent Laplacians, (2) approximate kernel PCA embeddings for low-rank approximations feeding into these approximators, and (3) compositional hypervector embeddings derived from kPCA outputs, with algebra optimized for fuzzy FCA lattices learned through neural architectures analyzing network states. This results in an ActPC architecture capable of real-time online learning and integrating continuous (e.g., transformer-like or Hopfield-net-like) and discrete symbolic ActPC networks, including frameworks like OpenCog Hyperon or ActPC-Chem for algorithmic chemistry evolution. Shared probabilistic, concept-lattice, and hypervector models enable symbolic-subsymbolic integration. Key features include (1) compositional reasoning via hypervector embeddings in transformer-like architectures for tasks like commonsense reasoning, and (2) Hopfield-net dynamics enabling associative long-term memory and attractor-driven cognitive features. We outline how ActPC-Geom combines few-shot learning with online weight updates, enabling deliberative thinking and seamless symbolic-subsymbolic reasoning. Ideas from Galois connections are explored for efficient hybrid ActPC/ActPC-Chem processing. Finally, we propose a specialized HPC design optimized for real-time focused attention and deliberative reasoning tailored to ActPC-Geom's demands.
☆ Intelligent Gradient Boosting Algorithms for Estimating Strength of Modified Subgrade Soil
The performance of pavement under loading depends on the strength of the subgrade. However, experimental estimation of properties of pavement strengths such as California bearing ratio (CBR), unconfined compressive strength (UCS) and resistance value (R) are often tedious, time-consuming and costly, thereby inspiring a growing interest in machine learning based tools which are simple, cheap and fast alternatives. Thus, the potential application of two boosting techniques; categorical boosting (CatBoost) and extreme gradient boosting (XGBoost) and support vector regression (SVR), is similarly explored in this study for estimation of properties of subgrade soil modified with hydrated lime activated rice husk ash (HARSH). Using 121 experimental data samples of varying proportions of HARSH, plastic limit, liquid limit, plasticity index, clay activity, optimum moisture content, and maximum dry density as input for CBR, UCS and R estimation, four evaluation metrics namely coefficient of determination (R2), root mean squared error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) are used to evaluate the models' performance. The results indicate that XGBoost outperformed CatBoost and SVR in estimating these properties, yielding R2 of 0.9994, 0.9995 and 0.9999 in estimating the CBR, UCS and R respectively. Also, SVR outperformed CatBoost in estimating the CBR and R with R2 of 0.9997 respectively. On the other hand, CatBoost outperformed SVR in estimating the UCS with R2 of 0.9994. Feature sensitivity analysis shows that the three machine learning techniques are unanimous that increasing HARSH proportion lead to values of the estimated properties respectively. A comparison with previous results also shows superiority of XGBoost in estimating subgrade properties.
comment: 17 pages
☆ Planing It by Ear: Convolutional Neural Networks for Acoustic Anomaly Detection in Industrial Wood Planers
In recent years, the wood product industry has been facing a skilled labor shortage. The result is more frequent sudden failures, resulting in additional costs for these companies already operating in a very competitive market. Moreover, sawmills are challenging environments for machinery and sensors. Given that experienced machine operators may be able to diagnose defects or malfunctions, one possible way of assisting novice operators is through acoustic monitoring. As a step towards the automation of wood-processing equipment and decision support systems for machine operators, in this paper, we explore using a deep convolutional autoencoder for acoustic anomaly detection of wood planers on a new real-life dataset. Specifically, our convolutional autoencoder with skip connections (Skip-CAE) and our Skip-CAE transformer outperform the DCASE autoencoder baseline, one-class SVM, isolation forest and a published convolutional autoencoder architecture, respectively obtaining an area under the ROC curve of 0.846 and 0.875 on a dataset of real-factory planer sounds. Moreover, we show that adding skip connections and attention mechanism under the form of a transformer encoder-decoder helps to further improve the anomaly detection capabilities.
☆ Decentralised Resource Sharing in TinyML: Wireless Bilayer Gossip Parallel SGD for Collaborative Learning
With the growing computational capabilities of microcontroller units (MCUs), edge devices can now support machine learning models. However, deploying decentralised federated learning (DFL) on such devices presents key challenges, including intermittent connectivity, limited communication range, and dynamic network topologies. This paper proposes a novel framework, bilayer Gossip Decentralised Parallel Stochastic Gradient Descent (GD PSGD), designed to address these issues in resource-constrained environments. The framework incorporates a hierarchical communication structure using Distributed Kmeans (DKmeans) clustering for geographic grouping and a gossip protocol for efficient model aggregation across two layers: intra-cluster and inter-cluster. We evaluate the framework's performance against the Centralised Federated Learning (CFL) baseline using the MCUNet model on the CIFAR-10 dataset under IID and Non-IID conditions. Results demonstrate that the proposed method achieves comparable accuracy to CFL on IID datasets, requiring only 1.8 additional rounds for convergence. On Non-IID datasets, the accuracy loss remains under 8\% for moderate data imbalance. These findings highlight the framework's potential to support scalable and privacy-preserving learning on edge devices with minimal performance trade-offs.
☆ Towards System 2 Reasoning in LLMs: Learning How to Think With Meta Chain-of-Thought
We propose a novel framework, Meta Chain-of-Thought (Meta-CoT), which extends traditional Chain-of-Thought (CoT) by explicitly modeling the underlying reasoning required to arrive at a particular CoT. We present empirical evidence from state-of-the-art models exhibiting behaviors consistent with in-context search, and explore methods for producing Meta-CoT via process supervision, synthetic data generation, and search algorithms. Finally, we outline a concrete pipeline for training a model to produce Meta-CoTs, incorporating instruction tuning with linearized search traces and reinforcement learning post-training. Finally, we discuss open research questions, including scaling laws, verifier roles, and the potential for discovering novel reasoning algorithms. This work provides a theoretical and practical roadmap to enable Meta-CoT in LLMs, paving the way for more powerful and human-like reasoning in artificial intelligence.
☆ TREAD: Token Routing for Efficient Architecture-agnostic Diffusion Training
Diffusion models have emerged as the mainstream approach for visual generation. However, these models usually suffer from sample inefficiency and high training costs. This issue is particularly pronounced in the standard diffusion transformer architecture due to its quadratic complexity relative to input length. Recent works have addressed this by reducing the number of tokens processed in the model, often through masking. In contrast, this work aims to improve the training efficiency of the diffusion backbone by using predefined routes that store this information until it is reintroduced to deeper layers of the model, rather than discarding these tokens entirely. Further, we combine multiple routes and introduce an adapted auxiliary loss that accounts for all applied routes. Our method is not limited to the common transformer-based model - it can also be applied to state-space models. Unlike most current approaches, TREAD achieves this without architectural modifications. Finally, we show that our method reduces the computational cost and simultaneously boosts model performance on the standard benchmark ImageNet-1K 256 x 256 in class-conditional synthesis. Both of these benefits multiply to a convergence speedup of 9.55x at 400K training iterations compared to DiT and 25.39x compared to the best benchmark performance of DiT at 7M training iterations.
☆ Discovering new robust local search algorithms with neuro-evolution
This paper explores a novel approach aimed at overcoming existing challenges in the realm of local search algorithms. Our aim is to improve the decision process that takes place within a local search algorithm so as to make the best possible transitions in the neighborhood at each iteration. To improve this process, we propose to use a neural network that has the same input information as conventional local search algorithms. In this paper, which is an extension of the work [Goudet et al. 2024] presented at EvoCOP2024, we investigate different ways of representing this information so as to make the algorithm as efficient as possible but also robust to monotonic transformations of the problem objective function. To assess the efficiency of this approach, we develop an experimental setup centered around NK landscape problems, offering the flexibility to adjust problem size and ruggedness. This approach offers a promising avenue for the emergence of new local search algorithms and the improvement of their problem-solving capabilities for black-box problems.
☆ Towards an Ontology of Traceable Impact Management in the Food Supply Chain
The pursuit of quality improvements and accountability in the food supply chains, especially how they relate to food-related outcomes, such as hunger, has become increasingly vital, necessitating a comprehensive approach that encompasses product quality and its impact on various stakeholders and their communities. Such an approach offers numerous benefits in increasing product quality and eliminating superfluous measurements while appraising and alleviating the broader societal and environmental repercussions. A traceable impact management model (TIMM) provides an impact structure and a reporting mechanism that identifies each stakeholder's role in the total impact of food production and consumption stages. The model aims to increase traceability's utility in understanding the impact of changes on communities affected by food production and consumption, aligning with current and future government requirements, and addressing the needs of communities and consumers. This holistic approach is further supported by an ontological model that forms the logical foundation and a unified terminology. By proposing a holistic and integrated solution across multiple stakeholders, the model emphasizes quality and the extensive impact of championing accountability, sustainability, and responsible practices with global traceability. With these combined efforts, the food supply chain moves toward a global tracking and tracing process that not only ensures product quality but also addresses its impact on a broader scale, fostering accountability, sustainability, and responsible food production and consumption.
♻ ☆ GLoG-CSUnet: Enhancing Vision Transformers with Adaptable Radiomic Features for Medical Image Segmentation
Vision Transformers (ViTs) have shown promise in medical image semantic segmentation (MISS) by capturing long-range correlations. However, ViTs often struggle to model local spatial information effectively, which is essential for accurately segmenting fine anatomical details, particularly when applied to small datasets without extensive pre-training. We introduce Gabor and Laplacian of Gaussian Convolutional Swin Network (GLoG-CSUnet), a novel architecture enhancing Transformer-based models by incorporating learnable radiomic features. This approach integrates dynamically adaptive Gabor and Laplacian of Gaussian (LoG) filters to capture texture, edge, and boundary information, enhancing the feature representation processed by the Transformer model. Our method uniquely combines the long-range dependency modeling of Transformers with the texture analysis capabilities of Gabor and LoG features. Evaluated on the Synapse multi-organ and ACDC cardiac segmentation datasets, GLoG-CSUnet demonstrates significant improvements over state-of-the-art models, achieving a 1.14% increase in Dice score for Synapse and 0.99% for ACDC, with minimal computational overhead (only 15 and 30 additional parameters, respectively). GLoG-CSUnet's flexible design allows integration with various base models, offering a promising approach for incorporating radiomics-inspired feature extraction in Transformer architectures for medical image analysis. The code implementation is available on GitHub at: https://github.com/HAAIL/GLoG-CSUnet.
♻ ☆ Hierarchical Object-Oriented POMDP Planning for Object Rearrangement
We present an online planning framework for solving multi-object rearrangement problems in partially observable, multi-room environments. Current object rearrangement solutions, primarily based on Reinforcement Learning or hand-coded planning methods, often lack adaptability to diverse challenges. To address this limitation, we introduce a novel Hierarchical Object-Oriented Partially Observed Markov Decision Process (HOO-POMDP) planning approach. This approach comprises of (a) an object-oriented POMDP planner generating sub-goals, (b) a set of low-level policies for sub-goal achievement, and (c) an abstraction system converting the continuous low-level world into a representation suitable for abstract planning. We evaluate our system on varying numbers of objects, rooms, and problem types in AI2-THOR simulated environments with promising results.
comment: 17 pages, 2 Figures. Preprint. Updated acknowledgments
♻ ☆ Samba-ASR: State-Of-The-Art Speech Recognition Leveraging Structured State-Space Models
We propose Samba ASR,the first state of the art Automatic Speech Recognition(ASR)model leveraging the novel Mamba architecture as both encoder and decoder,built on the foundation of state space models(SSMs).Unlike transformerbased ASR models,which rely on self-attention mechanisms to capture dependencies,Samba ASR effectively models both local and global temporal dependencies using efficient statespace dynamics,achieving remarkable performance gains.By addressing the limitations of transformers,such as quadratic scaling with input length and difficulty in handling longrange dependencies,Samba ASR achieves superior accuracy and efficiency.Experimental results demonstrate that Samba ASR surpasses existing opensource transformerbased ASR models across various standard benchmarks,establishing it as the new state of theart in ASR.Extensive evaluations on the benchmark dataset show significant improvements in Word Error Rate(WER),with competitive performance even in lowresource scenarios.Furthermore,the inherent computational efficiency and parameter optimization of the Mamba architecture make Samba ASR a scalable and robust solution for diverse ASR tasks.Our contributions include the development of a new Samba ASR architecture for automatic speech recognition(ASR),demonstrating the superiority of structured statespace models(SSMs)over transformer based models for speech sequence processing.We provide a comprehensive evaluation on public benchmarks,showcasing stateoftheart(SOTA)performance,and present an indepth analysis of computational efficiency,robustness to noise,and sequence generalization.This work highlights the viability of Mamba SSMs as a transformerfree alternative for efficient and accurate ASR.By leveraging the advancements of statespace modeling,Samba ASR redefines ASR performance standards and sets a new benchmark for future research in this field.
♻ ☆ A Zero-Shot Open-Vocabulary Pipeline for Dialogue Understanding
Dialogue State Tracking (DST) is crucial for understanding user needs and executing appropriate system actions in task-oriented dialogues. Majority of existing DST methods are designed to work within predefined ontologies and assume the availability of gold domain labels, struggling with adapting to new slots values. While Large Language Models (LLMs)-based systems show promising zero-shot DST performance, they either require extensive computational resources or they underperform existing fully-trained systems, limiting their practicality. To address these limitations, we propose a zero-shot, open-vocabulary system that integrates domain classification and DST in a single pipeline. Our approach includes reformulating DST as a question-answering task for less capable models and employing self-refining prompts for more adaptable ones. Our system does not rely on fixed slot values defined in the ontology allowing the system to adapt dynamically. We compare our approach with existing SOTA, and show that it provides up to 20% better Joint Goal Accuracy (JGA) over previous methods on datasets like Multi-WOZ 2.1, with up to 90% fewer requests to the LLM API.
♻ ☆ The Indoor-Training Effect: unexpected gains from distribution shifts in the transition function
Is it better to perform tennis training in a pristine indoor environment or a noisy outdoor one? To model this problem, here we investigate whether shifts in the transition probabilities between the training and testing environments in reinforcement learning problems can lead to better performance under certain conditions. We generate new Markov Decision Processes (MDPs) starting from a given MDP, by adding quantifiable, parametric noise into the transition function. We refer to this process as Noise Injection and the resulting environments as {\delta}-environments. This process allows us to create variations of the same environment with quantitative control over noise serving as a metric of distance between environments. Conventional wisdom suggests that training and testing on the same MDP should yield the best results. In stark contrast, we observe that agents can perform better when trained on the noise-free environment and tested on the noisy {\delta}-environments, compared to training and testing on the same {\delta}-environments. We confirm that this finding extends beyond noise variations: it is possible to showcase the same phenomenon in ATARI game variations including varying Ghost behaviour in PacMan, and Paddle behaviour in Pong. We demonstrate this intriguing behaviour across 60 different variations of ATARI games, including PacMan, Pong, and Breakout. We refer to this phenomenon as the Indoor-Training Effect. Code to reproduce our experiments and to implement Noise Injection can be found at https://bit.ly/3X6CTYk.
♻ ☆ Incentivized Symbiosis: A Paradigm for Human-Agent Coevolution
Cooperation is vital to our survival and progress. Evolutionary game theory offers a lens to understand the structures and incentives that enable cooperation to be a successful strategy. As artificial intelligence agents become integral to human systems, the dynamics of cooperation take on unprecedented significance. The convergence of human-agent teaming, contract theory, and decentralized frameworks like Web3, grounded in transparency, accountability, and trust, offers a foundation for fostering cooperation by establishing enforceable rules and incentives for humans and AI agents. We conceptualize Incentivized Symbiosis as a social contract between humans and AI, inspired by Web3 principles and encoded in blockchain technology, to define and enforce rules, incentives, and consequences for both parties. By exploring this paradigm, we aim to catalyze new research at the intersection of systems thinking in AI, Web3, and society, fostering innovative pathways for cooperative human-agent coevolution.
♻ ☆ Offline Reinforcement Learning for Learning to Dispatch for Job Shop Scheduling
The Job Shop Scheduling Problem (JSSP) is a complex combinatorial optimization problem. While online Reinforcement Learning (RL) has shown promise by quickly finding acceptable solutions for JSSP, it faces key limitations: it requires extensive training interactions from scratch leading to sample inefficiency, cannot leverage existing high-quality solutions, and often yields suboptimal results compared to traditional methods like Constraint Programming (CP). We introduce Offline Reinforcement Learning for Learning to Dispatch (Offline-LD), which addresses these limitations by learning from previously generated solutions. Our approach is motivated by scenarios where historical scheduling data and expert solutions are available, although our current evaluation focuses on benchmark problems. Offline-LD adapts two CQL-based Q-learning methods (mQRDQN and discrete mSAC) for maskable action spaces, introduces a novel entropy bonus modification for discrete SAC, and exploits reward normalization through preprocessing. Our experiments demonstrate that Offline-LD outperforms online RL on both generated and benchmark instances. Notably, by introducing noise into the expert dataset, we achieve similar or better results than those obtained from the expert dataset, suggesting that a more diverse training set is preferable because it contains counterfactual information.
comment: Code available at https://github.com/jesserem/Offline-LD
♻ ☆ Deep Multi-Objective Reinforcement Learning for Utility-Based Infrastructural Maintenance Optimization
In this paper, we introduce Multi-Objective Deep Centralized Multi-Agent Actor-Critic (MO- DCMAC), a multi-objective reinforcement learning (MORL) method for infrastructural maintenance optimization, an area traditionally dominated by single-objective reinforcement learning (RL) approaches. Previous single-objective RL methods combine multiple objectives, such as probability of collapse and cost, into a singular reward signal through reward-shaping. In contrast, MO-DCMAC can optimize a policy for multiple objectives directly, even when the utility function is non-linear. We evaluated MO-DCMAC using two utility functions, which use probability of collapse and cost as input. The first utility function is the Threshold utility, in which MO-DCMAC should minimize cost so that the probability of collapse is never above the threshold. The second is based on the Failure Mode, Effects, and Criticality Analysis (FMECA) methodology used by asset managers to asses maintenance plans. We evaluated MO-DCMAC, with both utility functions, in multiple maintenance environments, including ones based on a case study of the historical quay walls of Amsterdam. The performance of MO-DCMAC was compared against multiple rule-based policies based on heuristics currently used for constructing maintenance plans. Our results demonstrate that MO-DCMAC outperforms traditional rule-based policies across various environments and utility functions.
comment: Accepted in the Neural Computing and Applications: Topical Collection on Multi-Objective Decision Making 2023 (MODeM 2023)
♻ ☆ Lemur: Log Parsing with Entropy Sampling and Chain-of-Thought Merging
Logs produced by extensive software systems are integral to monitoring system behaviors. Advanced log analysis facilitates the detection, alerting, and diagnosis of system faults. Log parsing, which entails transforming raw log messages into structured templates, constitutes a critical phase in the automation of log analytics. Existing log parsers fail to identify the correct templates due to reliance on human-made rules. Besides, These methods focus on statistical features while ignoring semantic information in log messages. To address these challenges, we introduce a cutting-edge \textbf{L}og parsing framework with \textbf{E}ntropy sampling and Chain-of-Thought \textbf{M}erging (Lemur). Specifically, to discard the tedious manual rules. We propose a novel sampling method inspired by information entropy, which efficiently clusters typical logs. Furthermore, to enhance the merging of log templates, we design a chain-of-thought method for large language models (LLMs). LLMs exhibit exceptional semantic comprehension, deftly distinguishing between parameters and invariant tokens. We have conducted experiments on large-scale public datasets. Extensive evaluation demonstrates that Lemur achieves the state-of-the-art performance and impressive efficiency. The Code is available at https://github.com/zwpride/lemur.
♻ ☆ SWEPO: Simultaneous Weighted Preference Optimization for Group Contrastive Alignment
We introduce Simultaneous Weighted Preference Optimization (SWEPO), a novel extension of Direct Preference Optimization (DPO) designed to accommodate multiple dynamically chosen positive and negative responses for each query. SWEPO employs a weighted group contrastive loss, assigning weights to responses based on their deviation from the mean reward score. This approach effectively prioritizes responses that are significantly better or worse than the average, enhancing optimization. Our theoretical analysis demonstrates that simultaneously considering multiple preferences reduces alignment bias, resulting in more robust alignment. Additionally, we provide insights into the training dynamics of our loss function and a related function, InfoNCA. Empirical validation on the UltraFeedback dataset establishes SWEPO as state-of-the-art, with superior performance in downstream evaluations using the AlpacaEval dataset.
♻ ☆ Tougher Text, Smarter Models: Raising the Bar for Adversarial Defence Benchmarks COLING 2025
Recent advancements in natural language processing have highlighted the vulnerability of deep learning models to adversarial attacks. While various defence mechanisms have been proposed, there is a lack of comprehensive benchmarks that evaluate these defences across diverse datasets, models, and tasks. In this work, we address this gap by presenting an extensive benchmark for textual adversarial defence that significantly expands upon previous work. Our benchmark incorporates a wide range of datasets, evaluates state-of-the-art defence mechanisms, and extends the assessment to include critical tasks such as single-sentence classification, similarity and paraphrase identification, natural language inference, and commonsense reasoning. This work not only serves as a valuable resource for researchers and practitioners in the field of adversarial robustness but also identifies key areas for future research in textual adversarial defence. By establishing a new standard for benchmarking in this domain, we aim to accelerate progress towards more robust and reliable natural language processing systems.
comment: Will be presented as an oral in-person presentation at the conference of COLING 2025
♻ ☆ Rad4XCNN: a new agnostic method for post-hoc global explanation of CNN-derived features by means of radiomics
In recent years, machine learning-based clinical decision support systems (CDSS) have played a key role in the analysis of several medical conditions. Despite their promising capabilities, the lack of transparency in AI models poses significant challenges, particularly in medical contexts where reliability is a mandatory aspect. However, it appears that explainability is inversely proportional to accuracy. For this reason, achieving transparency without compromising predictive accuracy remains a key challenge. This paper presents a novel method, namely Rad4XCNN, to enhance the predictive power of CNN-derived features with the inherent interpretability of radiomic features. Rad4XCNN diverges from conventional methods based on saliency maps, by associating intelligible meaning to CNN-derived features by means of Radiomics, offering new perspectives on explanation methods beyond visualization maps. Using a breast cancer classification task as a case study, we evaluated Rad4XCNN on ultrasound imaging datasets, including an online dataset and two in-house datasets for internal and external validation. Some key results are: i) CNN-derived features guarantee more robust accuracy when compared against ViT-derived and radiomic features; ii) conventional visualization map methods for explanation present several pitfalls; iii) Rad4XCNN does not sacrifice model accuracy for their explainability; iv) Rad4XCNN provides a global explanation enabling the physician to extract global insights and findings. Our method can mitigate some concerns related to the explainability-accuracy trade-off. This study highlighted the importance of proposing new methods for model explanation without affecting their accuracy.
♻ ☆ VideoRefer Suite: Advancing Spatial-Temporal Object Understanding with Video LLM
Video Large Language Models (Video LLMs) have recently exhibited remarkable capabilities in general video understanding. However, they mainly focus on holistic comprehension and struggle with capturing fine-grained spatial and temporal details. Besides, the lack of high-quality object-level video instruction data and a comprehensive benchmark further hinders their advancements. To tackle these challenges, we introduce the VideoRefer Suite to empower Video LLM for finer-level spatial-temporal video understanding, i.e., enabling perception and reasoning on any objects throughout the video. Specially, we thoroughly develop VideoRefer Suite across three essential aspects: dataset, model, and benchmark. Firstly, we introduce a multi-agent data engine to meticulously curate a large-scale, high-quality object-level video instruction dataset, termed VideoRefer-700K. Next, we present the VideoRefer model, which equips a versatile spatial-temporal object encoder to capture precise regional and sequential representations. Finally, we meticulously create a VideoRefer-Bench to comprehensively assess the spatial-temporal understanding capability of a Video LLM, evaluating it across various aspects. Extensive experiments and analyses demonstrate that our VideoRefer model not only achieves promising performance on video referring benchmarks but also facilitates general video understanding capabilities.
comment: 17 pages, 14 figures, technical report
♻ ☆ Large Model Based Agents: State-of-the-Art, Cooperation Paradigms, Security and Privacy, and Future Trends
With the rapid advancement of large models (LMs), the development of general-purpose intelligent agents powered by LMs has become a reality. It is foreseeable that in the near future, LM-driven general AI agents will serve as essential tools in production tasks, capable of autonomous communication and collaboration without human intervention. This paper investigates scenarios involving the autonomous collaboration of future LM agents. We review the current state of LM agents, the key technologies enabling LM agent collaboration, and the security and privacy challenges they face during cooperative operations. To this end, we first explore the foundational principles of LM agents, including their general architecture, key components, enabling technologies, and modern applications. We then discuss practical collaboration paradigms from data, computation, and knowledge perspectives to achieve connected intelligence among LM agents. After that, we analyze the security vulnerabilities and privacy risks associated with LM agents, particularly in multi-agent settings, examining underlying mechanisms and reviewing current and potential countermeasures. Lastly, we propose future research directions for building robust and secure LM agent ecosystems.
comment: 40 pages, 31 figures, 8 tables
♻ ☆ The Race to Efficiency: A New Perspective on AI Scaling Laws
As large-scale AI models expand, training becomes costlier and sustaining progress grows harder. Classical scaling laws (e.g., Kaplan et al. (2020), Hoffmann et al. (2022)) predict training loss from a static compute budget yet neglect time and efficiency, prompting the question: how can we balance ballooning GPU fleets with rapidly improving hardware and algorithms? We introduce the relative-loss equation, a time- and efficiency-aware framework that extends classical AI scaling laws. Our model shows that, without ongoing efficiency gains, advanced performance could demand millennia of training or unrealistically large GPU fleets. However, near-exponential progress remains achievable if the "efficiency-doubling rate" parallels Moore's Law. By formalizing this race to efficiency, we offer a quantitative roadmap for balancing front-loaded GPU investments with incremental improvements across the AI stack. Empirical trends suggest that sustained efficiency gains can push AI scaling well into the coming decade, providing a new perspective on the diminishing returns inherent in classical scaling.
comment: 21 pages, 3 figures. 2 tables, second draft
♻ ☆ NeuralDiffuser: Neuroscience-inspired Diffusion Guidance for fMRI Visual Reconstruction
Reconstructing visual stimuli from functional Magnetic Resonance Imaging fMRI enables fine-grained retrieval of brain activity. However, the accurate reconstruction of diverse details, including structure, background, texture, color, and more, remains challenging. The stable diffusion models inevitably result in the variability of reconstructed images, even under identical conditions. To address this challenge, we first uncover the neuroscientific perspective of diffusion methods, which primarily involve top-down creation using pre-trained knowledge from extensive image datasets, but tend to lack detail-driven bottom-up perception, leading to a loss of faithful details. In this paper, we propose NeuralDiffuser, which incorporates primary visual feature guidance to provide detailed cues in the form of gradients. This extension of the bottom-up process for diffusion models achieves both semantic coherence and detail fidelity when reconstructing visual stimuli. Furthermore, we have developed a novel guidance strategy for reconstruction tasks that ensures the consistency of repeated outputs with original images rather than with various outputs. Extensive experimental results on the Natural Senses Dataset (NSD) qualitatively and quantitatively demonstrate the advancement of NeuralDiffuser by comparing it against baseline and state-of-the-art methods horizontally, as well as conducting longitudinal ablation studies.
♻ ☆ Scaling-laws for Large Time-series Models
Scaling laws for large language models (LLMs) have provided useful guidance in training ever larger models for predictable performance gains. Time series forecasting shares a similar sequential structure to language, and is amenable to large-scale transformer architectures. Here we show that foundational decoder-only time series transformer models exhibit analogous scaling-behavior to LLMs, with architectural details (aspect ratio and number of heads) having a minimal effect over broad ranges. We assemble a large corpus of heterogenous time series data on which to train, and establish for the first time power-law scaling with parameter count, dataset size, and training compute, spanning five orders of magnitude.
comment: 4 main pages (16 total), 4 figures; Accepted for oral presentation in Time Series in the Age of Large Models (TSALM) Workshop at Neurips 2024
♻ ☆ Don't be Fooled: The Misinformation Effect of Explanations in Human-AI Collaboration
Across various applications, humans increasingly use black-box artificial intelligence (AI) systems without insight into these systems' reasoning. To counter this opacity, explainable AI (XAI) methods promise enhanced transparency and interpretability. While recent studies have explored how XAI affects human-AI collaboration, few have examined the potential pitfalls caused by incorrect explanations. The implications for humans can be far-reaching but have not been explored extensively. To investigate this, we ran a study (n=160) on AI-assisted decision-making in which humans were supported by XAI. Our findings reveal a misinformation effect when incorrect explanations accompany correct AI advice with implications post-collaboration. This effect causes humans to infer flawed reasoning strategies, hindering task execution and demonstrating impaired procedural knowledge. Additionally, incorrect explanations compromise human-AI team-performance during collaboration. With our work, we contribute to HCI by providing empirical evidence for the negative consequences of incorrect explanations on humans post-collaboration and outlining guidelines for designers of AI.
♻ ☆ MedPix 2.0: A Comprehensive Multimodal Biomedical Data set for Advanced AI Applications with Retrieval Augmented Generation and Knowledge Graphs
The increasing interest in developing Artificial Intelligence applications in the medical domain, suffers from the lack of high-quality data set, mainly due to privacy-related issues. In addition, the recent increase in large multimodal models (LMM) leads to the need for multimodal medical data sets, where clinical reports and findings are attached to the corresponding CT or MRI scans. This paper illustrates the entire workflow for building the MedPix 2.0 data set. Starting with the well-known multimodal data set MedPix\textsuperscript{\textregistered}, mainly used by physicians, nurses, and healthcare students for Continuing Medical Education purposes, a semi-automatic pipeline was developed to extract visual and textual data followed by a manual curing procedure in which noisy samples were removed, thus creating a MongoDB database. Along with the data set, we developed a GUI aimed at navigating efficiently the MongoDB instance and obtaining the raw data that can be easily used for training and/or fine-tuning LMMs. To enforce this point, in this work, we first recall DR-Minerva, a RAG-based LMM trained using MedPix 2.0. DR-Minerva predicts the body part and the modality used to scan its input image. We also propose the extension of DR-Minerva with a Knowledge Graph that uses Llama 3.1 Instruct 8B, and leverages MedPix 2.0. The resulting architecture can be queried in a end-to-end manner, as a medical decision support system. MedPix 2.0 is available on GitHub. \url{https://github.com/CHILab1/MedPix-2.0}
♻ ☆ AutoSTF: Decoupled Neural Architecture Search for Cost-Effective Automated Spatio-Temporal Forecasting KDD 2025
Spatio-temporal forecasting is a critical component of various smart city applications, such as transportation optimization, energy management, and socio-economic analysis. Recently, several automated spatio-temporal forecasting methods have been proposed to automatically search the optimal neural network architecture for capturing complex spatio-temporal dependencies. However, the existing automated approaches suffer from expensive neural architecture search overhead, which hinders their practical use and the further exploration of diverse spatio-temporal operators in a finer granularity. In this paper, we propose AutoSTF, a decoupled automatic neural architecture search framework for cost-effective automated spatio-temporal forecasting. From the efficiency perspective, we first decouple the mixed search space into temporal space and spatial space and respectively devise representation compression and parameter-sharing schemes to mitigate the parameter explosion. The decoupled spatio-temporal search not only expedites the model optimization process but also leaves new room for more effective spatio-temporal dependency modeling. From the effectiveness perspective, we propose a multi-patch transfer module to jointly capture multi-granularity temporal dependencies and extend the spatial search space to enable finer-grained layer-wise spatial dependency search. Extensive experiments on eight datasets demonstrate the superiority of AutoSTF in terms of both accuracy and efficiency. Specifically, our proposed method achieves up to 13.48x speed-up compared to state-of-the-art automatic spatio-temporal forecasting methods while maintaining the best forecasting accuracy.
comment: Accepted by KDD 2025 Research Track
♻ ☆ Mathematical Definition and Systematization of Puzzle Rules
While logic puzzles have engaged individuals through problem-solving and critical thinking, the creation of new puzzle rules has largely relied on ad-hoc processes. Pencil puzzles, such as Slitherlink and Sudoku, represent a prominent subset of these games, celebrated for their intellectual challenges rooted in combinatorial logic and spatial reasoning. Despite extensive research into solving techniques and automated problem generation, a unified framework for systematic and scalable rule design has been lacking. Here, we introduce a mathematical framework for defining and systematizing pencil puzzle rules. This framework formalizes grid elements, their positional relationships, and iterative composition operations, allowing for the incremental construction of structures that form the basis of puzzle rules. Furthermore, we establish a formal method to describe constraints and domains for each structure, ensuring solvability and coherence. Applying this framework, we successfully formalized the rules of well-known Nikoli puzzles, including Slitherlink and Sudoku, demonstrating the formal representation of a significant portion (approximately one-fourth) of existing puzzles. These results validate the potential of the framework to systematize and innovate puzzle rule design, establishing a pathway to automated rule generation. By providing a mathematical foundation for puzzle rule creation, this framework opens avenues for computers, potentially enhanced by AI, to design novel puzzle rules tailored to player preferences, expanding the scope of puzzle diversity. Beyond its direct application to pencil puzzles, this work illustrates how mathematical frameworks can bridge recreational mathematics and algorithmic design, offering tools for broader exploration in logic-based systems, with potential applications in educational game design, personalized learning, and computational creativity.
comment: 16pages
♻ ☆ Edge-Wise Graph-Instructed Neural Networks
The problem of multi-task regression over graph nodes has been recently approached through Graph-Instructed Neural Network (GINN), which is a promising architecture belonging to the subset of message-passing graph neural networks. In this work, we discuss the limitations of the Graph-Instructed (GI) layer, and we formalize a novel edge-wise GI (EWGI) layer. We discuss the advantages of the EWGI layer and we provide numerical evidence that EWGINNs perform better than GINNs over some graph-structured input data, like the ones inferred from the Barabasi-Albert graph, and improve the training regularization on graphs with chaotic connectivity, like the ones inferred from the Erdos-Renyi graph.
♻ ☆ Analyzing Consumer IoT Traffic from Security and Privacy Perspectives: a Comprehensive Survey
The Consumer Internet of Things (CIoT), a notable segment within the IoT domain, involves the integration of IoT technology into consumer electronics and devices, such as smart homes and smart wearables. Compared to traditional IoT fields, CIoT differs notably in target users, product types, and design approaches. While offering convenience to users, it also raises new security and privacy concerns. Network traffic analysis, a widely used technique in the security community, has been extensively applied to investigate these concerns about CIoT. Compared to network traffic analysis in other fields such as mobile apps and websites, CIoT presents unique characteristics, introducing new challenges and research opportunities. Researchers have made significant contributions in this area. To aid researchers in understanding the application of traffic analysis tools for studying CIoT security and privacy risks, this survey reviews 303 publications on traffic analysis within the CIoT security and privacy domain from January 2018 to June 2024, focusing on three research questions. Our work: 1) outlines the CIoT traffic analysis process and highlights its differences from general network traffic analysis. 2) summarizes and classifies existing research into four categories according to its application objectives: device fingerprinting, user activity inference, malicious traffic detection, and measurement. 3) explores emerging challenges and potential future research directions based on each step of the CIoT traffic analysis process. This will provide new insights to the community and guide the industry towards safer product designs.
♻ ☆ Rethinking Byzantine Robustness in Federated Recommendation from Sparse Aggregation Perspective AAAI 2025
To preserve user privacy in recommender systems, federated recommendation (FR) based on federated learning (FL) emerges, keeping the personal data on the local client and updating a model collaboratively. Unlike FL, FR has a unique sparse aggregation mechanism, where the embedding of each item is updated by only partial clients, instead of full clients in a dense aggregation of general FL. Recently, as an essential principle of FL, model security has received increasing attention, especially for Byzantine attacks, where malicious clients can send arbitrary updates. The problem of exploring the Byzantine robustness of FR is particularly critical since in the domains applying FR, e.g., e-commerce, malicious clients can be injected easily by registering new accounts. However, existing Byzantine works neglect the unique sparse aggregation of FR, making them unsuitable for our problem. Thus, we make the first effort to investigate Byzantine attacks on FR from the perspective of sparse aggregation, which is non-trivial: it is not clear how to define Byzantine robustness under sparse aggregations and design Byzantine attacks under limited knowledge/capability. In this paper, we reformulate the Byzantine robustness under sparse aggregation by defining the aggregation for a single item as the smallest execution unit. Then we propose a family of effective attack strategies, named Spattack, which exploit the vulnerability in sparse aggregation and are categorized along the adversary's knowledge and capability. Extensive experimental results demonstrate that Spattack can effectively prevent convergence and even break down defenses under a few malicious clients, raising alarms for securing FR systems.
comment: accepted by AAAI 2025
♻ ☆ Leveraging Large Language Models for Active Merchant Non-player Characters
We highlight two significant issues leading to the passivity of current merchant non-player characters (NPCs): pricing and communication. While immersive interactions have been a focus, negotiations between merchant NPCs and players on item prices have not received sufficient attention. First, we define passive pricing as the limited ability of merchants to modify predefined item prices. Second, passive communication means that merchants can only interact with players in a scripted manner. To tackle these issues and create an active merchant NPC, we propose a merchant framework based on large language models (LLMs), called MART, which consists of an appraiser module and a negotiator module. We conducted two experiments to guide game developers in selecting appropriate implementations by comparing different training methods and LLM sizes. Our findings indicate that finetuning methods, such as supervised finetuning (SFT) and knowledge distillation (KD), are effective in using smaller LLMs to implement active merchant NPCs. Additionally, we found three irregular cases arising from the responses of LLMs. We expect our findings to guide developers in using LLMs for developing active merchant NPCs.
comment: Under review / Modified the links to code and dataset
♻ ☆ Differentiable Inductive Logic Programming in High-Dimensional Space
Synthesizing large logic programs through symbolic Inductive Logic Programming (ILP) typically requires intermediate definitions. However, cluttering the hypothesis space with intensional predicates typically degrades performance. In contrast, gradient descent provides an efficient way to find solutions within such high-dimensional spaces. Neuro-symbolic ILP approaches have not fully exploited this so far. We propose extending the {\delta}ILP approach to inductive synthesis with large-scale predicate invention, thus allowing us to exploit the efficacy of high-dimensional gradient descent. We show that large-scale predicate invention benefits differentiable inductive synthesis through gradient descent and allows one to learn solutions for tasks beyond the capabilities of existing neuro-symbolic ILP systems. Furthermore, we achieve these results without specifying the precise structure of the solution within the language bias.
comment: 8 pages, To appear, published at IJCLR 2024
♻ ☆ SenseRAG: Constructing Environmental Knowledge Bases with Proactive Querying for LLM-Based Autonomous Driving WACV
This study addresses the critical need for enhanced situational awareness in autonomous driving (AD) by leveraging the contextual reasoning capabilities of large language models (LLMs). Unlike traditional perception systems that rely on rigid, label-based annotations, it integrates real-time, multimodal sensor data into a unified, LLMs-readable knowledge base, enabling LLMs to dynamically understand and respond to complex driving environments. To overcome the inherent latency and modality limitations of LLMs, a proactive Retrieval-Augmented Generation (RAG) is designed for AD, combined with a chain-of-thought prompting mechanism, ensuring rapid and context-rich understanding. Experimental results using real-world Vehicle-to-everything (V2X) datasets demonstrate significant improvements in perception and prediction performance, highlighting the potential of this framework to enhance safety, adaptability, and decision-making in next-generation AD systems.
comment: This paper has been accepted for presentation at WACV Workshop LLMAD 2025
♻ ☆ DEFormer: DCT-driven Enhancement Transformer for Low-light Image and Dark Vision ICASSP
Low-light image enhancement restores the colors and details of a single image and improves high-level visual tasks. However, restoring the lost details in the dark area is still a challenge relying only on the RGB domain. In this paper, we delve into frequency as a new clue into the model and propose a DCT-driven enhancement transformer (DEFormer) framework. First, we propose a learnable frequency branch (LFB) for frequency enhancement contains DCT processing and curvature-based frequency enhancement (CFE) to represent frequency features. Additionally, we propose a cross domain fusion (CDF) to reduce the differences between the RGB domain and the frequency domain. Our DEFormer has achieved superior results on the LOL and MIT-Adobe FiveK datasets, improving the dark detection performance.
comment: Accepted by ICASSP
♻ ☆ Reorganizing attention-space geometry with expressive attention
Attention regulates information transfer between tokens. For this, query and key vectors are compared, typically in terms of a scalar product, $\mathbf{Q}^T\mathbf{K}$, together with a subsequent softmax normalization. In geometric terms, the standard dot-product attention (DPA) leads to large/small attention weights for parallel/antiparallel queries and keys. Here we study expressive attention (EA), which is based on $(\mathbf{Q}^T\mathbf{K})^2$, the squared dot product. In this case, attention is enhanced when query and key are either parallel or antiparallel, and suppressed for orthogonal configurations. EA can be introduced into any attention-based code without additional compute costs or memory requirements. For a series of autoregressive prediction tasks, we find that expressive attention performs at least as well as vanilla DPA. Increasing task complexity, EA is observed to outperform DPA with increasing margins, which also holds for multi-task settings. For a given model size, EA manages to achieve 100% performance for a range of complexity levels not accessible to DPA. Our results show that it is possible to reorganize the geometry of the matching condition in the space of attention heads without loss of performance.
♻ ☆ Toxicity Detection towards Adaptability to Changing Perturbations
Toxicity detection is crucial for maintaining the peace of the society. While existing methods perform well on normal toxic contents or those generated by specific perturbation methods, they are vulnerable to evolving perturbation patterns. However, in real-world scenarios, malicious users tend to create new perturbation patterns for fooling the detectors. For example, some users may circumvent the detector of large language models (LLMs) by adding `I am a scientist' at the beginning of the prompt. In this paper, we introduce a novel problem, i.e., continual learning jailbreak perturbation patterns, into the toxicity detection field. To tackle this problem, we first construct a new dataset generated by 9 types of perturbation patterns, 7 of them are summarized from prior work and 2 of them are developed by us. We then systematically validate the vulnerability of current methods on this new perturbation pattern-aware dataset via both the zero-shot and fine tuned cross-pattern detection. Upon this, we present the domain incremental learning paradigm and the corresponding benchmark to ensure the detector's robustness to dynamically emerging types of perturbed toxic text. Our code and dataset are provided in the appendix and will be publicly available at GitHub, by which we wish to offer new research opportunities for the security-relevant communities.
♻ ☆ Rho-1: Not All Tokens Are What You Need
Previous language model pre-training methods have uniformly applied a next-token prediction loss to all training tokens. Challenging this norm, we posit that "9l training". Our initial analysis examines token-level training dynamics of language model, revealing distinct loss patterns for different tokens. Leveraging these insights, we introduce a new language model called Rho-1. Unlike traditional LMs that learn to predict every next token in a corpus, Rho-1 employs Selective Language Modeling (SLM), which selectively trains on useful tokens that aligned with the desired distribution. This approach involves scoring pretraining tokens using a reference model, and then training the language model with a focused loss on tokens with higher scores. When continual pretraining on 15B OpenWebMath corpus, Rho-1 yields an absolute improvement in few-shot accuracy of up to 30% in 9 math tasks. After fine-tuning, Rho-1-1B and 7B achieved state-of-the-art results of 40.6% and 51.8% on MATH dataset, respectively - matching DeepSeekMath with only 3% of the pretraining tokens. Furthermore, when continual pretraining on 80B general tokens, Rho-1 achieves 6.8% average enhancement across 15 diverse tasks, increasing both efficiency and performance of the language model pre-training.
comment: First two authors equal contribution
♻ ☆ Rethinking Adversarial Attacks in Reinforcement Learning from Policy Distribution Perspective
Deep Reinforcement Learning (DRL) suffers from uncertainties and inaccuracies in the observation signal in realworld applications. Adversarial attack is an effective method for evaluating the robustness of DRL agents. However, existing attack methods targeting individual sampled actions have limited impacts on the overall policy distribution, particularly in continuous action spaces. To address these limitations, we propose the Distribution-Aware Projected Gradient Descent attack (DAPGD). DAPGD uses distribution similarity as the gradient perturbation input to attack the policy network, which leverages the entire policy distribution rather than relying on individual samples. We utilize the Bhattacharyya distance in DAPGD to measure policy similarity, enabling sensitive detection of subtle but critical differences between probability distributions. Our experiment results demonstrate that DAPGD achieves SOTA results compared to the baselines in three robot navigation tasks, achieving an average 22.03% higher reward drop compared to the best baseline.
comment: 10 pages, 2 figures, 2 tables
♻ ☆ MultiMax: Sparse and Multi-Modal Attention Learning ICML 2024
SoftMax is a ubiquitous ingredient of modern machine learning algorithms. It maps an input vector onto a probability simplex and reweights the input by concentrating the probability mass at large entries. Yet, as a smooth approximation to the Argmax function, a significant amount of probability mass is distributed to other, residual entries, leading to poor interpretability and noise. Although sparsity can be achieved by a family of SoftMax variants, they often require an alternative loss function and do not preserve multi-modality. We show that this trade-off between multi-modality and sparsity limits the expressivity of SoftMax as well as its variants. We provide a solution to this tension between objectives by proposing a piece-wise differentiable function, termed MultiMax, which adaptively modulates the output distribution according to input entry range. Through comprehensive analysis and evaluation, we show that MultiMax successfully produces a distribution that supresses irrelevant entries while preserving multimodality, with benefits in image classification, language modeling and machine translation. The code is available at https://github.com/ZhouYuxuanYX/MultiMax.
comment: Accepted at ICML 2024
♻ ☆ TS-HTFA: Advancing Time Series Forecasting via Hierarchical Text-Free Alignment with Large Language Models
Given the significant potential of large language models (LLMs) in sequence modeling, emerging studies have begun applying them to time-series forecasting. Despite notable progress, existing methods still face two critical challenges: 1) their reliance on large amounts of paired text data, limiting the model applicability, and 2) a substantial modality gap between text and time series, leading to insufficient alignment and suboptimal performance. In this paper, we introduce \textbf{H}ierarchical \textbf{T}ext-\textbf{F}ree \textbf{A}lignment (\textbf{TS-HTFA}), a novel method that leverages hierarchical alignment to fully exploit the representation capacity of LLMs while eliminating the dependence on text data. Specifically, we replace paired text data with adaptive virtual text based on QR decomposition word embeddings and learnable prompt. Furthermore, we establish comprehensive cross-modal alignment at three levels: input, feature, and output. Extensive experiments on multiple time-series benchmarks demonstrate that HTFA achieves state-of-the-art performance, significantly improving prediction accuracy and generalization.
comment: 19 pages, 6 figures
♻ ☆ Multi-Agent Training for Pommerman: Curriculum Learning and Population-based Self-Play Approach IJCAI 2024
Pommerman is a multi-agent environment that has received considerable attention from researchers in recent years. This environment is an ideal benchmark for multi-agent training, providing a battleground for two teams with communication capabilities among allied agents. Pommerman presents significant challenges for model-free reinforcement learning due to delayed action effects, sparse rewards, and false positives, where opponent players can lose due to their own mistakes. This study introduces a system designed to train multi-agent systems to play Pommerman using a combination of curriculum learning and population-based self-play. We also tackle two challenging problems when deploying the multi-agent training system for competitive games: sparse reward and suitable matchmaking mechanism. Specifically, we propose an adaptive annealing factor based on agents' performance to adjust the dense exploration reward during training dynamically. Additionally, we implement a matchmaking mechanism utilizing the Elo rating system to pair agents effectively. Our experimental results demonstrate that our trained agent can outperform top learning agents without requiring communication among allied agents.
comment: Accepted at The First Workshop on Game AI Algorithms and Multi-Agent Learning - IJCAI 2024
♻ ☆ Decoupled Prioritized Resampling for Offline RL
Offline reinforcement learning (RL) is challenged by the distributional shift problem. To address this problem, existing works mainly focus on designing sophisticated policy constraints between the learned policy and the behavior policy. However, these constraints are applied equally to well-performing and inferior actions through uniform sampling, which might negatively affect the learned policy. To alleviate this issue, we propose Offline Prioritized Experience Replay (OPER), featuring a class of priority functions designed to prioritize highly-rewarding transitions, making them more frequently visited during training. Through theoretical analysis, we show that this class of priority functions induce an improved behavior policy, and when constrained to this improved policy, a policy-constrained offline RL algorithm is likely to yield a better solution. We develop two practical strategies to obtain priority weights by estimating advantages based on a fitted value network (OPER-A) or utilizing trajectory returns (OPER-R) for quick computation. OPER is a plug-and-play component for offline RL algorithms. As case studies, we evaluate OPER on five different algorithms, including BC, TD3+BC, Onestep RL, CQL, and IQL. Extensive experiments demonstrate that both OPER-A and OPER-R significantly improve the performance for all baseline methods. Codes and priority weights are availiable at https://github.com/sail-sg/OPER.
comment: published on IEEE TNNLS
♻ ☆ BudgetMLAgent: A Cost-Effective LLM Multi-Agent system for Automating Machine Learning Tasks
Large Language Models (LLMs) excel in diverse applications including generation of code snippets, but often struggle with generating code for complex Machine Learning (ML) tasks. Although existing LLM single-agent based systems give varying performance depending on the task complexity, they purely rely on larger and expensive models such as GPT-4. Our investigation reveals that no-cost and low-cost models such as Gemini-Pro, Mixtral and CodeLlama perform far worse than GPT-4 in a single-agent setting. With the motivation of developing a cost-efficient LLM based solution for solving ML tasks, we propose an LLM Multi-Agent based system which leverages combination of experts using profiling, efficient retrieval of past observations, LLM cascades, and ask-the-expert calls. Through empirical analysis on ML engineering tasks in the MLAgentBench benchmark, we demonstrate the effectiveness of our system, using no-cost models, namely Gemini as the base LLM, paired with GPT-4 in cascade and expert to serve occasional ask-the-expert calls for planning. With 94.2\% reduction in the cost (from \$0.931 per run cost averaged over all tasks for GPT-4 single agent system to \$0.054), our system is able to yield better average success rate of 32.95\% as compared to GPT-4 single-agent system yielding 22.72\% success rate averaged over all the tasks of MLAgentBench.
comment: Presented at AIMLSystems '24
♻ ☆ MEDSAGE: Enhancing Robustness of Medical Dialogue Summarization to ASR Errors with LLM-generated Synthetic Dialogues AAAI
Automatic Speech Recognition (ASR) systems are pivotal in transcribing speech into text, yet the errors they introduce can significantly degrade the performance of downstream tasks like summarization. This issue is particularly pronounced in clinical dialogue summarization, a low-resource domain where supervised data for fine-tuning is scarce, necessitating the use of ASR models as black-box solutions. Employing conventional data augmentation for enhancing the noise robustness of summarization models is not feasible either due to the unavailability of sufficient medical dialogue audio recordings and corresponding ASR transcripts. To address this challenge, we propose MEDSAGE, an approach for generating synthetic samples for data augmentation using Large Language Models (LLMs). Specifically, we leverage the in-context learning capabilities of LLMs and instruct them to generate ASR-like errors based on a few available medical dialogue examples with audio recordings. Experimental results show that LLMs can effectively model ASR noise, and incorporating this noisy data into the training process significantly improves the robustness and accuracy of medical dialogue summarization systems. This approach addresses the challenges of noisy ASR outputs in critical applications, offering a robust solution to enhance the reliability of clinical dialogue summarization.
comment: Accepted by the Thirty-Ninth AAAI Conference on Artificial Intelligence (AAAI-25)
♻ ☆ Generalizing Teacher Networks for Effective Knowledge Distillation Across Student Architectures BMVC 24
Knowledge distillation (KD) is a model compression method that entails training a compact student model to emulate the performance of a more complex teacher model. However, the architectural capacity gap between the two models limits the effectiveness of knowledge transfer. Addressing this issue, previous works focused on customizing teacher-student pairs to improve compatibility, a computationally expensive process that needs to be repeated every time either model changes. Hence, these methods are impractical when a teacher model has to be compressed into different student models for deployment on multiple hardware devices with distinct resource constraints. In this work, we propose Generic Teacher Network (GTN), a one-off KD-aware training to create a generic teacher capable of effectively transferring knowledge to any student model sampled from a given finite pool of architectures. To this end, we represent the student pool as a weight-sharing supernet and condition our generic teacher to align with the capacities of various student architectures sampled from this supernet. Experimental evaluation shows that our method both improves overall KD effectiveness and amortizes the minimal additional training cost of the generic teacher across students in the pool.
comment: British Machine Vision Conference (BMVC 24)
♻ ☆ A Lightweight and Real-Time Binaural Speech Enhancement Model with Spatial Cues Preservation
Binaural speech enhancement (BSE) aims to jointly improve the speech quality and intelligibility of noisy signals received by hearing devices and preserve the spatial cues of the target for natural listening. Existing methods often suffer from the compromise between noise reduction (NR) capacity and spatial cues preservation (SCP) accuracy and a high computational demand in complex acoustic scenes. In this work, we present a learning-based lightweight binaural complex convolutional network (LBCCN), which excels in NR by filtering low-frequency bands and keeping the rest. Additionally, our approach explicitly incorporates the estimation of interchannel relative acoustic transfer function to ensure the spatial cues fidelity and speech clarity. Results show that the proposed LBCCN can achieve a comparable NR performance to state-of-the-art methods under fixed-speaker conditions, but with a much lower computational cost and a certain degree of SCP capability. The reproducible code and audio examples are available at https://github.com/jywanng/LBCCN.
♻ ☆ Federated Learning and RAG Integration: A Scalable Approach for Medical Large Language Models
This study analyzes the performance of domain-specific Large Language Models (LLMs) for the medical field by integrating Retrieval-Augmented Generation (RAG) systems within a federated learning framework. Leveraging the inherent advantages of federated learning, such as preserving data privacy and enabling distributed computation, this research explores the integration of RAG systems with models trained under varying client configurations to optimize performance. Experimental results demonstrate that the federated learning-based models integrated with RAG systems consistently outperform their non-integrated counterparts across all evaluation metrics. This study highlights the potential of combining federated learning and RAG systems for developing domain-specific LLMs in the medical field, providing a scalable and privacy-preserving solution for enhancing text generation capabilities.
♻ ☆ Motion Manifold Flow Primitives for Task-Conditioned Trajectory Generation under Complex Task-Motion Dependencies
Effective movement primitives should be capable of encoding and generating a rich repertoire of trajectories -- typically collected from human demonstrations -- conditioned on task-defining parameters such as vision or language inputs. While recent methods based on the motion manifold hypothesis, which assumes that a set of trajectories lies on a lower-dimensional nonlinear subspace, address challenges such as limited dataset size and the high dimensionality of trajectory data, they often struggle to capture complex task-motion dependencies, i.e., when motion distributions shift drastically with task variations. To address this, we introduce Motion Manifold Flow Primitives (MMFP), a framework that decouples the training of the motion manifold from task-conditioned distributions. Specifically, we employ flow matching models, state-of-the-art conditional deep generative models, to learn task-conditioned distributions in the latent coordinate space of the learned motion manifold. Experiments are conducted on language-guided trajectory generation tasks, where many-to-many text-motion correspondences introduce complex task-motion dependencies, highlighting MMFP's superiority over existing methods.
comment: 8 pages, 11 figures
♻ ☆ Conjugate-Gradient-like Based Adaptive Moment Estimation Optimization Algorithm for Deep Learning
Training deep neural networks is a challenging task. In order to speed up training and enhance the performance of deep neural networks, we rectify the vanilla conjugate gradient as conjugate-gradient-like and incorporate it into the generic Adam, and thus propose a new optimization algorithm named CG-like-Adam for deep learning. Specifically, both the first-order and the second-order moment estimation of generic Adam are replaced by the conjugate-gradient-like. Convergence analysis handles the cases where the exponential moving average coefficient of the first-order moment estimation is constant and the first-order moment estimation is unbiased. Numerical experiments show the superiority of the proposed algorithm based on the CIFAR10/100 dataset.
comment: 32 pages, 13 figures
♻ ☆ The Digital Ecosystem of Beliefs: does evolution favour AI over humans?
As AI systems are integrated into social networks, there are AI safety concerns that AI-generated content may dominate the web, e.g. in popularity or impact on beliefs. To understand such questions, this paper proposes the Digital Ecosystem of Beliefs (Digico), the first evolutionary framework for controlled experimentation with multi-population interactions in simulated social networks. The framework models a population of agents which change their messaging strategies due to evolutionary updates following a Universal Darwinism approach, interact via messages, influence each other's beliefs through dynamics based on a contagion model, and maintain their beliefs through cognitive Lamarckian inheritance. Initial experiments with an abstract implementation of Digico show that: a) when AIs have faster messaging, evolution, and more influence in the recommendation algorithm, they get 80% to 95% of the views, depending on the size of the influence benefit; b) AIs designed for propaganda can typically convince 50% of humans to adopt extreme beliefs, and up to 85% when agents believe only a limited number of channels; c) a penalty for content that violates agents' beliefs reduces propaganda effectiveness by up to 8%. We further discuss implications for control (e.g. legislation) and Digico as a means of studying evolutionary principles.
♻ ☆ AutoFuse: Automatic Fusion Networks for Deformable Medical Image Registration
Deformable image registration aims to find a dense non-linear spatial correspondence between a pair of images, which is a crucial step for many medical tasks such as tumor growth monitoring and population analysis. Recently, Deep Neural Networks (DNNs) have been widely recognized for their ability to perform fast end-to-end registration. However, DNN-based registration needs to explore the spatial information of each image and fuse this information to characterize spatial correspondence. This raises an essential question: what is the optimal fusion strategy to characterize spatial correspondence? Existing fusion strategies (e.g., early fusion, late fusion) were empirically designed to fuse information by manually defined prior knowledge, which inevitably constrains the registration performance within the limits of empirical designs. In this study, we depart from existing empirically-designed fusion strategies and develop a data-driven fusion strategy for deformable image registration. To achieve this, we propose an Automatic Fusion network (AutoFuse) that provides flexibility to fuse information at many potential locations within the network. A Fusion Gate (FG) module is also proposed to control how to fuse information at each potential network location based on training data. Our AutoFuse can automatically optimize its fusion strategy during training and can be generalizable to both unsupervised registration (without any labels) and semi-supervised registration (with weak labels provided for partial training data). Extensive experiments on two well-benchmarked medical registration tasks (inter- and intra-patient registration) with eight public datasets show that our AutoFuse outperforms state-of-the-art unsupervised and semi-supervised registration methods.
comment: Published at Pattern Recognition
♻ ☆ Channel-Aware Domain-Adaptive Generative Adversarial Network for Robust Speech Recognition ICASSP 2025
While pre-trained automatic speech recognition (ASR) systems demonstrate impressive performance on matched domains, their performance often degrades when confronted with channel mismatch stemming from unseen recording environments and conditions. To mitigate this issue, we propose a novel channel-aware data simulation method for robust ASR training. Our method harnesses the synergistic power of channel-extractive techniques and generative adversarial networks (GANs). We first train a channel encoder capable of extracting embeddings from arbitrary audio. On top of this, channel embeddings are extracted using a minimal amount of target-domain data and used to guide a GAN-based speech synthesizer. This synthesizer generates speech that faithfully preserves the phonetic content of the input while mimicking the channel characteristics of the target domain. We evaluate our method on the challenging Hakka Across Taiwan (HAT) and Taiwanese Across Taiwan (TAT) corpora, achieving relative character error rate (CER) reductions of 20.02% and 9.64%, respectively, compared to the baselines. These results highlight the efficacy of our channel-aware data simulation method for bridging the gap between source- and target-domain acoustics.
comment: Accepted to ICASSP 2025
♻ ☆ ARC Prize 2024: Technical Report
As of December 2024, the ARC-AGI benchmark is five years old and remains unbeaten. We believe it is currently the most important unsolved AI benchmark in the world because it seeks to measure generalization on novel tasks -- the essence of intelligence -- as opposed to skill at tasks that can be prepared for in advance. This year, we launched ARC Prize, a global competition to inspire new ideas and drive open progress towards AGI by reaching a target benchmark score of 85\%. As a result, the state-of-the-art score on the ARC-AGI private evaluation set increased from 33\% to 55.5\%, propelled by several frontier AGI reasoning techniques including deep learning-guided program synthesis and test-time training. In this paper, we survey top approaches, review new open-source implementations, discuss the limitations of the ARC-AGI-1 dataset, and share key insights gained from the competition.
♻ ☆ A Soft Sensor Method with Uncertainty-Awareness and Self-Explanation Based on Large Language Models Enhanced by Domain Knowledge Retrieval
Data-driven soft sensors are crucial in predicting key performance indicators in industrial systems. However, current methods predominantly rely on the supervised learning paradigms of parameter updating, which inherently faces challenges such as high development costs, poor robustness, training instability, and lack of interpretability. Recently, large language models (LLMs) have demonstrated significant potential across various domains, notably through In-Context Learning (ICL), which enables high-performance task execution with minimal input-label demonstrations and no prior training. This paper aims to replace supervised learning with the emerging ICL paradigm for soft sensor modeling to address existing challenges and explore new avenues for advancement. To achieve this, we propose a novel framework called the Few-shot Uncertainty-aware and self-Explaining Soft Sensor (LLM-FUESS), which includes the Zero-shot Auxiliary Variable Selector (LLM-ZAVS) and the Uncertainty-aware Few-shot Soft Sensor (LLM-UFSS). The LLM-ZAVS retrieves from the Industrial Knowledge Vector Storage to enhance LLMs' domain-specific knowledge, enabling zero-shot auxiliary variable selection. In the LLM-UFSS, we utilize text-based context demonstrations of structured data to prompt LLMs to execute ICL for predicting and propose a context sample retrieval augmentation strategy to improve performance. Additionally, we explored LLMs' AIGC and probabilistic characteristics to propose self-explanation and uncertainty quantification methods for constructing a trustworthy soft sensor. Extensive experiments demonstrate that our method achieved state-of-the-art predictive performance, strong robustness, and flexibility, effectively mitigates training instability found in traditional methods. To the best of our knowledge, this is the first work to establish soft sensor utilizing LLMs.
♻ ☆ SAG-ViT: A Scale-Aware, High-Fidelity Patching Approach with Graph Attention for Vision Transformers
Vision Transformers (ViTs) have redefined image classification by leveraging self-attention to capture complex patterns and long-range dependencies between image patches. However, a key challenge for ViTs is efficiently incorporating multi-scale feature representations, which is inherent in convolutional neural networks (CNNs) through their hierarchical structure. Graph transformers have made strides in addressing this by leveraging graph-based modeling, but they often lose or insufficiently represent spatial hierarchies, especially since redundant or less relevant areas dilute the image's contextual representation. To bridge this gap, we propose SAG-ViT, a Scale-Aware Graph Attention ViT that integrates multi-scale feature capabilities of CNNs, representational power of ViTs, graph-attended patching to enable richer contextual representation. Using EfficientNetV2 as a backbone, the model extracts multi-scale feature maps, dividing them into patches to preserve richer semantic information compared to directly patching the input images. The patches are structured into a graph using spatial and feature similarities, where a Graph Attention Network (GAT) refines the node embeddings. This refined graph representation is then processed by a Transformer encoder, capturing long-range dependencies and complex interactions. We evaluate SAG-ViT on benchmark datasets across various domains, validating its effectiveness in advancing image classification tasks. Our code and weights are available at https://github.com/shravan-18/SAG-ViT.
comment: 14 pages, 8 figures, 9 tables
♻ ☆ Motion Dreamer: Realizing Physically Coherent Video Generation through Scene-Aware Motion Reasoning
Recent numerous video generation models, also known as world models, have demonstrated the ability to generate plausible real-world videos. However, many studies have shown that these models often produce motion results lacking logical or physical coherence. In this paper, we revisit video generation models and find that single-stage approaches struggle to produce high-quality results while maintaining coherent motion reasoning. To address this issue, we propose \textbf{Motion Dreamer}, a two-stage video generation framework. In Stage I, the model generates an intermediate motion representation-such as a segmentation map or depth map-based on the input image and motion conditions, focusing solely on the motion itself. In Stage II, the model uses this intermediate motion representation as a condition to generate a high-detail video. By decoupling motion reasoning from high-fidelity video synthesis, our approach allows for more accurate and physically plausible motion generation. We validate the effectiveness of our approach on the Physion dataset and in autonomous driving scenarios. For example, given a single push, our model can synthesize the sequential toppling of a set of dominoes. Similarly, by varying the movements of ego-cars, our model can produce different effects on other vehicles. Our work opens new avenues in creating models that can reason about physical interactions in a more coherent and realistic manner. Our webpage is available: https://envision-research.github.io/MotionDreamer/.
♻ ☆ DPO Kernels: A Semantically-Aware, Kernel-Enhanced, and Divergence-Rich Paradigm for Direct Preference Optimization
The rapid rise of large language models (LLMs) has unlocked many applications but also underscores the challenge of aligning them with diverse values and preferences. Direct Preference Optimization (DPO) is central to alignment but constrained by fixed divergences and limited feature transformations. We propose DPO-Kernels, which integrates kernel methods to address these issues through four key contributions: (i) Kernelized Representations with polynomial, RBF, Mahalanobis, and spectral kernels for richer transformations, plus a hybrid loss combining embedding-based and probability-based objectives; (ii) Divergence Alternatives (Jensen-Shannon, Hellinger, Renyi, Bhattacharyya, Wasserstein, and f-divergences) for greater stability; (iii) Data-Driven Selection metrics that automatically choose the best kernel-divergence pair; and (iv) a Hierarchical Mixture of Kernels for both local precision and global modeling. Evaluations on 12 datasets demonstrate state-of-the-art performance in factuality, safety, reasoning, and instruction following. Grounded in Heavy-Tailed Self-Regularization, DPO-Kernels maintains robust generalization for LLMs, offering a comprehensive resource for further alignment research.
♻ ☆ Aligning with Human Judgement: The Role of Pairwise Large Language Model Evaluators in Preference Aggregation
Large Language Models (LLMs) have demonstrated promising capabilities as automatic evaluators in assessing the quality of generated natural language. However, LLMs still exhibit biases in evaluation and often struggle to generate coherent evaluations that align with human assessments. In this work, we first conduct a systematic study of the misalignment between LLM evaluators and human judgement, revealing that existing calibration methods aimed at mitigating biases are insufficient for effectively aligning LLM evaluators. Inspired by the use of preference data in RLHF, we formulate the evaluation as a ranking problem and introduce Pairwise-preference Search (PairS), an uncertainty-guided search method that employs LLMs to conduct pairwise comparisons and efficiently ranks candidate texts. PairS achieves state-of-the-art performance on representative evaluation tasks and demonstrates significant improvements over direct scoring. Furthermore, we provide insights into the role of pairwise preference in quantifying the transitivity of LLMs and demonstrate how PairS benefits from calibration.
comment: This paper has been accepted by COLM 2024
♻ ☆ Fully Data-driven but Interpretable Human Behavioural Modelling with Differentiable Discrete Choice Model
Discrete choice models are essential for modelling various decision-making processes in human behaviour. However, the specification of these models has depended heavily on domain knowledge from experts, and the fully automated but interpretable modelling of complex human behaviours has been a long-standing challenge. In this paper, we introduce the differentiable discrete choice model (Diff-DCM), a fully data-driven method for the interpretable modelling, learning, prediction, and control of complex human behaviours, which is realised by differentiable programming. Solely from input features and choice outcomes without any prior knowledge, Diff-DCM can estimate interpretable closed-form utility functions that reproduce observed behaviours. Comprehensive experiments with both synthetic and real-world data demonstrate that Diff-DCM can be applied to various types of data and requires only a small amount of computational resources for the estimations, which can be completed within tens of seconds on a laptop without any accelerators. In these experiments, we also demonstrate that, using its differentiability, Diff-DCM can provide useful insights into human behaviours, such as an optimal intervention path for effective behavioural changes. This study provides a strong basis for the fully automated and reliable modelling, prediction, and control of human behaviours.
♻ ☆ How to Bridge the Gap between Modalities: Survey on Multimodal Large Language Model
We explore Multimodal Large Language Models (MLLMs), which integrate LLMs like GPT-4 to handle multimodal data, including text, images, audio, and more. MLLMs demonstrate capabilities such as generating image captions and answering image-based questions, bridging the gap towards real-world human-computer interactions and hinting at a potential pathway to artificial general intelligence. However, MLLMs still face challenges in addressing the semantic gap in multimodal data, which may lead to erroneous outputs, posing potential risks to society. Selecting the appropriate modality alignment method is crucial, as improper methods might require more parameters without significant performance improvements. This paper aims to explore modality alignment methods for LLMs and their current capabilities. Implementing effective modality alignment can help LLMs address environmental issues and enhance accessibility. The study surveys existing modality alignment methods for MLLMs, categorizing them into four groups: (1) Multimodal Converter, which transforms data into a format that LLMs can understand; (2) Multimodal Perceiver, which improves how LLMs percieve different types of data; (3) Tool Learning, which leverages external tools to convert data into a common format, usually text; and (4) Data-Driven Method, which teaches LLMs to understand specific data types within datasets.
comment: Accepted by TKDE
♻ ☆ Proof-of-Learning with Incentive Security
Most concurrent blockchain systems rely heavily on the Proof-of-Work (PoW) or Proof-of-Stake (PoS) mechanisms for decentralized consensus and security assurance. However, the substantial energy expenditure stemming from computationally intensive yet meaningless tasks has raised considerable concerns surrounding traditional PoW approaches, The PoS mechanism, while free of energy consumption, is subject to security and economic issues. Addressing these issues, the paradigm of Proof-of-Useful-Work (PoUW) seeks to employ challenges of practical significance as PoW, thereby imbuing energy consumption with tangible value. While previous efforts in Proof of Learning (PoL) explored the utilization of deep learning model training SGD tasks as PoUW challenges, recent research has revealed its vulnerabilities to adversarial attacks and the theoretical hardness in crafting a byzantine-secure PoL mechanism. In this paper, we introduce the concept of incentive-security that incentivizes rational provers to behave honestly for their best interest, bypassing the existing hardness to design a PoL mechanism with computational efficiency, a provable incentive-security guarantee and controllable difficulty. Particularly, our work is secure against two attacks, and also improves the computational overhead from $\Theta(1)$ to $O(\frac{\log E}{E})$. Furthermore, while most recent research assumes trusted problem providers and verifiers, our design also guarantees frontend incentive-security even when problem providers are untrusted, and verifier incentive-security that bypasses the Verifier's Dilemma. By incorporating ML training into blockchain consensus mechanisms with provable guarantees, our research not only proposes an eco-friendly solution to blockchain systems, but also provides a proposal for a completely decentralized computing power market in the new AI age.
comment: 20 pages, 4 figures
♻ ☆ Balancing Diversity and Risk in LLM Sampling: How to Select Your Method and Parameter for Open-Ended Text Generation
Sampling-based decoding strategies have been widely adopted for Large Language Models (LLMs) in numerous applications, targeting a balance between diversity and quality via temperature tuning and tail truncation. Considering the strong dependency of the candidate next tokens on different prefixes, recent studies propose to adaptively truncate the tail of LLMs' predicted distribution. Although improved results have been reported with these methods on open-ended text generation tasks, the results are highly dependent on the curated parameters and the limited exemplar text. In this paper, we propose a systematic way to estimate the capacity of a truncation sampling method by considering the trade-off between diversity and risk at each decoding step, based on our collected prefix tree which preserves the context of a full sentence. Our work offers a comprehensive comparison of existing truncation sampling methods and serves as a practical user guideline for their parameter selection.
♻ ☆ Label-Efficient Data Augmentation with Video Diffusion Models for Guidewire Segmentation in Cardiac Fluoroscopy AAAI 2025
The accurate segmentation of guidewires in interventional cardiac fluoroscopy videos is crucial for computer-aided navigation tasks. Although deep learning methods have demonstrated high accuracy and robustness in wire segmentation, they require substantial annotated datasets for generalizability, underscoring the need for extensive labeled data to enhance model performance. To address this challenge, we propose the Segmentation-guided Frame-consistency Video Diffusion Model (SF-VD) to generate large collections of labeled fluoroscopy videos, augmenting the training data for wire segmentation networks. SF-VD leverages videos with limited annotations by independently modeling scene distribution and motion distribution. It first samples the scene distribution by generating 2D fluoroscopy images with wires positioned according to a specified input mask, and then samples the motion distribution by progressively generating subsequent frames, ensuring frame-to-frame coherence through a frame-consistency strategy. A segmentation-guided mechanism further refines the process by adjusting wire contrast, ensuring a diverse range of visibility in the synthesized image. Evaluation on a fluoroscopy dataset confirms the superior quality of the generated videos and shows significant improvements in guidewire segmentation.
comment: AAAI 2025
♻ ☆ InterFormer: Towards Effective Heterogeneous Interaction Learning for Click-Through Rate Prediction
Click-through rate (CTR) prediction, which predicts the probability of a user clicking an ad, is a fundamental task in recommender systems. The emergence of heterogeneous information, such as user profile and behavior sequences, depicts user interests from different aspects. A mutually beneficial integration of heterogeneous information is the cornerstone towards the success of CTR prediction. However, most of the existing methods suffer from two fundamental limitations, including (1) insufficient inter-mode interaction due to the unidirectional information flow between modes, and (2) aggressive information aggregation caused by early summarization, resulting in excessive information loss. To address the above limitations, we propose a novel module named InterFormer to learn heterogeneous information interaction in an interleaving style. To achieve better interaction learning, InterFormer enables bidirectional information flow for mutually beneficial learning across different modes. To avoid aggressive information aggregation, we retain complete information in each data mode and use a separate bridging arch for effective information selection and summarization. Our proposed InterFormer achieves state-of-the-art performance on three public datasets and a large-scale industrial dataset.
comment: 10 pages, 6 figures
♻ ☆ From Superficial Patterns to Semantic Understanding: Fine-Tuning Language Models on Contrast Sets
Large-scale pre-trained language models have demonstrated high performance on standard datasets for natural language inference (NLI) tasks. Unfortunately, these evaluations can be misleading, as although the models can perform well on in-distribution data, they perform poorly on out-of-distribution test sets, such as contrast sets. Contrast sets consist of perturbed instances of data that have very minor, but meaningful, changes to the input that alter the gold label, revealing how models can learn superficial patterns in the training data rather than learning more sophisticated language nuances. As an example, the ELECTRA-small language model achieves nearly 90% accuracy on an SNLI dataset but drops to 75% when tested on an out-of-distribution contrast set. The research carried out in this study explores how the robustness of a language model can be improved by exposing it to small amounts of more complex contrast sets during training to help it better learn language patterns. With this approach, the model recovers performance and achieves nearly 90% accuracy on contrast sets, highlighting the importance of diverse and challenging training data.
♻ ☆ Latent Neural PDE Solver: a reduced-order modelling framework for partial differential equations
Neural networks have shown promising potential in accelerating the numerical simulation of systems governed by partial differential equations (PDEs). Different from many existing neural network surrogates operating on high-dimensional discretized fields, we propose to learn the dynamics of the system in the latent space with much coarser discretizations. In our proposed framework - Latent Neural PDE Solver (LNS), a non-linear autoencoder is first trained to project the full-order representation of the system onto the mesh-reduced space, then a temporal model is trained to predict the future state in this mesh-reduced space. This reduction process simplifies the training of the temporal model by greatly reducing the computational cost accompanying a fine discretization. We study the capability of the proposed framework and several other popular neural PDE solvers on various types of systems including single-phase and multi-phase flows along with varying system parameters. We showcase that it has competitive accuracy and efficiency compared to the neural PDE solver that operates on full-order space.
♻ ☆ Enhancing Vision-Language Models with Scene Graphs for Traffic Accident Understanding
Recognizing a traffic accident is an essential part of any autonomous driving or road monitoring system. An accident can appear in a wide variety of forms, and understanding what type of accident is taking place may be useful to prevent it from recurring. This work focuses on classifying traffic scenes into specific accident types. We approach the problem by representing a traffic scene as a graph, where objects such as cars can be represented as nodes, and relative distances and directions between them as edges. This representation of a traffic scene is referred to as a scene graph, and can be used as input for an accident classifier. Better results are obtained with a classifier that fuses the scene graph input with visual and textual representations. This work introduces a multi-stage, multimodal pipeline that pre-processes videos of traffic accidents, encodes them as scene graphs, and aligns this representation with vision and language modalities before executing the classification task. When trained on 4 classes, our method achieves a balanced accuracy score of 57.77% on an (unbalanced) subset of the popular Detection of Traffic Anomaly (DoTA) benchmark, representing an increase of close to 5 percentage points from the case where scene graph information is not taken into account.
comment: Won the 'Best Paper Runner-up Award' at the 2024 IEEE International Automated Vehicle Validation Conference (IAVVC 2024). Also accepted at the 1st Workshop on Semantic Reasoning and Goal Understanding in Robotics, at the Robotics Science and Systems Conference (RSS SemRob 2024)
♻ ☆ Generative manufacturing systems using diffusion models and ChatGPT
In this study, we introduce Generative Manufacturing Systems (GMS) as a novel approach to effectively manage and coordinate autonomous manufacturing assets, thereby enhancing their responsiveness and flexibility to address a wide array of production objectives and human preferences. Deviating from traditional explicit modeling, GMS employs generative AI, including diffusion models and ChatGPT, for implicit learning from envisioned futures, marking a shift from a model-optimum to a training-sampling decision-making. Through the integration of generative AI, GMS enables complex decision-making through interactive dialogue with humans, allowing manufacturing assets to generate multiple high-quality global decisions that can be iteratively refined based on human feedback. Empirical findings showcase GMS's substantial improvement in system resilience and responsiveness to uncertainties, with decision times reduced from seconds to milliseconds. The study underscores the inherent creativity and diversity in the generated solutions, facilitating human-centric decision-making through seamless and continuous human-machine interactions.
comment: We are withdrawing this preprint to incorporate significant new results and expand the scope of the paper. We plan to resubmit a substantially revised version in the near future
♻ ☆ Forecasting Symmetric Random Walks: A Fusion Approach
Forecasting random walks is notoriously challenging, with na\"ive prediction serving as a difficult-to-surpass baseline. To investigate the potential of using movement predictions to improve point forecasts in this context, this study focuses on symmetric random walks, in which the target variable's future value is reformulated as a combination of its future movement and current value. The proposed forecasting method, termed the fusion of movement and na\"ive predictions (FMNP), is grounded in this reformulation. The simulation results show that FMNP achieves statistically significant improvements over na\"ive prediction, even when the movement prediction accuracy is only slightly above 0.50. In practice, movement predictions can be derived from the comovement between an exogenous variable and the target variable and then linearly combined with the na\"ive prediction to generate the final forecast. FMNP effectiveness was evaluated on four U.S. financial time series -- the close prices of Boeing (BA), Brent crude oil (OIL), Halliburton (HAL), and Schlumberger (SLB) -- using the open price of the Financial Times Stock Exchange (FTSE) index as the exogenous variable. In all the cases, FMNP outperformed the na\"ive prediction, demonstrating its efficacy in forecasting symmetric random walks and its potential applicability to other forecasting tasks.
♻ ☆ Hierarchical Structured Neural Network: Efficient Retrieval Scaling for Large Scale Recommendation
Retrieval, the initial stage of a recommendation system, is tasked with down-selecting items from a pool of tens of millions of candidates to a few thousands. Embedding Based Retrieval (EBR) has been a typical choice for this problem, addressing the computational demands of deep neural networks across vast item corpora. EBR utilizes Two Tower or Siamese Networks to learn representations for users and items, and employ Approximate Nearest Neighbor (ANN) search to efficiently retrieve relevant items. Despite its popularity in industry, EBR faces limitations. The Two Tower architecture, relying on a single dot product interaction, struggles to capture complex data distributions due to limited capability in learning expressive interactions between users and items. Additionally, ANN index building and representation learning for user and item are often separate, leading to inconsistencies exacerbated by representation (e.g. continuous online training) and item drift (e.g. items expired and new items added). In this paper, we introduce the Hierarchical Structured Neural Network (HSNN), an efficient deep neural network model to learn intricate user and item interactions beyond the commonly used dot product in retrieval tasks, achieving sublinear computational costs relative to corpus size. A Modular Neural Network (MoNN) is designed to maintain high expressiveness for interaction learning while ensuring efficiency. A mixture of MoNNs operate on a hierarchical item index to achieve extensive computation sharing, enabling it to scale up to large corpus size. MoNN and the hierarchical index are jointly learnt to continuously adapt to distribution shifts in both user interests and item distributions. HSNN achieves substantial improvement in offline evaluation compared to prevailing methods.
comment: Resubmit
♻ ☆ The Mamba in the Llama: Distilling and Accelerating Hybrid Models NeurIPS 2024
Linear RNN architectures, like Mamba, can be competitive with Transformer models in language modeling while having advantageous deployment characteristics. Given the focus on training large-scale Transformer models, we consider the challenge of converting these pretrained models for deployment. We demonstrate that it is feasible to distill large Transformers into linear RNNs by reusing the linear projection weights from attention layers with academic GPU resources. The resulting hybrid model, which incorporates a quarter of the attention layers, achieves performance comparable to the original Transformer in chat benchmarks and outperforms open-source hybrid Mamba models trained from scratch with trillions of tokens in both chat benchmarks and general benchmarks. Moreover, we introduce a hardware-aware speculative decoding algorithm that accelerates the inference speed of Mamba and hybrid models. Overall we show how, with limited computation resources, we can remove many of the original attention layers and generate from the resulting model more efficiently. Our top-performing model, distilled from Llama3-8B-Instruct, achieves a 29.61 length-controlled win rate on AlpacaEval 2 against GPT-4 and 7.35 on MT-Bench, surpassing the best 8B scale instruction-tuned linear RNN model. We also find that the distilled model has natural length extrapolation, showing almost perfect accuracy in the needle-in-a-haystack test at 20x the distillation length. Code and pre-trained checkpoints are open-sourced at https://github.com/jxiw/MambaInLlama and https://github.com/itsdaniele/speculative_mamba.
comment: NeurIPS 2024. v3 updates: fix format errors
♻ ☆ Deliberative Alignment: Reasoning Enables Safer Language Models
As large-scale language models increasingly impact safety-critical domains, ensuring their reliable adherence to well-defined principles remains a fundamental challenge. We introduce Deliberative Alignment, a new paradigm that directly teaches the model safety specifications and trains it to explicitly recall and accurately reason over the specifications before answering. We used this approach to align OpenAI's o-series models, and achieved highly precise adherence to OpenAI's safety policies, without requiring human-written chain-of-thoughts or answers. Deliberative Alignment pushes the Pareto frontier by simultaneously increasing robustness to jailbreaks while decreasing overrefusal rates, and also improves out-of-distribution generalization. We demonstrate that reasoning over explicitly specified policies enables more scalable, trustworthy, and interpretable alignment.
comment: 24 pages
♻ ☆ MADGEN: Mass-Spec attends to De Novo Molecular generation
The annotation (assigning structural chemical identities) of MS/MS spectra remains a significant challenge due to the enormous molecular diversity in biological samples and the limited scope of reference databases. Currently, the vast majority of spectral measurements remain in the "dark chemical space" without structural annotations. To improve annotation, we propose MADGEN (Mass-spec Attends to De Novo Molecular GENeration), a scaffold-based method for de novo molecular structure generation guided by mass spectrometry data. MADGEN operates in two stages: scaffold retrieval and spectra-conditioned molecular generation starting with the scaffold. In the first stage, given an MS/MS spectrum, we formulate scaffold retrieval as a ranking problem and employ contrastive learning to align mass spectra with candidate molecular scaffolds. In the second stage, starting from the retrieved scaffold, we employ the MS/MS spectrum to guide an attention-based generative model to generate the final molecule. Our approach constrains the molecular generation search space, reducing its complexity and improving generation accuracy. We evaluate MADGEN on three datasets (NIST23, CANOPUS, and MassSpecGym) and evaluate MADGEN's performance with a predictive scaffold retriever and with an oracle retriever. We demonstrate the effectiveness of using attention to integrate spectral information throughout the generation process to achieve strong results with the oracle retriever.
comment: preprint
♻ ☆ Explainability in Neural Networks for Natural Language Processing Tasks
Neural networks are widely regarded as black-box models, creating significant challenges in understanding their inner workings, especially in natural language processing (NLP) applications. To address this opacity, model explanation techniques like Local Interpretable Model-Agnostic Explanations (LIME) have emerged as essential tools for providing insights into the behavior of these complex systems. This study leverages LIME to interpret a multi-layer perceptron (MLP) neural network trained on a text classification task. By analyzing the contribution of individual features to model predictions, the LIME approach enhances interpretability and supports informed decision-making. Despite its effectiveness in offering localized explanations, LIME has limitations in capturing global patterns and feature interactions. This research highlights the strengths and shortcomings of LIME and proposes directions for future work to achieve more comprehensive interpretability in neural NLP models.
♻ ☆ Generative AI Policies under the Microscope: How CS Conferences Are Navigating the New Frontier in Scholarly Writing
This paper explores the current state of generative AI policies of computer science conferences and offers guidelines for policy adoption.
♻ ☆ Literature Meets Data: A Synergistic Approach to Hypothesis Generation
AI holds promise for transforming scientific processes, including hypothesis generation. Prior work on hypothesis generation can be broadly categorized into theory-driven and data-driven approaches. While both have proven effective in generating novel and plausible hypotheses, it remains an open question whether they can complement each other. To address this, we develop the first method that combines literature-based insights with data to perform LLM-powered hypothesis generation. We apply our method on five different datasets and demonstrate that integrating literature and data outperforms other baselines (8.97\% over few-shot, 15.75\% over literature-based alone, and 3.37\% over data-driven alone). Additionally, we conduct the first human evaluation to assess the utility of LLM-generated hypotheses in assisting human decision-making on two challenging tasks: deception detection and AI generated content detection. Our results show that human accuracy improves significantly by 7.44\% and 14.19\% on these tasks, respectively. These findings suggest that integrating literature-based and data-driven approaches provides a comprehensive and nuanced framework for hypothesis generation and could open new avenues for scientific inquiry.
comment: 37 pages, 9 figures, code link: https://github.com/ChicagoHAI/hypothesis-generation
♻ ☆ A hybrid marketplace of ideas
The convergence of humans and artificial intelligence systems introduces new dynamics into the cultural and intellectual landscape. Complementing emerging cultural evolution concepts such as machine culture, AI agents represent a significant techno-sociological development, particularly within the anthropological study of Web3 as a community focused on decentralization through blockchain. Despite their growing presence, the cultural significance of AI agents remains largely unexplored in academic literature. Toward this end, we conceived hybrid netnography, a novel interdisciplinary approach that examines the cultural and intellectual dynamics within digital ecosystems by analyzing the interactions and contributions of both human and AI agents as co-participants in shaping narratives, ideas, and cultural artifacts. We argue that, within the Web3 community on the social media platform X, these agents challenge traditional notions of participation and influence in public discourse, creating a hybrid marketplace of ideas, a conceptual space where human and AI generated ideas coexist and compete for attention. We examine the current state of AI agents in idea generation, propagation, and engagement, positioning their role as cultural agents through the lens of memetics and encouraging further inquiry into their cultural and societal impact. Additionally, we address the implications of this paradigm for privacy, intellectual property, and governance, highlighting the societal and legal challenges of integrating AI agents into the hybrid marketplace of ideas.
Robotics 35
☆ LargeAD: Large-Scale Cross-Sensor Data Pretraining for Autonomous Driving
Recent advancements in vision foundation models (VFMs) have revolutionized visual perception in 2D, yet their potential for 3D scene understanding, particularly in autonomous driving applications, remains underexplored. In this paper, we introduce LargeAD, a versatile and scalable framework designed for large-scale 3D pretraining across diverse real-world driving datasets. Our framework leverages VFMs to extract semantically rich superpixels from 2D images, which are aligned with LiDAR point clouds to generate high-quality contrastive samples. This alignment facilitates cross-modal representation learning, enhancing the semantic consistency between 2D and 3D data. We introduce several key innovations: i) VFM-driven superpixel generation for detailed semantic representation, ii) a VFM-assisted contrastive learning strategy to align multimodal features, iii) superpoint temporal consistency to maintain stable representations across time, and iv) multi-source data pretraining to generalize across various LiDAR configurations. Our approach delivers significant performance improvements over state-of-the-art methods in both linear probing and fine-tuning tasks for both LiDAR-based segmentation and object detection. Extensive experiments on eleven large-scale multi-modal datasets highlight our superior performance, demonstrating the adaptability, efficiency, and robustness in real-world autonomous driving scenarios.
comment: Preprint; 16 pages, 7 figures, 8 tables; Project Page at https://ldkong.com/LargeAD
☆ LiMoE: Mixture of LiDAR Representation Learners from Automotive Scenes
LiDAR data pretraining offers a promising approach to leveraging large-scale, readily available datasets for enhanced data utilization. However, existing methods predominantly focus on sparse voxel representation, overlooking the complementary attributes provided by other LiDAR representations. In this work, we propose LiMoE, a framework that integrates the Mixture of Experts (MoE) paradigm into LiDAR data representation learning to synergistically combine multiple representations, such as range images, sparse voxels, and raw points. Our approach consists of three stages: i) Image-to-LiDAR Pretraining, which transfers prior knowledge from images to point clouds across different representations; ii) Contrastive Mixture Learning (CML), which uses MoE to adaptively activate relevant attributes from each representation and distills these mixed features into a unified 3D network; iii) Semantic Mixture Supervision (SMS), which combines semantic logits from multiple representations to boost downstream segmentation performance. Extensive experiments across 11 large-scale LiDAR datasets demonstrate our effectiveness and superiority. The code and model checkpoints have been made publicly accessible.
comment: Preprint; 26 pages, 17 figures, 7 tables; Project Page at https://ldkong.com/LiMoE
☆ Are VLMs Ready for Autonomous Driving? An Empirical Study from the Reliability, Data, and Metric Perspectives
Recent advancements in Vision-Language Models (VLMs) have sparked interest in their use for autonomous driving, particularly in generating interpretable driving decisions through natural language. However, the assumption that VLMs inherently provide visually grounded, reliable, and interpretable explanations for driving remains largely unexamined. To address this gap, we introduce DriveBench, a benchmark dataset designed to evaluate VLM reliability across 17 settings (clean, corrupted, and text-only inputs), encompassing 19,200 frames, 20,498 question-answer pairs, three question types, four mainstream driving tasks, and a total of 12 popular VLMs. Our findings reveal that VLMs often generate plausible responses derived from general knowledge or textual cues rather than true visual grounding, especially under degraded or missing visual inputs. This behavior, concealed by dataset imbalances and insufficient evaluation metrics, poses significant risks in safety-critical scenarios like autonomous driving. We further observe that VLMs struggle with multi-modal reasoning and display heightened sensitivity to input corruptions, leading to inconsistencies in performance. To address these challenges, we propose refined evaluation metrics that prioritize robust visual grounding and multi-modal understanding. Additionally, we highlight the potential of leveraging VLMs' awareness of corruptions to enhance their reliability, offering a roadmap for developing more trustworthy and interpretable decision-making systems in real-world autonomous driving contexts. The benchmark toolkit is publicly accessible.
comment: Preprint; 41 pages, 32 figures, 16 tables; Project Page at https://drive-bench.github.io/
☆ MAD-BA: 3D LiDAR Bundle Adjustment -- from Uncertainty Modelling to Structure Optimization
The joint optimization of sensor poses and 3D structure is fundamental for state estimation in robotics and related fields. Current LiDAR systems often prioritize pose optimization, with structure refinement either omitted or treated separately using representations like signed distance functions or neural networks. This paper introduces a framework for simultaneous optimization of sensor poses and 3D map, represented as surfels. A generalized LiDAR uncertainty model is proposed to address degraded or less reliable measurements in varying scenarios. Experimental results on public datasets demonstrate improved performance over most comparable state-of-the-art methods. The system is provided as open-source software to support further research.
comment: 8 pages, 6 figures, this work has been submitted to IEEE RA-L
☆ Impact of Leg Stiffness on Energy Efficiency in One Legged Hopping
In the fields of robotics and biomechanics, the integration of elastic elements such as springs and tendons in legged systems has long been recognized for enabling energy-efficient locomotion. Yet, a significant challenge persists: designing a robotic leg that perform consistently across diverse operating conditions, especially varying average forward speeds. It remains unclear whether, for such a range of operating conditions, the stiffness of the elastic elements needs to be varied or if a similar performance can be obtained by changing the motion and actuation while keeping the stiffness fixed. This work explores the influence of the leg stiffness on the energy efficiency of a monopedal robot through an extensive parametric study of its periodic hopping motion. To this end, we formulate an optimal control problem parameterized by average forward speed and leg stiffness, solving it numerically using direct collocation. Our findings indicate that, compared to the use of a fixed stiffness, employing variable stiffness in legged systems improves energy efficiency by 20 % maximally and by 6.8 % on average across a range of speeds.
☆ VLM-driven Behavior Tree for Context-aware Task Planning
The use of Large Language Models (LLMs) for generating Behavior Trees (BTs) has recently gained attention in the robotics community, yet remains in its early stages of development. In this paper, we propose a novel framework that leverages Vision-Language Models (VLMs) to interactively generate and edit BTs that address visual conditions, enabling context-aware robot operations in visually complex environments. A key feature of our approach lies in the conditional control through self-prompted visual conditions. Specifically, the VLM generates BTs with visual condition nodes, where conditions are expressed as free-form text. Another VLM process integrates the text into its prompt and evaluates the conditions against real-world images during robot execution. We validated our framework in a real-world cafe scenario, demonstrating both its feasibility and limitations.
comment: 10 pages, 11 figures, 5 tables. Last updated on January 7th, 2024
☆ Implicit Coordination using Active Epistemic Inference
A Multi-robot system (MRS) provides significant advantages for intricate tasks such as environmental monitoring, underwater inspections, and space missions. However, addressing potential communication failures or the lack of communication infrastructure in these fields remains a challenge. A significant portion of MRS research presumes that the system can maintain communication with proximity constraints, but this approach does not solve situations where communication is either non-existent, unreliable, or poses a security risk. Some approaches tackle this issue using predictions about other robots while not communicating, but these methods generally only permit agents to utilize first-order reasoning, which involves reasoning based purely on their own observations. In contrast, to deal with this problem, our proposed framework utilizes Theory of Mind (ToM), employing higher-order reasoning by shifting a robot's perspective to reason about a belief of others observations. Our approach has two main phases: i) an efficient runtime plan adaptation using active inference to signal intentions and reason about a robot's own belief and the beliefs of others in the system, and ii) a hierarchical epistemic planning framework to iteratively reason about the current MRS mission state. The proposed framework outperforms greedy and first-order reasoning approaches and is validated using simulations and experiments with heterogeneous robotic systems.
☆ An LSTM-based Test Selection Method for Self-Driving Cars
Self-driving cars require extensive testing, which can be costly in terms of time. To optimize this process, simple and straightforward tests should be excluded, focusing on challenging tests instead. This study addresses the test selection problem for lane-keeping systems for self-driving cars. Road segment features, such as angles and lengths, were extracted and treated as sequences, enabling classification of the test cases as "safe" or "unsafe" using a long short-term memory (LSTM) model. The proposed model is compared against machine learning-based test selectors. Results demonstrated that the LSTM-based method outperformed machine learning-based methods in accuracy and precision metrics while exhibiting comparable performance in recall and F1 scores. This work introduces a novel deep learning-based approach to the road classification problem, providing an effective solution for self-driving car test selection using a simulation environment.
comment: 8 pages, 6 figures, 5 tables
☆ A Synergistic Framework for Learning Shape Estimation and Shape-Aware Whole-Body Control Policy for Continuum Robots
In this paper, we present a novel synergistic framework for learning shape estimation and a shape-aware whole-body control policy for tendon-driven continuum robots. Our approach leverages the interaction between two Augmented Neural Ordinary Differential Equations (ANODEs) -- the Shape-NODE and Control-NODE -- to achieve continuous shape estimation and shape-aware control. The Shape-NODE integrates prior knowledge from Cosserat rod theory, allowing it to adapt and account for model mismatches, while the Control-NODE uses this shape information to optimize a whole-body control policy, trained in a Model Predictive Control (MPC) fashion. This unified framework effectively overcomes limitations of existing data-driven methods, such as poor shape awareness and challenges in capturing complex nonlinear dynamics. Extensive evaluations in both simulation and real-world environments demonstrate the framework's robust performance in shape estimation, trajectory tracking, and obstacle avoidance. The proposed method consistently outperforms state-of-the-art end-to-end, Neural-ODE, and Recurrent Neural Network (RNN) models, particularly in terms of tracking accuracy and generalization capabilities.
☆ OmniManip: Towards General Robotic Manipulation via Object-Centric Interaction Primitives as Spatial Constraints
The development of general robotic systems capable of manipulating in unstructured environments is a significant challenge. While Vision-Language Models(VLM) excel in high-level commonsense reasoning, they lack the fine-grained 3D spatial understanding required for precise manipulation tasks. Fine-tuning VLM on robotic datasets to create Vision-Language-Action Models(VLA) is a potential solution, but it is hindered by high data collection costs and generalization issues. To address these challenges, we propose a novel object-centric representation that bridges the gap between VLM's high-level reasoning and the low-level precision required for manipulation. Our key insight is that an object's canonical space, defined by its functional affordances, provides a structured and semantically meaningful way to describe interaction primitives, such as points and directions. These primitives act as a bridge, translating VLM's commonsense reasoning into actionable 3D spatial constraints. In this context, we introduce a dual closed-loop, open-vocabulary robotic manipulation system: one loop for high-level planning through primitive resampling, interaction rendering and VLM checking, and another for low-level execution via 6D pose tracking. This design ensures robust, real-time control without requiring VLM fine-tuning. Extensive experiments demonstrate strong zero-shot generalization across diverse robotic manipulation tasks, highlighting the potential of this approach for automating large-scale simulation data generation.
☆ An innovative mixed reality approach for Robotics Surgery
Robotic-assisted procedures offer numerous advantages over traditional approaches, including improved dexterity, reduced fatigue, minimized trauma, and superior outcomes. However, the main challenge of these systems remains the poor visualization and perception of the surgical field. The goal of this paper is to provide an innovative approach concerning an application able to improve the surgical procedures offering assistance in both preplanning and intraoperative steps of the surgery. The system has been designed to offer a better understanding of the patient through techniques that provide medical images visualization, 3D anatomical structures perception and robotic planning. The application was designed to be intuitive and user friendly, providing an augmented reality experience through the Hololens 2 device. It was tested in laboratory conditions, yielding positive results.
☆ 3D Printable Gradient Lattice Design for Multi-Stiffness Robotic Fingers
Human fingers achieve exceptional dexterity and adaptability by combining structures with varying stiffness levels, from soft tissues (low) to tendons and cartilage (medium) to bones (high). This paper explores developing a robotic finger with similar multi-stiffness characteristics. Specifically, we propose using a lattice configuration, parameterized by voxel size and unit cell geometry, to optimize and achieve fine-tuned stiffness properties with high granularity. A significant advantage of this approach is the feasibility of 3D printing the designs in a single process, eliminating the need for manual assembly of elements with differing stiffness. Based on this method, we present a novel, human-like finger, and a soft gripper. We integrate the latter with a rigid manipulator and demonstrate the effectiveness in pick and place tasks.
☆ Hybrid Machine Learning Model with a Constrained Action Space for Trajectory Prediction
Trajectory prediction is crucial to advance autonomous driving, improving safety, and efficiency. Although end-to-end models based on deep learning have great potential, they often do not consider vehicle dynamic limitations, leading to unrealistic predictions. To address this problem, this work introduces a novel hybrid model that combines deep learning with a kinematic motion model. It is able to predict object attributes such as acceleration and yaw rate and generate trajectories based on them. A key contribution is the incorporation of expert knowledge into the learning objective of the deep learning model. This results in the constraint of the available action space, thus enabling the prediction of physically feasible object attributes and trajectories, thereby increasing safety and robustness. The proposed hybrid model facilitates enhanced interpretability, thereby reinforcing the trustworthiness of deep learning methods and promoting the development of safe planning solutions. Experiments conducted on the publicly available real-world Argoverse dataset demonstrate realistic driving behaviour, with benchmark comparisons and ablation studies showing promising results.
comment: Submitted to 2025 IEEE Intelligent Vehicles Symposium (IV)
☆ VTAO-BiManip: Masked Visual-Tactile-Action Pre-training with Object Understanding for Bimanual Dexterous Manipulation
Bimanual dexterous manipulation remains significant challenges in robotics due to the high DoFs of each hand and their coordination. Existing single-hand manipulation techniques often leverage human demonstrations to guide RL methods but fail to generalize to complex bimanual tasks involving multiple sub-skills. In this paper, we introduce VTAO-BiManip, a novel framework that combines visual-tactile-action pretraining with object understanding to facilitate curriculum RL to enable human-like bimanual manipulation. We improve prior learning by incorporating hand motion data, providing more effective guidance for dual-hand coordination than binary tactile feedback. Our pretraining model predicts future actions as well as object pose and size using masked multimodal inputs, facilitating cross-modal regularization. To address the multi-skill learning challenge, we introduce a two-stage curriculum RL approach to stabilize training. We evaluate our method on a bottle-cap unscrewing task, demonstrating its effectiveness in both simulated and real-world environments. Our approach achieves a success rate that surpasses existing visual-tactile pretraining methods by over 20%.
☆ Collision Risk Quantification and Conflict Resolution in Trajectory Tracking for Acceleration-Actuated Multi-Robot Systems
One of the pivotal challenges in a multi-robot system is how to give attention to accuracy and efficiency while ensuring safety. Prior arts cannot strictly guarantee collision-free for an arbitrarily large number of robots or the results are considerably conservative. Smoothness of the avoidance trajectory also needs to be further optimized. This paper proposes an accelerationactuated simultaneous obstacle avoidance and trajectory tracking method for arbitrarily large teams of robots, that provides a nonconservative collision avoidance strategy and gives approaches for deadlock avoidance. We propose two ways of deadlock resolution, one involves incorporating an auxiliary velocity vector into the error function of the trajectory tracking module, which is proven to have no influence on global convergence of the tracking error. Furthermore, unlike the traditional methods that they address conflicts after a deadlock occurs, our decision-making mechanism avoids the near-zero velocity, which is much more safer and efficient in crowed environments. Extensive comparison show that the proposed method is superior to the existing studies when deployed in a large-scale robot system, with minimal invasiveness.
☆ Cosmos World Foundation Model Platform for Physical AI
Physical AI needs to be trained digitally first. It needs a digital twin of itself, the policy model, and a digital twin of the world, the world model. In this paper, we present the Cosmos World Foundation Model Platform to help developers build customized world models for their Physical AI setups. We position a world foundation model as a general-purpose world model that can be fine-tuned into customized world models for downstream applications. Our platform covers a video curation pipeline, pre-trained world foundation models, examples of post-training of pre-trained world foundation models, and video tokenizers. To help Physical AI builders solve the most critical problems of our society, we make our platform open-source and our models open-weight with permissive licenses available via https://github.com/NVIDIA/Cosmos.
☆ SenseRAG: Constructing Environmental Knowledge Bases with Proactive Querying for LLM-Based Autonomous Driving WACV
This study addresses the critical need for enhanced situational awareness in autonomous driving (AD) by leveraging the contextual reasoning capabilities of large language models (LLMs). Unlike traditional perception systems that rely on rigid, label-based annotations, it integrates real-time, multimodal sensor data into a unified, LLMs-readable knowledge base, enabling LLMs to dynamically understand and respond to complex driving environments. To overcome the inherent latency and modality limitations of LLMs, a proactive Retrieval-Augmented Generation (RAG) is designed for AD, combined with a chain-of-thought prompting mechanism, ensuring rapid and context-rich understanding. Experimental results using real-world Vehicle-to-everything (V2X) datasets demonstrate significant improvements in perception and prediction performance, highlighting the potential of this framework to enhance safety, adaptability, and decision-making in next-generation AD systems.
comment: This paper has been accepted for presentation at WACV Workshop LLMAD 2025
☆ Effects of Robot Competency and Motion Legibility on Human Correction Feedback
As robot deployments become more commonplace, people are likely to take on the role of supervising robots (i.e., correcting their mistakes) rather than directly teaching them. Prior works on Learning from Corrections (LfC) have relied on three key assumptions to interpret human feedback: (1) people correct the robot only when there is significant task objective divergence; (2) people can accurately predict if a correction is necessary; and (3) people trade off precision and physical effort when giving corrections. In this work, we study how two key factors (robot competency and motion legibility) affect how people provide correction feedback and their implications on these existing assumptions. We conduct a user study ($N=60$) under an LfC setting where participants supervise and correct a robot performing pick-and-place tasks. We find that people are more sensitive to suboptimal behavior by a highly competent robot compared to an incompetent robot when the motions are legible ($p=0.0015$) and predictable ($p=0.0055$). In addition, people also tend to withhold necessary corrections ($p < 0.0001$) when supervising an incompetent robot and are more prone to offering unnecessary ones ($p = 0.0171$) when supervising a highly competent robot. We also find that physical effort positively correlates with correction precision, providing empirical evidence to support this common assumption. We also find that this correlation is significantly weaker for an incompetent robot with legible motions than an incompetent robot with predictable motions ($p = 0.0075$). Our findings offer insights for accounting for competency and legibility when designing robot interaction behaviors and learning task objectives from corrections.
comment: to be published in the 2025 ACM/IEEE International Conference on Human-Robot Interaction (HRI)
☆ FRESHR-GSI: A Generalized Safety Model and Evaluation Framework for Mobile Robots in Multi-Human Environments
Human safety is critical in applications involving close human-robot interactions (HRI) and is a key aspect of physical compatibility between humans and robots. While measures of human safety in HRI exist, these mainly target industrial settings involving robotic manipulators. Less attention has been paid to settings where mobile robots and humans share the space. This paper introduces a new robot-centered directional framework of human safety. It is particularly useful for evaluating mobile robots as they operate in environments populated by multiple humans. The framework integrates several key metrics, such as each human's relative distance, speed, and orientation. The core novelty lies in the framework's flexibility to accommodate different application requirements while allowing for both the robot-centered and external observer points of view. We instantiate the framework by using RGB-D based vision integrated with a deep learning-based human detection pipeline to yield a generalized safety index (GSI) that instantaneously assesses human safety. We evaluate GSI's capability of producing appropriate, robust, and fine-grained safety measures in real-world experimental scenarios and compare its performance with extant safety models.
☆ A Bayesian Modeling Framework for Estimation and Ground Segmentation of Cluttered Staircases
Autonomous robot navigation in complex environments requires robust perception as well as high-level scene understanding due to perceptual challenges, such as occlusions, and uncertainty introduced by robot movement. For example, a robot climbing a cluttered staircase can misinterpret clutter as a step, misrepresenting the state and compromising safety. This requires robust state estimation methods capable of inferring the underlying structure of the environment even from incomplete sensor data. In this paper, we introduce a novel method for robust state estimation of staircases. To address the challenge of perceiving occluded staircases extending beyond the robot's field-of-view, our approach combines an infinite-width staircase representation with a finite endpoint state to capture the overall staircase structure. This representation is integrated into a Bayesian inference framework to fuse noisy measurements enabling accurate estimation of staircase location even with partial observations and occlusions. Additionally, we present a segmentation algorithm that works in conjunction with the staircase estimation pipeline to accurately identify clutter-free regions on a staircase. Our method is extensively evaluated on real robot across diverse staircases, demonstrating significant improvements in estimation accuracy and segmentation performance compared to baseline approaches.
comment: This work has been submitted to the IEEE for possible publication
☆ Learning to Transfer Human Hand Skills for Robot Manipulations
We present a method for teaching dexterous manipulation tasks to robots from human hand motion demonstrations. Unlike existing approaches that solely rely on kinematics information without taking into account the plausibility of robot and object interaction, our method directly infers plausible robot manipulation actions from human motion demonstrations. To address the embodiment gap between the human hand and the robot system, our approach learns a joint motion manifold that maps human hand movements, robot hand actions, and object movements in 3D, enabling us to infer one motion component from others. Our key idea is the generation of pseudo-supervision triplets, which pair human, object, and robot motion trajectories synthetically. Through real-world experiments with robot hand manipulation, we demonstrate that our data-driven retargeting method significantly outperforms conventional retargeting techniques, effectively bridging the embodiment gap between human and robotic hands. Website at https://rureadyo.github.io/MocapRobot/.
comment: Preprint. Under Review
☆ Language and Planning in Robotic Navigation: A Multilingual Evaluation of State-of-the-Art Models
Large Language Models (LLMs) such as GPT-4, trained on huge amount of datasets spanning multiple domains, exhibit significant reasoning, understanding, and planning capabilities across various tasks. This study presents the first-ever work in Arabic language integration within the Vision-and-Language Navigation (VLN) domain in robotics, an area that has been notably underexplored in existing research. We perform a comprehensive evaluation of state-of-the-art multi-lingual Small Language Models (SLMs), including GPT-4o mini, Llama 3 8B, and Phi-3 medium 14B, alongside the Arabic-centric LLM, Jais. Our approach utilizes the NavGPT framework, a pure LLM-based instruction-following navigation agent, to assess the impact of language on navigation reasoning through zero-shot sequential action prediction using the R2R dataset. Through comprehensive experiments, we demonstrate that our framework is capable of high-level planning for navigation tasks when provided with instructions in both English and Arabic. However, certain models struggled with reasoning and planning in the Arabic language due to inherent limitations in their capabilities, sub-optimal performance, and parsing issues. These findings highlight the importance of enhancing planning and reasoning capabilities in language models for effective navigation, emphasizing this as a key area for further development while also unlocking the potential of Arabic-language models for impactful real-world applications.
♻ ☆ λ: A Benchmark for Data-Efficiency in Long-Horizon Indoor Mobile Manipulation Robotics
Efficiently learning and executing long-horizon mobile manipulation (MoMa) tasks is crucial for advancing robotics in household and workplace settings. However, current MoMa models are data-inefficient, underscoring the need for improved models that require realistic-sized benchmarks to evaluate their efficiency, which do not exist. To address this, we introduce the LAMBDA ({\lambda}) benchmark (Long-horizon Actions for Mobile-manipulation Benchmarking of Directed Activities), which evaluates the data efficiency of models on language-conditioned, long-horizon, multi-room, multi-floor, pick-and-place tasks using a dataset of manageable size, more feasible for collection. The benchmark includes 571 human-collected demonstrations that provide realism and diversity in simulated and real-world settings. Unlike planner-generated data, these trajectories offer natural variability and replay-verifiability, ensuring robust learning and evaluation. We benchmark several models, including learning-based models and a neuro-symbolic modular approach combining foundation models with task and motion planning. Learning-based models show suboptimal success rates, even when leveraging pretrained weights, underscoring significant data inefficiencies. However, the neuro-symbolic approach performs significantly better while being more data efficient. Findings highlight the need for more data-efficient learning-based MoMa approaches. {\lambda} addresses this gap by serving as a key benchmark for evaluating the data efficiency of those future models in handling household robotics tasks.
comment: 8 pages
♻ ☆ Multi-Scenario Reasoning: Unlocking Cognitive Autonomy in Humanoid Robots for Multimodal Understanding
To improve the cognitive autonomy of humanoid robots, this research proposes a multi-scenario reasoning architecture to solve the technical shortcomings of multi-modal understanding in this field. It draws on simulation based experimental design that adopts multi-modal synthesis (visual, auditory, tactile) and builds a simulator "Maha" to perform the experiment. The findings demonstrate the feasibility of this architecture in multimodal data. It provides reference experience for the exploration of cross-modal interaction strategies for humanoid robots in dynamic environments. In addition, multi-scenario reasoning simulates the high-level reasoning mechanism of the human brain to humanoid robots at the cognitive level. This new concept promotes cross-scenario practical task transfer and semantic-driven action planning. It heralds the future development of self-learning and autonomous behavior of humanoid robots in changing scenarios.
comment: The main text is 5 pages, 2 figures, and 3 tables
♻ ☆ Incorporating Control Inputs in Continuous-Time Gaussian Process State Estimation for Robotics
Continuous-time batch state estimation using Gaussian processes is an efficient approach to estimate the trajectories of robots over time. In the past, relatively simple physics-motivated priors have been considered for such approaches, using assumptions such as constant velocity or acceleration. This paper presents an approach to incorporating exogenous control inputs, such as velocity or acceleration commands, into the continuous Gaussian process state-estimation framework. It is shown that this approach generalizes across different domains in robotics, making it applicable to both the estimation of continuous-time trajectories for mobile robots and the estimation of quasi-static continuum robot shapes. Results show that incorporating control inputs leads to more informed priors, potentially requiring less measurements and estimation nodes to obtain accurate estimates. This makes the approach particularly useful in situations in which limited sensing is available. For example, in a mobile robot localization experiment with sparse landmark distance measurements and frequent odometry control inputs, our approach provides accurate trajectory estimates with root-mean-square errors around 3-4 cm and 4-5 degrees, even with time intervals up to five seconds between discrete estimation nodes, which significantly reduces computation time.
comment: 21 pages, 7 figures, Accepted to Robotica
♻ ☆ Exploiting Information Theory for Intuitive Robot Programming of Manual Activities
Observational learning is a promising approach to enable people without expertise in programming to transfer skills to robots in a user-friendly manner, since it mirrors how humans learn new behaviors by observing others. Many existing methods focus on instructing robots to mimic human trajectories, but motion-level strategies often pose challenges in skills generalization across diverse environments. This paper proposes a novel framework that allows robots to achieve a higher-level understanding of human-demonstrated manual tasks recorded in RGB videos. By recognizing the task structure and goals, robots generalize what observed to unseen scenarios. We found our task representation on Shannon's Information Theory (IT), which is applied for the first time to manual tasks. IT helps extract the active scene elements and quantify the information shared between hands and objects. We exploit scene graph properties to encode the extracted interaction features in a compact structure and segment the demonstration into blocks, streamlining the generation of Behavior Trees for robot replicas. Experiments validated the effectiveness of IT to automatically generate robot execution plans from a single human demonstration. Additionally, we provide HANDSOME, an open-source dataset of HAND Skills demOnstrated by Multi-subjEcts, to promote further research and evaluation in this field.
♻ ☆ Soft Adaptive Feet for Legged Robots: An Open-Source Model for Locomotion Simulation
In recent years, artificial feet based on soft robotics and under-actuation principles emerged to improve mobility on challenging terrains. This paper presents the application of the MuJoCo physics engine to realize a digital twin of an adaptive soft foot developed for use with legged robots. We release the MuJoCo soft foot digital twin as open source to allow users and researchers to explore new approaches to locomotion. The work includes the system modeling techniques along with the kinematic and dynamic attributes involved. Validation is conducted through a rigorous comparison with bench tests on a physical prototype, replicating these experiments in simulation. Results are evaluated based on sole deformation and contact forces during foot-obstacle interaction. The foot model is subsequently integrated into simulations of the humanoid robot COMAN+, replacing its original flat feet. Results show an improvement in the robot's ability to negotiate small obstacles without altering its control strategy. Ultimately, this study offers a comprehensive modeling approach for adaptive soft feet, supported by qualitative comparisons of bipedal locomotion with state of the art robotic feet.
♻ ☆ Data-driven tool wear prediction in milling, based on a process-integrated single-sensor approach
Accurate tool wear prediction is essential for maintaining productivity and minimizing costs in machining. However, the complex nature of the tool wear process poses significant challenges to achieving reliable predictions. This study explores data-driven methods, in particular deep learning, for tool wear prediction. Traditional data-driven approaches often focus on a single process, relying on multi-sensor setups and extensive data generation, which limits generalization to new settings. Moreover, multi-sensor integration is often impractical in industrial environments. To address these limitations, this research investigates the transferability of predictive models using minimal training data, validated across two processes. Furthermore, it uses a simple setup with a single acceleration sensor to establish a low-cost data generation approach that facilitates the generalization of models to other processes via transfer learning. The study evaluates several machine learning models, including convolutional neural networks (CNN), long short-term memory networks (LSTM), support vector machines (SVM) and decision trees, trained on different input formats such as feature vectors and short-time Fourier transform (STFT). The performance of the models is evaluated on different amounts of training data, including scenarios with significantly reduced datasets, providing insight into their effectiveness under constrained data conditions. The results demonstrate the potential of specific models and configurations for effective tool wear prediction, contributing to the development of more adaptable and efficient predictive maintenance strategies in machining. Notably, the ConvNeXt model has an exceptional performance, achieving an 99.1% accuracy in identifying tool wear using data from only four milling tools operated until they are worn.
comment: Preprint submitted to Robotics and Computer-Integrated Manufacturing ,14 pages, 9 figures
♻ ☆ Sketch-MoMa: Teleoperation for Mobile Manipulator via Interpretation of Hand-Drawn Sketches
To use assistive robots in everyday life, a remote control system with common devices, such as 2D devices, is helpful to control the robots anytime and anywhere as intended. Hand-drawn sketches are one of the intuitive ways to control robots with 2D devices. However, since similar sketches have different intentions from scene to scene, existing work needs additional modalities to set the sketches' semantics. This requires complex operations for users and leads to decreasing usability. In this paper, we propose Sketch-MoMa, a teleoperation system using the user-given hand-drawn sketches as instructions to control a robot. We use Vision-Language Models (VLMs) to understand the user-given sketches superimposed on an observation image and infer drawn shapes and low-level tasks of the robot. We utilize the sketches and the generated shapes for recognition and motion planning of the generated low-level tasks for precise and intuitive operations. We validate our approach using state-of-the-art VLMs with 7 tasks and 5 sketch shapes. We also demonstrate that our approach effectively specifies the detailed motions, such as how to grasp and how much to rotate. Moreover, we show the competitive usability of our approach compared with the existing 2D interface through a user experiment with 14 participants.
comment: This work has been submitted to the IEEE for possible publication. Project Page: https://toyotafrc.github.io/SketchMoMa-Proj
♻ ☆ BTGenBot: Behavior Tree Generation for Robotic Tasks with Lightweight LLMs
This paper presents a novel approach to generating behavior trees for robots using lightweight large language models (LLMs) with a maximum of 7 billion parameters. The study demonstrates that it is possible to achieve satisfying results with compact LLMs when fine-tuned on a specific dataset. The key contributions of this research include the creation of a fine-tuning dataset based on existing behavior trees using GPT-3.5 and a comprehensive comparison of multiple LLMs (namely llama2, llama-chat, and code-llama) across nine distinct tasks. To be thorough, we evaluated the generated behavior trees using static syntactical analysis, a validation system, a simulated environment, and a real robot. Furthermore, this work opens the possibility of deploying such solutions directly on the robot, enhancing its practical applicability. Findings from this study demonstrate the potential of LLMs with a limited number of parameters in generating effective and efficient robot behaviors.
♻ ☆ ORGANA: A Robotic Assistant for Automated Chemistry Experimentation and Characterization
Chemistry experiments can be resource- and labor-intensive, often requiring manual tasks like polishing electrodes in electrochemistry. Traditional lab automation infrastructure faces challenges adapting to new experiments. To address this, we introduce ORGANA, an assistive robotic system that automates diverse chemistry experiments using decision-making and perception tools. It makes decisions with chemists in the loop to control robots and lab devices. ORGANA interacts with chemists using Large Language Models (LLMs) to derive experiment goals, handle disambiguation, and provide experiment logs. ORGANA plans and executes complex tasks with visual feedback, while supporting scheduling and parallel task execution. We demonstrate ORGANA's capabilities in solubility, pH measurement, recrystallization, and electrochemistry experiments. In electrochemistry, it executes a 19-step plan in parallel to characterize quinone derivatives for flow batteries. Our user study shows ORGANA reduces frustration and physical demand by over 50%, with users saving an average of 80.3% of their time when using it.
♻ ☆ MonoRollBot: 3-DOF Spherical Robot with Underactuated Single Compliant Actuator Design
Spherical rolling robots have garnered significant attention in the field of mobile robotics for applications such as inspection and space exploration. Designing underactuated rolling robots poses challenges in achieving multi-directional propulsion with high degrees of freedom while utilizing a limited number of actuators. This paper presents the MonoRollBot, a novel 3-degree-of-freedom (DOF) spherical robot that utilizes an underactuated mechanism driven by only a single spring-motor system. Unlike conventional spherical robots, MonoRollBot employs a minimalist actuation approach, relying on only one motor and a passive spring to control its locomotion. The robot achieves 3-DOF motion through an innovative coupling of spring dynamics and motor control. In this work, we detail the design of the MonoRollBot and evaluate its motion capabilities through design studies. We also do studies on its locomotion behaviours based on changes in rotating mass and stiffness properties.
comment: 6 pages, 11 figures, accepted at IEEE RoboSoft 2025
♻ ☆ GCBF+: A Neural Graph Control Barrier Function Framework for Distributed Safe Multi-Agent Control
Distributed, scalable, and safe control of large-scale multi-agent systems is a challenging problem. In this paper, we design a distributed framework for safe multi-agent control in large-scale environments with obstacles, where a large number of agents are required to maintain safety using only local information and reach their goal locations. We introduce a new class of certificates, termed graph control barrier function (GCBF), which are based on the well-established control barrier function theory for safety guarantees and utilize a graph structure for scalable and generalizable distributed control of MAS. We develop a novel theoretical framework to prove the safety of an arbitrary-sized MAS with a single GCBF. We propose a new training framework GCBF+ that uses graph neural networks to parameterize a candidate GCBF and a distributed control policy. The proposed framework is distributed and is capable of taking point clouds from LiDAR, instead of actual state information, for real-world robotic applications. We illustrate the efficacy of the proposed method through various hardware experiments on a swarm of drones with objectives ranging from exchanging positions to docking on a moving target without collision. Additionally, we perform extensive numerical experiments, where the number and density of agents, as well as the number of obstacles, increase. Empirical results show that in complex environments with agents with nonlinear dynamics (e.g., Crazyflie drones), GCBF+ outperforms the hand-crafted CBF-based method with the best performance by up to 20% for relatively small-scale MAS with up to 256 agents, and leading reinforcement learning (RL) methods by up to 40% for MAS with 1024 agents. Furthermore, the proposed method does not compromise on the performance, in terms of goal reaching, for achieving high safety rates, which is a common trade-off in RL-based methods.
comment: 20 pages, 15 figures; Accepted by IEEE Transactions on Robotics (T-RO)
♻ ☆ PrefCLM: Enhancing Preference-based Reinforcement Learning with Crowdsourced Large Language Models
Preference-based reinforcement learning (PbRL) is emerging as a promising approach to teaching robots through human comparative feedback, sidestepping the need for complex reward engineering. However, the substantial volume of feedback required in existing PbRL methods often lead to reliance on synthetic feedback generated by scripted teachers. This approach necessitates intricate reward engineering again and struggles to adapt to the nuanced preferences particular to human-robot interaction (HRI) scenarios, where users may have unique expectations toward the same task. To address these challenges, we introduce PrefCLM, a novel framework that utilizes crowdsourced large language models (LLMs) as simulated teachers in PbRL. We utilize Dempster-Shafer Theory to fuse individual preferences from multiple LLM agents at the score level, efficiently leveraging their diversity and collective intelligence. We also introduce a human-in-the-loop pipeline that facilitates collective refinements based on user interactive feedback. Experimental results across various general RL tasks show that PrefCLM achieves competitive performance compared to traditional scripted teachers and excels in facilitating more more natural and efficient behaviors. A real-world user study (N=10) further demonstrates its capability to tailor robot behaviors to individual user preferences, significantly enhancing user satisfaction in HRI scenarios.
♻ ☆ A Game Between Two Identical Dubins Cars: Evading a Conic Sensor in Minimum Time
A fundamental task in mobile robotics is keeping an intelligent agent under surveillance with an autonomous robot as it travels in the environment. This work studies a theoretical version of that problem involving one of the most popular vehicle platforms in robotics. In particular, we consider two identical Dubins cars moving on a plane without obstacles. One of them plays as the pursuer, and it is equipped with a limited field-of-view detection region modeled as a semi-infinite cone with its apex at the pursuer's position. The pursuer aims to maintain the other Dubins car, which plays as the evader, as much time as possible inside its detection region. On the contrary, the evader wants to escape as soon as possible. In this work, employing differential game theory, we find the time-optimal motion strategies near the game's end. The analysis of those trajectories reveals the existence of at least two singular surfaces: a Transition Surface (also known as a Switch Surface) and an Evader's Universal Surface. We also found that the barrier's standard construction produces a surface that partially lies outside the playing space.
comment: 35 pages, 16 figures
Systems and Control 25
☆ Robust Moving-horizon Estimation for Nonlinear Systems: From Perfect to Imperfect Optimization
Robust stability of moving-horizon estimators is investigated for nonlinear discrete-time systems that are detectable in the sense of incremental input/output-to-state stability and are affected by disturbances. The estimate of a moving-horizon estimator stems from the on-line solution of a least-squares minimization problem at each time instant. The resulting stability guarantees depend on the optimization tolerance in solving such minimization problems. Specifically, two main contributions are established: (i) the robust stability of the estimation error, while supposing to solve exactly the on-line minimization problem; (ii) the practical robust stability of the estimation error with state estimates obtained by an imperfect minimization. Finally, the construction of such robust moving-horizon estimators and the performances resulting from the design based on the theoretical findings are showcased with two numerical examples.
comment: 18 pages, 2 figures, 24 bibliographic references
☆ A Multimodal Lightweight Approach to Fault Diagnosis of Induction Motors in High-Dimensional Dataset
An accurate AI-based diagnostic system for induction motors (IMs) holds the potential to enhance proactive maintenance, mitigating unplanned downtime and curbing overall maintenance costs within an industrial environment. Notably, among the prevalent faults in IMs, a Broken Rotor Bar (BRB) fault is frequently encountered. Researchers have proposed various fault diagnosis approaches using signal processing (SP), machine learning (ML), deep learning (DL), and hybrid architectures for BRB faults. One limitation in the existing literature is the training of these architectures on relatively small datasets, risking overfitting when implementing such systems in industrial environments. This paper addresses this limitation by implementing large-scale data of BRB faults by using a transfer-learning-based lightweight DL model named ShuffleNetV2 for diagnosing one, two, three, and four BRB faults using current and vibration signal data. Spectral images for training and testing are generated using a Short-Time Fourier Transform (STFT). The dataset comprises 57,500 images, with 47,500 used for training and 10,000 for testing. Remarkably, the ShuffleNetV2 model exhibited superior performance, in less computational cost as well as accurately classifying 98.856% of spectral images. To further enhance the visualization of harmonic sidebands resulting from broken bars, Fast Fourier Transform (FFT) is applied to current and vibration data. The paper also provides insights into the training and testing times for each model, contributing to a comprehensive understanding of the proposed fault diagnosis methodology. The findings of our research provide valuable insights into the performance and efficiency of different ML and DL models, offering a foundation for the development of robust fault diagnosis systems for induction motors in industrial settings.
☆ Stabilization of Strictly Pre-Dissipative Receding Horizon Linear Quadratic Control by Terminal Costs
Asymptotic stability in receding horizon control is obtained under a strict pre-dissipativity assumption, in the presence of suitable state constraints. In this paper we analyze how terminal constraints can be replaced by suitable terminal costs. We restrict to the linear-quadratic setting as that allows us to obtain stronger results, while we analyze the full nonlinear case in a separate contribution.
☆ Imitation Learning of MPC with Neural Networks: Error Guarantees and Sparsification
This paper presents a framework for bounding the approximation error in imitation model predictive controllers utilizing neural networks. Leveraging the Lipschitz properties of these neural networks, we derive a bound that guides dataset design to ensure the approximation error remains at chosen limits. We discuss how this method can be used to design a stable neural network controller with performance guarantees employing existing robust model predictive control approaches for data generation. Additionally, we introduce a training adjustment, which is based on the sensitivities of the optimization problem and reduces dataset density requirements based on the derived bounds. We verify that the proposed augmentation results in improvements to the network's predictive capabilities and a reduction of the Lipschitz constant. Moreover, on a simulated inverted pendulum problem, we show that the approach results in a closer match of the closed-loop behavior between the imitation and the original model predictive controller.
☆ Study of Frictional and Impact Transients in Active-Passive Mechanical Pair
We consider an active-passive mechanical pair in which the relative motion of the latter is constrained by the mechanical impact. The system dynamics is described by the previously introduced modeling frameworks of force transition and dissipation through the nonlinear Coulomb friction and structural damping, the later in accord with Hertzian contact theory. The focus of the recent study is on combining both interaction mechanisms, and the detailed experimental evaluation which discloses validity of the modeling assumptions. Such mechanical pair interactions can be found in various mechatronic systems and mechanisms, like for example clutches, backlash elements, sliding items on the shaking and inclining surfaces, conveyor belts and others. This practical study demonstrates and discusses the transients of a vibro-impact dynamics and shows theoretical developments in line with experimental evaluation.
comment: 4 pages, 6 figures
☆ A Novel Approach to Real-Time Short-Term Traffic Prediction based on Distributed Fiber-Optic Sensing and Data Assimilation with a Stochastic Cell-Automata Model
This paper demonstrates real-time short-term traffic flow prediction through distributed fiber-optic sensing (DFOS) and data assimilation with a stochastic cell-automata-based traffic model. Traffic congestion on expressways is a severe issue. To alleviate its negative impacts, it is necessary to optimize traffic flow prior to becoming serious congestion. For this purpose, real-time short-term traffic flow prediction is promising. However, conventional traffic monitoring apparatus used in prediction methods faces a technical issue due to the sparsity in traffic flow data. To overcome the issue for realizing real-time traffic prediction, this paper employs DFOS, which enables to obtain spatially continuous and real-time traffic flow data along the road without dead zones. Using mean velocities derived from DFOS data as a feature extraction, this paper proposes a real-time data assimilation method for the short-term prediction. As the theoretical model, the stochastic Nishinari-Fukui-Schadschneider model is adopted. Future traffic flow is simulated with the optimal values of model parameters estimated from observed mean velocities and the initial condition estimated as the latest microscopic traffic state. This concept is validated using two congestion scenarios obtained in Japanese expressways. The results show that the mean absolute error of the predicted mean velocities is 10-15 km/h in the prediction horizon of 30 minutes. Furthermore, the prediction error in congestion length and travel time decreases by 40-84% depending on congestion scenarios when compared with conventional methods with traffic counters. This paper concludes that real-time data assimilation using DFOS enables an accurate short-term traffic prediction.
comment: 22 pages, 11 figures
☆ A 3D Continuous-Space Electromagnetic Channel Model for 6G Tri-Polarized Multi-user Communications
It is envisioned that the sixth generation (6G) and beyond 6G (B6G) wireless communication networks will enable global coverage in space, air, ground, and sea. In this case, both base stations and users can be mobile and will tend to move continuously in three-dimensional (3D) space. Therefore, obtaining channel state information (CSI) in 3D continuous-space is crucial for the design and performance evaluation of future 6G and B6G wireless systems. On the other hand, new 6G technologies such as integrated sensing and communications (ISAC) will also require prior knowledge of CSI in 3D continuous-space. In this paper, a 3D continuous-space electromagnetic channel model is proposed for tri-polarized multi-user communications, taking into account scatterers and spherical wavefronts. Scattered fields are calculated using the method of moments (MoM) with high accuracy. Spherical wave functions are utilized to decompose the dyadic Green's functions that connect the transmitted source currents and the received electric fields. Simulation results demonstrate that transmit power, apertures, scatterers, and sample intervals have significant impacts on statistical properties and channel capacities, providing insights into the performance of continuous-space electromagnetic channel models and the design of future wireless systems.
☆ Wireless Channel Measurements and Characterization in Industrial IoT Scenarios
Wireless Fidelity (Wi-Fi) communication technologies hold significant potential for realizing the Industrial Internet of Things (IIoT). In this paper, both Single-Input Single-Output (SISO) and polarized Multiple-Input Multiple-Output (MIMO) channel measurements are conducted in an IIoT scenario at the less congested Wi-Fi band, i.e., 5.5~GHz. The purpose is to investigate wireless characteristics of communications between access points and terminals mounted on automated guided vehicles as well as those surrounding manufacturing areas. For SISO channel measurements, statistical properties including the delay Power Spectral Density (PSD), path loss, shadowing fading, delay spread, excess delay, K-factor, and amplitude distribution of small-scale fading are analyzed and compared with those observed in an office scenario. For MIMO channel measurements, results show that there are multiple Dense Multipath Component (DMC) processes in the delay PSD. An estimation algorithm based on the algorithm for a single DMC process is proposed to effectively process the multi-processes data. Moreover, delay, angular, power, and polarization properties of DMCs are investigated and compared with those of specular multipath components. Furthermore, effects of DMCs on Singular Values (SVs) and channel capacities are explored. Ignoring DMCs can overestimate SVs and underestimate channel capacities.
☆ Proxy Control Barrier Functions: Integrating Barrier-Based and Lyapunov-Based Safety-Critical Control Design
This work introduces a novel Proxy Control Barrier Function (PCBF) scheme that integrates barrier-based and Lyapunov-based safety-critical control strategies for strict-feedback systems with potentially unknown dynamics. The proposed method employs a modular design procedure, decomposing the original system into a proxy subsystem and a virtual tracking subsystem that are controlled by the control barrier function (CBF)-based and Lyapunov-based controllers, respectively. By integrating these separately designed controllers, the overall system's safety is ensured. Moreover, a new filter-based disturbance observer is utilized to design a PCBF-based safe controller for strict-feedback systems subject to mismatched disturbances. This approach broadens the class of systems to which CBF-based methods can be applied and significantly simplifies CBF construction by requiring only the model of the proxy subsystem. The effectiveness of the proposed method is demonstrated through numerical simulations.
☆ Distributionally Robust Joint Chance-Constrained Optimal Power Flow using Relative Entropy
Designing robust algorithms for the optimal power flow (OPF) problem is critical for the control of large-scale power systems under uncertainty. The chance-constrained OPF (CCOPF) problem provides a natural formulation of the trade-off between the operating cost and the constraint satisfaction rate. In this work, we propose a new data-driven algorithm for the CCOPF problem, based on distributionally robust optimization (DRO). \revise{We show that the proposed reformulation of the distributionally robust chance constraints is exact, whereas other approaches in the CCOPF literature rely on conservative approximations. We establish out-of-sample robustness guarantees for the distributionally robust solution and prove that the solution is the most efficient among all approaches enjoying the same guarantees.} We apply the proposed algorithm to the the CCOPF problem and compare the performance of our approach with existing methods using simulations on IEEE benchmark power systems.
☆ Resilient Distributed Control for Uncertain Nonlinear Interconnected Systems under Network Anomaly
We address a distributed adaptive control methodology for nonlinear interconnected systems possibly affected by network anomalies. In the framework of adaptive approximation, the distributed controller and parameter estimator are designed by exploiting a backstepping approach. The stability of the distributed control system under anomalies is analyzed, where both local and neighboring anomaly effects are considered. To quantify the resilience of the interconnected system under the action of network anomalies, we derive bounds on the duration of each anomaly and the resting time between two consecutive anomalies. Specifically, when each anomaly duration is smaller than our designed upper bound, the interconnected system controlled by the distributed approximation-based controller remains asymptotically stable. Moreover, if the resting time between two consecutive anomalies is larger than the proposed bound, then all signals of the control system are guaranteed to be bounded. In the paper, we show that under the action of the proposed distributed adaptive controller, the interconnected system remains stable in the presence of network anomalies, with both the qualitative and quantitative resilient conditions. Extensive simulation results show the effectiveness of our theoretical results.
☆ A Unified Attack Detection Strategy for Multi-Agent Systems over Transient and Steady Stages
This paper proposes a unified detection strategy against three kinds of attacks for multi-agent systems (MASs) which is applicable to both transient and steady stages. For attacks on the communication layer, a watermarking-based detection scheme with KullbackLeibler (KL) divergence is designed. Different from traditional communication schemes, each agent transmits a message set containing two state values with different types of watermarking. It is found that the detection performance is determined by the relevant parameters of the watermarking signal. Unlike the existing detection manoeuvres, such a scheme is capable of transient and steady stages. For attacks on the agent layer, a convergence rate related detection approach is put forward. It is shown that the resilience of the considered system is characterized by the coefficient and offset of the envelope. For hybrid attacks, based on the above detection mechanisms, a general framework resorting to trusted agents is presented, which requires weaker graph conditions and less information transmission. Finally, an example associated with the platooning of connected vehicles is given to support the theoretical results.
☆ Extending Internet Access Over LoRa for Internet of Things and Critical Applications
LoRa bridges the gap between remote locations and mainstream networks, enabling large-scale Internet of Things (IoT) deployments. Despite the recent advancements around LoRa, Internet access over this technology is still largely unexplored. Most existing solutions only handle packets within the local LoRa network and do not interact with web applications. This limits the scalability and the ability to deliver essential web services in disconnected regions. This work proposes and implements ILoRa to extend the public Internet to disconnected areas for essential service delivery. ILoRa enables accessing Application Programming Interfaces (APIs) and web pages on the Internet over a LoRa backbone network. It comprises a ILoRa coordinator code (ICN) and access point nodes (APNs). The ICN interfaces the LoRa network with the public Internet and interprets content. The APN tethers a WiFi hotspot to which devices connect and access the web content. This work further proposes data handling methods for ICNs and APNs. An actual hardware-based implementation validates the proposed system. The implementation achieves a throughput of 1.06 kbps tested for an Internet-based API returning JSON data of 930 B. Furthermore, the APN consumed approximately $0.162$A current, and the resource utilization on the ICN was minimal.
comment: 8 pages, 8 figures
☆ Collaborative Spacecraft Servicing under Partial Feedback using Lyapunov-based Deep Neural Networks
Multi-agent systems are increasingly applied in space missions, including distributed space systems, resilient constellations, and autonomous rendezvous and docking operations. A critical emerging application is collaborative spacecraft servicing, which encompasses on-orbit maintenance, space debris removal, and swarm-based satellite repositioning. These missions involve servicing spacecraft interacting with malfunctioning or defunct spacecraft under challenging conditions, such as limited state information, measurement inaccuracies, and erratic target behaviors. Existing approaches often rely on assumptions of full state knowledge or single-integrator dynamics, which are impractical for real-world applications involving second-order spacecraft dynamics. This work addresses these challenges by developing a distributed state estimation and tracking framework that requires only relative position measurements and operates under partial state information. A novel $\rho$-filter is introduced to reconstruct unknown states using locally available information, and a Lyapunov-based deep neural network adaptive controller is developed that adaptively compensates for uncertainties stemming from unknown spacecraft dynamics. To ensure the collaborative spacecraft regulation problem is well-posed, a trackability condition is defined. A Lyapunov-based stability analysis is provided to ensure exponential convergence of errors in state estimation and spacecraft regulation to a neighborhood of the origin under the trackability condition. The developed method eliminates the need for expensive velocity sensors or extensive pre-training, offering a practical and robust solution for spacecraft servicing in complex, dynamic environments.
comment: 24 pages, 4 Figures, Journal
☆ Bridging Impulse Control of Piecewise Deterministic Markov Processes and Markov Decision Processes: Frameworks, Extensions, and Open Challenges
Control theory plays a pivotal role in understanding and optimizing the behavior of complex dynamical systems across various scientific and engineering disciplines. Two key frameworks that have emerged for modeling and solving control problems in stochastic systems are piecewise deterministic Markov processes (PDMPs) and Markov decision processes (MDPs). Each framework has its unique strengths, and their intersection offers promising opportunities for tackling a broad class of problems, particularly in the context of impulse controls and decision-making in complex systems. The relationship between PDMPs and MDPs is a natural subject of exploration, as embedding impulse control problems for PDMPs into the MDP framework could open new avenues for their analysis and resolution. Specifically, this integration would allow leveraging the computational and theoretical tools developed for MDPs to address the challenges inherent in PDMPs. On the other hand, PDMPs can offer a versatile and simple paradigm to model continuous time problems that are often described as discrete-time MDPs parametrized by complex transition kernels. This transformation has the potential to bridge the gap between the two frameworks, enabling solutions to previously intractable problems and expanding the scope of both fields. This paper presents a comprehensive review of two research domains, illustrated through a recurring medical example. The example is revisited and progressively formalized within the framework of thevarious concepts and objects introduced
☆ Security by Design Issues in Autonomous Vehicles
As autonomous vehicle (AV) technology advances towards maturity, it becomes imperative to examine the security vulnerabilities within these cyber-physical systems. While conventional cyber-security concerns are often at the forefront of discussions, it is essential to get deeper into the various layers of vulnerability that are often overlooked within mainstream frameworks. Our goal is to spotlight imminent challenges faced by AV operators and explore emerging technologies for comprehensive solutions. This research outlines the diverse security layers, spanning physical, cyber, coding, and communication aspects, in the context of AVs. Furthermore, we provide insights into potential solutions for each potential attack vector, ensuring that autonomous vehicles remain secure and resilient in an evolving threat landscape.
♻ ☆ Intelligent Router for LLM Workloads: Improving Performance Through Workload-Aware Load Balancing
Large Language Model (LLM) workloads have distinct prefill and decode phases with different compute and memory requirements which should ideally be accounted for when scheduling input queries across different LLM instances in a cluster. However existing scheduling algorithms treat LLM workloads as monolithic jobs without considering the distinct characteristics of the two phases in each workload. This leads to sub-optimal scheduling and increased response latency. In this work, we start by characterizing factors affecting the response latency during LLM inference serving. We establish that better load balancing of inference requests across the available LLM instances can improve the end-to-end latency to a larger extent than merely focusing on optimizing the instance-level scheduler. Motivated by our findings, we propose a heuristic-guided reinforcement learning-based intelligent router for data-driven and workload-aware scheduling. Our router schedules queries across LLM instances by leveraging a trainable response-length predictor, and a novel formulation for estimating the impact of mixing different workloads and achieves over 11% lower end-to-end latency than existing approaches on a mix of public datasets and 7.8% lower end-to-end latency on real workload data with diverse input and output trends from Cloud Provider X. Additionally, the proposed framework can also serve as a standard for benchmarking different LLM inference schedulers since it provides the best latency for a given model, hardware, and instance-level scheduler combination.
comment: 16 pages, 10 figures
♻ ☆ Optimal Time-Invariant Distributed Formation Tracking for Second-Order Multi-Agent Systems
This paper addresses the optimal time-invariant formation tracking problem with the aim of providing a distributed solution for multi-agent systems with second-order integrator dynamics. In the literature, most of the results related to multi-agent formation tracking do not consider energy issues while investigating distributed feedback control laws. In order to account for this crucial design aspect, we contribute by formalizing and proposing a solution to an optimization problem that encapsulates trajectory tracking, distance-based formation control and input energy minimization, through a specific and key choice of potential functions in the optimization cost. To this end, we show how to compute the inverse dynamics in a centralized fashion by means of the Projector-Operator-based Newton's method for Trajectory Optimization (PRONTO) and, more importantly, we exploit such an offline solution as a general reference to devise a stabilizing online distributed control law. Finally, numerical examples involving a cubic formation following a chicane-like path in the 3D space are provided to validate the proposed control strategies.
comment: 35 pages, 3 figures, accepted on March 27th, 2024 by the European Journal of Control (first submission: June 23rd, 2023)
♻ ☆ Harnessing Uncertainty for a Separation Principle in Direct Data-Driven Predictive Control
Model Predictive Control (MPC) is a powerful method for complex system regulation, but its reliance on an accurate model poses many limitations in real-world applications. Data-driven predictive control (DDPC) aims at overcoming this limitation, by relying on historical data to provide information on the plant to be controlled. In this work, we present a unified stochastic framework for direct DDPC, where control actions are obtained by optimizing the Final Control Error (FCE), which is directly computed from available data only and automatically weighs the impact of uncertainty on the control objective. Our framework allows us to establish a separation principle for Predictive Control, elucidating the role that predictive models and their uncertainty play in DDPC. Moreover, it generalizes existing DDPC methods, like regularized Data-enabled Predictive Control (DeePC) and $\gamma$-DDPC, providing a path toward noise-tolerant data-based control with rigorous optimality guarantees. The theoretical investigation is complemented by a series of experiments (code available on GitHub: https://github.com/marcofabris92/a-separation-principle-in-d3pc), revealing that the proposed method consistently outperforms or, at worst, matches existing techniques without requiring tuning regularization parameters as other methods do.
comment: 17 pages, 2 figures, 1 table, accepted by Automatica on October 31st, 2024 (first submission: December 22nd, 2023)
♻ ☆ Resilient Control of Dynamic Flow Networks Subject to Stochastic Cyber-Physical Disruptions
Modern network systems, such as transportation and communication systems, are prone to cyber-physical disruptions and thus suffer efficiency loss. This paper studies network resiliency, in terms of throughput, and develops resilient control to improve throughput. We consider single-commodity networks that admit congestion propagation. We also apply a Markov process to model disruption switches. For throughput analysis, we first use insights into congestion spillback to propose novel Lyapunov functions and then exploit monotone network dynamics to reduce computational costs of verifying stability conditions. For control design, we show that (i) for a network with infinite link storage space, there exists an open-loop control that attains the min-expected-cut capacity; (ii) for a network with observable disruptions that restrict maximum sending and/or receiving flows, there exists a mode-dependent control that attains the expected-min-cut capacity; (iii) for general networks, there exists a closed-loop control with throughput guarantees. We also derive lower bounds of resiliency scores for a set of numerical examples and verify resiliency improvement with our method.
♻ ☆ Soft Adaptive Feet for Legged Robots: An Open-Source Model for Locomotion Simulation
In recent years, artificial feet based on soft robotics and under-actuation principles emerged to improve mobility on challenging terrains. This paper presents the application of the MuJoCo physics engine to realize a digital twin of an adaptive soft foot developed for use with legged robots. We release the MuJoCo soft foot digital twin as open source to allow users and researchers to explore new approaches to locomotion. The work includes the system modeling techniques along with the kinematic and dynamic attributes involved. Validation is conducted through a rigorous comparison with bench tests on a physical prototype, replicating these experiments in simulation. Results are evaluated based on sole deformation and contact forces during foot-obstacle interaction. The foot model is subsequently integrated into simulations of the humanoid robot COMAN+, replacing its original flat feet. Results show an improvement in the robot's ability to negotiate small obstacles without altering its control strategy. Ultimately, this study offers a comprehensive modeling approach for adaptive soft feet, supported by qualitative comparisons of bipedal locomotion with state of the art robotic feet.
♻ ☆ A Volumetric Approach to Privacy of Dynamical Systems
Information-theoretic metrics, such as mutual information, have been widely used to evaluate privacy leakage in dynamic systems. However, these approaches are typically limited to stochastic systems and face computational challenges. In this paper, we introduce a novel volumetric framework for analyzing privacy in systems affected by unknown but bounded noise. Our model considers a dynamic system comprising public and private states, where an observation set of the public state is released. An adversary utilizes the observed public state to infer an uncertainty set of the private state, referred to as the inference attack. We define the evolution dynamics of these inference attacks and quantify the privacy level of the private state using the volume of its uncertainty sets. For linear scalar systems, we derive an explicit formulation of the uncertainty set. For multi-dimensional linear systems, we develop an approximate computation method leveraging interval analysis. We investigate the properties of the proposed volumetric privacy measure and demonstrate that it is bounded by the information gain derived from the observation set. Furthermore, we propose an optimization approach to designing privacy filter using randomization and linear programming based on the proposed privacy measure. The effectiveness of the optimal privacy filter design is evaluated through a production-inventory case study, illustrating its robustness against the inference attack.
♻ ☆ Robust Backstepping Control of a Quadrotor Unmanned Aerial Vehicle Under Colored Noises
Advances in software and hardware technologies have facilitated the production of quadrotor unmanned aerial vehicles (UAVs). Nowadays, people actively use quadrotor UAVs in essential missions such as search and rescue, counter-terrorism, firefighting, surveillance, and cargo transportation. While performing these tasks, quadrotors must operate in noisy environments. Therefore, a robust controller design that can control the altitude and attitude of the quadrotor in noisy environments is of great importance. Many researchers have focused only on white Gaussian noise in their studies, whereas researchers need to consider the effects of all colored noises during the operation of the quadrotor. This study aims to design a robust controller that is resistant to all colored noises. Firstly, a nonlinear quadrotor model was created with MATLAB. Then, a backstepping controller resistant to colored noises was designed. The designed backstepping controller was tested under Gaussian white, pink, brown, blue, and purple noises. PID and Lyapunov-based controller designs were also carried out, and their time responses (rise time, overshoot, settling time) were compared with those of the backstepping controller. In the simulations, time was in seconds, altitude was in meters, and roll, pitch, and yaw references were in radians. Rise and settling time values were in seconds, and overshoot value was in percent. When the obtained values are examined, simulations prove that the proposed backstepping controller has the least overshoot and the shortest settling time under all noise types.
comment: 22 pages, 10 figures
♻ ☆ Joint Observer Gain and Input Design for Asymptotic Active Fault Diagnosis
This paper proposes a joint gain and input design method for observer-based asymptotic active fault diagnosis, which is based on a newly-defined notion named the excluding degree of the origin from a zonotope. Using the excluding degree, a quantitative specification is obtained to characterize the performance of set-based robust fault diagnosis. Furthermore, a single gain design method and a joint gain and input design method are proposed, respectively. This is the first work to achieve a joint observer gain and input design for set-based active fault diagnosis. Compared with the existing methods that design gains and input separately, the proposed joint gain and input design method has advantages to exploit the fault diagnosis potential of observer-based schemes. Finally, several examples are used to illustrate the effectiveness of the proposed methods.
comment: Provisionally accepted by Automatica as Regular Paper
♻ ☆ Localization Phenomena in Large-Scale Networked Systems: Robustness and Fragility of Dynamics
We study phenomena where some eigenvectors of a graph Laplacian are largely confined in small subsets of the graph. These localization phenomena are similar to those generally termed Anderson Localization in the Physics literature, and are related to the complexity of the structure of large graphs in still unexplored ways. Using spectral perturbation theory and pseudo-spectrum analysis, we explain how the presence of localized eigenvectors gives rise to fragilities (low robustness margins) to unmodeled node or link dynamics. Our analysis is demonstrated by examples of networks with relatively low complexity, but with features that appear to induce eigenvector localization. The implications of this newly-discovered fragility phenomenon are briefly discussed.
Optimization and Control 51
☆ Learning to Relax Nonconvex Quadratically Constrained Quadratic Programs
Quadratically constrained quadratic programs (QCQPs) are ubiquitous in optimization: Such problems arise in applications from operations research, power systems, signal processing, chemical engineering, portfolio theory, among others. Despite their flexibility in modeling real-life situations and the recent effort to understand their properties, nonconvex QCQPs are hard to solve in practice. Most of the approaches in the literature are based on either Linear Programming (LP) or Semidefinite Programming (SDP) relaxations, each of which works very well for some problem subclasses but perform poorly on others. In this paper, we develop a relaxation selection procedure for nonconvex QCQPs that can adaptively decide whether an LP- or SDP-based approach is expected to be more beneficial by considering the instance structure. The proposed methodology relies on utilizing machine learning methods that involve features derived from spectral properties and sparsity patterns of data matrices, and once trained appropriately, the prediction model is applicable to any instance with an arbitrary number of variables and constraints. We train and test classification and regression models over synthetically generated instances, and empirically show the efficacy of our approach.
☆ Data-driven Optimization for the Evolve-Filter-Relax regularization of convection-dominated flows
Numerical stabilization techniques are often employed in under-resolved simulations of convection-dominated flows to improve accuracy and mitigate spurious oscillations. Specifically, the Evolve-Filter-Relax (EFR) algorithm is a framework which consists in evolving the solution, applying a filtering step to remove high-frequency noise, and relaxing through a convex combination of filtered and original solutions. The stability and accuracy of the EFR solution strongly depend on two parameters, the filter radius $\delta$ and the relaxation parameter $\chi$. Standard choices for these parameters are usually fixed in time, and related to the full order model setting, i.e., the grid size for $\delta$ and the time step for $\chi$. This paper makes two significant improvements to the standard EFR framework by proposing: (i) time-dependent parameters, (ii) data-driven adaptive optimization of the parameters in time, considering a fully-resolved simulation as a reference. In particular, we propose three different classes of Optimized-EFR strategies, aiming to optimize one or both parameters. Moreover, we investigate the accuracy and efficiency of the proposed optimization algorithms considering different objective functions, both local (point-valued) and global (such as the kinetic energy). The new Optimized-EFR strategies are tested in the under-resolved simulation of a turbulent flow past a cylinder at $Re=1000$. The new Optimized-EFR results are more accurate than the standard EFR solution while maintaining a similar computational time. In particular, we show that using a global objective function and including the $H^1$ velocity seminorm is crucial to accurately match the reference flow dynamics.
☆ A regularized transportation cost stemming from entropic approximation
We study the entropic regularizations of optimal transport problems under suitable summability assumptions on the point-wise transport cost. These summability assumptions already appear in the literature. However, we show that the weakest compactness conditions that can be derived are already enough to obtain the convergence of the regularized functionals. This approach allows us to characterize the variational limit of the regularization even when it does not converge to the original problem. The results apply also to problems with more than two marginals.
☆ An obstruction to small-time local controllability for a bilinear Schrödinger equation
We consider the small-time local controllability in the vicinity of the ground state of a bilinear Schr\"odinger equation with Neumann boundary conditions. We prove that, when the linearized system is not controllable, the nonlinear system is not controllable, due to a quadratic obstruction involving the squared norm of the control's primitive. This obstruction has been known since 1983 for ODEs and observed for some PDEs since 2006. However, our situation is more intricate since the kernel describing the quadratic expansion of the solution is not twice differentiable. We thus follow a Fourier-based approach, closer to the one used for quadratic obstructions of fractional Sobolev regularity. In this Fourier-based approach, a challenge is to formulate a necessary and sufficient condition on the convolution kernel, for the quadratic form to be coercive. In previous studies, the coercivity was ensured by a signed asymptotic equivalent for the Fourier transform of the convolution kernel of the form $\widehat{K}(\omega) \sim \omega^{-2}$ as $|\omega| \to \infty$. In our case, $\widehat{K}$ is a distribution which has singularities and changes sign up to infinity. We still prove coercivity because one of the signs appears too infrequently.
☆ Optimal control of a nonlinear kinetic Fokker-Planck equation
A tracking type optimal control problem for a nonlinear and nonlocal kinetic Fokker-Planck equation which arises as the mean field limit of an interacting particle systems that is subject to distance dependent random fluctuations is studied. As the equation of interest is only hypocoercive and the control operator is unbounded with respect to the canonical state space, classical variational solution techniques cannot be utilized directly. Instead, the concept of admissible control operators is employed. For the underlying nonlinearities, local Lipschitz estimates are derived and subsequently used within a fixed point argument to obtain local existence of solutions. Again, due to hypocoercivity, existence of optimal controls requires non standard techniques as (compensated) compactness arguments are not readily available.
☆ The maximal angle between $3 \times 3$ copositive matrices
In 2010, Hiriart-Urruty and Seeger posed the problem of finding the maximal possible angle $\theta_n$ between two copositive matrices of order $n$. They proved that $\theta_2=\frac{3}{4}\pi$. In this paper, we study the maximal angle between two copositive matrices of order 3. We show that $\theta_3=\frac{3}{4}\pi$ and give all possible pairs of matrices achieving this maximal angle. The proof is based on case analysis and uses optimization and basic linear algebra techniques.
☆ Hydrogen Network Expansion Planning considering the Chicken-and-egg Dilemma and Market Uncertainty
Comparable performance to fully flexible settings through optimized revision times.Green hydrogen is thought to be a game changer for reaching sustainability targets. However, the transition to a green hydrogen economy faces a critical challenge known as the `chicken-and-egg dilemma', wherein establishing a hydrogen supply network relies on demand, while demand only grows with reliable supply. In addition, as the hydrogen market is in the early stage, predicting demand distributions is challenging due to lack of data availability. This paper addresses these complex issues through a risk-averse framework with the introduction of a distributionally robust hydrogen network expansion planning problem under decision-dependent demand ambiguity. The problem optimizes location and production capacity decisions of the suppliers considering the moments of the stochastic hydrogen demand as a function of these investment decisions. To obtain tractable representations of this problem, we derive two different reformulations that consider continuous and discrete hydrogen demand support sets under different forms of decision dependencies. To efficiently solve the reformulations, we develop a tailored algorithm based on the column-and-constraint generation approach, and enhance the computational performance through solving the master problems to a relative optimality gap, decomposing the subproblems, and integrating pre-generated columns and constraints. To validate the effectiveness of our approach, we investigate a real case study leveraging data from the ``Hydrogen Energy Applications in Valley Environments for Northern Netherlands (HEAVENN)" project. The results reveal that considering the chicken-and-egg dilemma under uncertain hydrogen market conditions leads to earlier and more diverse investments, providing critical insights for policymakers based on the degree of decision dependency.
☆ Scalable Second-Order Optimization Algorithms for Minimizing Low-rank Functions NeurIPS 2024
We present a random-subspace variant of cubic regularization algorithm that chooses the size of the subspace adaptively, based on the rank of the projected second derivative matrix. Iteratively, our variant only requires access to (small-dimensional) projections of first- and second-order problem derivatives and calculates a reduced step inexpensively. The ensuing method maintains the optimal global rate of convergence of (full-dimensional) cubic regularization, while showing improved scalability both theoretically and numerically, particularly when applied to low-rank functions. When applied to the latter, our algorithm naturally adapts the subspace size to the true rank of the function, without knowing it a priori.
comment: Accepted at NeurIPS 2024 Workshop OPT2024: Optimization for Machine Learning
☆ Computational complexity of sum-of-squares bounds for copositive programs
In recent years, copositive programming has received significant attention for its ability to model hard problems in both discrete and continuous optimization. Several relaxations of copositive programs based on semidefinite programming (SDP) have been proposed in the literature, meant to provide tractable bounds. However, while these SDP-based relaxations are amenable to the ellipsoid algorithm and interior point methods, it is not immediately obvious that they can be solved in polynomial time (even approximately). In this paper, we consider the sum-of-squares (SOS) hierarchies of relaxations for copositive programs introduced by Parrilo (2000), de Klerk & Pasechnik (2002) and Pe\~na, Vera & Zuluaga (2006), which can be formulated as SDPs. We establish sufficient conditions that guarantee the polynomial-time computability (up to fixed precision) of these relaxations. These conditions are satisfied by copositive programs that represent standard quadratic programs and their reciprocals. As an application, we show that the SOS bounds for the (weighted) stability number of a graph can be computed efficiently. Additionally, we provide pathological examples of copositive programs (that do not satisfy the sufficient conditions) whose SOS relaxations admit only feasible solutions of doubly-exponential size.
☆ Stabilization of Strictly Pre-Dissipative Receding Horizon Linear Quadratic Control by Terminal Costs
Asymptotic stability in receding horizon control is obtained under a strict pre-dissipativity assumption, in the presence of suitable state constraints. In this paper we analyze how terminal constraints can be replaced by suitable terminal costs. We restrict to the linear-quadratic setting as that allows us to obtain stronger results, while we analyze the full nonlinear case in a separate contribution.
☆ Controlling the low-temperature Ising model using spatiotemporal Markov decision theory
We introduce the spatiotemporal Markov decision process (STMDP), a special type of Markov decision process that models sequential decision-making problems which are not only characterized by temporal, but also by spatial interaction structures. To illustrate the framework, we construct an STMDP inspired by the low-temperature two-dimensional Ising model on a finite, square lattice, evolving according to the Metropolis dynamics. We consider the situation in which an external decision maker aims to drive the system towards the all-plus configuration by flipping spins at specified moments in time. In order to analyze this problem, we construct an auxiliary MDP by means of a reduction of the configuration space to the local minima of the Hamiltonian. Leveraging the convenient form of this auxiliary MDP, we uncover the structure of the optimal policy by solving the Bellman equations in a recursive manner. Finally, we conduct a numerical study on the performance of the optimal policy obtained from the auxiliary MDP in the original Ising STMDP.
☆ Proxy Control Barrier Functions: Integrating Barrier-Based and Lyapunov-Based Safety-Critical Control Design
This work introduces a novel Proxy Control Barrier Function (PCBF) scheme that integrates barrier-based and Lyapunov-based safety-critical control strategies for strict-feedback systems with potentially unknown dynamics. The proposed method employs a modular design procedure, decomposing the original system into a proxy subsystem and a virtual tracking subsystem that are controlled by the control barrier function (CBF)-based and Lyapunov-based controllers, respectively. By integrating these separately designed controllers, the overall system's safety is ensured. Moreover, a new filter-based disturbance observer is utilized to design a PCBF-based safe controller for strict-feedback systems subject to mismatched disturbances. This approach broadens the class of systems to which CBF-based methods can be applied and significantly simplifies CBF construction by requiring only the model of the proxy subsystem. The effectiveness of the proposed method is demonstrated through numerical simulations.
☆ Distributionally Robust Joint Chance-Constrained Optimal Power Flow using Relative Entropy
Designing robust algorithms for the optimal power flow (OPF) problem is critical for the control of large-scale power systems under uncertainty. The chance-constrained OPF (CCOPF) problem provides a natural formulation of the trade-off between the operating cost and the constraint satisfaction rate. In this work, we propose a new data-driven algorithm for the CCOPF problem, based on distributionally robust optimization (DRO). \revise{We show that the proposed reformulation of the distributionally robust chance constraints is exact, whereas other approaches in the CCOPF literature rely on conservative approximations. We establish out-of-sample robustness guarantees for the distributionally robust solution and prove that the solution is the most efficient among all approaches enjoying the same guarantees.} We apply the proposed algorithm to the the CCOPF problem and compare the performance of our approach with existing methods using simulations on IEEE benchmark power systems.
☆ Turbulence modeling over riblets via domain transformation
Numerical and experimental studies have demonstrated the drag-reducing potential of carefully designed streamwise-elongated riblets in lowering skin-friction drag. To support the systematic design of such surface corrugations, recent efforts have integrated simplified versions of the governing equations with innovative methods for representing the effects of rough boundaries on flow dynamics. Notably, the statistical response of the eddy-viscosity-enhanced linearized Navier-Stokes equations has been shown to effectively capture the ability of riblets in suppressing turbulence, quantify the influence of background turbulence on the mean velocity, and reproduce established drag-reduction trends. In this paper, we enhance the flexibility and computational efficiency of this simulation-free approach by implementing a domain transformation for surface representation, along with a perturbation analysis on a small geometric parameter of the riblets. While domain transformation complicates the differential equations, it provides accurate boundary representations and facilitates the analysis of complex riblet shapes at high Reynolds numbers by enabling perturbation analysis to simplify the dimensional complexity of the governing equations. Our method successfully predicts drag reduction trends for semi-circular riblets, consistent with existing literature. We further utilize our framework to investigate flow mechanisms influenced by riblets and extend our study to channel flows with friction Reynolds numbers up to 2003. Our findings reveal the emergence of Kelvin-Helmholtz rollers over large and sharp semi-circular riblets, contributing to the degradation of drag reduction in these geometries. Additionally, we examine the impact of riblets on near-wall flow structures, focusing on their suppression of streamwise-elongated structures in flows over large riblets.
comment: 40 pages, 26 figures
☆ Positivstellensätze for polynomial matrices with universal quantifiers
This paper studies Positivstellens\"atze for a polynomial matrix subject to polynomial matrix inequality constraints with universal quantifiers. We first present a Scherer-Hol-type Positivstellensatz under the Archimedean condition. When the objective is a scalar polynomial, we further provide a sparse Scherer-Hol-type Positivstellensatz in the presence of correlative sparsity. Next, without assuming the Archimedean condition, we derive Putinar-Vasilescu-type, P\'olya-type, and Lasserre-Netzer-type Positivstellens\"atze under the same setting. These results can be viewed as common generalizations of corresponding Positivstellens\"atze in the cases of polynomials, polynomials with universal quantifiers, and polynomial matrices. For the proofs, techniques from *-algebra, real algebraic geometry, operator theory, and convex optimization are employed. Applications of the established Positivstellens\"atze to robust polynomial matrix optimization are also discussed.
comment: 31 pages, 2 tables
☆ Convergence of a particle method for gradient flows on the $L^p$-Wasserstein space
We study the particle method to approximate the gradient flow on the $L^p$-Wasserstein space. This method relies on the discretization of the energy introduced by [3] via nonoverlapping balls centered at the particles and preserves the gradient flow structure at the particle level. We prove the convergence of the discrete gradient flow to the continuum gradient flow on the $L^p$-Wasserstein space over $\mathbb R$, specifically to the doubly nonlinear diffusion equation in one dimension.
comment: arXiv admin note: text overlap with arXiv:1605.08086 by other authors
☆ Optimization Learning
This article introduces the concept of optimization learning, a methodology to design optimization proxies that learn the input/output mapping of parametric optimization problems. These optimization proxies are trustworthy by design: they compute feasible solutions to the underlying optimization problems, provide quality guarantees on the returned solutions, and scale to large instances. Optimization proxies are differentiable programs that combine traditional deep learning technology with repair or completion layers to produce feasible solutions. The article shows that optimization proxies can be trained end-to-end in a self-supervised way. It presents methodologies to provide performance guarantees and to scale optimization proxies to large-scale optimization problems. The potential of optimization proxies is highlighted through applications in power systems and, in particular, real-time risk assessment and security-constrained optimal power flow.
☆ Unifying restart accelerated gradient and proximal bundle methods
This paper presents a novel restarted version of Nesterov's accelerated gradient method and establishes its optimal iteration-complexity for solving convex smooth composite optimization problems. The proposed restart accelerated gradient method is shown to be a specific instance of the accelerated inexact proximal point framework introduced in "An accelerated hybrid proximal extragradient method for convex optimization and its implications to second-order methods" by Monteiro and Svaiter, SIAM Journal on Optimization, 2013. Furthermore, this work examines the proximal bundle method within the inexact proximal point framework, demonstrating that it is an instance of the framework. Notably, this paper provides new insights into the underlying algorithmic principle that unifies two seemingly disparate optimization methods, namely, the restart accelerated gradient and the proximal bundle methods.
comment: 14 pages
☆ Collaborative Spacecraft Servicing under Partial Feedback using Lyapunov-based Deep Neural Networks
Multi-agent systems are increasingly applied in space missions, including distributed space systems, resilient constellations, and autonomous rendezvous and docking operations. A critical emerging application is collaborative spacecraft servicing, which encompasses on-orbit maintenance, space debris removal, and swarm-based satellite repositioning. These missions involve servicing spacecraft interacting with malfunctioning or defunct spacecraft under challenging conditions, such as limited state information, measurement inaccuracies, and erratic target behaviors. Existing approaches often rely on assumptions of full state knowledge or single-integrator dynamics, which are impractical for real-world applications involving second-order spacecraft dynamics. This work addresses these challenges by developing a distributed state estimation and tracking framework that requires only relative position measurements and operates under partial state information. A novel $\rho$-filter is introduced to reconstruct unknown states using locally available information, and a Lyapunov-based deep neural network adaptive controller is developed that adaptively compensates for uncertainties stemming from unknown spacecraft dynamics. To ensure the collaborative spacecraft regulation problem is well-posed, a trackability condition is defined. A Lyapunov-based stability analysis is provided to ensure exponential convergence of errors in state estimation and spacecraft regulation to a neighborhood of the origin under the trackability condition. The developed method eliminates the need for expensive velocity sensors or extensive pre-training, offering a practical and robust solution for spacecraft servicing in complex, dynamic environments.
comment: 24 pages, 4 Figures, Journal
☆ Efficient LP warmstarting for linear modifications of the constraint matrix
We consider the problem of computing the optimal solution and objective of a linear program under linearly changing linear constraints. More specifically, we want to compute the optimal solution of a linear optimization where the constraint matrix linearly depends on a paramater that can take p different values. Based on the information given by a precomputed basis, we present three efficient LP warm-starting algorithms. Each algorithm is either based on the eigenvalue decomposition, the Schur decomposition, or a tweaked eigenvalue decomposition to evaluate the optimal solution and optimal objective of these problems. The three algorithms have an overall complexity O(m^3 + pm^2) where m is the number of constraints of the original problem and p the number of values of the parameter that we want to evaluate. We also provide theorems related to the optimality conditions to verify when a basis is still optimal and a local bound on the objective.
☆ Linear Optimization for the Perfect Meal: A Data-Driven Approach to Optimising the Perfect Meal Using Gurobi
This study aims to optimize meal planning for nutritional health and cost efficiency using linear programming. Linear optimization provides an effective framework for addressing the problem of an optimal diet, as the composition of food can be naturally modeled as a linearly additive system. Leveraging a comprehensive nutrition dataset, our model minimizes meal costs while meeting specific nutritional requirements. We explore additional complexities, such as fractional weights and nutrient ratio constraints, enhancing the robustness of the solution. Case studies address common nutritional challenges, providing tailored diet plans. The significance lies in aiding individuals to form balanced, cost-effective dietary schedules, considering fitness goals and caloric needs. This research contributes to efficient, sustainable, and time-sensitive meal planning, emphasizing the intersection of nutrition, optimization, and real-world applicability.
☆ Mixing Times and Privacy Analysis for the Projected Langevin Algorithm under a Modulus of Continuity
We study the mixing time of the projected Langevin algorithm (LA) and the privacy curve of noisy Stochastic Gradient Descent (SGD), beyond nonexpansive iterations. Specifically, we derive new mixing time bounds for the projected LA which are, in some important cases, dimension-free and poly-logarithmic on the accuracy, closely matching the existing results in the smooth convex case. Additionally, we establish new upper bounds for the privacy curve of the subsampled noisy SGD algorithm. These bounds show a crucial dependency on the regularity of gradients, and are useful for a wide range of convex losses beyond the smooth case. Our analysis relies on a suitable extension of the Privacy Amplification by Iteration (PABI) framework (Feldman et al., 2018; Altschuler and Talwar, 2022, 2023) to noisy iterations whose gradient map is not necessarily nonexpansive. This extension is achieved by designing an optimization problem which accounts for the best possible R\'enyi divergence bound obtained by an application of PABI, where the tractability of the problem is crucially related to the modulus of continuity of the associated gradient mapping. We show that, in several interesting cases -- including the nonsmooth convex, weakly smooth and (strongly) dissipative -- such optimization problem can be solved exactly and explicitly. This yields the tightest possible PABI-based bounds, where our results are either new or substantially sharper than those in previous works.
comment: 40 pages, 2 figures
☆ DeepVIVONet: Using deep neural operators to optimize sensor locations with application to vortex-induced vibrations
We introduce DeepVIVONet, a new framework for optimal dynamic reconstruction and forecasting of the vortex-induced vibrations (VIV) of a marine riser, using field data. We demonstrate the effectiveness of DeepVIVONet in accurately reconstructing the motion of an off--shore marine riser by using sparse spatio-temporal measurements. We also show the generalization of our model in extrapolating to other flow conditions via transfer learning, underscoring its potential to streamline operational efficiency and enhance predictive accuracy. The trained DeepVIVONet serves as a fast and accurate surrogate model for the marine riser, which we use in an outer--loop optimization algorithm to obtain the optimal locations for placing the sensors. Furthermore, we employ an existing sensor placement method based on proper orthogonal decomposition (POD) to compare with our data-driven approach. We find that that while POD offers a good approach for initial sensor placement, DeepVIVONet's adaptive capabilities yield more precise and cost-effective configurations.
☆ Blackwell Equilibrium in Repeated Games
We apply Blackwell optimality to repeated games. An equilibrium whose strategy profile is sequentially rational for all high enough discount factors simultaneously is a Blackwell (subgame-perfect, perfect public, etc.) equilibrium. The bite of this requirement depends on the monitoring structure. Under perfect monitoring, a ``folk'' theorem holds relative to an appropriate notion of minmax. Under imperfect public monitoring, absent a public randomization device, any perfect public equilibrium generically involves pure action profiles or stage-game Nash equilibria only. Under private conditionally independent monitoring, in a class of games that includes the prisoner's dilemma, the stage-game Nash equilibrium is played in every round.
♻ ☆ Adjoint Matching: Fine-tuning Flow and Diffusion Generative Models with Memoryless Stochastic Optimal Control
Dynamical generative models that produce samples through an iterative process, such as Flow Matching and denoising diffusion models, have seen widespread use, but there have not been many theoretically-sound methods for improving these models with reward fine-tuning. In this work, we cast reward fine-tuning as stochastic optimal control (SOC). Critically, we prove that a very specific memoryless noise schedule must be enforced during fine-tuning, in order to account for the dependency between the noise variable and the generated samples. We also propose a new algorithm named Adjoint Matching which outperforms existing SOC algorithms, by casting SOC problems as a regression problem. We find that our approach significantly improves over existing methods for reward fine-tuning, achieving better consistency, realism, and generalization to unseen human preference reward models, while retaining sample diversity.
♻ ☆ Characterizations of the Aubin Property of the Solution Mapping for Nonlinear Semidefinite Programming
In this paper, we study the Aubin property of the Karush-Kuhn-Tucker solution mapping for the nonlinear semidefinite programming (NLSDP) problem at a locally optimal solution. In the literature, it is known that the Aubin property implies the constraint nondegeneracy by Fusek [SIAM J. Optim. 23 (2013), pp. 1041-1061] and the second-order sufficient condition by Ding et al. [SIAM J. Optim. 27 (2017), pp. 67-90]. Based on the Mordukhovich criterion, here we further prove that the strong second-order sufficient condition is also necessary for the Aubin property to hold. Consequently, several equivalent conditions including the strong regularity are established for NLSDP's Aubin property. Together with the recent progress made by Chen et al. on the equivalence between the Aubin property and the strong regularity for nonlinear second-order cone programming [SIAM J. Optim., in press; arXiv:2406.13798v3 (2024)], this paper constitutes a significant step forward in characterizing the Aubin property for general non-polyhedral $C^2$-cone reducible constrained optimization problems.
♻ ☆ Constrained Sampling with Primal-Dual Langevin Monte Carlo NeurIPS 2024
This work considers the problem of sampling from a probability distribution known up to a normalization constant while satisfying a set of statistical constraints specified by the expected values of general nonlinear functions. This problem finds applications in, e.g., Bayesian inference, where it can constrain moments to evaluate counterfactual scenarios or enforce desiderata such as prediction fairness. Methods developed to handle support constraints, such as those based on mirror maps, barriers, and penalties, are not suited for this task. This work therefore relies on gradient descent-ascent dynamics in Wasserstein space to put forward a discrete-time primal-dual Langevin Monte Carlo algorithm (PD-LMC) that simultaneously constrains the target distribution and samples from it. We analyze the convergence of PD-LMC under standard assumptions on the target distribution and constraints, namely (strong) convexity and log-Sobolev inequalities. To do so, we bring classical optimization arguments for saddle-point algorithms to the geometry of Wasserstein space. We illustrate the relevance and effectiveness of PD-LMC in several applications.
comment: 39 pages, 14 figures. Published at NeurIPS 2024
♻ ☆ Follow The Approximate Sparse Leader for No-Regret Online Sparse Linear Approximation
We consider the problem of \textit{online sparse linear approximation}, where one predicts the best sparse approximation of a sequence of measurements in terms of linear combination of columns of a given measurement matrix. Such online prediction problems are ubiquitous, ranging from medical trials to web caching to resource allocation. The inherent difficulty of offline recovery also makes the online problem challenging. In this letter, we propose Follow-The-Approximate-Sparse-Leader, an efficient online meta-policy to address this online problem. Through a detailed theoretical analysis, we prove that under certain assumptions on the measurement sequence, the proposed policy enjoys a data-dependent sublinear upper bound on the static regret, which can range from logarithmic to square-root. Numerical simulations are performed to corroborate the theoretical findings and demonstrate the efficacy of the proposed online policy.
comment: 12 pages, 5 figures, corrected title, added proof of a lemma in appendix
♻ ☆ Aubin Property and Strong Regularity Are Equivalent for Nonlinear Second-Order Cone Programming
This paper solves a fundamental open problem in variational analysis on the equivalence between the Aubin property and the strong regularity for nonlinear second-order cone programming (SOCP) at a locally optimal solution. We achieve this by introducing a reduction approach to the Aubin property characterized by the Mordukhovich criterion and a lemma of alternative choices on cones to replace the S-lemma used in Outrata and Ram\'irez [SIAM J. Optim. 21 (2011) 789-823] and Opazo, Outrata, and Ram\'irez [SIAM J. Optim. 27 (2017) 2141-2151], where the same SOCP was considered under the strict complementarity condition except for possibly only one block of constraints. As a byproduct, we also offer a new approach to the well-known result of Dontchev and Rockafellar [SIAM J. Optim. 6 (1996) 1087-1105] on the equivalence of the two concepts in conventional nonlinear programming.
comment: To appear in SIAM Journal on Optimization
♻ ☆ Reduction from the partition problem: Dynamic lot sizing problem with polynomial complexity
In this note, we polynomially reduce an instance of the partition problem to a dynamic lot sizing problem, and show that solving the latter problem solves the former problem. By solving the dynamic programming formulation of the dynamic lot sizing problem, we show that the instance of the partition problem can be solved with pseudo-polynomial time complexity. Numerical results on solving instances of the partition problem are also provided using an implementation of the algorithm that solves the dynamic program.
comment: 11 pages. Latest version contains improved arguments and results
♻ ☆ Converse Lyapunov Results for Stability of Switched Systems with Average Dwell-Time
This article provides a characterization of stability for switched nonlinear systems under average dwell-time constraints, in terms of necessary and sufficient conditions involving multiple Lyapunov functions. Earlier converse results focus on switched systems with dwell-time constraints only, and the resulting inequalities depend on the flow of individual subsystems. With the help of a counterexample, we show that a lower bound that guarantees stability for dwell-time switching signals may not necessarily imply stability for switching signals with same lower bound on the average dwell-time. Based on these two observations, we provide a converse result for the average dwell-time constrained systems in terms of inequalities which do not depend on the flow of individual subsystems and are easier to check. The particular case of linear switched systems is studied as a corollary to our main result.
comment: To appear in ESAIM: Control, Optimisation and Calculus of Variations (ESAIM: COCV)
♻ ☆ Graph-Based Modeling and Decomposition of Hierarchical Optimization Problems
We present a graph-theoretic modeling approach for hierarchical optimization that leverages the OptiGraph abstraction implemented in the Julia package Plasmo.jl. We show that the abstraction is flexible and can effectively capture complex hierarchical connectivity that arises from decision-making over multiple spatial and temporal scales (e.g., integration of planning, scheduling, and operations in manufacturing and infrastructures). We also show that the graph abstraction facilitates the conceptualization and implementation of decomposition and approximation schemes. Specifically, we propose a graph-based Benders decomposition (gBD) framework that enables the exploitation of hierarchical (nested) structures and that uses graph aggregation/partitioning procedures to discover such structures. In addition, we provide a Julia implementation of gBD, which we call PlasmoBenders.jl. We illustrate the capabilities using examples arising in the context of energy and power systems.
comment: 66 pages, 3 tables, 28 figures, updated abstract
♻ ☆ Improving the Convergence Rates for the Kinetic Fokker-Planck Equation by Optimal Control
The long time behavior and detailed convergence analysis of Langevin equations has received increased attention over the last years. Difficulties arise from a lack of coercivity, usually termed hypocoercivity, of the underlying kinetic Fokker-Planck operator which is a consequence of the partially deterministic nature of a second order stochastic differential equation. In this manuscript, the effect of controlling the confinement potential without altering the original invariant measure is investigated. This leads to an abstract bilinear control system with an unbounded but infinite-time admissible control operator which, by means of an artificial diffusion approach, is shown to possess a unique solution. The compactness of the underlying semigroup is further used to define an infinite-horizon optimal control problem on an appropriately reduced state space. Under smallness assumptions on the initial data, feasibility of and existence of a solution to the optimal control problem are discussed. Numerical results based on a local approximation based on a shifted Riccati equation illustrate the theoretical findings.
comment: 32 pages, 4 figures
♻ ☆ Trade-off Invariance Principle for minimizers of regularized functionals
In this paper, we consider functionals of the form $H_\alpha(u)=F(u)+\alpha G(u)$ with $\alpha\in[0,+\infty)$, where $u$ varies in a set $U\neq\emptyset$ (without further structure). We first show that, excluding at most countably many values of $\alpha$, we have that $\inf_{H_\alpha^\star}G= \sup_{H_\alpha^\star}G$, where $H_\alpha^\star := \arg \min_U H_\alpha$, which is assumed to be non-empty. We further prove a stronger result that concerns the invariance of the limiting value of the functional $G$ along minimizing sequences for $H_\alpha$. Moreover, we show to what extent these findings generalize to multi-regularized functionals and -- in the presence of an underlying differentiable structure -- to critical points. Finally, the main result implies an unexpected consequence for functionals regularized with uniformly convex norms: excluding again at most countably many values of $\alpha$, it turns out that for a minimizing sequence, convergence to a minimizer in the weak or strong sense is equivalent.
comment: 16 pages, extension to multi-regularization and to critical points
♻ ☆ Robust Gaussian Processes via Relevance Pursuit NeurIPS 2024
Gaussian processes (GPs) are non-parametric probabilistic regression models that are popular due to their flexibility, data efficiency, and well-calibrated uncertainty estimates. However, standard GP models assume homoskedastic Gaussian noise, while many real-world applications are subject to non-Gaussian corruptions. Variants of GPs that are more robust to alternative noise models have been proposed, and entail significant trade-offs between accuracy and robustness, and between computational requirements and theoretical guarantees. In this work, we propose and study a GP model that achieves robustness against sparse outliers by inferring data-point-specific noise levels with a sequential selection procedure maximizing the log marginal likelihood that we refer to as relevance pursuit. We show, surprisingly, that the model can be parameterized such that the associated log marginal likelihood is strongly concave in the data-point-specific noise variances, a property rarely found in either robust regression objectives or GP marginal likelihoods. This in turn implies the weak submodularity of the corresponding subset selection problem, and thereby proves approximation guarantees for the proposed algorithm. We compare the model's performance relative to other approaches on diverse regression and Bayesian optimization tasks, including the challenging but common setting of sparse corruptions of the labels within or close to the function range.
comment: NeurIPS 2024 Article (https://openreview.net/forum?id=5FATPIlWUJ)
♻ ☆ Reinforcement Learning for Jump-Diffusions, with Financial Applications
We study continuous-time reinforcement learning (RL) for stochastic control in which system dynamics are governed by jump-diffusion processes. We formulate an entropy-regularized exploratory control problem with stochastic policies to capture the exploration--exploitation balance essential for RL. Unlike the pure diffusion case initially studied by Wang et al. (2020), the derivation of the exploratory dynamics under jump-diffusions calls for a careful formulation of the jump part. Through a theoretical analysis, we find that one can simply use the same policy evaluation and $q$-learning algorithms in Jia and Zhou (2022a, 2023), originally developed for controlled diffusions, without needing to check a priori whether the underlying data come from a pure diffusion or a jump-diffusion. However, we show that the presence of jumps ought to affect parameterizations of actors and critics in general. We investigate as an application the mean--variance portfolio selection problem with stock price modelled as a jump-diffusion, and show that both RL algorithms and parameterizations are invariant with respect to jumps. Finally, we present a detailed study on applying the general theory to option hedging.
♻ ☆ Regularity and stability for the Gibbs conditioning principle on path space via McKean-Vlasov control
We consider a system of diffusion processes interacting through their empirical distribution. Assuming that the empirical average of a given observable can be observed at any time, we derive regularity and quantitative stability results for the optimal solutions in the associated version of the Gibbs conditioning principle. The proofs rely on the analysis of a McKean-Vlasov control problem with distributional constraints. Some new estimates are derived for Hamilton-Jacobi-Bellman equations and the Hessian of the log-density of diffusion processes, which are of independent interest.
♻ ☆ Non-geodesically-convex optimization in the Wasserstein space
We study a class of optimization problems in the Wasserstein space (the space of probability measures) where the objective function is nonconvex along generalized geodesics. Specifically, the objective exhibits some difference-of-convex structure along these geodesics. The setting also encompasses sampling problems where the logarithm of the target distribution is difference-of-convex. We derive multiple convergence insights for a novel semi Forward-Backward Euler scheme under several nonconvex (and possibly nonsmooth) regimes. Notably, the semi Forward-Backward Euler is just a slight modification of the Forward-Backward Euler whose convergence is -- to our knowledge -- still unknown in our very general non-geodesically-convex setting.
♻ ☆ Gradient descent inference in empirical risk minimization
Gradient descent is one of the most widely used iterative algorithms in modern statistical learning. However, its precise algorithmic dynamics in high-dimensional settings remain only partially understood, which has therefore limited its broader potential for statistical inference applications. This paper provides a precise, non-asymptotic distributional characterization of gradient descent iterates in a broad class of empirical risk minimization problems, in the so-called mean-field regime where the sample size is proportional to the signal dimension. Our non-asymptotic state evolution theory holds for both general non-convex loss functions and non-Gaussian data, and reveals the central role of two Onsager correction matrices that precisely characterize the non-trivial dependence among all gradient descent iterates in the mean-field regime. Although the Onsager correction matrices are typically analytically intractable, our state evolution theory facilitates a generic gradient descent inference algorithm that consistently estimates these matrices across a broad class of models. Leveraging this algorithm, we show that the state evolution can be inverted to construct (i) data-driven estimators for the generalization error of gradient descent iterates and (ii) debiased gradient descent iterates for inference of the unknown signal. Detailed applications to two canonical models--linear regression and (generalized) logistic regression--are worked out to illustrate model-specific features of our general theory and inference methods.
♻ ☆ On Representing Convex Quadratically Constrained Quadratic Programs via Graph Neural Networks
Convex quadratically constrained quadratic programs (QCQPs) involve finding a solution within a convex feasible region defined by quadratic constraints while minimizing a convex quadratic objective function. These problems arise in various industrial applications, including power systems and signal processing. Traditional methods for solving convex QCQPs primarily rely on matrix factorization, which quickly becomes computationally prohibitive as the problem size increases. Recently, graph neural networks (GNNs) have gained attention for their potential in representing and solving various optimization problems such as linear programs and linearly constrained quadratic programs. In this work, we investigate the representation power of GNNs in the context of QCQP tasks. Specifically, we propose a new tripartite graph representation for general convex QCQPs and properly associate it with message-passing GNNs. We demonstrate that there exist GNNs capable of reliably representing key properties of convex QCQPs, including feasibility, optimal value, and optimal solution. Our result deepens the understanding of the connection between QCQPs and GNNs, paving the way for future machine learning approaches to efficiently solve QCQPs.
♻ ☆ SymILO: A Symmetry-Aware Learning Framework for Integer Linear Optimization
Integer linear programs (ILPs) are commonly employed to model diverse practical problems such as scheduling and planning. Recently, machine learning techniques have been utilized to solve ILPs. A straightforward idea is to train a model via supervised learning, with an ILP as the input and an optimal solution as the label. An ILP is symmetric if its variables can be permuted without changing the problem structure, resulting in numerous equivalent and optimal solutions. Randomly selecting an optimal solution as the label can introduce variability in the training data, which may hinder the model from learning stable patterns. In this work, we incorporate the intrinsic symmetry of ILPs and propose a novel training framework called SymILO. Specifically, we modify the learning task by introducing solution permutation along with neural network weights as learnable parameters and then design an alternating algorithm to jointly optimize the loss function. We conduct extensive experiments on ILPs involving different symmetries and the computational results demonstrate that our symmetry-aware approach significantly outperforms three existing methods -- achieving $50.3\%$, $66.5\%$, and $45.4\%$ average improvements, respectively.
♻ ☆ Variable Projection Algorithms: Theoretical Insights and A Novel Approach for Problems with Large Residual
This paper delves into an in-depth exploration of the Variable Projection (VP) algorithm, a powerful tool for solving separable nonlinear optimization problems across multiple domains, including system identification, image processing, and machine learning. We first establish a theoretical framework to examine the effect of the approximate treatment of the coupling relationship among parameters on the local convergence of the VP algorithm and theoretically prove that the Kaufman's VP algorithm can achieve a similar convergence rate as the Golub \& Pereyra's form. These studies fill the gap in the existing convergence theory analysis, and provide a solid foundation for understanding the mechanism of VP algorithm and broadening its application horizons. Furthermore, drawing inspiration from these theoretical revelations, we design a refined VP algorithm for handling separable nonlinear optimization problems characterized by large residual, called VPLR, which boosts the convergence performance by addressing the interdependence of parameters within the separable model and by continually correcting the approximated Hessian matrix to counteract the influence of large residual during the iterative process. The effectiveness of this refined algorithm is corroborated through numerical experimentation.
comment: 18 pages, 8 figures
♻ ☆ Decoupling Learning and Decision-Making: Breaking the $\mathcal{O}(\sqrt{T})$ Barrier in Online Resource Allocation with First-Order Methods
Online linear programming plays an important role in both revenue management and resource allocation, and recent research has focused on developing efficient first-order online learning algorithms. Despite the empirical success of first-order methods, they typically achieve a regret no better than $\mathcal{O}(\sqrt{T})$, which is suboptimal compared to the $\mathcal{O}(\log T)$ bound guaranteed by the state-of-the-art linear programming (LP)-based online algorithms. This paper establishes several important facts about online linear programming, which unveils the challenge for first-order-method-based online algorithms to achieve beyond $\mathcal{O}(\sqrt{T})$ regret. To address the challenge, we introduce a new algorithmic framework that decouples learning from decision-making. For the first time, we show that first-order methods can attain regret $\mathcal{O}(T^{1/3})$ with this new framework.
comment: Merged into arXiv:2501.02761
♻ ☆ Policy Iteration for Exploratory Hamilton--Jacobi--Bellman Equations
We study the policy iteration algorithm (PIA) for entropy-regularized stochastic control problems on an infinite time horizon with a large discount rate, focusing on two main scenarios. First, we analyze PIA with bounded coefficients where the controls applied to the diffusion term satisfy a smallness condition. We demonstrate the convergence of PIA based on a uniform $\mathcal{C}^{2,\alpha}$ estimate for the value sequence generated by PIA, and provide a quantitative convergence analysis for this scenario. Second, we investigate PIA with unbounded coefficients but no control over the diffusion term. In this scenario, we first provide the well-posedness of the exploratory Hamilton--Jacobi--Bellman equation with linear growth coefficients and polynomial growth reward function. By such a well-posedess result we achieve PIA's convergence by establishing a quantitative locally uniform $\mathcal{C}^{1,\alpha}$ estimates for the generated value sequence.
comment: 21 pages
♻ ☆ GCBF+: A Neural Graph Control Barrier Function Framework for Distributed Safe Multi-Agent Control
Distributed, scalable, and safe control of large-scale multi-agent systems is a challenging problem. In this paper, we design a distributed framework for safe multi-agent control in large-scale environments with obstacles, where a large number of agents are required to maintain safety using only local information and reach their goal locations. We introduce a new class of certificates, termed graph control barrier function (GCBF), which are based on the well-established control barrier function theory for safety guarantees and utilize a graph structure for scalable and generalizable distributed control of MAS. We develop a novel theoretical framework to prove the safety of an arbitrary-sized MAS with a single GCBF. We propose a new training framework GCBF+ that uses graph neural networks to parameterize a candidate GCBF and a distributed control policy. The proposed framework is distributed and is capable of taking point clouds from LiDAR, instead of actual state information, for real-world robotic applications. We illustrate the efficacy of the proposed method through various hardware experiments on a swarm of drones with objectives ranging from exchanging positions to docking on a moving target without collision. Additionally, we perform extensive numerical experiments, where the number and density of agents, as well as the number of obstacles, increase. Empirical results show that in complex environments with agents with nonlinear dynamics (e.g., Crazyflie drones), GCBF+ outperforms the hand-crafted CBF-based method with the best performance by up to 20% for relatively small-scale MAS with up to 256 agents, and leading reinforcement learning (RL) methods by up to 40% for MAS with 1024 agents. Furthermore, the proposed method does not compromise on the performance, in terms of goal reaching, for achieving high safety rates, which is a common trade-off in RL-based methods.
comment: 20 pages, 15 figures; Accepted by IEEE Transactions on Robotics (T-RO)
♻ ☆ Generalized sparsity-promoting solvers for Bayesian inverse problems: Versatile sparsifying transforms and unknown noise variances
Bayesian hierarchical models can provide efficient algorithms for finding sparse solutions to ill-posed inverse problems. The models typically comprise a conditionally Gaussian prior model for the unknown which is augmented by a generalized gamma hyper-prior model for variance hyper-parameters. This investigation generalizes these models and their efficient maximum a posterior (MAP) estimation using the iterative alternating sequential (IAS) algorithm in two ways: (1) General sparsifying transforms: Diverging from conventional methods, our approach permits the use of sparsifying transformations with nontrivial kernels; (2) Unknown noise variances: We treat the noise variance as a random variable that is estimated during the inference procedure. This is important in applications where the noise estimate cannot be accurately estimated a priori. Remarkably, these augmentations neither significantly burden the computational expense of the algorithm nor compromise its efficacy. We include convexity and convergence analysis for the method and demonstrate its efficacy in several numerical experiments.
comment: 27 pages, 6 figures
♻ ☆ Variance-reduction for Variational Inequality Problems with Bregman Distance Function
In this paper, we address variational inequalities (VI) with a finite-sum structure. We introduce a novel single-loop stochastic variance-reduced algorithm, incorporating the Bregman distance function, and establish an optimal convergence guarantee under a monotone setting. Additionally, we explore a structured class of non-monotone problems that exhibit weak Minty solutions, and analyze the complexity of our proposed method, highlighting a significant improvement over existing approaches. Numerical experiments are presented to demonstrate the performance of our algorithm compared to state-of-the-art methods
♻ ☆ A Game Between Two Identical Dubins Cars: Evading a Conic Sensor in Minimum Time
A fundamental task in mobile robotics is keeping an intelligent agent under surveillance with an autonomous robot as it travels in the environment. This work studies a theoretical version of that problem involving one of the most popular vehicle platforms in robotics. In particular, we consider two identical Dubins cars moving on a plane without obstacles. One of them plays as the pursuer, and it is equipped with a limited field-of-view detection region modeled as a semi-infinite cone with its apex at the pursuer's position. The pursuer aims to maintain the other Dubins car, which plays as the evader, as much time as possible inside its detection region. On the contrary, the evader wants to escape as soon as possible. In this work, employing differential game theory, we find the time-optimal motion strategies near the game's end. The analysis of those trajectories reveals the existence of at least two singular surfaces: a Transition Surface (also known as a Switch Surface) and an Evader's Universal Surface. We also found that the barrier's standard construction produces a surface that partially lies outside the playing space.
comment: 35 pages, 16 figures
♻ ☆ Graph-Based Modeling and Decomposition of Hierarchical Optimization Problems
We present a graph-theoretic modeling approach for hierarchical optimization that leverages the OptiGraph abstraction implemented in the Julia package Plasmo$.$jl. We show that the abstraction is flexible and can effectively capture complex hierarchical connectivity that arises from decision-making over multiple spatial and temporal scales (e.g., integration of planning, scheduling, and operations in manufacturing and infrastructures). We also show that the graph abstraction facilitates the conceptualization and implementation of decomposition and approximation schemes. Specifically, we propose a graph-based Benders decomposition (gBD) framework that enables the exploitation of hierarchical (nested) structures and that uses graph aggregation/partitioning procedures to discover such structures. In addition, we provide a Julia implementation of gBD, which we call PlasmoBenders$.$jl. We illustrate the capabilities using examples arising in the context of energy and power systems.
comment: 66 pages, 3 tables, 28 figures, updated abstract
♻ ☆ Deep Policy Iteration with Integer Programming for Inventory Management NeurIPS 2021
We present a Reinforcement Learning (RL) based framework for optimizing long-term discounted reward problems with large combinatorial action space and state dependent constraints. These characteristics are common to many operations management problems, e.g., network inventory replenishment, where managers have to deal with uncertain demand, lost sales, and capacity constraints that results in more complex feasible action spaces. Our proposed Programmable Actor Reinforcement Learning (PARL) uses a deep-policy iteration method that leverages neural networks (NNs) to approximate the value function and combines it with mathematical programming (MP) and sample average approximation (SAA) to solve the per-step-action optimally while accounting for combinatorial action spaces and state-dependent constraint sets. We show how the proposed methodology can be applied to complex inventory replenishment problems where analytical solutions are intractable. We also benchmark the proposed algorithm against state-of-the-art RL algorithms and commonly used replenishment heuristics and find it considerably outperforms existing methods by as much as 14.7% on average in various complex supply chain settings. We find that this improvement of PARL over benchmark algorithms can be directly attributed to better inventory cost management, especially in inventory constrained settings. Furthermore, in the simpler setting where optimal replenishment policy is tractable or known near optimal heuristics exist, we find that the RL approaches can learn near optimal policies. Finally, to make RL algorithms more accessible for inventory management researchers, we also discuss the development of a modular Python library that can be used to test the performance of RL algorithms with various supply chain structures and spur future research in developing practical and near-optimal algorithms for inventory management problems.
comment: Prior shorter version accepted to NeurIPS 2021 Deep RL Workshop. Updated version to appear in MSOM journal. Authors are listed in alphabetical order
♻ ☆ Optimal Partition for Multi-Type Queueing System
We study an optimal server partition and customer assignment problem for an uncapacitated FCFS queueing system with heterogeneous types of customers. Each type of customers is associated with a Poisson arrival, a certain service time distribution, and a unit waiting cost. The goal is to minimize the expected total waiting cost by partitioning the server into sub-queues, each with a smaller service capacity, and routing customer types probabilistically. First, we show that by properly partitioning the queue, it is possible to reduce the expected waiting costs by an arbitrarily large ratio. Then, we show that for any given server partition, the optimal customer assignment admits a certain geometric structure, enabling an efficient algorithm to find the optimal assignment. Such an optimal structure also applies when minimizing the expected sojourn time. Finally, we consider the joint partition-assignment optimization problem. The customer assignment under the optimal server partition admits a stronger structure. Specifically, if the first two moments of the service time distributions satisfy certain properties, it is optimal to deterministically assign customer types with consecutive service rates to the same sub-queue. This structure allows for more efficient algorithms. Overall, the common rule of thumb to partition customers into continuous segments ranked by service rates could be suboptimal, and our work is the first to comprehensively study the queue partition problem based on customer types.
Computer Vision and Pattern Recognition 147
☆ LargeAD: Large-Scale Cross-Sensor Data Pretraining for Autonomous Driving
Recent advancements in vision foundation models (VFMs) have revolutionized visual perception in 2D, yet their potential for 3D scene understanding, particularly in autonomous driving applications, remains underexplored. In this paper, we introduce LargeAD, a versatile and scalable framework designed for large-scale 3D pretraining across diverse real-world driving datasets. Our framework leverages VFMs to extract semantically rich superpixels from 2D images, which are aligned with LiDAR point clouds to generate high-quality contrastive samples. This alignment facilitates cross-modal representation learning, enhancing the semantic consistency between 2D and 3D data. We introduce several key innovations: i) VFM-driven superpixel generation for detailed semantic representation, ii) a VFM-assisted contrastive learning strategy to align multimodal features, iii) superpoint temporal consistency to maintain stable representations across time, and iv) multi-source data pretraining to generalize across various LiDAR configurations. Our approach delivers significant performance improvements over state-of-the-art methods in both linear probing and fine-tuning tasks for both LiDAR-based segmentation and object detection. Extensive experiments on eleven large-scale multi-modal datasets highlight our superior performance, demonstrating the adaptability, efficiency, and robustness in real-world autonomous driving scenarios.
comment: Preprint; 16 pages, 7 figures, 8 tables; Project Page at https://ldkong.com/LargeAD
☆ LiMoE: Mixture of LiDAR Representation Learners from Automotive Scenes
LiDAR data pretraining offers a promising approach to leveraging large-scale, readily available datasets for enhanced data utilization. However, existing methods predominantly focus on sparse voxel representation, overlooking the complementary attributes provided by other LiDAR representations. In this work, we propose LiMoE, a framework that integrates the Mixture of Experts (MoE) paradigm into LiDAR data representation learning to synergistically combine multiple representations, such as range images, sparse voxels, and raw points. Our approach consists of three stages: i) Image-to-LiDAR Pretraining, which transfers prior knowledge from images to point clouds across different representations; ii) Contrastive Mixture Learning (CML), which uses MoE to adaptively activate relevant attributes from each representation and distills these mixed features into a unified 3D network; iii) Semantic Mixture Supervision (SMS), which combines semantic logits from multiple representations to boost downstream segmentation performance. Extensive experiments across 11 large-scale LiDAR datasets demonstrate our effectiveness and superiority. The code and model checkpoints have been made publicly accessible.
comment: Preprint; 26 pages, 17 figures, 7 tables; Project Page at https://ldkong.com/LiMoE
☆ Are VLMs Ready for Autonomous Driving? An Empirical Study from the Reliability, Data, and Metric Perspectives
Recent advancements in Vision-Language Models (VLMs) have sparked interest in their use for autonomous driving, particularly in generating interpretable driving decisions through natural language. However, the assumption that VLMs inherently provide visually grounded, reliable, and interpretable explanations for driving remains largely unexamined. To address this gap, we introduce DriveBench, a benchmark dataset designed to evaluate VLM reliability across 17 settings (clean, corrupted, and text-only inputs), encompassing 19,200 frames, 20,498 question-answer pairs, three question types, four mainstream driving tasks, and a total of 12 popular VLMs. Our findings reveal that VLMs often generate plausible responses derived from general knowledge or textual cues rather than true visual grounding, especially under degraded or missing visual inputs. This behavior, concealed by dataset imbalances and insufficient evaluation metrics, poses significant risks in safety-critical scenarios like autonomous driving. We further observe that VLMs struggle with multi-modal reasoning and display heightened sensitivity to input corruptions, leading to inconsistencies in performance. To address these challenges, we propose refined evaluation metrics that prioritize robust visual grounding and multi-modal understanding. Additionally, we highlight the potential of leveraging VLMs' awareness of corruptions to enhance their reliability, offering a roadmap for developing more trustworthy and interpretable decision-making systems in real-world autonomous driving contexts. The benchmark toolkit is publicly accessible.
comment: Preprint; 41 pages, 32 figures, 16 tables; Project Page at https://drive-bench.github.io/
☆ Extraction Of Cumulative Blobs From Dynamic Gestures
Gesture recognition is a perceptual user interface, which is based on CV technology that allows the computer to interpret human motions as commands, allowing users to communicate with a computer without the use of hands, thus making the mouse and keyboard superfluous. Gesture recognition's main weakness is a light condition because gesture control is based on computer vision, which heavily relies on cameras. These cameras are used to interpret gestures in 2D and 3D, so the extracted information can vary depending on the source of light. The limitation of the system cannot work in a dark environment. A simple night vision camera can be used as our camera for motion capture as they also blast out infrared light which is not visible to humans but can be clearly seen with a camera that has no infrared filter this majorly overcomes the limitation of systems which cannot work in a dark environment. So, the video stream from the camera is fed into a Raspberry Pi which has a Python program running OpenCV module which is used for detecting, isolating and tracking the path of dynamic gesture, then we use an algorithm of machine learning to recognize the pattern drawn and accordingly control the GPIOs of the raspberry pi to perform some activities.
☆ Sa2VA: Marrying SAM2 with LLaVA for Dense Grounded Understanding of Images and Videos
This work presents Sa2VA, the first unified model for dense grounded understanding of both images and videos. Unlike existing multi-modal large language models, which are often limited to specific modalities and tasks, Sa2VA supports a wide range of image and video tasks, including referring segmentation and conversation, with minimal one-shot instruction tuning. Sa2VA combines SAM-2, a foundation video segmentation model, with LLaVA, an advanced vision-language model, and unifies text, image, and video into a shared LLM token space. Using the LLM, Sa2VA generates instruction tokens that guide SAM-2 in producing precise masks, enabling a grounded, multi-modal understanding of both static and dynamic visual content. Additionally, we introduce Ref-SAV, an auto-labeled dataset containing over 72k object expressions in complex video scenes, designed to boost model performance. We also manually validate 2k video objects in the Ref-SAV datasets to benchmark referring video object segmentation in complex environments. Experiments show that Sa2VA achieves state-of-the-art across multiple tasks, particularly in referring video object segmentation, highlighting its potential for complex real-world applications.
comment: Project page: https://lxtgh.github.io/project/sa2va
☆ RAG-Check: Evaluating Multimodal Retrieval Augmented Generation Performance
Retrieval-augmented generation (RAG) improves large language models (LLMs) by using external knowledge to guide response generation, reducing hallucinations. However, RAG, particularly multi-modal RAG, can introduce new hallucination sources: (i) the retrieval process may select irrelevant pieces (e.g., documents, images) as raw context from the database, and (ii) retrieved images are processed into text-based context via vision-language models (VLMs) or directly used by multi-modal language models (MLLMs) like GPT-4o, which may hallucinate. To address this, we propose a novel framework to evaluate the reliability of multi-modal RAG using two performance measures: (i) the relevancy score (RS), assessing the relevance of retrieved entries to the query, and (ii) the correctness score (CS), evaluating the accuracy of the generated response. We train RS and CS models using a ChatGPT-derived database and human evaluator samples. Results show that both models achieve ~88% accuracy on test data. Additionally, we construct a 5000-sample human-annotated database evaluating the relevancy of retrieved pieces and the correctness of response statements. Our RS model aligns with human preferences 20% more often than CLIP in retrieval, and our CS model matches human preferences ~91% of the time. Finally, we assess various RAG systems' selection and generation performances using RS and CS.
☆ NeuralSVG: An Implicit Representation for Text-to-Vector Generation
Vector graphics are essential in design, providing artists with a versatile medium for creating resolution-independent and highly editable visual content. Recent advancements in vision-language and diffusion models have fueled interest in text-to-vector graphics generation. However, existing approaches often suffer from over-parameterized outputs or treat the layered structure - a core feature of vector graphics - as a secondary goal, diminishing their practical use. Recognizing the importance of layered SVG representations, we propose NeuralSVG, an implicit neural representation for generating vector graphics from text prompts. Inspired by Neural Radiance Fields (NeRFs), NeuralSVG encodes the entire scene into the weights of a small MLP network, optimized using Score Distillation Sampling (SDS). To encourage a layered structure in the generated SVG, we introduce a dropout-based regularization technique that strengthens the standalone meaning of each shape. We additionally demonstrate that utilizing a neural representation provides an added benefit of inference-time control, enabling users to dynamically adapt the generated SVG based on user-provided inputs, all with a single learned representation. Through extensive qualitative and quantitative evaluations, we demonstrate that NeuralSVG outperforms existing methods in generating structured and flexible SVG.
comment: Project Page: https://sagipolaczek.github.io/NeuralSVG/
☆ VLM-driven Behavior Tree for Context-aware Task Planning
The use of Large Language Models (LLMs) for generating Behavior Trees (BTs) has recently gained attention in the robotics community, yet remains in its early stages of development. In this paper, we propose a novel framework that leverages Vision-Language Models (VLMs) to interactively generate and edit BTs that address visual conditions, enabling context-aware robot operations in visually complex environments. A key feature of our approach lies in the conditional control through self-prompted visual conditions. Specifically, the VLM generates BTs with visual condition nodes, where conditions are expressed as free-form text. Another VLM process integrates the text into its prompt and evaluates the conditions against real-world images during robot execution. We validated our framework in a real-world cafe scenario, demonstrating both its feasibility and limitations.
comment: 10 pages, 11 figures, 5 tables. Last updated on January 7th, 2024
☆ Temporal Feature Weaving for Neonatal Echocardiographic Viewpoint Video Classification
Automated viewpoint classification in echocardiograms can help under-resourced clinics and hospitals in providing faster diagnosis and screening when expert technicians may not be available. We propose a novel approach towards echocardiographic viewpoint classification. We show that treating viewpoint classification as video classification rather than image classification yields advantage. We propose a CNN-GRU architecture with a novel temporal feature weaving method, which leverages both spatial and temporal information to yield a 4.33\% increase in accuracy over baseline image classification while using only four consecutive frames. The proposed approach incurs minimal computational overhead. Additionally, we publish the Neonatal Echocardiogram Dataset (NED), a professionally-annotated dataset providing sixteen viewpoints and associated echocardipgraphy videos to encourage future work and development in this field. Code available at: https://github.com/satchelfrench/NED
comment: Accepted to ISBI 2025
☆ Vision Language Models as Values Detectors
Large Language Models integrating textual and visual inputs have introduced new possibilities for interpreting complex data. Despite their remarkable ability to generate coherent and contextually relevant text based on visual stimuli, the alignment of these models with human perception in identifying relevant elements in images requires further exploration. This paper investigates the alignment between state-of-the-art LLMs and human annotators in detecting elements of relevance within home environment scenarios. We created a set of twelve images depicting various domestic scenarios and enlisted fourteen annotators to identify the key element in each image. We then compared these human responses with outputs from five different LLMs, including GPT-4o and four LLaVA variants. Our findings reveal a varied degree of alignment, with LLaVA 34B showing the highest performance but still scoring low. However, an analysis of the results highlights the models' potential to detect value-laden elements in images, suggesting that with improved training and refined prompts, LLMs could enhance applications in social robotics, assistive technologies, and human-computer interaction by providing deeper insights and more contextually relevant responses.
comment: 13 pages, 2 figures
☆ Visual question answering: from early developments to recent advances -- a survey
Visual Question Answering (VQA) is an evolving research field aimed at enabling machines to answer questions about visual content by integrating image and language processing techniques such as feature extraction, object detection, text embedding, natural language understanding, and language generation. With the growth of multimodal data research, VQA has gained significant attention due to its broad applications, including interactive educational tools, medical image diagnosis, customer service, entertainment, and social media captioning. Additionally, VQA plays a vital role in assisting visually impaired individuals by generating descriptive content from images. This survey introduces a taxonomy of VQA architectures, categorizing them based on design choices and key components to facilitate comparative analysis and evaluation. We review major VQA approaches, focusing on deep learning-based methods, and explore the emerging field of Large Visual Language Models (LVLMs) that have demonstrated success in multimodal tasks like VQA. The paper further examines available datasets and evaluation metrics essential for measuring VQA system performance, followed by an exploration of real-world VQA applications. Finally, we highlight ongoing challenges and future directions in VQA research, presenting open questions and potential areas for further development. This survey serves as a comprehensive resource for researchers and practitioners interested in the latest advancements and future
comment: 20
☆ CoStruction: Conjoint radiance field optimization for urban scene reconStruction with limited image overlap
Reconstructing the surrounding surface geometry from recorded driving sequences poses a significant challenge due to the limited image overlap and complex topology of urban environments. SoTA neural implicit surface reconstruction methods often struggle in such setting, either failing due to small vision overlap or exhibiting suboptimal performance in accurately reconstructing both the surface and fine structures. To address these limitations, we introduce CoStruction, a novel hybrid implicit surface reconstruction method tailored for large driving sequences with limited camera overlap. CoStruction leverages cross-representation uncertainty estimation to filter out ambiguous geometry caused by limited observations. Our method performs joint optimization of both radiance fields in addition to guided sampling achieving accurate reconstruction of large areas along with fine structures in complex urban scenarios. Extensive evaluation on major driving datasets demonstrates the superiority of our approach in reconstructing large driving sequences with limited image overlap, outperforming concurrent SoTA methods.
☆ Magic Mirror: ID-Preserved Video Generation in Video Diffusion Transformers
We present Magic Mirror, a framework for generating identity-preserved videos with cinematic-level quality and dynamic motion. While recent advances in video diffusion models have shown impressive capabilities in text-to-video generation, maintaining consistent identity while producing natural motion remains challenging. Previous methods either require person-specific fine-tuning or struggle to balance identity preservation with motion diversity. Built upon Video Diffusion Transformers, our method introduces three key components: (1) a dual-branch facial feature extractor that captures both identity and structural features, (2) a lightweight cross-modal adapter with Conditioned Adaptive Normalization for efficient identity integration, and (3) a two-stage training strategy combining synthetic identity pairs with video data. Extensive experiments demonstrate that Magic Mirror effectively balances identity consistency with natural motion, outperforming existing methods across multiple metrics while requiring minimal parameters added. The code and model will be made publicly available at: https://github.com/dvlab-research/MagicMirror/
comment: It is best viewed in Acrobat. Project Page: https://julianjuaner.github.io/projects/MagicMirror/
☆ Explainable AI model reveals disease-related mechanisms in single-cell RNA-seq data
Neurodegenerative diseases (NDDs) are complex and lack effective treatment due to their poorly understood mechanism. The increasingly used data analysis from Single nucleus RNA Sequencing (snRNA-seq) allows to explore transcriptomic events at a single cell level, yet face challenges in interpreting the mechanisms underlying a disease. On the other hand, Neural Network (NN) models can handle complex data to offer insights but can be seen as black boxes with poor interpretability. In this context, explainable AI (XAI) emerges as a solution that could help to understand disease-associated mechanisms when combined with efficient NN models. However, limited research explores XAI in single-cell data. In this work, we implement a method for identifying disease-related genes and the mechanistic explanation of disease progression based on NN model combined with SHAP. We analyze available Huntington's disease (HD) data to identify both HD-altered genes and mechanisms by adding Gene Set Enrichment Analysis (GSEA) comparing two methods, differential gene expression analysis (DGE) and NN combined with SHAP approach. Our results show that DGE and SHAP approaches offer both common and differential sets of altered genes and pathways, reinforcing the usefulness of XAI methods for a broader perspective of disease.
☆ Dolphin: Closed-loop Open-ended Auto-research through Thinking, Practice, and Feedback
The scientific research paradigm is undergoing a profound transformation owing to the development of Artificial Intelligence (AI). Recent works demonstrate that various AI-assisted research methods can largely improve research efficiency by improving data analysis, accelerating computation, and fostering novel idea generation. To further move towards the ultimate goal (i.e., automatic scientific research), in this paper, we propose Dolphin, the first closed-loop open-ended auto-research framework to further build the entire process of human scientific research. Dolphin can generate research ideas, perform experiments, and get feedback from experimental results to generate higher-quality ideas. More specifically, Dolphin first generates novel ideas based on relevant papers which are ranked by the topic and task attributes. Then, the codes are automatically generated and debugged with the exception-traceback-guided local code structure. Finally, Dolphin automatically analyzes the results of each idea and feeds the results back to the next round of idea generation. Experiments are conducted on the benchmark datasets of different topics and results show that Dolphin can generate novel ideas continuously and complete the experiment in a loop. We highlight that Dolphin can automatically propose methods that are comparable to the state-of-the-art in some tasks such as 2D image classification and 3D point classification.
comment: 19 pages, 11 figures, and our homepage: https://unimodal4reasoning.github.io/Dolphin-project-page/
☆ HYB-VITON: A Hybrid Approach to Virtual Try-On Combining Explicit and Implicit Warping ICASSP 2025
Virtual try-on systems have significant potential in e-commerce, allowing customers to visualize garments on themselves. Existing image-based methods fall into two categories: those that directly warp garment-images onto person-images (explicit warping), and those using cross-attention to reconstruct given garments (implicit warping). Explicit warping preserves garment details but often produces unrealistic output, while implicit warping achieves natural reconstruction but struggles with fine details. We propose HYB-VITON, a novel approach that combines the advantages of each method and includes both a preprocessing pipeline for warped garments and a novel training option. These components allow us to utilize beneficial regions of explicitly warped garments while leveraging the natural reconstruction of implicit warping. A series of experiments demonstrates that HYB-VITON preserves garment details more faithfully than recent diffusion-based methods, while producing more realistic results than a state-of-the-art explicit warping method.
comment: Accepted at IEEE ICASSP 2025
☆ LLaVA-Mini: Efficient Image and Video Large Multimodal Models with One Vision Token
The advent of real-time large multimodal models (LMMs) like GPT-4o has sparked considerable interest in efficient LMMs. LMM frameworks typically encode visual inputs into vision tokens (continuous representations) and integrate them and textual instructions into the context of large language models (LLMs), where large-scale parameters and numerous context tokens (predominantly vision tokens) result in substantial computational overhead. Previous efforts towards efficient LMMs always focus on replacing the LLM backbone with smaller models, while neglecting the crucial issue of token quantity. In this paper, we introduce LLaVA-Mini, an efficient LMM with minimal vision tokens. To achieve a high compression ratio of vision tokens while preserving visual information, we first analyze how LMMs understand vision tokens and find that most vision tokens only play a crucial role in the early layers of LLM backbone, where they mainly fuse visual information into text tokens. Building on this finding, LLaVA-Mini introduces modality pre-fusion to fuse visual information into text tokens in advance, thereby facilitating the extreme compression of vision tokens fed to LLM backbone into one token. LLaVA-Mini is a unified large multimodal model that can support the understanding of images, high-resolution images, and videos in an efficient manner. Experiments across 11 image-based and 7 video-based benchmarks demonstrate that LLaVA-Mini outperforms LLaVA-v1.5 with just 1 vision token instead of 576. Efficiency analyses reveal that LLaVA-Mini can reduce FLOPs by 77%, deliver low-latency responses within 40 milliseconds, and process over 10,000 frames of video on the GPU hardware with 24GB of memory.
comment: Code: https://github.com/ictnlp/LLaVA-Mini; Model: https://huggingface.co/ICTNLP/llava-mini-llama-3.1-8b
☆ Superpixel Boundary Correction for Weakly-Supervised Semantic Segmentation on Histopathology Images
With the rapid advancement of deep learning, computational pathology has made significant progress in cancer diagnosis and subtyping. Tissue segmentation is a core challenge, essential for prognosis and treatment decisions. Weakly supervised semantic segmentation (WSSS) reduces the annotation requirement by using image-level labels instead of pixel-level ones. However, Class Activation Map (CAM)-based methods still suffer from low spatial resolution and unclear boundaries. To address these issues, we propose a multi-level superpixel correction algorithm that refines CAM boundaries using superpixel clustering and floodfill. Experimental results show that our method achieves great performance on breast cancer segmentation dataset with mIoU of 71.08%, significantly improving tumor microenvironment boundary delineation.
comment: 7 pages, 4 figures
☆ SELMA3D challenge: Self-supervised learning for 3D light-sheet microscopy image segmentation
Recent innovations in light sheet microscopy, paired with developments in tissue clearing techniques, enable the 3D imaging of large mammalian tissues with cellular resolution. Combined with the progress in large-scale data analysis, driven by deep learning, these innovations empower researchers to rapidly investigate the morphological and functional properties of diverse biological samples. Segmentation, a crucial preliminary step in the analysis process, can be automated using domain-specific deep learning models with expert-level performance. However, these models exhibit high sensitivity to domain shifts, leading to a significant drop in accuracy when applied to data outside their training distribution. To address this limitation, and inspired by the recent success of self-supervised learning in training generalizable models, we organized the SELMA3D Challenge during the MICCAI 2024 conference. SELMA3D provides a vast collection of light-sheet images from cleared mice and human brains, comprising 35 large 3D images-each with over 1000^3 voxels-and 315 annotated small patches for finetuning, preliminary testing and final testing. The dataset encompasses diverse biological structures, including vessel-like and spot-like structures. Five teams participated in all phases of the challenge, and their proposed methods are reviewed in this paper. Quantitative and qualitative results from most participating teams demonstrate that self-supervised learning on large datasets improves segmentation model performance and generalization. We will continue to support and extend SELMA3D as an inaugural MICCAI challenge focused on self-supervised learning for 3D microscopy image segmentation.
comment: 1st version
☆ CL3DOR: Contrastive Learning for 3D Large Multimodal Models via Odds Ratio on High-Resolution Point Clouds
Recent research has demonstrated that Large Language Models (LLMs) are not limited to text-only tasks but can also function as multimodal models across various modalities, including audio, images, and videos. In particular, research on 3D Large Multimodal Models (3D LMMs) is making notable strides, driven by the potential of processing higher-dimensional data like point clouds. However, upon closer examination, we find that the visual and textual content within each sample of existing training datasets lacks both high informational granularity and clarity, which serve as a bottleneck for precise cross-modal understanding. To address these issues, we propose CL3DOR, Contrastive Learning for 3D large multimodal models via Odds ratio on high-Resolution point clouds, designed to ensure greater specificity and clarity in both visual and textual content. Specifically, we increase the density of point clouds per object and construct informative hard negative responses in the training dataset to penalize unwanted responses. To leverage hard negative responses, we incorporate the odds ratio as an auxiliary term for contrastive learning into the conventional language modeling loss. CL3DOR achieves state-of-the-art performance in 3D scene understanding and reasoning benchmarks. Additionally, we demonstrate the effectiveness of CL3DOR's key components through extensive experiments.
☆ ZDySS -- Zero-Shot Dynamic Scene Stylization using Gaussian Splatting
Stylizing a dynamic scene based on an exemplar image is critical for various real-world applications, including gaming, filmmaking, and augmented and virtual reality. However, achieving consistent stylization across both spatial and temporal dimensions remains a significant challenge. Most existing methods are designed for static scenes and often require an optimization process for each style image, limiting their adaptability. We introduce ZDySS, a zero-shot stylization framework for dynamic scenes, allowing our model to generalize to previously unseen style images at inference. Our approach employs Gaussian splatting for scene representation, linking each Gaussian to a learned feature vector that renders a feature map for any given view and timestamp. By applying style transfer on the learned feature vectors instead of the rendered feature map, we enhance spatio-temporal consistency across frames. Our method demonstrates superior performance and coherence over state-of-the-art baselines in tests on real-world dynamic scenes, making it a robust solution for practical applications.
☆ Neuromorphic Optical Tracking and Imaging of Randomly Moving Targets through Strongly Scattering Media
Tracking and acquiring simultaneous optical images of randomly moving targets obscured by scattering media remains a challenging problem of importance to many applications that require precise object localization and identification. In this work we develop an end-to-end neuromorphic optical engineering and computational approach to demonstrate how to track and image normally invisible objects by combining an event detecting camera with a multistage neuromorphic deep learning strategy. Photons emerging from dense scattering media are detected by the event camera and converted to pixel-wise asynchronized spike trains - a first step in isolating object-specific information from the dominant uninformative background. Spiking data is fed into a deep spiking neural network (SNN) engine where object tracking and image reconstruction are performed by two separate yet interconnected modules running in parallel in discrete time steps over the event duration. Through benchtop experiments we demonstrate tracking and imaging randomly moving objects in dense turbid media as well as image reconstruction of spatially stationary but optically dynamic objects. Standardized character sets serve as representative proxies for geometrically complex objects, underscoring the method's generality. The results highlight the advantages of a fully neuromorphic approach in meeting a major imaging technology with high computational efficiency and low power consumption.
comment: 22 pages, 6 figures
☆ Semise: Semi-supervised learning for severity representation in medical image
This paper introduces SEMISE, a novel method for representation learning in medical imaging that combines self-supervised and supervised learning. By leveraging both labeled and augmented data, SEMISE addresses the challenge of data scarcity and enhances the encoder's ability to extract meaningful features. This integrated approach leads to more informative representations, improving performance on downstream tasks. As result, our approach achieved a 12% improvement in classification and a 3% improvement in segmentation, outperforming existing methods. These results demonstrate the potential of SIMESE to advance medical image analysis and offer more accurate solutions for healthcare applications, particularly in contexts where labeled data is limited.
comment: Accepted for presentation at the 2025 IEEE 22nd International Symposium on Biomedical Imaging (ISBI)
☆ Diffusion as Shader: 3D-aware Video Diffusion for Versatile Video Generation Control
Diffusion models have demonstrated impressive performance in generating high-quality videos from text prompts or images. However, precise control over the video generation process, such as camera manipulation or content editing, remains a significant challenge. Existing methods for controlled video generation are typically limited to a single control type, lacking the flexibility to handle diverse control demands. In this paper, we introduce Diffusion as Shader (DaS), a novel approach that supports multiple video control tasks within a unified architecture. Our key insight is that achieving versatile video control necessitates leveraging 3D control signals, as videos are fundamentally 2D renderings of dynamic 3D content. Unlike prior methods limited to 2D control signals, DaS leverages 3D tracking videos as control inputs, making the video diffusion process inherently 3D-aware. This innovation allows DaS to achieve a wide range of video controls by simply manipulating the 3D tracking videos. A further advantage of using 3D tracking videos is their ability to effectively link frames, significantly enhancing the temporal consistency of the generated videos. With just 3 days of fine-tuning on 8 H800 GPUs using less than 10k videos, DaS demonstrates strong control capabilities across diverse tasks, including mesh-to-video generation, camera control, motion transfer, and object manipulation.
comment: Project page: https://igl-hkust.github.io/das/ Codes: https://github.com/IGL-HKUST/DiffusionAsShader
☆ MedFocusCLIP : Improving few shot classification in medical datasets using pixel wise attention
With the popularity of foundational models, parameter efficient fine tuning has become the defacto approach to leverage pretrained models to perform downstream tasks. Taking inspiration from recent advances in large language models, Visual Prompt Tuning, and similar techniques, learn an additional prompt to efficiently finetune a pretrained vision foundational model. However, we observe that such prompting is insufficient for fine-grained visual classification tasks such as medical image classification, where there is large inter-class variance, and small intra-class variance. Hence, in this paper we propose to leverage advanced segmentation capabilities of Segment Anything Model 2 (SAM2) as a visual prompting cue to help visual encoder in the CLIP (Contrastive Language-Image Pretraining) by guiding the attention in CLIP visual encoder to relevant regions in the image. This helps the model to focus on highly discriminative regions, without getting distracted from visually similar background features, an essential requirement in a fewshot, finegrained classification setting. We evaluate our method on diverse medical datasets including X-rays, CT scans, and MRI images, and report an accuracy of (71%, 81%, 86%, 58%) from the proposed approach on (COVID, lung-disease, brain-tumor, breast-cancer) datasets against (66%, 70%, 68%, 29%) from a pretrained CLIP model after fewshot training. The proposed approach also allows to obtain interpretable explanation for the classification performance through the localization obtained using segmentation.
☆ LM-Net: A Light-weight and Multi-scale Network for Medical Image Segmentation
Current medical image segmentation approaches have limitations in deeply exploring multi-scale information and effectively combining local detail textures with global contextual semantic information. This results in over-segmentation, under-segmentation, and blurred segmentation boundaries. To tackle these challenges, we explore multi-scale feature representations from different perspectives, proposing a novel, lightweight, and multi-scale architecture (LM-Net) that integrates advantages of both Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) to enhance segmentation accuracy. LM-Net employs a lightweight multi-branch module to capture multi-scale features at the same level. Furthermore, we introduce two modules to concurrently capture local detail textures and global semantics with multi-scale features at different levels: the Local Feature Transformer (LFT) and Global Feature Transformer (GFT). The LFT integrates local window self-attention to capture local detail textures, while the GFT leverages global self-attention to capture global contextual semantics. By combining these modules, our model achieves complementarity between local and global representations, alleviating the problem of blurred segmentation boundaries in medical image segmentation. To evaluate the feasibility of LM-Net, extensive experiments have been conducted on three publicly available datasets with different modalities. Our proposed model achieves state-of-the-art results, surpassing previous methods, while only requiring 4.66G FLOPs and 5.4M parameters. These state-of-the-art results on three datasets with different modalities demonstrate the effectiveness and adaptability of our proposed LM-Net for various medical image segmentation tasks.
☆ SCC-YOLO: An Improved Object Detector for Assisting in Brain Tumor Diagnosis
Brain tumors can result in neurological dysfunction, alterations in cognitive and psychological states, increased intracranial pressure, and the occurrence of seizures, thereby presenting a substantial risk to human life and health. The You Only Look Once(YOLO) series models have demonstrated superior accuracy in object detection for medical imaging. In this paper, we develop a novel SCC-YOLO architecture by integrating the SCConv attention mechanism into YOLOv9. The SCConv module reconstructs an efficient convolutional module by reducing spatial and channel redundancy among features, thereby enhancing the learning of image features. We investigate the impact of intergrating different attention mechanisms with the YOLOv9 model on brain tumor image detection using both the Br35H dataset and our self-made dataset(Brain_Tumor_Dataset). Experimental results show that on the Br35H dataset, SCC-YOLO achieved a 0.3% improvement in mAp50 compared to YOLOv9, while on our self-made dataset, SCC-YOLO exhibited a 0.5% improvement over YOLOv9. SCC-YOLO has reached state-of-the-art performance in brain tumor detection. Source code is available at : https://jihulab.com/healthcare-information-studio/SCC-YOLO/-/tree/master
☆ MeshConv3D: Efficient convolution and pooling operators for triangular 3D meshes
Convolutional neural networks (CNNs) have been pivotal in various 2D image analysis tasks, including computer vision, image indexing and retrieval or semantic classification. Extending CNNs to 3D data such as point clouds and 3D meshes raises significant challenges since the very basic convolution and pooling operators need to be completely re-visited and re-defined in an appropriate manner to tackle irregular connectivity issues. In this paper, we introduce MeshConv3D, a 3D mesh-dedicated methodology integrating specialized convolution and face collapse-based pooling operators. MeshConv3D operates directly on meshes of arbitrary topology, without any need of prior re-meshing/conversion techniques. In order to validate our approach, we have considered a semantic classification task. The experimental results obtained on three distinct benchmark datasets show that the proposed approach makes it possible to achieve equivalent or superior classification results, while minimizing the related memory footprint and computational load.
☆ Deep Sylvester Posterior Inference for Adaptive Compressed Sensing in Ultrasound Imaging
Ultrasound images are commonly formed by sequential acquisition of beam-steered scan-lines. Minimizing the number of required scan-lines can significantly enhance frame rate, field of view, energy efficiency, and data transfer speeds. Existing approaches typically use static subsampling schemes in combination with sparsity-based or, more recently, deep-learning-based recovery. In this work, we introduce an adaptive subsampling method that maximizes intrinsic information gain in-situ, employing a Sylvester Normalizing Flow encoder to infer an approximate Bayesian posterior under partial observation in real-time. Using the Bayesian posterior and a deep generative model for future observations, we determine the subsampling scheme that maximizes the mutual information between the subsampled observations, and the next frame of the video. We evaluate our approach using the EchoNet cardiac ultrasound video dataset and demonstrate that our active sampling method outperforms competitive baselines, including uniform and variable-density random sampling, as well as equidistantly spaced scan-lines, improving mean absolute reconstruction error by 15%. Moreover, posterior inference and the sampling scheme generation are performed in just 0.015 seconds (66Hz), making it fast enough for real-time 2D ultrasound imaging applications.
☆ MADation: Face Morphing Attack Detection with Foundation Models WACV 2025
Despite the considerable performance improvements of face recognition algorithms in recent years, the same scientific advances responsible for this progress can also be used to create efficient ways to attack them, posing a threat to their secure deployment. Morphing attack detection (MAD) systems aim to detect a specific type of threat, morphing attacks, at an early stage, preventing them from being considered for verification in critical processes. Foundation models (FM) learn from extensive amounts of unlabeled data, achieving remarkable zero-shot generalization to unseen domains. Although this generalization capacity might be weak when dealing with domain-specific downstream tasks such as MAD, FMs can easily adapt to these settings while retaining the built-in knowledge acquired during pre-training. In this work, we recognize the potential of FMs to perform well in the MAD task when properly adapted to its specificities. To this end, we adapt FM CLIP architectures with LoRA weights while simultaneously training a classification header. The proposed framework, MADation surpasses our alternative FM and transformer-based frameworks and constitutes the first adaption of FMs to the MAD task. MADation presents competitive results with current MAD solutions in the literature and even surpasses them in several evaluation scenarios. To encourage reproducibility and facilitate further research in MAD, we publicly release the implementation of MADation at https: //github.com/gurayozgur/MADation
comment: Accepted at WACV 2025 workshops
☆ KAnoCLIP: Zero-Shot Anomaly Detection through Knowledge-Driven Prompt Learning and Enhanced Cross-Modal Integration ICASSP 2025
Zero-shot anomaly detection (ZSAD) identifies anomalies without needing training samples from the target dataset, essential for scenarios with privacy concerns or limited data. Vision-language models like CLIP show potential in ZSAD but have limitations: relying on manually crafted fixed textual descriptions or anomaly prompts is time-consuming and prone to semantic ambiguity, and CLIP struggles with pixel-level anomaly segmentation, focusing more on global semantics than local details. To address these limitations, We introduce KAnoCLIP, a novel ZSAD framework that leverages vision-language models. KAnoCLIP combines general knowledge from a Large Language Model (GPT-3.5) and fine-grained, image-specific knowledge from a Visual Question Answering system (Llama3) via Knowledge-Driven Prompt Learning (KnPL). KnPL uses a knowledge-driven (KD) loss function to create learnable anomaly prompts, removing the need for fixed text prompts and enhancing generalization. KAnoCLIP includes the CLIP visual encoder with V-V attention (CLIP-VV), Bi-Directional Cross-Attention for Multi-Level Cross-Modal Interaction (Bi-CMCI), and Conv-Adapter. These components preserve local visual semantics, improve local cross-modal fusion, and align global visual features with textual information, enhancing pixel-level anomaly detection. KAnoCLIP achieves state-of-the-art performance in ZSAD across 12 industrial and medical datasets, demonstrating superior generalization compared to existing methods.
comment: Accepted by ICASSP 2025
☆ Strip R-CNN: Large Strip Convolution for Remote Sensing Object Detection
While witnessed with rapid development, remote sensing object detection remains challenging for detecting high aspect ratio objects. This paper shows that large strip convolutions are good feature representation learners for remote sensing object detection and can detect objects of various aspect ratios well. Based on large strip convolutions, we build a new network architecture called Strip R-CNN, which is simple, efficient, and powerful. Unlike recent remote sensing object detectors that leverage large-kernel convolutions with square shapes, our Strip R-CNN takes advantage of sequential orthogonal large strip convolutions to capture spatial information. In addition, we enhance the localization capability of remote-sensing object detectors by decoupling the detection heads and equipping the localization head with strip convolutions to better localize the target objects. Extensive experiments on several benchmarks, e.g., DOTA, FAIR1M, HRSC2016, and DIOR, show that our Strip R-CNN can largely improve previous works. Notably, our 30M model achieves 82.75% mAP on DOTA-v1.0, setting a new state-of-the-art record.Code is available at https://github.com/YXB-NKU/Strip-R-CNN.
☆ AutoFish: Dataset and Benchmark for Fine-grained Analysis of Fish WACV'25
Automated fish documentation processes are in the near future expected to play an essential role in sustainable fisheries management and for addressing challenges of overfishing. In this paper, we present a novel and publicly available dataset named AutoFish designed for fine-grained fish analysis. The dataset comprises 1,500 images of 454 specimens of visually similar fish placed in various constellations on a white conveyor belt and annotated with instance segmentation masks, IDs, and length measurements. The data was collected in a controlled environment using an RGB camera. The annotation procedure involved manual point annotations, initial segmentation masks proposed by the Segment Anything Model (SAM), and subsequent manual correction of the masks. We establish baseline instance segmentation results using two variations of the Mask2Former architecture, with the best performing model reaching an mAP of 89.15%. Additionally, we present two baseline length estimation methods, the best performing being a custom MobileNetV2-based regression model reaching an MAE of 0.62cm in images with no occlusion and 1.38cm in images with occlusion. Link to project page: https://vap.aau.dk/autofish/.
comment: In the 3rd Workshop on Maritime Computer Vision (MaCVi) at WACV'25
☆ Image Segmentation: Inducing graph-based learning
This study explores the potential of graph neural networks (GNNs) to enhance semantic segmentation across diverse image modalities. We evaluate the effectiveness of a novel GNN-based U-Net architecture on three distinct datasets: PascalVOC, a standard benchmark for natural image segmentation, WoodScape, a challenging dataset of fisheye images commonly used in autonomous driving, introducing significant geometric distortions; and ISIC2016, a dataset of dermoscopic images for skin lesion segmentation. We compare our proposed UNet-GNN model against established convolutional neural networks (CNNs) based segmentation models, including U-Net and U-Net++, as well as the transformer-based SwinUNet. Unlike these methods, which primarily rely on local convolutional operations or global self-attention, GNNs explicitly model relationships between image regions by constructing and operating on a graph representation of the image features. This approach allows the model to capture long-range dependencies and complex spatial relationships, which we hypothesize will be particularly beneficial for handling geometric distortions present in fisheye imagery and capturing intricate boundaries in medical images. Our analysis demonstrates the versatility of GNNs in addressing diverse segmentation challenges and highlights their potential to improve segmentation accuracy in various applications, including autonomous driving and medical image analysis.
☆ Re-Visible Dual-Domain Self-Supervised Deep Unfolding Network for MRI Reconstruction
Magnetic Resonance Imaging (MRI) is widely used in clinical practice, but suffered from prolonged acquisition time. Although deep learning methods have been proposed to accelerate acquisition and demonstrate promising performance, they rely on high-quality fully-sampled datasets for training in a supervised manner. However, such datasets are time-consuming and expensive-to-collect, which constrains their broader applications. On the other hand, self-supervised methods offer an alternative by enabling learning from under-sampled data alone, but most existing methods rely on further partitioned under-sampled k-space data as model's input for training, resulting in a loss of valuable information. Additionally, their models have not fully incorporated image priors, leading to degraded reconstruction performance. In this paper, we propose a novel re-visible dual-domain self-supervised deep unfolding network to address these issues when only under-sampled datasets are available. Specifically, by incorporating re-visible dual-domain loss, all under-sampled k-space data are utilized during training to mitigate information loss caused by further partitioning. This design enables the model to implicitly adapt to all under-sampled k-space data as input. Additionally, we design a deep unfolding network based on Chambolle and Pock Proximal Point Algorithm (DUN-CP-PPA) to achieve end-to-end reconstruction, incorporating imaging physics and image priors to guide the reconstruction process. By employing a Spatial-Frequency Feature Extraction (SFFE) block to capture global and local feature representation, we enhance the model's efficiency to learn comprehensive image priors. Experiments conducted on the fastMRI and IXI datasets demonstrate that our method significantly outperforms state-of-the-art approaches in terms of reconstruction performance.
☆ Realistic Test-Time Adaptation of Vision-Language Models
The zero-shot capabilities of Vision-Language Models (VLMs) have been widely leveraged to improve predictive performance. However, previous works on transductive or test-time adaptation (TTA) often make strong assumptions about the data distribution, such as the presence of all classes. Our work challenges these favorable deployment scenarios, and introduces a more realistic evaluation framework, including: (i) a variable number of effective classes for adaptation within a single batch, and (ii) non-i.i.d. batches of test samples in online adaptation settings. We provide comprehensive evaluations, comparisons, and ablation studies that demonstrate how current transductive or TTA methods for VLMs systematically compromise the models' initial zero-shot robustness across various realistic scenarios, favoring performance gains under advantageous assumptions about the test samples' distributions. Furthermore, we introduce StatA, a versatile method that could handle a wide range of deployment scenarios, including those with a variable number of effective classes at test time. Our approach incorporates a novel regularization term designed specifically for VLMs, which acts as a statistical anchor preserving the initial text-encoder knowledge, particularly in low-data regimes. Code available at https://github.com/MaxZanella/StatA.
☆ Self-adaptive vision-language model for 3D segmentation of pulmonary artery and vein
Accurate segmentation of pulmonary structures iscrucial in clinical diagnosis, disease study, and treatment planning. Significant progress has been made in deep learning-based segmentation techniques, but most require much labeled data for training. Consequently, developing precise segmentation methods that demand fewer labeled datasets is paramount in medical image analysis. The emergence of pre-trained vision-language foundation models, such as CLIP, recently opened the door for universal computer vision tasks. Exploiting the generalization ability of these pre-trained foundation models on downstream tasks, such as segmentation, leads to unexpected performance with a relatively small amount of labeled data. However, exploring these models for pulmonary artery-vein segmentation is still limited. This paper proposes a novel framework called Language-guided self-adaptive Cross-Attention Fusion Framework. Our method adopts pre-trained CLIP as a strong feature extractor for generating the segmentation of 3D CT scans, while adaptively aggregating the cross-modality of text and image representations. We propose a s pecially designed adapter module to fine-tune pre-trained CLIP with a self-adaptive learning strategy to effectively fuse the two modalities of embeddings. We extensively validate our method on a local dataset, which is the largest pulmonary artery-vein CT dataset to date and consists of 718 labeled data in total. The experiments show that our method outperformed other state-of-the-art methods by a large margin. Our data and code will be made publicly available upon acceptance.
comment: 8 pages,3 figures
☆ Materialist: Physically Based Editing Using Single-Image Inverse Rendering
To perform image editing based on single-view, inverse physically based rendering, we present a method combining a learning-based approach with progressive differentiable rendering. Given an image, our method leverages neural networks to predict initial material properties. Progressive differentiable rendering is then used to optimize the environment map and refine the material properties with the goal of closely matching the rendered result to the input image. We require only a single image while other inverse rendering methods based on the rendering equation require multiple views. In comparison to single-view methods that rely on neural renderers, our approach achieves more realistic light material interactions, accurate shadows, and global illumination. Furthermore, with optimized material properties and illumination, our method enables a variety of tasks, including physically based material editing, object insertion, and relighting. We also propose a method for material transparency editing that operates effectively without requiring full scene geometry. Compared with methods based on Stable Diffusion, our approach offers stronger interpretability and more realistic light refraction based on empirical results.
comment: code will be available at github.com/lez-s/Materialist
☆ MoDec-GS: Global-to-Local Motion Decomposition and Temporal Interval Adjustment for Compact Dynamic 3D Gaussian Splatting
3D Gaussian Splatting (3DGS) has made significant strides in scene representation and neural rendering, with intense efforts focused on adapting it for dynamic scenes. Despite delivering remarkable rendering quality and speed, existing methods struggle with storage demands and representing complex real-world motions. To tackle these issues, we propose MoDecGS, a memory-efficient Gaussian splatting framework designed for reconstructing novel views in challenging scenarios with complex motions. We introduce GlobaltoLocal Motion Decomposition (GLMD) to effectively capture dynamic motions in a coarsetofine manner. This approach leverages Global Canonical Scaffolds (Global CS) and Local Canonical Scaffolds (Local CS), extending static Scaffold representation to dynamic video reconstruction. For Global CS, we propose Global Anchor Deformation (GAD) to efficiently represent global dynamics along complex motions, by directly deforming the implicit Scaffold attributes which are anchor position, offset, and local context features. Next, we finely adjust local motions via the Local Gaussian Deformation (LGD) of Local CS explicitly. Additionally, we introduce Temporal Interval Adjustment (TIA) to automatically control the temporal coverage of each Local CS during training, allowing MoDecGS to find optimal interval assignments based on the specified number of temporal segments. Extensive evaluations demonstrate that MoDecGS achieves an average 70% reduction in model size over stateoftheart methods for dynamic 3D Gaussians from realworld dynamic videos while maintaining or even improving rendering quality.
comment: The last two authors are co-corresponding authors. Please visit our project page at https://kaist-viclab.github.io/MoDecGS-site/
☆ AuxDepthNet: Real-Time Monocular 3D Object Detection with Depth-Sensitive Features
Monocular 3D object detection is a challenging task in autonomous systems due to the lack of explicit depth information in single-view images. Existing methods often depend on external depth estimators or expensive sensors, which increase computational complexity and hinder real-time performance. To overcome these limitations, we propose AuxDepthNet, an efficient framework for real-time monocular 3D object detection that eliminates the reliance on external depth maps or pre-trained depth models. AuxDepthNet introduces two key components: the Auxiliary Depth Feature (ADF) module, which implicitly learns depth-sensitive features to improve spatial reasoning and computational efficiency, and the Depth Position Mapping (DPM) module, which embeds depth positional information directly into the detection process to enable accurate object localization and 3D bounding box regression. Leveraging the DepthFusion Transformer architecture, AuxDepthNet globally integrates visual and depth-sensitive features through depth-guided interactions, ensuring robust and efficient detection. Extensive experiments on the KITTI dataset show that AuxDepthNet achieves state-of-the-art performance, with $\text{AP}_{3D}$ scores of 24.72\% (Easy), 18.63\% (Moderate), and 15.31\% (Hard), and $\text{AP}_{\text{BEV}}$ scores of 34.11\% (Easy), 25.18\% (Moderate), and 21.90\% (Hard) at an IoU threshold of 0.7.
☆ Motion-Aware Generative Frame Interpolation
Generative frame interpolation, empowered by large-scale pre-trained video generation models, has demonstrated remarkable advantages in complex scenes. However, existing methods heavily rely on the generative model to independently infer the correspondences between input frames, an ability that is inadequately developed during pre-training. In this work, we propose a novel framework, termed Motion-aware Generative frame interpolation (MoG), to significantly enhance the model's motion awareness by integrating explicit motion guidance. Specifically we investigate two key questions: what can serve as an effective motion guidance, and how we can seamlessly embed this guidance into the generative model. For the first question, we reveal that the intermediate flow from flow-based interpolation models could efficiently provide task-oriented motion guidance. Regarding the second, we first obtain guidance-based representations of intermediate frames by warping input frames' representations using guidance, and then integrate them into the model at both latent and feature levels. To demonstrate the versatility of our method, we train MoG on both real-world and animation datasets. Comprehensive evaluations show that our MoG significantly outperforms the existing methods in both domains, achieving superior video quality and improved fidelity.
☆ SMIR: Efficient Synthetic Data Pipeline To Improve Multi-Image Reasoning
Vision-Language Models (VLMs) have shown strong performance in understanding single images, aided by numerous high-quality instruction datasets. However, multi-image reasoning tasks are still under-explored in the open-source community due to two main challenges: (1) scaling datasets with multiple correlated images and complex reasoning instructions is resource-intensive and maintaining quality is difficult, and (2) there is a lack of robust evaluation benchmarks for multi-image tasks. To address these issues, we introduce SMIR, an efficient synthetic data-generation pipeline for multi-image reasoning, and a high-quality dataset generated using this pipeline. Our pipeline efficiently extracts highly correlated images using multimodal embeddings, combining visual and descriptive information and leverages open-source LLMs to generate quality instructions. Using this pipeline, we generated 160K synthetic training samples, offering a cost-effective alternative to expensive closed-source solutions. Additionally, we present SMIR-BENCH, a novel multi-image reasoning evaluation benchmark comprising 200 diverse examples across 7 complex multi-image reasoning tasks. SMIR-BENCH is multi-turn and utilizes a VLM judge to evaluate free-form responses, providing a comprehensive assessment of model expressiveness and reasoning capability across modalities. We demonstrate the effectiveness of SMIR dataset by fine-tuning several open-source VLMs and evaluating their performance on SMIR-BENCH. Our results show that models trained on our dataset outperform baseline models in multi-image reasoning tasks up to 8% with a much more scalable data pipeline.
☆ Action Quality Assessment via Hierarchical Pose-guided Multi-stage Contrastive Regression
Action Quality Assessment (AQA), which aims at automatic and fair evaluation of athletic performance, has gained increasing attention in recent years. However, athletes are often in rapid movement and the corresponding visual appearance variances are subtle, making it challenging to capture fine-grained pose differences and leading to poor estimation performance. Furthermore, most common AQA tasks, such as diving in sports, are usually divided into multiple sub-actions, each of which contains different durations. However, existing methods focus on segmenting the video into fixed frames, which disrupts the temporal continuity of sub-actions resulting in unavoidable prediction errors. To address these challenges, we propose a novel action quality assessment method through hierarchically pose-guided multi-stage contrastive regression. Firstly, we introduce a multi-scale dynamic visual-skeleton encoder to capture fine-grained spatio-temporal visual and skeletal features. Then, a procedure segmentation network is introduced to separate different sub-actions and obtain segmented features. Afterwards, the segmented visual and skeletal features are both fed into a multi-modal fusion module as physics structural priors, to guide the model in learning refined activity similarities and variances. Finally, a multi-stage contrastive learning regression approach is employed to learn discriminative representations and output prediction results. In addition, we introduce a newly-annotated FineDiving-Pose Dataset to improve the current low-quality human pose labels. In experiments, the results on FineDiving and MTL-AQA datasets demonstrate the effectiveness and superiority of our proposed approach. Our source code and dataset are available at https://github.com/Lumos0507/HP-MCoRe.
☆ Local Compositional Complexity: How to Detect a Human-readable Messsage
Data complexity is an important concept in the natural sciences and related areas, but lacks a rigorous and computable definition. In this paper, we focus on a particular sense of complexity that is high if the data is structured in a way that could serve to communicate a message. In this sense, human speech, written language, drawings, diagrams and photographs are high complexity, whereas data that is close to uniform throughout or populated by random values is low complexity. We describe a general framework for measuring data complexity based on dividing the shortest description of the data into a structured and an unstructured portion, and taking the size of the former as the complexity score. We outline an application of this framework in statistical mechanics that may allow a more objective characterisation of the macrostate and entropy of a physical system. Then, we derive a more precise and computable definition geared towards human communication, by proposing local compositionality as an appropriate specific structure. We demonstrate experimentally that this method can distinguish meaningful signals from noise or repetitive signals in auditory, visual and text domains, and could potentially help determine whether an extra-terrestrial signal contained a message.
☆ DehazeGS: Seeing Through Fog with 3D Gaussian Splatting
Current novel view synthesis tasks primarily rely on high-quality and clear images. However, in foggy scenes, scattering and attenuation can significantly degrade the reconstruction and rendering quality. Although NeRF-based dehazing reconstruction algorithms have been developed, their use of deep fully connected neural networks and per-ray sampling strategies leads to high computational costs. Moreover, NeRF's implicit representation struggles to recover fine details from hazy scenes. In contrast, recent advancements in 3D Gaussian Splatting achieve high-quality 3D scene reconstruction by explicitly modeling point clouds into 3D Gaussians. In this paper, we propose leveraging the explicit Gaussian representation to explain the foggy image formation process through a physically accurate forward rendering process. We introduce DehazeGS, a method capable of decomposing and rendering a fog-free background from participating media using only muti-view foggy images as input. We model the transmission within each Gaussian distribution to simulate the formation of fog. During this process, we jointly learn the atmospheric light and scattering coefficient while optimizing the Gaussian representation of the hazy scene. In the inference stage, we eliminate the effects of scattering and attenuation on the Gaussians and directly project them onto a 2D plane to obtain a clear view. Experiments on both synthetic and real-world foggy datasets demonstrate that DehazeGS achieves state-of-the-art performance in terms of both rendering quality and computational efficiency.
comment: 9 pages,4 figures
☆ Advancing the Understanding of Fine-Grained 3D Forest Structures using Digital Cousins and Simulation-to-Reality: Methods and Datasets
Understanding and analyzing the spatial semantics and structure of forests is essential for accurate forest resource monitoring and ecosystem research. However, the lack of large-scale and annotated datasets has limited the widespread use of advanced intelligent techniques in this field. To address this challenge, a fully automated synthetic data generation and processing framework based on the concepts of Digital Cousins and Simulation-to-Reality (Sim2Real) is proposed, offering versatility and scalability to any size and platform. Using this process, we created the Boreal3D, the world's largest forest point cloud dataset. It includes 1000 highly realistic and structurally diverse forest plots across four different platforms, totaling 48,403 trees and over 35.3 billion points. Each point is labeled with semantic, instance, and viewpoint information, while each tree is described with structural parameters such as diameter, crown width, leaf area, and total volume. We designed and conducted extensive experiments to evaluate the potential of Boreal3D in advancing fine-grained 3D forest structure analysis in real-world applications. The results demonstrate that with certain strategies, models pre-trained on synthetic data can significantly improve performance when applied to real forest datasets. Especially, the findings reveal that fine-tuning with only 20% of real-world data enables the model to achieve performance comparable to models trained exclusively on entire real-world data, highlighting the value and potential of our proposed framework. The Boreal3D dataset, and more broadly, the synthetic data augmentation framework, is poised to become a critical resource for advancing research in large-scale 3D forest scene understanding and structural parameter estimation.
☆ Exploring Optimal Latent Trajetory for Zero-shot Image Editing
Editability and fidelity are two essential demands for text-driven image editing, which expects that the editing area should align with the target prompt and the rest should remain unchanged separately. The current cutting-edge editing methods usually obey an "inversion-then-editing" pipeline, where the source image is first inverted to an approximate Gaussian noise ${z}_T$, based on which a sampling process is conducted using the target prompt. Nevertheless, we argue that it is not a good choice to use a near-Gaussian noise as a pivot for further editing since it almost lost all structure fidelity. We verify this by a pilot experiment, discovering that some intermediate-inverted latents can achieve a better trade-off between editability and fidelity than the fully-inverted ${z}_T$. Based on this, we propose a novel editing paradigm dubbed ZZEdit, which gentlely strengthens the target guidance on a sufficient-for-editing while structure-preserving latent. Specifically, we locate such an editing pivot by searching the first point on the inversion trajectory which has larger response levels toward the target prompt than the source one. Then, we propose a ZigZag process to perform mild target guiding on this pivot, which fulfills denoising and inversion iteratively, approaching the target while still holding fidelity. Afterwards, to achieve the same number of inversion and denoising steps, we perform a pure sampling process under the target prompt. Extensive experiments highlight the effectiveness of our ZZEdit in diverse image editing scenarios compared with the "inversion-then-editing" pipeline.
comment: 16 pages
☆ MC-VTON: Minimal Control Virtual Try-On Diffusion Transformer
Virtual try-on methods based on diffusion models achieve realistic try-on effects. They use an extra reference network or an additional image encoder to process multiple conditional image inputs, which results in high training costs. Besides, they require more than 25 inference steps, bringing a long inference time. In this work, with the development of diffusion transformer (DiT), we rethink the necessity of reference network or image encoder, then propose MC-VTON, enabling DiT to integrate minimal conditional try-on inputs by utilizing its intrinsic backbone. Compared to existing methods, the superiority of MC-VTON is demonstrated in four aspects: (1)Superior detail fidelity. Our DiT-based MC-VTON exhibits superior fidelity in preserving fine-grained details. (2)Simplified network and inputs. We remove any extra reference network or image encoder. We also remove unnecessary conditions like the long prompt, pose estimation, human parsing, and depth map. We require only the masked person image and the garment image. (3)Parameter-efficient training. To process the try-on task, we fine-tune the FLUX.1-dev with only 39.7M additional parameters 0.33% of the backbone parameters). (4)Less inference steps. We apply distillation diffusion on MC-VTON and only need 8 steps to generate a realistic try-on image, with only 86.8M additional parameters (0.72% of the backbone parameters). Experiments show that MC-VTON achieves superior qualitative and quantitative results with fewer condition inputs, fewer inference steps, and fewer trainable parameters than baseline methods.
☆ CFFormer: Cross CNN-Transformer Channel Attention and Spatial Feature Fusion for Improved Segmentation of Low Quality Medical Images
Hybrid CNN-Transformer models are designed to combine the advantages of Convolutional Neural Networks (CNNs) and Transformers to efficiently model both local information and long-range dependencies. However, most research tends to focus on integrating the spatial features of CNNs and Transformers, while overlooking the critical importance of channel features. This is particularly significant for model performance in low-quality medical image segmentation. Effective channel feature extraction can significantly enhance the model's ability to capture contextual information and improve its representation capabilities. To address this issue, we propose a hybrid CNN-Transformer model, CFFormer, and introduce two modules: the Cross Feature Channel Attention (CFCA) module and the X-Spatial Feature Fusion (XFF) module. The model incorporates dual encoders, with the CNN encoder focusing on capturing local features and the Transformer encoder modeling global features. The CFCA module filters and facilitates interactions between the channel features from the two encoders, while the XFF module effectively reduces the significant semantic information differences in spatial features, enabling a smooth and cohesive spatial feature fusion. We evaluate our model across eight datasets covering five modalities to test its generalization capability. Experimental results demonstrate that our model outperforms current state-of-the-art (SOTA) methods, with particularly superior performance on datasets characterized by blurry boundaries and low contrast.
comment: The article consists of 15 pages, including 10 figures and 7 tables. The code will be made open-source once the article is accepted by the journal
☆ Deep Learning-based Compression Detection for explainable Face Image Quality Assessment ICPR
The assessment of face image quality is crucial to ensure reliable face recognition. In order to provide data subjects and operators with explainable and actionable feedback regarding captured face images, relevant quality components have to be measured. Quality components that are known to negatively impact the utility of face images include JPEG and JPEG 2000 compression artefacts, among others. Compression can result in a loss of important image details which may impair the recognition performance. In this work, deep neural networks are trained to detect the compression artefacts in a face images. For this purpose, artefact-free facial images are compressed with the JPEG and JPEG 2000 compression algorithms. Subsequently, the PSNR and SSIM metrics are employed to obtain training labels based on which neural networks are trained using a single network to detect JPEG and JPEG 2000 artefacts, respectively. The evaluation of the proposed method shows promising results: in terms of detection accuracy, error rates of 2-3% are obtained for utilizing PSNR labels during training. In addition, we show that error rates of different open-source and commercial face recognition systems can be significantly reduced by discarding face images exhibiting severe compression artefacts. To minimize resource consumption, EfficientNetV2 serves as basis for the presented algorithm, which is available as part of the OFIQ software.
comment: 2nd Workshop on Fairness in Biometric Systems (FAIRBIO) at International Conference on Pattern Recognition (ICPR) 2024
☆ BTMTrack: Robust RGB-T Tracking via Dual-template Bridging and Temporal-Modal Candidate Elimination
RGB-T tracking leverages the complementary strengths of RGB and thermal infrared (TIR) modalities to address challenging scenarios such as low illumination and adverse weather. However, existing methods often fail to effectively integrate temporal information and perform efficient cross-modal interactions, which constrain their adaptability to dynamic targets. In this paper, we propose BTMTrack, a novel framework for RGB-T tracking. The core of our approach lies in the dual-template backbone network and the Temporal-Modal Candidate Elimination (TMCE) strategy. The dual-template backbone effectively integrates temporal information, while the TMCE strategy focuses the model on target-relevant tokens by evaluating temporal and modal correlations, reducing computational overhead and avoiding irrelevant background noise. Building upon this foundation, we propose the Temporal Dual Template Bridging (TDTB) module, which facilitates precise cross-modal fusion through dynamically filtered tokens. This approach further strengthens the interaction between templates and the search region. Extensive experiments conducted on three benchmark datasets demonstrate the effectiveness of BTMTrack. Our method achieves state-of-the-art performance, with a 72.3% precision rate on the LasHeR test set and competitive results on RGBT210 and RGBT234 datasets.
☆ VTAO-BiManip: Masked Visual-Tactile-Action Pre-training with Object Understanding for Bimanual Dexterous Manipulation
Bimanual dexterous manipulation remains significant challenges in robotics due to the high DoFs of each hand and their coordination. Existing single-hand manipulation techniques often leverage human demonstrations to guide RL methods but fail to generalize to complex bimanual tasks involving multiple sub-skills. In this paper, we introduce VTAO-BiManip, a novel framework that combines visual-tactile-action pretraining with object understanding to facilitate curriculum RL to enable human-like bimanual manipulation. We improve prior learning by incorporating hand motion data, providing more effective guidance for dual-hand coordination than binary tactile feedback. Our pretraining model predicts future actions as well as object pose and size using masked multimodal inputs, facilitating cross-modal regularization. To address the multi-skill learning challenge, we introduce a two-stage curriculum RL approach to stabilize training. We evaluate our method on a bottle-cap unscrewing task, demonstrating its effectiveness in both simulated and real-world environments. Our approach achieves a success rate that surpasses existing visual-tactile pretraining methods by over 20%.
☆ ConcealGS: Concealing Invisible Copyright Information in 3D Gaussian Splatting
With the rapid development of 3D reconstruction technology, the widespread distribution of 3D data has become a future trend. While traditional visual data (such as images and videos) and NeRF-based formats already have mature techniques for copyright protection, steganographic techniques for the emerging 3D Gaussian Splatting (3D-GS) format have yet to be fully explored. To address this, we propose ConcealGS, an innovative method for embedding implicit information into 3D-GS. By introducing the knowledge distillation and gradient optimization strategy based on 3D-GS, ConcealGS overcomes the limitations of NeRF-based models and enhances the robustness of implicit information and the quality of 3D reconstruction. We evaluate ConcealGS in various potential application scenarios, and experimental results have demonstrated that ConcealGS not only successfully recovers implicit information but also has almost no impact on rendering quality, providing a new approach for embedding invisible and recoverable information into 3D models in the future.
☆ A Value Mapping Virtual Staining Framework for Large-scale Histological Imaging
The emergence of virtual staining technology provides a rapid and efficient alternative for researchers in tissue pathology. It enables the utilization of unlabeled microscopic samples to generate virtual replicas of chemically stained histological slices, or facilitate the transformation of one staining type into another. The remarkable performance of generative networks, such as CycleGAN, offers an unsupervised learning approach for virtual coloring, overcoming the limitations of high-quality paired data required in supervised learning. Nevertheless, large-scale color transformation necessitates processing large field-of-view images in patches, often resulting in significant boundary inconsistency and artifacts. Additionally, the transformation between different colorized modalities typically needs further efforts to modify loss functions and tune hyperparameters for independent training of networks. In this study, we introduce a general virtual staining framework that is adaptable to various conditions. We propose a loss function based on the value mapping constraint to ensure the accuracy of virtual coloring between different pathological modalities, termed the Value Mapping Generative Adversarial Network (VM-GAN). Meanwhile, we present a confidence-based tiling method to address the challenge of boundary inconsistency arising from patch-wise processing. Experimental results on diverse data with varying staining protocols demonstrate that our method achieves superior quantitative indicators and improved visual perception.
☆ BASIC: Semi-supervised Multi-organ Segmentation with Balanced Subclass Regularization and Semantic-conflict Penalty
Semi-supervised learning (SSL) has shown notable potential in relieving the heavy demand of dense prediction tasks on large-scale well-annotated datasets, especially for the challenging multi-organ segmentation (MoS). However, the prevailing class-imbalance problem in MoS caused by the substantial variations in organ size exacerbates the learning difficulty of the SSL network. To address this issue, in this paper, we propose an innovative semi-supervised network with BAlanced Subclass regularIzation and semantic-Conflict penalty mechanism (BASIC) to effectively learn the unbiased knowledge for semi-supervised MoS. Concretely, we construct a novel auxiliary subclass segmentation (SCS) task based on priorly generated balanced subclasses, thus deeply excavating the unbiased information for the main MoS task with the fashion of multi-task learning. Additionally, based on a mean teacher framework, we elaborately design a balanced subclass regularization to utilize the teacher predictions of SCS task to supervise the student predictions of MoS task, thus effectively transferring unbiased knowledge to the MoS subnetwork and alleviating the influence of the class-imbalance problem. Considering the similar semantic information inside the subclasses and their corresponding original classes (i.e., parent classes), we devise a semantic-conflict penalty mechanism to give heavier punishments to the conflicting SCS predictions with wrong parent classes and provide a more accurate constraint to the MoS predictions. Extensive experiments conducted on two publicly available datasets, i.e., the WORD dataset and the MICCAI FLARE 2022 dataset, have verified the superior performance of our proposed BASIC compared to other state-of-the-art methods.
☆ Cosmos World Foundation Model Platform for Physical AI
Physical AI needs to be trained digitally first. It needs a digital twin of itself, the policy model, and a digital twin of the world, the world model. In this paper, we present the Cosmos World Foundation Model Platform to help developers build customized world models for their Physical AI setups. We position a world foundation model as a general-purpose world model that can be fine-tuned into customized world models for downstream applications. Our platform covers a video curation pipeline, pre-trained world foundation models, examples of post-training of pre-trained world foundation models, and video tokenizers. To help Physical AI builders solve the most critical problems of our society, we make our platform open-source and our models open-weight with permissive licenses available via https://github.com/NVIDIA/Cosmos.
☆ Evaluating Image Caption via Cycle-consistent Text-to-Image Generation
Evaluating image captions typically relies on reference captions, which are costly to obtain and exhibit significant diversity and subjectivity. While reference-free evaluation metrics have been proposed, most focus on cross-modal evaluation between captions and images. Recent research has revealed that the modality gap generally exists in the representation of contrastive learning-based multi-modal systems, undermining the reliability of cross-modality metrics like CLIPScore. In this paper, we propose CAMScore, a cyclic reference-free automatic evaluation metric for image captioning models. To circumvent the aforementioned modality gap, CAMScore utilizes a text-to-image model to generate images from captions and subsequently evaluates these generated images against the original images. Furthermore, to provide fine-grained information for a more comprehensive evaluation, we design a three-level evaluation framework for CAMScore that encompasses pixel-level, semantic-level, and objective-level perspectives. Extensive experiment results across multiple benchmark datasets show that CAMScore achieves a superior correlation with human judgments compared to existing reference-based and reference-free metrics, demonstrating the effectiveness of the framework.
☆ Bridged Semantic Alignment for Zero-shot 3D Medical Image Diagnosis
3D medical images such as Computed tomography (CT) are widely used in clinical practice, offering a great potential for automatic diagnosis. Supervised learning-based approaches have achieved significant progress but rely heavily on extensive manual annotations, limited by the availability of training data and the diversity of abnormality types. Vision-language alignment (VLA) offers a promising alternative by enabling zero-shot learning without additional annotations. However, we empirically discover that the visual and textural embeddings after alignment endeavors from existing VLA methods form two well-separated clusters, presenting a wide gap to be bridged. To bridge this gap, we propose a Bridged Semantic Alignment (BrgSA) framework. First, we utilize a large language model to perform semantic summarization of reports, extracting high-level semantic information. Second, we design a Cross-Modal Knowledge Interaction (CMKI) module that leverages a cross-modal knowledge bank as a semantic bridge, facilitating interaction between the two modalities, narrowing the gap, and improving their alignment. To comprehensively evaluate our method, we construct a benchmark dataset that includes 15 underrepresented abnormalities as well as utilize two existing benchmark datasets. Experimental results demonstrate that BrgSA achieves state-of-the-art performances on both public benchmark datasets and our custom-labeled dataset, with significant improvements in zero-shot diagnosis of underrepresented abnormalities.
PromptGuard: Soft Prompt-Guided Unsafe Content Moderation for Text-to-Image Models
Text-to-image (T2I) models have been shown to be vulnerable to misuse, particularly in generating not-safe-for-work (NSFW) content, raising serious ethical concerns. In this work, we present PromptGuard, a novel content moderation technique that draws inspiration from the system prompt mechanism in large language models (LLMs) for safety alignment. Unlike LLMs, T2I models lack a direct interface for enforcing behavioral guidelines. Our key idea is to optimize a safety soft prompt that functions as an implicit system prompt within the T2I model's textual embedding space. This universal soft prompt (P*) directly moderates NSFW inputs, enabling safe yet realistic image generation without altering the inference efficiency or requiring proxy models. Extensive experiments across three datasets demonstrate that PromptGuard effectively mitigates NSFW content generation while preserving high-quality benign outputs. PromptGuard achieves 7.8 times faster than prior content moderation methods, surpassing eight state-of-the-art defenses with an optimal unsafe ratio down to 5.84%.
comment: 16 pages, 8 figures, 10 tables
☆ Enhanced Tuberculosis Bacilli Detection using Attention-Residual U-Net and Ensemble Classification
Tuberculosis (TB), caused by Mycobacterium tuberculosis, remains a critical global health issue, necessitating timely diagnosis and treatment. Current methods for detecting tuberculosis bacilli from bright field microscopic sputum smear images suffer from low automation, inadequate segmentation performance, and limited classification accuracy. This paper proposes an efficient hybrid approach that combines deep learning for segmentation and an ensemble model for classification. An enhanced U-Net model incorporating attention blocks and residual connections is introduced to precisely segment microscopic sputum smear images, facilitating the extraction of Regions of Interest (ROIs). These ROIs are subsequently classified using an ensemble classifier comprising Support Vector Machine (SVM), Random Forest, and Extreme Gradient Boost (XGBoost), resulting in an accurate identification of bacilli within the images. Experiments conducted on a newly created dataset, along with public datasets, demonstrate that the proposed model achieves superior segmentation performance, higher classification accuracy, and enhanced automation compared to existing methods.
☆ Efficient and Accurate Tuberculosis Diagnosis: Attention Residual U-Net and Vision Transformer Based Detection Framework
Tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis, continues to be a major global health threat despite being preventable and curable. This burden is particularly high in low and middle income countries. Microscopy remains essential for diagnosing TB by enabling direct visualization of Mycobacterium tuberculosis in sputum smear samples, offering a cost effective approach for early detection and effective treatment. Given the labour-intensive nature of microscopy, automating the detection of bacilli in microscopic images is crucial to improve both the expediency and reliability of TB diagnosis. The current methodologies for detecting tuberculosis bacilli in bright field microscopic sputum smear images are hindered by limited automation capabilities, inconsistent segmentation quality, and constrained classification precision. This paper proposes a twostage deep learning methodology for tuberculosis bacilli detection, comprising bacilli segmentation followed by classification. In the initial phase, an advanced U-Net model employing attention blocks and residual connections is proposed to segment microscopic sputum smear images, enabling the extraction of Regions of Interest (ROIs). The extracted ROIs are then classified using a Vision Transformer, which we specifically customized as TBViT to enhance the precise detection of bacilli within the images. For the experiments, a newly developed dataset of microscopic sputum smear images derived from Ziehl-Neelsen-stained slides is used in conjunction with existing public datasets. The qualitative and quantitative evaluation of the experiments using various metrics demonstrates that the proposed model achieves significantly improved segmentation performance, higher classification accuracy, and a greater level of automation, surpassing existing methods.
☆ Anomaly Triplet-Net: Progress Recognition Model Using Deep Metric Learning Considering Occlusion for Manual Assembly Work
In this paper, a progress recognition method consider occlusion using deep metric learning is proposed to visualize the product assembly process in a factory. First, the target assembly product is detected from images acquired from a fixed-point camera installed in the factory using a deep learning-based object detection method. Next, the detection area is cropped from the image. Finally, by using a classification method based on deep metric learning on the cropped image, the progress of the product assembly work is estimated as a rough progress step. As a specific progress estimation model, we propose an Anomaly Triplet-Net that adds anomaly samples to Triplet Loss for progress estimation considering occlusion. In experiments, an 82.9% success rate is achieved for the progress estimation method using Anomaly Triplet-Net. We also experimented with the practicality of the sequence of detection, cropping, and progression estimation, and confirmed the effectiveness of the overall system.
comment: This paper has been peer-reviewed, revised, and published in Advanced Robotics
☆ FgC2F-UDiff: Frequency-guided and Coarse-to-fine Unified Diffusion Model for Multi-modality Missing MRI Synthesis
Multi-modality magnetic resonance imaging (MRI) is essential for the diagnosis and treatment of brain tumors. However, missing modalities are commonly observed due to limitations in scan time, scan corruption, artifacts, motion, and contrast agent intolerance. Synthesis of missing MRI has been a means to address the limitations of modality insufficiency in clinical practice and research. However, there are still some challenges, such as poor generalization, inaccurate non-linear mapping, and slow processing speeds. To address the aforementioned issues, we propose a novel unified synthesis model, the Frequency-guided and Coarse-to-fine Unified Diffusion Model (FgC2F-UDiff), designed for multiple inputs and outputs. Specifically, the Coarse-to-fine Unified Network (CUN) fully exploits the iterative denoising properties of diffusion models, from global to detail, by dividing the denoising process into two stages, coarse and fine, to enhance the fidelity of synthesized images. Secondly, the Frequency-guided Collaborative Strategy (FCS) harnesses appropriate frequency information as prior knowledge to guide the learning of a unified, highly non-linear mapping. Thirdly, the Specific-acceleration Hybrid Mechanism (SHM) integrates specific mechanisms to accelerate the diffusion model and enhance the feasibility of many-to-many synthesis. Extensive experimental evaluations have demonstrated that our proposed FgC2F-UDiff model achieves superior performance on two datasets, validated through a comprehensive assessment that includes both qualitative observations and quantitative metrics, such as PSNR SSIM, LPIPS, and FID.
☆ TexHOI: Reconstructing Textures of 3D Unknown Objects in Monocular Hand-Object Interaction Scenes ICCV
Reconstructing 3D models of dynamic, real-world objects with high-fidelity textures from monocular frame sequences has been a challenging problem in recent years. This difficulty stems from factors such as shadows, indirect illumination, and inaccurate object-pose estimations due to occluding hand-object interactions. To address these challenges, we propose a novel approach that predicts the hand's impact on environmental visibility and indirect illumination on the object's surface albedo. Our method first learns the geometry and low-fidelity texture of the object, hand, and background through composite rendering of radiance fields. Simultaneously, we optimize the hand and object poses to achieve accurate object-pose estimations. We then refine physics-based rendering parameters - including roughness, specularity, albedo, hand visibility, skin color reflections, and environmental illumination - to produce precise albedo, and accurate hand illumination and shadow regions. Our approach surpasses state-of-the-art methods in texture reconstruction and, to the best of our knowledge, is the first to account for hand-object interactions in object texture reconstruction.
comment: This paper was accepted at ICCVM 2025 and will appear in the proceedings of IEEE TVCG as part of the conference
☆ Salient Region Matching for Fully Automated MR-TRUS Registration
Prostate cancer is a leading cause of cancer-related mortality in men. The registration of magnetic resonance (MR) and transrectal ultrasound (TRUS) can provide guidance for the targeted biopsy of prostate cancer. In this study, we propose a salient region matching framework for fully automated MR-TRUS registration. The framework consists of prostate segmentation, rigid alignment and deformable registration. Prostate segmentation is performed using two segmentation networks on MR and TRUS respectively, and the predicted salient regions are used for the rigid alignment. The rigidly-aligned MR and TRUS images serve as initialization for the deformable registration. The deformable registration network has a dual-stream encoder with cross-modal spatial attention modules to facilitate multi-modality feature learning, and a salient region matching loss to consider both structure and intensity similarity within the prostate region. Experiments on a public MR-TRUS dataset demonstrate that our method achieves satisfactory registration results, outperforming several cutting-edge methods. The code is publicly available at https://github.com/mock1ngbrd/salient-region-matching.
☆ An Empirical Study of Accuracy-Robustness Tradeoff and Training Efficiency in Self-Supervised Learning
Self-supervised learning (SSL) has significantly advanced image representation learning, yet efficiency challenges persist, particularly with adversarial training. Many SSL methods require extensive epochs to achieve convergence, a demand further amplified in adversarial settings. To address this inefficiency, we revisit the robust EMP-SSL framework, emphasizing the importance of increasing the number of crops per image to accelerate learning. Unlike traditional contrastive learning, robust EMP-SSL leverages multi-crop sampling, integrates an invariance term and regularization, and reduces training epochs, enhancing time efficiency. Evaluated with both standard linear classifiers and multi-patch embedding aggregation, robust EMP-SSL provides new insights into SSL evaluation strategies. Our results show that robust crop-based EMP-SSL not only accelerates convergence but also achieves a superior balance between clean accuracy and adversarial robustness, outperforming multi-crop embedding aggregation. Additionally, we extend this approach with free adversarial training in Multi-Crop SSL, introducing the Cost-Free Adversarial Multi-Crop Self-Supervised Learning (CF-AMC-SSL) method. CF-AMC-SSL demonstrates the effectiveness of free adversarial training in reducing training time while simultaneously improving clean accuracy and adversarial robustness. These findings underscore the potential of CF-AMC-SSL for practical SSL applications. Our code is publicly available at https://github.com/softsys4ai/CF-AMC-SSL.
☆ Can Deep Learning Trigger Alerts from Mobile-Captured Images?
Our research presents a comprehensive approach to leveraging mobile camera image data for real-time air quality assessment and recommendation. We develop a regression-based Convolutional Neural Network model and tailor it explicitly for air quality prediction by exploiting the inherent relationship between output parameters. As a result, the Mean Squared Error of 0.0077 and 0.0112 obtained for 2 and 5 pollutants respectively outperforms existing models. Furthermore, we aim to verify the common practice of augmenting the original dataset with a view to introducing more variation in the training phase. It is one of our most significant contributions that our experimental results demonstrate minimal accuracy differences between the original and augmented datasets. Finally, a real-time, user-friendly dashboard is implemented which dynamically displays the Air Quality Index and pollutant values derived from captured mobile camera images. Users' health conditions are considered to recommend whether a location is suitable based on current air quality metrics. Overall, this research contributes to verification of data augmentation techniques, CNN-based regression modelling for air quality prediction, and user-centric air quality monitoring through mobile technology. The proposed system offers practical solutions for individuals to make informed environmental health and well-being decisions.
☆ Textualize Visual Prompt for Image Editing via Diffusion Bridge AAAI 2025
Visual prompt, a pair of before-and-after edited images, can convey indescribable imagery transformations and prosper in image editing. However, current visual prompt methods rely on a pretrained text-guided image-to-image generative model that requires a triplet of text, before, and after images for retraining over a text-to-image model. Such crafting triplets and retraining processes limit the scalability and generalization of editing. In this paper, we present a framework based on any single text-to-image model without reliance on the explicit image-to-image model thus enhancing the generalizability and scalability. Specifically, by leveraging the probability-flow ordinary equation, we construct a diffusion bridge to transfer the distribution between before-and-after images under the text guidance. By optimizing the text via the bridge, the framework adaptively textualizes the editing transformation conveyed by visual prompts into text embeddings without other models. Meanwhile, we introduce differential attention control during text optimization, which disentangles the text embedding from the invariance of the before-and-after images and makes it solely capture the delicate transformation and generalize to edit various images. Experiments on real images validate competitive results on the generalization, contextual coherence, and high fidelity for delicate editing with just one image pair as the visual prompt.
comment: AAAI 2025
☆ SceneBooth: Diffusion-based Framework for Subject-preserved Text-to-Image Generation
Due to the demand for personalizing image generation, subject-driven text-to-image generation method, which creates novel renditions of an input subject based on text prompts, has received growing research interest. Existing methods often learn subject representation and incorporate it into the prompt embedding to guide image generation, but they struggle with preserving subject fidelity. To solve this issue, this paper approaches a novel framework named SceneBooth for subject-preserved text-to-image generation, which consumes inputs of a subject image, object phrases and text prompts. Instead of learning the subject representation and generating a subject, our SceneBooth fixes the given subject image and generates its background image guided by the text prompts. To this end, our SceneBooth introduces two key components, i.e., a multimodal layout generation module and a background painting module. The former determines the position and scale of the subject by generating appropriate scene layouts that align with text captions, object phrases, and subject visual information. The latter integrates two adapters (ControlNet and Gated Self-Attention) into the latent diffusion model to generate a background that harmonizes with the subject guided by scene layouts and text descriptions. In this manner, our SceneBooth ensures accurate preservation of the subject's appearance in the output. Quantitative and qualitative experimental results demonstrate that SceneBooth significantly outperforms baseline methods in terms of subject preservation, image harmonization and overall quality.
☆ VOILA: Complexity-Aware Universal Segmentation of CT images by Voxel Interacting with Language AAAI 2025
Satisfactory progress has been achieved recently in universal segmentation of CT images. Following the success of vision-language methods, there is a growing trend towards utilizing text prompts and contrastive learning to develop universal segmentation models. However, there exists a significant imbalance in information density between 3D images and text prompts. Moreover, the standard fully connected layer segmentation approach faces significant challenges in handling multiple classes and exhibits poor generalizability. To address these challenges, we propose the VOxel Interacting with LAnguage method (VOILA) for universal CT image segmentation. Initially, we align voxels and language into a shared representation space and classify voxels on the basis of cosine similarity. Subsequently, we develop the Voxel-Language Interaction framework to mitigate the impact of class imbalance caused by foreground-background discrepancies and variations in target volumes. Furthermore, a Complexity-Aware Sampling method is proposed to focus on region hard to segment, achieved by generating pseudo-heatmaps from a trainable Gaussian mixture distribution. Our results indicate the proposed VOILA is capable to achieve improved performance with reduced parameters and computational cost during training. Furthermore, it demonstrates significant generalizability across diverse datasets without additional fine-tuning.
comment: Accepted by AAAI 2025
☆ Hyperbolic Binary Neural Network
Binary Neural Network (BNN) converts full-precision weights and activations into their extreme 1-bit counterparts, making it particularly suitable for deployment on lightweight mobile devices. While binary neural networks are typically formulated as a constrained optimization problem and optimized in the binarized space, general neural networks are formulated as an unconstrained optimization problem and optimized in the continuous space. This paper introduces the Hyperbolic Binary Neural Network (HBNN) by leveraging the framework of hyperbolic geometry to optimize the constrained problem. Specifically, we transform the constrained problem in hyperbolic space into an unconstrained one in Euclidean space using the Riemannian exponential map. On the other hand, we also propose the Exponential Parametrization Cluster (EPC) method, which, compared to the Riemannian exponential map, shrinks the segment domain based on a diffeomorphism. This approach increases the probability of weight flips, thereby maximizing the information gain in BNNs. Experimental results on CIFAR10, CIFAR100, and ImageNet classification datasets with VGGsmall, ResNet18, and ResNet34 models illustrate the superior performance of our HBNN over state-of-the-art methods.
☆ Information-Maximized Soft Variable Discretization for Self-Supervised Image Representation Learning
Self-supervised learning (SSL) has emerged as a crucial technique in image processing, encoding, and understanding, especially for developing today's vision foundation models that utilize large-scale datasets without annotations to enhance various downstream tasks. This study introduces a novel SSL approach, Information-Maximized Soft Variable Discretization (IMSVD), for image representation learning. Specifically, IMSVD softly discretizes each variable in the latent space, enabling the estimation of their probability distributions over training batches and allowing the learning process to be directly guided by information measures. Motivated by the MultiView assumption, we propose an information-theoretic objective function to learn transform-invariant, non-travail, and redundancy-minimized representation features. We then derive a joint-cross entropy loss function for self-supervised image representation learning, which theoretically enjoys superiority over the existing methods in reducing feature redundancy. Notably, our non-contrastive IMSVD method statistically performs contrastive learning. Extensive experimental results demonstrate the effectiveness of IMSVD on various downstream tasks in terms of both accuracy and efficiency. Thanks to our variable discretization, the embedding features optimized by IMSVD offer unique explainability at the variable level. IMSVD has the potential to be adapted to other learning paradigms. Our code is publicly available at https://github.com/niuchuangnn/IMSVD.
☆ DGSSA: Domain generalization with structural and stylistic augmentation for retinal vessel segmentation
Retinal vascular morphology is crucial for diagnosing diseases such as diabetes, glaucoma, and hypertension, making accurate segmentation of retinal vessels essential for early intervention. Traditional segmentation methods assume that training and testing data share similar distributions, which can lead to poor performance on unseen domains due to domain shifts caused by variations in imaging devices and patient demographics. This paper presents a novel approach, DGSSA, for retinal vessel image segmentation that enhances model generalization by combining structural and style augmentation strategies. We utilize a space colonization algorithm to generate diverse vascular-like structures that closely mimic actual retinal vessels, which are then used to generate pseudo-retinal images with an improved Pix2Pix model, allowing the segmentation model to learn a broader range of structure distributions. Additionally, we utilize PixMix to implement random photometric augmentations and introduce uncertainty perturbations, thereby enriching stylistic diversity and significantly enhancing the model's adaptability to varying imaging conditions. Our framework has been rigorously evaluated on four challenging datasets-DRIVE, CHASEDB, HRF, and STARE-demonstrating state-of-the-art performance that surpasses existing methods. This validates the effectiveness of our proposed approach, highlighting its potential for clinical application in automated retinal vessel analysis.
☆ Activating Associative Disease-Aware Vision Token Memory for LLM-Based X-ray Report Generation
X-ray image based medical report generation achieves significant progress in recent years with the help of the large language model, however, these models have not fully exploited the effective information in visual image regions, resulting in reports that are linguistically sound but insufficient in describing key diseases. In this paper, we propose a novel associative memory-enhanced X-ray report generation model that effectively mimics the process of professional doctors writing medical reports. It considers both the mining of global and local visual information and associates historical report information to better complete the writing of the current report. Specifically, given an X-ray image, we first utilize a classification model along with its activation maps to accomplish the mining of visual regions highly associated with diseases and the learning of disease query tokens. Then, we employ a visual Hopfield network to establish memory associations for disease-related tokens, and a report Hopfield network to retrieve report memory information. This process facilitates the generation of high-quality reports based on a large language model and achieves state-of-the-art performance on multiple benchmark datasets, including the IU X-ray, MIMIC-CXR, and Chexpert Plus. The source code of this work is released on \url{https://github.com/Event-AHU/Medical_Image_Analysis}.
comment: In Peer Review
☆ MedicalNarratives: Connecting Medical Vision and Language with Localized Narratives
We propose MedicalNarratives, a dataset curated from medical pedagogical videos similar in nature to data collected in Think-Aloud studies and inspired by Localized Narratives, which collects grounded image-text data by curating instructors' speech and mouse cursor movements synchronized in time. MedicalNarratives enables pretraining of both semantic and dense objectives, alleviating the need to train medical semantic and dense tasks disparately due to the lack of reasonably sized datasets. Our dataset contains 4.7M image-text pairs from videos and articles, with 1M samples containing dense annotations in the form of traces and bounding boxes. To evaluate the utility of MedicalNarratives, we train GenMedClip based on the CLIP architecture using our dataset spanning 12 medical domains and demonstrate that it outperforms previous state-of-the-art models on a newly constructed medical imaging benchmark that comprehensively evaluates performance across all modalities. Data, demo, code and models available at https://medical-narratives.github.io
☆ Machine Learning for Identifying Grain Boundaries in Scanning Electron Microscopy (SEM) Images of Nanoparticle Superlattices
Nanoparticle superlattices consisting of ordered arrangements of nanoparticles exhibit unique optical, magnetic, and electronic properties arising from nanoparticle characteristics as well as their collective behaviors. Understanding how processing conditions influence the nanoscale arrangement and microstructure is critical for engineering materials with desired macroscopic properties. Microstructural features such as grain boundaries, lattice defects, and pores significantly affect these properties but are challenging to quantify using traditional manual analyses as they are labor-intensive and prone to errors. In this work, we present a machine learning workflow for automating grain segmentation in scanning electron microscopy (SEM) images of nanoparticle superlattices. This workflow integrates signal processing techniques, such as Radon transforms, with unsupervised learning methods like agglomerative hierarchical clustering to identify and segment grains without requiring manually annotated data. In the workflow we transform the raw pixel data into explainable numerical representation of superlattice orientations for clustering. Benchmarking results demonstrate the workflow's robustness against noisy images and edge cases, with a processing speed of four images per minute on standard computational hardware. This efficiency makes the workflow scalable to large datasets and makes it a valuable tool for integrating data-driven models into decision-making processes for material design and analysis. For example, one can use this workflow to quantify grain size distributions at varying processing conditions like temperature and pressure and using that knowledge adjust processing conditions to achieve desired superlattice orientations and grain sizes.
☆ MM-GEN: Enhancing Task Performance Through Targeted Multimodal Data Curation
Vision-language models (VLMs) are highly effective but often underperform on specialized tasks; for example, Llava-1.5 struggles with chart and diagram understanding due to scarce task-specific training data. Existing training data, sourced from general-purpose datasets, fails to capture the nuanced details needed for these tasks. We introduce MM-Gen, a scalable method that generates task-specific, high-quality synthetic text for candidate images by leveraging stronger models. MM-Gen employs a three-stage targeted process: partitioning data into subgroups, generating targeted text based on task descriptions, and filtering out redundant and outlier data. Fine-tuning VLMs with data generated by MM-Gen leads to significant performance gains, including 29% on spatial reasoning and 15% on diagram understanding for Llava-1.5 (7B). Compared to human-curated caption data, MM-Gen achieves up to 1.6x better improvements for the original models, proving its effectiveness in enhancing task-specific VLM performance and bridging the gap between general-purpose datasets and specialized requirements. Code available at https://github.com/sjoshi804/MM-Gen.
☆ Chirpy3D: Continuous Part Latents for Creative 3D Bird Generation
In this paper, we push the boundaries of fine-grained 3D generation into truly creative territory. Current methods either lack intricate details or simply mimic existing objects -- we enable both. By lifting 2D fine-grained understanding into 3D through multi-view diffusion and modeling part latents as continuous distributions, we unlock the ability to generate entirely new, yet plausible parts through interpolation and sampling. A self-supervised feature consistency loss further ensures stable generation of these unseen parts. The result is the first system capable of creating novel 3D objects with species-specific details that transcend existing examples. While we demonstrate our approach on birds, the underlying framework extends beyond things that can chirp! Code will be released at https://github.com/kamwoh/chirpy3d.
comment: 20 pages
☆ Graph-Based Multimodal and Multi-view Alignment for Keystep Recognition
Egocentric videos capture scenes from a wearer's viewpoint, resulting in dynamic backgrounds, frequent motion, and occlusions, posing challenges to accurate keystep recognition. We propose a flexible graph-learning framework for fine-grained keystep recognition that is able to effectively leverage long-term dependencies in egocentric videos, and leverage alignment between egocentric and exocentric videos during training for improved inference on egocentric videos. Our approach consists of constructing a graph where each video clip of the egocentric video corresponds to a node. During training, we consider each clip of each exocentric video (if available) as additional nodes. We examine several strategies to define connections across these nodes and pose keystep recognition as a node classification task on the constructed graphs. We perform extensive experiments on the Ego-Exo4D dataset and show that our proposed flexible graph-based framework notably outperforms existing methods by more than 12 points in accuracy. Furthermore, the constructed graphs are sparse and compute efficient. We also present a study examining on harnessing several multimodal features, including narrations, depth, and object class labels, on a heterogeneous graph and discuss their corresponding contribution to the keystep recognition performance.
comment: 9 pages, 6 figures
☆ NeRFs are Mirror Detectors: Using Structural Similarity for Multi-View Mirror Scene Reconstruction with 3D Surface Primitives
While neural radiance fields (NeRF) led to a breakthrough in photorealistic novel view synthesis, handling mirroring surfaces still denotes a particular challenge as they introduce severe inconsistencies in the scene representation. Previous attempts either focus on reconstructing single reflective objects or rely on strong supervision guidance in terms of additional user-provided annotations of visible image regions of the mirrors, thereby limiting the practical usability. In contrast, in this paper, we present NeRF-MD, a method which shows that NeRFs can be considered as mirror detectors and which is capable of reconstructing neural radiance fields of scenes containing mirroring surfaces without the need for prior annotations. To this end, we first compute an initial estimate of the scene geometry by training a standard NeRF using a depth reprojection loss. Our key insight lies in the fact that parts of the scene corresponding to a mirroring surface will still exhibit a significant photometric inconsistency, whereas the remaining parts are already reconstructed in a plausible manner. This allows us to detect mirror surfaces by fitting geometric primitives to such inconsistent regions in this initial stage of the training. Using this information, we then jointly optimize the radiance field and mirror geometry in a second training stage to refine their quality. We demonstrate the capability of our method to allow the faithful detection of mirrors in the scene as well as the reconstruction of a single consistent scene representation, and demonstrate its potential in comparison to baseline and mirror-aware approaches.
☆ Deep Learning for Ophthalmology: The State-of-the-Art and Future Trends
The emergence of artificial intelligence (AI), particularly deep learning (DL), has marked a new era in the realm of ophthalmology, offering transformative potential for the diagnosis and treatment of posterior segment eye diseases. This review explores the cutting-edge applications of DL across a range of ocular conditions, including diabetic retinopathy, glaucoma, age-related macular degeneration, and retinal vessel segmentation. We provide a comprehensive overview of foundational ML techniques and advanced DL architectures, such as CNNs, attention mechanisms, and transformer-based models, highlighting the evolving role of AI in enhancing diagnostic accuracy, optimizing treatment strategies, and improving overall patient care. Additionally, we present key challenges in integrating AI solutions into clinical practice, including ensuring data diversity, improving algorithm transparency, and effectively leveraging multimodal data. This review emphasizes AI's potential to improve disease diagnosis and enhance patient care while stressing the importance of collaborative efforts to overcome these barriers and fully harness AI's impact in advancing eye care.
comment: First version
☆ Topology-based deep-learning segmentation method for deep anterior lamellar keratoplasty (DALK) surgical guidance using M-mode OCT data
Deep Anterior Lamellar Keratoplasty (DALK) is a partial-thickness corneal transplant procedure used to treat corneal stromal diseases. A crucial step in this procedure is the precise separation of the deep stroma from Descemet's membrane (DM) using the Big Bubble technique. To simplify the tasks of needle insertion and pneumo-dissection in this technique, we previously developed an Optical Coherence Tomography (OCT)-guided, eye-mountable robot that uses real-time tracking of corneal layers from M-mode OCT signals for control. However, signal noise and instability during manipulation of the OCT fiber sensor-integrated needle have hindered the performance of conventional deep-learning segmentation methods, resulting in rough and inaccurate detection of corneal layers. To address these challenges, we have developed a topology-based deep-learning segmentation method that integrates a topological loss function with a modified network architecture. This approach effectively reduces the effects of noise and improves segmentation speed, precision, and stability. Validation using in vivo, ex vivo, and hybrid rabbit eye datasets demonstrates that our method outperforms traditional loss-based techniques, providing fast, accurate, and robust segmentation of the epithelium and DM to guide surgery.
♻ ☆ ImageFlowNet: Forecasting Multiscale Image-Level Trajectories of Disease Progression with Irregularly-Sampled Longitudinal Medical Images ICASSP 2025
Advances in medical imaging technologies have enabled the collection of longitudinal images, which involve repeated scanning of the same patients over time, to monitor disease progression. However, predictive modeling of such data remains challenging due to high dimensionality, irregular sampling, and data sparsity. To address these issues, we propose ImageFlowNet, a novel model designed to forecast disease trajectories from initial images while preserving spatial details. ImageFlowNet first learns multiscale joint representation spaces across patients and time points, then optimizes deterministic or stochastic flow fields within these spaces using a position-parameterized neural ODE/SDE framework. The model leverages a UNet architecture to create robust multiscale representations and mitigates data scarcity by combining knowledge from all patients. We provide theoretical insights that support our formulation of ODEs, and motivate our regularizations involving high-level visual features, latent space organization, and trajectory smoothness. We validate ImageFlowNet on three longitudinal medical image datasets depicting progression in geographic atrophy, multiple sclerosis, and glioblastoma, demonstrating its ability to effectively forecast disease progression and outperform existing methods. Our contributions include the development of ImageFlowNet, its theoretical underpinnings, and empirical validation on real-world datasets. The official implementation is available at https://github.com/KrishnaswamyLab/ImageFlowNet.
comment: Accepted to ICASSP 2025
♻ ☆ Vim-F: Visual State Space Model Benefiting from Learning in the Frequency Domain
In recent years, State Space Models (SSMs) with efficient hardware-aware designs, known as the Mamba deep learning models, have made significant progress in modeling long sequences such as language understanding. Therefore, building efficient and general-purpose visual backbones based on SSMs is a promising direction. Compared to traditional convolutional neural networks (CNNs) and Vision Transformers (ViTs), the performance of Vision Mamba (ViM) methods is not yet fully competitive. To enable SSMs to process image data, ViMs typically flatten 2D images into 1D sequences, inevitably ignoring some 2D local dependencies, thereby weakening the model's ability to interpret spatial relationships from a global perspective. We use Fast Fourier Transform (FFT) to obtain the spectrum of the feature map and add it to the original feature map, enabling ViM to model a unified visual representation in both frequency and spatial domains. The introduction of frequency domain information enables ViM to have a global receptive field during scanning. We propose a novel model called Vim-F, which employs pure Mamba encoders and scans in both the frequency and spatial domains. Moreover, we question the necessity of position embedding in ViM and remove it accordingly in Vim-F, which helps to fully utilize the efficient long-sequence modeling capability of ViM. Finally, we redesign a patch embedding for Vim-F, leveraging a convolutional stem to capture more local correlations, further improving the performance of Vim-F. Code is available at: \url{https://github.com/yws-wxs/Vim-F}.
♻ ☆ Gaussian Building Mesh (GBM): Extract a Building's 3D Mesh with Google Earth and Gaussian Splatting
Recently released open-source pre-trained foundational image segmentation and object detection models (SAM2+GroundingDINO) allow for geometrically consistent segmentation of objects of interest in multi-view 2D images. Users can use text-based or click-based prompts to segment objects of interest without requiring labeled training datasets. Gaussian Splatting allows for the learning of the 3D representation of a scene's geometry and radiance based on 2D images. Combining Google Earth Studio, SAM2+GroundingDINO, 2D Gaussian Splatting, and our improvements in mask refinement based on morphological operations and contour simplification, we created a pipeline to extract the 3D mesh of any building based on its name, address, or geographic coordinates.
♻ ☆ Finer: Investigating and Enhancing Fine-Grained Visual Concept Recognition in Large Vision Language Models EMNLP 2024
Recent advances in instruction-tuned Large Vision-Language Models (LVLMs) have imbued the models with the ability to generate high-level, image-grounded explanations with ease. While such capability is largely attributed to the rich world knowledge contained within the Large Language Models (LLMs), our work reveals their shortcomings in fine-grained visual categorization (FGVC) across six different benchmark settings. Most recent state-of-the-art LVLMs like LLaVa-1.5, InstructBLIP and GPT-4V not only severely deteriorate in terms of classification performance, e.g., average drop of 65.58 in EM for Stanford Dogs for LLaVA-1.5, but also struggle to generate an accurate explanation with detailed attributes based on the concept that appears within an input image despite their capability to generate holistic image-level descriptions. In-depth analyses show that instruction-tuned LVLMs exhibit modality gap, showing discrepancy when given textual and visual inputs that correspond to the same concept, preventing the image modality from leveraging the rich parametric knowledge within the LLMs. In an effort to further the community's endeavor in this direction, we propose a multiple granularity attribute-centric evaluation benchmark, Finer, which aims to establish a ground to evaluate LVLMs' fine-grained visual comprehension ability and provide significantly improved explainability.
comment: EMNLP 2024; Main Conference
♻ ☆ Deep Learning-based Accelerated MR Cholangiopancreatography without Fully-sampled Data
The purpose of this study was to accelerate MR cholangiopancreatography (MRCP) acquisitions using deep learning-based (DL) reconstruction at 3T and 0.55T. A total of 35 healthy volunteers underwent conventional two-fold accelerated MRCP scans at field strengths of 3T and 0.55T. We trained DL reconstructions using two different training strategies, supervised (SV) and self-supervised (SSV), with retrospectively six-fold undersampled data obtained at 3T. We then evaluated the DL reconstructions against standard techniques, parallel imaging (PI) and compressed sensing (CS), focusing on peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) as metrics. We also tested DL reconstructions with prospectively accelerated acquisitions and evaluated their robustness when changing fields strengths from 3T to 0.55T. DL reconstructions demonstrated a reduction in average acquisition time from 599/542 to 255/180 seconds for MRCP at 3T/0.55T. In both retrospective and prospective undersampling, PSNR and SSIM of DL reconstructions were higher than those of PI and CS. At the same time, DL reconstructions preserved the image quality of undersampled data, including sharpness and the visibility of hepatobiliary ducts. In addition, both DL approaches produced high-quality reconstructions at 0.55T. In summary, DL reconstructions trained for highly accelerated MRCP enabled a reduction in acquisition time by a factor of 2.4/3.0 at 3T/0.55T while maintaining the image quality of conventional acquisitions.
comment: 19 pages, 4 figures, 2 tables
♻ ☆ LLaVA Steering: Visual Instruction Tuning with 500x Fewer Parameters through Modality Linear Representation-Steering
Multimodal Large Language Models (MLLMs) have significantly advanced visual tasks by integrating visual representations into large language models (LLMs). The textual modality, inherited from LLMs, equips MLLMs with abilities like instruction following and in-context learning. In contrast, the visual modality enhances performance in downstream tasks by leveraging rich semantic content, spatial information, and grounding capabilities. These intrinsic modalities work synergistically across various visual tasks. Our research initially reveals a persistent imbalance between these modalities, with text often dominating output generation during visual instruction tuning. This imbalance occurs when using both full fine-tuning and parameter-efficient fine-tuning (PEFT) methods. We then found that re-balancing these modalities can significantly reduce the number of trainable parameters required, inspiring a direction for further optimizing visual instruction tuning. We introduce Modality Linear Representation-Steering (MoReS) to achieve the goal. MoReS effectively re-balances the intrinsic modalities throughout the model, where the key idea is to steer visual representations through linear transformations in the visual subspace across each model layer. To validate our solution, we composed LLaVA Steering, a suite of models integrated with the proposed MoReS method. Evaluation results show that the composed LLaVA Steering models require, on average, 500 times fewer trainable parameters than LoRA needs while still achieving comparable performance across three visual benchmarks and eight visual question-answering tasks. Last, we present the LLaVA Steering Factory, an in-house developed platform that enables researchers to quickly customize various MLLMs with component-based architecture for seamlessly integrating state-of-the-art models, and evaluate their intrinsic modality imbalance.
♻ ☆ Predicting risk of cardiovascular disease using retinal OCT imaging
Cardiovascular diseases (CVD) are the leading cause of death globally. Non-invasive, cost-effective imaging techniques play a crucial role in early detection and prevention of CVD. Optical coherence tomography (OCT) has gained recognition as a potential tool for early CVD risk prediction, though its use remains underexplored. In this study, we investigated the potential of OCT as an additional imaging technique to predict future CVD events. We analysed retinal OCT data from the UK Biobank. The dataset included 612 patients who suffered a myocardial infarction (MI) or stroke within five years of imaging and 2,234 controls without CVD (total: 2,846 participants). A self-supervised deep learning approach based on Variational Autoencoders (VAE) was used to extract low-dimensional latent representations from high-dimensional 3D OCT images, capturing distinct features of retinal layers. These latent features, along with clinical data, were used to train a Random Forest (RF) classifier to differentiate between patients at risk of future CVD events (MI or stroke) and healthy controls. Our model achieved an AUC of 0.75, sensitivity of 0.70, specificity of 0.70, and accuracy of 0.70, outperforming the QRISK3 score (the third version of the QRISK cardiovascular disease risk prediction algorithm; AUC = 0.60, sensitivity = 0.60, specificity = 0.55, accuracy = 0.55). The choroidal layer in OCT images was identified as a key predictor of future CVD events, revealed through a novel model explainability approach. This study demonstrates that retinal OCT imaging is a cost-effective, non-invasive alternative for predicting CVD risk, offering potential for widespread application in optometry practices and hospitals.
comment: New version - 26 pages for main manuscript, 7 figures, 7 pages for appendix and preprint for a journal
♻ ☆ Gaze-guided Hand-Object Interaction Synthesis: Dataset and Method
Gaze plays a crucial role in revealing human attention and intention, particularly in hand-object interaction scenarios, where it guides and synchronizes complex tasks that require precise coordination between the brain, hand, and object. Motivated by this, we introduce a novel task: Gaze-Guided Hand-Object Interaction Synthesis, with potential applications in augmented reality, virtual reality, and assistive technologies. To support this task, we present GazeHOI, the first dataset to capture simultaneous 3D modeling of gaze, hand, and object interactions. This task poses significant challenges due to the inherent sparsity and noise in gaze data, as well as the need for high consistency and physical plausibility in generating hand and object motions. To tackle these issues, we propose a stacked gaze-guided hand-object interaction diffusion model, named GHO-Diffusion. The stacked design effectively reduces the complexity of motion generation. We also introduce HOI-Manifold Guidance during the sampling stage of GHO-Diffusion, enabling fine-grained control over generated motions while maintaining the data manifold. Additionally, we propose a spatial-temporal gaze feature encoding for the diffusion condition and select diffusion results based on consistency scores between gaze-contact maps and gaze-interaction trajectories. Extensive experiments highlight the effectiveness of our method and the unique contributions of our dataset. More details in https://takiee.github.io/gaze-hoi/.
comment: Project Page: https://takiee.github.io/gaze-hoi/
♻ ☆ GDSR: Global-Detail Integration through Dual-Branch Network with Wavelet Losses for Remote Sensing Image Super-Resolution
In recent years, deep neural networks, including Convolutional Neural Networks, Transformers, and State Space Models, have achieved significant progress in Remote Sensing Image (RSI) Super-Resolution (SR). However, existing SR methods typically overlook the complementary relationship between global and local dependencies. These methods either focus on capturing local information or prioritize global information, which results in models that are unable to effectively capture both global and local features simultaneously. Moreover, their computational cost becomes prohibitive when applied to large-scale RSIs. To address these challenges, we introduce the novel application of Receptance Weighted Key Value (RWKV) to RSI-SR, which captures long-range dependencies with linear complexity. To simultaneously model global and local features, we propose the Global-Detail dual-branch structure, GDSR, which performs SR reconstruction by paralleling RWKV and convolutional operations to handle large-scale RSIs. Furthermore, we introduce the Global-Detail Reconstruction Module (GDRM) as an intermediary between the two branches to bridge their complementary roles. In addition, we propose Wavelet Loss, a loss function that effectively captures high-frequency detail information in images, thereby enhancing the visual quality of SR, particularly in terms of detail reconstruction. Extensive experiments on several benchmarks, including AID, AID_CDM, RSSRD-QH, and RSSRD-QH_CDM, demonstrate that GSDR outperforms the state-of-the-art Transformer-based method HAT by an average of 0.05 dB in PSNR, while using only 63% of its parameters and 51% of its FLOPs, achieving an inference speed 2.9 times faster. Furthermore, the Wavelet Loss shows excellent generalization across various architectures, providing a novel perspective for RSI-SR enhancement.
comment: The experiments were conducted using private datasets that were incomplete as they did not include all the necessary copyrights. Additionally, the conclusions require further exploration as the work is still in progress
♻ ☆ CausalDiff: Causality-Inspired Disentanglement via Diffusion Model for Adversarial Defense NeurIPS 2024
Despite ongoing efforts to defend neural classifiers from adversarial attacks, they remain vulnerable, especially to unseen attacks. In contrast, humans are difficult to be cheated by subtle manipulations, since we make judgments only based on essential factors. Inspired by this observation, we attempt to model label generation with essential label-causative factors and incorporate label-non-causative factors to assist data generation. For an adversarial example, we aim to discriminate the perturbations as non-causative factors and make predictions only based on the label-causative factors. Concretely, we propose a casual diffusion model (CausalDiff) that adapts diffusion models for conditional data generation and disentangles the two types of casual factors by learning towards a novel casual information bottleneck objective. Empirically, CausalDiff has significantly outperformed state-of-the-art defense methods on various unseen attacks, achieving an average robustness of 86.39% (+4.01%) on CIFAR-10, 56.25% (+3.13%) on CIFAR-100, and 82.62% (+4.93%) on GTSRB (German Traffic Sign Recognition Benchmark). The code is available at https://github.com/CAS-AISafetyBasicResearchGroup/CausalDiff.
comment: accepted by NeurIPS 2024
♻ ☆ xMIL: Insightful Explanations for Multiple Instance Learning in Histopathology
Multiple instance learning (MIL) is an effective and widely used approach for weakly supervised machine learning. In histopathology, MIL models have achieved remarkable success in tasks like tumor detection, biomarker prediction, and outcome prognostication. However, MIL explanation methods are still lagging behind, as they are limited to small bag sizes or disregard instance interactions. We revisit MIL through the lens of explainable AI (XAI) and introduce xMIL, a refined framework with more general assumptions. We demonstrate how to obtain improved MIL explanations using layer-wise relevance propagation (LRP) and conduct extensive evaluation experiments on three toy settings and four real-world histopathology datasets. Our approach consistently outperforms previous explanation attempts with particularly improved faithfulness scores on challenging biomarker prediction tasks. Finally, we showcase how xMIL explanations enable pathologists to extract insights from MIL models, representing a significant advance for knowledge discovery and model debugging in digital histopathology. Codes are available at: https://github.com/bifold-pathomics/xMIL.
♻ ☆ Hyperbolic Contrastive Learning for Hierarchical 3D Point Cloud Embedding
Hyperbolic spaces allow for more efficient modeling of complex, hierarchical structures, which is particularly beneficial in tasks involving multi-modal data. Although hyperbolic geometries have been proven effective for language-image pre-training, their capabilities to unify language, image, and 3D Point Cloud modalities are under-explored. We extend the 3D Point Cloud modality in hyperbolic multi-modal contrastive pre-training. Additionally, we explore the entailment, modality gap, and alignment regularizers for learning hierarchical 3D embeddings and facilitating the transfer of knowledge from both Text and Image modalities. These regularizers enable the learning of intra-modal hierarchy within each modality and inter-modal hierarchy across text, 2D images, and 3D Point Clouds. Experimental results demonstrate that our proposed training strategy yields an outstanding 3D Point Cloud encoder, and the obtained 3D Point Cloud hierarchical embeddings significantly improve performance on various downstream tasks.
♻ ☆ Diff-Lung: Diffusion-Based Texture Synthesis for Enhanced Pathological Tissue Segmentation in Lung CT Scans
Accurate quantification of the extent of lung pathological patterns (fibrosis, ground-glass opacity, emphysema, consolidation) is prerequisite for diagnosis and follow-up of interstitial lung diseases. However, segmentation is challenging due to the significant class imbalance between healthy and pathological tissues. This paper addresses this issue by leveraging a diffusion model for data augmentation applied during training an AI model. Our approach generates synthetic pathological tissue patches while preserving essential shape characteristics and intricate details specific to each tissue type. This method enhances the segmentation process by increasing the occurence of underrepresented classes in the training data. We demonstrate that our diffusion-based augmentation technique improves segmentation accuracy across all pathological tissue types, particularly for the less common patterns. This advancement contributes to more reliable automated analysis of lung CT scans, potentially improving clinical decision-making and patient outcomes
comment: accepted at ISBI 2025
♻ ☆ MMAD: The First-Ever Comprehensive Benchmark for Multimodal Large Language Models in Industrial Anomaly Detection
In the field of industrial inspection, Multimodal Large Language Models (MLLMs) have a high potential to renew the paradigms in practical applications due to their robust language capabilities and generalization abilities. However, despite their impressive problem-solving skills in many domains, MLLMs' ability in industrial anomaly detection has not been systematically studied. To bridge this gap, we present MMAD, the first-ever full-spectrum MLLMs benchmark in industrial Anomaly Detection. We defined seven key subtasks of MLLMs in industrial inspection and designed a novel pipeline to generate the MMAD dataset with 39,672 questions for 8,366 industrial images. With MMAD, we have conducted a comprehensive, quantitative evaluation of various state-of-the-art MLLMs. The commercial models performed the best, with the average accuracy of GPT-4o models reaching 74.9%. However, this result falls far short of industrial requirements. Our analysis reveals that current MLLMs still have significant room for improvement in answering questions related to industrial anomalies and defects. We further explore two training-free performance enhancement strategies to help models improve in industrial scenarios, highlighting their promising potential for future research.
comment: The code and data are available at https://github.com/jam-cc/MMAD
♻ ☆ Wavelet-Driven Generalizable Framework for Deepfake Face Forgery Detection
The evolution of digital image manipulation, particularly with the advancement of deep generative models, significantly challenges existing deepfake detection methods, especially when the origin of the deepfake is obscure. To tackle the increasing complexity of these forgeries, we propose \textbf{Wavelet-CLIP}, a deepfake detection framework that integrates wavelet transforms with features derived from the ViT-L/14 architecture, pre-trained in the CLIP fashion. Wavelet-CLIP utilizes Wavelet Transforms to deeply analyze both spatial and frequency features from images, thus enhancing the model's capability to detect sophisticated deepfakes. To verify the effectiveness of our approach, we conducted extensive evaluations against existing state-of-the-art methods for cross-dataset generalization and detection of unseen images generated by standard diffusion models. Our method showcases outstanding performance, achieving an average AUC of 0.749 for cross-data generalization and 0.893 for robustness against unseen deepfakes, outperforming all compared methods. The code can be reproduced from the repo: \url{https://github.com/lalithbharadwajbaru/Wavelet-CLIP}
comment: 9 Pages, 2 Figures, 3 Tables
♻ ☆ Multi-source Domain Adaptation for Panoramic Semantic Segmentation
Unsupervised domain adaptation methods for panoramic semantic segmentation utilize real pinhole images or low-cost synthetic panoramic images to transfer segmentation models to real panoramic images. However, these methods struggle to understand the panoramic structure using only real pinhole images and lack real-world scene perception with only synthetic panoramic images. Therefore, in this paper, we propose a new task, Multi-source Domain Adaptation for Panoramic Semantic Segmentation (MSDA4PASS), which leverages both real pinhole and synthetic panoramic images to improve segmentation on unlabeled real panoramic images. There are two key issues in the MSDA4PASS task: (1) distortion gaps between the pinhole and panoramic domains -- panoramic images exhibit global and local distortions absent in pinhole images; (2) texture gaps between the source and target domains -- scenes and styles differ across domains. To address these two issues, we propose a novel framework, Deformation Transform Aligner for Panoramic Semantic Segmentation (DTA4PASS), which converts all pinhole images in the source domains into distorted images and aligns the source distorted and panoramic images with the target panoramic images. Specifically, DTA4PASS consists of two main components: Unpaired Semantic Morphing (USM) and Distortion Gating Alignment (DGA). First, in USM, the Dual-view Discriminator (DvD) assists in training the diffeomorphic deformation network at the image and pixel level, enabling the effective deformation transformation of pinhole images without paired panoramic views, alleviating distortion gaps. Second, DGA assigns pinhole-like (pin-like) and panoramic-like (pan-like) features to each image by gating, and aligns these two features through uncertainty estimation, reducing texture gaps.
comment: Accepted by Information Fusion 2025
♻ ☆ NBBOX: Noisy Bounding Box Improves Remote Sensing Object Detection
Data augmentation has shown significant advancements in computer vision to improve model performance over the years, particularly in scenarios with limited and insufficient data. Currently, most studies focus on adjusting the image or its features to expand the size, quality, and variety of samples during training in various tasks including object detection. However, we argue that it is necessary to investigate bounding box transformations as a data augmentation technique rather than image-level transformations, especially in aerial imagery due to potentially inconsistent bounding box annotations. Hence, this letter presents a thorough investigation of bounding box transformation in terms of scaling, rotation, and translation for remote sensing object detection. We call this augmentation strategy NBBOX (Noise Injection into Bounding Box). We conduct extensive experiments on DOTA and DIOR-R, both well-known datasets that include a variety of rotated generic objects in aerial images. Experimental results show that our approach significantly improves remote sensing object detection without whistles and bells and it is more time-efficient than other state-of-the-art augmentation strategies.
comment: Accepted to IEEE Geoscience and Remote Sensing Letters
♻ ☆ PSA-VLM: Enhancing Vision-Language Model Safety through Progressive Concept-Bottleneck-Driven Alignment
Benefiting from the powerful capabilities of Large Language Models (LLMs), pre-trained visual encoder models connected to LLMs form Vision Language Models (VLMs). However, recent research shows that the visual modality in VLMs is highly vulnerable, allowing attackers to bypass safety alignment in LLMs through visually transmitted content, launching harmful attacks. To address this challenge, we propose a progressive concept-based alignment strategy, PSA-VLM, which incorporates safety modules as concept bottlenecks to enhance visual modality safety alignment. By aligning model predictions with specific safety concepts, we improve defenses against risky images, enhancing explainability and controllability while minimally impacting general performance. Our method is obtained through two-stage training. The low computational cost of the first stage brings very effective performance improvement, and the fine-tuning of the language model in the second stage further improves the safety performance. Our method achieves state-of-the-art results on popular VLM safety benchmark.
comment: arXiv admin note: substantial text overlap with arXiv:2405.13581
♻ ☆ Fully automated workflow for designing patient-specific orthopaedic implants: application to total knee arthroplasty
Background. Osteoarthritis affects about 528 million people worldwide, causing pain and stiffness in the joints. Arthroplasty is commonly performed to treat joint osteoarthritis, reducing pain and improving mobility. Nevertheless, a significant share of patients remain unsatisfied with their surgery. Personalised arthroplasty was introduced to improve surgical outcomes however current solutions require delays, making it difficult to integrate in clinical routine. We propose a fully automated workflow to design patient-specific implants for total knee arthroplasty. Methods. The proposed pipeline first uses artificial neural networks to segment the femur and tibia proximal and distal extremities. Then the full bones are reconstructed using augmented statistical shape models, combining shape and landmarks information. Finally, 77 morphological parameters are computed to design patient-specific implants. The developed workflow has been trained on 91 CT scans and evaluated on 41 CT scans, in terms of accuracy and execution time. Results. The workflow accuracy was $0.4\pm0.2mm$ for segmentation, $1.0\pm0.3mm$ for full bone reconstruction, and $2.2\pm1.5mm$ for anatomical landmarks determination. The custom implants fitted the patients' anatomy with $0.9\pm0.5mm$ accuracy. The whole process from segmentation to implants' design lasted about 15 minutes. Conclusion. The proposed workflow performs a fast and reliable personalisation of knee implants, directly from a CT image without requiring any manual intervention. It allows the establishment of a patient-specific pre-operative planning in a very short time, making it easily available for all patients. Combined with efficient implant manufacturing techniques, this solution could help answer the growing number of arthroplasties while reducing complications and improving patients' satisfaction.
♻ ☆ 3D Annotation-Free Learning by Distilling 2D Open-Vocabulary Segmentation Models for Autonomous Driving
Point cloud data labeling is considered a time-consuming and expensive task in autonomous driving, whereas annotation-free learning training can avoid it by learning point cloud representations from unannotated data. In this paper, we propose AFOV, a novel 3D \textbf{A}nnotation-\textbf{F}ree framework assisted by 2D \textbf{O}pen-\textbf{V}ocabulary segmentation models. It consists of two stages: In the first stage, we innovatively integrate high-quality textual and image features of 2D open-vocabulary models and propose the Tri-Modal contrastive Pre-training (TMP). In the second stage, spatial mapping between point clouds and images is utilized to generate pseudo-labels, enabling cross-modal knowledge distillation. Besides, we introduce the Approximate Flat Interaction (AFI) to address the noise during alignment and label confusion. To validate the superiority of AFOV, extensive experiments are conducted on multiple related datasets. We achieved a record-breaking 47.73\% mIoU on the annotation-free 3D segmentation task in nuScenes, surpassing the previous best model by 3.13\% mIoU. Meanwhile, the performance of fine-tuning with 1\% data on nuScenes and SemanticKITTI reached a remarkable 51.75\% mIoU and 48.14\% mIoU, outperforming all previous pre-trained models
comment: 15 pages, 7 figures, codes are available at https://github.com/sbysbysbys/AFOV
♻ ☆ Hierarchical Light Transformer Ensembles for Multimodal Trajectory Forecasting WACV 2025
Accurate trajectory forecasting is crucial for the performance of various systems, such as advanced driver-assistance systems and self-driving vehicles. These forecasts allow us to anticipate events that lead to collisions and, therefore, to mitigate them. Deep Neural Networks have excelled in motion forecasting, but overconfidence and weak uncertainty quantification persist. Deep Ensembles address these concerns, yet applying them to multimodal distributions remains challenging. In this paper, we propose a novel approach named Hierarchical Light Transformer Ensembles (HLT-Ens) aimed at efficiently training an ensemble of Transformer architectures using a novel hierarchical loss function. HLT-Ens leverages grouped fully connected layers, inspired by grouped convolution techniques, to capture multimodal distributions effectively. We demonstrate that HLT-Ens achieves state-of-the-art performance levels through extensive experimentation, offering a promising avenue for improving trajectory forecasting techniques.
comment: WACV 2025
♻ ☆ Diverse Rare Sample Generation with Pretrained GANs AAAI 2025
Deep generative models are proficient in generating realistic data but struggle with producing rare samples in low density regions due to their scarcity of training datasets and the mode collapse problem. While recent methods aim to improve the fidelity of generated samples, they often reduce diversity and coverage by ignoring rare and novel samples. This study proposes a novel approach for generating diverse rare samples from high-resolution image datasets with pretrained GANs. Our method employs gradient-based optimization of latent vectors within a multi-objective framework and utilizes normalizing flows for density estimation on the feature space. This enables the generation of diverse rare images, with controllable parameters for rarity, diversity, and similarity to a reference image. We demonstrate the effectiveness of our approach both qualitatively and quantitatively across various datasets and GANs without retraining or fine-tuning the pretrained GANs.
comment: Accepted at AAAI 2025
♻ ☆ ParGo: Bridging Vision-Language with Partial and Global Views AAAI 2025
This work presents ParGo, a novel Partial-Global projector designed to connect the vision and language modalities for Multimodal Large Language Models (MLLMs). Unlike previous works that rely on global attention-based projectors, our ParGo bridges the representation gap between the separately pre-trained vision encoders and the LLMs by integrating global and partial views, which alleviates the overemphasis on prominent regions. To facilitate the effective training of ParGo, we collect a large-scale detail-captioned image-text dataset named ParGoCap-1M-PT, consisting of 1 million images paired with high-quality captions. Extensive experiments on several MLLM benchmarks demonstrate the effectiveness of our ParGo, highlighting its superiority in aligning vision and language modalities. Compared to conventional Q-Former projector, our ParGo achieves an improvement of 259.96 in MME benchmark. Furthermore, our experiments reveal that ParGo significantly outperforms other projectors, particularly in tasks that emphasize detail perception ability.
comment: Accepted by AAAI 2025
♻ ☆ A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
Advancements in image segmentation play an integral role within the broad scope of Deep Learning-based Computer Vision. Furthermore, their widespread applicability in critical real-world tasks has resulted in challenges related to the reliability of such algorithms. Hence, uncertainty quantification has been extensively studied within this context, enabling the expression of model ignorance (epistemic uncertainty) or data ambiguity (aleatoric uncertainty) to prevent uninformed decision-making. Due to the rapid adoption of Convolutional Neural Network (CNN)-based segmentation models in high-stake applications, a substantial body of research has been published on this very topic, causing its swift expansion into a distinct field. This work provides a comprehensive overview of probabilistic segmentation, by discussing fundamental concepts of uncertainty quantification, governing advancements in the field as well as the application to various tasks. Moreover, literature on both types of uncertainties trace back to four key applications: (1) to quantify statistical inconsistencies in the annotation process due ambiguous images, (2) correlating prediction error with uncertainty, (3) expanding the model hypothesis space for better generalization, and (4) Active Learning. An extensive discussion follows that includes an overview of utilized datasets for each of the applications and evaluation of the available methods. We also highlight challenges related to architectures, uncertainty quantification methods, standardization and benchmarking, and finally end with recommendations for future work such as methods based on single forward passes and models that appropriately leverage volumetric data.
comment: 20 pages, revised
♻ ☆ Enhancing Remote Sensing Vision-Language Models for Zero-Shot Scene Classification ICASSP 2025
Vision-Language Models for remote sensing have shown promising uses thanks to their extensive pretraining. However, their conventional usage in zero-shot scene classification methods still involves dividing large images into patches and making independent predictions, i.e., inductive inference, thereby limiting their effectiveness by ignoring valuable contextual information. Our approach tackles this issue by utilizing initial predictions based on text prompting and patch affinity relationships from the image encoder to enhance zero-shot capabilities through transductive inference, all without the need for supervision and at a minor computational cost. Experiments on 10 remote sensing datasets with state-of-the-art Vision-Language Models demonstrate significant accuracy improvements over inductive zero-shot classification. Our source code is publicly available on Github: https://github.com/elkhouryk/RS-TransCLIP
comment: Accepted at ICASSP 2025
♻ ☆ VideoAnydoor: High-fidelity Video Object Insertion with Precise Motion Control
Despite significant advancements in video generation, inserting a given object into videos remains a challenging task. The difficulty lies in preserving the appearance details of the reference object and accurately modeling coherent motions at the same time. In this paper, we propose VideoAnydoor, a zero-shot video object insertion framework with high-fidelity detail preservation and precise motion control. Starting from a text-to-video model, we utilize an ID extractor to inject the global identity and leverage a box sequence to control the overall motion. To preserve the detailed appearance and meanwhile support fine-grained motion control, we design a pixel warper. It takes the reference image with arbitrary key-points and the corresponding key-point trajectories as inputs. It warps the pixel details according to the trajectories and fuses the warped features with the diffusion U-Net, thus improving detail preservation and supporting users in manipulating the motion trajectories. In addition, we propose a training strategy involving both videos and static images with a weighted loss to enhance insertion quality. VideoAnydoor demonstrates significant superiority over existing methods and naturally supports various downstream applications (e.g., talking head generation, video virtual try-on, multi-region editing) without task-specific fine-tuning.
comment: Project page: https://videoanydoor.github.io/
♻ ☆ START: A Generalized State Space Model with Saliency-Driven Token-Aware Transformation NeurIPS2024
Domain Generalization (DG) aims to enable models to generalize to unseen target domains by learning from multiple source domains. Existing DG methods primarily rely on convolutional neural networks (CNNs), which inherently learn texture biases due to their limited receptive fields, making them prone to overfitting source domains. While some works have introduced transformer-based methods (ViTs) for DG to leverage the global receptive field, these methods incur high computational costs due to the quadratic complexity of self-attention. Recently, advanced state space models (SSMs), represented by Mamba, have shown promising results in supervised learning tasks by achieving linear complexity in sequence length during training and fast RNN-like computation during inference. Inspired by this, we investigate the generalization ability of the Mamba model under domain shifts and find that input-dependent matrices within SSMs could accumulate and amplify domain-specific features, thus hindering model generalization. To address this issue, we propose a novel SSM-based architecture with saliency-based token-aware transformation (namely START), which achieves state-of-the-art (SOTA) performances and offers a competitive alternative to CNNs and ViTs. Our START can selectively perturb and suppress domain-specific features in salient tokens within the input-dependent matrices of SSMs, thus effectively reducing the discrepancy between different domains. Extensive experiments on five benchmarks demonstrate that START outperforms existing SOTA DG methods with efficient linear complexity. Our code is available at https://github.com/lingeringlight/START.
comment: Accepted by NeurIPS2024. The code is available at https://github.com/lingeringlight/START
♻ ☆ Transferable Adversarial Examples with Bayes Approach AsiaCCS'25
The vulnerability of deep neural networks (DNNs) to black-box adversarial attacks is one of the most heated topics in trustworthy AI. In such attacks, the attackers operate without any insider knowledge of the model, making the cross-model transferability of adversarial examples critical. Despite the potential for adversarial examples to be effective across various models, it has been observed that adversarial examples that are specifically crafted for a specific model often exhibit poor transferability. In this paper, we explore the transferability of adversarial examples via the lens of Bayesian approach. Specifically, we leverage Bayesian approach to probe the transferability and then study what constitutes a transferability-promoting prior. Following this, we design two concrete transferability-promoting priors, along with an adaptive dynamic weighting strategy for instances sampled from these priors. Employing these techniques, we present BayAtk. Extensive experiments illustrate the significant effectiveness of BayAtk in crafting more transferable adversarial examples against both undefended and defended black-box models compared to existing state-of-the-art attacks.
comment: Accepted in AsiaCCS'25
♻ ☆ ACE++: Instruction-Based Image Creation and Editing via Context-Aware Content Filling
We report ACE++, an instruction-based diffusion framework that tackles various image generation and editing tasks. Inspired by the input format for the inpainting task proposed by FLUX.1-Fill-dev, we improve the Long-context Condition Unit (LCU) introduced in ACE and extend this input paradigm to any editing and generation tasks. To take full advantage of image generative priors, we develop a two-stage training scheme to minimize the efforts of finetuning powerful text-to-image diffusion models like FLUX.1-dev. In the first stage, we pre-train the model using task data with the 0-ref tasks from the text-to-image model. There are many models in the community based on the post-training of text-to-image foundational models that meet this training paradigm of the first stage. For example, FLUX.1-Fill-dev deals primarily with painting tasks and can be used as an initialization to accelerate the training process. In the second stage, we finetune the above model to support the general instructions using all tasks defined in ACE. To promote the widespread application of ACE++ in different scenarios, we provide a comprehensive set of models that cover both full finetuning and lightweight finetuning, while considering general applicability and applicability in vertical scenarios. The qualitative analysis showcases the superiority of ACE++ in terms of generating image quality and prompt following ability. Code and models will be available on the project page: https://ali-vilab. github.io/ACE_plus_page/.
♻ ☆ KNN-MMD: Cross Domain Wireless Sensing via Local Distribution Alignment
Wireless sensing has recently found widespread applications in diverse environments, including homes, offices, and public spaces. By analyzing patterns in channel state information (CSI), it is possible to infer human actions for tasks such as person identification, gesture recognition, and fall detection. However, CSI is highly sensitive to environmental changes, where even minor alterations can significantly distort the CSI patterns. This sensitivity often leads to performance degradation or outright failure when applying wireless sensing models trained in one environment to another. To address this challenge, Domain Alignment (DAL) has been widely adopted for cross-domain classification tasks, as it focuses on aligning the global distributions of the source and target domains in feature space. Despite its popularity, DAL often neglects inter-category relationships, which can lead to misalignment between categories across domains, even when global alignment is achieved. To overcome these limitations, we propose K-Nearest Neighbors Maximum Mean Discrepancy (KNN-MMD), a novel few-shot method for cross-domain wireless sensing. Our approach begins by constructing a help set using KNN from the target domain, enabling local alignment between the source and target domains within each category using MMD. Additionally, we address a key instability issue commonly observed in cross-domain methods, where model performance fluctuates sharply between epochs. Further, most existing methods struggle to determine an optimal stopping point during training due to the absence of labeled data from the target domain. Our method resolves this by excluding the support set from the target domain during training and employing it as a validation set to determine the stopping criterion.
♻ ☆ AE-NeRF: Augmenting Event-Based Neural Radiance Fields for Non-ideal Conditions and Larger Scene
Compared to frame-based methods, computational neuromorphic imaging using event cameras offers significant advantages, such as minimal motion blur, enhanced temporal resolution, and high dynamic range. The multi-view consistency of Neural Radiance Fields combined with the unique benefits of event cameras, has spurred recent research into reconstructing NeRF from data captured by moving event cameras. While showing impressive performance, existing methods rely on ideal conditions with the availability of uniform and high-quality event sequences and accurate camera poses, and mainly focus on the object level reconstruction, thus limiting their practical applications. In this work, we propose AE-NeRF to address the challenges of learning event-based NeRF from non-ideal conditions, including non-uniform event sequences, noisy poses, and various scales of scenes. Our method exploits the density of event streams and jointly learn a pose correction module with an event-based NeRF (e-NeRF) framework for robust 3D reconstruction from inaccurate camera poses. To generalize to larger scenes, we propose hierarchical event distillation with a proposal e-NeRF network and a vanilla e-NeRF network to resample and refine the reconstruction process. We further propose an event reconstruction loss and a temporal loss to improve the view consistency of the reconstructed scene. We established a comprehensive benchmark that includes large-scale scenes to simulate practical non-ideal conditions, incorporating both synthetic and challenging real-world event datasets. The experimental results show that our method achieves a new state-of-the-art in event-based 3D reconstruction.
♻ ☆ SpotDiffusion: A Fast Approach For Seamless Panorama Generation Over Time
Generating high-resolution images with generative models has recently been made widely accessible by leveraging diffusion models pre-trained on large-scale datasets. Various techniques, such as MultiDiffusion and SyncDiffusion, have further pushed image generation beyond training resolutions, i.e., from square images to panorama, by merging multiple overlapping diffusion paths or employing gradient descent to maintain perceptual coherence. However, these methods suffer from significant computational inefficiencies due to generating and averaging numerous predictions, which is required in practice to produce high-quality and seamless images. This work addresses this limitation and presents a novel approach that eliminates the need to generate and average numerous overlapping denoising predictions. Our method shifts non-overlapping denoising windows over time, ensuring that seams in one timestep are corrected in the next. This results in coherent, high-resolution images with fewer overall steps. We demonstrate the effectiveness of our approach through qualitative and quantitative evaluations, comparing it with MultiDiffusion, SyncDiffusion, and StitchDiffusion. Our method offers several key benefits, including improved computational efficiency and faster inference times while producing comparable or better image quality. Link to code https://github.com/stanifrolov/spotdiffusion
comment: Project page: https://spotdiffusion.github.io/
♻ ☆ Enhancing the automatic segmentation and analysis of 3D liver vasculature models MICCAI 2024
Surgical assessment of liver cancer patients requires identification of the vessel trees from medical images. Specifically, the venous trees - the portal (perfusing) and the hepatic (draining) trees are important for understanding the liver anatomy and disease state, and perform surgery planning. This research aims to improve the 3D segmentation, skeletonization, and subsequent analysis of vessel trees, by creating an automatic pipeline based on deep learning and image processing techniques. The first part of this work explores the impact of differentiable skeletonization methods such as ClDice and morphological skeletonization loss, on the overall liver vessel segmentation performance. To this aim, it studies how to improve vessel tree connectivity. The second part of this study converts a single class vessel segmentation into multi-class ones, separating the two venous trees. It builds on the previous two-class vessel segmentation model, which vessel tree outputs might be entangled, and on connected components and skeleton analyses of the trees. After providing sub-labeling of the specific anatomical branches of each venous tree, these algorithms also enable a morphometric analysis of the vessel trees by extracting various geometrical markers. In conclusion, we propose a method that successfully improves current skeletonization methods, for extensive vascular trees that contain vessels of different calibers. The separation algorithm creates a clean multi-class segmentation of the vessels, validated by surgeons to provide low error. A new, publicly shared high-quality liver vessel dataset of 77 cases is thus created. Finally a method to annotate vessel trees according to anatomy is provided, enabling a unique liver vessel morphometry analysis.
comment: Paper presented at MICCAI 2024 Workshop: ADSMI. This work was done in the context of an internship at Simbiotx, Inria
♻ ☆ MULTI: Multimodal Understanding Leaderboard with Text and Images
The rapid development of multimodal large language models (MLLMs) raises the question of how they compare to human performance. While existing datasets often feature synthetic or overly simplistic tasks, some models have already surpassed human expert baselines. In this paper, we present MULTI, a Chinese multimodal dataset derived from authentic examination questions. Comprising over 18,000 carefully selected and refined questions, MULTI evaluates models using real-world examination standards, encompassing image-text comprehension, complex reasoning, and knowledge recall. Additionally, We also introduce MULTI-Elite, a 500-question selected hard subset, and MULTI-Extend with more than 4,500 external knowledge context pieces for testing in-context learning capabilities. Our evaluation highlights substantial room for MLLM advancement, with Qwen2-VL-72B achieving a 76.9% accuracy on MULTI and 53.1% on MULTI-Elite leading 25 evaluated models, compared to human expert baselines of 86.1% and 73.1%. MULTI serves not only as a robust evaluation platform but also paves the way for the development of expert-level AI.
comment: 24 pages, 19 figures, 10 tables. Details and access are available at: https://OpenDFM.github.io/MULTI-Benchmark/
♻ ☆ Adaptive Homophily Clustering: Structure Homophily Graph Learning with Adaptive Filter for Hyperspectral Image
Hyperspectral image (HSI) clustering has been a fundamental but challenging task with zero training labels. Currently, some deep graph clustering methods have been successfully explored for HSI due to their outstanding performance in effective spatial structural information encoding. Nevertheless, insufficient structural information utilization, poor feature presentation ability, and weak graph update capability limit their performance. Thus, in this paper, a homophily structure graph learning with an adaptive filter clustering method (AHSGC) for HSI is proposed. Specifically, homogeneous region generation is first developed for HSI processing and constructing the original graph. Afterward, an adaptive filter graph encoder is designed to adaptively capture the high and low frequency features on the graph for subsequence processing. Then, a graph embedding clustering self-training decoder is developed with KL Divergence, with which the pseudo-label is generated for network training. Meanwhile, homophily-enhanced structure learning is introduced to update the graph according to the clustering task, in which the orient correlation estimation is adopted to estimate the node connection, and graph edge sparsification is designed to adjust the edges in the graph dynamically. Finally, a joint network optimization is introduced to achieve network self-training and update the graph. The K-means is adopted to express the latent features. Extensive experiments and repeated comparative analysis have verified that our AHSGC contains high clustering accuracy, low computational complexity, and strong robustness. The code source will be available at https://github.com/DY-HYX.
comment: 14 pages, 8 figure
♻ ☆ Approximation and bounding techniques for the Fisher-Rao distances between parametric statistical models
The Fisher-Rao distance between two probability distributions of a statistical model is defined as the Riemannian geodesic distance induced by the Fisher information metric. In order to calculate the Fisher-Rao distance in closed-form, we need (1) to elicit a formula for the Fisher-Rao geodesics, and (2) to integrate the Fisher length element along those geodesics. We consider several numerically robust approximation and bounding techniques for the Fisher-Rao distances: First, we report generic upper bounds on Fisher-Rao distances based on closed-form 1D Fisher-Rao distances of submodels. Second, we describe several generic approximation schemes depending on whether the Fisher-Rao geodesics or pregeodesics are available in closed-form or not. In particular, we obtain a generic method to guarantee an arbitrarily small additive error on the approximation provided that Fisher-Rao pregeodesics and tight lower and upper bounds are available. Third, we consider the case of Fisher metrics being Hessian metrics, and report generic tight upper bounds on the Fisher-Rao distances using techniques of information geometry. Uniparametric and biparametric statistical models always have Fisher Hessian metrics, and in general a simple test allows to check whether the Fisher information matrix yields a Hessian metric or not. Fourth, we consider elliptical distribution families and show how to apply the above techniques to these models. We also propose two new distances based either on the Fisher-Rao lengths of curves serving as proxies of Fisher-Rao geodesics, or based on the Birkhoff/Hilbert projective cone distance. Last, we consider an alternative group-theoretic approach for statistical transformation models based on the notion of maximal invariant which yields insights on the structures of the Fisher-Rao distance formula which may be used fruitfully in applications.
comment: 48 pages
♻ ☆ Adaptive deep learning framework for robust unsupervised underwater image enhancement
One of the main challenges in deep learning-based underwater image enhancement is the limited availability of high-quality training data. Underwater images are difficult to capture and are often of poor quality due to the distortion and loss of colour and contrast in water. This makes it difficult to train supervised deep learning models on large and diverse datasets, which can limit the model's performance. In this paper, we explore an alternative approach to supervised underwater image enhancement. Specifically, we propose a novel unsupervised underwater image enhancement framework that employs a conditional variational autoencoder (cVAE) to train a deep learning model with probabilistic adaptive instance normalization (PAdaIN) and statistically guided multi-colour space stretch that produces realistic underwater images. The resulting framework is composed of a U-Net as a feature extractor and a PAdaIN to encode the uncertainty, which we call UDnet. To improve the visual quality of the images generated by UDnet, we use a statistically guided multi-colour space stretch module that ensures visual consistency with the input image and provides an alternative to training using a ground truth image. The proposed model does not need manual human annotation and can learn with a limited amount of data and achieves state-of-the-art results on underwater images. We evaluated our proposed framework on eight publicly-available datasets. The results show that our proposed framework yields competitive performance compared to other state-of-the-art approaches in quantitative as well as qualitative metrics. Code available at https://github.com/alzayats/UDnet .
comment: 25 pages, 7 figures, 6 tables, accepted for publication in Expert Systems with Applications
♻ ☆ GUPNet++: Geometry Uncertainty Propagation Network for Monocular 3D Object Detection
Geometry plays a significant role in monocular 3D object detection. It can be used to estimate object depth by using the perspective projection between object's physical size and 2D projection in the image plane, which can introduce mathematical priors into deep models. However, this projection process also introduces error amplification, where the error of the estimated height is amplified and reflected into the projected depth. It leads to unreliable depth inferences and also impairs training stability. To tackle this problem, we propose a novel Geometry Uncertainty Propagation Network (GUPNet++) by modeling geometry projection in a probabilistic manner. This ensures depth predictions are well-bounded and associated with a reasonable uncertainty. The significance of introducing such geometric uncertainty is two-fold: (1). It models the uncertainty propagation relationship of the geometry projection during training, improving the stability and efficiency of the end-to-end model learning. (2). It can be derived to a highly reliable confidence to indicate the quality of the 3D detection result, enabling more reliable detection inference. Experiments show that the proposed approach not only obtains (state-of-the-art) SOTA performance in image-based monocular 3D detection but also demonstrates superiority in efficacy with a simplified framework.
comment: 18 pages, 9 figures
♻ ☆ Concept Matching with Agent for Out-of-Distribution Detection AAAI-25
The remarkable achievements of Large Language Models (LLMs) have captivated the attention of both academia and industry, transcending their initial role in dialogue generation. To expand the usage scenarios of LLM, some works enhance the effectiveness and capabilities of the model by introducing more external information, which is called the agent paradigm. Based on this idea, we propose a new method that integrates the agent paradigm into out-of-distribution (OOD) detection task, aiming to improve its robustness and adaptability. Our proposed method, Concept Matching with Agent (CMA), employs neutral prompts as agents to augment the CLIP-based OOD detection process. These agents function as dynamic observers and communication hubs, interacting with both In-distribution (ID) labels and data inputs to form vector triangle relationships. This triangular framework offers a more nuanced approach than the traditional binary relationship, allowing for better separation and identification of ID and OOD inputs. Our extensive experimental results showcase the superior performance of CMA over both zero-shot and training-required methods in a diverse array of real-world scenarios.
comment: Accepted by AAAI-25
♻ ☆ High-Performance Inference Graph Convolutional Networks for Skeleton-Based Action Recognition
Recently, the significant achievements have been made in skeleton-based human action recognition with the emergence of graph convolutional networks (GCNs). However, the state-of-the-art (SOTA) models used for this task focus on constructing more complex higher-order connections between joint nodes to describe skeleton information, which leads to complex inference processes and high computational costs. To address the slow inference speed caused by overly complex model structures, we introduce re-parameterization and over-parameterization techniques to GCNs and propose two novel high-performance inference GCNs, namely HPI-GCN-RP and HPI-GCN-OP. After the completion of model training, model parameters are fixed. HPI-GCN-RP adopts re-parameterization technique to transform high-performance training model into fast inference model through linear transformations, which achieves a higher inference speed with competitive model performance. HPI-GCN-OP further utilizes over-parameterization technique to achieve higher performance improvement by introducing additional inference parameters, albeit with slightly decreased inference speed. The experimental results on the two skeleton-based action recognition datasets demonstrate the effectiveness of our approach. Our HPI-GCN-OP achieves performance comparable to the current SOTA models, with inference speeds five times faster. Specifically, our HPI-GCN-OP achieves an accuracy of 93\% on the cross-subject split of the NTU-RGB+D 60 dataset, and 90.1\% on the cross-subject benchmark of the NTU-RGB+D 120 dataset. Code is available at github.com/lizaowo/HPI-GCN.
comment: 23 pages, 5 figures
♻ ☆ Siamese-DETR for Generic Multi-Object Tracking
The ability to detect and track the dynamic objects in different scenes is fundamental to real-world applications, e.g., autonomous driving and robot navigation. However, traditional Multi-Object Tracking (MOT) is limited to tracking objects belonging to the pre-defined closed-set categories. Recently, Open-Vocabulary MOT (OVMOT) and Generic MOT (GMOT) are proposed to track interested objects beyond pre-defined categories with the given text prompt and template image. However, the expensive well pre-trained (vision-)language model and fine-grained category annotations are required to train OVMOT models. In this paper, we focus on GMOT and propose a simple but effective method, Siamese-DETR, for GMOT. Only the commonly used detection datasets (e.g., COCO) are required for training. Different from existing GMOT methods, which train a Single Object Tracking (SOT) based detector to detect interested objects and then apply a data association based MOT tracker to get the trajectories, we leverage the inherent object queries in DETR variants. Specifically: 1) The multi-scale object queries are designed based on the given template image, which are effective for detecting different scales of objects with the same category as the template image; 2) A dynamic matching training strategy is introduced to train Siamese-DETR on commonly used detection datasets, which takes full advantage of provided annotations; 3) The online tracking pipeline is simplified through a tracking-by-query manner by incorporating the tracked boxes in previous frame as additional query boxes. The complex data association is replaced with the much simpler Non-Maximum Suppression (NMS). Extensive experimental results show that Siamese-DETR surpasses existing MOT methods on GMOT-40 dataset by a large margin. Codes are avaliable at \url{https://github.com/yumu-173/Siamese-DETR}.
♻ ☆ Localize-and-Stitch: Efficient Model Merging via Sparse Task Arithmetic
Model merging offers an effective strategy to combine the strengths of multiple finetuned models into a unified model that preserves the specialized capabilities of each. Existing methods merge models in a global manner, performing arithmetic operations across all model parameters. However, such global merging often leads to task interference, degrading the performance of the merged model. In this work, we introduce Localize-and-Stitch, a novel approach that merges models in a localized way. Our algorithm works in two steps: i) Localization: identify tiny ($1\%$ of the total parameters) localized regions in the finetuned models containing essential skills for the downstream tasks, and ii) Stitching: reintegrate only these essential regions back into the pretrained model for task synergy. We demonstrate that our approach effectively locates sparse regions responsible for finetuned performance, and the localized regions could be treated as compact and interpretable representations of the finetuned models (tasks). Empirically, we evaluate our method on various vision and language benchmarks, showing that it outperforms existing model merging methods under different data availability scenarios. Beyond strong empirical performance, our algorithm also facilitates model compression and preserves pretrained knowledge, enabling flexible and continual skill composition from multiple finetuned models with minimal storage and computational overhead. Our code is available at https://github.com/uiuctml/Localize-and-Stitch.
comment: TMLR camera-ready version
♻ ☆ Model Checking in Medical Imaging for Tumor Detection and Segmentation
Recent advancements in model checking have demonstrated significant potential across diverse applications, particularly in signal and image analysis. Medical imaging stands out as a critical domain where model checking can be effectively applied to design and evaluate robust frameworks. These frameworks facilitate automatic and semi-automatic delineation of regions of interest within images, aiding in accurate segmentation. This paper provides a comprehensive analysis of recent works leveraging spatial logic to develop operators and tools for identifying regions of interest, including tumorous and non-tumorous areas. Additionally, we examine the challenges inherent to spatial model-checking techniques, such as variability in ground truth data and the need for streamlined procedures suitable for routine clinical practice.
♻ ☆ EEG Emotion Copilot: Optimizing Lightweight LLMs for Emotional EEG Interpretation with Assisted Medical Record Generation
In the fields of affective computing (AC) and brain-machine interface (BMI), the analysis of physiological and behavioral signals to discern individual emotional states has emerged as a critical research frontier. While deep learning-based approaches have made notable strides in EEG emotion recognition, particularly in feature extraction and pattern recognition, significant challenges persist in achieving end-to-end emotion computation, including real-time processing, individual adaptation, and seamless user interaction. This paper presents the EEG Emotion Copilot, a system optimizing a lightweight large language model (LLM) with 0.5B parameters operating in a local setting, which first recognizes emotional states directly from EEG signals, subsequently generates personalized diagnostic and treatment suggestions, and finally supports the automation of assisted electronic medical records. Specifically, we demonstrate the critical techniques in the novel data structure of prompt, model pruning and fine-tuning training, and deployment strategies aiming at improving real-time performance and computational efficiency. Extensive experiments show that our optimized lightweight LLM-based copilot achieves an enhanced intuitive interface for participant interaction, superior accuracy of emotion recognition and assisted electronic medical records generation, in comparison to such models with similar scale parameters or large-scale parameters such as 1.5B, 1.8B, 3B and 7B. In summary, through these efforts, the proposed copilot is expected to advance the application of AC in the medical domain, offering innovative solution to mental health monitoring. The codes will be released at https://github.com/NZWANG/EEG_Emotion_Copilot.
comment: 10 pages, 12 figures, 2 tables
♻ ☆ An In-Depth Analysis of Adversarial Discriminative Domain Adaptation for Digit Classification
Domain adaptation is an active area of research driven by the growing demand for robust machine learning models that perform well on real-world data. Adversarial learning for deep neural networks (DNNs) has emerged as a promising approach to improving generalization ability, particularly for image classification. In this paper, we implement a specific adversarial learning technique known as Adversarial Discriminative Domain Adaptation (ADDA) and replicate digit classification experiments from the original ADDA paper. We extend their findings by examining a broader range of domain shifts and provide a detailed analysis of in-domain classification accuracy post-ADDA. Our results demonstrate that ADDA significantly improves accuracy across certain domain shifts with minimal impact on in-domain performance. Furthermore, we provide qualitative analysis and propose potential explanations for ADDA's limitations in less successful domain shifts. Code is at https://github.com/eugenechoi2004/COS429_FINAL .
comment: Replacement: Updated methodology section to include grayscale preprocessing of SVHN data
♻ ☆ VidFormer: A novel end-to-end framework fused by 3DCNN and Transformer for Video-based Remote Physiological Measurement
Remote physiological signal measurement based on facial videos, also known as remote photoplethysmography (rPPG), involves predicting changes in facial vascular blood flow from facial videos. While most deep learning-based methods have achieved good results, they often struggle to balance performance across small and large-scale datasets due to the inherent limitations of convolutional neural networks (CNNs) and Transformer. In this paper, we introduce VidFormer, a novel end-to-end framework that integrates 3-Dimension Convolutional Neural Network (3DCNN) and Transformer models for rPPG tasks. Initially, we conduct an analysis of the traditional skin reflection model and subsequently introduce an enhanced model for the reconstruction of rPPG signals. Based on this improved model, VidFormer utilizes 3DCNN and Transformer to extract local and global features from input data, respectively. To enhance the spatiotemporal feature extraction capabilities of VidFormer, we incorporate temporal-spatial attention mechanisms tailored for both 3DCNN and Transformer. Additionally, we design a module to facilitate information exchange and fusion between the 3DCNN and Transformer. Our evaluation on five publicly available datasets demonstrates that VidFormer outperforms current state-of-the-art (SOTA) methods. Finally, we discuss the essential roles of each VidFormer module and examine the effects of ethnicity, makeup, and exercise on its performance.
♻ ☆ Socratic Questioning: Learn to Self-guide Multimodal Reasoning in the Wild
Complex visual reasoning remains a key challenge today. Typically, the challenge is tackled using methodologies such as Chain of Thought (COT) and visual instruction tuning. However, how to organically combine these two methodologies for greater success remains unexplored. Also, issues like hallucinations and high training cost still need to be addressed. In this work, we devise an innovative multi-round training and reasoning framework suitable for lightweight Multimodal Large Language Models (MLLMs). Our self-questioning approach heuristically guides MLLMs to focus on visual clues relevant to the target problem, reducing hallucinations and enhancing the model's ability to describe fine-grained image details. This ultimately enables the model to perform well in complex visual reasoning and question-answering tasks. We have named this framework Socratic Questioning(SQ). To facilitate future research, we create a multimodal mini-dataset named CapQA, which includes 1k images of fine-grained activities, for visual instruction tuning and evaluation, our proposed SQ method leads to a 31.2% improvement in the hallucination score. Our extensive experiments on various benchmarks demonstrate SQ's remarkable capabilities in heuristic self-questioning, zero-shot visual reasoning and hallucination mitigation. Our model and code will be publicly available.
♻ ☆ ControlMLLM: Training-Free Visual Prompt Learning for Multimodal Large Language Models NeurIPS 2024
In this work, we propose a training-free method to inject visual prompts into Multimodal Large Language Models (MLLMs) through test-time optimization of a learnable latent variable. We observe that attention, as the core module of MLLMs, connects text prompt tokens and visual tokens, ultimately determining the final results. Our approach involves adjusting visual tokens from the MLP output at test time, controlling the attention response to ensure text prompt tokens attend to visual tokens in referring regions. We optimize a learnable latent variable based on an energy function, enhancing the strength of referring regions in the attention map. This enables detailed region description and reasoning without the need for substantial training costs or model retraining. Our method offers a promising direction for integrating referring abilities into MLLMs, and supports referring with box, mask, scribble and point. The results demonstrate that our method exhibits out-of-domain generalization and interpretability.
comment: Accepted to NeurIPS 2024; Code:https://github.com/mrwu-mac/ControlMLLM
♻ ☆ SceneVTG++: Controllable Multilingual Visual Text Generation in the Wild
Generating visual text in natural scene images is a challenging task with many unsolved problems. Different from generating text on artificially designed images (such as posters, covers, cartoons, etc.), the text in natural scene images needs to meet the following four key criteria: (1) Fidelity: the generated text should appear as realistic as a photograph and be completely accurate, with no errors in any of the strokes. (2) Reasonability: the text should be generated on reasonable carrier areas (such as boards, signs, walls, etc.), and the generated text content should also be relevant to the scene. (3) Utility: the generated text can facilitate to the training of natural scene OCR (Optical Character Recognition) tasks. (4) Controllability: The attribute of the text (such as font and color) should be controllable as needed. In this paper, we propose a two stage method, SceneVTG++, which simultaneously satisfies the four aspects mentioned above. SceneVTG++ consists of a Text Layout and Content Generator (TLCG) and a Controllable Local Text Diffusion (CLTD). The former utilizes the world knowledge of multi modal large language models to find reasonable text areas and recommend text content according to the nature scene background images, while the latter generates controllable multilingual text based on the diffusion model. Through extensive experiments, we respectively verified the effectiveness of TLCG and CLTD, and demonstrated the state-of-the-art text generation performance of SceneVTG++. In addition, the generated images have superior utility in OCR tasks like text detection and text recognition. Codes and datasets will be available.
♻ ☆ INFELM: In-depth Fairness Evaluation of Large Text-To-Image Models
The rapid development of large language models (LLMs) and large vision models (LVMs) have propelled the evolution of multi-modal AI systems, which have demonstrated the remarkable potential for industrial applications by emulating human-like cognition. However, they also pose significant ethical challenges, including amplifying harmful content and reinforcing societal biases. For instance, biases in some industrial image generation models highlighted the urgent need for robust fairness assessments. Most existing evaluation frameworks focus on the comprehensiveness of various aspects of the models, but they exhibit critical limitations, including insufficient attention to content generation alignment and social bias-sensitive domains. More importantly, their reliance on pixel-detection techniques is prone to inaccuracies. To address these issues, this paper presents INFELM, an in-depth fairness evaluation on widely-used text-to-image models. Our key contributions are: (1) an advanced skintone classifier incorporating facial topology and refined skin pixel representation to enhance classification precision by at least 16.04%, (2) a bias-sensitive content alignment measurement for understanding societal impacts, (3) a generalizable representation bias evaluation for diverse demographic groups, and (4) extensive experiments analyzing large-scale text-to-image model outputs across six social-bias-sensitive domains. We find that existing models in the study generally do not meet the empirical fairness criteria, and representation bias is generally more pronounced than alignment errors. INFELM establishes a robust benchmark for fairness assessment, supporting the development of multi-modal AI systems that align with ethical and human-centric principles.
comment: Di Jin and Xing Liu contributed equally to this work
♻ ☆ Trusted Mamba Contrastive Network for Multi-View Clustering ICASSP2025
Multi-view clustering can partition data samples into their categories by learning a consensus representation in an unsupervised way and has received more and more attention in recent years. However, there is an untrusted fusion problem. The reasons for this problem are as follows: 1) The current methods ignore the presence of noise or redundant information in the view; 2) The similarity of contrastive learning comes from the same sample rather than the same cluster in deep multi-view clustering. It causes multi-view fusion in the wrong direction. This paper proposes a novel multi-view clustering network to address this problem, termed as Trusted Mamba Contrastive Network (TMCN). Specifically, we present a new Trusted Mamba Fusion Network (TMFN), which achieves a trusted fusion of multi-view data through a selective mechanism. Moreover, we align the fused representation and the view-specific representation using the Average-similarity Contrastive Learning (AsCL) module. AsCL increases the similarity of view presentation from the same cluster, not merely from the same sample. Extensive experiments show that the proposed method achieves state-of-the-art results in deep multi-view clustering tasks. The source code is available at https://github.com/HackerHyper/TMCN.
comment: accepted by 2025 IEEE International Conference on Acoustics, Speech, and Signal Processing(ICASSP2025)
♻ ☆ PlanLLM: Video Procedure Planning with Refinable Large Language Models AAAI2025
Video procedure planning, i.e., planning a sequence of action steps given the video frames of start and goal states, is an essential ability for embodied AI. Recent works utilize Large Language Models (LLMs) to generate enriched action step description texts to guide action step decoding. Although LLMs are introduced, these methods decode the action steps into a closed-set of one-hot vectors, limiting the model's capability of generalizing to new steps or tasks. Additionally, fixed action step descriptions based on world-level commonsense may contain noise in specific instances of visual states. In this paper, we propose PlanLLM, a cross-modal joint learning framework with LLMs for video procedure planning. We propose an LLM-Enhanced Planning module which fully uses the generalization ability of LLMs to produce free-form planning output and to enhance action step decoding. We also propose Mutual Information Maximization module to connect world-level commonsense of step descriptions and sample-specific information of visual states, enabling LLMs to employ the reasoning ability to generate step sequences. With the assistance of LLMs, our method can both closed-set and open vocabulary procedure planning tasks. Our PlanLLM achieves superior performance on three benchmarks, demonstrating the effectiveness of our designs.
comment: accepted to AAAI2025
♻ ☆ Rare-to-Frequent: Unlocking Compositional Generation Power of Diffusion Models on Rare Concepts with LLM Guidance
State-of-the-art text-to-image (T2I) diffusion models often struggle to generate rare compositions of concepts, e.g., objects with unusual attributes. In this paper, we show that the compositional generation power of diffusion models on such rare concepts can be significantly enhanced by the Large Language Model (LLM) guidance. We start with empirical and theoretical analysis, demonstrating that exposing frequent concepts relevant to the target rare concepts during the diffusion sampling process yields more accurate concept composition. Based on this, we propose a training-free approach, R2F, that plans and executes the overall rare-to-frequent concept guidance throughout the diffusion inference by leveraging the abundant semantic knowledge in LLMs. Our framework is flexible across any pre-trained diffusion models and LLMs, and can be seamlessly integrated with the region-guided diffusion approaches. Extensive experiments on three datasets, including our newly proposed benchmark, RareBench, containing various prompts with rare compositions of concepts, R2F significantly surpasses existing models including SD3.0 and FLUX by up to 28.1%p in T2I alignment. Code is available at https://github.com/krafton-ai/Rare-to-Frequent.
♻ ☆ Flemme: A Flexible and Modular Learning Platform for Medical Images
As the rapid development of computer vision and the emergence of powerful network backbones and architectures, the application of deep learning in medical imaging has become increasingly significant. Unlike natural images, medical images lack huge volumes of data but feature more modalities, making it difficult to train a general model that has satisfactory performance across various datasets. In practice, practitioners often suffer from manually creating and testing models combining independent backbones and architectures, which is a laborious and time-consuming process. We propose Flemme, a FLExible and Modular learning platform for MEdical images. Our platform separates encoders from the model architectures so that different models can be constructed via various combinations of supported encoders and architectures. We construct encoders using building blocks based on convolution, transformer, and state-space model (SSM) to process both 2D and 3D image patches. A base architecture is implemented following an encoder-decoder style, with several derived architectures for image segmentation, reconstruction, and generation tasks. In addition, we propose a general hierarchical architecture incorporating a pyramid loss to optimize and fuse vertical features. Experiments demonstrate that this simple design leads to an average improvement of 5.60% in Dice score and 7.81% in mean interaction of units (mIoU) for segmentation models, as well as an enhancement of 5.57% in peak signal-to-noise ratio (PSNR) and 8.22% in structural similarity (SSIM) for reconstruction models. We further utilize Flemme as an analytical tool to assess the effectiveness and efficiency of various encoders across different tasks. Code is available at https://github.com/wlsdzyzl/flemme.
comment: 8 pages, 6 figures
♻ ☆ Light-weight Fine-tuning Method for Defending Adversarial Noise in Pre-trained Medical Vision-Language Models
Fine-tuning pre-trained Vision-Language Models (VLMs) has shown remarkable capabilities in medical image and textual depiction synergy. Nevertheless, many pre-training datasets are restricted by patient privacy concerns, potentially containing noise that can adversely affect downstream performance. Moreover, the growing reliance on multi-modal generation exacerbates this issue because of its susceptibility to adversarial attacks. To investigate how VLMs trained on adversarial noisy data perform on downstream medical tasks, we first craft noisy upstream datasets using multi-modal adversarial attacks. Through our comprehensive analysis, we unveil that moderate noise enhances model robustness and transferability, but increasing noise levels negatively impact downstream task performance. To mitigate this issue, we propose rectify adversarial noise (RAN) framework, a recipe designed to effectively defend adversarial attacks and rectify the influence of upstream noise during fine-tuning.
♻ ☆ CoMA: Compositional Human Motion Generation with Multi-modal Agents
3D human motion generation has seen substantial advancement in recent years. While state-of-the-art approaches have improved performance significantly, they still struggle with complex and detailed motions unseen in training data, largely due to the scarcity of motion datasets and the prohibitive cost of generating new training examples. To address these challenges, we introduce CoMA, an agent-based solution for complex human motion generation, editing, and comprehension. CoMA leverages multiple collaborative agents powered by large language and vision models, alongside a mask transformer-based motion generator featuring body part-specific encoders and codebooks for fine-grained control. Our framework enables generation of both short and long motion sequences with detailed instructions, text-guided motion editing, and self-correction for improved quality. Evaluations on the HumanML3D dataset demonstrate competitive performance against state-of-the-art methods. Additionally, we create a set of context-rich, compositional, and long text prompts, where user studies show our method significantly outperforms existing approaches.
comment: Project Page: https://gabrie-l.github.io/coma-page/
♻ ☆ Fair Text to Medical Image Diffusion Model with Subgroup Distribution Aligned Tuning
The text to medical image (T2MedI) with latent diffusion model has great potential to alleviate the scarcity of medical imaging data and explore the underlying appearance distribution of lesions in a specific patient status description. However, as the text to nature image models, we show that the T2MedI model can also bias to some subgroups to overlook the minority ones in the training set. In this work, we first build a T2MedI model based on the pre-trained Imagen model, which has the fixed contrastive language-image pre-training (CLIP) text encoder, while its decoder has been fine-tuned on medical images from the Radiology Objects in COntext (ROCO) dataset. Its gender bias is analyzed qualitatively and quantitatively. Toward this issue, we propose to fine-tune the T2MedI toward the target application dataset to align their sensitive subgroups distribution probability. Specifically, the alignment loss for fine-tuning is guided by an off-the-shelf sensitivity-subgroup classifier to match the classification probability between the generated images and the expected target dataset. In addition, the image quality is maintained by a CLIP-consistency regularization term following a knowledge distillation scheme. For evaluation, we set the target dataset to be enhanced as the BraST18 dataset, and trained a brain magnetic resonance (MR) slice-based gender classifier from it. With our method, the generated MR image can markedly reduce the inconsistency with the gender proportion in the BraTS18 dataset.
♻ ☆ Cross-Skeleton Interaction Graph Aggregation Network for Representation Learning of Mouse Social Behaviour
Automated social behaviour analysis of mice has become an increasingly popular research area in behavioural neuroscience. Recently, pose information (i.e., locations of keypoints or skeleton) has been used to interpret social behaviours of mice. Nevertheless, effective encoding and decoding of social interaction information underlying the keypoints of mice has been rarely investigated in the existing methods. In particular, it is challenging to model complex social interactions between mice due to highly deformable body shapes and ambiguous movement patterns. To deal with the interaction modelling problem, we here propose a Cross-Skeleton Interaction Graph Aggregation Network (CS-IGANet) to learn abundant dynamics of freely interacting mice, where a Cross-Skeleton Node-level Interaction module (CS-NLI) is used to model multi-level interactions (i.e., intra-, inter- and cross-skeleton interactions). Furthermore, we design a novel Interaction-Aware Transformer (IAT) to dynamically learn the graph-level representation of social behaviours and update the node-level representation, guided by our proposed interaction-aware self-attention mechanism. Finally, to enhance the representation ability of our model, an auxiliary self-supervised learning task is proposed for measuring the similarity between cross-skeleton nodes. Experimental results on the standard CRMI13-Skeleton and our PDMB-Skeleton datasets show that our proposed model outperforms several other state-of-the-art approaches.
comment: Accepted to IEEE Transactions on Image Processing
♻ ☆ MotionBridge: Dynamic Video Inbetweening with Flexible Controls
By generating plausible and smooth transitions between two image frames, video inbetweening is an essential tool for video editing and long video synthesis. Traditional works lack the capability to generate complex large motions. While recent video generation techniques are powerful in creating high-quality results, they often lack fine control over the details of intermediate frames, which can lead to results that do not align with the creative mind. We introduce MotionBridge, a unified video inbetweening framework that allows flexible controls, including trajectory strokes, keyframes, masks, guide pixels, and text. However, learning such multi-modal controls in a unified framework is a challenging task. We thus design two generators to extract the control signal faithfully and encode feature through dual-branch embedders to resolve ambiguities. We further introduce a curriculum training strategy to smoothly learn various controls. Extensive qualitative and quantitative experiments have demonstrated that such multi-modal controls enable a more dynamic, customizable, and contextually accurate visual narrative.
comment: Project website: [https://motionbridge.github.io/]
♻ ☆ Unconditional Latent Diffusion Models Memorize Patient Imaging Data: Implications for Openly Sharing Synthetic Data
AI models present a wide range of applications in the field of medicine. However, achieving optimal performance requires access to extensive healthcare data, which is often not readily available. Furthermore, the imperative to preserve patient privacy restricts patient data sharing with third parties and even within institutes. Recently, generative AI models have been gaining traction for facilitating open-data sharing by proposing synthetic data as surrogates of real patient data. Despite the promise, some of these models are susceptible to patient data memorization, where models generate patient data copies instead of novel synthetic samples. Considering the importance of the problem, surprisingly it has received relatively little attention in the medical imaging community. To this end, we assess memorization in unconditional latent diffusion models. We train latent diffusion models on CT, MR, and X-ray datasets for synthetic data generation. We then detect the amount of training data memorized utilizing our novel self-supervised copy detection approach and further investigate various factors that can influence memorization. Our findings show a surprisingly high degree of patient data memorization across all datasets. Comparison with non-diffusion generative models, such as autoencoders and generative adversarial networks, indicates that while latent diffusion models are more susceptible to memorization, overall they outperform non-diffusion models in synthesis quality. Further analyses reveal that using augmentation strategies, small architecture, and increasing dataset can reduce memorization while over-training the models can enhance it. Collectively, our results emphasize the importance of carefully training generative models on private medical imaging datasets, and examining the synthetic data to ensure patient privacy before sharing it for medical research and applications.
♻ ☆ TGGLinesPlus: A robust topological graph-guided computer vision algorithm for line detection from images
Line detection is a classic and essential problem in image processing, computer vision and machine intelligence. Line detection has many important applications, including image vectorization (e.g., document recognition and art design), indoor mapping, and important societal challenges (e.g., sea ice fracture line extraction from satellite imagery). Many line detection algorithms and methods have been developed, but robust and intuitive methods are still lacking. In this paper, we proposed and implemented a topological graph-guided algorithm, named TGGLinesPlus, for line detection. Our experiments on images from a wide range of domains have demonstrated the flexibility of our TGGLinesPlus algorithm. We benchmarked our algorithm with five classic and state-of-the-art line detection methods and evaluated the benchmark results qualitatively and quantitatively, the results demonstrate the robustness of TGGLinesPlus.
comment: Our TGGLinesPlus Python implementation is open-sourced. 29 pages, 8 figures and 4 tables
♻ ☆ Unlocking the diagnostic potential of electrocardiograms through information transfer from cardiac magnetic resonance imaging
Cardiovascular diseases (CVD) can be diagnosed using various diagnostic modalities. The electrocardiogram (ECG) is a cost-effective and widely available diagnostic aid that provides functional information of the heart. However, its ability to classify and spatially localise CVD is limited. In contrast, cardiac magnetic resonance (CMR) imaging provides detailed structural information of the heart and thus enables evidence-based diagnosis of CVD, but long scan times and high costs limit its use in clinical routine. In this work, we present a deep learning strategy for cost-effective and comprehensive cardiac screening solely from ECG. Our approach combines multimodal contrastive learning with masked data modelling to transfer domain-specific information from CMR imaging to ECG representations. In extensive experiments using data from 40,044 UK Biobank subjects, we demonstrate the utility and generalisability of our method for subject-specific risk prediction of CVD and the prediction of cardiac phenotypes using only ECG data. Specifically, our novel multimodal pre-training paradigm improves performance by up to 12.19 % for risk prediction and 27.59 % for phenotype prediction. In a qualitative analysis, we demonstrate that our learned ECG representations incorporate information from CMR image regions of interest. Our entire pipeline is publicly available at https://github.com/oetu/MMCL-ECG-CMR.
♻ ☆ KCNet: An Insect-Inspired Single-Hidden-Layer Neural Network with Randomized Binary Weights for Prediction and Classification Tasks
Fruit flies are established model systems for studying olfactory learning as they will readily learn to associate odors with both electric shock or sugar rewards. The mechanisms of the insect brain apparently responsible for odor learning form a relatively shallow neuronal architecture. Olfactory inputs are received by the antennal lobe (AL) of the brain, which produces an encoding of each odor mixture across ~50 sub-units known as glomeruli. Each of these glomeruli then projects its component of this feature vector to several of ~2000 so-called Kenyon Cells (KCs) in a region of the brain known as the mushroom body (MB). Fly responses to odors are generated by small downstream neutrophils that decode the higher-order representation from the MB. Research has shown that there is no recognizable pattern in the glomeruli--KC connections (and thus the particular higher-order representations); they are akin to fingerprints--even isogenic flies have different projections. Leveraging insights from this architecture, we propose KCNet, a single-hidden-layer neural network that contains sparse, randomized, binary weights between the input layer and the hidden layer and analytically learned weights between the hidden layer and the output layer. Furthermore, we also propose a dynamic optimization algorithm that enables the KCNet to increase performance beyond its structural limits by searching for a more efficient set of inputs. For odorant-perception tasks that predict the perceptual properties of an odorant, we show that KCNet outperforms existing data-driven approaches, such as XGBoost. For image classification tasks, KCNet achieves reasonable performance on benchmark datasets (MNIST, Fashion-MNIST, and EMNIST) without any data-augmentation methods or convolutional layers and shows a particularly fast running time.
comment: 24 pages, 46 figures, 3 tables; The GitHub repo link was updated
♻ ☆ Open-Source Acceleration of Stable-Diffusion.cpp Deployable on All Devices
Stable diffusion plays a crucial role in generating high-quality images. However, image generation is time-consuming and memory-intensive. To address this, stable-diffusion.cpp (Sdcpp) emerges as an efficient inference framework to accelerate the diffusion models. Although it is lightweight, the current implementation of ggml_conv_2d operator in Sdcpp is suboptimal, exhibiting both high inference latency and massive memory usage. To address this, in this work, we present an optimized version of Sdcpp leveraging the Winograd algorithm to accelerate 2D convolution operations, which is the primary bottleneck in the pipeline. By analyzing both dependent and independent computation graphs, we exploit the device's locality and parallelism to achieve substantial performance improvements. Our framework delivers correct end-to-end results across various stable diffusion models, including SDv1.4, v1.5, v2.1, SDXL, and SDXL-Turbo. Our evaluation results demonstrate a speedup up to 2.76x for individual convolutional layers and an inference speedup up to 4.79x for the overall image generation process, compared with the original Sdcpp on M1 pro. Homepage: https://github.com/SealAILab/stable-diffusion-cpp
♻ ☆ Mahalanobis k-NN: A Statistical Lens for Robust Point-Cloud Registrations
In this paper, we discuss Mahalanobis k-NN: A Statistical Lens designed to address the challenges of feature matching in learning-based point cloud registration when confronted with an arbitrary density of point clouds. We tackle this by adopting Mahalanobis k-NN's inherent property to capture the distribution of the local neighborhood and surficial geometry. Our method can be seamlessly integrated into any local-graph-based point cloud analysis method. In this paper, we focus on two distinct methodologies: Deep Closest Point (DCP) and Deep Universal Manifold Embedding (DeepUME). Our extensive benchmarking on the ModelNet40 and FAUST datasets highlights the efficacy of the proposed method in point cloud registration tasks. Moreover, we establish for the first time that the features acquired through point cloud registration inherently can possess discriminative capabilities. This is evident by a substantial improvement of about 20% in the average accuracy observed in the point cloud few-shot classification task, benchmarked on ModelNet40 and ScanObjectNN.
Information Retrieval 16
☆ RAG-Check: Evaluating Multimodal Retrieval Augmented Generation Performance
Retrieval-augmented generation (RAG) improves large language models (LLMs) by using external knowledge to guide response generation, reducing hallucinations. However, RAG, particularly multi-modal RAG, can introduce new hallucination sources: (i) the retrieval process may select irrelevant pieces (e.g., documents, images) as raw context from the database, and (ii) retrieved images are processed into text-based context via vision-language models (VLMs) or directly used by multi-modal language models (MLLMs) like GPT-4o, which may hallucinate. To address this, we propose a novel framework to evaluate the reliability of multi-modal RAG using two performance measures: (i) the relevancy score (RS), assessing the relevance of retrieved entries to the query, and (ii) the correctness score (CS), evaluating the accuracy of the generated response. We train RS and CS models using a ChatGPT-derived database and human evaluator samples. Results show that both models achieve ~88% accuracy on test data. Additionally, we construct a 5000-sample human-annotated database evaluating the relevancy of retrieved pieces and the correctness of response statements. Our RS model aligns with human preferences 20% more often than CLIP in retrieval, and our CS model matches human preferences ~91% of the time. Finally, we assess various RAG systems' selection and generation performances using RS and CS.
☆ (De)-Indexing and the Right to be Forgotten
In the digital age, the challenge of forgetfulness has emerged as a significant concern, particularly regarding the management of personal data and its accessibility online. The right to be forgotten (RTBF) allows individuals to request the removal of outdated or harmful information from public access, yet implementing this right poses substantial technical difficulties for search engines. This paper aims to introduce non-experts to the foundational concepts of information retrieval (IR) and de-indexing, which are critical for understanding how search engines can effectively "forget" certain content. We will explore various IR models, including boolean, probabilistic, vector space, and embedding-based approaches, as well as the role of Large Language Models (LLMs) in enhancing data processing capabilities. By providing this overview, we seek to highlight the complexities involved in balancing individual privacy rights with the operational challenges faced by search engines in managing information visibility.
☆ Towards Reliable Testing for Multiple Information Retrieval System Comparisons
Null Hypothesis Significance Testing is the \textit{de facto} tool for assessing effectiveness differences between Information Retrieval systems. Researchers use statistical tests to check whether those differences will generalise to online settings or are just due to the samples observed in the laboratory. Much work has been devoted to studying which test is the most reliable when comparing a pair of systems, but most of the IR real-world experiments involve more than two. In the multiple comparisons scenario, testing several systems simultaneously may inflate the errors committed by the tests. In this paper, we use a new approach to assess the reliability of multiple comparison procedures using simulated and real TREC data. Experiments show that Wilcoxon plus the Benjamini-Hochberg correction yields Type I error rates according to the significance level for typical sample sizes while being the best test in terms of statistical power.
☆ Exploring the Potential of Large Language Models in Public Transportation: San Antonio Case Study AAAI 2025
The integration of large language models (LLMs) into public transit systems presents a transformative opportunity to enhance urban mobility. This study explores the potential of LLMs to revolutionize public transportation management within the context of San Antonio's transit system. Leveraging the capabilities of LLMs in natural language processing and data analysis, we investigate their capabilities to optimize route planning, reduce wait times, and provide personalized travel assistance. By utilizing the General Transit Feed Specification (GTFS) and other relevant data, this research aims to demonstrate how LLMs can potentially improve resource allocation, elevate passenger satisfaction, and inform data-driven decision-making in transit operations. A comparative analysis of different ChatGPT models was conducted to assess their ability to understand transportation information, retrieve relevant data, and provide comprehensive responses. Findings from this study suggest that while LLMs hold immense promise for public transit, careful engineering and fine-tuning are essential to realizing their full potential. San Antonio serves as a case study to inform the development of LLM-powered transit systems in other urban environments.
comment: This work is accepted to AAAI 2025 Workshop on AI for Urban Planning. arXiv admin note: substantial text overlap with arXiv:2407.11003
BERTopic for Topic Modeling of Hindi Short Texts: A Comparative Study COLING 2025
As short text data in native languages like Hindi increasingly appear in modern media, robust methods for topic modeling on such data have gained importance. This study investigates the performance of BERTopic in modeling Hindi short texts, an area that has been under-explored in existing research. Using contextual embeddings, BERTopic can capture semantic relationships in data, making it potentially more effective than traditional models, especially for short and diverse texts. We evaluate BERTopic using 6 different document embedding models and compare its performance against 8 established topic modeling techniques, such as Latent Dirichlet Allocation (LDA), Non-negative Matrix Factorization (NMF), Latent Semantic Indexing (LSI), Additive Regularization of Topic Models (ARTM), Probabilistic Latent Semantic Analysis (PLSA), Embedded Topic Model (ETM), Combined Topic Model (CTM), and Top2Vec. The models are assessed using coherence scores across a range of topic counts. Our results reveal that BERTopic consistently outperforms other models in capturing coherent topics from short Hindi texts.
comment: Accepted into IndoNLP: The First Workshop on Natural Language Processing for Indo-Aryan and Dravidian Languages, collocated with COLING 2025. Set to appear in the workshop proceedings published in ACL Anthology
☆ TACLR: A Scalable and Efficient Retrieval-based Method for Industrial Product Attribute Value Identification
Product Attribute Value Identification (PAVI) involves identifying attribute values from product profiles, a key task for improving product search, recommendations, and business analytics on e-commerce platforms. However, existing PAVI methods face critical challenges, such as inferring implicit values, handling out-of-distribution (OOD) values, and producing normalized outputs. To address these limitations, we introduce Taxonomy-Aware Contrastive Learning Retrieval (TACLR), the first retrieval-based method for PAVI. TACLR formulates PAVI as an information retrieval task by encoding product profiles and candidate values into embeddings and retrieving values based on their similarity to the item embedding. It leverages contrastive training with taxonomy-aware hard negative sampling and employs adaptive inference with dynamic thresholds. TACLR offers three key advantages: (1) it effectively handles implicit and OOD values while producing normalized outputs; (2) it scales to thousands of categories, tens of thousands of attributes, and millions of values; and (3) it supports efficient inference for high-load industrial scenarios. Extensive experiments on proprietary and public datasets validate the effectiveness and efficiency of TACLR. Moreover, it has been successfully deployed in a real-world e-commerce platform, processing millions of product listings daily while supporting dynamic, large-scale attribute taxonomies.
☆ Extending ChatGPT with a Browserless System for Web Product Price Extraction
With the advenement of ChatGPT, we can find very clean, precise answers to a varied amount of questions. However, for questions such as 'find the price of the lemon cake at zingerman's', the answer looks like 'I can't browse the web right now'. In this paper, we propose a system, called Wextractor, which extends ChatGPT to answer questions as the one mentioned before. Obviously, our system cannot be labeled as `artificial intelligence'. Simply, it offers to cover a kind of transactional search that is not included in the current version of ChatGPT. Moreover, Wextractor includes two improvements with respect to the initial version: social extraction and pointing pattern extraction to improve the answer speed.
comment: 14 pages, 4 figures
☆ Multi-label Cross-lingual automatic music genre classification from lyrics with Sentence BERT
Music genres are shaped by both the stylistic features of songs and the cultural preferences of artists' audiences. Automatic classification of music genres using lyrics can be useful in several applications such as recommendation systems, playlist creation, and library organization. We present a multi-label, cross-lingual genre classification system based on multilingual sentence embeddings generated by sBERT. Using a bilingual Portuguese-English dataset with eight overlapping genres, we demonstrate the system's ability to train on lyrics in one language and predict genres in another. Our approach outperforms the baseline approach of translating lyrics and using a bag-of-words representation, improving the genrewise average F1-Score from 0.35 to 0.69. The classifier uses a one-vs-all architecture, enabling it to assign multiple genre labels to a single lyric. Experimental results reveal that dataset centralization notably improves cross-lingual performance. This approach offers a scalable solution for genre classification across underrepresented languages and cultural domains, advancing the capabilities of music information retrieval systems.
comment: 5 pages
☆ RecKG: Knowledge Graph for Recommender Systems
Knowledge graphs have proven successful in integrating heterogeneous data across various domains. However, there remains a noticeable dearth of research on their seamless integration among heterogeneous recommender systems, despite knowledge graph-based recommender systems garnering extensive research attention. This study aims to fill this gap by proposing RecKG, a standardized knowledge graph for recommender systems. RecKG ensures the consistent representation of entities across different datasets, accommodating diverse attribute types for effective data integration. Through a meticulous examination of various recommender system datasets, we select attributes for RecKG, ensuring standardized formatting through consistent naming conventions. By these characteristics, RecKG can seamlessly integrate heterogeneous data sources, enabling the discovery of additional semantic information within the integrated knowledge graph. We apply RecKG to standardize real-world datasets, subsequently developing an application for RecKG using a graph database. Finally, we validate RecKG's achievement in interoperability through a qualitative evaluation between RecKG and other studies.
comment: Accepted by The 39th ACM/SIGAPP Symposium On Applied Computing(SAC) 2024
☆ Reasoning-Enhanced Self-Training for Long-Form Personalized Text Generation
Personalized text generation requires a unique ability of large language models (LLMs) to learn from context that they often do not encounter during their standard training. One way to encourage LLMs to better use personalized context for generating outputs that better align with the user's expectations is to instruct them to reason over the user's past preferences, background knowledge, or writing style. To achieve this, we propose Reasoning-Enhanced Self-Training for Personalized Text Generation (REST-PG), a framework that trains LLMs to reason over personal data during response generation. REST-PG first generates reasoning paths to train the LLM's reasoning abilities and then employs Expectation-Maximization Reinforced Self-Training to iteratively train the LLM based on its own high-reward outputs. We evaluate REST-PG on the LongLaMP benchmark, consisting of four diverse personalized long-form text generation tasks. Our experiments demonstrate that REST-PG achieves significant improvements over state-of-the-art baselines, with an average relative performance gain of 14.5% on the benchmark.
☆ KGIF: Optimizing Relation-Aware Recommendations with Knowledge Graph Information Fusion
While deep-learning-enabled recommender systems demonstrate strong performance benchmarks, many struggle to adapt effectively in real-world environments due to limited use of user-item relationship data and insufficient transparency in recommendation generation. Traditional collaborative filtering approaches fail to integrate multifaceted item attributes, and although Factorization Machines account for item-specific details, they overlook broader relational patterns. Collaborative knowledge graph-based models have progressed by embedding user-item interactions with item-attribute relationships, offering a holistic perspective on interconnected entities. However, these models frequently aggregate attribute and interaction data in an implicit manner, leaving valuable relational nuances underutilized. This study introduces the Knowledge Graph Attention Network with Information Fusion (KGIF), a specialized framework designed to merge entity and relation embeddings explicitly through a tailored self-attention mechanism. The KGIF framework integrates reparameterization via dynamic projection vectors, enabling embeddings to adaptively represent intricate relationships within knowledge graphs. This explicit fusion enhances the interplay between user-item interactions and item-attribute relationships, providing a nuanced balance between user-centric and item-centric representations. An attentive propagation mechanism further optimizes knowledge graph embeddings, capturing multi-layered interaction patterns. The contributions of this work include an innovative method for explicit information fusion, improved robustness for sparse knowledge graphs, and the ability to generate explainable recommendations through interpretable path visualization.
comment: Published at IEEE Big Data 2024
☆ Retrieval-Augmented Generation by Evidence Retroactivity in LLMs
Retrieval-augmented generation has gained significant attention due to its ability to integrate relevant external knowledge, enhancing the accuracy and reliability of the LLMs' responses. Most of the existing methods apply a dynamic multiple retrieval-generating process, to address multi-hop complex questions by decomposing them into sub-problems. However, these methods rely on an unidirectional forward reasoning paradigm, where errors from insufficient reasoning steps or inherent flaws in current retrieval systems are irreversible, potentially derailing the entire reasoning chain. For the first time, this work introduces Retroactive Retrieval-Augmented Generation (RetroRAG), a novel framework to build a retroactive reasoning paradigm. RetroRAG revises and updates the evidence, redirecting the reasoning chain to the correct direction. RetroRAG constructs an evidence-collation-discovery framework to search, generate, and refine credible evidence. It synthesizes inferential evidence related to the key entities in the question from the existing source knowledge and formulates search queries to uncover additional information. As new evidence is found, RetroRAG continually updates and organizes this information, enhancing its ability to locate further necessary evidence. Paired with an Answerer to generate and evaluate outputs, RetroRAG is capable of refining its reasoning process iteratively until a reliable answer is obtained. Empirical evaluations show that RetroRAG significantly outperforms existing methods.
♻ ☆ Latent Diffusion Bridges for Unsupervised Musical Audio Timbre Transfer
Music timbre transfer is a challenging task that involves modifying the timbral characteristics of an audio signal while preserving its melodic structure. In this paper, we propose a novel method based on dual diffusion bridges, trained using the CocoChorales Dataset, which consists of unpaired monophonic single-instrument audio data. Each diffusion model is trained on a specific instrument with a Gaussian prior. During inference, a model is designated as the source model to map the input audio to its corresponding Gaussian prior, and another model is designated as the target model to reconstruct the target audio from this Gaussian prior, thereby facilitating timbre transfer. We compare our approach against existing unsupervised timbre transfer models such as VAEGAN and Gaussian Flow Bridges (GFB). Experimental results demonstrate that our method achieves both better Fr\'echet Audio Distance (FAD) and melody preservation, as reflected by lower pitch distances (DPD) compared to VAEGAN and GFB. Additionally, we discover that the noise level from the Gaussian prior, $\sigma$, can be adjusted to control the degree of melody preservation and amount of timbre transferred.
♻ ☆ CausalMob: Causal Human Mobility Prediction with LLMs-derived Human Intentions toward Public Events KDD 2025
Large-scale human mobility exhibits spatial and temporal patterns that can assist policymakers in decision making. Although traditional prediction models attempt to capture these patterns, they often interfered by non-periodic public events, such as disasters and occasional celebrations. Since regular human mobility patterns are heavily affected by these events, estimating their causal effects is critical to accurate mobility predictions. Although news articles provide unique perspectives on these events in an unstructured format, processing is a challenge. In this study, we propose a causality-augmented prediction model, called CausalMob, to analyze the causal effects of public events. We first utilize large language models (LLMs) to extract human intentions from news articles and transform them into features that act as causal treatments. Next, the model learns representations of spatio-temporal regional covariates from multiple data sources to serve as confounders for causal inference. Finally, we present a causal effect estimation framework to ensure event features remain independent of confounders during prediction. Based on large-scale real-world data, the experimental results show that the proposed model excels in human mobility prediction, outperforming state-of-the-art models.
comment: Accepted by KDD 2025
♻ ☆ LightGNN: Simple Graph Neural Network for Recommendation WSDM 2025
Graph neural networks (GNNs) have demonstrated superior performance in collaborative recommendation through their ability to conduct high-order representation smoothing, effectively capturing structural information within users' interaction patterns. However, existing GNN paradigms face significant challenges in scalability and robustness when handling large-scale, noisy, and real-world datasets. To address these challenges, we present LightGNN, a lightweight and distillation-based GNN pruning framework designed to substantially reduce model complexity while preserving essential collaboration modeling capabilities. Our LightGNN framework introduces a computationally efficient pruning module that adaptively identifies and removes redundant edges and embedding entries for model compression. The framework is guided by a resource-friendly hierarchical knowledge distillation objective, whose intermediate layer augments the observed graph to maintain performance, particularly in high-rate compression scenarios. Extensive experiments on public datasets demonstrate LightGNN's effectiveness, significantly improving both computational efficiency and recommendation accuracy. Notably, LightGNN achieves an 80% reduction in edge count and 90% reduction in embedding entries while maintaining performance comparable to more complex state-of-the-art baselines. The implementation of our LightGNN framework is available at the github repository: https://github.com/HKUDS/LightGNN.
comment: Accepted to WSDM 2025 Oral
♻ ☆ Minimum Weighted Feedback Arc Sets for Ranking from Pairwise Comparisons
The Minimum Weighted Feedback Arc Set (MWFAS) problem is fundamentally connected to the Ranking Problem -- the task of deriving global rankings from pairwise comparisons. Recent work [He et al. ICML2022] has advanced the state-of-the-art for the Ranking Problem using learning-based methods, improving upon multiple previous approaches. However, the connection to MWFAS remains underexplored. This paper investigates this relationship and presents efficient combinatorial algorithms for solving MWFAS, thus addressing the Ranking Problem. Our experimental results demonstrate that these simple, learning-free algorithms not only significantly outperform learning-based methods in terms of speed but also generally achieve superior ranking accuracy.
comment: This is a preliminary paper
Machine Learning 151
☆ LargeAD: Large-Scale Cross-Sensor Data Pretraining for Autonomous Driving
Recent advancements in vision foundation models (VFMs) have revolutionized visual perception in 2D, yet their potential for 3D scene understanding, particularly in autonomous driving applications, remains underexplored. In this paper, we introduce LargeAD, a versatile and scalable framework designed for large-scale 3D pretraining across diverse real-world driving datasets. Our framework leverages VFMs to extract semantically rich superpixels from 2D images, which are aligned with LiDAR point clouds to generate high-quality contrastive samples. This alignment facilitates cross-modal representation learning, enhancing the semantic consistency between 2D and 3D data. We introduce several key innovations: i) VFM-driven superpixel generation for detailed semantic representation, ii) a VFM-assisted contrastive learning strategy to align multimodal features, iii) superpoint temporal consistency to maintain stable representations across time, and iv) multi-source data pretraining to generalize across various LiDAR configurations. Our approach delivers significant performance improvements over state-of-the-art methods in both linear probing and fine-tuning tasks for both LiDAR-based segmentation and object detection. Extensive experiments on eleven large-scale multi-modal datasets highlight our superior performance, demonstrating the adaptability, efficiency, and robustness in real-world autonomous driving scenarios.
comment: Preprint; 16 pages, 7 figures, 8 tables; Project Page at https://ldkong.com/LargeAD
☆ LiMoE: Mixture of LiDAR Representation Learners from Automotive Scenes
LiDAR data pretraining offers a promising approach to leveraging large-scale, readily available datasets for enhanced data utilization. However, existing methods predominantly focus on sparse voxel representation, overlooking the complementary attributes provided by other LiDAR representations. In this work, we propose LiMoE, a framework that integrates the Mixture of Experts (MoE) paradigm into LiDAR data representation learning to synergistically combine multiple representations, such as range images, sparse voxels, and raw points. Our approach consists of three stages: i) Image-to-LiDAR Pretraining, which transfers prior knowledge from images to point clouds across different representations; ii) Contrastive Mixture Learning (CML), which uses MoE to adaptively activate relevant attributes from each representation and distills these mixed features into a unified 3D network; iii) Semantic Mixture Supervision (SMS), which combines semantic logits from multiple representations to boost downstream segmentation performance. Extensive experiments across 11 large-scale LiDAR datasets demonstrate our effectiveness and superiority. The code and model checkpoints have been made publicly accessible.
comment: Preprint; 26 pages, 17 figures, 7 tables; Project Page at https://ldkong.com/LiMoE
☆ A Survey on Federated Learning in Human Sensing
Human Sensing, a field that leverages technology to monitor human activities, psycho-physiological states, and interactions with the environment, enhances our understanding of human behavior and drives the development of advanced services that improve overall quality of life. However, its reliance on detailed and often privacy-sensitive data as the basis for its machine learning (ML) models raises significant legal and ethical concerns. The recently proposed ML approach of Federated Learning (FL) promises to alleviate many of these concerns, as it is able to create accurate ML models without sending raw user data to a central server. While FL has demonstrated its usefulness across a variety of areas, such as text prediction and cyber security, its benefits in Human Sensing are under-explored, given the particular challenges in this domain. This survey conducts a comprehensive analysis of the current state-of-the-art studies on FL in Human Sensing, and proposes a taxonomy and an eight-dimensional assessment for FL approaches. Through the eight-dimensional assessment, we then evaluate whether the surveyed studies consider a specific FL-in-Human-Sensing challenge or not. Finally, based on the overall analysis, we discuss open challenges and highlight five research aspects related to FL in Human Sensing that require urgent research attention. Our work provides a comprehensive corpus of FL studies and aims to assist FL practitioners in developing and evaluating solutions that effectively address the real-world complexities of Human Sensing.
☆ WAPTS: A Weighted Allocation Probability Adjusted Thompson Sampling Algorithm for High-Dimensional and Sparse Experiment Settings
Aiming for more effective experiment design, such as in video content advertising where different content options compete for user engagement, these scenarios can be modeled as multi-arm bandit problems. In cases where limited interactions are available due to external factors, such as the cost of conducting experiments, recommenders often face constraints due to the small number of user interactions. In addition, there is a trade-off between selecting the best treatment and the ability to personalize and contextualize based on individual factors. A popular solution to this dilemma is the Contextual Bandit framework. It aims to maximize outcomes while incorporating personalization (contextual) factors, customizing treatments such as a user's profile to individual preferences. Despite their advantages, Contextual Bandit algorithms face challenges like measurement bias and the 'curse of dimensionality.' These issues complicate the management of numerous interventions and often lead to data sparsity through participant segmentation. To address these problems, we introduce the Weighted Allocation Probability Adjusted Thompson Sampling (WAPTS) algorithm. WAPTS builds on the contextual Thompson Sampling method by using a dynamic weighting parameter. This improves the allocation process for interventions and enables rapid optimization in data-sparse environments. We demonstrate the performance of our approach on different numbers of arms and effect sizes.
☆ RAG-Check: Evaluating Multimodal Retrieval Augmented Generation Performance
Retrieval-augmented generation (RAG) improves large language models (LLMs) by using external knowledge to guide response generation, reducing hallucinations. However, RAG, particularly multi-modal RAG, can introduce new hallucination sources: (i) the retrieval process may select irrelevant pieces (e.g., documents, images) as raw context from the database, and (ii) retrieved images are processed into text-based context via vision-language models (VLMs) or directly used by multi-modal language models (MLLMs) like GPT-4o, which may hallucinate. To address this, we propose a novel framework to evaluate the reliability of multi-modal RAG using two performance measures: (i) the relevancy score (RS), assessing the relevance of retrieved entries to the query, and (ii) the correctness score (CS), evaluating the accuracy of the generated response. We train RS and CS models using a ChatGPT-derived database and human evaluator samples. Results show that both models achieve ~88% accuracy on test data. Additionally, we construct a 5000-sample human-annotated database evaluating the relevancy of retrieved pieces and the correctness of response statements. Our RS model aligns with human preferences 20% more often than CLIP in retrieval, and our CS model matches human preferences ~91% of the time. Finally, we assess various RAG systems' selection and generation performances using RS and CS.
☆ Synthetic Data Privacy Metrics
Recent advancements in generative AI have made it possible to create synthetic datasets that can be as accurate as real-world data for training AI models, powering statistical insights, and fostering collaboration with sensitive datasets while offering strong privacy guarantees. Effectively measuring the empirical privacy of synthetic data is an important step in the process. However, while there is a multitude of new privacy metrics being published every day, there currently is no standardization. In this paper, we review the pros and cons of popular metrics that include simulations of adversarial attacks. We also review current best practices for amending generative models to enhance the privacy of the data they create (e.g. differential privacy).
comment: 14 pages, 2 figures
☆ A precise asymptotic analysis of learning diffusion models: theory and insights
In this manuscript, we consider the problem of learning a flow or diffusion-based generative model parametrized by a two-layer auto-encoder, trained with online stochastic gradient descent, on a high-dimensional target density with an underlying low-dimensional manifold structure. We derive a tight asymptotic characterization of low-dimensional projections of the distribution of samples generated by the learned model, ascertaining in particular its dependence on the number of training samples. Building on this analysis, we discuss how mode collapse can arise, and lead to model collapse when the generative model is re-trained on generated synthetic data.
☆ From Newswire to Nexus: Using text-based actor embeddings and transformer networks to forecast conflict dynamics
This study advances the field of conflict forecasting by using text-based actor embeddings with transformer models to predict dynamic changes in violent conflict patterns at the actor level. More specifically, we combine newswire texts with structured conflict event data and leverage recent advances in Natural Language Processing (NLP) techniques to forecast escalations and de-escalations among conflicting actors, such as governments, militias, separatist movements, and terrorists. This new approach accurately and promptly captures the inherently volatile patterns of violent conflicts, which existing methods have not been able to achieve. To create this framework, we began by curating and annotating a vast international newswire corpus, leveraging hand-labeled event data from the Uppsala Conflict Data Program. By using this hybrid dataset, our models can incorporate the textual context of news sources along with the precision and detail of structured event data. This combination enables us to make both dynamic and granular predictions about conflict developments. We validate our approach through rigorous back-testing against historical events, demonstrating superior out-of-sample predictive power. We find that our approach is quite effective in identifying and predicting phases of conflict escalation and de-escalation, surpassing the capabilities of traditional models. By focusing on actor interactions, our explicit goal is to provide actionable insights to policymakers, humanitarian organizations, and peacekeeping operations in order to enable targeted and effective intervention strategies.
comment: 35 pages, 5 figures. Paper presented at the 120th American Political Science Association Annual Meeting
☆ Explainable AI model reveals disease-related mechanisms in single-cell RNA-seq data
Neurodegenerative diseases (NDDs) are complex and lack effective treatment due to their poorly understood mechanism. The increasingly used data analysis from Single nucleus RNA Sequencing (snRNA-seq) allows to explore transcriptomic events at a single cell level, yet face challenges in interpreting the mechanisms underlying a disease. On the other hand, Neural Network (NN) models can handle complex data to offer insights but can be seen as black boxes with poor interpretability. In this context, explainable AI (XAI) emerges as a solution that could help to understand disease-associated mechanisms when combined with efficient NN models. However, limited research explores XAI in single-cell data. In this work, we implement a method for identifying disease-related genes and the mechanistic explanation of disease progression based on NN model combined with SHAP. We analyze available Huntington's disease (HD) data to identify both HD-altered genes and mechanisms by adding Gene Set Enrichment Analysis (GSEA) comparing two methods, differential gene expression analysis (DGE) and NN combined with SHAP approach. Our results show that DGE and SHAP approaches offer both common and differential sets of altered genes and pathways, reinforcing the usefulness of XAI methods for a broader perspective of disease.
☆ mFabric: An Efficient and Scalable Fabric for Mixture-of-Experts Training
Mixture-of-Expert (MoE) models outperform conventional models by selectively activating different subnets, named \emph{experts}, on a per-token basis. This gated computation generates dynamic communications that cannot be determined beforehand, challenging the existing GPU interconnects that remain \emph{static} during the distributed training process. In this paper, we advocate for a first-of-its-kind system, called mFabric, that unlocks topology reconfiguration \emph{during} distributed MoE training. Towards this vision, we first perform a production measurement study and show that the MoE dynamic communication pattern has \emph{strong locality}, alleviating the requirement of global reconfiguration. Based on this, we design and implement a \emph{regionally reconfigurable high-bandwidth domain} on top of existing electrical interconnects using optical circuit switching (OCS), achieving scalability while maintaining rapid adaptability. We have built a fully functional mFabric prototype with commodity hardware and a customized collective communication runtime that trains state-of-the-art MoE models with \emph{in-training} topology reconfiguration across 32 A100 GPUs. Large-scale packet-level simulations show that mFabric delivers comparable performance as the non-blocking fat-tree fabric while boosting the training cost efficiency (e.g., performance per dollar) of four representative MoE models by 1.2$\times$--1.5$\times$ and 1.9$\times$--2.3$\times$ at 100 Gbps and 400 Gbps link bandwidths, respectively.
comment: Corresponding authors: zhizhenz@mit.edu (Z. Zhong), kaichen@cse.ust.hk (K. Chen)
☆ Exploring the Potential of Large Language Models in Public Transportation: San Antonio Case Study AAAI 2025
The integration of large language models (LLMs) into public transit systems presents a transformative opportunity to enhance urban mobility. This study explores the potential of LLMs to revolutionize public transportation management within the context of San Antonio's transit system. Leveraging the capabilities of LLMs in natural language processing and data analysis, we investigate their capabilities to optimize route planning, reduce wait times, and provide personalized travel assistance. By utilizing the General Transit Feed Specification (GTFS) and other relevant data, this research aims to demonstrate how LLMs can potentially improve resource allocation, elevate passenger satisfaction, and inform data-driven decision-making in transit operations. A comparative analysis of different ChatGPT models was conducted to assess their ability to understand transportation information, retrieve relevant data, and provide comprehensive responses. Findings from this study suggest that while LLMs hold immense promise for public transit, careful engineering and fine-tuning are essential to realizing their full potential. San Antonio serves as a case study to inform the development of LLM-powered transit systems in other urban environments.
comment: This work is accepted to AAAI 2025 Workshop on AI for Urban Planning. arXiv admin note: substantial text overlap with arXiv:2407.11003
☆ Explainable Reinforcement Learning via Temporal Policy Decomposition
We investigate the explainability of Reinforcement Learning (RL) policies from a temporal perspective, focusing on the sequence of future outcomes associated with individual actions. In RL, value functions compress information about rewards collected across multiple trajectories and over an infinite horizon, allowing a compact form of knowledge representation. However, this compression obscures the temporal details inherent in sequential decision-making, presenting a key challenge for interpretability. We present Temporal Policy Decomposition (TPD), a novel explainability approach that explains individual RL actions in terms of their Expected Future Outcome (EFO). These explanations decompose generalized value functions into a sequence of EFOs, one for each time step up to a prediction horizon of interest, revealing insights into when specific outcomes are expected to occur. We leverage fixed-horizon temporal difference learning to devise an off-policy method for learning EFOs for both optimal and suboptimal actions, enabling contrastive explanations consisting of EFOs for different state-action pairs. Our experiments demonstrate that TPD generates accurate explanations that (i) clarify the policy's future strategy and anticipated trajectory for a given action and (ii) improve understanding of the reward composition, facilitating fine-tuning of the reward function to align with human expectations.
comment: 21 pages, 4 figures
☆ Neural DNF-MT: A Neuro-symbolic Approach for Learning Interpretable and Editable Policies AAMAS 2025
Although deep reinforcement learning has been shown to be effective, the model's black-box nature presents barriers to direct policy interpretation. To address this problem, we propose a neuro-symbolic approach called neural DNF-MT for end-to-end policy learning. The differentiable nature of the neural DNF-MT model enables the use of deep actor-critic algorithms for training. At the same time, its architecture is designed so that trained models can be directly translated into interpretable policies expressed as standard (bivalent or probabilistic) logic programs. Moreover, additional layers can be included to extract abstract features from complex observations, acting as a form of predicate invention. The logic representations are highly interpretable, and we show how the bivalent representations of deterministic policies can be edited and incorporated back into a neural model, facilitating manual intervention and adaptation of learned policies. We evaluate our approach on a range of tasks requiring learning deterministic or stochastic behaviours from various forms of observations. Our empirical results show that our neural DNF-MT model performs at the level of competing black-box methods whilst providing interpretable policies.
comment: AAMAS 2025
☆ SELMA3D challenge: Self-supervised learning for 3D light-sheet microscopy image segmentation
Recent innovations in light sheet microscopy, paired with developments in tissue clearing techniques, enable the 3D imaging of large mammalian tissues with cellular resolution. Combined with the progress in large-scale data analysis, driven by deep learning, these innovations empower researchers to rapidly investigate the morphological and functional properties of diverse biological samples. Segmentation, a crucial preliminary step in the analysis process, can be automated using domain-specific deep learning models with expert-level performance. However, these models exhibit high sensitivity to domain shifts, leading to a significant drop in accuracy when applied to data outside their training distribution. To address this limitation, and inspired by the recent success of self-supervised learning in training generalizable models, we organized the SELMA3D Challenge during the MICCAI 2024 conference. SELMA3D provides a vast collection of light-sheet images from cleared mice and human brains, comprising 35 large 3D images-each with over 1000^3 voxels-and 315 annotated small patches for finetuning, preliminary testing and final testing. The dataset encompasses diverse biological structures, including vessel-like and spot-like structures. Five teams participated in all phases of the challenge, and their proposed methods are reviewed in this paper. Quantitative and qualitative results from most participating teams demonstrate that self-supervised learning on large datasets improves segmentation model performance and generalization. We will continue to support and extend SELMA3D as an inaugural MICCAI challenge focused on self-supervised learning for 3D microscopy image segmentation.
comment: 1st version
☆ Stochastically Constrained Best Arm Identification with Thompson Sampling
We consider the problem of the best arm identification in the presence of stochastic constraints, where there is a finite number of arms associated with multiple performance measures. The goal is to identify the arm that optimizes the objective measure subject to constraints on the remaining measures. We will explore the popular idea of Thompson sampling (TS) as a means to solve it. To the best of our knowledge, it is the first attempt to extend TS to this problem. We will design a TS-based sampling algorithm, establish its asymptotic optimality in the rate of posterior convergence, and demonstrate its superior performance using numerical examples.
comment: 30 pages, 12 figures, 1 table
☆ Neuromorphic Optical Tracking and Imaging of Randomly Moving Targets through Strongly Scattering Media
Tracking and acquiring simultaneous optical images of randomly moving targets obscured by scattering media remains a challenging problem of importance to many applications that require precise object localization and identification. In this work we develop an end-to-end neuromorphic optical engineering and computational approach to demonstrate how to track and image normally invisible objects by combining an event detecting camera with a multistage neuromorphic deep learning strategy. Photons emerging from dense scattering media are detected by the event camera and converted to pixel-wise asynchronized spike trains - a first step in isolating object-specific information from the dominant uninformative background. Spiking data is fed into a deep spiking neural network (SNN) engine where object tracking and image reconstruction are performed by two separate yet interconnected modules running in parallel in discrete time steps over the event duration. Through benchtop experiments we demonstrate tracking and imaging randomly moving objects in dense turbid media as well as image reconstruction of spatially stationary but optically dynamic objects. Standardized character sets serve as representative proxies for geometrically complex objects, underscoring the method's generality. The results highlight the advantages of a fully neuromorphic approach in meeting a major imaging technology with high computational efficiency and low power consumption.
comment: 22 pages, 6 figures
☆ Truthful mechanisms for linear bandit games with private contexts AAMAS 2025
The contextual bandit problem, where agents arrive sequentially with personal contexts and the system adapts its arm allocation decisions accordingly, has recently garnered increasing attention for enabling more personalized outcomes. However, in many healthcare and recommendation applications, agents have private profiles and may misreport their contexts to gain from the system. For example, in adaptive clinical trials, where hospitals sequentially recruit volunteers to test multiple new treatments and adjust plans based on volunteers' reported profiles such as symptoms and interim data, participants may misreport severe side effects like allergy and nausea to avoid perceived suboptimal treatments. We are the first to study this issue of private context misreporting in a stochastic contextual bandit game between the system and non-repeated agents. We show that traditional low-regret algorithms, such as UCB family algorithms and Thompson sampling, fail to ensure truthful reporting and can result in linear regret in the worst case, while traditional truthful algorithms like explore-then-commit (ETC) and $\epsilon$-greedy algorithm incur sublinear but high regret. We propose a mechanism that uses a linear program to ensure truthfulness while minimizing deviation from Thompson sampling, yielding an $O(\ln T)$ frequentist regret. Our numerical experiments further demonstrate strong performance in multiple contexts and across other distribution families.
comment: To appear at AAMAS 2025
☆ Symmetry and Generalisation in Machine Learning
This work is about understanding the impact of invariance and equivariance on generalisation in supervised learning. We use the perspective afforded by an averaging operator to show that for any predictor that is not equivariant, there is an equivariant predictor with strictly lower test risk on all regression problems where the equivariance is correctly specified. This constitutes a rigorous proof that symmetry, in the form of invariance or equivariance, is a useful inductive bias. We apply these ideas to equivariance and invariance in random design least squares and kernel ridge regression respectively. This allows us to specify the reduction in expected test risk in more concrete settings and express it in terms of properties of the group, the model and the data. Along the way, we give examples and additional results to demonstrate the utility of the averaging operator approach in analysing equivariant predictors. In addition, we adopt an alternative perspective and formalise the common intuition that learning with invariant models reduces to a problem in terms of orbit representatives. The formalism extends naturally to a similar intuition for equivariant models. We conclude by connecting the two perspectives and giving some ideas for future work.
comment: PhD Thesis
☆ Leveraging time and parameters for nonlinear model reduction methods
In this paper, we consider model order reduction (MOR) methods for problems with slowly decaying Kolmogorov $n$-widths as, e.g., certain wave-like or transport-dominated problems. To overcome this Kolmogorov barrier within MOR, nonlinear projections are used, which are often realized numerically using autoencoders. These autoencoders generally consist of a nonlinear encoder and a nonlinear decoder and involve costly training of the hyperparameters to obtain a good approximation quality of the reduced system. To facilitate the training process, we show that extending the to-be-reduced system and its corresponding training data makes it possible to replace the nonlinear encoder with a linear encoder without sacrificing accuracy, thus roughly halving the number of hyperparameters to be trained.
BERTopic for Topic Modeling of Hindi Short Texts: A Comparative Study COLING 2025
As short text data in native languages like Hindi increasingly appear in modern media, robust methods for topic modeling on such data have gained importance. This study investigates the performance of BERTopic in modeling Hindi short texts, an area that has been under-explored in existing research. Using contextual embeddings, BERTopic can capture semantic relationships in data, making it potentially more effective than traditional models, especially for short and diverse texts. We evaluate BERTopic using 6 different document embedding models and compare its performance against 8 established topic modeling techniques, such as Latent Dirichlet Allocation (LDA), Non-negative Matrix Factorization (NMF), Latent Semantic Indexing (LSI), Additive Regularization of Topic Models (ARTM), Probabilistic Latent Semantic Analysis (PLSA), Embedded Topic Model (ETM), Combined Topic Model (CTM), and Top2Vec. The models are assessed using coherence scores across a range of topic counts. Our results reveal that BERTopic consistently outperforms other models in capturing coherent topics from short Hindi texts.
comment: Accepted into IndoNLP: The First Workshop on Natural Language Processing for Indo-Aryan and Dravidian Languages, collocated with COLING 2025. Set to appear in the workshop proceedings published in ACL Anthology
☆ Machine learning applications in archaeological practices: a review
Artificial intelligence and machine learning applications in archaeology have increased significantly in recent years, and these now span all subfields, geographical regions, and time periods. The prevalence and success of these applications have remained largely unexamined, as recent reviews on the use of machine learning in archaeology have only focused only on specific subfields of archaeology. Our review examined an exhaustive corpus of 135 articles published between 1997 and 2022. We observed a significant increase in the number of relevant publications from 2019 onwards. Automatic structure detection and artefact classification were the most represented tasks in the articles reviewed, followed by taphonomy, and archaeological predictive modelling. From the review, clustering and unsupervised methods were underrepresented compared to supervised models. Artificial neural networks and ensemble learning account for two thirds of the total number of models used. However, if machine learning is gaining in popularity it remains subject to misunderstanding. We observed, in some cases, poorly defined requirements and caveats of the machine learning methods used. Furthermore, the goals and the needs of machine learning applications for archaeological purposes are in some cases unclear or poorly expressed. To address this, we proposed a workflow guide for archaeologists to develop coherent and consistent methodologies adapted to their research questions, project scale and data. As in many other areas, machine learning is rapidly becoming an important tool in archaeological research and practice, useful for the analyses of large and multivariate data, although not without limitations. This review highlights the importance of well-defined and well-reported structured methodologies and collaborative practices to maximise the potential of applications of machine learning methods in archaeology.
☆ Three-dimensional attention Transformer for state evaluation in real-time strategy games
Situation assessment in Real-Time Strategy (RTS) games is crucial for understanding decision-making in complex adversarial environments. However, existing methods remain limited in processing multi-dimensional feature information and temporal dependencies. Here we propose a tri-dimensional Space-Time-Feature Transformer (TSTF Transformer) architecture, which efficiently models battlefield situations through three independent but cascaded modules: spatial attention, temporal attention, and feature attention. On a dataset comprising 3,150 adversarial experiments, the 8-layer TSTF Transformer demonstrates superior performance: achieving 58.7% accuracy in the early game (~4% progress), significantly outperforming the conventional Timesformer's 41.8%; reaching 97.6% accuracy in the mid-game (~40% progress) while maintaining low performance variation (standard deviation 0.114). Meanwhile, this architecture requires fewer parameters (4.75M) compared to the baseline model (5.54M). Our study not only provides new insights into situation assessment in RTS games but also presents an innovative paradigm for Transformer-based multi-dimensional temporal modeling.
comment: 9 pages, 5 figures
☆ Investigating the Impact of Data Selection Strategies on Language Model Performance
Data selection is critical for enhancing the performance of language models, particularly when aligning training datasets with a desired target distribution. This study explores the effects of different data selection methods and feature types on model performance. We evaluate whether selecting data subsets can influence downstream tasks, whether n-gram features improve alignment with target distributions, and whether embedding-based neural features provide complementary benefits. Through comparative experiments using baseline random selection methods and distribution aligned approaches, we provide insights into the interplay between data selection strategies and model training efficacy. All code for this study can be found on \href{https://github.com/jgu13/HIR-Hybrid-Importance-Resampling-for-Language-Models}{github repository}.
comment: 7 pages, 1 figure
☆ Class-Balance Bias in Regularized Regression
Regularized models are often sensitive to the scales of the features in the data and it has therefore become standard practice to normalize (center and scale) the features before fitting the model. But there are many different ways to normalize the features and the choice may have dramatic effects on the resulting model. In spite of this, there has so far been no research on this topic. In this paper, we begin to bridge this knowledge gap by studying normalization in the context of lasso, ridge, and elastic net regression. We focus on normal and binary features and show that the class balances of binary features directly influences the regression coefficients and that this effect depends on the combination of normalization and regularization methods used. We demonstrate that this effect can be mitigated by scaling binary features with their variance in the case of the lasso and standard deviation in the case of ridge regression, but that this comes at the cost of increased variance. For the elastic net, we show that scaling the penalty weights, rather than the features, can achieve the same effect. Finally, we also tackle mixes of binary and normal features as well as interactions and provide some initial results on how to normalize features in these cases.
comment: 27 pages, 21 figures
☆ Vision Transformer Neural Architecture Search for Out-of-Distribution Generalization: Benchmark and Insights NeurIPS 2024
While ViTs have achieved across machine learning tasks, deploying them in real-world scenarios faces a critical challenge: generalizing under OoD shifts. A crucial research gap exists in understanding how to design ViT architectures, both manually and automatically, for better OoD generalization. To this end, we introduce OoD-ViT-NAS, the first systematic benchmark for ViTs NAS focused on OoD generalization. This benchmark includes 3000 ViT architectures of varying computational budgets evaluated on 8 common OoD datasets. Using this benchmark, we analyze factors contributing to OoD generalization. Our findings reveal key insights. First, ViT architecture designs significantly affect OoD generalization. Second, ID accuracy is often a poor indicator of OoD accuracy, highlighting the risk of optimizing ViT architectures solely for ID performance. Third, we perform the first study of NAS for ViTs OoD robustness, analyzing 9 Training-free NAS methods. We find that existing Training-free NAS methods are largely ineffective in predicting OoD accuracy despite excelling at ID accuracy. Simple proxies like Param or Flop surprisingly outperform complex Training-free NAS methods in predicting OoD accuracy. Finally, we study how ViT architectural attributes impact OoD generalization and discover that increasing embedding dimensions generally enhances performance. Our benchmark shows that ViT architectures exhibit a wide range of OoD accuracy, with up to 11.85% improvement for some OoD shifts. This underscores the importance of studying ViT architecture design for OoD. We believe OoD-ViT-NAS can catalyze further research into how ViT designs influence OoD generalization.
comment: Accepted in NeurIPS 2024
☆ Multi-label Cross-lingual automatic music genre classification from lyrics with Sentence BERT
Music genres are shaped by both the stylistic features of songs and the cultural preferences of artists' audiences. Automatic classification of music genres using lyrics can be useful in several applications such as recommendation systems, playlist creation, and library organization. We present a multi-label, cross-lingual genre classification system based on multilingual sentence embeddings generated by sBERT. Using a bilingual Portuguese-English dataset with eight overlapping genres, we demonstrate the system's ability to train on lyrics in one language and predict genres in another. Our approach outperforms the baseline approach of translating lyrics and using a bag-of-words representation, improving the genrewise average F1-Score from 0.35 to 0.69. The classifier uses a one-vs-all architecture, enabling it to assign multiple genre labels to a single lyric. Experimental results reveal that dataset centralization notably improves cross-lingual performance. This approach offers a scalable solution for genre classification across underrepresented languages and cultural domains, advancing the capabilities of music information retrieval systems.
comment: 5 pages
☆ Context-Alignment: Activating and Enhancing LLM Capabilities in Time Series
Recently, leveraging pre-trained Large Language Models (LLMs) for time series (TS) tasks has gained increasing attention, which involves activating and enhancing LLMs' capabilities. Many methods aim to activate LLMs' capabilities based on token-level alignment but overlook LLMs' inherent strength on natural language processing -- their deep understanding of linguistic logic and structure rather than superficial embedding processing. We propose Context-Alignment, a new paradigm that aligns TS with a linguistic component in the language environments familiar to LLMs to enable LLMs to contextualize and comprehend TS data, thereby activating their capabilities. Specifically, such context-level alignment comprises structural alignment and logical alignment, which is achieved by a Dual-Scale Context-Alignment GNNs (DSCA-GNNs) applied to TS-language multimodal inputs. Structural alignment utilizes dual-scale nodes to describe hierarchical structure in TS-language, enabling LLMs treat long TS data as a whole linguistic component while preserving intrinsic token features. Logical alignment uses directed edges to guide logical relationships, ensuring coherence in the contextual semantics. Demonstration examples prompt are employed to construct Demonstration Examples based Context-Alignment (DECA) following DSCA-GNNs framework. DECA can be flexibly and repeatedly integrated into various layers of pre-trained LLMs to improve awareness of logic and structure, thereby enhancing performance. Extensive experiments show the effectiveness of DECA and the importance of Context-Alignment across tasks, particularly in few-shot and zero-shot forecasting, confirming that Context-Alignment provide powerful prior knowledge on context.
comment: no comment
☆ A Multimodal Lightweight Approach to Fault Diagnosis of Induction Motors in High-Dimensional Dataset
An accurate AI-based diagnostic system for induction motors (IMs) holds the potential to enhance proactive maintenance, mitigating unplanned downtime and curbing overall maintenance costs within an industrial environment. Notably, among the prevalent faults in IMs, a Broken Rotor Bar (BRB) fault is frequently encountered. Researchers have proposed various fault diagnosis approaches using signal processing (SP), machine learning (ML), deep learning (DL), and hybrid architectures for BRB faults. One limitation in the existing literature is the training of these architectures on relatively small datasets, risking overfitting when implementing such systems in industrial environments. This paper addresses this limitation by implementing large-scale data of BRB faults by using a transfer-learning-based lightweight DL model named ShuffleNetV2 for diagnosing one, two, three, and four BRB faults using current and vibration signal data. Spectral images for training and testing are generated using a Short-Time Fourier Transform (STFT). The dataset comprises 57,500 images, with 47,500 used for training and 10,000 for testing. Remarkably, the ShuffleNetV2 model exhibited superior performance, in less computational cost as well as accurately classifying 98.856% of spectral images. To further enhance the visualization of harmonic sidebands resulting from broken bars, Fast Fourier Transform (FFT) is applied to current and vibration data. The paper also provides insights into the training and testing times for each model, contributing to a comprehensive understanding of the proposed fault diagnosis methodology. The findings of our research provide valuable insights into the performance and efficiency of different ML and DL models, offering a foundation for the development of robust fault diagnosis systems for induction motors in industrial settings.
☆ Detecting Neurocognitive Disorders through Analyses of Topic Evolution and Cross-modal Consistency in Visual-Stimulated Narratives
Early detection of neurocognitive disorders (NCDs) is crucial for timely intervention and disease management. Speech analysis offers a non-intrusive and scalable screening method, particularly through narrative tasks in neuropsychological assessment tools. Traditional narrative analysis often focuses on local indicators in microstructure, such as word usage and syntax. While these features provide insights into language production abilities, they often fail to capture global narrative patterns, or microstructures. Macrostructures include coherence, thematic organization, and logical progressions, reflecting essential cognitive skills potentially critical for recognizing NCDs. Addressing this gap, we propose to investigate specific cognitive and linguistic challenges by analyzing topical shifts, temporal dynamics, and the coherence of narratives over time, aiming to reveal cognitive deficits by identifying narrative impairments, and exploring their impact on communication and cognition. The investigation is based on the CU-MARVEL Rabbit Story corpus, which comprises recordings of a story-telling task from 758 older adults. We developed two approaches: the Dynamic Topic Models (DTM)-based temporal analysis to examine the evolution of topics over time, and the Text-Image Temporal Alignment Network (TITAN) to evaluate the coherence between spoken narratives and visual stimuli. DTM-based approach validated the effectiveness of dynamic topic consistency as a macrostructural metric (F1=0.61, AUC=0.78). The TITAN approach achieved the highest performance (F1=0.72, AUC=0.81), surpassing established microstructural and macrostructural feature sets. Cross-comparison and regression tasks further demonstrated the effectiveness of proposed dynamic macrostructural modeling approaches for NCD detection.
comment: 12 pages, 8 figures
☆ Neural Deconstruction Search for Vehicle Routing Problems
Autoregressive construction approaches generate solutions to vehicle routing problems in a step-by-step fashion, leading to high-quality solutions that are nearing the performance achieved by handcrafted, operations research techniques. In this work, we challenge the conventional paradigm of sequential solution construction and introduce an iterative search framework where solutions are instead deconstructed by a neural policy. Throughout the search, the neural policy collaborates with a simple greedy insertion algorithm to rebuild the deconstructed solutions. Our approach surpasses the performance of state-of-the-art operations research methods across three challenging vehicle routing problems of various problem sizes.
☆ Unsupervised Speech Segmentation: A General Approach Using Speech Language Models
In this paper, we introduce an unsupervised approach for Speech Segmentation, which builds on previously researched approaches, e.g., Speaker Diarization, while being applicable to an inclusive set of acoustic-semantic distinctions, paving a path towards a general Unsupervised Speech Segmentation approach. Unlike traditional speech and audio segmentation, which mainly focuses on spectral changes in the input signal, e.g., phone segmentation, our approach tries to segment the spoken utterance into chunks with differing acoustic-semantic styles, focusing on acoustic-semantic information that does not translate well into text, e.g., emotion or speaker. While most Speech Segmentation tasks only handle one style change, e.g., emotion diarization, our approach tries to handle multiple acoustic-semantic style changes. Leveraging recent advances in Speech Language Models (SLMs), we propose a simple unsupervised method to segment a given speech utterance. We empirically demonstrate the effectiveness of the proposed approach by considering several setups. Results suggest that the proposed method is superior to the evaluated baselines on boundary detection, segment purity, and over-segmentation. Code is available at https://github.com/avishaiElmakies/unsupervised_speech_segmentation_using_slm.
☆ Deep Networks are Reproducing Kernel Chains
Identifying an appropriate function space for deep neural networks remains a key open question. While shallow neural networks are naturally associated with Reproducing Kernel Banach Spaces (RKBS), deep networks present unique challenges. In this work, we extend RKBS to chain RKBS (cRKBS), a new framework that composes kernels rather than functions, preserving the desirable properties of RKBS. We prove that any deep neural network function is a neural cRKBS function, and conversely, any neural cRKBS function defined on a finite dataset corresponds to a deep neural network. This approach provides a sparse solution to the empirical risk minimization problem, requiring no more than $N$ neurons per layer, where $N$ is the number of data points.
comment: 25 pages, 3 figures
☆ Exploring Molecule Generation Using Latent Space Graph Diffusion
Generating molecular graphs is a challenging task due to their discrete nature and the competitive objectives involved. Diffusion models have emerged as SOTA approaches in data generation across various modalities. For molecular graphs, graph neural networks (GNNs) as a diffusion backbone have achieved impressive results. Latent space diffusion, where diffusion occurs in a low-dimensional space via an autoencoder, has demonstrated computational efficiency. However, the literature on latent space diffusion for molecular graphs is scarce, and no commonly accepted best practices exist. In this work, we explore different approaches and hyperparameters, contrasting generative flow models (denoising diffusion, flow matching, heat dissipation) and architectures (GNNs and E(3)-equivariant GNNs). Our experiments reveal a high sensitivity to the choice of approach and design decisions. Code is made available at github.com/Prashanth-Pombala/Molecule-Generation-using-Latent-Space-Graph-Diffusion.
☆ Run-and-tumble chemotaxis using reinforcement learning
Bacterial cells use run-and-tumble motion to climb up attractant concentration gradient in their environment. By extending the uphill runs and shortening the downhill runs the cells migrate towards the higher attractant zones. Motivated by this, we formulate a reinforcement learning (RL) algorithm where an agent moves in one dimension in the presence of an attractant gradient. The agent can perform two actions: either persistent motion in the same direction or reversal of direction. We assign costs for these actions based on the recent history of the agent's trajectory. We ask the question: which RL strategy works best in different types of attractant environment. We quantify efficiency of the RL strategy by the ability of the agent (a) to localize in the favorable zones after large times, and (b) to learn about its complete environment. Depending on the attractant profile and the initial condition, we find an optimum balance is needed between exploration and exploitation to ensure the most efficient performance.
☆ SALE-Based Offline Reinforcement Learning with Ensemble Q-Networks
In this work, we build upon the offline reinforcement learning algorithm TD7, which incorporates State-Action Learned Embeddings (SALE) and LAP, and propose a model-free actor-critic algorithm that integrates ensemble Q-networks and a gradient diversity penalty from EDAC. The ensemble Q-networks effectively address the challenge of out-of-distribution actions by introducing penalties that guide the actor network to focus on in-distribution actions. Meanwhile, the gradient diversity penalty encourages diverse Q-value gradients, further suppressing overestimation for out-of-distribution actions. Additionally, our method retains an adjustable behavior cloning (BC) term that directs the actor network toward dataset actions during early training stages, while gradually reducing its influence as the precision of the Q-ensemble improves. These enhancements work synergistically to improve training stability and accuracy. Experimental results on the D4RL MuJoCo benchmarks demonstrate that our algorithm achieves superior convergence speed, stability, and performance compared to existing methods.
comment: 10 pages, 2 figures, 4 tables
☆ Imitation Learning of MPC with Neural Networks: Error Guarantees and Sparsification
This paper presents a framework for bounding the approximation error in imitation model predictive controllers utilizing neural networks. Leveraging the Lipschitz properties of these neural networks, we derive a bound that guides dataset design to ensure the approximation error remains at chosen limits. We discuss how this method can be used to design a stable neural network controller with performance guarantees employing existing robust model predictive control approaches for data generation. Additionally, we introduce a training adjustment, which is based on the sensitivities of the optimization problem and reduces dataset density requirements based on the derived bounds. We verify that the proposed augmentation results in improvements to the network's predictive capabilities and a reduction of the Lipschitz constant. Moreover, on a simulated inverted pendulum problem, we show that the approach results in a closer match of the closed-loop behavior between the imitation and the original model predictive controller.
☆ Hybrid Machine Learning Model with a Constrained Action Space for Trajectory Prediction
Trajectory prediction is crucial to advance autonomous driving, improving safety, and efficiency. Although end-to-end models based on deep learning have great potential, they often do not consider vehicle dynamic limitations, leading to unrealistic predictions. To address this problem, this work introduces a novel hybrid model that combines deep learning with a kinematic motion model. It is able to predict object attributes such as acceleration and yaw rate and generate trajectories based on them. A key contribution is the incorporation of expert knowledge into the learning objective of the deep learning model. This results in the constraint of the available action space, thus enabling the prediction of physically feasible object attributes and trajectories, thereby increasing safety and robustness. The proposed hybrid model facilitates enhanced interpretability, thereby reinforcing the trustworthiness of deep learning methods and promoting the development of safe planning solutions. Experiments conducted on the publicly available real-world Argoverse dataset demonstrate realistic driving behaviour, with benchmark comparisons and ablation studies showing promising results.
comment: Submitted to 2025 IEEE Intelligent Vehicles Symposium (IV)
☆ Data Augmentation for Deep Learning Regression Tasks by Machine Learning Models
Deep learning (DL) models have gained prominence in domains such as computer vision and natural language processing but remain underutilized for regression tasks involving tabular data. In these cases, traditional machine learning (ML) models often outperform DL models. In this study, we propose and evaluate various data augmentation (DA) techniques to improve the performance of DL models for tabular data regression tasks. We compare the performance gain of Neural Networks by different DA strategies ranging from a naive method of duplicating existing observations and adding noise to a more sophisticated DA strategy that preserves the underlying statistical relationship in the data. Our analysis demonstrates that the advanced DA method significantly improves DL model performance across multiple datasets and regression tasks, resulting in an average performance increase of over 10\% compared to baseline models without augmentation. The efficacy of these DA strategies was rigorously validated across 30 distinct datasets, with multiple iterations and evaluations using three different automated deep learning (AutoDL) frameworks: AutoKeras, H2O, and AutoGluon. This study demonstrates that by leveraging advanced DA techniques, DL models can realize their full potential in regression tasks, thereby contributing to broader adoption and enhanced performance in practical applications.
☆ MHGNet: Multi-Heterogeneous Graph Neural Network for Traffic Prediction SP2025
In recent years, traffic flow prediction has played a crucial role in the management of intelligent transportation systems. However, traditional forecasting methods often model non-Euclidean low-dimensional traffic data as a simple graph with single-type nodes and edges, failing to capture similar trends among nodes of the same type. To address this limitation, this paper proposes MHGNet, a novel framework for modeling spatiotemporal multi-heterogeneous graphs. Within this framework, the STD Module decouples single-pattern traffic data into multi-pattern traffic data through feature mappings of timestamp embedding matrices and node embedding matrices. Subsequently, the Node Clusterer leverages the Euclidean distance between nodes and different types of limit points to perform clustering with O(N) time complexity. The nodes within each cluster undergo residual subgraph convolution within the spatiotemporal fusion subgraphs generated by the DSTGG Module, followed by processing in the SIE Module for node repositioning and redistribution of weights. To validate the effectiveness of MHGNet, this paper conducts extensive ablation studies and quantitative evaluations on four widely used benchmarks, demonstrating its superior performance.
comment: Accepted by 2025 lEEE International Conference on Acoustics, speech, and signal Processing (lCASSP2025)
☆ Coupled Hierarchical Structure Learning using Tree-Wasserstein Distance
In many applications, both data samples and features have underlying hierarchical structures. However, existing methods for learning these latent structures typically focus on either samples or features, ignoring possible coupling between them. In this paper, we introduce a coupled hierarchical structure learning method using tree-Wasserstein distance (TWD). Our method jointly computes TWDs for samples and features, representing their latent hierarchies as trees. We propose an iterative, unsupervised procedure to build these sample and feature trees based on diffusion geometry, hyperbolic geometry, and wavelet filters. We show that this iterative procedure converges and empirically improves the quality of the constructed trees. The method is also computationally efficient and scales well in high-dimensional settings. Our method can be seamlessly integrated with hyperbolic graph convolutional networks (HGCN). We demonstrate that our method outperforms competing approaches in sparse approximation and unsupervised Wasserstein distance learning on several word-document and single-cell RNA-sequencing datasets. In addition, integrating our method into HGCN enhances performance in link prediction and node classification tasks.
☆ Discriminative Representation learning via Attention-Enhanced Contrastive Learning for Short Text Clustering
Contrastive learning has gained significant attention in short text clustering, yet it has an inherent drawback of mistakenly identifying samples from the same category as negatives and then separating them in the feature space (false negative separation), which hinders the generation of superior representations. To generate more discriminative representations for efficient clustering, we propose a novel short text clustering method, called Discriminative Representation learning via \textbf{A}ttention-\textbf{E}nhanced \textbf{C}ontrastive \textbf{L}earning for Short Text Clustering (\textbf{AECL}). The \textbf{AECL} consists of two modules which are the pseudo-label generation module and the contrastive learning module. Both modules build a sample-level attention mechanism to capture similarity relationships between samples and aggregate cross-sample features to generate consistent representations. Then, the former module uses the more discriminative consistent representation to produce reliable supervision information for assist clustering, while the latter module explores similarity relationships and consistent representations optimize the construction of positive samples to perform similarity-guided contrastive learning, effectively addressing the false negative separation issue. Experimental results demonstrate that the proposed \textbf{AECL} outperforms state-of-the-art methods. If the paper is accepted, we will open-source the code.
☆ STContext: A Multifaceted Dataset for Developing Context-aware Spatio-temporal Crowd Mobility Prediction Models
In smart cities, context-aware spatio-temporal crowd flow prediction (STCFP) models leverage contextual features (e.g., weather) to identify unusual crowd mobility patterns and enhance prediction accuracy. However, the best practice for incorporating contextual features remains unclear due to inconsistent usage of contextual features in different papers. Developing a multifaceted dataset with rich types of contextual features and STCFP scenarios is crucial for establishing a principled context modeling paradigm. Existing open crowd flow datasets lack an adequate range of contextual features, which poses an urgent requirement to build a multifaceted dataset to fill these research gaps. To this end, we create STContext, a multifaceted dataset for developing context-aware STCFP models. Specifically, STContext provides nine spatio-temporal datasets across five STCFP scenarios and includes ten contextual features, including weather, air quality index, holidays, points of interest, road networks, etc. Besides, we propose a unified workflow for incorporating contextual features into deep STCFP methods, with steps including feature transformation, dependency modeling, representation fusion, and training strategies. Through extensive experiments, we have obtained several useful guidelines for effective context modeling and insights for future research. The STContext is open-sourced at https://github.com/Liyue-Chen/STContext.
☆ Cosmos World Foundation Model Platform for Physical AI
Physical AI needs to be trained digitally first. It needs a digital twin of itself, the policy model, and a digital twin of the world, the world model. In this paper, we present the Cosmos World Foundation Model Platform to help developers build customized world models for their Physical AI setups. We position a world foundation model as a general-purpose world model that can be fine-tuned into customized world models for downstream applications. Our platform covers a video curation pipeline, pre-trained world foundation models, examples of post-training of pre-trained world foundation models, and video tokenizers. To help Physical AI builders solve the most critical problems of our society, we make our platform open-source and our models open-weight with permissive licenses available via https://github.com/NVIDIA/Cosmos.
☆ AADNet: Exploring EEG Spatiotemporal Information for Fast and Accurate Orientation and Timbre Detection of Auditory Attention Based on A Cue-Masked Paradigm
Auditory attention decoding from electroencephalogram (EEG) could infer to which source the user is attending in noisy environments. Decoding algorithms and experimental paradigm designs are crucial for the development of technology in practical applications. To simulate real-world scenarios, this study proposed a cue-masked auditory attention paradigm to avoid information leakage before the experiment. To obtain high decoding accuracy with low latency, an end-to-end deep learning model, AADNet, was proposed to exploit the spatiotemporal information from the short time window of EEG signals. The results showed that with a 0.5-second EEG window, AADNet achieved an average accuracy of 93.46% and 91.09% in decoding auditory orientation attention (OA) and timbre attention (TA), respectively. It significantly outperformed five previous methods and did not need the knowledge of the original audio source. This work demonstrated that it was possible to detect the orientation and timbre of auditory attention from EEG signals fast and accurately. The results are promising for the real-time multi-property auditory attention decoding, facilitating the application of the neuro-steered hearing aids and other assistive listening devices.
☆ Advanced Tutorial: Label-Efficient Two-Sample Tests
Hypothesis testing is a statistical inference approach used to determine whether data supports a specific hypothesis. An important type is the two-sample test, which evaluates whether two sets of data points are from identical distributions. This test is widely used, such as by clinical researchers comparing treatment effectiveness. This tutorial explores two-sample testing in a context where an analyst has many features from two samples, but determining the sample membership (or labels) of these features is costly. In machine learning, a similar scenario is studied in active learning. This tutorial extends active learning concepts to two-sample testing within this \textit{label-costly} setting while maintaining statistical validity and high testing power. Additionally, the tutorial discusses practical applications of these label-efficient two-sample tests.
☆ Rethinking Adversarial Attacks in Reinforcement Learning from Policy Distribution Perspective
Deep Reinforcement Learning (DRL) suffers from uncertainties and inaccuracies in the observation signal in realworld applications. Adversarial attack is an effective method for evaluating the robustness of DRL agents. However, existing attack methods targeting individual sampled actions have limited impacts on the overall policy distribution, particularly in continuous action spaces. To address these limitations, we propose the Distribution-Aware Projected Gradient Descent attack (DAPGD). DAPGD uses distribution similarity as the gradient perturbation input to attack the policy network, which leverages the entire policy distribution rather than relying on individual samples. We utilize the Bhattacharyya distance in DAPGD to measure policy similarity, enabling sensitive detection of subtle but critical differences between probability distributions. Our experiment results demonstrate that DAPGD achieves SOTA results compared to the baselines in three robot navigation tasks, achieving an average 22.03% higher reward drop compared to the best baseline.
comment: 10 pages, 2 figures, 2 tables
☆ KG-TRICK: Unifying Textual and Relational Information Completion of Knowledge for Multilingual Knowledge Graphs COLING 2025
Multilingual knowledge graphs (KGs) provide high-quality relational and textual information for various NLP applications, but they are often incomplete, especially in non-English languages. Previous research has shown that combining information from KGs in different languages aids either Knowledge Graph Completion (KGC), the task of predicting missing relations between entities, or Knowledge Graph Enhancement (KGE), the task of predicting missing textual information for entities. Although previous efforts have considered KGC and KGE as independent tasks, we hypothesize that they are interdependent and mutually beneficial. To this end, we introduce KG-TRICK, a novel sequence-to-sequence framework that unifies the tasks of textual and relational information completion for multilingual KGs. KG-TRICK demonstrates that: i) it is possible to unify the tasks of KGC and KGE into a single framework, and ii) combining textual information from multiple languages is beneficial to improve the completeness of a KG. As part of our contributions, we also introduce WikiKGE10++, the largest manually-curated benchmark for textual information completion of KGs, which features over 25,000 entities across 10 diverse languages.
comment: Camera ready for COLING 2025
☆ Deep Learning within Tabular Data: Foundations, Challenges, Advances and Future Directions
Tabular data remains one of the most prevalent data types across a wide range of real-world applications, yet effective representation learning for this domain poses unique challenges due to its irregular patterns, heterogeneous feature distributions, and complex inter-column dependencies. This survey provides a comprehensive review of state-of-the-art techniques in tabular data representation learning, structured around three foundational design elements: training data, neural architectures, and learning objectives. Unlike prior surveys that focus primarily on either architecture design or learning strategies, we adopt a holistic perspective that emphasizes the universality and robustness of representation learning methods across diverse downstream tasks. We examine recent advances in data augmentation and generation, specialized neural network architectures tailored to tabular data, and innovative learning objectives that enhance representation quality. Additionally, we highlight the growing influence of self-supervised learning and the adaptation of transformer-based foundation models for tabular data. Our review is based on a systematic literature search using rigorous inclusion criteria, encompassing 127 papers published since 2020 in top-tier conferences and journals. Through detailed analysis and comparison, we identify emerging trends, critical gaps, and promising directions for future research, aiming to guide the development of more generalizable and effective tabular data representation methods.
☆ FgC2F-UDiff: Frequency-guided and Coarse-to-fine Unified Diffusion Model for Multi-modality Missing MRI Synthesis
Multi-modality magnetic resonance imaging (MRI) is essential for the diagnosis and treatment of brain tumors. However, missing modalities are commonly observed due to limitations in scan time, scan corruption, artifacts, motion, and contrast agent intolerance. Synthesis of missing MRI has been a means to address the limitations of modality insufficiency in clinical practice and research. However, there are still some challenges, such as poor generalization, inaccurate non-linear mapping, and slow processing speeds. To address the aforementioned issues, we propose a novel unified synthesis model, the Frequency-guided and Coarse-to-fine Unified Diffusion Model (FgC2F-UDiff), designed for multiple inputs and outputs. Specifically, the Coarse-to-fine Unified Network (CUN) fully exploits the iterative denoising properties of diffusion models, from global to detail, by dividing the denoising process into two stages, coarse and fine, to enhance the fidelity of synthesized images. Secondly, the Frequency-guided Collaborative Strategy (FCS) harnesses appropriate frequency information as prior knowledge to guide the learning of a unified, highly non-linear mapping. Thirdly, the Specific-acceleration Hybrid Mechanism (SHM) integrates specific mechanisms to accelerate the diffusion model and enhance the feasibility of many-to-many synthesis. Extensive experimental evaluations have demonstrated that our proposed FgC2F-UDiff model achieves superior performance on two datasets, validated through a comprehensive assessment that includes both qualitative observations and quantitative metrics, such as PSNR SSIM, LPIPS, and FID.
☆ Vocal Tract Length Warped Features for Spoken Keyword Spotting
In this paper, we propose several methods that incorporate vocal tract length (VTL) warped features for spoken keyword spotting (KWS). The first method, VTL-independent KWS, involves training a single deep neural network (DNN) that utilizes VTL features with various warping factors. During training, a specific VTL feature is randomly selected per epoch, allowing the exploration of VTL variations. During testing, the VTL features with different warping factors of a test utterance are scored against the DNN and combined with equal weight. In the second method scores the conventional features of a test utterance (without VTL warping) against the DNN. The third method, VTL-concatenation KWS, concatenates VTL warped features to form high-dimensional features for KWS. Evaluations carried out on the English Google Command dataset demonstrate that the proposed methods improve the accuracy of KWS.
☆ Transfer Learning for Deep-Unfolded Combinatorial Optimization Solver with Quantum Annealer
Quantum annealing (QA) has attracted research interest as a sampler and combinatorial optimization problem (COP) solver. A recently proposed sampling-based solver for QA significantly reduces the required number of qubits, being capable of large COPs. In relation to this, a trainable sampling-based COP solver has been proposed that optimizes its internal parameters from a dataset by using a deep learning technique called deep unfolding. Although learning the internal parameters accelerates the convergence speed, the sampler in the trainable solver is restricted to using a classical sampler owing to the training cost. In this study, to utilize QA in the trainable solver, we propose classical-quantum transfer learning, where parameters are trained classically, and the trained parameters are used in the solver with QA. The results of numerical experiments demonstrate that the trainable quantum COP solver using classical-quantum transfer learning improves convergence speed and execution time over the original solver.
comment: 8 pages, 6 figures
☆ An Empirical Study of Accuracy-Robustness Tradeoff and Training Efficiency in Self-Supervised Learning
Self-supervised learning (SSL) has significantly advanced image representation learning, yet efficiency challenges persist, particularly with adversarial training. Many SSL methods require extensive epochs to achieve convergence, a demand further amplified in adversarial settings. To address this inefficiency, we revisit the robust EMP-SSL framework, emphasizing the importance of increasing the number of crops per image to accelerate learning. Unlike traditional contrastive learning, robust EMP-SSL leverages multi-crop sampling, integrates an invariance term and regularization, and reduces training epochs, enhancing time efficiency. Evaluated with both standard linear classifiers and multi-patch embedding aggregation, robust EMP-SSL provides new insights into SSL evaluation strategies. Our results show that robust crop-based EMP-SSL not only accelerates convergence but also achieves a superior balance between clean accuracy and adversarial robustness, outperforming multi-crop embedding aggregation. Additionally, we extend this approach with free adversarial training in Multi-Crop SSL, introducing the Cost-Free Adversarial Multi-Crop Self-Supervised Learning (CF-AMC-SSL) method. CF-AMC-SSL demonstrates the effectiveness of free adversarial training in reducing training time while simultaneously improving clean accuracy and adversarial robustness. These findings underscore the potential of CF-AMC-SSL for practical SSL applications. Our code is publicly available at https://github.com/softsys4ai/CF-AMC-SSL.
☆ Textualize Visual Prompt for Image Editing via Diffusion Bridge AAAI 2025
Visual prompt, a pair of before-and-after edited images, can convey indescribable imagery transformations and prosper in image editing. However, current visual prompt methods rely on a pretrained text-guided image-to-image generative model that requires a triplet of text, before, and after images for retraining over a text-to-image model. Such crafting triplets and retraining processes limit the scalability and generalization of editing. In this paper, we present a framework based on any single text-to-image model without reliance on the explicit image-to-image model thus enhancing the generalizability and scalability. Specifically, by leveraging the probability-flow ordinary equation, we construct a diffusion bridge to transfer the distribution between before-and-after images under the text guidance. By optimizing the text via the bridge, the framework adaptively textualizes the editing transformation conveyed by visual prompts into text embeddings without other models. Meanwhile, we introduce differential attention control during text optimization, which disentangles the text embedding from the invariance of the before-and-after images and makes it solely capture the delicate transformation and generalize to edit various images. Experiments on real images validate competitive results on the generalization, contextual coherence, and high fidelity for delicate editing with just one image pair as the visual prompt.
comment: AAAI 2025
☆ Multi-Source Urban Traffic Flow Forecasting with Drone and Loop Detector Data
Traffic forecasting is a fundamental task in transportation research, however the scope of current research has mainly focused on a single data modality of loop detectors. Recently, the advances in Artificial Intelligence and drone technologies have made possible novel solutions for efficient, accurate and flexible aerial observations of urban traffic. As a promising traffic monitoring approach, drone-captured data can create an accurate multi-sensor mobility observatory for large-scale urban networks, when combined with existing infrastructure. Therefore, this paper investigates the problem of multi-source traffic speed prediction, simultaneously using drone and loop detector data. A simple yet effective graph-based model HiMSNet is proposed to integrate multiple data modalities and learn spatio-temporal correlations. Detailed analysis shows that predicting accurate segment-level speed is more challenging than the regional speed, especially under high-demand scenarios with heavier congestions and varying traffic dynamics. Utilizing both drone and loop detector data, the prediction accuracy can be improved compared to single-modality cases, when the sensors have lower coverages and are subject to noise. Our simulation study based on vehicle trajectories in a real urban road network has highlighted the added value of integrating drones in traffic forecasting and monitoring.
☆ Entropy-Guided Attention for Private LLMs AAAI
The pervasiveness of proprietary language models has raised critical privacy concerns, necessitating advancements in private inference (PI), where computations are performed directly on encrypted data without revealing users' sensitive information. While PI offers a promising solution, its practical deployment is hindered by substantial communication and latency overheads, primarily stemming from nonlinear operations. To address this, we introduce an information-theoretic framework to characterize the role of nonlinearities in decoder-only language models, laying a principled foundation for optimizing transformer-architectures tailored to the demands of PI. By leveraging Shannon's entropy as a quantitative measure, we uncover the previously unexplored dual significance of nonlinearities: beyond ensuring training stability, they are crucial for maintaining attention head diversity. Specifically, we find that their removal triggers two critical failure modes: {\em entropy collapse} in deeper layers that destabilizes training, and {\em entropic overload} in earlier layers that leads to under-utilization of Multi-Head Attention's (MHA) representational capacity. We propose an entropy-guided attention mechanism paired with a novel entropy regularization technique to mitigate entropic overload. Additionally, we explore PI-friendly alternatives to layer normalization for preventing entropy collapse and stabilizing the training of LLMs with reduced-nonlinearities. Our study bridges the gap between information theory and architectural design, establishing entropy dynamics as a principled guide for developing efficient PI architectures. The code and implementation are available at \href{https://github.com/Nandan91/entropy-guided-attention-llm}{entropy-guided-llm}.
comment: The 6th AAAI Workshop on Privacy-Preserving Artificial Intelligence (PPAI), 2025. arXiv admin note: substantial text overlap with arXiv:2410.13060
☆ Align-Pro: A Principled Approach to Prompt Optimization for LLM Alignment AAAI 2025
The alignment of large language models (LLMs) with human values is critical as these models become increasingly integrated into various societal and decision-making processes. Traditional methods, such as reinforcement learning from human feedback (RLHF), achieve alignment by fine-tuning model parameters, but these approaches are often computationally expensive and impractical when models are frozen or inaccessible for parameter modification. In contrast, prompt optimization is a viable alternative to RLHF for LLM alignment. While the existing literature has shown empirical promise of prompt optimization, its theoretical underpinning remains under-explored. We address this gap by formulating prompt optimization as an optimization problem and try to provide theoretical insights into the optimality of such a framework. To analyze the performance of the prompt optimization, we study theoretical suboptimality bounds and provide insights in terms of how prompt optimization depends upon the given prompter and target model. We also provide empirical validation through experiments on various datasets, demonstrating that prompt optimization can effectively align LLMs, even when parameter fine-tuning is not feasible.
comment: 27 pages, Accepted in AAAI 2025
☆ A study on performance limitations in Federated Learning
Increasing privacy concerns and unrestricted access to data lead to the development of a novel machine learning paradigm called Federated Learning (FL). FL borrows many of the ideas from distributed machine learning, however, the challenges associated with federated learning makes it an interesting engineering problem since the models are trained on edge devices. It was introduced in 2016 by Google, and since then active research is being carried out in different areas within FL such as federated optimization algorithms, model and update compression, differential privacy, robustness, and attacks, federated GANs and privacy preserved personalization. There are many open challenges in the development of such federated machine learning systems and this project will be focusing on the communication bottleneck and data Non IID-ness, and its effect on the performance of the models. These issues are characterized on a baseline model, model performance is evaluated, and discussions are made to overcome these issues.
comment: archive 2021 work
☆ Reading with Intent -- Neutralizing Intent
Queries to large language models (LLMs) can be divided into two parts: the instruction/question and the accompanying context. The context for retrieval-augmented generation (RAG) systems in most benchmarks comes from Wikipedia or Wikipedia-like texts which are written in a neutral and factual tone. However, when RAG systems retrieve internet-based content, they encounter text with diverse tones and linguistic styles, introducing challenges for downstream tasks. The Reading with Intent task addresses this issue by evaluating how varying tones in context passages affect model performance. Building on prior work that focused on sarcasm, we extend this paradigm by constructing a dataset where context passages are transformed to $11$ distinct emotions using a better synthetic data generation approach. Using this dataset, we train an emotion translation model to systematically adapt passages to specified emotional tones. The human evaluation shows that the LLM fine-tuned to become the emotion-translator benefited from the synthetically generated data. Finally, the emotion-translator is used in the Reading with Intent task to transform the passages to a neutral tone. By neutralizing the passages, it mitigates the challenges posed by sarcastic passages and improves overall results on this task by about $3\%$.
☆ Hyperbolic Binary Neural Network
Binary Neural Network (BNN) converts full-precision weights and activations into their extreme 1-bit counterparts, making it particularly suitable for deployment on lightweight mobile devices. While binary neural networks are typically formulated as a constrained optimization problem and optimized in the binarized space, general neural networks are formulated as an unconstrained optimization problem and optimized in the continuous space. This paper introduces the Hyperbolic Binary Neural Network (HBNN) by leveraging the framework of hyperbolic geometry to optimize the constrained problem. Specifically, we transform the constrained problem in hyperbolic space into an unconstrained one in Euclidean space using the Riemannian exponential map. On the other hand, we also propose the Exponential Parametrization Cluster (EPC) method, which, compared to the Riemannian exponential map, shrinks the segment domain based on a diffeomorphism. This approach increases the probability of weight flips, thereby maximizing the information gain in BNNs. Experimental results on CIFAR10, CIFAR100, and ImageNet classification datasets with VGGsmall, ResNet18, and ResNet34 models illustrate the superior performance of our HBNN over state-of-the-art methods.
☆ Radar Signal Recognition through Self-Supervised Learning and Domain Adaptation
Automatic radar signal recognition (RSR) plays a pivotal role in electronic warfare (EW), as accurately classifying radar signals is critical for informing decision-making processes. Recent advances in deep learning have shown significant potential in improving RSR performance in domains with ample annotated data. However, these methods fall short in EW scenarios where annotated RF data are scarce or impractical to obtain. To address these challenges, we introduce a self-supervised learning (SSL) method which utilises masked signal modelling and RF domain adaption to enhance RSR performance in environments with limited RF samples and labels. Specifically, we investigate pre-training masked autoencoders (MAE) on baseband in-phase and quadrature (I/Q) signals from various RF domains and subsequently transfer the learned representation to the radar domain, where annotated data are limited. Empirical results show that our lightweight self-supervised ResNet model with domain adaptation achieves up to a 17.5\% improvement in 1-shot classification accuracy when pre-trained on in-domain signals (i.e., radar signals) and up to a 16.31\% improvement when pre-trained on out-of-domain signals (i.e., comm signals), compared to its baseline without SSL. We also provide reference results for several MAE designs and pre-training strategies, establishing a new benchmark for few-shot radar signal classification.
comment: 5 pages, 9 figures
☆ Structure-Preference Enabled Graph Embedding Generation under Differential Privacy ICDE 25
Graph embedding generation techniques aim to learn low-dimensional vectors for each node in a graph and have recently gained increasing research attention. Publishing low-dimensional node vectors enables various graph analysis tasks, such as structural equivalence and link prediction. Yet, improper publication opens a backdoor to malicious attackers, who can infer sensitive information of individuals from the low-dimensional node vectors. Existing methods tackle this issue by developing deep graph learning models with differential privacy (DP). However, they often suffer from large noise injections and cannot provide structural preferences consistent with mining objectives. Recently, skip-gram based graph embedding generation techniques are widely used due to their ability to extract customizable structures. Based on skip-gram, we present SE-PrivGEmb, a structure-preference enabled graph embedding generation under DP. For arbitrary structure preferences, we design a unified noise tolerance mechanism via perturbing non-zero vectors. This mechanism mitigates utility degradation caused by high sensitivity. By carefully designing negative sampling probabilities in skip-gram, we theoretically demonstrate that skip-gram can preserve arbitrary proximities, which quantify structural features in graphs. Extensive experiments show that our method outperforms existing state-of-the-art methods under structural equivalence and link prediction tasks.
comment: Accepted by ICDE 25
☆ Optimizing Value of Learning in Task-Oriented Federated Meta-Learning Systems
Federated Learning (FL) has gained significant attention in recent years due to its distributed nature and privacy preserving benefits. However, a key limitation of conventional FL is that it learns and distributes a common global model to all participants, which fails to provide customized solutions for diverse task requirements. Federated meta-learning (FML) offers a promising solution to this issue by enabling devices to finetune local models after receiving a shared meta-model from the server. In this paper, we propose a task-oriented FML framework over non-orthogonal multiple access (NOMA) networks. A novel metric, termed value of learning (VoL), is introduced to assess the individual training needs across devices. Moreover, a task-level weight (TLW) metric is defined based on task requirements and fairness considerations, guiding the prioritization of edge devices during FML training. The formulated problem, to maximize the sum of TLW-based VoL across devices, forms a non-convex mixed-integer non-linear programming (MINLP) challenge, addressed here using a parameterized deep Q-network (PDQN) algorithm to handle both discrete and continuous variables. Simulation results demonstrate that our approach significantly outperforms baseline schemes, underscoring the advantages of the proposed framework.
☆ Physics-Constrained Generative Artificial Intelligence for Rapid Takeoff Trajectory Design
To aid urban air mobility (UAM), electric vertical takeoff and landing (eVTOL) aircraft are being targeted. Conventional multidisciplinary analysis and optimization (MDAO) can be expensive, while surrogate-based optimization can struggle with challenging physical constraints. This work proposes physics-constrained generative adversarial networks (physicsGAN), to intelligently parameterize the takeoff control profiles of an eVTOL aircraft and to transform the original design space to a feasible space. Specifically, the transformed feasible space refers to a space where all designs directly satisfy all design constraints. The physicsGAN-enabled surrogate-based takeoff trajectory design framework was demonstrated on the Airbus A3 Vahana. The physicsGAN generated only feasible control profiles of power and wing angle in the feasible space with around 98.9% of designs satisfying all constraints. The proposed design framework obtained 99.6% accuracy compared with simulation-based optimal design and took only 2.2 seconds, which reduced the computational time by around 200 times. Meanwhile, data-driven GAN-enabled surrogate-based optimization took 21.9 seconds using a derivative-free optimizer, which was around an order of magnitude slower than the proposed framework. Moreover, the data-driven GAN-based optimization using gradient-based optimizers could not consistently find the optimal design during random trials and got stuck in an infeasible region, which is problematic in real practice. Therefore, the proposed physicsGAN-based design framework outperformed data-driven GAN-based design to the extent of efficiency (2.2 seconds), optimality (99.6% accurate), and feasibility (100% feasible). According to the literature review, this is the first physics-constrained generative artificial intelligence enabled by surrogate models.
comment: Conference version with 10 pages and 7 figures
♻ ☆ λ: A Benchmark for Data-Efficiency in Long-Horizon Indoor Mobile Manipulation Robotics
Efficiently learning and executing long-horizon mobile manipulation (MoMa) tasks is crucial for advancing robotics in household and workplace settings. However, current MoMa models are data-inefficient, underscoring the need for improved models that require realistic-sized benchmarks to evaluate their efficiency, which do not exist. To address this, we introduce the LAMBDA ({\lambda}) benchmark (Long-horizon Actions for Mobile-manipulation Benchmarking of Directed Activities), which evaluates the data efficiency of models on language-conditioned, long-horizon, multi-room, multi-floor, pick-and-place tasks using a dataset of manageable size, more feasible for collection. The benchmark includes 571 human-collected demonstrations that provide realism and diversity in simulated and real-world settings. Unlike planner-generated data, these trajectories offer natural variability and replay-verifiability, ensuring robust learning and evaluation. We benchmark several models, including learning-based models and a neuro-symbolic modular approach combining foundation models with task and motion planning. Learning-based models show suboptimal success rates, even when leveraging pretrained weights, underscoring significant data inefficiencies. However, the neuro-symbolic approach performs significantly better while being more data efficient. Findings highlight the need for more data-efficient learning-based MoMa approaches. {\lambda} addresses this gap by serving as a key benchmark for evaluating the data efficiency of those future models in handling household robotics tasks.
comment: 8 pages
♻ ☆ ImageFlowNet: Forecasting Multiscale Image-Level Trajectories of Disease Progression with Irregularly-Sampled Longitudinal Medical Images ICASSP 2025
Advances in medical imaging technologies have enabled the collection of longitudinal images, which involve repeated scanning of the same patients over time, to monitor disease progression. However, predictive modeling of such data remains challenging due to high dimensionality, irregular sampling, and data sparsity. To address these issues, we propose ImageFlowNet, a novel model designed to forecast disease trajectories from initial images while preserving spatial details. ImageFlowNet first learns multiscale joint representation spaces across patients and time points, then optimizes deterministic or stochastic flow fields within these spaces using a position-parameterized neural ODE/SDE framework. The model leverages a UNet architecture to create robust multiscale representations and mitigates data scarcity by combining knowledge from all patients. We provide theoretical insights that support our formulation of ODEs, and motivate our regularizations involving high-level visual features, latent space organization, and trajectory smoothness. We validate ImageFlowNet on three longitudinal medical image datasets depicting progression in geographic atrophy, multiple sclerosis, and glioblastoma, demonstrating its ability to effectively forecast disease progression and outperform existing methods. Our contributions include the development of ImageFlowNet, its theoretical underpinnings, and empirical validation on real-world datasets. The official implementation is available at https://github.com/KrishnaswamyLab/ImageFlowNet.
comment: Accepted to ICASSP 2025
♻ ☆ Multimodal Machine Learning Can Predict Videoconference Fluidity and Enjoyment ICASSP 2025
Videoconferencing is now a frequent mode of communication in both professional and informal settings, yet it often lacks the fluidity and enjoyment of in-person conversation. This study leverages multimodal machine learning to predict moments of negative experience in videoconferencing. We sampled thousands of short clips from the RoomReader corpus, extracting audio embeddings, facial actions, and body motion features to train models for identifying low conversational fluidity, low enjoyment, and classifying conversational events (backchanneling, interruption, or gap). Our best models achieved an ROC-AUC of up to 0.87 on hold-out videoconference sessions, with domain-general audio features proving most critical. This work demonstrates that multimodal audio-video signals can effectively predict high-level subjective conversational outcomes. In addition, this is a contribution to research on videoconferencing user experience by showing that multimodal machine learning can be used to identify rare moments of negative user experience for further study or mitigation.
comment: ICASSP 2025
♻ ☆ Adjoint Matching: Fine-tuning Flow and Diffusion Generative Models with Memoryless Stochastic Optimal Control
Dynamical generative models that produce samples through an iterative process, such as Flow Matching and denoising diffusion models, have seen widespread use, but there have not been many theoretically-sound methods for improving these models with reward fine-tuning. In this work, we cast reward fine-tuning as stochastic optimal control (SOC). Critically, we prove that a very specific memoryless noise schedule must be enforced during fine-tuning, in order to account for the dependency between the noise variable and the generated samples. We also propose a new algorithm named Adjoint Matching which outperforms existing SOC algorithms, by casting SOC problems as a regression problem. We find that our approach significantly improves over existing methods for reward fine-tuning, achieving better consistency, realism, and generalization to unseen human preference reward models, while retaining sample diversity.
♻ ☆ Unity by Diversity: Improved Representation Learning in Multimodal VAEs
Variational Autoencoders for multimodal data hold promise for many tasks in data analysis, such as representation learning, conditional generation, and imputation. Current architectures either share the encoder output, decoder input, or both across modalities to learn a shared representation. Such architectures impose hard constraints on the model. In this work, we show that a better latent representation can be obtained by replacing these hard constraints with a soft constraint. We propose a new mixture-of-experts prior, softly guiding each modality's latent representation towards a shared aggregate posterior. This approach results in a superior latent representation and allows each encoding to preserve information better from its uncompressed original features. In extensive experiments on multiple benchmark datasets and two challenging real-world datasets, we show improved learned latent representations and imputation of missing data modalities compared to existing methods.
comment: Accepted at Neurips 2024
♻ ☆ Constrained Sampling with Primal-Dual Langevin Monte Carlo NeurIPS 2024
This work considers the problem of sampling from a probability distribution known up to a normalization constant while satisfying a set of statistical constraints specified by the expected values of general nonlinear functions. This problem finds applications in, e.g., Bayesian inference, where it can constrain moments to evaluate counterfactual scenarios or enforce desiderata such as prediction fairness. Methods developed to handle support constraints, such as those based on mirror maps, barriers, and penalties, are not suited for this task. This work therefore relies on gradient descent-ascent dynamics in Wasserstein space to put forward a discrete-time primal-dual Langevin Monte Carlo algorithm (PD-LMC) that simultaneously constrains the target distribution and samples from it. We analyze the convergence of PD-LMC under standard assumptions on the target distribution and constraints, namely (strong) convexity and log-Sobolev inequalities. To do so, we bring classical optimization arguments for saddle-point algorithms to the geometry of Wasserstein space. We illustrate the relevance and effectiveness of PD-LMC in several applications.
comment: 39 pages, 14 figures. Published at NeurIPS 2024
♻ ☆ Stochastic Neural Network Symmetrisation in Markov Categories
We consider the problem of symmetrising a neural network along a group homomorphism: given a homomorphism $\varphi : H \to G$, we would like a procedure that converts $H$-equivariant neural networks to $G$-equivariant ones. We formulate this in terms of Markov categories, which allows us to consider neural networks whose outputs may be stochastic, but with measure-theoretic details abstracted away. We obtain a flexible and compositional framework for symmetrisation that relies on minimal assumptions about the structure of the group and the underlying neural network architecture. Our approach recovers existing canonicalisation and averaging techniques for symmetrising deterministic models, and extends to provide a novel methodology for symmetrising stochastic models also. Beyond this, our findings also demonstrate the utility of Markov categories for addressing complex problems in machine learning in a conceptually clear yet mathematically precise way.
♻ ☆ Follow The Approximate Sparse Leader for No-Regret Online Sparse Linear Approximation
We consider the problem of \textit{online sparse linear approximation}, where one predicts the best sparse approximation of a sequence of measurements in terms of linear combination of columns of a given measurement matrix. Such online prediction problems are ubiquitous, ranging from medical trials to web caching to resource allocation. The inherent difficulty of offline recovery also makes the online problem challenging. In this letter, we propose Follow-The-Approximate-Sparse-Leader, an efficient online meta-policy to address this online problem. Through a detailed theoretical analysis, we prove that under certain assumptions on the measurement sequence, the proposed policy enjoys a data-dependent sublinear upper bound on the static regret, which can range from logarithmic to square-root. Numerical simulations are performed to corroborate the theoretical findings and demonstrate the efficacy of the proposed online policy.
comment: 12 pages, 5 figures, corrected title, added proof of a lemma in appendix
♻ ☆ AtMan: Understanding Transformer Predictions Through Memory Efficient Attention Manipulation
Generative transformer models have become increasingly complex, with large numbers of parameters and the ability to process multiple input modalities. Current methods for explaining their predictions are resource-intensive. Most crucially, they require prohibitively large amounts of extra memory, since they rely on backpropagation which allocates almost twice as much GPU memory as the forward pass. This makes it difficult, if not impossible, to use them in production. We present AtMan that provides explanations of generative transformer models at almost no extra cost. Specifically, AtMan is a modality-agnostic perturbation method that manipulates the attention mechanisms of transformers to produce relevance maps for the input with respect to the output prediction. Instead of using backpropagation, AtMan applies a parallelizable token-based search method based on cosine similarity neighborhood in the embedding space. Our exhaustive experiments on text and image-text benchmarks demonstrate that AtMan outperforms current state-of-the-art gradient-based methods on several metrics while being computationally efficient. As such, AtMan is suitable for use in large model inference deployments.
♻ ☆ Probability-density-aware Semi-supervised Learning
Semi-supervised learning (SSL) assumes that neighbor points lie in the same category (neighbor assumption), and points in different clusters belong to various categories (cluster assumption). Existing methods usually rely on similarity measures to retrieve the similar neighbor points, ignoring cluster assumption, which may not utilize unlabeled information sufficiently and effectively. This paper first provides a systematical investigation into the significant role of probability density in SSL and lays a solid theoretical foundation for cluster assumption. To this end, we introduce a Probability-Density-Aware Measure (PM) to discern the similarity between neighbor points. To further improve Label Propagation, we also design a Probability-Density-Aware Measure Label Propagation (PMLP) algorithm to fully consider the cluster assumption in label propagation. Last but not least, we prove that traditional pseudo-labeling could be viewed as a particular case of PMLP, which provides a comprehensive theoretical understanding of PMLP's superior performance. Extensive experiments demonstrate that PMLP achieves outstanding performance compared with other recent methods.
♻ ☆ Statistical Error Bounds for GANs with Nonlinear Objective Functionals
Generative adversarial networks (GANs) are unsupervised learning methods for training a generator distribution to produce samples that approximate those drawn from a target distribution. Many such methods can be formulated as minimization of a metric or divergence between probability distributions. Recent works have derived statistical error bounds for GANs that are based on integral probability metrics (IPMs), e.g., WGAN which is based on the 1-Wasserstein metric. In general, IPMs are defined by optimizing a linear functional (difference of expectations) over a space of discriminators. A much larger class of GANs, which we here call $(f,\Gamma)$-GANs, can be constructed using $f$-divergences (e.g., Jensen-Shannon, KL, or $\alpha$-divergences) together with a regularizing discriminator space $\Gamma$ (e.g., $1$-Lipschitz functions). These GANs have nonlinear objective functions, depending on the choice of $f$, and have been shown to exhibit improved performance in a number of applications. In this work we derive statistical error bounds for $(f,\Gamma)$-GANs for general classes of $f$ and $\Gamma$ in the form of finite-sample concentration inequalities. These results prove the statistical consistency of $(f,\Gamma)$-GANs and reduce to the known results for IPM-GANs in the appropriate limit. Finally, our results also give new insight into the performance of GANs for distributions with unbounded support.
comment: 27 pages
♻ ☆ Scaling Efficient LLMs
Trained LLMs are typically sparse in that most of the parameters are zero, raising questions on efficiency. In response, we inquire into efficient LLMs, i.e. those with the fewest parameters that achieve the desired accuracy on a training corpus. Specifically, we compare theoretical and empirical estimates for training loss to obtain upper and lower bounds on the number of unique sequences in a natural training corpus as a function of its size. Our result implies (1) to double the number of skills represented in a training corpus, the corpus must scale more than four fold (2) for efficient LLMs, the number of parameters N and the size D of a natural training corpus scale as $N \propto D^{0.44}$; (3) if the number of parameters of an LLM is smaller than the number of unique sequences in the training corpus, scaling up can uncover emergent skills.
♻ ☆ Exploring Federated Unlearning: Analysis, Comparison, and Insights
The increasing demand for privacy-preserving machine learning has spurred interest in federated unlearning, which enables the selective removal of data from models trained in federated systems. However, developing federated unlearning methods presents challenges, particularly in balancing three often conflicting objectives: privacy, accuracy, and efficiency. This paper provides a comprehensive analysis of existing federated unlearning approaches, examining their algorithmic efficiency, impact on model accuracy, and effectiveness in preserving privacy. We discuss key trade-offs among these dimensions and highlight their implications for practical applications across various domains. Additionally, we propose the OpenFederatedUnlearning framework, a unified benchmark for evaluating federated unlearning methods, incorporating classic baselines and diverse performance metrics. Our findings aim to guide practitioners in navigating the complex interplay of these objectives, offering insights to achieve effective and efficient federated unlearning. Finally, we outline directions for future research to further advance the state of federated unlearning techniques.
♻ ☆ T-FREE: Subword Tokenizer-Free Generative LLMs via Sparse Representations for Memory-Efficient Embeddings
Tokenizers are crucial for encoding information in Large Language Models, but their development has recently stagnated, and they contain inherent weaknesses. Major limitations include computational overhead, ineffective vocabulary use, and unnecessarily large embedding and head layers. Additionally, their performance is biased towards a reference corpus, leading to reduced effectiveness for underrepresented languages. To remedy these issues, we propose T-FREE, which directly embeds words through sparse activation patterns over character triplets, and does not require a reference corpus. T-FREE inherently exploits morphological similarities and allows for strong compression of embedding layers. In our exhaustive experimental evaluation, we achieve competitive downstream performance with a parameter reduction of more than 85% on these layers. Further, T-FREE shows significant improvements in cross-lingual transfer learning.
♻ ☆ LMS-AutoTSF: Learnable Multi-Scale Decomposition and Integrated Autocorrelation for Time Series Forecasting
Time series forecasting is an important challenge with significant applications in areas such as weather prediction, stock market analysis, scientific simulations and industrial process analysis. In this work, we introduce LMS-AutoTSF, a novel time series forecasting architecture that incorporates autocorrelation while leveraging dual encoders operating at multiple scales. Unlike models that rely on predefined trend and seasonal components, LMS-AutoTSF employs two separate encoders per scale: one focusing on low-pass filtering to capture trends and the other utilizing high-pass filtering to model seasonal variations. These filters are learnable, allowing the model to dynamically adapt and isolate trend and seasonal components directly in the frequency domain. A key innovation in our approach is the integration of autocorrelation, achieved by computing lagged differences in time steps, which enables the model to capture dependencies across time more effectively. Each encoder processes the input through fully connected layers to handle temporal and channel interactions. By combining frequency-domain filtering, autocorrelation-based temporal modeling, and channel-wise transformations, LMS-AutoTSF not only accurately captures long-term dependencies and fine-grained patterns but also operates more efficiently compared to other state-of-the-art methods. Its lightweight design ensures faster processing while maintaining high precision in forecasting across diverse time horizons. The source code is publicly available at \url{http://github.com/mribrahim/LMS-TSF}
♻ ☆ Koopman Learning with Episodic Memory
Koopman operator theory has found significant success in learning models of complex, real-world dynamical systems, enabling prediction and control. The greater interpretability and lower computational costs of these models, compared to traditional machine learning methodologies, make Koopman learning an especially appealing approach. Despite this, little work has been performed on endowing Koopman learning with the ability to leverage its own failures. To address this, we equip Koopman methods -- developed for predicting non-autonomous time-series -- with an episodic memory mechanism, enabling global recall of (or attention to) periods in time where similar dynamics previously occurred. We find that a basic implementation of Koopman learning with episodic memory leads to significant improvements in prediction on synthetic and real-world data. Our framework has considerable potential for expansion, allowing for future advances, and opens exciting new directions for Koopman learning.
comment: 17 pages, 7 figures
♻ ☆ Learning Lipschitz Operators with respect to Gaussian Measures with Near-Optimal Sample Complexity
Operator learning, the approximation of mappings between infinite-dimensional function spaces using ideas from machine learning, has gained increasing research attention in recent years. Approximate operators, learned from data, hold promise to serve as efficient surrogate models for problems in computational science and engineering, complementing traditional numerical methods. However, despite their empirical success, our understanding of the underpinning mathematical theory is in large part still incomplete. In this paper, we study the approximation of Lipschitz operators in expectation with respect to Gaussian measures. We prove higher Gaussian Sobolev regularity of Lipschitz operators and establish lower and upper bounds on the Hermite polynomial approximation error. We further consider the reconstruction of Lipschitz operators from $m$ arbitrary (adaptive) linear samples. A key finding is the tight characterization of the smallest achievable error for all possible (adaptive) sampling and reconstruction maps in terms of $m$. It is shown that Hermite polynomial approximation is an optimal recovery strategy, but we have the following curse of sample complexity: No method to approximate Lipschitz operators based on $m$ samples can achieve algebraic convergence rates in $m$. On the positive side, we prove that a sufficiently fast spectral decay of the covariance operator of the Gaussian measure guarantees convergence rates which are arbitrarily close to any algebraic rate in the large data limit $m \to \infty$. A main focus of this work is on the recovery of Lipschitz operators from finitely many point samples. We use Christoffel sampling and weighted least-squares approximation to propose an algorithm which provably achieves near-optimal sample complexity in high probability.
comment: 56 pages
♻ ☆ From Glucose Patterns to Health Outcomes: A Generalizable Foundation Model for Continuous Glucose Monitor Data Analysis
Recent advances in SSL enabled novel medical AI models, known as foundation models, offer great potential for better characterizing health from diverse biomedical data. CGM provides rich, temporal data on glycemic patterns, but its full potential for predicting broader health outcomes remains underutilized. Here, we present GluFormer, a generative foundation model for CGM data that learns nuanced glycemic patterns and translates them into predictive representations of metabolic health. Trained on over 10 million CGM measurements from 10,812 adults, primarily without diabetes, GluFormer uses autoregressive token prediction to capture longitudinal glucose dynamics. We show that GluFormer generalizes to 19 external cohorts (n=6,044) spanning different ethnicities and ages, 5 countries, 8 CGM devices, and diverse pathophysiological states. GluFormers representations exceed the performance of current CGM metrics, such as the Glucose Management Indicator (GMI), for forecasting clinical measures. In a longitudinal study of 580 adults with CGM data and 12-year follow-up, GluFormer identifies individuals at elevated risk of developing diabetes more effectively than blood HbA1C%, capturing 66% of all new-onset diabetes diagnoses in the top quartile versus 7% in the bottom quartile. Similarly, 69% of cardiovascular-death events occurred in the top quartile with none in the bottom quartile, demonstrating powerful risk stratification beyond traditional glycemic metrics. We also show that CGM representations from pre-intervention periods in Randomized Clinical Trials outperform other methods in predicting primary and secondary outcomes. When integrating dietary data into GluFormer, we show that the multi-modal version of the model can accurately generate CGM data based on dietary intake data, simulate outcomes of dietary interventions, and predict individual responses to specific foods.
♻ ☆ Abstracted Shapes as Tokens -- A Generalizable and Interpretable Model for Time-series Classification NeurIPS
In time-series analysis, many recent works seek to provide a unified view and representation for time-series across multiple domains, leading to the development of foundation models for time-series data. Despite diverse modeling techniques, existing models are black boxes and fail to provide insights and explanations about their representations. In this paper, we present VQShape, a pre-trained, generalizable, and interpretable model for time-series representation learning and classification. By introducing a novel representation for time-series data, we forge a connection between the latent space of VQShape and shape-level features. Using vector quantization, we show that time-series from different domains can be described using a unified set of low-dimensional codes, where each code can be represented as an abstracted shape in the time domain. On classification tasks, we show that the representations of VQShape can be utilized to build interpretable classifiers, achieving comparable performance to specialist models. Additionally, in zero-shot learning, VQShape and its codebook can generalize to previously unseen datasets and domains that are not included in the pre-training process. The code and pre-trained weights are available at https://github.com/YunshiWen/VQShape.
comment: Published in Neural Information Processing Systems (NeurIPS) 2024
♻ ☆ Advanced Persistent Threats (APT) Attribution Using Deep Reinforcement Learning
The development of the DRL model for malware attribution involved extensive research, iterative coding, and numerous adjustments based on the insights gathered from predecessor models and contemporary research papers. This preparatory work was essential to establish a robust foundation for the model, ensuring it could adapt and respond effectively to the dynamic nature of malware threats. Initially, the model struggled with low accuracy levels, but through persistent adjustments to its architecture and learning algorithms, accuracy improved dramatically from about 7 percent to over 73 percent in early iterations. By the end of the training, the model consistently reached accuracy levels near 98 percent, demonstrating its strong capability to accurately recognise and attribute malware activities. This upward trajectory in training accuracy is graphically represented in the Figure, which vividly illustrates the model maturation and increasing proficiency over time.
comment: 21 Pages
♻ ☆ Deep Learning-based Accelerated MR Cholangiopancreatography without Fully-sampled Data
The purpose of this study was to accelerate MR cholangiopancreatography (MRCP) acquisitions using deep learning-based (DL) reconstruction at 3T and 0.55T. A total of 35 healthy volunteers underwent conventional two-fold accelerated MRCP scans at field strengths of 3T and 0.55T. We trained DL reconstructions using two different training strategies, supervised (SV) and self-supervised (SSV), with retrospectively six-fold undersampled data obtained at 3T. We then evaluated the DL reconstructions against standard techniques, parallel imaging (PI) and compressed sensing (CS), focusing on peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) as metrics. We also tested DL reconstructions with prospectively accelerated acquisitions and evaluated their robustness when changing fields strengths from 3T to 0.55T. DL reconstructions demonstrated a reduction in average acquisition time from 599/542 to 255/180 seconds for MRCP at 3T/0.55T. In both retrospective and prospective undersampling, PSNR and SSIM of DL reconstructions were higher than those of PI and CS. At the same time, DL reconstructions preserved the image quality of undersampled data, including sharpness and the visibility of hepatobiliary ducts. In addition, both DL approaches produced high-quality reconstructions at 0.55T. In summary, DL reconstructions trained for highly accelerated MRCP enabled a reduction in acquisition time by a factor of 2.4/3.0 at 3T/0.55T while maintaining the image quality of conventional acquisitions.
comment: 19 pages, 4 figures, 2 tables
♻ ☆ Influence Functions for Scalable Data Attribution in Diffusion Models
Diffusion models have led to significant advancements in generative modelling. Yet their widespread adoption poses challenges regarding data attribution and interpretability. In this paper, we aim to help address such challenges in diffusion models by developing an influence functions framework. Influence function-based data attribution methods approximate how a model's output would have changed if some training data were removed. In supervised learning, this is usually used for predicting how the loss on a particular example would change. For diffusion models, we focus on predicting the change in the probability of generating a particular example via several proxy measurements. We show how to formulate influence functions for such quantities and how previously proposed methods can be interpreted as particular design choices in our framework. To ensure scalability of the Hessian computations in influence functions, we systematically develop K-FAC approximations based on generalised Gauss-Newton matrices specifically tailored to diffusion models. We recast previously proposed methods as specific design choices in our framework and show that our recommended method outperforms previous data attribution approaches on common evaluations, such as the Linear Data-modelling Score (LDS) or retraining without top influences, without the need for method-specific hyperparameter tuning.
♻ ☆ Highway Graph to Accelerate Reinforcement Learning
Reinforcement Learning (RL) algorithms often struggle with low training efficiency. A common approach to address this challenge is integrating model-based planning algorithms, such as Monte Carlo Tree Search (MCTS) or Value Iteration (VI), into the environmental model. However, VI requires iterating over a large tensor which updates the value of the preceding state based on the succeeding state through value propagation, resulting in computationally intensive operations. To enhance the RL training efficiency, we propose improving the efficiency of the value learning process. In deterministic environments with discrete state and action spaces, we observe that on the sampled empirical state-transition graph, a non-branching sequence of transitions-termed a highway-can take the agent to another state without deviation through intermediate states. On these non-branching highways, the value-updating process can be streamlined into a single-step operation, eliminating the need for step-by-step updates. Building on this observation, we introduce the highway graph to model state transitions. The highway graph compresses the transition model into a compact representation, where edges can encapsulate multiple state transitions, enabling value propagation across multiple time steps in a single iteration. By integrating the highway graph into RL, the training process is significantly accelerated, particularly in the early stages of training. Experiments across four categories of environments demonstrate that our method learns significantly faster than established and state-of-the-art RL algorithms (often by a factor of 10 to 150) while maintaining equal or superior expected returns. Furthermore, a deep neural network-based agent trained using the highway graph exhibits improved generalization capabilities and reduced storage costs. Code is publicly available at https://github.com/coodest/highwayRL.
comment: Published in TMLR
♻ ☆ Piano Transcription by Hierarchical Language Modeling with Pretrained Roll-based Encoders ICASSP 2025
Automatic Music Transcription (AMT), aiming to get musical notes from raw audio, typically uses frame-level systems with piano-roll outputs or language model (LM)-based systems with note-level predictions. However, frame-level systems require manual thresholding, while the LM-based systems struggle with long sequences. In this paper, we propose a hybrid method combining pre-trained roll-based encoders with an LM decoder to leverage the strengths of both methods. Besides, our approach employs a hierarchical prediction strategy, first predicting onset and pitch, then velocity, and finally offset. The hierarchical prediction strategy reduces computational costs by breaking down long sequences into different hierarchies. Evaluated on two benchmark roll-based encoders, our method outperforms traditional piano-roll outputs 0.01 and 0.022 in onset-offset-velocity F1 score, demonstrating its potential as a performance-enhancing plug-in for arbitrary roll-based music transcription encoder.
comment: Accepted by ICASSP 2025
♻ ☆ GraphLoRA: Structure-Aware Contrastive Low-Rank Adaptation for Cross-Graph Transfer Learning KDD2025
Graph Neural Networks (GNNs) have demonstrated remarkable proficiency in handling a range of graph analytical tasks across various domains, such as e-commerce and social networks. Despite their versatility, GNNs face significant challenges in transferability, limiting their utility in real-world applications. Existing research in GNN transfer learning overlooks discrepancies in distribution among various graph datasets, facing challenges when transferring across different distributions. How to effectively adopt a well-trained GNN to new graphs with varying feature and structural distributions remains an under-explored problem. Taking inspiration from the success of Low-Rank Adaptation (LoRA) in adapting large language models to various domains, we propose GraphLoRA, an effective and parameter-efficient method for transferring well-trained GNNs to diverse graph domains. Specifically, we first propose a Structure-aware Maximum Mean Discrepancy (SMMD) to align divergent node feature distributions across source and target graphs. Moreover, we introduce low-rank adaptation by injecting a small trainable GNN alongside the pre-trained one, effectively bridging structural distribution gaps while mitigating the catastrophic forgetting. Additionally, a structure-aware regularization objective is proposed to enhance the adaptability of the pre-trained GNN to target graph with scarce supervision labels. Extensive experiments on eight real-world datasets demonstrate the effectiveness of GraphLoRA against fourteen baselines by tuning only 20% of parameters, even across disparate graph domains. The code is available at https://github.com/AllminerLab/GraphLoRA.
comment: Accepted by KDD2025
♻ ☆ Predicting risk of cardiovascular disease using retinal OCT imaging
Cardiovascular diseases (CVD) are the leading cause of death globally. Non-invasive, cost-effective imaging techniques play a crucial role in early detection and prevention of CVD. Optical coherence tomography (OCT) has gained recognition as a potential tool for early CVD risk prediction, though its use remains underexplored. In this study, we investigated the potential of OCT as an additional imaging technique to predict future CVD events. We analysed retinal OCT data from the UK Biobank. The dataset included 612 patients who suffered a myocardial infarction (MI) or stroke within five years of imaging and 2,234 controls without CVD (total: 2,846 participants). A self-supervised deep learning approach based on Variational Autoencoders (VAE) was used to extract low-dimensional latent representations from high-dimensional 3D OCT images, capturing distinct features of retinal layers. These latent features, along with clinical data, were used to train a Random Forest (RF) classifier to differentiate between patients at risk of future CVD events (MI or stroke) and healthy controls. Our model achieved an AUC of 0.75, sensitivity of 0.70, specificity of 0.70, and accuracy of 0.70, outperforming the QRISK3 score (the third version of the QRISK cardiovascular disease risk prediction algorithm; AUC = 0.60, sensitivity = 0.60, specificity = 0.55, accuracy = 0.55). The choroidal layer in OCT images was identified as a key predictor of future CVD events, revealed through a novel model explainability approach. This study demonstrates that retinal OCT imaging is a cost-effective, non-invasive alternative for predicting CVD risk, offering potential for widespread application in optometry practices and hospitals.
comment: New version - 26 pages for main manuscript, 7 figures, 7 pages for appendix and preprint for a journal
♻ ☆ On Local Overfitting and Forgetting in Deep Neural Networks
The infrequent occurrence of overfitting in deep neural networks is perplexing: contrary to theoretical expectations, increasing model size often enhances performance in practice. But what if overfitting does occur, though restricted to specific sub-regions of the data space? In this work, we propose a novel score that captures the forgetting rate of deep models on validation data. We posit that this score quantifies local overfitting: a decline in performance confined to certain regions of the data space. We then show empirically that local overfitting occurs regardless of the presence of traditional overfitting. Using the framework of deep over-parametrized linear models, we offer a certain theoretical characterization of forgotten knowledge, and show that it correlates with knowledge forgotten by real deep models. Finally, we devise a new ensemble method that aims to recover forgotten knowledge, relying solely on the training history of a single network. When combined with self-distillation, this method enhances the performance of any trained model without adding inference costs. Extensive empirical evaluations demonstrate the efficacy of our method across multiple datasets, contemporary neural network architectures, and training protocols.
comment: arXiv admin note: substantial text overlap with arXiv:2310.11094
♻ ☆ Disentangling, Amplifying, and Debiasing: Learning Disentangled Representations for Fair Graph Neural Networks AAAI 2025
Graph Neural Networks (GNNs) have become essential tools for graph representation learning in various domains, such as social media and healthcare. However, they often suffer from fairness issues due to inherent biases in node attributes and graph structure, leading to unfair predictions. To address these challenges, we propose a novel GNN framework, DAB-GNN, that Disentangles, Amplifies, and deBiases attribute, structure, and potential biases in the GNN mechanism. DAB-GNN employs a disentanglement and amplification module that isolates and amplifies each type of bias through specialized disentanglers, followed by a debiasing module that minimizes the distance between subgroup distributions. Extensive experiments on five datasets demonstrate that DAB-GNN significantly outperforms ten state-of-the-art competitors in terms of achieving an optimal balance between accuracy and fairness. The codebase of DAB-GNN is available at https://github.com/Bigdasgit/DAB-GNN
comment: Accepted by AAAI 2025
♻ ☆ Data-driven tool wear prediction in milling, based on a process-integrated single-sensor approach
Accurate tool wear prediction is essential for maintaining productivity and minimizing costs in machining. However, the complex nature of the tool wear process poses significant challenges to achieving reliable predictions. This study explores data-driven methods, in particular deep learning, for tool wear prediction. Traditional data-driven approaches often focus on a single process, relying on multi-sensor setups and extensive data generation, which limits generalization to new settings. Moreover, multi-sensor integration is often impractical in industrial environments. To address these limitations, this research investigates the transferability of predictive models using minimal training data, validated across two processes. Furthermore, it uses a simple setup with a single acceleration sensor to establish a low-cost data generation approach that facilitates the generalization of models to other processes via transfer learning. The study evaluates several machine learning models, including convolutional neural networks (CNN), long short-term memory networks (LSTM), support vector machines (SVM) and decision trees, trained on different input formats such as feature vectors and short-time Fourier transform (STFT). The performance of the models is evaluated on different amounts of training data, including scenarios with significantly reduced datasets, providing insight into their effectiveness under constrained data conditions. The results demonstrate the potential of specific models and configurations for effective tool wear prediction, contributing to the development of more adaptable and efficient predictive maintenance strategies in machining. Notably, the ConvNeXt model has an exceptional performance, achieving an 99.1% accuracy in identifying tool wear using data from only four milling tools operated until they are worn.
comment: Preprint submitted to Robotics and Computer-Integrated Manufacturing ,14 pages, 9 figures
♻ ☆ Catch Causal Signals from Edges for Label Imbalance in Graph Classification ICASSP 2025
Despite significant advancements in causal research on graphs and its application to cracking label imbalance, the role of edge features in detecting the causal effects within graphs has been largely overlooked, leaving existing methods with untapped potential for further performance gains. In this paper, we enhance the causal attention mechanism through effectively leveraging edge information to disentangle the causal subgraph from the original graph, as well as further utilizing edge features to reshape graph representations. Capturing more comprehensive causal signals, our design leads to improved performance on graph classification tasks with label imbalance issues. We evaluate our approach on real-word datasets PTC, Tox21, and ogbg-molhiv, observing improvements over baselines. Overall, we highlight the importance of edge features in graph causal detection and provide a promising direction for addressing label imbalance challenges in graph-level tasks. The model implementation details and the codes are available on https://github.com/fengrui-z/ECAL
comment: ICASSP 2025
♻ ☆ Learning the Language of Protein Structure
Representation learning and \emph{de novo} generation of proteins are pivotal computational biology tasks. Whilst natural language processing (NLP) techniques have proven highly effective for protein sequence modelling, structure modelling presents a complex challenge, primarily due to its continuous and three-dimensional nature. Motivated by this discrepancy, we introduce an approach using a vector-quantized autoencoder that effectively tokenizes protein structures into discrete representations. This method transforms the continuous, complex space of protein structures into a manageable, discrete format with a codebook ranging from 4096 to 64000 tokens, achieving high-fidelity reconstructions with backbone root mean square deviations (RMSD) of approximately 1-5 \AA. To demonstrate the efficacy of our learned representations, we show that a simple GPT model trained on our codebooks can generate novel, diverse, and designable protein structures. Our approach not only provides representations of protein structure, but also mitigates the challenges of disparate modal representations and sets a foundation for seamless, multi-modal integration, enhancing the capabilities of computational methods in protein design.
♻ ☆ GDSR: Global-Detail Integration through Dual-Branch Network with Wavelet Losses for Remote Sensing Image Super-Resolution
In recent years, deep neural networks, including Convolutional Neural Networks, Transformers, and State Space Models, have achieved significant progress in Remote Sensing Image (RSI) Super-Resolution (SR). However, existing SR methods typically overlook the complementary relationship between global and local dependencies. These methods either focus on capturing local information or prioritize global information, which results in models that are unable to effectively capture both global and local features simultaneously. Moreover, their computational cost becomes prohibitive when applied to large-scale RSIs. To address these challenges, we introduce the novel application of Receptance Weighted Key Value (RWKV) to RSI-SR, which captures long-range dependencies with linear complexity. To simultaneously model global and local features, we propose the Global-Detail dual-branch structure, GDSR, which performs SR reconstruction by paralleling RWKV and convolutional operations to handle large-scale RSIs. Furthermore, we introduce the Global-Detail Reconstruction Module (GDRM) as an intermediary between the two branches to bridge their complementary roles. In addition, we propose Wavelet Loss, a loss function that effectively captures high-frequency detail information in images, thereby enhancing the visual quality of SR, particularly in terms of detail reconstruction. Extensive experiments on several benchmarks, including AID, AID_CDM, RSSRD-QH, and RSSRD-QH_CDM, demonstrate that GSDR outperforms the state-of-the-art Transformer-based method HAT by an average of 0.05 dB in PSNR, while using only 63% of its parameters and 51% of its FLOPs, achieving an inference speed 2.9 times faster. Furthermore, the Wavelet Loss shows excellent generalization across various architectures, providing a novel perspective for RSI-SR enhancement.
comment: The experiments were conducted using private datasets that were incomplete as they did not include all the necessary copyrights. Additionally, the conclusions require further exploration as the work is still in progress
♻ ☆ xMIL: Insightful Explanations for Multiple Instance Learning in Histopathology
Multiple instance learning (MIL) is an effective and widely used approach for weakly supervised machine learning. In histopathology, MIL models have achieved remarkable success in tasks like tumor detection, biomarker prediction, and outcome prognostication. However, MIL explanation methods are still lagging behind, as they are limited to small bag sizes or disregard instance interactions. We revisit MIL through the lens of explainable AI (XAI) and introduce xMIL, a refined framework with more general assumptions. We demonstrate how to obtain improved MIL explanations using layer-wise relevance propagation (LRP) and conduct extensive evaluation experiments on three toy settings and four real-world histopathology datasets. Our approach consistently outperforms previous explanation attempts with particularly improved faithfulness scores on challenging biomarker prediction tasks. Finally, we showcase how xMIL explanations enable pathologists to extract insights from MIL models, representing a significant advance for knowledge discovery and model debugging in digital histopathology. Codes are available at: https://github.com/bifold-pathomics/xMIL.
♻ ☆ AllSpark: A Multimodal Spatio-Temporal General Intelligence Model with Ten Modalities via Language as a Reference Framework
Leveraging multimodal data is an inherent requirement for comprehending geographic objects. However, due to the high heterogeneity in structure and semantics among various spatio-temporal modalities, the joint interpretation of multimodal spatio-temporal data has long been an extremely challenging problem. The primary challenge resides in striking a trade-off between the cohesion and autonomy of diverse modalities. This trade-off becomes progressively nonlinear as the number of modalities expands. Inspired by the human cognitive system and linguistic philosophy, where perceptual signals from the five senses converge into language, we introduce the Language as Reference Framework (LaRF), a fundamental principle for constructing a multimodal unified model. Building upon this, we propose AllSpark, a multimodal spatio-temporal general artificial intelligence model. Our model integrates ten different modalities into a unified framework. To achieve modal cohesion, AllSpark introduces a modal bridge and multimodal large language model (LLM) to map diverse modal features into the language feature space. To maintain modality autonomy, AllSpark uses modality-specific encoders to extract the tokens of various spatio-temporal modalities. Finally, observing a gap between the model's interpretability and downstream tasks, we designed modality-specific prompts and task heads, enhancing the model's generalization capability across specific tasks. Experiments indicate that the incorporation of language enables AllSpark to excel in few-shot classification tasks for RGB and point cloud modalities without additional training, surpassing baseline performance by up to 41.82\%. The source code is available at https://github.com/GeoX-Lab/AllSpark.
comment: 19 pages, 19 tables, 3 figures
♻ ☆ BoRA: Bayesian Hierarchical Low-Rank Adaption for Multi-Task Large Language Models
This paper introduces Bayesian Hierarchical Low-Rank Adaption (BoRA), a novel method for finetuning multi-task Large Language Models (LLMs). Current finetuning approaches, such as Low-Rank Adaption (LoRA), perform exeptionally well in reducing training parameters and memory usage but face limitations when applied to multiple similar tasks. Practitioners usually have to choose between training separate models for each task or a single model for all tasks, both of which come with trade-offs in specialization and data utilization. BoRA addresses these trade-offs by leveraging a Bayesian hierarchical model that allows tasks to share information through global hierarchical priors. This enables tasks with limited data to benefit from the overall structure derived from related tasks while allowing tasks with more data to specialize. Our experimental results show that BoRA outperforms both individual and unified model approaches, achieving lower perplexity and better generalization across tasks. This method provides a scalable and efficient solution for multi-task LLM finetuning, with significant practical implications for diverse applications.
comment: 14 pages, 5 figures
♻ ☆ Unexpected Improvements to Expected Improvement for Bayesian Optimization NeurIPS 2023
Expected Improvement (EI) is arguably the most popular acquisition function in Bayesian optimization and has found countless successful applications, but its performance is often exceeded by that of more recent methods. Notably, EI and its variants, including for the parallel and multi-objective settings, are challenging to optimize because their acquisition values vanish numerically in many regions. This difficulty generally increases as the number of observations, dimensionality of the search space, or the number of constraints grow, resulting in performance that is inconsistent across the literature and most often sub-optimal. Herein, we propose LogEI, a new family of acquisition functions whose members either have identical or approximately equal optima as their canonical counterparts, but are substantially easier to optimize numerically. We demonstrate that numerical pathologies manifest themselves in "classic" analytic EI, Expected Hypervolume Improvement (EHVI), as well as their constrained, noisy, and parallel variants, and propose corresponding reformulations that remedy these pathologies. Our empirical results show that members of the LogEI family of acquisition functions substantially improve on the optimization performance of their canonical counterparts and surprisingly, are on par with or exceed the performance of recent state-of-the-art acquisition functions, highlighting the understated role of numerical optimization in the literature.
comment: NeurIPS 2023 Spotlight (https://openreview.net/forum?id=QFgYOtOkDB)
♻ ☆ Robust Gaussian Processes via Relevance Pursuit NeurIPS 2024
Gaussian processes (GPs) are non-parametric probabilistic regression models that are popular due to their flexibility, data efficiency, and well-calibrated uncertainty estimates. However, standard GP models assume homoskedastic Gaussian noise, while many real-world applications are subject to non-Gaussian corruptions. Variants of GPs that are more robust to alternative noise models have been proposed, and entail significant trade-offs between accuracy and robustness, and between computational requirements and theoretical guarantees. In this work, we propose and study a GP model that achieves robustness against sparse outliers by inferring data-point-specific noise levels with a sequential selection procedure maximizing the log marginal likelihood that we refer to as relevance pursuit. We show, surprisingly, that the model can be parameterized such that the associated log marginal likelihood is strongly concave in the data-point-specific noise variances, a property rarely found in either robust regression objectives or GP marginal likelihoods. This in turn implies the weak submodularity of the corresponding subset selection problem, and thereby proves approximation guarantees for the proposed algorithm. We compare the model's performance relative to other approaches on diverse regression and Bayesian optimization tasks, including the challenging but common setting of sparse corruptions of the labels within or close to the function range.
comment: NeurIPS 2024 Article (https://openreview.net/forum?id=5FATPIlWUJ)
♻ ☆ Fast Structured Orthogonal Dictionary Learning using Householder Reflections ICASSP
In this paper, we propose and investigate algorithms for the structured orthogonal dictionary learning problem. First, we investigate the case when the dictionary is a Householder matrix. We give sample complexity results and show theoretically guaranteed approximate recovery (in the $l_{\infty}$ sense) with optimal computational complexity. We then attempt to generalize these techniques when the dictionary is a product of a few Householder matrices. We numerically validate these techniques in the sample-limited setting to show performance similar to or better than existing techniques while having much improved computational complexity.
comment: 12 pages, 5 figures, accepted for publication: IEEE ICASSP, 2025
♻ ☆ Wavelet-Driven Generalizable Framework for Deepfake Face Forgery Detection
The evolution of digital image manipulation, particularly with the advancement of deep generative models, significantly challenges existing deepfake detection methods, especially when the origin of the deepfake is obscure. To tackle the increasing complexity of these forgeries, we propose \textbf{Wavelet-CLIP}, a deepfake detection framework that integrates wavelet transforms with features derived from the ViT-L/14 architecture, pre-trained in the CLIP fashion. Wavelet-CLIP utilizes Wavelet Transforms to deeply analyze both spatial and frequency features from images, thus enhancing the model's capability to detect sophisticated deepfakes. To verify the effectiveness of our approach, we conducted extensive evaluations against existing state-of-the-art methods for cross-dataset generalization and detection of unseen images generated by standard diffusion models. Our method showcases outstanding performance, achieving an average AUC of 0.749 for cross-data generalization and 0.893 for robustness against unseen deepfakes, outperforming all compared methods. The code can be reproduced from the repo: \url{https://github.com/lalithbharadwajbaru/Wavelet-CLIP}
comment: 9 Pages, 2 Figures, 3 Tables
♻ ☆ Continuously Learning New Words in Automatic Speech Recognition ICASSP 2025
Despite recent advances, Automatic Speech Recognition (ASR) systems are still far from perfect. Typical errors include acronyms, named entities, and domain-specific special words for which little or no labeled data is available. To address the problem of recognizing these words, we propose a self-supervised continual learning approach: Given the audio of a lecture talk with the corresponding slides, we bias the model towards decoding new words from the slides by using a memory-enhanced ASR model from the literature. Then, we perform inference on the talk, collecting utterances that contain detected new words into an adaptation data set. Continual learning is then performed by training adaptation weights added to the model on this data set. The whole procedure is iterated for many talks. We show that with this approach, we obtain increasing performance on the new words when they occur more frequently (more than 80% recall) while preserving the general performance of the model.
comment: Accepted at ICASSP 2025
♻ ☆ PRMBench: A Fine-grained and Challenging Benchmark for Process-Level Reward Models
Process-level Reward Models (PRMs) are crucial for complex reasoning and decision-making tasks, where each intermediate step plays an important role in the reasoning process. Since language models are prone to various types of errors during the reasoning process, PRMs are required to possess nuanced capabilities for detecting various implicit error types in real-world scenarios. However, current benchmarks primarily focus on step correctness, failing to evaluate PRMs' performance systematically. To address this gap, we introduce PRMBench, a process-level benchmark specifically designed to assess the fine-grained error detection capabilities of PRMs. PRMBench comprises 6,216 carefully designed problems and 83,456 step-level labels, evaluating models across multiple dimensions, including simplicity, soundness, and sensitivity. In our experiments on 15 models, spanning both open-source PRMs and closed-source large language models prompted as critic models, we uncover significant weaknesses in current PRMs. These findings underscore the challenges inherent in process-level evaluation and highlight key directions for future research. We hope PRMBench can be a robust bench for advancing research on PRM evaluation and development.
comment: Project Page: https://prmbench.github.io/
♻ ☆ Reinforcement Learning for Jump-Diffusions, with Financial Applications
We study continuous-time reinforcement learning (RL) for stochastic control in which system dynamics are governed by jump-diffusion processes. We formulate an entropy-regularized exploratory control problem with stochastic policies to capture the exploration--exploitation balance essential for RL. Unlike the pure diffusion case initially studied by Wang et al. (2020), the derivation of the exploratory dynamics under jump-diffusions calls for a careful formulation of the jump part. Through a theoretical analysis, we find that one can simply use the same policy evaluation and $q$-learning algorithms in Jia and Zhou (2022a, 2023), originally developed for controlled diffusions, without needing to check a priori whether the underlying data come from a pure diffusion or a jump-diffusion. However, we show that the presence of jumps ought to affect parameterizations of actors and critics in general. We investigate as an application the mean--variance portfolio selection problem with stock price modelled as a jump-diffusion, and show that both RL algorithms and parameterizations are invariant with respect to jumps. Finally, we present a detailed study on applying the general theory to option hedging.
♻ ☆ In Search of Trees: Decision-Tree Policy Synthesis for Black-Box Systems via Search
Decision trees, owing to their interpretability, are attractive as control policies for (dynamical) systems. Unfortunately, constructing, or synthesising, such policies is a challenging task. Previous approaches do so by imitating a neural-network policy, approximating a tabular policy obtained via formal synthesis, employing reinforcement learning, or modelling the problem as a mixed-integer linear program. However, these works may require access to a hard-to-obtain accurate policy or a formal model of the environment (within reach of formal synthesis), and may not provide guarantees on the quality or size of the final tree policy. In contrast, we present an approach to synthesise optimal decision-tree policies given a deterministic black-box environment and specification, a discretisation of the tree predicates, and an initial set of states, where optimality is defined with respect to the number of steps to achieve the goal. Our approach is a specialised search algorithm which systematically explores the (exponentially large) space of decision trees under the given discretisation. The key component is a novel trace-based pruning mechanism that significantly reduces the search space. Our approach represents a conceptually novel way of synthesising small decision-tree policies with optimality guarantees even for black-box environments with black-box specifications.
comment: 8 pages main text incl. references, 2 pages appendix
♻ ☆ Graph Neural Backdoor: Fundamentals, Methodologies, Applications, and Future Directions
Graph Neural Networks (GNNs) have significantly advanced various downstream graph-relevant tasks, encompassing recommender systems, molecular structure prediction, social media analysis, etc. Despite the boosts of GNN, recent research has empirically demonstrated its potential vulnerability to backdoor attacks, wherein adversaries employ triggers to poison input samples, inducing GNN to adversary-premeditated malicious outputs. This is typically due to the controlled training process, or the deployment of untrusted models, such as delegating model training to third-party service, leveraging external training sets, and employing pre-trained models from online sources. Although there's an ongoing increase in research on GNN backdoors, comprehensive investigation into this field is lacking. To bridge this gap, we propose the first survey dedicated to GNN backdoors. We begin by outlining the fundamental definition of GNN, followed by the detailed summarization and categorization of current GNN backdoor attacks and defenses based on their technical characteristics and application scenarios. Subsequently, the analysis of the applicability and use cases of GNN backdoors is undertaken. Finally, the exploration of potential research directions of GNN backdoors is presented. This survey aims to explore the principles of graph backdoors, provide insights to defenders, and promote future security research.
♻ ☆ Manifolds, Random Matrices and Spectral Gaps: The geometric phases of generative diffusion
In this paper, we investigate the latent geometry of generative diffusion models under the manifold hypothesis. For this purpose, we analyze the spectrum of eigenvalues (and singular values) of the Jacobian of the score function, whose discontinuities (gaps) reveal the presence and dimensionality of distinct sub-manifolds. Using a statistical physics approach, we derive the spectral distributions and formulas for the spectral gaps under several distributional assumptions, and we compare these theoretical predictions with the spectra estimated from trained networks. Our analysis reveals the existence of three distinct qualitative phases during the generative process: a trivial phase; a manifold coverage phase where the diffusion process fits the distribution internal to the manifold; a consolidation phase where the score becomes orthogonal to the manifold and all particles are projected on the support of the data. This `division of labor' between different timescales provides an elegant explanation of why generative diffusion models are not affected by the manifold overfitting phenomenon that plagues likelihood-based models, since the internal distribution and the manifold geometry are produced at different time points during generation.
♻ ☆ Standardness Clouds Meaning: A Position Regarding the Informed Usage of Standard Datasets
Standard datasets are frequently used to train and evaluate Machine Learning models. However, the assumed standardness of these datasets leads to a lack of in-depth discussion on how their labels match the derived categories for the respective use case, which we demonstrate by reviewing recent literature that employs standard datasets. We find that the standardness of the datasets seems to cloud their actual coherency and applicability, thus impeding the trust in Machine Learning models trained on these datasets. Therefore, we argue against the uncritical use of standard datasets and advocate for their critical examination instead. For this, we suggest to use Grounded Theory in combination with Hypotheses Testing through Visualization as methods to evaluate the match between use case, derived categories, and labels. We exemplify this approach by applying it to the 20 Newsgroups dataset and the MNIST dataset, both considered standard datasets in their respective domain. The results show that the labels of the 20 Newsgroups dataset are imprecise, which implies that neither a Machine Learning model can learn a meaningful abstraction of derived categories nor one can draw conclusions from achieving high accuracy on this dataset. For the MNIST dataset, we demonstrate that the labels can be confirmed to be defined well. We conclude that also for datasets that are considered to be standard, quality and suitability have to be assessed in order to learn meaningful abstractions and, thus, improve trust in Machine Learning models.
♻ ☆ Efficient Generative Modeling via Penalized Optimal Transport Network
The generation of synthetic data with distributions that faithfully emulate the underlying data-generating mechanism holds paramount significance. Wasserstein Generative Adversarial Networks (WGANs) have emerged as a prominent tool for this task; however, due to the delicate equilibrium of the minimax formulation and the instability of Wasserstein distance in high dimensions, WGAN often manifests the pathological phenomenon of mode collapse. This results in generated samples that converge to a restricted set of outputs and fail to adequately capture the tail behaviors of the true distribution. Such limitations can lead to serious downstream consequences. To this end, we propose the Penalized Optimal Transport Network (POTNet), a versatile deep generative model based on the marginally-penalized Wasserstein (MPW) distance. Through the MPW distance, POTNet effectively leverages low-dimensional marginal information to guide the overall alignment of joint distributions. Furthermore, our primal-based framework enables direct evaluation of the MPW distance, thus eliminating the need for a critic network. This formulation circumvents training instabilities inherent in adversarial approaches and avoids the need for extensive parameter tuning. We derive a non-asymptotic bound on the generalization error of the MPW loss and establish convergence rates of the generative distribution learned by POTNet. Our theoretical analysis together with extensive empirical evaluations demonstrate the superior performance of POTNet in accurately capturing underlying data structures, including their tail behaviors and minor modalities. Moreover, our model achieves orders of magnitude speedup during the sampling stage compared to state-of-the-art alternatives, which enables computationally efficient large-scale synthetic data generation.
comment: 54 pages, 12 figures
♻ ☆ Deploying Open-Source Large Language Models: A performance Analysis
Since the release of ChatGPT in November 2022, large language models (LLMs) have seen considerable success, including in the open-source community, with many open-weight models available. However, the requirements to deploy such a service are often unknown and difficult to evaluate in advance. To facilitate this process, we conducted numerous tests at the Centre Inria de l'Universit\'e de Bordeaux. In this article, we propose a comparison of the performance of several models of different sizes (mainly Mistral and LLaMa) depending on the available GPUs, using vLLM, a Python library designed to optimize the inference of these models. Our results provide valuable information for private and public groups wishing to deploy LLMs, allowing them to evaluate the performance of different models based on their available hardware. This study thus contributes to facilitating the adoption and use of these large language models in various application domains.
♻ ☆ From Dense to Sparse: Event Response for Enhanced Residential Load Forecasting
Residential load forecasting (RLF) is crucial for resource scheduling in power systems. Most existing methods utilize all given load records (dense data) to indiscriminately extract the dependencies between historical and future time series. However, there exist important regular patterns residing in the event-related associations among different appliances (sparse knowledge), which have yet been ignored.In this paper, we propose an Event-Response Knowledge Guided approach (ERKG) for RLF by incorporating the estimation of electricity usage events for different appliances, mining event-related sparse knowledge from the load series. With ERKG, the event-response estimation enables portraying the electricity consumption behaviors of residents, revealing regular variations in appliance operational states.To be specific, ERKG consists of knowledge extraction and guidance: i) a forecasting model is designed for the electricity usage events by estimating appliance operational states, aiming to extract the event-related sparse knowledge; ii) a novel knowledge-guided mechanism is established by fusing such state estimates of the appliance events into the RLF model, which can give particular focuses on the patterns of users' electricity consumption behaviors.Notably, ERKG can flexibly serve as a plug-in module to boost the capability of existing forecasting models by leveraging event response. In numerical experiments, extensive comparisons and ablation studies have verified the effectiveness of our ERKG, e.g., over 8% MAE can be reduced on the tested state-of-the-art forecasting models.
comment: 12 pages and 6 figures. Accepted for publication by IEEE Transactions on Instrumentation and Measurement
♻ ☆ A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
Advancements in image segmentation play an integral role within the broad scope of Deep Learning-based Computer Vision. Furthermore, their widespread applicability in critical real-world tasks has resulted in challenges related to the reliability of such algorithms. Hence, uncertainty quantification has been extensively studied within this context, enabling the expression of model ignorance (epistemic uncertainty) or data ambiguity (aleatoric uncertainty) to prevent uninformed decision-making. Due to the rapid adoption of Convolutional Neural Network (CNN)-based segmentation models in high-stake applications, a substantial body of research has been published on this very topic, causing its swift expansion into a distinct field. This work provides a comprehensive overview of probabilistic segmentation, by discussing fundamental concepts of uncertainty quantification, governing advancements in the field as well as the application to various tasks. Moreover, literature on both types of uncertainties trace back to four key applications: (1) to quantify statistical inconsistencies in the annotation process due ambiguous images, (2) correlating prediction error with uncertainty, (3) expanding the model hypothesis space for better generalization, and (4) Active Learning. An extensive discussion follows that includes an overview of utilized datasets for each of the applications and evaluation of the available methods. We also highlight challenges related to architectures, uncertainty quantification methods, standardization and benchmarking, and finally end with recommendations for future work such as methods based on single forward passes and models that appropriately leverage volumetric data.
comment: 20 pages, revised
♻ ☆ Partial-Label Learning with a Reject Option
In real-world applications, one often encounters ambiguously labeled data, where different annotators assign conflicting class labels. Partial-label learning allows training classifiers in this weakly supervised setting, where state-of-the-art methods already show good predictive performance. However, even the best algorithms give incorrect predictions, which can have severe consequences when they impact actions or decisions. We propose a novel risk-consistent nearest-neighbor-based partial-label learning algorithm with a reject option, that is, the algorithm can reject unsure predictions. Extensive experiments on artificial and real-world datasets show that our method provides the best trade-off between the number and accuracy of non-rejected predictions when compared to our competitors, which use confidence thresholds for rejecting unsure predictions. When evaluated without the reject option, our nearest-neighbor-based approach also achieves competitive prediction performance.
comment: Accepted for publication at TMLR
♻ ☆ On the Mode-Seeking Properties of Langevin Dynamics
The Langevin Dynamics framework, which aims to generate samples from the score function of a probability distribution, is widely used for analyzing and interpreting score-based generative modeling. While the convergence behavior of Langevin Dynamics under unimodal distributions has been extensively studied in the literature, in practice the data distribution could consist of multiple distinct modes. In this work, we investigate Langevin Dynamics in producing samples from multimodal distributions and theoretically study its mode-seeking properties. We prove that under a variety of sub-Gaussian mixtures, Langevin Dynamics is unlikely to find all mixture components within a sub-exponential number of steps in the data dimension. To reduce the mode-seeking tendencies of Langevin Dynamics, we propose \emph{Chained Langevin Dynamics}, which divides the data vector into patches of constant size and generates every patch sequentially conditioned on the previous patches. We perform a theoretical analysis of Chained Langevin Dynamics by reducing it to sampling from a constant-dimensional distribution. We present the results of several numerical experiments on synthetic and real image datasets, supporting our theoretical results on the iteration complexities of sample generation from mixture distributions using the chained and vanilla Langevin Dynamics. The code is available at https://github.com/Xiwei-Cheng/Chained_LD.
♻ ☆ Transferable Adversarial Examples with Bayes Approach AsiaCCS'25
The vulnerability of deep neural networks (DNNs) to black-box adversarial attacks is one of the most heated topics in trustworthy AI. In such attacks, the attackers operate without any insider knowledge of the model, making the cross-model transferability of adversarial examples critical. Despite the potential for adversarial examples to be effective across various models, it has been observed that adversarial examples that are specifically crafted for a specific model often exhibit poor transferability. In this paper, we explore the transferability of adversarial examples via the lens of Bayesian approach. Specifically, we leverage Bayesian approach to probe the transferability and then study what constitutes a transferability-promoting prior. Following this, we design two concrete transferability-promoting priors, along with an adaptive dynamic weighting strategy for instances sampled from these priors. Employing these techniques, we present BayAtk. Extensive experiments illustrate the significant effectiveness of BayAtk in crafting more transferable adversarial examples against both undefended and defended black-box models compared to existing state-of-the-art attacks.
comment: Accepted in AsiaCCS'25
♻ ☆ Non-geodesically-convex optimization in the Wasserstein space
We study a class of optimization problems in the Wasserstein space (the space of probability measures) where the objective function is nonconvex along generalized geodesics. Specifically, the objective exhibits some difference-of-convex structure along these geodesics. The setting also encompasses sampling problems where the logarithm of the target distribution is difference-of-convex. We derive multiple convergence insights for a novel semi Forward-Backward Euler scheme under several nonconvex (and possibly nonsmooth) regimes. Notably, the semi Forward-Backward Euler is just a slight modification of the Forward-Backward Euler whose convergence is -- to our knowledge -- still unknown in our very general non-geodesically-convex setting.
♻ ☆ Stability and Generalization in Free Adversarial Training
While adversarial training methods have significantly improved the robustness of deep neural networks against norm-bounded adversarial perturbations, the generalization gap between their performance on training and test data is considerably greater than that of standard empirical risk minimization. Recent studies have aimed to connect the generalization properties of adversarially trained classifiers to the min-max optimization algorithm used in their training. In this work, we analyze the interconnections between generalization and optimization in adversarial training using the algorithmic stability framework. Specifically, our goal is to compare the generalization gap of neural networks trained using the vanilla adversarial training method, which fully optimizes perturbations at every iteration, with the free adversarial training method, which simultaneously optimizes norm-bounded perturbations and classifier parameters. We prove bounds on the generalization error of these methods, indicating that the free adversarial training method may exhibit a lower generalization gap between training and test samples due to its simultaneous min-max optimization of classifier weights and perturbation variables. We conduct several numerical experiments to evaluate the train-to-test generalization gap in vanilla and free adversarial training methods. Our empirical findings also suggest that the free adversarial training method could lead to a smaller generalization gap over a similar number of training iterations. The paper code is available at https://github.com/Xiwei-Cheng/Stability_FreeAT.
♻ ☆ Towards Mitigating Architecture Overfitting on Distilled Datasets
Dataset distillation methods have demonstrated remarkable performance for neural networks trained with very limited training data. However, a significant challenge arises in the form of \textit{architecture overfitting}: the distilled training dataset synthesized by a specific network architecture (i.e., training network) generates poor performance when trained by other network architectures (i.e., test networks), especially when the test networks have a larger capacity than the training network. This paper introduces a series of approaches to mitigate this issue. Among them, DropPath renders the large model to be an implicit ensemble of its sub-networks, and knowledge distillation ensures each sub-network acts similarly to the small but well-performing teacher network. These methods, characterized by their smoothing effects, significantly mitigate architecture overfitting. We conduct extensive experiments to demonstrate the effectiveness and generality of our methods. Particularly, across various scenarios involving different tasks and different sizes of distilled data, our approaches significantly mitigate architecture overfitting. Furthermore, our approaches achieve comparable or even superior performance when the test network is larger than the training network.
comment: Accepted by TNNLS
♻ ☆ Learning Stochastic Nonlinear Dynamics with Embedded Latent Transfer Operators
We consider an operator-based latent Markov representation of a stochastic nonlinear dynamical system, where the stochastic evolution of the latent state embedded in a reproducing kernel Hilbert space is described with the corresponding transfer operator, and develop a spectral method to learn this representation based on the theory of stochastic realization. The embedding may be learned simultaneously using reproducing kernels, for example, constructed with feed-forward neural networks. We also address the generalization of sequential state-estimation (Kalman filtering) in stochastic nonlinear systems, and of operator-based eigen-mode decomposition of dynamics, for the representation. Several examples with synthetic and real-world data are shown to illustrate the empirical characteristics of our methods, and to investigate the performance of our model in sequential state-estimation and mode decomposition.
comment: This submission includes a supplementary file providing additional details. It also contains a code directory (code/) for the experiments. Both are included within the TeX source package
♻ ☆ TabTreeFormer: Tabular Data Generation Using Hybrid Tree-Transformer
Transformers have achieved remarkable success in tabular data generation. However, they lack domain-specific inductive biases which are critical to preserving the intrinsic characteristics of tabular data. Meanwhile, they suffer from poor scalability and efficiency due to quadratic computational complexity. In this paper, we propose TabTreeFormer, a hybrid transformer architecture that incorporates a tree-based model that retains tabular-specific inductive biases of non-smooth and potentially low-correlated patterns caused by discreteness and non-rotational invariance, and hence enhances the fidelity and utility of synthetic data. In addition, we devise a dual-quantization tokenizer to capture the multimodal continuous distribution and further facilitate the learning of numerical value distribution. Moreover, our proposed tokenizer reduces the vocabulary size and sequence length due to the limited complexity (e.g., dimension-wise semantic meaning) of tabular data, rendering a significant model size shrink without sacrificing the capability of the transformer model. We evaluate TabTreeFormer on 10 datasets against multiple generative models on various metrics; our experimental results show that TabTreeFormer achieves superior fidelity, utility, privacy, and efficiency. Our best model yields a 40% utility improvement with 1/16 of the baseline model size.
♻ ☆ Gradient descent in materia through homodyne gradient extraction
Deep learning, a multi-layered neural network approach inspired by the brain, has revolutionized machine learning. One of its key enablers has been backpropagation, an algorithm that computes the gradient of a loss function with respect to the weights and biases in the neural network model, in combination with its use in gradient descent. However, the implementation of deep learning in digital computers is intrinsically energy hungry, with energy consumption becoming prohibitively high for many applications. This has stimulated the development of specialized hardware, ranging from neuromorphic CMOS integrated circuits and integrated photonic tensor cores to unconventional, material-based computing system. The learning process in these material systems, realized, e.g., by artificial evolution, equilibrium propagation or surrogate modelling, is a complicated and time-consuming process. Here, we demonstrate a simple yet efficient and accurate gradient extraction method, based on the principle of homodyne detection, for performing gradient descent on a loss function directly in a physical system without the need of an analytical description. By perturbing the parameters that need to be optimized using sinusoidal waveforms with distinct frequencies, we effectively obtain the gradient information in a highly robust and scalable manner. We illustrate the method in dopant network processing units, but argue that it is applicable in a wide range of physical systems. Homodyne gradient extraction can in principle be fully implemented in materia, facilitating the development of autonomously learning material systems.
♻ ☆ High-Rank Irreducible Cartesian Tensor Decomposition and Bases of Equivariant Spaces
Irreducible Cartesian tensors (ICTs) play a crucial role in the design of equivariant graph neural networks, as well as in theoretical chemistry and chemical physics. Meanwhile, the design space of available linear operations on tensors that preserve symmetry presents a significant challenge. The ICT decomposition and a basis of this equivariant space are difficult to obtain for high-order tensors. After decades of research, Bonvicini (2024) recently achieves an explicit ICT decomposition for $n=5$ with factorial time/space complexity. This work, for the first time, obtains decomposition matrices for ICTs up to rank $n=9$ with reduced and affordable complexity, by constructing what we call path matrices. The path matrices are obtained via performing chain-like contraction with Clebsch-Gordan matrices following the parentage scheme. We prove and leverage that the concatenation of path matrices is an orthonormal change-of-basis matrix between the Cartesian tensor product space and the spherical direct sum spaces. Furthermore, we identify a complete orthogonal basis for the equivariant space, rather than a spanning set (Pearce-Crump, 2023b), through this path matrices technique. We further extend our result to the arbitrary tensor product and direct sum spaces, enabling free design between different spaces while keeping symmetry. The Python code is available at https://github.com/ShihaoShao-GH/ICT-decomposition-and-equivariant-bases, where the $n=6,\dots,9$ ICT decomposition matrices are obtained in 1s, 3s, 11s, and 4m32s on on 28-cores Intel(R) Xeon(R) Gold 6330 CPU @ 2.00GHz, respectively.
comment: 46 pages
♻ ☆ Scam Detection for Ethereum Smart Contracts: Leveraging Graph Representation Learning for Secure Blockchain
Due to the increasing abuse of fraudulent activities that result in significant financial and reputational harm, Ethereum smart contracts face a significant problem in detecting fraud. Existing monitoring methods typically rely on lease code analysis or physically extracted features, which suffer from scalability and adaptability limitations. In this study, we use graph representation learning to observe purchase trends and find fraudulent deals. We can achieve powerful categorisation performance by using innovative machine learning versions and transforming Ethereum invoice data into graph structures. Our method addresses label imbalance through SMOTE-ENN techniques and evaluates models like Multi-Layer Perceptron ( MLP ) and Graph Convolutional Networks ( GCN). Experimental results show that the MLP type surpasses the GCN in this environment, with domain-specific assessments closely aligned with real-world assessments. This study provides a scalable and efficient way to improve Ethereum's ecosystem's confidence and security.
comment: Accepted to BDICN 2025
♻ ☆ Approximation and bounding techniques for the Fisher-Rao distances between parametric statistical models
The Fisher-Rao distance between two probability distributions of a statistical model is defined as the Riemannian geodesic distance induced by the Fisher information metric. In order to calculate the Fisher-Rao distance in closed-form, we need (1) to elicit a formula for the Fisher-Rao geodesics, and (2) to integrate the Fisher length element along those geodesics. We consider several numerically robust approximation and bounding techniques for the Fisher-Rao distances: First, we report generic upper bounds on Fisher-Rao distances based on closed-form 1D Fisher-Rao distances of submodels. Second, we describe several generic approximation schemes depending on whether the Fisher-Rao geodesics or pregeodesics are available in closed-form or not. In particular, we obtain a generic method to guarantee an arbitrarily small additive error on the approximation provided that Fisher-Rao pregeodesics and tight lower and upper bounds are available. Third, we consider the case of Fisher metrics being Hessian metrics, and report generic tight upper bounds on the Fisher-Rao distances using techniques of information geometry. Uniparametric and biparametric statistical models always have Fisher Hessian metrics, and in general a simple test allows to check whether the Fisher information matrix yields a Hessian metric or not. Fourth, we consider elliptical distribution families and show how to apply the above techniques to these models. We also propose two new distances based either on the Fisher-Rao lengths of curves serving as proxies of Fisher-Rao geodesics, or based on the Birkhoff/Hilbert projective cone distance. Last, we consider an alternative group-theoretic approach for statistical transformation models based on the notion of maximal invariant which yields insights on the structures of the Fisher-Rao distance formula which may be used fruitfully in applications.
comment: 48 pages
♻ ☆ Edge Graph Intelligence: Reciprocally Empowering Edge Networks with Graph Intelligence
Recent years have witnessed a thriving growth of computing facilities connected at the network edge, cultivating edge networks as a fundamental infrastructure for supporting miscellaneous intelligent services.Meanwhile, Artificial Intelligence (AI) frontiers have extrapolated to the graph domain and promoted Graph Intelligence (GI). Given the inherent relation between graphs and networks, the interdiscipline of graph learning and edge networks, i.e., Edge GI or EGI, has revealed a novel interplay between them -- GI aids in optimizing edge networks, while edge networks facilitate GI model deployment. Driven by this delicate closed-loop, EGI is recognized as a promising solution to fully unleash the potential of edge computing power and is garnering growing attention. Nevertheless, research on EGI remains nascent, and there is a soaring demand within both the communications and AI communities for a dedicated venue to share recent advancements. To this end, this paper promotes the concept of EGI, explores its scope and core principles, and conducts a comprehensive survey concerning recent research efforts on this emerging field. Specifically, this paper introduces and discusses: 1) fundamentals of edge computing and graph learning,2) emerging techniques centering on the closed loop between graph intelligence and edge networks, and 3) open challenges and research opportunities of future EGI. By bridging the gap across communication, networking, and graph learning areas, we believe that this survey can garner increased attention, foster meaningful discussions, and inspire further research ideas in EGI.
comment: Accepted by IEEE Communications Surveys & Tutorials
♻ ☆ CausalMob: Causal Human Mobility Prediction with LLMs-derived Human Intentions toward Public Events KDD 2025
Large-scale human mobility exhibits spatial and temporal patterns that can assist policymakers in decision making. Although traditional prediction models attempt to capture these patterns, they often interfered by non-periodic public events, such as disasters and occasional celebrations. Since regular human mobility patterns are heavily affected by these events, estimating their causal effects is critical to accurate mobility predictions. Although news articles provide unique perspectives on these events in an unstructured format, processing is a challenge. In this study, we propose a causality-augmented prediction model, called CausalMob, to analyze the causal effects of public events. We first utilize large language models (LLMs) to extract human intentions from news articles and transform them into features that act as causal treatments. Next, the model learns representations of spatio-temporal regional covariates from multiple data sources to serve as confounders for causal inference. Finally, we present a causal effect estimation framework to ensure event features remain independent of confounders during prediction. Based on large-scale real-world data, the experimental results show that the proposed model excels in human mobility prediction, outperforming state-of-the-art models.
comment: Accepted by KDD 2025
♻ ☆ Bongard-OpenWorld: Few-Shot Reasoning for Free-form Visual Concepts in the Real World ICLR 2024
We introduce Bongard-OpenWorld, a new benchmark for evaluating real-world few-shot reasoning for machine vision. It originates from the classical Bongard Problems (BPs): Given two sets of images (positive and negative), the model needs to identify the set that query images belong to by inducing the visual concepts, which is exclusively depicted by images from the positive set. Our benchmark inherits the few-shot concept induction of the original BPs while adding the two novel layers of challenge: 1) open-world free-form concepts, as the visual concepts in Bongard-OpenWorld are unique compositions of terms from an open vocabulary, ranging from object categories to abstract visual attributes and commonsense factual knowledge; 2) real-world images, as opposed to the synthetic diagrams used by many counterparts. In our exploration, Bongard-OpenWorld already imposes a significant challenge to current few-shot reasoning algorithms. We further investigate to which extent the recently introduced Large Language Models (LLMs) and Vision-Language Models (VLMs) can solve our task, by directly probing VLMs, and combining VLMs and LLMs in an interactive reasoning scheme. We even conceived a neuro-symbolic reasoning approach that reconciles LLMs & VLMs with logical reasoning to emulate the human problem-solving process for Bongard Problems. However, none of these approaches manage to close the human-machine gap, as the best learner achieves 64% accuracy while human participants easily reach 91%. We hope Bongard-OpenWorld can help us better understand the limitations of current visual intelligence and facilitate future research on visual agents with stronger few-shot visual reasoning capabilities.
comment: Accepted to ICLR 2024
♻ ☆ ALTBI: Constructing Improved Outlier Detection Models via Optimization of Inlier-Memorization Effect
Outlier detection (OD) is the task of identifying unusual observations (or outliers) from a given or upcoming data by learning unique patterns of normal observations (or inliers). Recently, a study introduced a powerful unsupervised OD (UOD) solver based on a new observation of deep generative models, called inlier-memorization (IM) effect, which suggests that generative models memorize inliers before outliers in early learning stages. In this study, we aim to develop a theoretically principled method to address UOD tasks by maximally utilizing the IM effect. We begin by observing that the IM effect is observed more clearly when the given training data contain fewer outliers. This finding indicates a potential for enhancing the IM effect in UOD regimes if we can effectively exclude outliers from mini-batches when designing the loss function. To this end, we introduce two main techniques: 1) increasing the mini-batch size as the model training proceeds and 2) using an adaptive threshold to calculate the truncated loss function. We theoretically show that these two techniques effectively filter out outliers from the truncated loss function, allowing us to utilize the IM effect to the fullest. Coupled with an additional ensemble strategy, we propose our method and term it Adaptive Loss Truncation with Batch Increment (ALTBI). We provide extensive experimental results to demonstrate that ALTBI achieves state-of-the-art performance in identifying outliers compared to other recent methods, even with significantly lower computation costs. Additionally, we show that our method yields robust performances when combined with privacy-preserving algorithms.
comment: 24 pages in total
♻ ☆ Initialization is Critical to Whether Transformers Fit Composite Functions by Reasoning or Memorizing
Transformers have shown impressive capabilities across various tasks, but their performance on compositional problems remains a topic of debate. In this work, we investigate the mechanisms of how transformers behave on unseen compositional tasks. We discover that the parameter initialization scale plays a critical role in determining whether the model learns inferential (reasoning-based) solutions, which capture the underlying compositional primitives, or symmetric (memory-based) solutions, which simply memorize mappings without understanding the compositional structure. By analyzing the information flow and vector representations within the model, we reveal the distinct mechanisms underlying these solution types. We further find that inferential (reasoning-based) solutions exhibit low complexity bias, which we hypothesize is a key factor enabling them to learn individual mappings for single anchors. We validate our conclusions on various real-world datasets. Our findings provide valuable insights into the role of initialization scale in tuning the reasoning and memorizing ability and we propose the initialization rate $\gamma$ to be a convenient tunable hyper-parameter in common deep learning frameworks, where $1/d_{\mathrm{in}}^\gamma$ is the standard deviation of parameters of the layer with $d_{\mathrm{in}}$ input neurons.
♻ ☆ The Race to Efficiency: A New Perspective on AI Scaling Laws
As large-scale AI models expand, training becomes costlier and sustaining progress grows harder. Classical scaling laws (e.g., Kaplan et al. (2020), Hoffmann et al. (2022)) predict training loss from a static compute budget yet neglect time and efficiency, prompting the question: how can we balance ballooning GPU fleets with rapidly improving hardware and algorithms? We introduce the relative-loss equation, a time- and efficiency-aware framework that extends classical AI scaling laws. Our model shows that, without ongoing efficiency gains, advanced performance could demand millennia of training or unrealistically large GPU fleets. However, near-exponential progress remains achievable if the "efficiency-doubling rate" parallels Moore's Law. By formalizing this race to efficiency, we offer a quantitative roadmap for balancing front-loaded GPU investments with incremental improvements across the AI stack. Empirical trends suggest that sustained efficiency gains can push AI scaling well into the coming decade, providing a new perspective on the diminishing returns inherent in classical scaling.
comment: 21 pages, 3 figures. 2 tables, second draft
♻ ☆ ProSparse: Introducing and Enhancing Intrinsic Activation Sparsity within Large Language Models
Activation sparsity refers to the existence of considerable weakly-contributed elements among activation outputs. As a prevalent property of the models using the ReLU activation function, activation sparsity has been proven a promising paradigm to boost model inference efficiency. Nevertheless, most large language models (LLMs) adopt activation functions without intrinsic activation sparsity (e.g., GELU and Swish). Some recent efforts have explored introducing ReLU or its variants as the substitutive activation function to help LLMs achieve activation sparsity and inference acceleration, but few can simultaneously obtain high sparsity and comparable model performance. This paper introduces a simple and effective sparsification method named "ProSparse" to push LLMs for higher activation sparsity while maintaining comparable performance. Specifically, after substituting the activation function of LLMs with ReLU, ProSparse adopts progressive sparsity regularization with a factor smoothly increasing along the multi-stage sine curves. This can enhance activation sparsity and mitigate performance degradation by avoiding radical shifts in activation distributions. With ProSparse, we obtain high sparsity of 89.32% for LLaMA2-7B, 88.80% for LLaMA2-13B, and 87.89% for end-size MiniCPM-1B, respectively, achieving comparable performance to their original Swish-activated versions. These present the most sparsely activated models among open-source LLaMA versions and competitive end-size models, considerably surpassing ReluLLaMA-7B (66.98%) and ReluLLaMA-13B (71.56%). Our inference acceleration experiments further demonstrate the significant practical acceleration potential of LLMs with higher activation sparsity, obtaining up to 4.52$\times$ inference speedup.
comment: 19 pages, 4 figures, 9 tables
♻ ☆ FIDLAR: Forecast-Informed Deep Learning Architecture for Flood Mitigation
In coastal river systems, frequent floods, often occurring during major storms or king tides, pose a severe threat to lives and property. However, these floods can be mitigated or even prevented by strategically releasing water before extreme weather events with hydraulic structures such as dams, gates, pumps, and reservoirs. A standard approach used by local water management agencies is the "rule-based" method, which specifies predetermined pre-releases of water based on historical and time-tested human experience, but which tends to result in excess or inadequate water release. The model predictive control (MPC), a physics-based model for prediction, is an alternative approach, albeit involving computationally intensive calculations. In this paper, we propose a Forecast Informed Deep Learning Architecture, FIDLAR, to achieve rapid and optimal flood management with precise water pre-releases. FIDLAR seamlessly integrates two neural network modules: one called the Flood Manager, which is responsible for generating water pre-release schedules, and another called the Flood Evaluator, which assesses these generated schedules. The Evaluator module is pre-trained separately, and its gradient-based feedback is used to train the Manager model, ensuring optimal water pre-releases. We have conducted experiments using FIDLAR with data from a flood-prone coastal area in South Florida, particularly susceptible to frequent storms. Results show that FIDLAR is several orders of magnitude faster than currently used physics-based approaches while outperforming baseline methods with improved water pre-release schedules.
♻ ☆ ChatBug: A Common Vulnerability of Aligned LLMs Induced by Chat Templates AAAI 2025
Large language models (LLMs) are expected to follow instructions from users and engage in conversations. Techniques to enhance LLMs' instruction-following capabilities typically fine-tune them using data structured according to a predefined chat template. Although chat templates are shown to be effective in optimizing LLM performance, their impact on safety alignment of LLMs has been less understood, which is crucial for deploying LLMs safely at scale. In this paper, we investigate how chat templates affect safety alignment of LLMs. We identify a common vulnerability, named ChatBug, that is introduced by chat templates. Our key insight to identify ChatBug is that the chat templates provide a rigid format that need to be followed by LLMs, but not by users. Hence, a malicious user may not necessarily follow the chat template when prompting LLMs. Instead, malicious users could leverage their knowledge of the chat template and accordingly craft their prompts to bypass safety alignments of LLMs. We develop two attacks to exploit the ChatBug vulnerability. We demonstrate that a malicious user can exploit the ChatBug vulnerability of eight state-of-the-art (SOTA) LLMs and effectively elicit unintended responses from these models. Moreover, we show that ChatBug can be exploited by existing jailbreak attacks to enhance their attack success rates. We investigate potential countermeasures to ChatBug. Our results show that while adversarial training effectively mitigates the ChatBug vulnerability, the victim model incurs significant performance degradation. These results highlight the trade-off between safety alignment and helpfulness. Developing new methods for instruction tuning to balance this trade-off is an open and critical direction for future research
comment: This paper is accepted to AAAI 2025
♻ ☆ GUPNet++: Geometry Uncertainty Propagation Network for Monocular 3D Object Detection
Geometry plays a significant role in monocular 3D object detection. It can be used to estimate object depth by using the perspective projection between object's physical size and 2D projection in the image plane, which can introduce mathematical priors into deep models. However, this projection process also introduces error amplification, where the error of the estimated height is amplified and reflected into the projected depth. It leads to unreliable depth inferences and also impairs training stability. To tackle this problem, we propose a novel Geometry Uncertainty Propagation Network (GUPNet++) by modeling geometry projection in a probabilistic manner. This ensures depth predictions are well-bounded and associated with a reasonable uncertainty. The significance of introducing such geometric uncertainty is two-fold: (1). It models the uncertainty propagation relationship of the geometry projection during training, improving the stability and efficiency of the end-to-end model learning. (2). It can be derived to a highly reliable confidence to indicate the quality of the 3D detection result, enabling more reliable detection inference. Experiments show that the proposed approach not only obtains (state-of-the-art) SOTA performance in image-based monocular 3D detection but also demonstrates superiority in efficacy with a simplified framework.
comment: 18 pages, 9 figures
♻ ☆ LightGNN: Simple Graph Neural Network for Recommendation WSDM 2025
Graph neural networks (GNNs) have demonstrated superior performance in collaborative recommendation through their ability to conduct high-order representation smoothing, effectively capturing structural information within users' interaction patterns. However, existing GNN paradigms face significant challenges in scalability and robustness when handling large-scale, noisy, and real-world datasets. To address these challenges, we present LightGNN, a lightweight and distillation-based GNN pruning framework designed to substantially reduce model complexity while preserving essential collaboration modeling capabilities. Our LightGNN framework introduces a computationally efficient pruning module that adaptively identifies and removes redundant edges and embedding entries for model compression. The framework is guided by a resource-friendly hierarchical knowledge distillation objective, whose intermediate layer augments the observed graph to maintain performance, particularly in high-rate compression scenarios. Extensive experiments on public datasets demonstrate LightGNN's effectiveness, significantly improving both computational efficiency and recommendation accuracy. Notably, LightGNN achieves an 80% reduction in edge count and 90% reduction in embedding entries while maintaining performance comparable to more complex state-of-the-art baselines. The implementation of our LightGNN framework is available at the github repository: https://github.com/HKUDS/LightGNN.
comment: Accepted to WSDM 2025 Oral
♻ ☆ Exploring Gradient Subspaces: Addressing and Overcoming LoRA's Limitations in Federated Fine-Tuning of Large Language Models
Large Language Models (LLMs) have demonstrated remarkable capabilities across various domains, particularly in task generalization for both text and vision data. While fine-tuning these models can significantly enhance their performance on specific downstream tasks, it often requires high-quality data that cannot be shared due to privacy concerns. Federated Learning (FL) offers a promising solution for collaborative training without direct data sharing. However, many parameter-efficient fine-tuning strategies for LLMs in FL, particularly those based on Low-Rank Adaptation (LoRA), face limitations. In this paper, we critically analyze the convergence and performance guarantees of popular FL frameworks utilizing LoRA, highlighting its suboptimal nature due to constrained subspace learning of low-rank matrices. This limitation hinders effective fine-tuning of LLMs in federated settings. Through rigorous analytical and empirical evaluations, we demonstrate that direct weight averaging outperforms LoRA-based strategies, leading to superior performance for fine-tuned models. Our comprehensive comparison unmasks inefficiencies in LoRA approaches and underscores the advantages of direct weight aggregation. We extend our analysis to low-rank gradient-based optimizers, such as GaLore, used during local training steps. Our findings show that GaLore along with direct-weight aggregation is a more effective approach, outperforming federated LoRA methods like FlexLoRA and FFA-LoRA across both text and image modalities. While privacy remains paramount in FL discourse, our focus is on assessing performance outcomes of federated fine-tuned models and evaluating various FL frameworks from both theoretical and empirical perspectives. Our findings advocate reassessing the reliance on LoRA within FL contexts, paving the way for more efficient training methodologies.
♻ ☆ Concept Matching with Agent for Out-of-Distribution Detection AAAI-25
The remarkable achievements of Large Language Models (LLMs) have captivated the attention of both academia and industry, transcending their initial role in dialogue generation. To expand the usage scenarios of LLM, some works enhance the effectiveness and capabilities of the model by introducing more external information, which is called the agent paradigm. Based on this idea, we propose a new method that integrates the agent paradigm into out-of-distribution (OOD) detection task, aiming to improve its robustness and adaptability. Our proposed method, Concept Matching with Agent (CMA), employs neutral prompts as agents to augment the CLIP-based OOD detection process. These agents function as dynamic observers and communication hubs, interacting with both In-distribution (ID) labels and data inputs to form vector triangle relationships. This triangular framework offers a more nuanced approach than the traditional binary relationship, allowing for better separation and identification of ID and OOD inputs. Our extensive experimental results showcase the superior performance of CMA over both zero-shot and training-required methods in a diverse array of real-world scenarios.
comment: Accepted by AAAI-25
♻ ☆ Localize-and-Stitch: Efficient Model Merging via Sparse Task Arithmetic
Model merging offers an effective strategy to combine the strengths of multiple finetuned models into a unified model that preserves the specialized capabilities of each. Existing methods merge models in a global manner, performing arithmetic operations across all model parameters. However, such global merging often leads to task interference, degrading the performance of the merged model. In this work, we introduce Localize-and-Stitch, a novel approach that merges models in a localized way. Our algorithm works in two steps: i) Localization: identify tiny ($1\%$ of the total parameters) localized regions in the finetuned models containing essential skills for the downstream tasks, and ii) Stitching: reintegrate only these essential regions back into the pretrained model for task synergy. We demonstrate that our approach effectively locates sparse regions responsible for finetuned performance, and the localized regions could be treated as compact and interpretable representations of the finetuned models (tasks). Empirically, we evaluate our method on various vision and language benchmarks, showing that it outperforms existing model merging methods under different data availability scenarios. Beyond strong empirical performance, our algorithm also facilitates model compression and preserves pretrained knowledge, enabling flexible and continual skill composition from multiple finetuned models with minimal storage and computational overhead. Our code is available at https://github.com/uiuctml/Localize-and-Stitch.
comment: TMLR camera-ready version
♻ ☆ Model Checking in Medical Imaging for Tumor Detection and Segmentation
Recent advancements in model checking have demonstrated significant potential across diverse applications, particularly in signal and image analysis. Medical imaging stands out as a critical domain where model checking can be effectively applied to design and evaluate robust frameworks. These frameworks facilitate automatic and semi-automatic delineation of regions of interest within images, aiding in accurate segmentation. This paper provides a comprehensive analysis of recent works leveraging spatial logic to develop operators and tools for identifying regions of interest, including tumorous and non-tumorous areas. Additionally, we examine the challenges inherent to spatial model-checking techniques, such as variability in ground truth data and the need for streamlined procedures suitable for routine clinical practice.
♻ ☆ DistPred: A Distribution-Free Probabilistic Inference Method for Regression and Forecasting KDD 2025
Traditional regression and prediction tasks often only provide deterministic point estimates. To estimate the distribution or uncertainty of the response variable, traditional methods either assume that the posterior distribution of samples follows a Gaussian process or require thousands of forward passes for sample generation. We propose a novel approach called DistPred for regression and forecasting tasks, which overcomes the limitations of existing methods while remaining simple and powerful. Specifically, we transform proper scoring rules that measure the discrepancy between the predicted distribution and the target distribution into a differentiable discrete form and use it as a loss function to train the model end-to-end. This allows the model to sample numerous samples in a single forward pass to estimate the potential distribution of the response variable. We have compared our method with several existing approaches on multiple datasets and achieved state-of-the-art performance. Additionally, our method significantly improves computational efficiency. For example, compared to state-of-the-art models, DistPred has a 180x faster inference speed Experimental results can be reproduced through https://github.com/Anoise/DistPred.
comment: Published at KDD 2025
♻ ☆ An In-Depth Analysis of Adversarial Discriminative Domain Adaptation for Digit Classification
Domain adaptation is an active area of research driven by the growing demand for robust machine learning models that perform well on real-world data. Adversarial learning for deep neural networks (DNNs) has emerged as a promising approach to improving generalization ability, particularly for image classification. In this paper, we implement a specific adversarial learning technique known as Adversarial Discriminative Domain Adaptation (ADDA) and replicate digit classification experiments from the original ADDA paper. We extend their findings by examining a broader range of domain shifts and provide a detailed analysis of in-domain classification accuracy post-ADDA. Our results demonstrate that ADDA significantly improves accuracy across certain domain shifts with minimal impact on in-domain performance. Furthermore, we provide qualitative analysis and propose potential explanations for ADDA's limitations in less successful domain shifts. Code is at https://github.com/eugenechoi2004/COS429_FINAL .
comment: Replacement: Updated methodology section to include grayscale preprocessing of SVHN data
♻ ☆ Learning Causal Transition Matrix for Instance-dependent Label Noise
Noisy labels are both inevitable and problematic in machine learning methods, as they negatively impact models' generalization ability by causing overfitting. In the context of learning with noise, the transition matrix plays a crucial role in the design of statistically consistent algorithms. However, the transition matrix is often considered unidentifiable. One strand of methods typically addresses this problem by assuming that the transition matrix is instance-independent; that is, the probability of mislabeling a particular instance is not influenced by its characteristics or attributes. This assumption is clearly invalid in complex real-world scenarios. To better understand the transition relationship and relax this assumption, we propose to study the data generation process of noisy labels from a causal perspective. We discover that an unobservable latent variable can affect either the instance itself, the label annotation procedure, or both, which complicates the identification of the transition matrix. To address various scenarios, we have unified these observations within a new causal graph. In this graph, the input instance is divided into a noise-resistant component and a noise-sensitive component based on whether they are affected by the latent variable. These two components contribute to identifying the ``causal transition matrix'', which approximates the true transition matrix with theoretical guarantee. In line with this, we have designed a novel training framework that explicitly models this causal relationship and, as a result, achieves a more accurate model for inferring the clean label.
♻ ☆ Can Out-of-Domain data help to Learn Domain-Specific Prompts for Multimodal Misinformation Detection?
Spread of fake news using out-of-context images and captions has become widespread in this era of information overload. Since fake news can belong to different domains like politics, sports, etc. with their unique characteristics, inference on a test image-caption pair is contingent on how well the model has been trained on similar data. Since training individual models for each domain is not practical, we propose a novel framework termed DPOD (Domain-specific Prompt tuning using Out-of-domain data), which can exploit out-of-domain data during training to improve fake news detection of all desired domains simultaneously. First, to compute generalizable features, we modify the Vision-Language Model, CLIP to extract features that helps to align the representations of the images and corresponding captions of both the in-domain and out-of-domain data in a label-aware manner. Further, we propose a domain-specific prompt learning technique which leverages training samples of all the available domains based on the extent they can be useful to the desired domain. Extensive experiments on the large-scale NewsCLIPpings and VERITE benchmarks demonstrate that DPOD achieves state of-the-art performance for this challenging task. Code: https://github.com/scviab/DPOD.
♻ ☆ Neural Network Prediction of Strong Lensing Systems with Domain Adaptation and Uncertainty Quantification NeurIPS 2024
Modeling strong gravitational lenses is computationally expensive for the complex data from modern and next-generation cosmic surveys. Deep learning has emerged as a promising approach for finding lenses and predicting lensing parameters, such as the Einstein radius. Mean-variance Estimators (MVEs) are a common approach for obtaining aleatoric (data) uncertainties from a neural network prediction. However, neural networks have not been demonstrated to perform well on out-of-domain target data successfully - e.g., when trained on simulated data and applied to real, observational data. In this work, we perform the first study of the efficacy of MVEs in combination with unsupervised domain adaptation (UDA) on strong lensing data. The source domain data is noiseless, and the target domain data has noise mimicking modern cosmology surveys. We find that adding UDA to MVE increases the accuracy on the target data by a factor of about two over an MVE model without UDA. Including UDA also permits much more well-calibrated aleatoric uncertainty predictions. Advancements in this approach may enable future applications of MVE models to real observational data.
comment: Accepted to the Machine Learning for Physical Sciences workshop at NeurIPS 2024; 24 pages, 2 figures, 4 tables
♻ ☆ Transfer learning via Regularized Linear Discriminant Analysis
Linear discriminant analysis is a widely used method for classification. However, the high dimensionality of predictors combined with small sample sizes often results in large classification errors. To address this challenge, it is crucial to leverage data from related source models to enhance the classification performance of a target model. We propose to address this problem in the framework of transfer learning. In this paper, we present novel transfer learning methods via regularized random-effects linear discriminant analysis, where the discriminant direction is estimated as a weighted combination of ridge estimates obtained from both the target and source models. Multiple strategies for determining these weights are introduced and evaluated, including one that minimizes the estimation risk of the discriminant vector and another that minimizes the classification error. Utilizing results from random matrix theory, we explicitly derive the asymptotic values of these weights and the associated classification error rates in the high-dimensional setting, where $p/n \rightarrow \gamma$, with $p$ representing the predictor dimension and $n$ the sample size. We also provide geometric interpretations of various weights and a guidance on which weights to choose. Extensive numerical studies, including simulations and analysis of proteomics-based 10-year cardiovascular disease risk classification, demonstrate the effectiveness of the proposed approach.
♻ ☆ Dataset-Free Weight-Initialization on Restricted Boltzmann Machine
In feed-forward neural networks, dataset-free weight-initialization methods such as LeCun, Xavier (or Glorot), and He initializations have been developed. These methods randomly determine the initial values of weight parameters based on specific distributions (e.g., Gaussian or uniform distributions) without using training datasets. To the best of the authors' knowledge, such a dataset-free weight-initialization method is yet to be developed for restricted Boltzmann machines (RBMs), which are probabilistic neural networks consisting of two layers. In this study, we derive a dataset-free weight-initialization method for Bernoulli--Bernoulli RBMs based on statistical mechanical analysis. In the proposed weight-initialization method, the weight parameters are drawn from a Gaussian distribution with zero mean. The standard deviation of the Gaussian distribution is optimized based on our hypothesis that a standard deviation providing a larger layer correlation (LC) between the two layers improves the learning efficiency. The expression of the LC is derived based on a statistical mechanical analysis. The optimal value of the standard deviation corresponds to the maximum point of the LC. The proposed weight-initialization method is identical to Xavier initialization in a specific case (i.e., when the sizes of the two layers are the same, the random variables of the layers are $\{-1,1\}$-binary, and all bias parameters are zero). The validity of the proposed weight-initialization method is demonstrated in numerical experiments using a toy and real-world datasets.
♻ ☆ Decoupling Learning and Decision-Making: Breaking the $\mathcal{O}(\sqrt{T})$ Barrier in Online Resource Allocation with First-Order Methods
Online linear programming plays an important role in both revenue management and resource allocation, and recent research has focused on developing efficient first-order online learning algorithms. Despite the empirical success of first-order methods, they typically achieve a regret no better than $\mathcal{O}(\sqrt{T})$, which is suboptimal compared to the $\mathcal{O}(\log T)$ bound guaranteed by the state-of-the-art linear programming (LP)-based online algorithms. This paper establishes several important facts about online linear programming, which unveils the challenge for first-order-method-based online algorithms to achieve beyond $\mathcal{O}(\sqrt{T})$ regret. To address the challenge, we introduce a new algorithmic framework that decouples learning from decision-making. For the first time, we show that first-order methods can attain regret $\mathcal{O}(T^{1/3})$ with this new framework.
comment: Merged into arXiv:2501.02761
♻ ☆ PlanLLM: Video Procedure Planning with Refinable Large Language Models AAAI2025
Video procedure planning, i.e., planning a sequence of action steps given the video frames of start and goal states, is an essential ability for embodied AI. Recent works utilize Large Language Models (LLMs) to generate enriched action step description texts to guide action step decoding. Although LLMs are introduced, these methods decode the action steps into a closed-set of one-hot vectors, limiting the model's capability of generalizing to new steps or tasks. Additionally, fixed action step descriptions based on world-level commonsense may contain noise in specific instances of visual states. In this paper, we propose PlanLLM, a cross-modal joint learning framework with LLMs for video procedure planning. We propose an LLM-Enhanced Planning module which fully uses the generalization ability of LLMs to produce free-form planning output and to enhance action step decoding. We also propose Mutual Information Maximization module to connect world-level commonsense of step descriptions and sample-specific information of visual states, enabling LLMs to employ the reasoning ability to generate step sequences. With the assistance of LLMs, our method can both closed-set and open vocabulary procedure planning tasks. Our PlanLLM achieves superior performance on three benchmarks, demonstrating the effectiveness of our designs.
comment: accepted to AAAI2025
♻ ☆ Rare-to-Frequent: Unlocking Compositional Generation Power of Diffusion Models on Rare Concepts with LLM Guidance
State-of-the-art text-to-image (T2I) diffusion models often struggle to generate rare compositions of concepts, e.g., objects with unusual attributes. In this paper, we show that the compositional generation power of diffusion models on such rare concepts can be significantly enhanced by the Large Language Model (LLM) guidance. We start with empirical and theoretical analysis, demonstrating that exposing frequent concepts relevant to the target rare concepts during the diffusion sampling process yields more accurate concept composition. Based on this, we propose a training-free approach, R2F, that plans and executes the overall rare-to-frequent concept guidance throughout the diffusion inference by leveraging the abundant semantic knowledge in LLMs. Our framework is flexible across any pre-trained diffusion models and LLMs, and can be seamlessly integrated with the region-guided diffusion approaches. Extensive experiments on three datasets, including our newly proposed benchmark, RareBench, containing various prompts with rare compositions of concepts, R2F significantly surpasses existing models including SD3.0 and FLUX by up to 28.1%p in T2I alignment. Code is available at https://github.com/krafton-ai/Rare-to-Frequent.
♻ ☆ Countering Backdoor Attacks in Image Recognition: A Survey and Evaluation of Mitigation Strategies
The widespread adoption of deep learning across various industries has introduced substantial challenges, particularly in terms of model explainability and security. The inherent complexity of deep learning models, while contributing to their effectiveness, also renders them susceptible to adversarial attacks. Among these, backdoor attacks are especially concerning, as they involve surreptitiously embedding specific triggers within training data, causing the model to exhibit aberrant behavior when presented with input containing the triggers. Such attacks often exploit vulnerabilities in outsourced processes, compromising model integrity without affecting performance on clean (trigger-free) input data. In this paper, we present a comprehensive review of existing mitigation strategies designed to counter backdoor attacks in image recognition. We provide an in-depth analysis of the theoretical foundations, practical efficacy, and limitations of these approaches. In addition, we conduct an extensive benchmarking of sixteen state-of-the-art approaches against eight distinct backdoor attacks, utilizing three datasets, four model architectures, and three poisoning ratios. Our results, derived from 122,236 individual experiments, indicate that while many approaches provide some level of protection, their performance can vary considerably. Furthermore, when compared to two seminal approaches, most newer approaches do not demonstrate substantial improvements in overall performance or consistency across diverse settings. Drawing from these findings, we propose potential directions for developing more effective and generalizable defensive mechanisms in the future.
Multimedia 3
☆ Visual question answering: from early developments to recent advances -- a survey
Visual Question Answering (VQA) is an evolving research field aimed at enabling machines to answer questions about visual content by integrating image and language processing techniques such as feature extraction, object detection, text embedding, natural language understanding, and language generation. With the growth of multimodal data research, VQA has gained significant attention due to its broad applications, including interactive educational tools, medical image diagnosis, customer service, entertainment, and social media captioning. Additionally, VQA plays a vital role in assisting visually impaired individuals by generating descriptive content from images. This survey introduces a taxonomy of VQA architectures, categorizing them based on design choices and key components to facilitate comparative analysis and evaluation. We review major VQA approaches, focusing on deep learning-based methods, and explore the emerging field of Large Visual Language Models (LVLMs) that have demonstrated success in multimodal tasks like VQA. The paper further examines available datasets and evaluation metrics essential for measuring VQA system performance, followed by an exploration of real-world VQA applications. Finally, we highlight ongoing challenges and future directions in VQA research, presenting open questions and potential areas for further development. This survey serves as a comprehensive resource for researchers and practitioners interested in the latest advancements and future
comment: 20
☆ ConcealGS: Concealing Invisible Copyright Information in 3D Gaussian Splatting
With the rapid development of 3D reconstruction technology, the widespread distribution of 3D data has become a future trend. While traditional visual data (such as images and videos) and NeRF-based formats already have mature techniques for copyright protection, steganographic techniques for the emerging 3D Gaussian Splatting (3D-GS) format have yet to be fully explored. To address this, we propose ConcealGS, an innovative method for embedding implicit information into 3D-GS. By introducing the knowledge distillation and gradient optimization strategy based on 3D-GS, ConcealGS overcomes the limitations of NeRF-based models and enhances the robustness of implicit information and the quality of 3D reconstruction. We evaluate ConcealGS in various potential application scenarios, and experimental results have demonstrated that ConcealGS not only successfully recovers implicit information but also has almost no impact on rendering quality, providing a new approach for embedding invisible and recoverable information into 3D models in the future.
♻ ☆ PlanLLM: Video Procedure Planning with Refinable Large Language Models AAAI2025
Video procedure planning, i.e., planning a sequence of action steps given the video frames of start and goal states, is an essential ability for embodied AI. Recent works utilize Large Language Models (LLMs) to generate enriched action step description texts to guide action step decoding. Although LLMs are introduced, these methods decode the action steps into a closed-set of one-hot vectors, limiting the model's capability of generalizing to new steps or tasks. Additionally, fixed action step descriptions based on world-level commonsense may contain noise in specific instances of visual states. In this paper, we propose PlanLLM, a cross-modal joint learning framework with LLMs for video procedure planning. We propose an LLM-Enhanced Planning module which fully uses the generalization ability of LLMs to produce free-form planning output and to enhance action step decoding. We also propose Mutual Information Maximization module to connect world-level commonsense of step descriptions and sample-specific information of visual states, enabling LLMs to employ the reasoning ability to generate step sequences. With the assistance of LLMs, our method can both closed-set and open vocabulary procedure planning tasks. Our PlanLLM achieves superior performance on three benchmarks, demonstrating the effectiveness of our designs.
comment: accepted to AAAI2025
Artificial Intelligence 153
☆ VLM-driven Behavior Tree for Context-aware Task Planning
The use of Large Language Models (LLMs) for generating Behavior Trees (BTs) has recently gained attention in the robotics community, yet remains in its early stages of development. In this paper, we propose a novel framework that leverages Vision-Language Models (VLMs) to interactively generate and edit BTs that address visual conditions, enabling context-aware robot operations in visually complex environments. A key feature of our approach lies in the conditional control through self-prompted visual conditions. Specifically, the VLM generates BTs with visual condition nodes, where conditions are expressed as free-form text. Another VLM process integrates the text into its prompt and evaluates the conditions against real-world images during robot execution. We validated our framework in a real-world cafe scenario, demonstrating both its feasibility and limitations.
comment: 10 pages, 11 figures, 5 tables. Last updated on January 7th, 2024
☆ Localizing AI: Evaluating Open-Weight Language Models for Languages of Baltic States
Although large language models (LLMs) have transformed our expectations of modern language technologies, concerns over data privacy often restrict the use of commercially available LLMs hosted outside of EU jurisdictions. This limits their application in governmental, defence, and other data-sensitive sectors. In this work, we evaluate the extent to which locally deployable open-weight LLMs support lesser-spoken languages such as Lithuanian, Latvian, and Estonian. We examine various size and precision variants of the top-performing multilingual open-weight models, Llama~3, Gemma~2, Phi, and NeMo, on machine translation, multiple-choice question answering, and free-form text generation. The results indicate that while certain models like Gemma~2 perform close to the top commercially available models, many LLMs struggle with these languages. Most surprisingly, however, we find that these models, while showing close to state-of-the-art translation performance, are still prone to lexical hallucinations with errors in at least 1 in 20 words for all open-weight multilingual LLMs.
comment: This paper is accepted to NoDaLiDa/Baltic-HLT 2025
☆ Synthetic Data Privacy Metrics
Recent advancements in generative AI have made it possible to create synthetic datasets that can be as accurate as real-world data for training AI models, powering statistical insights, and fostering collaboration with sensitive datasets while offering strong privacy guarantees. Effectively measuring the empirical privacy of synthetic data is an important step in the process. However, while there is a multitude of new privacy metrics being published every day, there currently is no standardization. In this paper, we review the pros and cons of popular metrics that include simulations of adversarial attacks. We also review current best practices for amending generative models to enhance the privacy of the data they create (e.g. differential privacy).
comment: 14 pages, 2 figures
☆ Not all tokens are created equal: Perplexity Attention Weighted Networks for AI generated text detection
The rapid advancement in large language models (LLMs) has significantly enhanced their ability to generate coherent and contextually relevant text, raising concerns about the misuse of AI-generated content and making it critical to detect it. However, the task remains challenging, particularly in unseen domains or with unfamiliar LLMs. Leveraging LLM next-token distribution outputs offers a theoretically appealing approach for detection, as they encapsulate insights from the models' extensive pre-training on diverse corpora. Despite its promise, zero-shot methods that attempt to operationalize these outputs have met with limited success. We hypothesize that one of the problems is that they use the mean to aggregate next-token distribution metrics across tokens, when some tokens are naturally easier or harder to predict and should be weighted differently. Based on this idea, we propose the Perplexity Attention Weighted Network (PAWN), which uses the last hidden states of the LLM and positions to weight the sum of a series of features based on metrics from the next-token distribution across the sequence length. Although not zero-shot, our method allows us to cache the last hidden states and next-token distribution metrics on disk, greatly reducing the training resource requirements. PAWN shows competitive and even better performance in-distribution than the strongest baselines (fine-tuned LMs) with a fraction of their trainable parameters. Our model also generalizes better to unseen domains and source models, with smaller variability in the decision boundary across distribution shifts. It is also more robust to adversarial attacks, and if the backbone has multilingual capabilities, it presents decent generalization to languages not seen during supervised training, with LLaMA3-1B reaching a mean macro-averaged F1 score of 81.46% in cross-validation with nine languages.
☆ PPTAgent: Generating and Evaluating Presentations Beyond Text-to-Slides
Automatically generating presentations from documents is a challenging task that requires balancing content quality, visual design, and structural coherence. Existing methods primarily focus on improving and evaluating the content quality in isolation, often overlooking visual design and structural coherence, which limits their practical applicability. To address these limitations, we propose PPTAgent, which comprehensively improves presentation generation through a two-stage, edit-based approach inspired by human workflows. PPTAgent first analyzes reference presentations to understand their structural patterns and content schemas, then drafts outlines and generates slides through code actions to ensure consistency and alignment. To comprehensively evaluate the quality of generated presentations, we further introduce PPTEval, an evaluation framework that assesses presentations across three dimensions: Content, Design, and Coherence. Experiments show that PPTAgent significantly outperforms traditional automatic presentation generation methods across all three dimensions. The code and data are available at https://github.com/icip-cas/PPTAgent.
comment: 8 pages, 20 figures
☆ Dolphin: Closed-loop Open-ended Auto-research through Thinking, Practice, and Feedback
The scientific research paradigm is undergoing a profound transformation owing to the development of Artificial Intelligence (AI). Recent works demonstrate that various AI-assisted research methods can largely improve research efficiency by improving data analysis, accelerating computation, and fostering novel idea generation. To further move towards the ultimate goal (i.e., automatic scientific research), in this paper, we propose Dolphin, the first closed-loop open-ended auto-research framework to further build the entire process of human scientific research. Dolphin can generate research ideas, perform experiments, and get feedback from experimental results to generate higher-quality ideas. More specifically, Dolphin first generates novel ideas based on relevant papers which are ranked by the topic and task attributes. Then, the codes are automatically generated and debugged with the exception-traceback-guided local code structure. Finally, Dolphin automatically analyzes the results of each idea and feeds the results back to the next round of idea generation. Experiments are conducted on the benchmark datasets of different topics and results show that Dolphin can generate novel ideas continuously and complete the experiment in a loop. We highlight that Dolphin can automatically propose methods that are comparable to the state-of-the-art in some tasks such as 2D image classification and 3D point classification.
comment: 19 pages, 11 figures, and our homepage: https://unimodal4reasoning.github.io/Dolphin-project-page/
☆ Exploring the Potential of Large Language Models in Public Transportation: San Antonio Case Study AAAI 2025
The integration of large language models (LLMs) into public transit systems presents a transformative opportunity to enhance urban mobility. This study explores the potential of LLMs to revolutionize public transportation management within the context of San Antonio's transit system. Leveraging the capabilities of LLMs in natural language processing and data analysis, we investigate their capabilities to optimize route planning, reduce wait times, and provide personalized travel assistance. By utilizing the General Transit Feed Specification (GTFS) and other relevant data, this research aims to demonstrate how LLMs can potentially improve resource allocation, elevate passenger satisfaction, and inform data-driven decision-making in transit operations. A comparative analysis of different ChatGPT models was conducted to assess their ability to understand transportation information, retrieve relevant data, and provide comprehensive responses. Findings from this study suggest that while LLMs hold immense promise for public transit, careful engineering and fine-tuning are essential to realizing their full potential. San Antonio serves as a case study to inform the development of LLM-powered transit systems in other urban environments.
comment: This work is accepted to AAAI 2025 Workshop on AI for Urban Planning. arXiv admin note: substantial text overlap with arXiv:2407.11003
☆ Explainable Reinforcement Learning via Temporal Policy Decomposition
We investigate the explainability of Reinforcement Learning (RL) policies from a temporal perspective, focusing on the sequence of future outcomes associated with individual actions. In RL, value functions compress information about rewards collected across multiple trajectories and over an infinite horizon, allowing a compact form of knowledge representation. However, this compression obscures the temporal details inherent in sequential decision-making, presenting a key challenge for interpretability. We present Temporal Policy Decomposition (TPD), a novel explainability approach that explains individual RL actions in terms of their Expected Future Outcome (EFO). These explanations decompose generalized value functions into a sequence of EFOs, one for each time step up to a prediction horizon of interest, revealing insights into when specific outcomes are expected to occur. We leverage fixed-horizon temporal difference learning to devise an off-policy method for learning EFOs for both optimal and suboptimal actions, enabling contrastive explanations consisting of EFOs for different state-action pairs. Our experiments demonstrate that TPD generates accurate explanations that (i) clarify the policy's future strategy and anticipated trajectory for a given action and (ii) improve understanding of the reward composition, facilitating fine-tuning of the reward function to align with human expectations.
comment: 21 pages, 4 figures
☆ LLaVA-Mini: Efficient Image and Video Large Multimodal Models with One Vision Token
The advent of real-time large multimodal models (LMMs) like GPT-4o has sparked considerable interest in efficient LMMs. LMM frameworks typically encode visual inputs into vision tokens (continuous representations) and integrate them and textual instructions into the context of large language models (LLMs), where large-scale parameters and numerous context tokens (predominantly vision tokens) result in substantial computational overhead. Previous efforts towards efficient LMMs always focus on replacing the LLM backbone with smaller models, while neglecting the crucial issue of token quantity. In this paper, we introduce LLaVA-Mini, an efficient LMM with minimal vision tokens. To achieve a high compression ratio of vision tokens while preserving visual information, we first analyze how LMMs understand vision tokens and find that most vision tokens only play a crucial role in the early layers of LLM backbone, where they mainly fuse visual information into text tokens. Building on this finding, LLaVA-Mini introduces modality pre-fusion to fuse visual information into text tokens in advance, thereby facilitating the extreme compression of vision tokens fed to LLM backbone into one token. LLaVA-Mini is a unified large multimodal model that can support the understanding of images, high-resolution images, and videos in an efficient manner. Experiments across 11 image-based and 7 video-based benchmarks demonstrate that LLaVA-Mini outperforms LLaVA-v1.5 with just 1 vision token instead of 576. Efficiency analyses reveal that LLaVA-Mini can reduce FLOPs by 77%, deliver low-latency responses within 40 milliseconds, and process over 10,000 frames of video on the GPU hardware with 24GB of memory.
comment: Code: https://github.com/ictnlp/LLaVA-Mini; Model: https://huggingface.co/ICTNLP/llava-mini-llama-3.1-8b
☆ Neural DNF-MT: A Neuro-symbolic Approach for Learning Interpretable and Editable Policies AAMAS 2025
Although deep reinforcement learning has been shown to be effective, the model's black-box nature presents barriers to direct policy interpretation. To address this problem, we propose a neuro-symbolic approach called neural DNF-MT for end-to-end policy learning. The differentiable nature of the neural DNF-MT model enables the use of deep actor-critic algorithms for training. At the same time, its architecture is designed so that trained models can be directly translated into interpretable policies expressed as standard (bivalent or probabilistic) logic programs. Moreover, additional layers can be included to extract abstract features from complex observations, acting as a form of predicate invention. The logic representations are highly interpretable, and we show how the bivalent representations of deterministic policies can be edited and incorporated back into a neural model, facilitating manual intervention and adaptation of learned policies. We evaluate our approach on a range of tasks requiring learning deterministic or stochastic behaviours from various forms of observations. Our empirical results show that our neural DNF-MT model performs at the level of competing black-box methods whilst providing interpretable policies.
comment: AAMAS 2025
☆ CL3DOR: Contrastive Learning for 3D Large Multimodal Models via Odds Ratio on High-Resolution Point Clouds
Recent research has demonstrated that Large Language Models (LLMs) are not limited to text-only tasks but can also function as multimodal models across various modalities, including audio, images, and videos. In particular, research on 3D Large Multimodal Models (3D LMMs) is making notable strides, driven by the potential of processing higher-dimensional data like point clouds. However, upon closer examination, we find that the visual and textual content within each sample of existing training datasets lacks both high informational granularity and clarity, which serve as a bottleneck for precise cross-modal understanding. To address these issues, we propose CL3DOR, Contrastive Learning for 3D large multimodal models via Odds ratio on high-Resolution point clouds, designed to ensure greater specificity and clarity in both visual and textual content. Specifically, we increase the density of point clouds per object and construct informative hard negative responses in the training dataset to penalize unwanted responses. To leverage hard negative responses, we incorporate the odds ratio as an auxiliary term for contrastive learning into the conventional language modeling loss. CL3DOR achieves state-of-the-art performance in 3D scene understanding and reasoning benchmarks. Additionally, we demonstrate the effectiveness of CL3DOR's key components through extensive experiments.
☆ Diffusion as Shader: 3D-aware Video Diffusion for Versatile Video Generation Control
Diffusion models have demonstrated impressive performance in generating high-quality videos from text prompts or images. However, precise control over the video generation process, such as camera manipulation or content editing, remains a significant challenge. Existing methods for controlled video generation are typically limited to a single control type, lacking the flexibility to handle diverse control demands. In this paper, we introduce Diffusion as Shader (DaS), a novel approach that supports multiple video control tasks within a unified architecture. Our key insight is that achieving versatile video control necessitates leveraging 3D control signals, as videos are fundamentally 2D renderings of dynamic 3D content. Unlike prior methods limited to 2D control signals, DaS leverages 3D tracking videos as control inputs, making the video diffusion process inherently 3D-aware. This innovation allows DaS to achieve a wide range of video controls by simply manipulating the 3D tracking videos. A further advantage of using 3D tracking videos is their ability to effectively link frames, significantly enhancing the temporal consistency of the generated videos. With just 3 days of fine-tuning on 8 H800 GPUs using less than 10k videos, DaS demonstrates strong control capabilities across diverse tasks, including mesh-to-video generation, camera control, motion transfer, and object manipulation.
comment: Project page: https://igl-hkust.github.io/das/ Codes: https://github.com/IGL-HKUST/DiffusionAsShader
☆ SCC-YOLO: An Improved Object Detector for Assisting in Brain Tumor Diagnosis
Brain tumors can result in neurological dysfunction, alterations in cognitive and psychological states, increased intracranial pressure, and the occurrence of seizures, thereby presenting a substantial risk to human life and health. The You Only Look Once(YOLO) series models have demonstrated superior accuracy in object detection for medical imaging. In this paper, we develop a novel SCC-YOLO architecture by integrating the SCConv attention mechanism into YOLOv9. The SCConv module reconstructs an efficient convolutional module by reducing spatial and channel redundancy among features, thereby enhancing the learning of image features. We investigate the impact of intergrating different attention mechanisms with the YOLOv9 model on brain tumor image detection using both the Br35H dataset and our self-made dataset(Brain_Tumor_Dataset). Experimental results show that on the Br35H dataset, SCC-YOLO achieved a 0.3% improvement in mAp50 compared to YOLOv9, while on our self-made dataset, SCC-YOLO exhibited a 0.5% improvement over YOLOv9. SCC-YOLO has reached state-of-the-art performance in brain tumor detection. Source code is available at : https://jihulab.com/healthcare-information-studio/SCC-YOLO/-/tree/master
☆ TACLR: A Scalable and Efficient Retrieval-based Method for Industrial Product Attribute Value Identification
Product Attribute Value Identification (PAVI) involves identifying attribute values from product profiles, a key task for improving product search, recommendations, and business analytics on e-commerce platforms. However, existing PAVI methods face critical challenges, such as inferring implicit values, handling out-of-distribution (OOD) values, and producing normalized outputs. To address these limitations, we introduce Taxonomy-Aware Contrastive Learning Retrieval (TACLR), the first retrieval-based method for PAVI. TACLR formulates PAVI as an information retrieval task by encoding product profiles and candidate values into embeddings and retrieving values based on their similarity to the item embedding. It leverages contrastive training with taxonomy-aware hard negative sampling and employs adaptive inference with dynamic thresholds. TACLR offers three key advantages: (1) it effectively handles implicit and OOD values while producing normalized outputs; (2) it scales to thousands of categories, tens of thousands of attributes, and millions of values; and (3) it supports efficient inference for high-load industrial scenarios. Extensive experiments on proprietary and public datasets validate the effectiveness and efficiency of TACLR. Moreover, it has been successfully deployed in a real-world e-commerce platform, processing millions of product listings daily while supporting dynamic, large-scale attribute taxonomies.
☆ Three-dimensional attention Transformer for state evaluation in real-time strategy games
Situation assessment in Real-Time Strategy (RTS) games is crucial for understanding decision-making in complex adversarial environments. However, existing methods remain limited in processing multi-dimensional feature information and temporal dependencies. Here we propose a tri-dimensional Space-Time-Feature Transformer (TSTF Transformer) architecture, which efficiently models battlefield situations through three independent but cascaded modules: spatial attention, temporal attention, and feature attention. On a dataset comprising 3,150 adversarial experiments, the 8-layer TSTF Transformer demonstrates superior performance: achieving 58.7% accuracy in the early game (~4% progress), significantly outperforming the conventional Timesformer's 41.8%; reaching 97.6% accuracy in the mid-game (~40% progress) while maintaining low performance variation (standard deviation 0.114). Meanwhile, this architecture requires fewer parameters (4.75M) compared to the baseline model (5.54M). Our study not only provides new insights into situation assessment in RTS games but also presents an innovative paradigm for Transformer-based multi-dimensional temporal modeling.
comment: 9 pages, 5 figures
☆ Deep Sylvester Posterior Inference for Adaptive Compressed Sensing in Ultrasound Imaging
Ultrasound images are commonly formed by sequential acquisition of beam-steered scan-lines. Minimizing the number of required scan-lines can significantly enhance frame rate, field of view, energy efficiency, and data transfer speeds. Existing approaches typically use static subsampling schemes in combination with sparsity-based or, more recently, deep-learning-based recovery. In this work, we introduce an adaptive subsampling method that maximizes intrinsic information gain in-situ, employing a Sylvester Normalizing Flow encoder to infer an approximate Bayesian posterior under partial observation in real-time. Using the Bayesian posterior and a deep generative model for future observations, we determine the subsampling scheme that maximizes the mutual information between the subsampled observations, and the next frame of the video. We evaluate our approach using the EchoNet cardiac ultrasound video dataset and demonstrate that our active sampling method outperforms competitive baselines, including uniform and variable-density random sampling, as well as equidistantly spaced scan-lines, improving mean absolute reconstruction error by 15%. Moreover, posterior inference and the sampling scheme generation are performed in just 0.015 seconds (66Hz), making it fast enough for real-time 2D ultrasound imaging applications.
☆ Online Reinforcement Learning-Based Dynamic Adaptive Evaluation Function for Real-Time Strategy Tasks
Effective evaluation of real-time strategy tasks requires adaptive mechanisms to cope with dynamic and unpredictable environments. This study proposes a method to improve evaluation functions for real-time responsiveness to battle-field situation changes, utilizing an online reinforcement learning-based dynam-ic weight adjustment mechanism within the real-time strategy game. Building on traditional static evaluation functions, the method employs gradient descent in online reinforcement learning to update weights dynamically, incorporating weight decay techniques to ensure stability. Additionally, the AdamW optimizer is integrated to adjust the learning rate and decay rate of online reinforcement learning in real time, further reducing the dependency on manual parameter tun-ing. Round-robin competition experiments demonstrate that this method signifi-cantly enhances the application effectiveness of the Lanchester combat model evaluation function, Simple evaluation function, and Simple Sqrt evaluation function in planning algorithms including IDABCD, IDRTMinimax, and Port-folio AI. The method achieves a notable improvement in scores, with the en-hancement becoming more pronounced as the map size increases. Furthermore, the increase in evaluation function computation time induced by this method is kept below 6% for all evaluation functions and planning algorithms. The pro-posed dynamic adaptive evaluation function demonstrates a promising approach for real-time strategy task evaluation.
comment: 22 pages, 9 figures
☆ Self-Adaptive ERP: Embedding NLP into Petri-Net creation and Model Matching
Enterprise Resource Planning (ERP) consultants play a vital role in customizing systems to meet specific business needs by processing large amounts of data and adapting functionalities. However, the process is resource-intensive, time-consuming, and requires continuous adjustments as business demands evolve. This research introduces a Self-Adaptive ERP Framework that automates customization using enterprise process models and system usage analysis. It leverages Artificial Intelligence (AI) & Natural Language Processing (NLP) for Petri nets to transform business processes into adaptable models, addressing both structural and functional matching. The framework, built using Design Science Research (DSR) and a Systematic Literature Review (SLR), reduces reliance on manual adjustments, improving ERP customization efficiency and accuracy while minimizing the need for consultants.
☆ SelectiveFinetuning: Enhancing Transfer Learning in Sleep Staging through Selective Domain Alignment ICASSP 2025
In practical sleep stage classification, a key challenge is the variability of EEG data across different subjects and environments. Differences in physiology, age, health status, and recording conditions can lead to domain shifts between data. These domain shifts often result in decreased model accuracy and reliability, particularly when the model is applied to new data with characteristics different from those it was originally trained on, which is a typical manifestation of negative transfer. To address this, we propose SelectiveFinetuning in this paper. Our method utilizes a pretrained Multi Resolution Convolutional Neural Network (MRCNN) to extract EEG features, capturing the distinctive characteristics of different sleep stages. To mitigate the effect of domain shifts, we introduce a domain aligning mechanism that employs Earth Mover Distance (EMD) to evaluate and select source domain data closely matching the target domain. By finetuning the model with selective source data, our SelectiveFinetuning enhances the model's performance on target domain that exhibits domain shifts compared to the data used for training. Experimental results show that our method outperforms existing baselines, offering greater robustness and adaptability in practical scenarios where data distributions are often unpredictable.
comment: Accepted by ICASSP 2025
☆ Self-adaptive vision-language model for 3D segmentation of pulmonary artery and vein
Accurate segmentation of pulmonary structures iscrucial in clinical diagnosis, disease study, and treatment planning. Significant progress has been made in deep learning-based segmentation techniques, but most require much labeled data for training. Consequently, developing precise segmentation methods that demand fewer labeled datasets is paramount in medical image analysis. The emergence of pre-trained vision-language foundation models, such as CLIP, recently opened the door for universal computer vision tasks. Exploiting the generalization ability of these pre-trained foundation models on downstream tasks, such as segmentation, leads to unexpected performance with a relatively small amount of labeled data. However, exploring these models for pulmonary artery-vein segmentation is still limited. This paper proposes a novel framework called Language-guided self-adaptive Cross-Attention Fusion Framework. Our method adopts pre-trained CLIP as a strong feature extractor for generating the segmentation of 3D CT scans, while adaptively aggregating the cross-modality of text and image representations. We propose a s pecially designed adapter module to fine-tune pre-trained CLIP with a self-adaptive learning strategy to effectively fuse the two modalities of embeddings. We extensively validate our method on a local dataset, which is the largest pulmonary artery-vein CT dataset to date and consists of 718 labeled data in total. The experiments show that our method outperformed other state-of-the-art methods by a large margin. Our data and code will be made publicly available upon acceptance.
comment: 8 pages,3 figures
☆ Materialist: Physically Based Editing Using Single-Image Inverse Rendering
To perform image editing based on single-view, inverse physically based rendering, we present a method combining a learning-based approach with progressive differentiable rendering. Given an image, our method leverages neural networks to predict initial material properties. Progressive differentiable rendering is then used to optimize the environment map and refine the material properties with the goal of closely matching the rendered result to the input image. We require only a single image while other inverse rendering methods based on the rendering equation require multiple views. In comparison to single-view methods that rely on neural renderers, our approach achieves more realistic light material interactions, accurate shadows, and global illumination. Furthermore, with optimized material properties and illumination, our method enables a variety of tasks, including physically based material editing, object insertion, and relighting. We also propose a method for material transparency editing that operates effectively without requiring full scene geometry. Compared with methods based on Stable Diffusion, our approach offers stronger interpretability and more realistic light refraction based on empirical results.
comment: code will be available at github.com/lez-s/Materialist
☆ Neural Deconstruction Search for Vehicle Routing Problems
Autoregressive construction approaches generate solutions to vehicle routing problems in a step-by-step fashion, leading to high-quality solutions that are nearing the performance achieved by handcrafted, operations research techniques. In this work, we challenge the conventional paradigm of sequential solution construction and introduce an iterative search framework where solutions are instead deconstructed by a neural policy. Throughout the search, the neural policy collaborates with a simple greedy insertion algorithm to rebuild the deconstructed solutions. Our approach surpasses the performance of state-of-the-art operations research methods across three challenging vehicle routing problems of various problem sizes.
☆ Unsupervised Speech Segmentation: A General Approach Using Speech Language Models
In this paper, we introduce an unsupervised approach for Speech Segmentation, which builds on previously researched approaches, e.g., Speaker Diarization, while being applicable to an inclusive set of acoustic-semantic distinctions, paving a path towards a general Unsupervised Speech Segmentation approach. Unlike traditional speech and audio segmentation, which mainly focuses on spectral changes in the input signal, e.g., phone segmentation, our approach tries to segment the spoken utterance into chunks with differing acoustic-semantic styles, focusing on acoustic-semantic information that does not translate well into text, e.g., emotion or speaker. While most Speech Segmentation tasks only handle one style change, e.g., emotion diarization, our approach tries to handle multiple acoustic-semantic style changes. Leveraging recent advances in Speech Language Models (SLMs), we propose a simple unsupervised method to segment a given speech utterance. We empirically demonstrate the effectiveness of the proposed approach by considering several setups. Results suggest that the proposed method is superior to the evaluated baselines on boundary detection, segment purity, and over-segmentation. Code is available at https://github.com/avishaiElmakies/unsupervised_speech_segmentation_using_slm.
☆ AuxDepthNet: Real-Time Monocular 3D Object Detection with Depth-Sensitive Features
Monocular 3D object detection is a challenging task in autonomous systems due to the lack of explicit depth information in single-view images. Existing methods often depend on external depth estimators or expensive sensors, which increase computational complexity and hinder real-time performance. To overcome these limitations, we propose AuxDepthNet, an efficient framework for real-time monocular 3D object detection that eliminates the reliance on external depth maps or pre-trained depth models. AuxDepthNet introduces two key components: the Auxiliary Depth Feature (ADF) module, which implicitly learns depth-sensitive features to improve spatial reasoning and computational efficiency, and the Depth Position Mapping (DPM) module, which embeds depth positional information directly into the detection process to enable accurate object localization and 3D bounding box regression. Leveraging the DepthFusion Transformer architecture, AuxDepthNet globally integrates visual and depth-sensitive features through depth-guided interactions, ensuring robust and efficient detection. Extensive experiments on the KITTI dataset show that AuxDepthNet achieves state-of-the-art performance, with $\text{AP}_{3D}$ scores of 24.72\% (Easy), 18.63\% (Moderate), and 15.31\% (Hard), and $\text{AP}_{\text{BEV}}$ scores of 34.11\% (Easy), 25.18\% (Moderate), and 21.90\% (Hard) at an IoU threshold of 0.7.
☆ Exploring Molecule Generation Using Latent Space Graph Diffusion
Generating molecular graphs is a challenging task due to their discrete nature and the competitive objectives involved. Diffusion models have emerged as SOTA approaches in data generation across various modalities. For molecular graphs, graph neural networks (GNNs) as a diffusion backbone have achieved impressive results. Latent space diffusion, where diffusion occurs in a low-dimensional space via an autoencoder, has demonstrated computational efficiency. However, the literature on latent space diffusion for molecular graphs is scarce, and no commonly accepted best practices exist. In this work, we explore different approaches and hyperparameters, contrasting generative flow models (denoising diffusion, flow matching, heat dissipation) and architectures (GNNs and E(3)-equivariant GNNs). Our experiments reveal a high sensitivity to the choice of approach and design decisions. Code is made available at github.com/Prashanth-Pombala/Molecule-Generation-using-Latent-Space-Graph-Diffusion.
☆ MAJL: A Model-Agnostic Joint Learning Framework for Music Source Separation and Pitch Estimation
Music source separation and pitch estimation are two vital tasks in music information retrieval. Typically, the input of pitch estimation is obtained from the output of music source separation. Therefore, existing methods have tried to perform these two tasks simultaneously, so as to leverage the mutually beneficial relationship between both tasks. However, these methods still face two critical challenges that limit the improvement of both tasks: the lack of labeled data and joint learning optimization. To address these challenges, we propose a Model-Agnostic Joint Learning (MAJL) framework for both tasks. MAJL is a generic framework and can use variant models for each task. It includes a two-stage training method and a dynamic weighting method named Dynamic Weights on Hard Samples (DWHS), which addresses the lack of labeled data and joint learning optimization, respectively. Experimental results on public music datasets show that MAJL outperforms state-of-the-art methods on both tasks, with significant improvements of 0.92 in Signal-to-Distortion Ratio (SDR) for music source separation and 2.71% in Raw Pitch Accuracy (RPA) for pitch estimation. Furthermore, comprehensive studies not only validate the effectiveness of each component of MAJL, but also indicate the great generality of MAJL in adapting to different model architectures.
☆ SLAM: Towards Efficient Multilingual Reasoning via Selective Language Alignment COLING 2025
Despite the significant improvements achieved by large language models (LLMs) in English reasoning tasks, these models continue to struggle with multilingual reasoning. Recent studies leverage a full-parameter and two-stage training paradigm to teach models to first understand non-English questions and then reason. However, this method suffers from both substantial computational resource computing and catastrophic forgetting. The fundamental cause is that, with the primary goal of enhancing multilingual comprehension, an excessive number of irrelevant layers and parameters are tuned during the first stage. Given our findings that the representation learning of languages is merely conducted in lower-level layers, we propose an efficient multilingual reasoning alignment approach that precisely identifies and fine-tunes the layers responsible for handling multilingualism. Experimental results show that our method, SLAM, only tunes 6 layers' feed-forward sub-layers including 6.5-8% of all parameters within 7B and 13B LLMs, achieving superior average performance than all strong baselines across 10 languages. Meanwhile, SLAM only involves one training stage, reducing training time by 4.1-11.9 compared to the two-stage method.
comment: Accepted by COLING 2025 (Oral)
☆ SALE-Based Offline Reinforcement Learning with Ensemble Q-Networks
In this work, we build upon the offline reinforcement learning algorithm TD7, which incorporates State-Action Learned Embeddings (SALE) and LAP, and propose a model-free actor-critic algorithm that integrates ensemble Q-networks and a gradient diversity penalty from EDAC. The ensemble Q-networks effectively address the challenge of out-of-distribution actions by introducing penalties that guide the actor network to focus on in-distribution actions. Meanwhile, the gradient diversity penalty encourages diverse Q-value gradients, further suppressing overestimation for out-of-distribution actions. Additionally, our method retains an adjustable behavior cloning (BC) term that directs the actor network toward dataset actions during early training stages, while gradually reducing its influence as the precision of the Q-ensemble improves. These enhancements work synergistically to improve training stability and accuracy. Experimental results on the D4RL MuJoCo benchmarks demonstrate that our algorithm achieves superior convergence speed, stability, and performance compared to existing methods.
comment: 10 pages, 2 figures, 4 tables
☆ Action Quality Assessment via Hierarchical Pose-guided Multi-stage Contrastive Regression
Action Quality Assessment (AQA), which aims at automatic and fair evaluation of athletic performance, has gained increasing attention in recent years. However, athletes are often in rapid movement and the corresponding visual appearance variances are subtle, making it challenging to capture fine-grained pose differences and leading to poor estimation performance. Furthermore, most common AQA tasks, such as diving in sports, are usually divided into multiple sub-actions, each of which contains different durations. However, existing methods focus on segmenting the video into fixed frames, which disrupts the temporal continuity of sub-actions resulting in unavoidable prediction errors. To address these challenges, we propose a novel action quality assessment method through hierarchically pose-guided multi-stage contrastive regression. Firstly, we introduce a multi-scale dynamic visual-skeleton encoder to capture fine-grained spatio-temporal visual and skeletal features. Then, a procedure segmentation network is introduced to separate different sub-actions and obtain segmented features. Afterwards, the segmented visual and skeletal features are both fed into a multi-modal fusion module as physics structural priors, to guide the model in learning refined activity similarities and variances. Finally, a multi-stage contrastive learning regression approach is employed to learn discriminative representations and output prediction results. In addition, we introduce a newly-annotated FineDiving-Pose Dataset to improve the current low-quality human pose labels. In experiments, the results on FineDiving and MTL-AQA datasets demonstrate the effectiveness and superiority of our proposed approach. Our source code and dataset are available at https://github.com/Lumos0507/HP-MCoRe.
☆ A Diversity-Enhanced Knowledge Distillation Model for Practical Math Word Problem Solving
Math Word Problem (MWP) solving is a critical task in natural language processing, has garnered significant research interest in recent years. Various recent studies heavily rely on Seq2Seq models and their extensions (e.g., Seq2Tree and Graph2Tree) to generate mathematical equations. While effective, these models struggle to generate diverse but counterpart solution equations, limiting their generalization across various math problem scenarios. In this paper, we introduce a novel Diversity-enhanced Knowledge Distillation (DivKD) model for practical MWP solving. Our approach proposes an adaptive diversity distillation method, in which a student model learns diverse equations by selectively transferring high-quality knowledge from a teacher model. Additionally, we design a diversity prior-enhanced student model to better capture the diversity distribution of equations by incorporating a conditional variational auto-encoder. Extensive experiments on {four} MWP benchmark datasets demonstrate that our approach achieves higher answer accuracy than strong baselines while maintaining high efficiency for practical applications.
☆ Effective and Efficient Mixed Precision Quantization of Speech Foundation Models ICASSP 2025
This paper presents a novel mixed-precision quantization approach for speech foundation models that tightly integrates mixed-precision learning and quantized model parameter estimation into one single model compression stage. Experiments conducted on LibriSpeech dataset with fine-tuned wav2vec2.0-base and HuBERT-large models suggest the resulting mixed-precision quantized models increased the lossless compression ratio by factors up to 1.7x and 1.9x over the respective uniform-precision and two-stage mixed-precision quantized baselines that perform precision learning and model parameters quantization in separate and disjointed stages, while incurring no statistically word error rate (WER) increase over the 32-bit full-precision models. The system compression time of wav2vec2.0-base and HuBERT-large models is reduced by up to 1.9 and 1.5 times over the two-stage mixed-precision baselines, while both produce lower WERs. The best-performing 3.5-bit mixed-precision quantized HuBERT-large model produces a lossless compression ratio of 8.6x over the 32-bit full-precision system.
comment: To appear at IEEE ICASSP 2025
☆ MHGNet: Multi-Heterogeneous Graph Neural Network for Traffic Prediction SP2025
In recent years, traffic flow prediction has played a crucial role in the management of intelligent transportation systems. However, traditional forecasting methods often model non-Euclidean low-dimensional traffic data as a simple graph with single-type nodes and edges, failing to capture similar trends among nodes of the same type. To address this limitation, this paper proposes MHGNet, a novel framework for modeling spatiotemporal multi-heterogeneous graphs. Within this framework, the STD Module decouples single-pattern traffic data into multi-pattern traffic data through feature mappings of timestamp embedding matrices and node embedding matrices. Subsequently, the Node Clusterer leverages the Euclidean distance between nodes and different types of limit points to perform clustering with O(N) time complexity. The nodes within each cluster undergo residual subgraph convolution within the spatiotemporal fusion subgraphs generated by the DSTGG Module, followed by processing in the SIE Module for node repositioning and redistribution of weights. To validate the effectiveness of MHGNet, this paper conducts extensive ablation studies and quantitative evaluations on four widely used benchmarks, demonstrating its superior performance.
comment: Accepted by 2025 lEEE International Conference on Acoustics, speech, and signal Processing (lCASSP2025)
☆ RecKG: Knowledge Graph for Recommender Systems
Knowledge graphs have proven successful in integrating heterogeneous data across various domains. However, there remains a noticeable dearth of research on their seamless integration among heterogeneous recommender systems, despite knowledge graph-based recommender systems garnering extensive research attention. This study aims to fill this gap by proposing RecKG, a standardized knowledge graph for recommender systems. RecKG ensures the consistent representation of entities across different datasets, accommodating diverse attribute types for effective data integration. Through a meticulous examination of various recommender system datasets, we select attributes for RecKG, ensuring standardized formatting through consistent naming conventions. By these characteristics, RecKG can seamlessly integrate heterogeneous data sources, enabling the discovery of additional semantic information within the integrated knowledge graph. We apply RecKG to standardize real-world datasets, subsequently developing an application for RecKG using a graph database. Finally, we validate RecKG's achievement in interoperability through a qualitative evaluation between RecKG and other studies.
comment: Accepted by The 39th ACM/SIGAPP Symposium On Applied Computing(SAC) 2024
☆ STContext: A Multifaceted Dataset for Developing Context-aware Spatio-temporal Crowd Mobility Prediction Models
In smart cities, context-aware spatio-temporal crowd flow prediction (STCFP) models leverage contextual features (e.g., weather) to identify unusual crowd mobility patterns and enhance prediction accuracy. However, the best practice for incorporating contextual features remains unclear due to inconsistent usage of contextual features in different papers. Developing a multifaceted dataset with rich types of contextual features and STCFP scenarios is crucial for establishing a principled context modeling paradigm. Existing open crowd flow datasets lack an adequate range of contextual features, which poses an urgent requirement to build a multifaceted dataset to fill these research gaps. To this end, we create STContext, a multifaceted dataset for developing context-aware STCFP models. Specifically, STContext provides nine spatio-temporal datasets across five STCFP scenarios and includes ten contextual features, including weather, air quality index, holidays, points of interest, road networks, etc. Besides, we propose a unified workflow for incorporating contextual features into deep STCFP methods, with steps including feature transformation, dependency modeling, representation fusion, and training strategies. Through extensive experiments, we have obtained several useful guidelines for effective context modeling and insights for future research. The STContext is open-sourced at https://github.com/Liyue-Chen/STContext.
☆ Cosmos World Foundation Model Platform for Physical AI
Physical AI needs to be trained digitally first. It needs a digital twin of itself, the policy model, and a digital twin of the world, the world model. In this paper, we present the Cosmos World Foundation Model Platform to help developers build customized world models for their Physical AI setups. We position a world foundation model as a general-purpose world model that can be fine-tuned into customized world models for downstream applications. Our platform covers a video curation pipeline, pre-trained world foundation models, examples of post-training of pre-trained world foundation models, and video tokenizers. To help Physical AI builders solve the most critical problems of our society, we make our platform open-source and our models open-weight with permissive licenses available via https://github.com/NVIDIA/Cosmos.
☆ From Code to Compliance: Assessing ChatGPT's Utility in Designing an Accessible Webpage -- A Case Study
Web accessibility ensures that individuals with disabilities can access and interact with digital content without barriers, yet a significant majority of most used websites fail to meet accessibility standards. This study evaluates ChatGPT's (GPT-4o) ability to generate and improve web pages in line with Web Content Accessibility Guidelines (WCAG). While ChatGPT can effectively address accessibility issues when prompted, its default code often lacks compliance, reflecting limitations in its training data and prevailing inaccessible web practices. Automated and manual testing revealed strengths in resolving simple issues but challenges with complex tasks, requiring human oversight and additional iterations. Unlike prior studies, we incorporate manual evaluation, dynamic elements, and use the visual reasoning capability of ChatGPT along with the prompts to fix accessibility issues. Providing screenshots alongside prompts enhances the LLM's ability to address accessibility issues by allowing it to analyze surrounding components, such as determining appropriate contrast colors. We found that effective prompt engineering, such as providing concise, structured feedback and incorporating visual aids, significantly enhances ChatGPT's performance. These findings highlight the potential and limitations of large language models for accessible web development, offering practical guidance for developers to create more inclusive websites.
☆ Applying Large Language Models in Knowledge Graph-based Enterprise Modeling: Challenges and Opportunities
The role of large language models (LLMs) in enterprise modeling has recently started to shift from academic research to that of industrial applications. Thereby, LLMs represent a further building block for the machine-supported generation of enterprise models. In this paper we employ a knowledge graph-based approach for enterprise modeling and investigate the potential benefits of LLMs in this context. In addition, the findings of an expert survey and ChatGPT-4o-based experiments demonstrate that LLM-based model generations exhibit minimal variability, yet remain constrained to specific tasks, with reliability declining for more intricate tasks. The survey results further suggest that the supervision and intervention of human modeling experts are essential to ensure the accuracy and integrity of the generated models.
☆ Rethinking Adversarial Attacks in Reinforcement Learning from Policy Distribution Perspective
Deep Reinforcement Learning (DRL) suffers from uncertainties and inaccuracies in the observation signal in realworld applications. Adversarial attack is an effective method for evaluating the robustness of DRL agents. However, existing attack methods targeting individual sampled actions have limited impacts on the overall policy distribution, particularly in continuous action spaces. To address these limitations, we propose the Distribution-Aware Projected Gradient Descent attack (DAPGD). DAPGD uses distribution similarity as the gradient perturbation input to attack the policy network, which leverages the entire policy distribution rather than relying on individual samples. We utilize the Bhattacharyya distance in DAPGD to measure policy similarity, enabling sensitive detection of subtle but critical differences between probability distributions. Our experiment results demonstrate that DAPGD achieves SOTA results compared to the baselines in three robot navigation tasks, achieving an average 22.03% higher reward drop compared to the best baseline.
comment: 10 pages, 2 figures, 2 tables
☆ KG-TRICK: Unifying Textual and Relational Information Completion of Knowledge for Multilingual Knowledge Graphs COLING 2025
Multilingual knowledge graphs (KGs) provide high-quality relational and textual information for various NLP applications, but they are often incomplete, especially in non-English languages. Previous research has shown that combining information from KGs in different languages aids either Knowledge Graph Completion (KGC), the task of predicting missing relations between entities, or Knowledge Graph Enhancement (KGE), the task of predicting missing textual information for entities. Although previous efforts have considered KGC and KGE as independent tasks, we hypothesize that they are interdependent and mutually beneficial. To this end, we introduce KG-TRICK, a novel sequence-to-sequence framework that unifies the tasks of textual and relational information completion for multilingual KGs. KG-TRICK demonstrates that: i) it is possible to unify the tasks of KGC and KGE into a single framework, and ii) combining textual information from multiple languages is beneficial to improve the completeness of a KG. As part of our contributions, we also introduce WikiKGE10++, the largest manually-curated benchmark for textual information completion of KGs, which features over 25,000 entities across 10 diverse languages.
comment: Camera ready for COLING 2025
PromptGuard: Soft Prompt-Guided Unsafe Content Moderation for Text-to-Image Models
Text-to-image (T2I) models have been shown to be vulnerable to misuse, particularly in generating not-safe-for-work (NSFW) content, raising serious ethical concerns. In this work, we present PromptGuard, a novel content moderation technique that draws inspiration from the system prompt mechanism in large language models (LLMs) for safety alignment. Unlike LLMs, T2I models lack a direct interface for enforcing behavioral guidelines. Our key idea is to optimize a safety soft prompt that functions as an implicit system prompt within the T2I model's textual embedding space. This universal soft prompt (P*) directly moderates NSFW inputs, enabling safe yet realistic image generation without altering the inference efficiency or requiring proxy models. Extensive experiments across three datasets demonstrate that PromptGuard effectively mitigates NSFW content generation while preserving high-quality benign outputs. PromptGuard achieves 7.8 times faster than prior content moderation methods, surpassing eight state-of-the-art defenses with an optimal unsafe ratio down to 5.84%.
comment: 16 pages, 8 figures, 10 tables
☆ Deep Learning within Tabular Data: Foundations, Challenges, Advances and Future Directions
Tabular data remains one of the most prevalent data types across a wide range of real-world applications, yet effective representation learning for this domain poses unique challenges due to its irregular patterns, heterogeneous feature distributions, and complex inter-column dependencies. This survey provides a comprehensive review of state-of-the-art techniques in tabular data representation learning, structured around three foundational design elements: training data, neural architectures, and learning objectives. Unlike prior surveys that focus primarily on either architecture design or learning strategies, we adopt a holistic perspective that emphasizes the universality and robustness of representation learning methods across diverse downstream tasks. We examine recent advances in data augmentation and generation, specialized neural network architectures tailored to tabular data, and innovative learning objectives that enhance representation quality. Additionally, we highlight the growing influence of self-supervised learning and the adaptation of transformer-based foundation models for tabular data. Our review is based on a systematic literature search using rigorous inclusion criteria, encompassing 127 papers published since 2020 in top-tier conferences and journals. Through detailed analysis and comparison, we identify emerging trends, critical gaps, and promising directions for future research, aiming to guide the development of more generalizable and effective tabular data representation methods.
☆ SenseRAG: Constructing Environmental Knowledge Bases with Proactive Querying for LLM-Based Autonomous Driving WACV
This study addresses the critical need for enhanced situational awareness in autonomous driving (AD) by leveraging the contextual reasoning capabilities of large language models (LLMs). Unlike traditional perception systems that rely on rigid, label-based annotations, it integrates real-time, multimodal sensor data into a unified, LLMs-readable knowledge base, enabling LLMs to dynamically understand and respond to complex driving environments. To overcome the inherent latency and modality limitations of LLMs, a proactive Retrieval-Augmented Generation (RAG) is designed for AD, combined with a chain-of-thought prompting mechanism, ensuring rapid and context-rich understanding. Experimental results using real-world Vehicle-to-everything (V2X) datasets demonstrate significant improvements in perception and prediction performance, highlighting the potential of this framework to enhance safety, adaptability, and decision-making in next-generation AD systems.
comment: This paper has been accepted for presentation at WACV Workshop LLMAD 2025
☆ Vocal Tract Length Warped Features for Spoken Keyword Spotting
In this paper, we propose several methods that incorporate vocal tract length (VTL) warped features for spoken keyword spotting (KWS). The first method, VTL-independent KWS, involves training a single deep neural network (DNN) that utilizes VTL features with various warping factors. During training, a specific VTL feature is randomly selected per epoch, allowing the exploration of VTL variations. During testing, the VTL features with different warping factors of a test utterance are scored against the DNN and combined with equal weight. In the second method scores the conventional features of a test utterance (without VTL warping) against the DNN. The third method, VTL-concatenation KWS, concatenates VTL warped features to form high-dimensional features for KWS. Evaluations carried out on the English Google Command dataset demonstrate that the proposed methods improve the accuracy of KWS.
☆ Can Deep Learning Trigger Alerts from Mobile-Captured Images?
Our research presents a comprehensive approach to leveraging mobile camera image data for real-time air quality assessment and recommendation. We develop a regression-based Convolutional Neural Network model and tailor it explicitly for air quality prediction by exploiting the inherent relationship between output parameters. As a result, the Mean Squared Error of 0.0077 and 0.0112 obtained for 2 and 5 pollutants respectively outperforms existing models. Furthermore, we aim to verify the common practice of augmenting the original dataset with a view to introducing more variation in the training phase. It is one of our most significant contributions that our experimental results demonstrate minimal accuracy differences between the original and augmented datasets. Finally, a real-time, user-friendly dashboard is implemented which dynamically displays the Air Quality Index and pollutant values derived from captured mobile camera images. Users' health conditions are considered to recommend whether a location is suitable based on current air quality metrics. Overall, this research contributes to verification of data augmentation techniques, CNN-based regression modelling for air quality prediction, and user-centric air quality monitoring through mobile technology. The proposed system offers practical solutions for individuals to make informed environmental health and well-being decisions.
☆ Can LLMs Design Good Questions Based on Context?
This paper evaluates questions generated by LLMs from context, comparing them to human-generated questions across six dimensions. We introduce an automated LLM-based evaluation method, focusing on aspects like question length, type, context coverage, and answerability. Our findings highlight unique characteristics of LLM-generated questions, contributing insights that can support further research in question quality and downstream applications.
☆ Align-Pro: A Principled Approach to Prompt Optimization for LLM Alignment AAAI 2025
The alignment of large language models (LLMs) with human values is critical as these models become increasingly integrated into various societal and decision-making processes. Traditional methods, such as reinforcement learning from human feedback (RLHF), achieve alignment by fine-tuning model parameters, but these approaches are often computationally expensive and impractical when models are frozen or inaccessible for parameter modification. In contrast, prompt optimization is a viable alternative to RLHF for LLM alignment. While the existing literature has shown empirical promise of prompt optimization, its theoretical underpinning remains under-explored. We address this gap by formulating prompt optimization as an optimization problem and try to provide theoretical insights into the optimality of such a framework. To analyze the performance of the prompt optimization, we study theoretical suboptimality bounds and provide insights in terms of how prompt optimization depends upon the given prompter and target model. We also provide empirical validation through experiments on various datasets, demonstrating that prompt optimization can effectively align LLMs, even when parameter fine-tuning is not feasible.
comment: 27 pages, Accepted in AAAI 2025
☆ Reading with Intent -- Neutralizing Intent
Queries to large language models (LLMs) can be divided into two parts: the instruction/question and the accompanying context. The context for retrieval-augmented generation (RAG) systems in most benchmarks comes from Wikipedia or Wikipedia-like texts which are written in a neutral and factual tone. However, when RAG systems retrieve internet-based content, they encounter text with diverse tones and linguistic styles, introducing challenges for downstream tasks. The Reading with Intent task addresses this issue by evaluating how varying tones in context passages affect model performance. Building on prior work that focused on sarcasm, we extend this paradigm by constructing a dataset where context passages are transformed to $11$ distinct emotions using a better synthetic data generation approach. Using this dataset, we train an emotion translation model to systematically adapt passages to specified emotional tones. The human evaluation shows that the LLM fine-tuned to become the emotion-translator benefited from the synthetically generated data. Finally, the emotion-translator is used in the Reading with Intent task to transform the passages to a neutral tone. By neutralizing the passages, it mitigates the challenges posed by sarcastic passages and improves overall results on this task by about $3\%$.
☆ MTRAG: A Multi-Turn Conversational Benchmark for Evaluating Retrieval-Augmented Generation Systems
Retrieval-augmented generation (RAG) has recently become a very popular task for Large Language Models (LLMs). Evaluating them on multi-turn RAG conversations, where the system is asked to generate a response to a question in the context of a preceding conversation is an important and often overlooked task with several additional challenges. We present MTRAG: an end-to-end human-generated multi-turn RAG benchmark that reflects several real-world properties across diverse dimensions for evaluating the full RAG pipeline. MTRAG contains 110 conversations averaging 7.7 turns each across four domains for a total of 842 tasks. We also explore automation paths via synthetic data and LLM-as-a-Judge evaluation. Our human and automatic evaluations show that even state-of-the-art LLM RAG systems struggle on MTRAG. We demonstrate the need for strong retrieval and generation systems that can handle later turns, unanswerable questions, non-standalone questions, and multiple domains. MTRAG is available at https://github.com/ibm/mt-rag-benchmark.
☆ LHGNN: Local-Higher Order Graph Neural Networks For Audio Classification and Tagging
Transformers have set new benchmarks in audio processing tasks, leveraging self-attention mechanisms to capture complex patterns and dependencies within audio data. However, their focus on pairwise interactions limits their ability to process the higher-order relations essential for identifying distinct audio objects. To address this limitation, this work introduces the Local- Higher Order Graph Neural Network (LHGNN), a graph based model that enhances feature understanding by integrating local neighbourhood information with higher-order data from Fuzzy C-Means clusters, thereby capturing a broader spectrum of audio relationships. Evaluation of the model on three publicly available audio datasets shows that it outperforms Transformer-based models across all benchmarks while operating with substantially fewer parameters. Moreover, LHGNN demonstrates a distinct advantage in scenarios lacking ImageNet pretraining, establishing its effectiveness and efficiency in environments where extensive pretraining data is unavailable.
☆ Radar Signal Recognition through Self-Supervised Learning and Domain Adaptation
Automatic radar signal recognition (RSR) plays a pivotal role in electronic warfare (EW), as accurately classifying radar signals is critical for informing decision-making processes. Recent advances in deep learning have shown significant potential in improving RSR performance in domains with ample annotated data. However, these methods fall short in EW scenarios where annotated RF data are scarce or impractical to obtain. To address these challenges, we introduce a self-supervised learning (SSL) method which utilises masked signal modelling and RF domain adaption to enhance RSR performance in environments with limited RF samples and labels. Specifically, we investigate pre-training masked autoencoders (MAE) on baseband in-phase and quadrature (I/Q) signals from various RF domains and subsequently transfer the learned representation to the radar domain, where annotated data are limited. Empirical results show that our lightweight self-supervised ResNet model with domain adaptation achieves up to a 17.5\% improvement in 1-shot classification accuracy when pre-trained on in-domain signals (i.e., radar signals) and up to a 16.31\% improvement when pre-trained on out-of-domain signals (i.e., comm signals), compared to its baseline without SSL. We also provide reference results for several MAE designs and pre-training strategies, establishing a new benchmark for few-shot radar signal classification.
comment: 5 pages, 9 figures
☆ Activating Associative Disease-Aware Vision Token Memory for LLM-Based X-ray Report Generation
X-ray image based medical report generation achieves significant progress in recent years with the help of the large language model, however, these models have not fully exploited the effective information in visual image regions, resulting in reports that are linguistically sound but insufficient in describing key diseases. In this paper, we propose a novel associative memory-enhanced X-ray report generation model that effectively mimics the process of professional doctors writing medical reports. It considers both the mining of global and local visual information and associates historical report information to better complete the writing of the current report. Specifically, given an X-ray image, we first utilize a classification model along with its activation maps to accomplish the mining of visual regions highly associated with diseases and the learning of disease query tokens. Then, we employ a visual Hopfield network to establish memory associations for disease-related tokens, and a report Hopfield network to retrieve report memory information. This process facilitates the generation of high-quality reports based on a large language model and achieves state-of-the-art performance on multiple benchmark datasets, including the IU X-ray, MIMIC-CXR, and Chexpert Plus. The source code of this work is released on \url{https://github.com/Event-AHU/Medical_Image_Analysis}.
comment: In Peer Review
☆ Optimization Learning
This article introduces the concept of optimization learning, a methodology to design optimization proxies that learn the input/output mapping of parametric optimization problems. These optimization proxies are trustworthy by design: they compute feasible solutions to the underlying optimization problems, provide quality guarantees on the returned solutions, and scale to large instances. Optimization proxies are differentiable programs that combine traditional deep learning technology with repair or completion layers to produce feasible solutions. The article shows that optimization proxies can be trained end-to-end in a self-supervised way. It presents methodologies to provide performance guarantees and to scale optimization proxies to large-scale optimization problems. The potential of optimization proxies is highlighted through applications in power systems and, in particular, real-time risk assessment and security-constrained optimal power flow.
☆ Fixed Points of Deep Neural Networks: Emergence, Stability, and Applications
We present numerical and analytical results on the formation and stability of a family of fixed points of deep neural networks (DNNs). Such fixed points appear in a class of DNNs when dimensions of input and output vectors are the same. We demonstrate examples of applications of such networks in supervised, semi-supervised and unsupervised learning such as encoding/decoding of images, restoration of damaged images among others. We present several numerical and analytical results. First, we show that for untrained DNN's with weights and biases initialized by normally distributed random variables the only one fixed point exists. This result holds for DNN with any depth (number of layers) $L$, any layer width $N$, and sigmoid-type activation functions. Second, it has been shown that for a DNN whose parameters (weights and biases) are initialized by ``light-tailed'' distribution of weights (e.g. normal distribution), after training the distribution of these parameters become ``heavy-tailed''. This motivates our study of DNNs with ``heavy-tailed'' initialization. For such DNNs we show numerically %existence and stability that training leads to emergence of $Q(N,L)$ fixed points, where $Q(N,L)$ is a positive integer which depends on the number of layers $L$ and layer width $N$. We further observe numerically that for fixed $N = N_0$ the function $Q(N_0, L)$ is non-monotone, that is it initially grows as $L$ increases and then decreases to 1. This non-monotone behavior of $Q(N_0, L)$ is also obtained by analytical derivation of equation for Empirical Spectral Distribution (ESD) of input-output Jacobian followed by numerical solution of this equation.
comment: 21 pages, 7 figures
☆ HIVEX: A High-Impact Environment Suite for Multi-Agent Research (extended version)
Games have been vital test beds for the rapid development of Agent-based research. Remarkable progress has been achieved in the past, but it is unclear if the findings equip for real-world problems. While pressure grows, some of the most critical ecological challenges can find mitigation and prevention solutions through technology and its applications. Most real-world domains include multi-agent scenarios and require machine-machine and human-machine collaboration. Open-source environments have not advanced and are often toy scenarios, too abstract or not suitable for multi-agent research. By mimicking real-world problems and increasing the complexity of environments, we hope to advance state-of-the-art multi-agent research and inspire researchers to work on immediate real-world problems. Here, we present HIVEX, an environment suite to benchmark multi-agent research focusing on ecological challenges. HIVEX includes the following environments: Wind Farm Control, Wildfire Resource Management, Drone-Based Reforestation, Ocean Plastic Collection, and Aerial Wildfire Suppression. We provide environments, training examples, and baselines for the main and sub-tasks. All trained models resulting from the experiments of this work are hosted on Hugging Face. We also provide a leaderboard on Hugging Face and encourage the community to submit models trained on our environment suite.
☆ Multimodal Multihop Source Retrieval for Web Question Answering
This work deals with the challenge of learning and reasoning over multi-modal multi-hop question answering (QA). We propose a graph reasoning network based on the semantic structure of the sentences to learn multi-source reasoning paths and find the supporting facts across both image and text modalities for answering the question. In this paper, we investigate the importance of graph structure for multi-modal multi-hop question answering. Our analysis is centered on WebQA. We construct a strong baseline model, that finds relevant sources using a pairwise classification task. We establish that, with the proper use of feature representations from pre-trained models, graph structure helps in improving multi-modal multi-hop question answering. We point out that both graph structure and adjacency matrix are task-related prior knowledge, and graph structure can be leveraged to improve the retrieval performance for the task. Experiments and visualized analysis demonstrate that message propagation over graph networks or the entire graph structure can replace massive multimodal transformers with token-wise cross-attention. We demonstrated the applicability of our method and show a performance gain of \textbf{4.6$\%$} retrieval F1score over the transformer baselines, despite being a very light model. We further demonstrated the applicability of our model to a large scale retrieval setting.
comment: arXiv admin note: text overlap with arXiv:2010.03604 by other authors
☆ Learning to Transfer Human Hand Skills for Robot Manipulations
We present a method for teaching dexterous manipulation tasks to robots from human hand motion demonstrations. Unlike existing approaches that solely rely on kinematics information without taking into account the plausibility of robot and object interaction, our method directly infers plausible robot manipulation actions from human motion demonstrations. To address the embodiment gap between the human hand and the robot system, our approach learns a joint motion manifold that maps human hand movements, robot hand actions, and object movements in 3D, enabling us to infer one motion component from others. Our key idea is the generation of pseudo-supervision triplets, which pair human, object, and robot motion trajectories synthetically. Through real-world experiments with robot hand manipulation, we demonstrate that our data-driven retargeting method significantly outperforms conventional retargeting techniques, effectively bridging the embodiment gap between human and robotic hands. Website at https://rureadyo.github.io/MocapRobot/.
comment: Preprint. Under Review
☆ Reasoning-Enhanced Self-Training for Long-Form Personalized Text Generation
Personalized text generation requires a unique ability of large language models (LLMs) to learn from context that they often do not encounter during their standard training. One way to encourage LLMs to better use personalized context for generating outputs that better align with the user's expectations is to instruct them to reason over the user's past preferences, background knowledge, or writing style. To achieve this, we propose Reasoning-Enhanced Self-Training for Personalized Text Generation (REST-PG), a framework that trains LLMs to reason over personal data during response generation. REST-PG first generates reasoning paths to train the LLM's reasoning abilities and then employs Expectation-Maximization Reinforced Self-Training to iteratively train the LLM based on its own high-reward outputs. We evaluate REST-PG on the LongLaMP benchmark, consisting of four diverse personalized long-form text generation tasks. Our experiments demonstrate that REST-PG achieves significant improvements over state-of-the-art baselines, with an average relative performance gain of 14.5% on the benchmark.
☆ BiasGuard: Guardrailing Fairness in Machine Learning Production Systems
As machine learning (ML) systems increasingly impact critical sectors such as hiring, financial risk assessments, and criminal justice, the imperative to ensure fairness has intensified due to potential negative implications. While much ML fairness research has focused on enhancing training data and processes, addressing the outputs of already deployed systems has received less attention. This paper introduces 'BiasGuard', a novel approach designed to act as a fairness guardrail in production ML systems. BiasGuard leverages Test-Time Augmentation (TTA) powered by Conditional Generative Adversarial Network (CTGAN), a cutting-edge generative AI model, to synthesize data samples conditioned on inverted protected attribute values, thereby promoting equitable outcomes across diverse groups. This method aims to provide equal opportunities for both privileged and unprivileged groups while significantly enhancing the fairness metrics of deployed systems without the need for retraining. Our comprehensive experimental analysis across diverse datasets reveals that BiasGuard enhances fairness by 31% while only reducing accuracy by 0.09% compared to non-mitigated benchmarks. Additionally, BiasGuard outperforms existing post-processing methods in improving fairness, positioning it as an effective tool to safeguard against biases when retraining the model is impractical.
☆ Implementing Systemic Thinking for Automatic Schema Matching: An Agent-Based Modeling Approach
Several approaches are proposed to deal with the problem of the Automatic Schema Matching (ASM). The challenges and difficulties caused by the complexity and uncertainty characterizing both the process and the outcome of Schema Matching motivated us to investigate how bio-inspired emerging paradigm can help with understanding, managing, and ultimately overcoming those challenges. In this paper, we explain how we approached Automatic Schema Matching as a systemic and Complex Adaptive System (CAS) and how we modeled it using the approach of Agent-Based Modeling and Simulation (ABMS). This effort gives birth to a tool (prototype) for schema matching called Reflex-SMAS. A set of experiments demonstrates the viability of our approach on two main aspects: (i) effectiveness (increasing the quality of the found matchings) and (ii) efficiency (reducing the effort required for this efficiency). Our approach represents a significant paradigm-shift, in the field of Automatic Schema Matching.
comment: COGNITIVE 2018 : The Tenth International Conference on Advanced Cognitive Technologies and Applications
☆ TrojanDec: Data-free Detection of Trojan Inputs in Self-supervised Learning AAAI 2025
An image encoder pre-trained by self-supervised learning can be used as a general-purpose feature extractor to build downstream classifiers for various downstream tasks. However, many studies showed that an attacker can embed a trojan into an encoder such that multiple downstream classifiers built based on the trojaned encoder simultaneously inherit the trojan behavior. In this work, we propose TrojanDec, the first data-free method to identify and recover a test input embedded with a trigger. Given a (trojaned or clean) encoder and a test input, TrojanDec first predicts whether the test input is trojaned. If not, the test input is processed in a normal way to maintain the utility. Otherwise, the test input will be further restored to remove the trigger. Our extensive evaluation shows that TrojanDec can effectively identify the trojan (if any) from a given test input and recover it under state-of-the-art trojan attacks. We further demonstrate by experiments that our TrojanDec outperforms the state-of-the-art defenses.
comment: To appear in AAAI 2025
☆ Enhancing Distribution and Label Consistency for Graph Out-of-Distribution Generalization ICDM 2024
To deal with distribution shifts in graph data, various graph out-of-distribution (OOD) generalization techniques have been recently proposed. These methods often employ a two-step strategy that first creates augmented environments and subsequently identifies invariant subgraphs to improve generalizability. Nevertheless, this approach could be suboptimal from the perspective of consistency. First, the process of augmenting environments by altering the graphs while preserving labels may lead to graphs that are not realistic or meaningfully related to the origin distribution, thus lacking distribution consistency. Second, the extracted subgraphs are obtained from directly modifying graphs, and may not necessarily maintain a consistent predictive relationship with their labels, thereby impacting label consistency. In response to these challenges, we introduce an innovative approach that aims to enhance these two types of consistency for graph OOD generalization. We propose a modifier to obtain both augmented and invariant graphs in a unified manner. With the augmented graphs, we enrich the training data without compromising the integrity of label-graph relationships. The label consistency enhancement in our framework further preserves the supervision information in the invariant graph. We conduct extensive experiments on real-world datasets to demonstrate the superiority of our framework over other state-of-the-art baselines.
comment: Accepted by ICDM 2024
☆ Multi-armed Bandit and Backbone boost Lin-Kernighan-Helsgaun Algorithm for the Traveling Salesman Problems
The Lin-Kernighan-Helsguan (LKH) heuristic is a classic local search algorithm for the Traveling Salesman Problem (TSP). LKH introduces an $\alpha$-value to replace the traditional distance metric for evaluating the edge quality, which leads to a significant improvement. However, we observe that the $\alpha$-value does not make full use of the historical information during the search, and single guiding information often makes LKH hard to escape from some local optima. To address the above issues, we propose a novel way to extract backbone information during the TSP local search process, which is dynamic and can be updated once a local optimal solution is found. We further propose to combine backbone information, $\alpha$-value, and distance to evaluate the edge quality so as to guide the search. Moreover, we abstract their different combinations to arms in a multi-armed bandit (MAB) and use an MAB model to help the algorithm select an appropriate evaluation metric dynamically. Both the backbone information and MAB can provide diverse guiding information and learn from the search history to suggest the best metric. We apply our methods to LKH and LKH-3, which is an extension version of LKH that can be used to solve about 40 variant problems of TSP and Vehicle Routing Problem (VRP). Extensive experiments show the excellent performance and generalization capability of our proposed method, significantly improving LKH for TSP and LKH-3 for two representative TSP and VRP variants, the Colored TSP (CTSP) and Capacitated VRP with Time Windows (CVRPTW).
☆ More is not always better? Enhancing Many-Shot In-Context Learning with Differentiated and Reweighting Objectives
Large language models (LLMs) excel at few-shot in-context learning (ICL) without requiring parameter updates. However, as the number of ICL demonstrations increases from a few to many, performance tends to plateau and eventually decline. We identify two primary causes for this trend: the suboptimal negative log-likelihood (NLL) optimization objective and the incremental data noise. To address these issues, we introduce DR-ICL, a novel optimization method that enhances model performance through Differentiated Learning and advantage-based Reweighting objectives. Globally, DR-ICL utilizes differentiated learning to optimize the NLL objective, ensuring that many-shot performance surpasses zero-shot levels. Locally, it dynamically adjusts the weighting of many-shot demonstrations by leveraging cumulative advantages inspired by reinforcement learning, thereby improving generalization. This approach allows the model to handle varying numbers of shots effectively, mitigating the impact of noisy data. Recognizing the lack of multi-task datasets with diverse many-shot distributions, we develop the Many-Shot ICL Benchmark (MICLB)-a large-scale benchmark covering shot numbers from 1 to 350 within sequences of up to 8,000 tokens-for fine-tuning purposes. MICLB facilitates the evaluation of many-shot ICL strategies across seven prominent NLP tasks and 50 distinct datasets. Experimental results demonstrate that LLMs enhanced with DR-ICL achieve significant improvements in many-shot setups across various tasks, including both in-domain and out-of-domain scenarios. We release the code and benchmark dataset hoping to facilitate further research in many-shot ICL.
comment: 13 pages, 8 figures, 11 tables
☆ Explainable Reinforcement Learning for Formula One Race Strategy
In Formula One, teams compete to develop their cars and achieve the highest possible finishing position in each race. During a race, however, teams are unable to alter the car, so they must improve their cars' finishing positions via race strategy, i.e. optimising their selection of which tyre compounds to put on the car and when to do so. In this work, we introduce a reinforcement learning model, RSRL (Race Strategy Reinforcement Learning), to control race strategies in simulations, offering a faster alternative to the industry standard of hard-coded and Monte Carlo-based race strategies. Controlling cars with a pace equating to an expected finishing position of P5.5 (where P1 represents first place and P20 is last place), RSRL achieves an average finishing position of P5.33 on our test race, the 2023 Bahrain Grand Prix, outperforming the best baseline of P5.63. We then demonstrate, in a generalisability study, how performance for one track or multiple tracks can be prioritised via training. Further, we supplement model predictions with feature importance, decision tree-based surrogate models, and decision tree counterfactuals towards improving user trust in the model. Finally, we provide illustrations which exemplify our approach in real-world situations, drawing parallels between simulations and reality.
comment: 9 pages, 6 figures. Copyright ACM 2025. This is the authors' version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record will be published in SAC 2025, http://dx.doi.org/10.1145/3672608.3707766
☆ Explainable Time Series Prediction of Tyre Energy in Formula One Race Strategy
Formula One (F1) race strategy takes place in a high-pressure and fast-paced environment where split-second decisions can drastically affect race results. Two of the core decisions of race strategy are when to make pit stops (i.e. replace the cars' tyres) and which tyre compounds (hard, medium or soft, in normal conditions) to select. The optimal pit stop decisions can be determined by estimating the tyre degradation of these compounds, which in turn can be computed from the energy applied to each tyre, i.e. the tyre energy. In this work, we trained deep learning models, using the Mercedes-AMG PETRONAS F1 team's historic race data consisting of telemetry, to forecast tyre energies during races. Additionally, we fitted XGBoost, a decision tree-based machine learning algorithm, to the same dataset and compared the results, with both giving impressive performance. Furthermore, we incorporated two different explainable AI methods, namely feature importance and counterfactual explanations, to gain insights into the reasoning behind the forecasts. Our contributions thus result in an explainable, automated method which could assist F1 teams in optimising their race strategy.
comment: 9 pages, 9 figures. Copyright ACM 2025. This is the authors' version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record will be published in SAC 2025, http://dx.doi.org/10.1145/3672608.3707765
☆ ChronoLLM: A Framework for Customizing Large Language Model for Digital Twins generalization based on PyChrono
Recently, the integration of advanced simulation technologies with artificial intelligence (AI) is revolutionizing science and engineering research. ChronoLlama introduces a novel framework that customizes the open-source LLMs, specifically for code generation, paired with PyChrono for multi-physics simulations. This integration aims to automate and improve the creation of simulation scripts, thus enhancing model accuracy and efficiency. This combination harnesses the speed of AI-driven code generation with the reliability of physics-based simulations, providing a powerful tool for researchers and engineers. Empirical results indicate substantial enhancements in simulation setup speed, accuracy of the generated codes, and overall computational efficiency. ChronoLlama not only expedites the development and testing of multibody systems but also spearheads a scalable, AI-enhanced approach to managing intricate mechanical simulations. This pioneering integration of cutting-edge AI with traditional simulation platforms represents a significant leap forward in automating and optimizing design processes in engineering applications.
☆ Generative Style Transfer for MRI Image Segmentation: A Case of Glioma Segmentation in Sub-Saharan Africa
In Sub-Saharan Africa (SSA), the utilization of lower-quality Magnetic Resonance Imaging (MRI) technology raises questions about the applicability of machine learning methods for clinical tasks. This study aims to provide a robust deep learning-based brain tumor segmentation (BraTS) method tailored for the SSA population using a threefold approach. Firstly, the impact of domain shift from the SSA training data on model efficacy was examined, revealing no significant effect. Secondly, a comparative analysis of 3D and 2D full-resolution models using the nnU-Net framework indicates similar performance of both the models trained for 300 epochs achieving a five-fold cross-validation score of 0.93. Lastly, addressing the performance gap observed in SSA validation as opposed to the relatively larger BraTS glioma (GLI) validation set, two strategies are proposed: fine-tuning SSA cases using the GLI+SSA best-pretrained 2D fullres model at 300 epochs, and introducing a novel neural style transfer-based data augmentation technique for the SSA cases. This investigation underscores the potential of enhancing brain tumor prediction within SSA's unique healthcare landscape.
☆ AI-Driven Reinvention of Hydrological Modeling for Accurate Predictions and Interpretation to Transform Earth System Modeling
Traditional equation-driven hydrological models often struggle to accurately predict streamflow in challenging regional Earth systems like the Tibetan Plateau, while hybrid and existing algorithm-driven models face difficulties in interpreting hydrological behaviors. This work introduces HydroTrace, an algorithm-driven, data-agnostic model that substantially outperforms these approaches, achieving a Nash-Sutcliffe Efficiency of 98% and demonstrating strong generalization on unseen data. Moreover, HydroTrace leverages advanced attention mechanisms to capture spatial-temporal variations and feature-specific impacts, enabling the quantification and spatial resolution of streamflow partitioning as well as the interpretation of hydrological behaviors such as glacier-snow-streamflow interactions and monsoon dynamics. Additionally, a large language model (LLM)-based application allows users to easily understand and apply HydroTrace's insights for practical purposes. These advancements position HydroTrace as a transformative tool in hydrological and broader Earth system modeling, offering enhanced prediction accuracy and interpretability.
♻ ☆ λ: A Benchmark for Data-Efficiency in Long-Horizon Indoor Mobile Manipulation Robotics
Efficiently learning and executing long-horizon mobile manipulation (MoMa) tasks is crucial for advancing robotics in household and workplace settings. However, current MoMa models are data-inefficient, underscoring the need for improved models that require realistic-sized benchmarks to evaluate their efficiency, which do not exist. To address this, we introduce the LAMBDA ({\lambda}) benchmark (Long-horizon Actions for Mobile-manipulation Benchmarking of Directed Activities), which evaluates the data efficiency of models on language-conditioned, long-horizon, multi-room, multi-floor, pick-and-place tasks using a dataset of manageable size, more feasible for collection. The benchmark includes 571 human-collected demonstrations that provide realism and diversity in simulated and real-world settings. Unlike planner-generated data, these trajectories offer natural variability and replay-verifiability, ensuring robust learning and evaluation. We benchmark several models, including learning-based models and a neuro-symbolic modular approach combining foundation models with task and motion planning. Learning-based models show suboptimal success rates, even when leveraging pretrained weights, underscoring significant data inefficiencies. However, the neuro-symbolic approach performs significantly better while being more data efficient. Findings highlight the need for more data-efficient learning-based MoMa approaches. {\lambda} addresses this gap by serving as a key benchmark for evaluating the data efficiency of those future models in handling household robotics tasks.
comment: 8 pages
♻ ☆ Multi-Scenario Reasoning: Unlocking Cognitive Autonomy in Humanoid Robots for Multimodal Understanding
To improve the cognitive autonomy of humanoid robots, this research proposes a multi-scenario reasoning architecture to solve the technical shortcomings of multi-modal understanding in this field. It draws on simulation based experimental design that adopts multi-modal synthesis (visual, auditory, tactile) and builds a simulator "Maha" to perform the experiment. The findings demonstrate the feasibility of this architecture in multimodal data. It provides reference experience for the exploration of cross-modal interaction strategies for humanoid robots in dynamic environments. In addition, multi-scenario reasoning simulates the high-level reasoning mechanism of the human brain to humanoid robots at the cognitive level. This new concept promotes cross-scenario practical task transfer and semantic-driven action planning. It heralds the future development of self-learning and autonomous behavior of humanoid robots in changing scenarios.
comment: The main text is 5 pages, 2 figures, and 3 tables
♻ ☆ Unity by Diversity: Improved Representation Learning in Multimodal VAEs
Variational Autoencoders for multimodal data hold promise for many tasks in data analysis, such as representation learning, conditional generation, and imputation. Current architectures either share the encoder output, decoder input, or both across modalities to learn a shared representation. Such architectures impose hard constraints on the model. In this work, we show that a better latent representation can be obtained by replacing these hard constraints with a soft constraint. We propose a new mixture-of-experts prior, softly guiding each modality's latent representation towards a shared aggregate posterior. This approach results in a superior latent representation and allows each encoding to preserve information better from its uncompressed original features. In extensive experiments on multiple benchmark datasets and two challenging real-world datasets, we show improved learned latent representations and imputation of missing data modalities compared to existing methods.
comment: Accepted at Neurips 2024
♻ ☆ Clinical Insights: A Comprehensive Review of Language Models in Medicine
This paper explores the advancements and applications of language models in healthcare, focusing on their clinical use cases. It examines the evolution from early encoder-based systems requiring extensive fine-tuning to state-of-the-art large language and multimodal models capable of integrating text and visual data through in-context learning. The analysis emphasizes locally deployable models, which enhance data privacy and operational autonomy, and their applications in tasks such as text generation, classification, information extraction, and conversational systems. The paper also highlights a structured organization of tasks and a tiered ethical approach, providing a valuable resource for researchers and practitioners, while discussing key challenges related to ethics, evaluation, and implementation.
comment: Submitted to PLOS Digital Health, Revision 1
♻ ☆ AtMan: Understanding Transformer Predictions Through Memory Efficient Attention Manipulation
Generative transformer models have become increasingly complex, with large numbers of parameters and the ability to process multiple input modalities. Current methods for explaining their predictions are resource-intensive. Most crucially, they require prohibitively large amounts of extra memory, since they rely on backpropagation which allocates almost twice as much GPU memory as the forward pass. This makes it difficult, if not impossible, to use them in production. We present AtMan that provides explanations of generative transformer models at almost no extra cost. Specifically, AtMan is a modality-agnostic perturbation method that manipulates the attention mechanisms of transformers to produce relevance maps for the input with respect to the output prediction. Instead of using backpropagation, AtMan applies a parallelizable token-based search method based on cosine similarity neighborhood in the embedding space. Our exhaustive experiments on text and image-text benchmarks demonstrate that AtMan outperforms current state-of-the-art gradient-based methods on several metrics while being computationally efficient. As such, AtMan is suitable for use in large model inference deployments.
♻ ☆ T-FREE: Subword Tokenizer-Free Generative LLMs via Sparse Representations for Memory-Efficient Embeddings
Tokenizers are crucial for encoding information in Large Language Models, but their development has recently stagnated, and they contain inherent weaknesses. Major limitations include computational overhead, ineffective vocabulary use, and unnecessarily large embedding and head layers. Additionally, their performance is biased towards a reference corpus, leading to reduced effectiveness for underrepresented languages. To remedy these issues, we propose T-FREE, which directly embeds words through sparse activation patterns over character triplets, and does not require a reference corpus. T-FREE inherently exploits morphological similarities and allows for strong compression of embedding layers. In our exhaustive experimental evaluation, we achieve competitive downstream performance with a parameter reduction of more than 85% on these layers. Further, T-FREE shows significant improvements in cross-lingual transfer learning.
♻ ☆ LMS-AutoTSF: Learnable Multi-Scale Decomposition and Integrated Autocorrelation for Time Series Forecasting
Time series forecasting is an important challenge with significant applications in areas such as weather prediction, stock market analysis, scientific simulations and industrial process analysis. In this work, we introduce LMS-AutoTSF, a novel time series forecasting architecture that incorporates autocorrelation while leveraging dual encoders operating at multiple scales. Unlike models that rely on predefined trend and seasonal components, LMS-AutoTSF employs two separate encoders per scale: one focusing on low-pass filtering to capture trends and the other utilizing high-pass filtering to model seasonal variations. These filters are learnable, allowing the model to dynamically adapt and isolate trend and seasonal components directly in the frequency domain. A key innovation in our approach is the integration of autocorrelation, achieved by computing lagged differences in time steps, which enables the model to capture dependencies across time more effectively. Each encoder processes the input through fully connected layers to handle temporal and channel interactions. By combining frequency-domain filtering, autocorrelation-based temporal modeling, and channel-wise transformations, LMS-AutoTSF not only accurately captures long-term dependencies and fine-grained patterns but also operates more efficiently compared to other state-of-the-art methods. Its lightweight design ensures faster processing while maintaining high precision in forecasting across diverse time horizons. The source code is publicly available at \url{http://github.com/mribrahim/LMS-TSF}
♻ ☆ Two-Layer Retrieval-Augmented Generation Framework for Low-Resource Medical Question Answering Using Reddit Data: Proof-of-Concept Study
The increasing use of social media to share lived and living experiences of substance use presents a unique opportunity to obtain information on side effects, use patterns, and opinions on novel psychoactive substances. However, due to the large volume of data, obtaining useful insights through natural language processing technologies such as large language models is challenging. This paper aims to develop a retrieval-augmented generation (RAG) architecture for medical question answering pertaining to clinicians' queries on emerging issues associated with health-related topics, using user-generated medical information on social media. We proposed a two-layer RAG framework for query-focused answer generation and evaluated a proof of concept for the framework in the context of query-focused summary generation from social media forums, focusing on emerging drug-related information. Our modular framework generates individual summaries followed by an aggregated summary to answer medical queries from large amounts of user-generated social media data in an efficient manner. We compared the performance of a quantized large language model (Nous-Hermes-2-7B-DPO), deployable in low-resource settings, with GPT-4. For this proof-of-concept study, we used user-generated data from Reddit to answer clinicians' questions on the use of xylazine and ketamine. Our framework achieves comparable median scores in terms of relevance, length, hallucination, coverage, and coherence when evaluated using GPT-4 and Nous-Hermes-2-7B-DPO, evaluated for 20 queries with 76 samples. There was no statistically significant difference between the two for coverage, coherence, relevance, length, and hallucination. A statistically significant difference was noted for the Coleman-Liau Index. Our RAG framework can effectively answer medical questions about targeted topics and can be deployed in resource-constrained settings.
comment: Published in JMIR: https://www.jmir.org/2025/1/e66220
♻ ☆ From Glucose Patterns to Health Outcomes: A Generalizable Foundation Model for Continuous Glucose Monitor Data Analysis
Recent advances in SSL enabled novel medical AI models, known as foundation models, offer great potential for better characterizing health from diverse biomedical data. CGM provides rich, temporal data on glycemic patterns, but its full potential for predicting broader health outcomes remains underutilized. Here, we present GluFormer, a generative foundation model for CGM data that learns nuanced glycemic patterns and translates them into predictive representations of metabolic health. Trained on over 10 million CGM measurements from 10,812 adults, primarily without diabetes, GluFormer uses autoregressive token prediction to capture longitudinal glucose dynamics. We show that GluFormer generalizes to 19 external cohorts (n=6,044) spanning different ethnicities and ages, 5 countries, 8 CGM devices, and diverse pathophysiological states. GluFormers representations exceed the performance of current CGM metrics, such as the Glucose Management Indicator (GMI), for forecasting clinical measures. In a longitudinal study of 580 adults with CGM data and 12-year follow-up, GluFormer identifies individuals at elevated risk of developing diabetes more effectively than blood HbA1C%, capturing 66% of all new-onset diabetes diagnoses in the top quartile versus 7% in the bottom quartile. Similarly, 69% of cardiovascular-death events occurred in the top quartile with none in the bottom quartile, demonstrating powerful risk stratification beyond traditional glycemic metrics. We also show that CGM representations from pre-intervention periods in Randomized Clinical Trials outperform other methods in predicting primary and secondary outcomes. When integrating dietary data into GluFormer, we show that the multi-modal version of the model can accurately generate CGM data based on dietary intake data, simulate outcomes of dietary interventions, and predict individual responses to specific foods.
♻ ☆ Advanced Persistent Threats (APT) Attribution Using Deep Reinforcement Learning
The development of the DRL model for malware attribution involved extensive research, iterative coding, and numerous adjustments based on the insights gathered from predecessor models and contemporary research papers. This preparatory work was essential to establish a robust foundation for the model, ensuring it could adapt and respond effectively to the dynamic nature of malware threats. Initially, the model struggled with low accuracy levels, but through persistent adjustments to its architecture and learning algorithms, accuracy improved dramatically from about 7 percent to over 73 percent in early iterations. By the end of the training, the model consistently reached accuracy levels near 98 percent, demonstrating its strong capability to accurately recognise and attribute malware activities. This upward trajectory in training accuracy is graphically represented in the Figure, which vividly illustrates the model maturation and increasing proficiency over time.
comment: 21 Pages
♻ ☆ Deep Learning-based Accelerated MR Cholangiopancreatography without Fully-sampled Data
The purpose of this study was to accelerate MR cholangiopancreatography (MRCP) acquisitions using deep learning-based (DL) reconstruction at 3T and 0.55T. A total of 35 healthy volunteers underwent conventional two-fold accelerated MRCP scans at field strengths of 3T and 0.55T. We trained DL reconstructions using two different training strategies, supervised (SV) and self-supervised (SSV), with retrospectively six-fold undersampled data obtained at 3T. We then evaluated the DL reconstructions against standard techniques, parallel imaging (PI) and compressed sensing (CS), focusing on peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) as metrics. We also tested DL reconstructions with prospectively accelerated acquisitions and evaluated their robustness when changing fields strengths from 3T to 0.55T. DL reconstructions demonstrated a reduction in average acquisition time from 599/542 to 255/180 seconds for MRCP at 3T/0.55T. In both retrospective and prospective undersampling, PSNR and SSIM of DL reconstructions were higher than those of PI and CS. At the same time, DL reconstructions preserved the image quality of undersampled data, including sharpness and the visibility of hepatobiliary ducts. In addition, both DL approaches produced high-quality reconstructions at 0.55T. In summary, DL reconstructions trained for highly accelerated MRCP enabled a reduction in acquisition time by a factor of 2.4/3.0 at 3T/0.55T while maintaining the image quality of conventional acquisitions.
comment: 19 pages, 4 figures, 2 tables
♻ ☆ Apollo: Band-sequence Modeling for High-Quality Audio Restoration ICASSP 2025
Audio restoration has become increasingly significant in modern society, not only due to the demand for high-quality auditory experiences enabled by advanced playback devices, but also because the growing capabilities of generative audio models necessitate high-fidelity audio. Typically, audio restoration is defined as a task of predicting undistorted audio from damaged input, often trained using a GAN framework to balance perception and distortion. Since audio degradation is primarily concentrated in mid- and high-frequency ranges, especially due to codecs, a key challenge lies in designing a generator capable of preserving low-frequency information while accurately reconstructing high-quality mid- and high-frequency content. Inspired by recent advancements in high-sample-rate music separation, speech enhancement, and audio codec models, we propose Apollo, a generative model designed for high-sample-rate audio restoration. Apollo employs an explicit frequency band split module to model the relationships between different frequency bands, allowing for more coherent and higher-quality restored audio. Evaluated on the MUSDB18-HQ and MoisesDB datasets, Apollo consistently outperforms existing SR-GAN models across various bit rates and music genres, particularly excelling in complex scenarios involving mixtures of multiple instruments and vocals. Apollo significantly improves music restoration quality while maintaining computational efficiency. The source code for Apollo is publicly available at https://github.com/JusperLee/Apollo.
comment: Accepted by ICASSP 2025, Demo Page: https://cslikai.cn/Apollo
♻ ☆ Helping LLMs Improve Code Generation Using Feedback from Testing and Static Analysis
Large Language Models (LLMs) are one of the most promising developments in the field of artificial intelligence, and the software engineering community has readily noticed their potential role in the software development life-cycle. Developers routinely ask LLMs to generate code snippets, increasing productivity but also potentially introducing ownership, privacy, correctness, and security issues. Previous work highlighted how code generated by mainstream commercial LLMs is often not safe, containing vulnerabilities, bugs, and code smells. In this paper, we present a framework that leverages testing and static analysis to assess the quality, and guide the self-improvement, of code generated by general-purpose, open-source LLMs. First, we ask LLMs to generate C code to solve a number of programming tasks. Then we employ ground-truth tests to assess the (in)correctness of the generated code, and a static analysis tool to detect potential safety vulnerabilities. Next, we assess the models ability to evaluate the generated code, by asking them to detect errors and vulnerabilities. Finally, we test the models ability to fix the generated code, providing the reports produced during the static analysis and incorrectness evaluation phases as feedback. Our results show that models often produce incorrect code, and that the generated code can include safety issues. Moreover, they perform very poorly at detecting either issue. On the positive side, we observe a substantial ability to fix flawed code when provided with information about failed tests or potential vulnerabilities, indicating a promising avenue for improving the safety of LLM-based code generation tools.
♻ ☆ Lived Experience Not Found: LLMs Struggle to Align with Experts on Addressing Adverse Drug Reactions from Psychiatric Medication Use
Adverse Drug Reactions (ADRs) from psychiatric medications are the leading cause of hospitalizations among mental health patients. With healthcare systems and online communities facing limitations in resolving ADR-related issues, Large Language Models (LLMs) have the potential to fill this gap. Despite the increasing capabilities of LLMs, past research has not explored their capabilities in detecting ADRs related to psychiatric medications or in providing effective harm reduction strategies. To address this, we introduce the Psych-ADR benchmark and the Adverse Drug Reaction Response Assessment (ADRA) framework to systematically evaluate LLM performance in detecting ADR expressions and delivering expert-aligned mitigation strategies. Our analyses show that LLMs struggle with understanding the nuances of ADRs and differentiating between types of ADRs. While LLMs align with experts in terms of expressed emotions and tone of the text, their responses are more complex, harder to read, and only 70.86% aligned with expert strategies. Furthermore, they provide less actionable advice by a margin of 12.32% on average. Our work provides a comprehensive benchmark and evaluation framework for assessing LLMs in strategy-driven tasks within high-risk domains.
comment: 30 pages, 8 figures, 16 tables
♻ ☆ Influence Functions for Scalable Data Attribution in Diffusion Models
Diffusion models have led to significant advancements in generative modelling. Yet their widespread adoption poses challenges regarding data attribution and interpretability. In this paper, we aim to help address such challenges in diffusion models by developing an influence functions framework. Influence function-based data attribution methods approximate how a model's output would have changed if some training data were removed. In supervised learning, this is usually used for predicting how the loss on a particular example would change. For diffusion models, we focus on predicting the change in the probability of generating a particular example via several proxy measurements. We show how to formulate influence functions for such quantities and how previously proposed methods can be interpreted as particular design choices in our framework. To ensure scalability of the Hessian computations in influence functions, we systematically develop K-FAC approximations based on generalised Gauss-Newton matrices specifically tailored to diffusion models. We recast previously proposed methods as specific design choices in our framework and show that our recommended method outperforms previous data attribution approaches on common evaluations, such as the Linear Data-modelling Score (LDS) or retraining without top influences, without the need for method-specific hyperparameter tuning.
♻ ☆ Piano Transcription by Hierarchical Language Modeling with Pretrained Roll-based Encoders ICASSP 2025
Automatic Music Transcription (AMT), aiming to get musical notes from raw audio, typically uses frame-level systems with piano-roll outputs or language model (LM)-based systems with note-level predictions. However, frame-level systems require manual thresholding, while the LM-based systems struggle with long sequences. In this paper, we propose a hybrid method combining pre-trained roll-based encoders with an LM decoder to leverage the strengths of both methods. Besides, our approach employs a hierarchical prediction strategy, first predicting onset and pitch, then velocity, and finally offset. The hierarchical prediction strategy reduces computational costs by breaking down long sequences into different hierarchies. Evaluated on two benchmark roll-based encoders, our method outperforms traditional piano-roll outputs 0.01 and 0.022 in onset-offset-velocity F1 score, demonstrating its potential as a performance-enhancing plug-in for arbitrary roll-based music transcription encoder.
comment: Accepted by ICASSP 2025
♻ ☆ GraphLoRA: Structure-Aware Contrastive Low-Rank Adaptation for Cross-Graph Transfer Learning KDD2025
Graph Neural Networks (GNNs) have demonstrated remarkable proficiency in handling a range of graph analytical tasks across various domains, such as e-commerce and social networks. Despite their versatility, GNNs face significant challenges in transferability, limiting their utility in real-world applications. Existing research in GNN transfer learning overlooks discrepancies in distribution among various graph datasets, facing challenges when transferring across different distributions. How to effectively adopt a well-trained GNN to new graphs with varying feature and structural distributions remains an under-explored problem. Taking inspiration from the success of Low-Rank Adaptation (LoRA) in adapting large language models to various domains, we propose GraphLoRA, an effective and parameter-efficient method for transferring well-trained GNNs to diverse graph domains. Specifically, we first propose a Structure-aware Maximum Mean Discrepancy (SMMD) to align divergent node feature distributions across source and target graphs. Moreover, we introduce low-rank adaptation by injecting a small trainable GNN alongside the pre-trained one, effectively bridging structural distribution gaps while mitigating the catastrophic forgetting. Additionally, a structure-aware regularization objective is proposed to enhance the adaptability of the pre-trained GNN to target graph with scarce supervision labels. Extensive experiments on eight real-world datasets demonstrate the effectiveness of GraphLoRA against fourteen baselines by tuning only 20% of parameters, even across disparate graph domains. The code is available at https://github.com/AllminerLab/GraphLoRA.
comment: Accepted by KDD2025
♻ ☆ Hallucination Detox: Sensitivity Dropout (SenD) for Large Language Model Training ICLR
As large language models (LLMs) are increasingly deployed across various industries, concerns regarding their reliability, particularly due to hallucinations - outputs that are factually inaccurate or irrelevant to user input - have grown. Our research investigates the relationship between the training process and the emergence of hallucinations to address a key gap in existing research that focuses primarily on post hoc detection and mitigation strategies. Using models from the Pythia suite (70M - 12B parameters) and several hallucination detection metrics, we analyze hallucination trends throughout training and explore LLM internal dynamics. We introduce Sensitivity Dropout (SenD), a novel training protocol designed to mitigate hallucinations by reducing variance during training. SenD achieves this by deterministically dropping embedding indices with significant variability, referred to as Sensitive Embedding Indices. In addition, we develop an unsupervised hallucination detection metric, Efficient EigenScore (EES), which approximates the traditional EigenScore at 2x speed. This efficient metric is integrated into our protocol, allowing SenD to be both computationally scalable and effective at reducing hallucinations. Our empirical evaluation demonstrates that our approach improves LLM reliability at test time by up to 40% compared to normal training while also providing an efficient method to improve factual accuracy when adapting LLMs to Wikipedia, Medical, and LegalBench domains.
comment: 23 pages, 15 figures, under review at ICLR, accepted to Safe Generative AI Workshop @ NeurIPS 2024, resubmitting to change name to appropriate name
♻ ☆ IDEAL: Leveraging Infinite and Dynamic Characterizations of Large Language Models for Query-focused Summarization
Query-focused summarization (QFS) aims to produce summaries that answer particular questions of interest, enabling greater user control and personalization. With the advent of large language models (LLMs), shows their impressive capability of textual understanding through large-scale pretraining, which implies the great potential of extractive snippet generation. In this paper, we systematically investigated two indispensable characteristics that the LLMs-based QFS models should be harnessed, Lengthy Document Summarization and Efficiently Fine-grained Query-LLM Alignment, respectively. Correspondingly, we propose two modules called Query-aware HyperExpert and Query-focused Infini-attention to access the aforementioned characteristics. These innovations pave the way for broader application and accessibility in the field of QFS technology. Extensive experiments conducted on existing QFS benchmarks indicate the effectiveness and generalizability of the proposed approach. Our code is publicly available at https://github.com/DCDmllm/IDEAL_Summary.
♻ ☆ Hyperbolic Contrastive Learning for Hierarchical 3D Point Cloud Embedding
Hyperbolic spaces allow for more efficient modeling of complex, hierarchical structures, which is particularly beneficial in tasks involving multi-modal data. Although hyperbolic geometries have been proven effective for language-image pre-training, their capabilities to unify language, image, and 3D Point Cloud modalities are under-explored. We extend the 3D Point Cloud modality in hyperbolic multi-modal contrastive pre-training. Additionally, we explore the entailment, modality gap, and alignment regularizers for learning hierarchical 3D embeddings and facilitating the transfer of knowledge from both Text and Image modalities. These regularizers enable the learning of intra-modal hierarchy within each modality and inter-modal hierarchy across text, 2D images, and 3D Point Clouds. Experimental results demonstrate that our proposed training strategy yields an outstanding 3D Point Cloud encoder, and the obtained 3D Point Cloud hierarchical embeddings significantly improve performance on various downstream tasks.
♻ ☆ Learning Informative Latent Representation for Quantum State Tomography
Quantum state tomography (QST) is the process of reconstructing the complete state of a quantum system (mathematically described as a density matrix) through a series of different measurements. These measurements are performed on a number of identical copies of the quantum system, with outcomes gathered as frequencies. QST aims to recover the density matrix or the properties of the quantum state from the measured frequencies. Although an informationally complete set of measurements can specify the quantum state accurately in an ideal scenario with a large number of identical copies, both the measurements and identical copies are restricted and imperfect in practical scenarios, making QST highly ill-posed. The conventional QST methods usually assume accurate measured frequencies or rely on manually designed regularizers to handle the ill-posed reconstruction problem, suffering from limited applications in realistic scenarios. Recent advances in deep neural networks (DNN) led to the emergence of deep learning in QST. However, existing DL-based QST approaches often employ generic DNN models that are not optimized for imperfect conditions of QST. In this paper, we propose a transformer-based autoencoder architecture tailored for QST with imperfect measurement data. Our method leverages a transformer-based encoder to extract an informative latent representation (ILR) from imperfect measurement data and employs a decoder to predict the quantum states based on the ILR. We anticipate that the high-dimensional ILR will capture more comprehensive information about the quantum states. To achieve this, we conduct pre-training of the encoder using a pretext task that involves reconstructing high-quality frequencies from measured frequencies. Extensive simulations and experiments demonstrate the remarkable ability of the informative latent representation to deal with imperfect measurement data in QST.
♻ ☆ AllSpark: A Multimodal Spatio-Temporal General Intelligence Model with Ten Modalities via Language as a Reference Framework
Leveraging multimodal data is an inherent requirement for comprehending geographic objects. However, due to the high heterogeneity in structure and semantics among various spatio-temporal modalities, the joint interpretation of multimodal spatio-temporal data has long been an extremely challenging problem. The primary challenge resides in striking a trade-off between the cohesion and autonomy of diverse modalities. This trade-off becomes progressively nonlinear as the number of modalities expands. Inspired by the human cognitive system and linguistic philosophy, where perceptual signals from the five senses converge into language, we introduce the Language as Reference Framework (LaRF), a fundamental principle for constructing a multimodal unified model. Building upon this, we propose AllSpark, a multimodal spatio-temporal general artificial intelligence model. Our model integrates ten different modalities into a unified framework. To achieve modal cohesion, AllSpark introduces a modal bridge and multimodal large language model (LLM) to map diverse modal features into the language feature space. To maintain modality autonomy, AllSpark uses modality-specific encoders to extract the tokens of various spatio-temporal modalities. Finally, observing a gap between the model's interpretability and downstream tasks, we designed modality-specific prompts and task heads, enhancing the model's generalization capability across specific tasks. Experiments indicate that the incorporation of language enables AllSpark to excel in few-shot classification tasks for RGB and point cloud modalities without additional training, surpassing baseline performance by up to 41.82\%. The source code is available at https://github.com/GeoX-Lab/AllSpark.
comment: 19 pages, 19 tables, 3 figures
♻ ☆ AI-Driven Scenarios for Urban Mobility: Quantifying the Role of ODE Models and Scenario Planning in Reducing Traffic Congestion
Urbanization and technological advancements are reshaping urban mobility, presenting both challenges and opportunities. This paper investigates how Artificial Intelligence (AI)-driven technologies can impact traffic congestion dynamics and explores their potential to enhance transportation systems' efficiency. Specifically, we assess the role of AI innovations, such as autonomous vehicles and intelligent traffic management, in mitigating congestion under varying regulatory frameworks. Autonomous vehicles reduce congestion through optimized traffic flow, real-time route adjustments, and decreased human errors. The study employs Ordinary Differential Equations (ODEs) to model the dynamic relationship between AI adoption rates and traffic congestion, capturing systemic feedback loops. Quantitative outputs include threshold levels of AI adoption needed to achieve significant congestion reduction, while qualitative insights stem from scenario planning exploring regulatory and societal conditions. This dual-method approach offers actionable strategies for policymakers to create efficient, sustainable, and equitable urban transportation systems. While safety implications of AI are acknowledged, this study primarily focuses on congestion reduction dynamics.
♻ ☆ MMAD: The First-Ever Comprehensive Benchmark for Multimodal Large Language Models in Industrial Anomaly Detection
In the field of industrial inspection, Multimodal Large Language Models (MLLMs) have a high potential to renew the paradigms in practical applications due to their robust language capabilities and generalization abilities. However, despite their impressive problem-solving skills in many domains, MLLMs' ability in industrial anomaly detection has not been systematically studied. To bridge this gap, we present MMAD, the first-ever full-spectrum MLLMs benchmark in industrial Anomaly Detection. We defined seven key subtasks of MLLMs in industrial inspection and designed a novel pipeline to generate the MMAD dataset with 39,672 questions for 8,366 industrial images. With MMAD, we have conducted a comprehensive, quantitative evaluation of various state-of-the-art MLLMs. The commercial models performed the best, with the average accuracy of GPT-4o models reaching 74.9%. However, this result falls far short of industrial requirements. Our analysis reveals that current MLLMs still have significant room for improvement in answering questions related to industrial anomalies and defects. We further explore two training-free performance enhancement strategies to help models improve in industrial scenarios, highlighting their promising potential for future research.
comment: The code and data are available at https://github.com/jam-cc/MMAD
♻ ☆ Wavelet-Driven Generalizable Framework for Deepfake Face Forgery Detection
The evolution of digital image manipulation, particularly with the advancement of deep generative models, significantly challenges existing deepfake detection methods, especially when the origin of the deepfake is obscure. To tackle the increasing complexity of these forgeries, we propose \textbf{Wavelet-CLIP}, a deepfake detection framework that integrates wavelet transforms with features derived from the ViT-L/14 architecture, pre-trained in the CLIP fashion. Wavelet-CLIP utilizes Wavelet Transforms to deeply analyze both spatial and frequency features from images, thus enhancing the model's capability to detect sophisticated deepfakes. To verify the effectiveness of our approach, we conducted extensive evaluations against existing state-of-the-art methods for cross-dataset generalization and detection of unseen images generated by standard diffusion models. Our method showcases outstanding performance, achieving an average AUC of 0.749 for cross-data generalization and 0.893 for robustness against unseen deepfakes, outperforming all compared methods. The code can be reproduced from the repo: \url{https://github.com/lalithbharadwajbaru/Wavelet-CLIP}
comment: 9 Pages, 2 Figures, 3 Tables
♻ ☆ PRMBench: A Fine-grained and Challenging Benchmark for Process-Level Reward Models
Process-level Reward Models (PRMs) are crucial for complex reasoning and decision-making tasks, where each intermediate step plays an important role in the reasoning process. Since language models are prone to various types of errors during the reasoning process, PRMs are required to possess nuanced capabilities for detecting various implicit error types in real-world scenarios. However, current benchmarks primarily focus on step correctness, failing to evaluate PRMs' performance systematically. To address this gap, we introduce PRMBench, a process-level benchmark specifically designed to assess the fine-grained error detection capabilities of PRMs. PRMBench comprises 6,216 carefully designed problems and 83,456 step-level labels, evaluating models across multiple dimensions, including simplicity, soundness, and sensitivity. In our experiments on 15 models, spanning both open-source PRMs and closed-source large language models prompted as critic models, we uncover significant weaknesses in current PRMs. These findings underscore the challenges inherent in process-level evaluation and highlight key directions for future research. We hope PRMBench can be a robust bench for advancing research on PRM evaluation and development.
comment: Project Page: https://prmbench.github.io/
♻ ☆ A Survey on Large Language Models with Multilingualism: Recent Advances and New Frontiers
The rapid development of Large Language Models (LLMs) demonstrates remarkable multilingual capabilities in natural language processing, attracting global attention in both academia and industry. To mitigate potential discrimination and enhance the overall usability and accessibility for diverse language user groups, it is important for the development of language-fair technology. Despite the breakthroughs of LLMs, the investigation into the multilingual scenario remains insufficient, where a comprehensive survey to summarize recent approaches, developments, limitations, and potential solutions is desirable. To this end, we provide a survey with multiple perspectives on the utilization of LLMs in the multilingual scenario. We first rethink the transitions between previous and current research on pre-trained language models. Then we introduce several perspectives on the multilingualism of LLMs, including training and inference methods, information retrieval, model security, multi-domain with language culture, and usage of datasets. We also discuss the major challenges that arise in these aspects, along with possible solutions. Besides, we highlight future research directions that aim at further enhancing LLMs with multilingualism. The survey aims to help the research community address multilingual problems and provide a comprehensive understanding of the core concepts, key techniques, and latest developments in multilingual natural language processing based on LLMs.
comment: 65 pages, Work in Progress
♻ ☆ In Search of Trees: Decision-Tree Policy Synthesis for Black-Box Systems via Search
Decision trees, owing to their interpretability, are attractive as control policies for (dynamical) systems. Unfortunately, constructing, or synthesising, such policies is a challenging task. Previous approaches do so by imitating a neural-network policy, approximating a tabular policy obtained via formal synthesis, employing reinforcement learning, or modelling the problem as a mixed-integer linear program. However, these works may require access to a hard-to-obtain accurate policy or a formal model of the environment (within reach of formal synthesis), and may not provide guarantees on the quality or size of the final tree policy. In contrast, we present an approach to synthesise optimal decision-tree policies given a deterministic black-box environment and specification, a discretisation of the tree predicates, and an initial set of states, where optimality is defined with respect to the number of steps to achieve the goal. Our approach is a specialised search algorithm which systematically explores the (exponentially large) space of decision trees under the given discretisation. The key component is a novel trace-based pruning mechanism that significantly reduces the search space. Our approach represents a conceptually novel way of synthesising small decision-tree policies with optimality guarantees even for black-box environments with black-box specifications.
comment: 8 pages main text incl. references, 2 pages appendix
♻ ☆ NBBOX: Noisy Bounding Box Improves Remote Sensing Object Detection
Data augmentation has shown significant advancements in computer vision to improve model performance over the years, particularly in scenarios with limited and insufficient data. Currently, most studies focus on adjusting the image or its features to expand the size, quality, and variety of samples during training in various tasks including object detection. However, we argue that it is necessary to investigate bounding box transformations as a data augmentation technique rather than image-level transformations, especially in aerial imagery due to potentially inconsistent bounding box annotations. Hence, this letter presents a thorough investigation of bounding box transformation in terms of scaling, rotation, and translation for remote sensing object detection. We call this augmentation strategy NBBOX (Noise Injection into Bounding Box). We conduct extensive experiments on DOTA and DIOR-R, both well-known datasets that include a variety of rotated generic objects in aerial images. Experimental results show that our approach significantly improves remote sensing object detection without whistles and bells and it is more time-efficient than other state-of-the-art augmentation strategies.
comment: Accepted to IEEE Geoscience and Remote Sensing Letters
♻ ☆ Graph Neural Backdoor: Fundamentals, Methodologies, Applications, and Future Directions
Graph Neural Networks (GNNs) have significantly advanced various downstream graph-relevant tasks, encompassing recommender systems, molecular structure prediction, social media analysis, etc. Despite the boosts of GNN, recent research has empirically demonstrated its potential vulnerability to backdoor attacks, wherein adversaries employ triggers to poison input samples, inducing GNN to adversary-premeditated malicious outputs. This is typically due to the controlled training process, or the deployment of untrusted models, such as delegating model training to third-party service, leveraging external training sets, and employing pre-trained models from online sources. Although there's an ongoing increase in research on GNN backdoors, comprehensive investigation into this field is lacking. To bridge this gap, we propose the first survey dedicated to GNN backdoors. We begin by outlining the fundamental definition of GNN, followed by the detailed summarization and categorization of current GNN backdoor attacks and defenses based on their technical characteristics and application scenarios. Subsequently, the analysis of the applicability and use cases of GNN backdoors is undertaken. Finally, the exploration of potential research directions of GNN backdoors is presented. This survey aims to explore the principles of graph backdoors, provide insights to defenders, and promote future security research.
♻ ☆ PSA-VLM: Enhancing Vision-Language Model Safety through Progressive Concept-Bottleneck-Driven Alignment
Benefiting from the powerful capabilities of Large Language Models (LLMs), pre-trained visual encoder models connected to LLMs form Vision Language Models (VLMs). However, recent research shows that the visual modality in VLMs is highly vulnerable, allowing attackers to bypass safety alignment in LLMs through visually transmitted content, launching harmful attacks. To address this challenge, we propose a progressive concept-based alignment strategy, PSA-VLM, which incorporates safety modules as concept bottlenecks to enhance visual modality safety alignment. By aligning model predictions with specific safety concepts, we improve defenses against risky images, enhancing explainability and controllability while minimally impacting general performance. Our method is obtained through two-stage training. The low computational cost of the first stage brings very effective performance improvement, and the fine-tuning of the language model in the second stage further improves the safety performance. Our method achieves state-of-the-art results on popular VLM safety benchmark.
comment: arXiv admin note: substantial text overlap with arXiv:2405.13581
♻ ☆ Latent Diffusion Bridges for Unsupervised Musical Audio Timbre Transfer
Music timbre transfer is a challenging task that involves modifying the timbral characteristics of an audio signal while preserving its melodic structure. In this paper, we propose a novel method based on dual diffusion bridges, trained using the CocoChorales Dataset, which consists of unpaired monophonic single-instrument audio data. Each diffusion model is trained on a specific instrument with a Gaussian prior. During inference, a model is designated as the source model to map the input audio to its corresponding Gaussian prior, and another model is designated as the target model to reconstruct the target audio from this Gaussian prior, thereby facilitating timbre transfer. We compare our approach against existing unsupervised timbre transfer models such as VAEGAN and Gaussian Flow Bridges (GFB). Experimental results demonstrate that our method achieves both better Fr\'echet Audio Distance (FAD) and melody preservation, as reflected by lower pitch distances (DPD) compared to VAEGAN and GFB. Additionally, we discover that the noise level from the Gaussian prior, $\sigma$, can be adjusted to control the degree of melody preservation and amount of timbre transferred.
♻ ☆ Optimization of Transformer heart disease prediction model based on particle swarm optimization algorithm
Aiming at the latest particle swarm optimization algorithm, this paper proposes an improved Transformer model to improve the accuracy of heart disease prediction and provide a new algorithm idea. We first use three mainstream machine learning classification algorithms - decision tree, random forest and XGBoost, and then output the confusion matrix of these three models. The results showed that the random forest model had the best performance in predicting the classification of heart disease, with an accuracy of 92.2%. Then, we apply the Transformer model based on particle swarm optimization (PSO) algorithm to the same dataset for classification experiment. The results show that the classification accuracy of the model is as high as 96.5%, 4.3 percentage points higher than that of random forest, which verifies the effectiveness of PSO in optimizing Transformer model. From the above research, we can see that particle swarm optimization significantly improves Transformer performance in heart disease prediction. Improving the ability to predict heart disease is a global priority with benefits for all humankind. Accurate prediction can enhance public health, optimize medical resources, and reduce healthcare costs, leading to healthier populations and more productive societies worldwide. This advancement paves the way for more efficient health management and supports the foundation of a healthier, more resilient global community.
♻ ☆ Reinforcement Learning for an Efficient and Effective Malware Investigation during Cyber Incident Response
This research focused on enhancing post-incident malware forensic investigation using reinforcement learning RL. We proposed an advanced MDP post incident malware forensics investigation model and framework to expedite post incident forensics. We then implement our RL Malware Investigation Model based on structured MDP within the proposed framework. To identify malware artefacts, the RL agent acquires and examines forensics evidence files, iteratively improving its capabilities using Q Table and temporal difference learning. The Q learning algorithm significantly improved the agent ability to identify malware. An epsilon greedy exploration strategy and Q learning updates enabled efficient learning and decision making. Our experimental testing revealed that optimal learning rates depend on the MDP environment complexity, with simpler environments benefiting from higher rates for quicker convergence and complex ones requiring lower rates for stability. Our model performance in identifying and classifying malware reduced malware analysis time compared to human experts, demonstrating robustness and adaptability. The study highlighted the significance of hyper parameter tuning and suggested adaptive strategies for complex environments. Our RL based approach produced promising results and is validated as an alternative to traditional methods notably by offering continuous learning and adaptation to new and evolving malware threats which ultimately enhance the post incident forensics investigations.
comment: 21 pages
♻ ☆ Samba-ASR: State-Of-The-Art Speech Recognition Leveraging Structured State-Space Models
We propose Samba ASR,the first state of the art Automatic Speech Recognition(ASR)model leveraging the novel Mamba architecture as both encoder and decoder,built on the foundation of state space models(SSMs).Unlike transformerbased ASR models,which rely on self-attention mechanisms to capture dependencies,Samba ASR effectively models both local and global temporal dependencies using efficient statespace dynamics,achieving remarkable performance gains.By addressing the limitations of transformers,such as quadratic scaling with input length and difficulty in handling longrange dependencies,Samba ASR achieves superior accuracy and efficiency.Experimental results demonstrate that Samba ASR surpasses existing opensource transformerbased ASR models across various standard benchmarks,establishing it as the new state of theart in ASR.Extensive evaluations on the benchmark dataset show significant improvements in Word Error Rate(WER),with competitive performance even in lowresource scenarios.Furthermore,the inherent computational efficiency and parameter optimization of the Mamba architecture make Samba ASR a scalable and robust solution for diverse ASR tasks.Our contributions include the development of a new Samba ASR architecture for automatic speech recognition(ASR),demonstrating the superiority of structured statespace models(SSMs)over transformer based models for speech sequence processing.We provide a comprehensive evaluation on public benchmarks,showcasing stateoftheart(SOTA)performance,and present an indepth analysis of computational efficiency,robustness to noise,and sequence generalization.This work highlights the viability of Mamba SSMs as a transformerfree alternative for efficient and accurate ASR.By leveraging the advancements of statespace modeling,Samba ASR redefines ASR performance standards and sets a new benchmark for future research in this field.
♻ ☆ Deploying Open-Source Large Language Models: A performance Analysis
Since the release of ChatGPT in November 2022, large language models (LLMs) have seen considerable success, including in the open-source community, with many open-weight models available. However, the requirements to deploy such a service are often unknown and difficult to evaluate in advance. To facilitate this process, we conducted numerous tests at the Centre Inria de l'Universit\'e de Bordeaux. In this article, we propose a comparison of the performance of several models of different sizes (mainly Mistral and LLaMa) depending on the available GPUs, using vLLM, a Python library designed to optimize the inference of these models. Our results provide valuable information for private and public groups wishing to deploy LLMs, allowing them to evaluate the performance of different models based on their available hardware. This study thus contributes to facilitating the adoption and use of these large language models in various application domains.
♻ ☆ A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
Advancements in image segmentation play an integral role within the broad scope of Deep Learning-based Computer Vision. Furthermore, their widespread applicability in critical real-world tasks has resulted in challenges related to the reliability of such algorithms. Hence, uncertainty quantification has been extensively studied within this context, enabling the expression of model ignorance (epistemic uncertainty) or data ambiguity (aleatoric uncertainty) to prevent uninformed decision-making. Due to the rapid adoption of Convolutional Neural Network (CNN)-based segmentation models in high-stake applications, a substantial body of research has been published on this very topic, causing its swift expansion into a distinct field. This work provides a comprehensive overview of probabilistic segmentation, by discussing fundamental concepts of uncertainty quantification, governing advancements in the field as well as the application to various tasks. Moreover, literature on both types of uncertainties trace back to four key applications: (1) to quantify statistical inconsistencies in the annotation process due ambiguous images, (2) correlating prediction error with uncertainty, (3) expanding the model hypothesis space for better generalization, and (4) Active Learning. An extensive discussion follows that includes an overview of utilized datasets for each of the applications and evaluation of the available methods. We also highlight challenges related to architectures, uncertainty quantification methods, standardization and benchmarking, and finally end with recommendations for future work such as methods based on single forward passes and models that appropriately leverage volumetric data.
comment: 20 pages, revised
♻ ☆ Autonomous Alignment with Human Value on Altruism through Considerate Self-imagination and Theory of Mind
With the widespread application of Artificial Intelligence (AI) in human society, enabling AI to autonomously align with human values has become a pressing issue to ensure its sustainable development and benefit to humanity. One of the most important aspects of aligning with human values is the necessity for agents to autonomously make altruistic, safe, and ethical decisions, considering and caring for human well-being. Current AI extremely pursues absolute superiority in certain tasks, remaining indifferent to the surrounding environment and other agents, which has led to numerous safety risks. Altruistic behavior in human society originates from humans' capacity for empathizing others, known as Theory of Mind (ToM), combined with predictive imaginative interactions before taking action to produce thoughtful and altruistic behaviors. Inspired by this, we are committed to endow agents with considerate self-imagination and ToM capabilities, driving them through implicit intrinsic motivations to autonomously align with human altruistic values. By integrating ToM within the imaginative space, agents keep an eye on the well-being of other agents in real time, proactively anticipate potential risks to themselves and others, and make thoughtful altruistic decisions that balance negative effects on the environment. The ancient Chinese story of Sima Guang Smashes the Vat illustrates the moral behavior of the young Sima Guang smashed a vat to save a child who had accidentally fallen into it, which is an excellent reference scenario for this paper. We design an experimental scenario similar to Sima Guang Smashes the Vat and its variants with different complexities, which reflects the trade-offs and comprehensive considerations between self-goals, altruistic rescue, and avoiding negative side effects.
♻ ☆ Towards Mitigating Architecture Overfitting on Distilled Datasets
Dataset distillation methods have demonstrated remarkable performance for neural networks trained with very limited training data. However, a significant challenge arises in the form of \textit{architecture overfitting}: the distilled training dataset synthesized by a specific network architecture (i.e., training network) generates poor performance when trained by other network architectures (i.e., test networks), especially when the test networks have a larger capacity than the training network. This paper introduces a series of approaches to mitigate this issue. Among them, DropPath renders the large model to be an implicit ensemble of its sub-networks, and knowledge distillation ensures each sub-network acts similarly to the small but well-performing teacher network. These methods, characterized by their smoothing effects, significantly mitigate architecture overfitting. We conduct extensive experiments to demonstrate the effectiveness and generality of our methods. Particularly, across various scenarios involving different tasks and different sizes of distilled data, our approaches significantly mitigate architecture overfitting. Furthermore, our approaches achieve comparable or even superior performance when the test network is larger than the training network.
comment: Accepted by TNNLS
♻ ☆ CONTINUUM: Detecting APT Attacks through Spatial-Temporal Graph Neural Networks
Advanced Persistent Threats (APTs) represent a significant challenge in cybersecurity due to their sophisticated and stealthy nature. Traditional Intrusion Detection Systems (IDS) often fall short in detecting these multi-stage attacks. Recently, Graph Neural Networks (GNNs) have been employed to enhance IDS capabilities by analyzing the complex relationships within networked data. However, existing GNN-based solutions are hampered by high false positive rates and substantial resource consumption. In this paper, we present a novel IDS designed to detect APTs using a Spatio-Temporal Graph Neural Network Autoencoder. Our approach leverages spatial information to understand the interactions between entities within a graph and temporal information to capture the evolution of the graph over time. This dual perspective is crucial for identifying the sequential stages of APTs. Furthermore, to address privacy and scalability concerns, we deploy our architecture in a federated learning environment. This setup ensures that local data remains on-premise while encrypted model-weights are shared and aggregated using homomorphic encryption, maintaining data privacy and security. Our evaluation shows that this system effectively detects APTs with lower false positive rates and optimized resource usage compared to existing methods, highlighting the potential of spatio-temporal analysis and federated learning in enhancing cybersecurity defenses.
comment: 31 pages
♻ ☆ KNN-MMD: Cross Domain Wireless Sensing via Local Distribution Alignment
Wireless sensing has recently found widespread applications in diverse environments, including homes, offices, and public spaces. By analyzing patterns in channel state information (CSI), it is possible to infer human actions for tasks such as person identification, gesture recognition, and fall detection. However, CSI is highly sensitive to environmental changes, where even minor alterations can significantly distort the CSI patterns. This sensitivity often leads to performance degradation or outright failure when applying wireless sensing models trained in one environment to another. To address this challenge, Domain Alignment (DAL) has been widely adopted for cross-domain classification tasks, as it focuses on aligning the global distributions of the source and target domains in feature space. Despite its popularity, DAL often neglects inter-category relationships, which can lead to misalignment between categories across domains, even when global alignment is achieved. To overcome these limitations, we propose K-Nearest Neighbors Maximum Mean Discrepancy (KNN-MMD), a novel few-shot method for cross-domain wireless sensing. Our approach begins by constructing a help set using KNN from the target domain, enabling local alignment between the source and target domains within each category using MMD. Additionally, we address a key instability issue commonly observed in cross-domain methods, where model performance fluctuates sharply between epochs. Further, most existing methods struggle to determine an optimal stopping point during training due to the absence of labeled data from the target domain. Our method resolves this by excluding the support set from the target domain during training and employing it as a validation set to determine the stopping criterion.
♻ ☆ MRJ-Agent: An Effective Jailbreak Agent for Multi-Round Dialogue
Large Language Models (LLMs) demonstrate outstanding performance in their reservoir of knowledge and understanding capabilities, but they have also been shown to be prone to illegal or unethical reactions when subjected to jailbreak attacks. To ensure their responsible deployment in critical applications, it is crucial to understand the safety capabilities and vulnerabilities of LLMs. Previous works mainly focus on jailbreak in single-round dialogue, overlooking the potential jailbreak risks in multi-round dialogues, which are a vital way humans interact with and extract information from LLMs. Some studies have increasingly concentrated on the risks associated with jailbreak in multi-round dialogues. These efforts typically involve the use of manually crafted templates or prompt engineering techniques. However, due to the inherent complexity of multi-round dialogues, their jailbreak performance is limited. To solve this problem, we propose a novel multi-round dialogue jailbreaking agent, emphasizing the importance of stealthiness in identifying and mitigating potential threats to human values posed by LLMs. We propose a risk decomposition strategy that distributes risks across multiple rounds of queries and utilizes psychological strategies to enhance attack strength. Extensive experiments show that our proposed method surpasses other attack methods and achieves state-of-the-art attack success rate. We will make the corresponding code and dataset available for future research. The code will be released soon.
♻ ☆ Enhancing the automatic segmentation and analysis of 3D liver vasculature models MICCAI 2024
Surgical assessment of liver cancer patients requires identification of the vessel trees from medical images. Specifically, the venous trees - the portal (perfusing) and the hepatic (draining) trees are important for understanding the liver anatomy and disease state, and perform surgery planning. This research aims to improve the 3D segmentation, skeletonization, and subsequent analysis of vessel trees, by creating an automatic pipeline based on deep learning and image processing techniques. The first part of this work explores the impact of differentiable skeletonization methods such as ClDice and morphological skeletonization loss, on the overall liver vessel segmentation performance. To this aim, it studies how to improve vessel tree connectivity. The second part of this study converts a single class vessel segmentation into multi-class ones, separating the two venous trees. It builds on the previous two-class vessel segmentation model, which vessel tree outputs might be entangled, and on connected components and skeleton analyses of the trees. After providing sub-labeling of the specific anatomical branches of each venous tree, these algorithms also enable a morphometric analysis of the vessel trees by extracting various geometrical markers. In conclusion, we propose a method that successfully improves current skeletonization methods, for extensive vascular trees that contain vessels of different calibers. The separation algorithm creates a clean multi-class segmentation of the vessels, validated by surgeons to provide low error. A new, publicly shared high-quality liver vessel dataset of 77 cases is thus created. Finally a method to annotate vessel trees according to anatomy is provided, enabling a unique liver vessel morphometry analysis.
comment: Paper presented at MICCAI 2024 Workshop: ADSMI. This work was done in the context of an internship at Simbiotx, Inria
♻ ☆ MULTI: Multimodal Understanding Leaderboard with Text and Images
The rapid development of multimodal large language models (MLLMs) raises the question of how they compare to human performance. While existing datasets often feature synthetic or overly simplistic tasks, some models have already surpassed human expert baselines. In this paper, we present MULTI, a Chinese multimodal dataset derived from authentic examination questions. Comprising over 18,000 carefully selected and refined questions, MULTI evaluates models using real-world examination standards, encompassing image-text comprehension, complex reasoning, and knowledge recall. Additionally, We also introduce MULTI-Elite, a 500-question selected hard subset, and MULTI-Extend with more than 4,500 external knowledge context pieces for testing in-context learning capabilities. Our evaluation highlights substantial room for MLLM advancement, with Qwen2-VL-72B achieving a 76.9% accuracy on MULTI and 53.1% on MULTI-Elite leading 25 evaluated models, compared to human expert baselines of 86.1% and 73.1%. MULTI serves not only as a robust evaluation platform but also paves the way for the development of expert-level AI.
comment: 24 pages, 19 figures, 10 tables. Details and access are available at: https://OpenDFM.github.io/MULTI-Benchmark/
♻ ☆ Scam Detection for Ethereum Smart Contracts: Leveraging Graph Representation Learning for Secure Blockchain
Due to the increasing abuse of fraudulent activities that result in significant financial and reputational harm, Ethereum smart contracts face a significant problem in detecting fraud. Existing monitoring methods typically rely on lease code analysis or physically extracted features, which suffer from scalability and adaptability limitations. In this study, we use graph representation learning to observe purchase trends and find fraudulent deals. We can achieve powerful categorisation performance by using innovative machine learning versions and transforming Ethereum invoice data into graph structures. Our method addresses label imbalance through SMOTE-ENN techniques and evaluates models like Multi-Layer Perceptron ( MLP ) and Graph Convolutional Networks ( GCN). Experimental results show that the MLP type surpasses the GCN in this environment, with domain-specific assessments closely aligned with real-world assessments. This study provides a scalable and efficient way to improve Ethereum's ecosystem's confidence and security.
comment: Accepted to BDICN 2025
♻ ☆ Edge Graph Intelligence: Reciprocally Empowering Edge Networks with Graph Intelligence
Recent years have witnessed a thriving growth of computing facilities connected at the network edge, cultivating edge networks as a fundamental infrastructure for supporting miscellaneous intelligent services.Meanwhile, Artificial Intelligence (AI) frontiers have extrapolated to the graph domain and promoted Graph Intelligence (GI). Given the inherent relation between graphs and networks, the interdiscipline of graph learning and edge networks, i.e., Edge GI or EGI, has revealed a novel interplay between them -- GI aids in optimizing edge networks, while edge networks facilitate GI model deployment. Driven by this delicate closed-loop, EGI is recognized as a promising solution to fully unleash the potential of edge computing power and is garnering growing attention. Nevertheless, research on EGI remains nascent, and there is a soaring demand within both the communications and AI communities for a dedicated venue to share recent advancements. To this end, this paper promotes the concept of EGI, explores its scope and core principles, and conducts a comprehensive survey concerning recent research efforts on this emerging field. Specifically, this paper introduces and discusses: 1) fundamentals of edge computing and graph learning,2) emerging techniques centering on the closed loop between graph intelligence and edge networks, and 3) open challenges and research opportunities of future EGI. By bridging the gap across communication, networking, and graph learning areas, we believe that this survey can garner increased attention, foster meaningful discussions, and inspire further research ideas in EGI.
comment: Accepted by IEEE Communications Surveys & Tutorials
♻ ☆ CausalMob: Causal Human Mobility Prediction with LLMs-derived Human Intentions toward Public Events KDD 2025
Large-scale human mobility exhibits spatial and temporal patterns that can assist policymakers in decision making. Although traditional prediction models attempt to capture these patterns, they often interfered by non-periodic public events, such as disasters and occasional celebrations. Since regular human mobility patterns are heavily affected by these events, estimating their causal effects is critical to accurate mobility predictions. Although news articles provide unique perspectives on these events in an unstructured format, processing is a challenge. In this study, we propose a causality-augmented prediction model, called CausalMob, to analyze the causal effects of public events. We first utilize large language models (LLMs) to extract human intentions from news articles and transform them into features that act as causal treatments. Next, the model learns representations of spatio-temporal regional covariates from multiple data sources to serve as confounders for causal inference. Finally, we present a causal effect estimation framework to ensure event features remain independent of confounders during prediction. Based on large-scale real-world data, the experimental results show that the proposed model excels in human mobility prediction, outperforming state-of-the-art models.
comment: Accepted by KDD 2025
♻ ☆ OpenCodeInterpreter: Integrating Code Generation with Execution and Refinement
The introduction of large language models has significantly advanced code generation. However, open-source models often lack the execution capabilities and iterative refinement of advanced systems like the GPT-4 Code Interpreter. To address this, we introduce OpenCodeInterpreter, a family of open-source code systems designed for generating, executing, and iteratively refining code. Supported by Code-Feedback, a dataset featuring 68K multi-turn interactions, OpenCodeInterpreter integrates execution and human feedback for dynamic code refinement. Our comprehensive evaluation of OpenCodeInterpreter across key benchmarks such as HumanEval, MBPP, and their enhanced versions from EvalPlus reveals its exceptional performance. Notably, OpenCodeInterpreter-33B achieves an accuracy of 83.2 (76.4) on the average (and plus versions) of HumanEval and MBPP, closely rivaling GPT-4's 84.2 (76.2) and further elevates to 91.6 (84.6) with synthesized human feedback from GPT-4. OpenCodeInterpreter brings the gap between open-source code generation models and proprietary systems like GPT-4 Code Interpreter.
♻ ☆ The Race to Efficiency: A New Perspective on AI Scaling Laws
As large-scale AI models expand, training becomes costlier and sustaining progress grows harder. Classical scaling laws (e.g., Kaplan et al. (2020), Hoffmann et al. (2022)) predict training loss from a static compute budget yet neglect time and efficiency, prompting the question: how can we balance ballooning GPU fleets with rapidly improving hardware and algorithms? We introduce the relative-loss equation, a time- and efficiency-aware framework that extends classical AI scaling laws. Our model shows that, without ongoing efficiency gains, advanced performance could demand millennia of training or unrealistically large GPU fleets. However, near-exponential progress remains achievable if the "efficiency-doubling rate" parallels Moore's Law. By formalizing this race to efficiency, we offer a quantitative roadmap for balancing front-loaded GPU investments with incremental improvements across the AI stack. Empirical trends suggest that sustained efficiency gains can push AI scaling well into the coming decade, providing a new perspective on the diminishing returns inherent in classical scaling.
comment: 21 pages, 3 figures. 2 tables, second draft
♻ ☆ ProSparse: Introducing and Enhancing Intrinsic Activation Sparsity within Large Language Models
Activation sparsity refers to the existence of considerable weakly-contributed elements among activation outputs. As a prevalent property of the models using the ReLU activation function, activation sparsity has been proven a promising paradigm to boost model inference efficiency. Nevertheless, most large language models (LLMs) adopt activation functions without intrinsic activation sparsity (e.g., GELU and Swish). Some recent efforts have explored introducing ReLU or its variants as the substitutive activation function to help LLMs achieve activation sparsity and inference acceleration, but few can simultaneously obtain high sparsity and comparable model performance. This paper introduces a simple and effective sparsification method named "ProSparse" to push LLMs for higher activation sparsity while maintaining comparable performance. Specifically, after substituting the activation function of LLMs with ReLU, ProSparse adopts progressive sparsity regularization with a factor smoothly increasing along the multi-stage sine curves. This can enhance activation sparsity and mitigate performance degradation by avoiding radical shifts in activation distributions. With ProSparse, we obtain high sparsity of 89.32% for LLaMA2-7B, 88.80% for LLaMA2-13B, and 87.89% for end-size MiniCPM-1B, respectively, achieving comparable performance to their original Swish-activated versions. These present the most sparsely activated models among open-source LLaMA versions and competitive end-size models, considerably surpassing ReluLLaMA-7B (66.98%) and ReluLLaMA-13B (71.56%). Our inference acceleration experiments further demonstrate the significant practical acceleration potential of LLMs with higher activation sparsity, obtaining up to 4.52$\times$ inference speedup.
comment: 19 pages, 4 figures, 9 tables
♻ ☆ Rescriber: Smaller-LLM-Powered User-Led Data Minimization for Navigating Privacy Trade-offs in LLM-Based Conversational Agent
The proliferation of LLM-based conversational agents has resulted in excessive disclosure of identifiable or sensitive information. However, existing technologies fail to offer perceptible control or account for users' personal preferences about privacy-utility tradeoffs due to the lack of user involvement. To bridge this gap, we designed, built, and evaluated Rescriber, a browser extension that supports user-led data minimization in LLM-based conversational agents by helping users detect and sanitize personal information in their prompts. Our studies (N=12) showed that Rescriber helped users reduce unnecessary disclosure and addressed their privacy concerns. Users' subjective perceptions of the system powered by Llama3-8B were on par with that by GPT-4o. The comprehensiveness and consistency of the detection and sanitization emerge as essential factors that affect users' trust and perceived protection. Our findings confirm the viability of smaller-LLM-powered, user-facing, on-device privacy controls, presenting a promising approach to address the privacy and trust challenges of AI.
♻ ☆ ORGANA: A Robotic Assistant for Automated Chemistry Experimentation and Characterization
Chemistry experiments can be resource- and labor-intensive, often requiring manual tasks like polishing electrodes in electrochemistry. Traditional lab automation infrastructure faces challenges adapting to new experiments. To address this, we introduce ORGANA, an assistive robotic system that automates diverse chemistry experiments using decision-making and perception tools. It makes decisions with chemists in the loop to control robots and lab devices. ORGANA interacts with chemists using Large Language Models (LLMs) to derive experiment goals, handle disambiguation, and provide experiment logs. ORGANA plans and executes complex tasks with visual feedback, while supporting scheduling and parallel task execution. We demonstrate ORGANA's capabilities in solubility, pH measurement, recrystallization, and electrochemistry experiments. In electrochemistry, it executes a 19-step plan in parallel to characterize quinone derivatives for flow batteries. Our user study shows ORGANA reduces frustration and physical demand by over 50%, with users saving an average of 80.3% of their time when using it.
♻ ☆ ChatBug: A Common Vulnerability of Aligned LLMs Induced by Chat Templates AAAI 2025
Large language models (LLMs) are expected to follow instructions from users and engage in conversations. Techniques to enhance LLMs' instruction-following capabilities typically fine-tune them using data structured according to a predefined chat template. Although chat templates are shown to be effective in optimizing LLM performance, their impact on safety alignment of LLMs has been less understood, which is crucial for deploying LLMs safely at scale. In this paper, we investigate how chat templates affect safety alignment of LLMs. We identify a common vulnerability, named ChatBug, that is introduced by chat templates. Our key insight to identify ChatBug is that the chat templates provide a rigid format that need to be followed by LLMs, but not by users. Hence, a malicious user may not necessarily follow the chat template when prompting LLMs. Instead, malicious users could leverage their knowledge of the chat template and accordingly craft their prompts to bypass safety alignments of LLMs. We develop two attacks to exploit the ChatBug vulnerability. We demonstrate that a malicious user can exploit the ChatBug vulnerability of eight state-of-the-art (SOTA) LLMs and effectively elicit unintended responses from these models. Moreover, we show that ChatBug can be exploited by existing jailbreak attacks to enhance their attack success rates. We investigate potential countermeasures to ChatBug. Our results show that while adversarial training effectively mitigates the ChatBug vulnerability, the victim model incurs significant performance degradation. These results highlight the trade-off between safety alignment and helpfulness. Developing new methods for instruction tuning to balance this trade-off is an open and critical direction for future research
comment: This paper is accepted to AAAI 2025
♻ ☆ HuRef: HUman-REadable Fingerprint for Large Language Models NeurIPS 2024
Protecting the copyright of large language models (LLMs) has become crucial due to their resource-intensive training and accompanying carefully designed licenses. However, identifying the original base model of an LLM is challenging due to potential parameter alterations. In this study, we introduce HuRef, a human-readable fingerprint for LLMs that uniquely identifies the base model without interfering with training or exposing model parameters to the public. We first observe that the vector direction of LLM parameters remains stable after the model has converged during pretraining, with negligible perturbations through subsequent training steps, including continued pretraining, supervised fine-tuning, and RLHF, which makes it a sufficient condition to identify the base model. The necessity is validated by continuing to train an LLM with an extra term to drive away the model parameters' direction and the model becomes damaged. However, this direction is vulnerable to simple attacks like dimension permutation or matrix rotation, which significantly change it without affecting performance. To address this, leveraging the Transformer structure, we systematically analyze potential attacks and define three invariant terms that identify an LLM's base model. Due to the potential risk of information leakage, we cannot publish invariant terms directly. Instead, we map them to a Gaussian vector using an encoder, then convert it into a natural image using StyleGAN2, and finally publish the image. In our black-box setting, all fingerprinting steps are internally conducted by the LLMs owners. To ensure the published fingerprints are honestly generated, we introduced Zero-Knowledge Proof (ZKP). Experimental results across various LLMs demonstrate the effectiveness of our method. The code is available at https://github.com/LUMIA-Group/HuRef.
comment: NeurIPS 2024
♻ ☆ Neural Speech and Audio Coding: Modern AI Technology Meets Traditional Codecs
This paper explores the integration of model-based and data-driven approaches within the realm of neural speech and audio coding systems. It highlights the challenges posed by the subjective evaluation processes of speech and audio codecs and discusses the limitations of purely data-driven approaches, which often require inefficiently large architectures to match the performance of model-based methods. The study presents hybrid systems as a viable solution, offering significant improvements to the performance of conventional codecs through meticulously chosen design enhancements. Specifically, it introduces a neural network-based signal enhancer designed to post-process existing codecs' output, along with the autoencoder-based end-to-end models and LPCNet--hybrid systems that combine linear predictive coding (LPC) with neural networks. Furthermore, the paper delves into predictive models operating within custom feature spaces (TF-Codec) or predefined transform domains (MDCTNet) and examines the use of psychoacoustically calibrated loss functions to train end-to-end neural audio codecs. Through these investigations, the paper demonstrates the potential of hybrid systems to advance the field of speech and audio coding by bridging the gap between traditional model-based approaches and modern data-driven techniques.
comment: Published in IEEE Signal Processing Magazine
♻ ☆ LightGNN: Simple Graph Neural Network for Recommendation WSDM 2025
Graph neural networks (GNNs) have demonstrated superior performance in collaborative recommendation through their ability to conduct high-order representation smoothing, effectively capturing structural information within users' interaction patterns. However, existing GNN paradigms face significant challenges in scalability and robustness when handling large-scale, noisy, and real-world datasets. To address these challenges, we present LightGNN, a lightweight and distillation-based GNN pruning framework designed to substantially reduce model complexity while preserving essential collaboration modeling capabilities. Our LightGNN framework introduces a computationally efficient pruning module that adaptively identifies and removes redundant edges and embedding entries for model compression. The framework is guided by a resource-friendly hierarchical knowledge distillation objective, whose intermediate layer augments the observed graph to maintain performance, particularly in high-rate compression scenarios. Extensive experiments on public datasets demonstrate LightGNN's effectiveness, significantly improving both computational efficiency and recommendation accuracy. Notably, LightGNN achieves an 80% reduction in edge count and 90% reduction in embedding entries while maintaining performance comparable to more complex state-of-the-art baselines. The implementation of our LightGNN framework is available at the github repository: https://github.com/HKUDS/LightGNN.
comment: Accepted to WSDM 2025 Oral
♻ ☆ Bridging the Language Gap: Dynamic Learning Strategies for Improving Multilingual Performance in LLMs
Large language models (LLMs) have revolutionized various domains but still struggle with non-Latin scripts and low-resource languages. This paper addresses the critical challenge of improving multilingual performance without extensive fine-tuning. We introduce a novel dynamic learning approach that optimizes prompt strategy, embedding model, and LLM per query at runtime. By adapting configurations dynamically, our method achieves significant improvements over static, best and random baselines. It operates efficiently in both offline and online settings, generalizing seamlessly across new languages and datasets. Leveraging Retrieval-Augmented Generation (RAG) with state-of-the-art multilingual embeddings, we achieve superior task performance across diverse linguistic contexts. Through systematic investigation and evaluation across 18 diverse languages using popular question-answering (QA) datasets we show our approach results in 10-15% improvements in multilingual performance over pre-trained models and 4x gains compared to fine-tuned, language-specific models.
♻ ☆ Predictable Artificial Intelligence
We introduce the fundamental ideas and challenges of Predictable AI, a nascent research area that explores the ways in which we can anticipate key validity indicators (e.g., performance, safety) of present and future AI ecosystems. We argue that achieving predictability is crucial for fostering trust, liability, control, alignment and safety of AI ecosystems, and thus should be prioritised over performance. We formally characterise predictability, explore its most relevant components, illustrate what can be predicted, describe alternative candidates for predictors, as well as the trade-offs between maximising validity and predictability. To illustrate these concepts, we bring an array of illustrative examples covering diverse ecosystem configurations. Predictable AI is related to other areas of technical and non-technical AI research, but have distinctive questions, hypotheses, techniques and challenges. This paper aims to elucidate them, calls for identifying paths towards a landscape of predictably valid AI systems and outlines the potential impact of this emergent field.
comment: Paper Under Review
♻ ☆ Exploring Gradient Subspaces: Addressing and Overcoming LoRA's Limitations in Federated Fine-Tuning of Large Language Models
Large Language Models (LLMs) have demonstrated remarkable capabilities across various domains, particularly in task generalization for both text and vision data. While fine-tuning these models can significantly enhance their performance on specific downstream tasks, it often requires high-quality data that cannot be shared due to privacy concerns. Federated Learning (FL) offers a promising solution for collaborative training without direct data sharing. However, many parameter-efficient fine-tuning strategies for LLMs in FL, particularly those based on Low-Rank Adaptation (LoRA), face limitations. In this paper, we critically analyze the convergence and performance guarantees of popular FL frameworks utilizing LoRA, highlighting its suboptimal nature due to constrained subspace learning of low-rank matrices. This limitation hinders effective fine-tuning of LLMs in federated settings. Through rigorous analytical and empirical evaluations, we demonstrate that direct weight averaging outperforms LoRA-based strategies, leading to superior performance for fine-tuned models. Our comprehensive comparison unmasks inefficiencies in LoRA approaches and underscores the advantages of direct weight aggregation. We extend our analysis to low-rank gradient-based optimizers, such as GaLore, used during local training steps. Our findings show that GaLore along with direct-weight aggregation is a more effective approach, outperforming federated LoRA methods like FlexLoRA and FFA-LoRA across both text and image modalities. While privacy remains paramount in FL discourse, our focus is on assessing performance outcomes of federated fine-tuned models and evaluating various FL frameworks from both theoretical and empirical perspectives. Our findings advocate reassessing the reliance on LoRA within FL contexts, paving the way for more efficient training methodologies.
♻ ☆ Concept Matching with Agent for Out-of-Distribution Detection AAAI-25
The remarkable achievements of Large Language Models (LLMs) have captivated the attention of both academia and industry, transcending their initial role in dialogue generation. To expand the usage scenarios of LLM, some works enhance the effectiveness and capabilities of the model by introducing more external information, which is called the agent paradigm. Based on this idea, we propose a new method that integrates the agent paradigm into out-of-distribution (OOD) detection task, aiming to improve its robustness and adaptability. Our proposed method, Concept Matching with Agent (CMA), employs neutral prompts as agents to augment the CLIP-based OOD detection process. These agents function as dynamic observers and communication hubs, interacting with both In-distribution (ID) labels and data inputs to form vector triangle relationships. This triangular framework offers a more nuanced approach than the traditional binary relationship, allowing for better separation and identification of ID and OOD inputs. Our extensive experimental results showcase the superior performance of CMA over both zero-shot and training-required methods in a diverse array of real-world scenarios.
comment: Accepted by AAAI-25
♻ ☆ Graph Learning for Numeric Planning NeurIPS 2024
Graph learning is naturally well suited for use in symbolic, object-centric planning due to its ability to exploit relational structures exhibited in planning domains and to take as input planning instances with arbitrary numbers of objects. Numeric planning is an extension of symbolic planning in which states may now also exhibit numeric variables. In this work, we propose data-efficient and interpretable machine learning models for learning to solve numeric planning tasks. This involves constructing a new graph kernel for graphs with both continuous and categorical attributes, as well as new optimisation methods for learning heuristic functions for numeric planning. Experiments show that our graph kernels are vastly more efficient and generalise better than graph neural networks for numeric planning, and also yield competitive coverage performance compared to domain-independent numeric planners. Code is available at https://github.com/DillonZChen/goose
comment: Extended version of NeurIPS 2024 paper
♻ ☆ Model Checking in Medical Imaging for Tumor Detection and Segmentation
Recent advancements in model checking have demonstrated significant potential across diverse applications, particularly in signal and image analysis. Medical imaging stands out as a critical domain where model checking can be effectively applied to design and evaluate robust frameworks. These frameworks facilitate automatic and semi-automatic delineation of regions of interest within images, aiding in accurate segmentation. This paper provides a comprehensive analysis of recent works leveraging spatial logic to develop operators and tools for identifying regions of interest, including tumorous and non-tumorous areas. Additionally, we examine the challenges inherent to spatial model-checking techniques, such as variability in ground truth data and the need for streamlined procedures suitable for routine clinical practice.
♻ ☆ DistPred: A Distribution-Free Probabilistic Inference Method for Regression and Forecasting KDD 2025
Traditional regression and prediction tasks often only provide deterministic point estimates. To estimate the distribution or uncertainty of the response variable, traditional methods either assume that the posterior distribution of samples follows a Gaussian process or require thousands of forward passes for sample generation. We propose a novel approach called DistPred for regression and forecasting tasks, which overcomes the limitations of existing methods while remaining simple and powerful. Specifically, we transform proper scoring rules that measure the discrepancy between the predicted distribution and the target distribution into a differentiable discrete form and use it as a loss function to train the model end-to-end. This allows the model to sample numerous samples in a single forward pass to estimate the potential distribution of the response variable. We have compared our method with several existing approaches on multiple datasets and achieved state-of-the-art performance. Additionally, our method significantly improves computational efficiency. For example, compared to state-of-the-art models, DistPred has a 180x faster inference speed Experimental results can be reproduced through https://github.com/Anoise/DistPred.
comment: Published at KDD 2025
♻ ☆ An In-Depth Analysis of Adversarial Discriminative Domain Adaptation for Digit Classification
Domain adaptation is an active area of research driven by the growing demand for robust machine learning models that perform well on real-world data. Adversarial learning for deep neural networks (DNNs) has emerged as a promising approach to improving generalization ability, particularly for image classification. In this paper, we implement a specific adversarial learning technique known as Adversarial Discriminative Domain Adaptation (ADDA) and replicate digit classification experiments from the original ADDA paper. We extend their findings by examining a broader range of domain shifts and provide a detailed analysis of in-domain classification accuracy post-ADDA. Our results demonstrate that ADDA significantly improves accuracy across certain domain shifts with minimal impact on in-domain performance. Furthermore, we provide qualitative analysis and propose potential explanations for ADDA's limitations in less successful domain shifts. Code is at https://github.com/eugenechoi2004/COS429_FINAL .
comment: Replacement: Updated methodology section to include grayscale preprocessing of SVHN data
♻ ☆ Neural Network Prediction of Strong Lensing Systems with Domain Adaptation and Uncertainty Quantification NeurIPS 2024
Modeling strong gravitational lenses is computationally expensive for the complex data from modern and next-generation cosmic surveys. Deep learning has emerged as a promising approach for finding lenses and predicting lensing parameters, such as the Einstein radius. Mean-variance Estimators (MVEs) are a common approach for obtaining aleatoric (data) uncertainties from a neural network prediction. However, neural networks have not been demonstrated to perform well on out-of-domain target data successfully - e.g., when trained on simulated data and applied to real, observational data. In this work, we perform the first study of the efficacy of MVEs in combination with unsupervised domain adaptation (UDA) on strong lensing data. The source domain data is noiseless, and the target domain data has noise mimicking modern cosmology surveys. We find that adding UDA to MVE increases the accuracy on the target data by a factor of about two over an MVE model without UDA. Including UDA also permits much more well-calibrated aleatoric uncertainty predictions. Advancements in this approach may enable future applications of MVE models to real observational data.
comment: Accepted to the Machine Learning for Physical Sciences workshop at NeurIPS 2024; 24 pages, 2 figures, 4 tables
♻ ☆ VidFormer: A novel end-to-end framework fused by 3DCNN and Transformer for Video-based Remote Physiological Measurement
Remote physiological signal measurement based on facial videos, also known as remote photoplethysmography (rPPG), involves predicting changes in facial vascular blood flow from facial videos. While most deep learning-based methods have achieved good results, they often struggle to balance performance across small and large-scale datasets due to the inherent limitations of convolutional neural networks (CNNs) and Transformer. In this paper, we introduce VidFormer, a novel end-to-end framework that integrates 3-Dimension Convolutional Neural Network (3DCNN) and Transformer models for rPPG tasks. Initially, we conduct an analysis of the traditional skin reflection model and subsequently introduce an enhanced model for the reconstruction of rPPG signals. Based on this improved model, VidFormer utilizes 3DCNN and Transformer to extract local and global features from input data, respectively. To enhance the spatiotemporal feature extraction capabilities of VidFormer, we incorporate temporal-spatial attention mechanisms tailored for both 3DCNN and Transformer. Additionally, we design a module to facilitate information exchange and fusion between the 3DCNN and Transformer. Our evaluation on five publicly available datasets demonstrates that VidFormer outperforms current state-of-the-art (SOTA) methods. Finally, we discuss the essential roles of each VidFormer module and examine the effects of ethnicity, makeup, and exercise on its performance.
♻ ☆ Socratic Questioning: Learn to Self-guide Multimodal Reasoning in the Wild
Complex visual reasoning remains a key challenge today. Typically, the challenge is tackled using methodologies such as Chain of Thought (COT) and visual instruction tuning. However, how to organically combine these two methodologies for greater success remains unexplored. Also, issues like hallucinations and high training cost still need to be addressed. In this work, we devise an innovative multi-round training and reasoning framework suitable for lightweight Multimodal Large Language Models (MLLMs). Our self-questioning approach heuristically guides MLLMs to focus on visual clues relevant to the target problem, reducing hallucinations and enhancing the model's ability to describe fine-grained image details. This ultimately enables the model to perform well in complex visual reasoning and question-answering tasks. We have named this framework Socratic Questioning(SQ). To facilitate future research, we create a multimodal mini-dataset named CapQA, which includes 1k images of fine-grained activities, for visual instruction tuning and evaluation, our proposed SQ method leads to a 31.2% improvement in the hallucination score. Our extensive experiments on various benchmarks demonstrate SQ's remarkable capabilities in heuristic self-questioning, zero-shot visual reasoning and hallucination mitigation. Our model and code will be publicly available.
♻ ☆ INFELM: In-depth Fairness Evaluation of Large Text-To-Image Models
The rapid development of large language models (LLMs) and large vision models (LVMs) have propelled the evolution of multi-modal AI systems, which have demonstrated the remarkable potential for industrial applications by emulating human-like cognition. However, they also pose significant ethical challenges, including amplifying harmful content and reinforcing societal biases. For instance, biases in some industrial image generation models highlighted the urgent need for robust fairness assessments. Most existing evaluation frameworks focus on the comprehensiveness of various aspects of the models, but they exhibit critical limitations, including insufficient attention to content generation alignment and social bias-sensitive domains. More importantly, their reliance on pixel-detection techniques is prone to inaccuracies. To address these issues, this paper presents INFELM, an in-depth fairness evaluation on widely-used text-to-image models. Our key contributions are: (1) an advanced skintone classifier incorporating facial topology and refined skin pixel representation to enhance classification precision by at least 16.04%, (2) a bias-sensitive content alignment measurement for understanding societal impacts, (3) a generalizable representation bias evaluation for diverse demographic groups, and (4) extensive experiments analyzing large-scale text-to-image model outputs across six social-bias-sensitive domains. We find that existing models in the study generally do not meet the empirical fairness criteria, and representation bias is generally more pronounced than alignment errors. INFELM establishes a robust benchmark for fairness assessment, supporting the development of multi-modal AI systems that align with ethical and human-centric principles.
comment: Di Jin and Xing Liu contributed equally to this work
♻ ☆ PlanLLM: Video Procedure Planning with Refinable Large Language Models AAAI2025
Video procedure planning, i.e., planning a sequence of action steps given the video frames of start and goal states, is an essential ability for embodied AI. Recent works utilize Large Language Models (LLMs) to generate enriched action step description texts to guide action step decoding. Although LLMs are introduced, these methods decode the action steps into a closed-set of one-hot vectors, limiting the model's capability of generalizing to new steps or tasks. Additionally, fixed action step descriptions based on world-level commonsense may contain noise in specific instances of visual states. In this paper, we propose PlanLLM, a cross-modal joint learning framework with LLMs for video procedure planning. We propose an LLM-Enhanced Planning module which fully uses the generalization ability of LLMs to produce free-form planning output and to enhance action step decoding. We also propose Mutual Information Maximization module to connect world-level commonsense of step descriptions and sample-specific information of visual states, enabling LLMs to employ the reasoning ability to generate step sequences. With the assistance of LLMs, our method can both closed-set and open vocabulary procedure planning tasks. Our PlanLLM achieves superior performance on three benchmarks, demonstrating the effectiveness of our designs.
comment: accepted to AAAI2025
♻ ☆ Rare-to-Frequent: Unlocking Compositional Generation Power of Diffusion Models on Rare Concepts with LLM Guidance
State-of-the-art text-to-image (T2I) diffusion models often struggle to generate rare compositions of concepts, e.g., objects with unusual attributes. In this paper, we show that the compositional generation power of diffusion models on such rare concepts can be significantly enhanced by the Large Language Model (LLM) guidance. We start with empirical and theoretical analysis, demonstrating that exposing frequent concepts relevant to the target rare concepts during the diffusion sampling process yields more accurate concept composition. Based on this, we propose a training-free approach, R2F, that plans and executes the overall rare-to-frequent concept guidance throughout the diffusion inference by leveraging the abundant semantic knowledge in LLMs. Our framework is flexible across any pre-trained diffusion models and LLMs, and can be seamlessly integrated with the region-guided diffusion approaches. Extensive experiments on three datasets, including our newly proposed benchmark, RareBench, containing various prompts with rare compositions of concepts, R2F significantly surpasses existing models including SD3.0 and FLUX by up to 28.1%p in T2I alignment. Code is available at https://github.com/krafton-ai/Rare-to-Frequent.
♻ ☆ Uncovering Latent Chain of Thought Vectors in Language Models
As language models grow more influential and trusted in our society, our ability to reliably steer them toward favorable behaviors becomes increasingly paramount. For this, we investigate the technique of steering vectors: biasing the forward pass of language models using a "steering vector" derived from a specific task. We apply them to steer language models toward performing Chain of Thought (CoT) Reasoning without the need to prompt through natural language. We demonstrate this approach on Llama3 8b and Mistral 7b v0.2, and obtain competitive results compared to CoT-prompted performances on a series of reasoning benchmarks (GSM8k, MMLU, AGI Eval, ARC AI2) and qualitative examples. We find this approach yields consistent steering towards CoT responses and takes less compute than traditional methods of fine-tuning models towards CoT.
♻ ☆ Towards generalization of drug response prediction to single cells and patients utilizing importance-aware multi-source domain transfer learning
The advancement of single-cell sequencing technology has promoted the generation of a large amount of single-cell transcriptional profiles, providing unprecedented opportunities to identify drug-resistant cell subpopulations within a tumor. However, few studies have focused on drug response prediction at single-cell level, and their performance remains suboptimal. This paper proposed scAdaDrug, a novel multi-source domain adaptation model powered by adaptive importance-aware representation learning to predict drug response of individual cells. We used a shared encoder to extract domain-invariant features related to drug response from multiple source domains by utilizing adversarial domain adaptation. Particularly, we introduced a plug-and-play module to generate importance-aware and mutually independent weights, which could adaptively modulate the latent representation of each sample in element-wise manner between source and target domains. Extensive experimental results showed that our model achieved state-of-the-art performance in predicting drug response on multiple independent datasets, including single-cell datasets derived from both cell lines and patient-derived xenografts (PDX) models, as well as clinical tumor patient cohorts. Moreover, the ablation experiments demonstrated our model effectively captured the underlying patterns determining drug response from multiple source domains.
♻ ☆ LLM-Powered Multi-Agent System for Automated Crypto Portfolio Management
Cryptocurrency investment is inherently difficult due to its shorter history compared to traditional assets, the need to integrate vast amounts of data from various modalities, and the requirement for complex reasoning. While deep learning approaches have been applied to address these challenges, their black-box nature raises concerns about trust and explainability. Recently, large language models (LLMs) have shown promise in financial applications due to their ability to understand multi-modal data and generate explainable decisions. However, single LLM faces limitations in complex, comprehensive tasks such as asset investment. These limitations are even more pronounced in cryptocurrency investment, where LLMs have less domain-specific knowledge in their training corpora. To overcome these challenges, we propose an explainable, multi-modal, multi-agent framework for cryptocurrency investment. Our framework uses specialized agents that collaborate within and across teams to handle subtasks such as data analysis, literature integration, and investment decision-making for the top 30 cryptocurrencies by market capitalization. The expert training module fine-tunes agents using multi-modal historical data and professional investment literature, while the multi-agent investment module employs real-time data to make informed cryptocurrency investment decisions. Unique intrateam and interteam collaboration mechanisms enhance prediction accuracy by adjusting final predictions based on confidence levels within agent teams and facilitating information sharing between teams. Empirical evaluation using data from November 2023 to September 2024 demonstrates that our framework outperforms single-agent models and market benchmarks in classification, asset pricing, portfolio, and explainability performance.
♻ ☆ Explainable Diagnosis Prediction through Neuro-Symbolic Integration
Diagnosis prediction is a critical task in healthcare, where timely and accurate identification of medical conditions can significantly impact patient outcomes. Traditional machine learning and deep learning models have achieved notable success in this domain but often lack interpretability which is a crucial requirement in clinical settings. In this study, we explore the use of neuro-symbolic methods, specifically Logical Neural Networks (LNNs), to develop explainable models for diagnosis prediction. Essentially, we design and implement LNN-based models that integrate domain-specific knowledge through logical rules with learnable thresholds. Our models, particularly $M_{\text{multi-pathway}}$ and $M_{\text{comprehensive}}$, demonstrate superior performance over traditional models such as Logistic Regression, SVM, and Random Forest, achieving higher accuracy (up to 80.52\%) and AUROC scores (up to 0.8457) in the case study of diabetes prediction. The learned weights and thresholds within the LNN models provide direct insights into feature contributions, enhancing interpretability without compromising predictive power. These findings highlight the potential of neuro-symbolic approaches in bridging the gap between accuracy and explainability in healthcare AI applications. By offering transparent and adaptable diagnostic models, our work contributes to the advancement of precision medicine and supports the development of equitable healthcare solutions. Future research will focus on extending these methods to larger and more diverse datasets to further validate their applicability across different medical conditions and populations.
comment: Proceedings of AMIA Informatics Summit 2025
♻ ☆ LENS-XAI: Redefining Lightweight and Explainable Network Security through Knowledge Distillation and Variational Autoencoders for Scalable Intrusion Detection in Cybersecurity
The rapid proliferation of Industrial Internet of Things (IIoT) systems necessitates advanced, interpretable, and scalable intrusion detection systems (IDS) to combat emerging cyber threats. Traditional IDS face challenges such as high computational demands, limited explainability, and inflexibility against evolving attack patterns. To address these limitations, this study introduces the Lightweight Explainable Network Security framework (LENS-XAI), which combines robust intrusion detection with enhanced interpretability and scalability. LENS-XAI integrates knowledge distillation, variational autoencoder models, and attribution-based explainability techniques to achieve high detection accuracy and transparency in decision-making. By leveraging a training set comprising 10% of the available data, the framework optimizes computational efficiency without sacrificing performance. Experimental evaluation on four benchmark datasets: Edge-IIoTset, UKM-IDS20, CTU-13, and NSL-KDD, demonstrates the framework's superior performance, achieving detection accuracies of 95.34%, 99.92%, 98.42%, and 99.34%, respectively. Additionally, the framework excels in reducing false positives and adapting to complex attack scenarios, outperforming existing state-of-the-art methods. Key strengths of LENS-XAI include its lightweight design, suitable for resource-constrained environments, and its scalability across diverse IIoT and cybersecurity contexts. Moreover, the explainability module enhances trust and transparency, critical for practical deployment in dynamic and sensitive applications. This research contributes significantly to advancing IDS by addressing computational efficiency, feature interpretability, and real-world applicability. Future work could focus on extending the framework to ensemble AI systems for distributed environments, further enhancing its robustness and adaptability.
♻ ☆ Minimum Weighted Feedback Arc Sets for Ranking from Pairwise Comparisons
The Minimum Weighted Feedback Arc Set (MWFAS) problem is fundamentally connected to the Ranking Problem -- the task of deriving global rankings from pairwise comparisons. Recent work [He et al. ICML2022] has advanced the state-of-the-art for the Ranking Problem using learning-based methods, improving upon multiple previous approaches. However, the connection to MWFAS remains underexplored. This paper investigates this relationship and presents efficient combinatorial algorithms for solving MWFAS, thus addressing the Ranking Problem. Our experimental results demonstrate that these simple, learning-free algorithms not only significantly outperform learning-based methods in terms of speed but also generally achieve superior ranking accuracy.
comment: This is a preliminary paper
♻ ☆ COAT: Compressing Optimizer states and Activation for Memory-Efficient FP8 Training
FP8 training has emerged as a promising method for improving training efficiency. Existing frameworks accelerate training by applying FP8 computation to linear layers while leaving optimizer states and activations in higher precision, which fails to fully optimize memory usage. This paper introduces COAT (Compressing Optimizer States and Activations for FP8 Training), a novel FP8 training framework designed to significantly reduce memory footprint when training large models. COAT addresses current limitations through two key innovations: (1) Dynamic Range Expansion, which aligns optimizer state distributions more closely with the FP8 representation range, thereby reducing quantization error, and (2) Mixed-Granularity Activation Quantization, which optimizes activation memory using a combination of per-tensor and per-group quantization strategies. Experiments demonstrate that COAT effectively reduces end-to-end training memory footprint by 1.54x compared to BF16 while achieving nearly lossless performance across various tasks, such as Large Language Model pretraining and fine-tuning and Vision Language Model training. COAT also achieves a 1.43x end-to-end training speedup compared to BF16, performing on par with or surpassing TransformerEngine's speedup. COAT enables efficient full-parameter training of large models on fewer GPUs, and facilitates doubling the batch size in distributed training settings, providing a practical solution for scaling large-scale model training. The code is available at https://github.com/NVlabs/COAT.
comment: 22 pages. 9 Figures. 13 Tables
♻ ☆ On Sequential Bayesian Inference for Continual Learning
Sequential Bayesian inference can be used for continual learning to prevent catastrophic forgetting of past tasks and provide an informative prior when learning new tasks. We revisit sequential Bayesian inference and test whether having access to the true posterior is guaranteed to prevent catastrophic forgetting in Bayesian neural networks. To do this we perform sequential Bayesian inference using Hamiltonian Monte Carlo. We propagate the posterior as a prior for new tasks by fitting a density estimator on Hamiltonian Monte Carlo samples. We find that this approach fails to prevent catastrophic forgetting demonstrating the difficulty in performing sequential Bayesian inference in neural networks. From there we study simple analytical examples of sequential Bayesian inference and CL and highlight the issue of model misspecification which can lead to sub-optimal continual learning performance despite exact inference. Furthermore, we discuss how task data imbalances can cause forgetting. From these limitations, we argue that we need probabilistic models of the continual learning generative process rather than relying on sequential Bayesian inference over Bayesian neural network weights. In this vein, we also propose a simple baseline called Prototypical Bayesian Continual Learning, which is competitive with state-of-the-art Bayesian continual learning methods on class incremental continual learning vision benchmarks.
comment: Supercedes Entropy publication with updates to Section 4
♻ ☆ Interesting Scientific Idea Generation using Knowledge Graphs and LLMs: Evaluations with 100 Research Group Leaders
The rapid growth of scientific literature makes it challenging for researchers to identify novel and impactful ideas, especially across disciplines. Modern artificial intelligence (AI) systems offer new approaches, potentially inspiring ideas not conceived by humans alone. But how compelling are these AI-generated ideas, and how can we improve their quality? Here, we introduce SciMuse, which uses 58 million research papers and a large-language model to generate research ideas. We conduct a large-scale evaluation in which over 100 research group leaders -- from natural sciences to humanities -- ranked more than 4,400 personalized ideas based on their interest. This data allows us to predict research interest using (1) supervised neural networks trained on human evaluations, and (2) unsupervised zero-shot ranking with large-language models. Our results demonstrate how future systems can help generating compelling research ideas and foster unforeseen interdisciplinary collaborations.
comment: 8 pages; 4 figures; Appendix: 6 pages, 5 figures, 2 tables
♻ ☆ Forecasting high-impact research topics via machine learning on evolving knowledge graphs
The exponential growth in scientific publications poses a severe challenge for human researchers. It forces attention to more narrow sub-fields, which makes it challenging to discover new impactful research ideas and collaborations outside one's own field. While there are ways to predict a scientific paper's future citation counts, they need the research to be finished and the paper written, usually assessing impact long after the idea was conceived. Here we show how to predict the impact of onsets of ideas that have never been published by researchers. For that, we developed a large evolving knowledge graph built from more than 21 million scientific papers. It combines a semantic network created from the content of the papers and an impact network created from the historic citations of papers. Using machine learning, we can predict the dynamic of the evolving network into the future with high accuracy (AUC values beyond 0.9 for most experiments), and thereby the impact of new research directions. We envision that the ability to predict the impact of new ideas will be a crucial component of future artificial muses that can inspire new impactful and interesting scientific ideas.
comment: 13 pages, 12 figures, Comments welcome!
♻ ☆ Graph-Aware Isomorphic Attention for Adaptive Dynamics in Transformers
We present an approach to modifying Transformer architectures by integrating graph-aware relational reasoning into the attention mechanism, merging concepts from graph neural networks and language modeling. Building on the inherent connection between attention and graph theory, we reformulate the Transformer's attention mechanism as a graph operation and propose Graph-Aware Isomorphic Attention. This method leverages advanced graph modeling strategies, including Graph Isomorphism Networks (GIN) and Principal Neighborhood Aggregation (PNA), to enrich the representation of relational structures. Our approach captures complex dependencies and generalizes across tasks, as evidenced by a reduced generalization gap and improved learning performance. Additionally, we expand the concept of graph-aware attention to introduce Sparse GIN-Attention, a fine-tuning approach that employs sparse GINs. By interpreting attention matrices as sparse adjacency graphs, this technique enhances the adaptability of pre-trained foundational models with minimal computational overhead, endowing them with graph-aware capabilities. Sparse GIN-Attention fine-tuning achieves improved training dynamics and better generalization compared to alternative methods like low-rank adaption (LoRA). We discuss latent graph-like structures within traditional attention mechanisms, offering a new lens through which Transformers can be understood. By evolving Transformers as hierarchical GIN models for relational reasoning. This perspective suggests profound implications for foundational model development, enabling the design of architectures that dynamically adapt to both local and global dependencies. Applications in bioinformatics, materials science, language modeling, and beyond could benefit from this synthesis of relational and sequential data modeling, setting the stage for interpretable and generalizable modeling strategies.
♻ ☆ Unlocking the diagnostic potential of electrocardiograms through information transfer from cardiac magnetic resonance imaging
Cardiovascular diseases (CVD) can be diagnosed using various diagnostic modalities. The electrocardiogram (ECG) is a cost-effective and widely available diagnostic aid that provides functional information of the heart. However, its ability to classify and spatially localise CVD is limited. In contrast, cardiac magnetic resonance (CMR) imaging provides detailed structural information of the heart and thus enables evidence-based diagnosis of CVD, but long scan times and high costs limit its use in clinical routine. In this work, we present a deep learning strategy for cost-effective and comprehensive cardiac screening solely from ECG. Our approach combines multimodal contrastive learning with masked data modelling to transfer domain-specific information from CMR imaging to ECG representations. In extensive experiments using data from 40,044 UK Biobank subjects, we demonstrate the utility and generalisability of our method for subject-specific risk prediction of CVD and the prediction of cardiac phenotypes using only ECG data. Specifically, our novel multimodal pre-training paradigm improves performance by up to 12.19 % for risk prediction and 27.59 % for phenotype prediction. In a qualitative analysis, we demonstrate that our learned ECG representations incorporate information from CMR image regions of interest. Our entire pipeline is publicly available at https://github.com/oetu/MMCL-ECG-CMR.
♻ ☆ Comparing Bad Apples to Good Oranges: Aligning Large Language Models via Joint Preference Optimization
A common technique for aligning large language models (LLMs) relies on acquiring human preferences by comparing multiple generations conditioned on a fixed context. This method, however, relies solely on pairwise comparisons, where the generations are evaluated within an identical context. While effective to such conditional preferences often fail to encompass the nuanced and multidimensional nature of human preferences. In this work, we revisit the traditional paradigm of preference acquisition and propose a new axis based on eliciting preferences jointly over the instruction-response pairs. Unlike prior preference optimizations, which are designed for conditional ranking protocols (e.g., DPO), we propose Joint Preference Optimization (JPO), a new preference optimization objective that upweights the joint probability of the chosen instruction-response pair over the rejected instruction-response pair. Interestingly, LLMs trained with joint instruction-response preference data using JPO outperform LLM trained with DPO by $5.2\%$ and $3.3\%$ win-rate for summarization and open-ended dialogue datasets, respectively. Our findings reveal that joint preferences over instruction and response pairs can significantly enhance the alignment of LLMs by tapping into a broader spectrum of human preference elicitation. The data and code is available at https://github.com/Hritikbansal/dove.
comment: 22 pages, 16 figures, 7 tables
♻ ☆ Open-Source Acceleration of Stable-Diffusion.cpp Deployable on All Devices
Stable diffusion plays a crucial role in generating high-quality images. However, image generation is time-consuming and memory-intensive. To address this, stable-diffusion.cpp (Sdcpp) emerges as an efficient inference framework to accelerate the diffusion models. Although it is lightweight, the current implementation of ggml_conv_2d operator in Sdcpp is suboptimal, exhibiting both high inference latency and massive memory usage. To address this, in this work, we present an optimized version of Sdcpp leveraging the Winograd algorithm to accelerate 2D convolution operations, which is the primary bottleneck in the pipeline. By analyzing both dependent and independent computation graphs, we exploit the device's locality and parallelism to achieve substantial performance improvements. Our framework delivers correct end-to-end results across various stable diffusion models, including SDv1.4, v1.5, v2.1, SDXL, and SDXL-Turbo. Our evaluation results demonstrate a speedup up to 2.76x for individual convolutional layers and an inference speedup up to 4.79x for the overall image generation process, compared with the original Sdcpp on M1 pro. Homepage: https://github.com/SealAILab/stable-diffusion-cpp
♻ ☆ Revisiting the Graph Reasoning Ability of Large Language Models: Case Studies in Translation, Connectivity and Shortest Path
Large Language Models (LLMs) have achieved great success in various reasoning tasks. In this work, we focus on the graph reasoning ability of LLMs. Although theoretical studies proved that LLMs are capable of handling graph reasoning tasks, empirical evaluations reveal numerous failures. To deepen our understanding on this discrepancy, we revisit the ability of LLMs on three fundamental graph tasks: graph description translation, graph connectivity, and the shortest-path problem. Our findings suggest that LLMs can fail to understand graph structures through text descriptions and exhibit varying performance for all these three fundamental tasks. Meanwhile, we perform a real-world investigation on knowledge graphs and make consistent observations with our findings. The codes and datasets are available.